Science.gov

Sample records for photon counting imaging

  1. Imaging by terahertz photon counting

    NASA Astrophysics Data System (ADS)

    Ikushima, Kenji; Komiyama, Susumu

    2010-08-01

    Photon counting method is indispensable in visible/near-infrared optical measurements for detecting extremely weak radiation. The method, however, has been inaccessible in terahertz region, where the photon energies are more than 100 times smaller and catching individual photons is difficult. Here we review photon counting measurements of terahertz waves, by incorporating a semiconductor quantum-dot terahertz-photon detector into a scanning terahertz microscope. By using a quantum Hall effect detector as well, measurements cover the intensity dynamic range more than six orders of magnitude. Applying the measurement system to the study of semiconductor quantum Hall effect devices, we image extremely weak cyclotron radiation emitted by nonequilibrium electrons. Owing to the unprecedented sensitivity, a variety of new features of electron kinetics are unveiled. Besides semiconductor electric devices studied here, the experimental method will find application in diverse areas of molecular dynamics, microthermography, and cell activities.

  2. Optical Ranicon detectors for photon counting imaging.

    NASA Astrophysics Data System (ADS)

    Clampin, Mark; Crocker, Jim; Paresce, Francesco; Rafal, Marc

    1988-08-01

    The design and development of two detectors, known as Ranicon and advanced Ranicon, for optical photon counting imaging on ground-based telescopes are discussed. The proximity focusing, microchannel-plate stack, resistive anode, and signal processing characteristics are described. The theory behind the overall resolution of the Ranicon system is reviewed. Resolution measurements for the instruments are reported and discussed.

  3. Single-molecule localization software applied to photon counting imaging.

    PubMed

    Hirvonen, Liisa M; Kilfeather, Tiffany; Suhling, Klaus

    2015-06-01

    Centroiding in photon counting imaging has traditionally been accomplished by a single-step, noniterative algorithm, often implemented in hardware. Single-molecule localization techniques in superresolution fluorescence microscopy are conceptually similar, but use more sophisticated iterative software-based fitting algorithms to localize the fluorophore. Here, we discuss common features and differences between single-molecule localization and photon counting imaging and investigate the suitability of single-molecule localization software for photon event localization. We find that single-molecule localization software packages designed for superresolution microscopy-QuickPALM, rapidSTORM, and ThunderSTORM-can work well when applied to photon counting imaging with a microchannel-plate-based intensified camera system: photon event recognition can be excellent, fixed pattern noise can be low, and the microchannel plate pores can easily be resolved. PMID:26192667

  4. Multiple-Event, Single-Photon Counting Imaging Sensor

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Cunningham, Thomas J.; Sun, Chao; Wang, Kang L.

    2011-01-01

    The single-photon counting imaging sensor is typically an array of silicon Geiger-mode avalanche photodiodes that are monolithically integrated with CMOS (complementary metal oxide semiconductor) readout, signal processing, and addressing circuits located in each pixel and the peripheral area of the chip. The major problem is its single-event method for photon count number registration. A single-event single-photon counting imaging array only allows registration of up to one photon count in each of its pixels during a frame time, i.e., the interval between two successive pixel reset operations. Since the frame time can t be too short, this will lead to very low dynamic range and make the sensor merely useful for very low flux environments. The second problem of the prior technique is a limited fill factor resulting from consumption of chip area by the monolithically integrated CMOS readout in pixels. The resulting low photon collection efficiency will substantially ruin any benefit gained from the very sensitive single-photon counting detection. The single-photon counting imaging sensor developed in this work has a novel multiple-event architecture, which allows each of its pixels to register as more than one million (or more) photon-counting events during a frame time. Because of a consequently boosted dynamic range, the imaging array of the invention is capable of performing single-photon counting under ultra-low light through high-flux environments. On the other hand, since the multiple-event architecture is implemented in a hybrid structure, back-illumination and close-to-unity fill factor can be realized, and maximized quantum efficiency can also be achieved in the detector array.

  5. Three-Dimensional Photon Counting Imaging with Axially Distributed Sensing.

    PubMed

    Cho, Myungjin; Javidi, Bahram

    2016-01-01

    In this paper, we review three-dimensional (3D) photon counting imaging with axially distributed sensing. Under severely photon-starved conditions, we have proposed various imaging and algorithmic approaches to reconstruct a scene in 3D, which are not possible by using conventional imaging system due to lack of sufficient number of photons. In this paper, we present an overview of optical sensing and imaging system along with dedicated algorithms for reconstructing 3D scenes by photon counting axially distributed sensing, which may be implemented by moving a single image sensor along its optical axis. To visualize the 3D image, statistical estimation methods and computational reconstruction of axially distributed sensing is applied. PMID:27483262

  6. Photon-Counting Arrays for Time-Resolved Imaging.

    PubMed

    Antolovic, I Michel; Burri, Samuel; Hoebe, Ron A; Maruyama, Yuki; Bruschini, Claudio; Charbon, Edoardo

    2016-01-01

    The paper presents a camera comprising 512 × 128 pixels capable of single-photon detection and gating with a maximum frame rate of 156 kfps. The photon capture is performed through a gated single-photon avalanche diode that generates a digital pulse upon photon detection and through a digital one-bit counter. Gray levels are obtained through multiple counting and accumulation, while time-resolved imaging is achieved through a 4-ns gating window controlled with subnanosecond accuracy by a field-programmable gate array. The sensor, which is equipped with microlenses to enhance its effective fill factor, was electro-optically characterized in terms of sensitivity and uniformity. Several examples of capture of fast events are shown to demonstrate the suitability of the approach. PMID:27367697

  7. Photon-Counting Arrays for Time-Resolved Imaging

    PubMed Central

    Antolovic, I. Michel; Burri, Samuel; Hoebe, Ron A.; Maruyama, Yuki; Bruschini, Claudio; Charbon, Edoardo

    2016-01-01

    The paper presents a camera comprising 512 × 128 pixels capable of single-photon detection and gating with a maximum frame rate of 156 kfps. The photon capture is performed through a gated single-photon avalanche diode that generates a digital pulse upon photon detection and through a digital one-bit counter. Gray levels are obtained through multiple counting and accumulation, while time-resolved imaging is achieved through a 4-ns gating window controlled with subnanosecond accuracy by a field-programmable gate array. The sensor, which is equipped with microlenses to enhance its effective fill factor, was electro-optically characterized in terms of sensitivity and uniformity. Several examples of capture of fast events are shown to demonstrate the suitability of the approach. PMID:27367697

  8. Single-quantum dot imaging with a photon counting camera

    PubMed Central

    Michalet, X.; Colyer, R. A.; Antelman, J.; Siegmund, O.H.W.; Tremsin, A.; Vallerga, J.V.; Weiss, S.

    2010-01-01

    The expanding spectrum of applications of single-molecule fluorescence imaging ranges from fundamental in vitro studies of biomolecular activity to tracking of receptors in live cells. The success of these assays has relied on progresses in organic and non-organic fluorescent probe developments as well as improvements in the sensitivity of light detectors. We describe a new type of detector developed with the specific goal of ultra-sensitive single-molecule imaging. It is a wide-field, photon-counting detector providing high temporal and high spatial resolution information for each incoming photon. It can be used as a standard low-light level camera, but also allows access to a lot more information, such as fluorescence lifetime and spatio-temporal correlations. We illustrate the single-molecule imaging performance of our current prototype using quantum dots and discuss on-going and future developments of this detector. PMID:19689323

  9. Soft tissue imaging with photon counting spectroscopic CT

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.

    2015-03-01

    The purpose of this work was experimental investigation of photon counting spectroscopic CT (PCS-CT) imaging of anatomical soft tissue with clinically relevant size. The imaging experiments were performed using a spectroscopic CT system based on CdZnTe photon counting detector with two rows of pixels, 256 pixels in each row, 1  ×  1 mm2 pixel size, and 25.6 cm detector length. The detector could split the x-ray energy spectrum to 5 regions (energy bins), and acquire 5 multi-energy (spectroscopic) CT images in a single CT scan. A sample of round shaped anatomical soft tissue of 14 cm diameter including lean and fat was used for imaging. To avoid the negative effect of anatomical noise on quantitative analysis, a spectroscopic CT phantom with tissue equivalent solid materials was used. The images were acquired at 60, 90, and 120 kVp tube voltages, and spectroscopic image series were acquired with 3 and 5 energy bins. Spectroscopic CT numbers were introduced and used to evaluate an energy selective image series. The anatomical soft tissue with 14 cm diameter was visualized with good quality and without substantial artifacts by the photon counting spectroscopic CT system. The effects of the energy bin crosstalk on spectroscopic CT numbers were quantified and analyzed. The single and double slice PCS-CT images were acquired and compared. Several new findings were observed, including the effect of soft tissue non-uniformity on image artifacts, unique status of highest energy bin, and material dependent visualization in spectroscopic image series. Fat-lean decomposition was performed using dual energy subtraction and threshold segmentation methods, and compared. Using K-edge filtered x-rays improved fat-lean decomposition as compared to conventional x-rays. Several new and important aspects of the PCS-CT were investigated. These include imaging soft tissue with clinically relevant size, single- and double-slice PCS-CT imaging, using spectroscopic CT

  10. Soft tissue imaging with photon counting spectroscopic CT.

    PubMed

    Shikhaliev, Polad M

    2015-03-21

    The purpose of this work was experimental investigation of photon counting spectroscopic CT (PCS-CT) imaging of anatomical soft tissue with clinically relevant size. The imaging experiments were performed using a spectroscopic CT system based on CdZnTe photon counting detector with two rows of pixels, 256 pixels in each row, 1  ×  1 mm(2) pixel size, and 25.6 cm detector length. The detector could split the x-ray energy spectrum to 5 regions (energy bins), and acquire 5 multi-energy (spectroscopic) CT images in a single CT scan. A sample of round shaped anatomical soft tissue of 14 cm diameter including lean and fat was used for imaging. To avoid the negative effect of anatomical noise on quantitative analysis, a spectroscopic CT phantom with tissue equivalent solid materials was used. The images were acquired at 60, 90, and 120 kVp tube voltages, and spectroscopic image series were acquired with 3 and 5 energy bins. Spectroscopic CT numbers were introduced and used to evaluate an energy selective image series. The anatomical soft tissue with 14 cm diameter was visualized with good quality and without substantial artifacts by the photon counting spectroscopic CT system. The effects of the energy bin crosstalk on spectroscopic CT numbers were quantified and analyzed. The single and double slice PCS-CT images were acquired and compared. Several new findings were observed, including the effect of soft tissue non-uniformity on image artifacts, unique status of highest energy bin, and material dependent visualization in spectroscopic image series. Fat-lean decomposition was performed using dual energy subtraction and threshold segmentation methods, and compared. Using K-edge filtered x-rays improved fat-lean decomposition as compared to conventional x-rays. Several new and important aspects of the PCS-CT were investigated. These include imaging soft tissue with clinically relevant size, single- and double-slice PCS-CT imaging, using spectroscopic CT

  11. Single Photon Counting Detectors for Low Light Level Imaging Applications

    NASA Astrophysics Data System (ADS)

    Kolb, Kimberly

    2015-10-01

    This dissertation presents the current state-of-the-art of semiconductor-based photon counting detector technologies. HgCdTe linear-mode avalanche photodiodes (LM-APDs), silicon Geiger-mode avalanche photodiodes (GM-APDs), and electron-multiplying CCDs (EMCCDs) are compared via their present and future performance in various astronomy applications. LM-APDs are studied in theory, based on work done at the University of Hawaii. EMCCDs are studied in theory and experimentally, with a device at NASA's Jet Propulsion Lab. The emphasis of the research is on GM-APD imaging arrays, developed at MIT Lincoln Laboratory and tested at the RIT Center for Detectors. The GM-APD research includes a theoretical analysis of SNR and various performance metrics, including dark count rate, afterpulsing, photon detection efficiency, and intrapixel sensitivity. The effects of radiation damage on the GM-APD were also characterized by introducing a cumulative dose of 50 krad(Si) via 60 MeV protons. Extensive development of Monte Carlo simulations and practical observation simulations was completed, including simulated astronomical imaging and adaptive optics wavefront sensing. Based on theoretical models and experimental testing, both the current state-of-the-art performance and projected future performance of each detector are compared for various applications. LM-APD performance is currently not competitive with other photon counting technologies, and are left out of the application-based comparisons. In the current state-of-the-art, EMCCDs in photon counting mode out-perform GM-APDs for long exposure scenarios, though GM-APDs are better for short exposure scenarios (fast readout) due to clock-induced-charge (CIC) in EMCCDs. In the long term, small improvements in GM-APD dark current will make them superior in both long and short exposure scenarios for extremely low flux. The efficiency of GM-APDs will likely always be less than EMCCDs, however, which is particularly disadvantageous for

  12. Energy dispersive photon counting detectors for breast imaging

    NASA Astrophysics Data System (ADS)

    Barber, William C.; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasidharan; Nygard, Einar; Iwanczyk, Jan S.

    2013-09-01

    We report on our efforts toward the development of silicon (Si) strip detectors for energy-resolved clinical breast imaging. Typically, x-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a- Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting silicon Si strip detectors. Mammography requires high flux from the x-ray generator, therefore, in order to achieve energy resolved single photon counting, a high output count rate (OCR) for the detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions. We present our methods and results from the optimization of prototype detectors based on Si strip structures. We describe the detector optimization and the development of ASIC readout electronics that provide the required spatial resolution, low noise, high count rate capabilities and minimal power consumption.

  13. Photon-counting image sensors for the ultraviolet

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.

    1985-01-01

    An investigation on specific performance details of photon counting, ultraviolet image sensors having 2-dimensional formats is reviewed. In one study, controlled experiments were performed which compare the quantum efficiencies, in pulse counting mode, of CsI photocathodes deposited on: (1) the front surface of a microchannel plate (MCP), (2) a solid surface in front of an MCP, and (3) an intensified CCD image sensor (ICCD) where a CCD is directly bombarded by accelerated photoelectrons. Tests indicated that the detection efficiency of the CsI-coated MCP at 1026 A is lower by a factor of 2.5 than that of the MCP with a separate, opaque CsI photocathode, and the detection efficiency ratio increases substantially at longer wavelengths (ratio is 5 at 1216 A and 20 at 1608 A).

  14. Photon counting imaging and polarized light encoding for secure image verification and hologam watermarking

    NASA Astrophysics Data System (ADS)

    Rajput, Sudheesh K.; Kumar, Dhirendra; Nishchal, Naveen K.

    2014-12-01

    We propose an optical image security scheme based on polarized light encoding and the photon counting technique. An input image is encoded using the concept of polarized light, which is parameterized using Stokes-Mueller formalism. The encoded image is further encrypted by applying the photon counting imaging technique to obtain a photon limited image. For decryption, the photon limited decrypted image is obtained by using a polarized light decoding scheme with the help of appropriate keys. The decrypted image has sparse representation, which contains sufficient information for verification. This photon counted decrypted image can be verified using correlation filters. The proposed encryption technique offers benefits over the double random phase encoding in that it does not require active elements such as a lens and provides flexibility in the design of encryption keys. The proposed encryption scheme has also been used for hologram watermarking. The computer simulation results for secure image verification and the hologram watermarking scheme have been presented.

  15. The performance of photon counting imaging with a Geiger mode silicon avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Qu, Hui-Ming; Zhang, Yi-Fan; Ji, Zhong-Jie; Chen, Qian

    2013-10-01

    In principle, photon counting imaging can detect a photon. With the development of low-level-light image intensifier techniques and low-level-light detection devices, photon counting imaging can now detect photon images under extremely low illumination. Based on a Geiger mode silicon avalanche photodiode single photon counter, an experimental system for photon counting imaging was built through two-dimensional scanning of a SPAD (single photon avalanche diode) detector. The feasibility of the imaging platform was validated experimentally. Two images with different characteristics, namely, the USAF 1951 resolution test panel and the image of Lena, were chosen to evaluate the imaging performance of the experimental system. The results were compared and analysed. The imaging properties under various illumination and scanning steps were studied. The lowest illumination limit of the SPAD photon counting imaging was determined.

  16. Multibeam multifocal multiphoton photon counting imaging in scattering media

    NASA Astrophysics Data System (ADS)

    Hoover, Erich E.

    Multiphoton microscopy is an invaluable technique for the neurological community, allowing for deep explorations within highly scattering tissues such as the brain. However, prior to this research multiphoton microscopy was limited in its ability to rapidly construct volumetric images deep within scattering specimens. This work establishes a technique that permits such exploration through the application of multiple beams separated in both space and time, where signal photons corresponding to those beams are demultiplexed through the use of a field programmable gate array. With this system a number of improvements are provided to research in scattering media, including the coveted ability to perform photon-counting imaging with multiple beams. The ability to perform these measurements with multiple beams permits unique quantitative measurements of fluorophores within living specimens, allowing new research into dynamic three-dimensional behavior occurring within the brain. Additionally, the ability to perform multimodal measurements without filtering allows for unique avenues of research where the harmonic generation is indistinguishable from the two-photon excited fluorescence. These improvements provide neuroscience researchers with a large assortment of technological tools that will permit them to perform numerous novel experiments within the brain and other highly-scattering specimens, which should one day lead to significant advances in our understanding of complex neuronal activity.

  17. High Speed Large Format Photon Counting Microchannel Plate Imaging Sensors

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Ertley, C.; Vallerga, J.

    The development of a new class of microchannel plate technology, using atomic layer deposition (ALD) techniques applied to a borosilicate microcapillary array is enabling the implementation of larger, more stable detectors for Astronomy and remote sensing. Sealed tubes with MCPs with SuperGenII, bialkali, GaAs and GaN photocathodes have been developed to cover a wide range of optical/UV sensing applications. Formats of 18mm and 25mm circular, and 50mm (Planacon) and 20cm square have been constructed for uses from night time remote reconnaissance and biological single-molecule fluorescence lifetime imaging microscopy, to large area focal plane imagers for Astronomy, neutron detection and ring imaging Cherenkov detection. The large focal plane areas were previously unattainable, but the new developments in construction of ALD microchannel plates allow implementation of formats of 20cm or more. Continuing developments in ALD microchannel plates offer improved overall sealed tube lifetime and gain stability, and furthermore show reduced levels of radiation induced background. High time resolution astronomical and remote sensing applications can be addressed with microchannel plate based imaging, photon time tagging detector sealed tube schemes. Photon counting imaging readouts for these devices vary from cross strip (XS), cross delay line (XDL), to stripline anodes, and pad arrays depending on the intended application. The XS and XDL readouts have been implemented in formats from 22mm, and 50mm to 20cm. Both use MCP charge signals detected on two orthogonal layers of conductive fingers to encode event X-Y positions. XDL readout uses signal propagation delay to encode positions while XS readout uses charge cloud centroiding. Spatial resolution readout of XS detectors can be better than 20 microns FWHM, with good image linearity while using low gain (<10^6), allowing high local counting rates and longer overall tube lifetime. XS tubes with electronics can encode event

  18. Evaluation of a photon-counting breast tomosynthesis imaging system

    NASA Astrophysics Data System (ADS)

    Maidment, Andrew D. A.; Ullberg, Christer; Lindman, Karin; Adelöw, Leif; Egerström, Johan; Eklund, Mathias; Francke, Tom; Jordung, Ulf; Kristoffersson, Tomas; Lindqvist, Lars; Marchal, Daniel; Olla, Hans; Penton, Erik; Rantanen, Juha; Solokov, Skiff; Weber, Niclas; Westerberg, Hans

    2006-03-01

    Digital breast tomosynthesis promises solutions to many of the problems associated with projection mammography, including elimination of artifactual densities due to the superposition of normal tissues and increasing the conspicuity of true lesions that would otherwise be masked by superimposed normal tissue. We have investigated tomosynthesis using a digital camera containing 48 photon counting, orientation sensitive, linear detectors which are precisely aligned with the focal spot of the x-ray source. The x-ray source and the digital detectors are scanned in a continuous motion across the object (patient), each linear detector collecting an image at a distinct angle. A preliminary assessment of tomosynthesis image quality has been performed with both qualitative and quantitative methods. Measured values of MTF and NPS appear concordant with theoretical values. The MTF in the scanning direction is dominated by scanning unsharpness and geometric factors, while the NPS is white. The MTF and NPS in the strip direction are somewhat lower than in the scan direction. The NPS of tomographic images show a slight decrease with increasing spatial frequency, related to the sampling and interpolation in the reconstruction process. A phase I clinical trial is ongoing; 9 women have been recruited. Breast positioning is comparable to other imaging systems. The visualization of breast anatomy appears to be superior to screen-film mammography, at the same average glandular dose. Examination of images reconstructed with a sub-sampled set of projection images appears to support the hypothesis that image quality is superior when more projection images are used in the reconstruction.

  19. Phasor imaging with a widefield photon-counting detector

    PubMed Central

    Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Weiss, Shimon

    2012-01-01

    Abstract. Fluorescence lifetime can be used as a contrast mechanism to distinguish fluorophores for localization or tracking, for studying molecular interactions, binding, assembly, and aggregation, or for observing conformational changes via Förster resonance energy transfer (FRET) between donor and acceptor molecules. Fluorescence lifetime imaging microscopy (FLIM) is thus a powerful technique but its widespread use has been hampered by demanding hardware and software requirements. FLIM data is often analyzed in terms of multicomponent fluorescence lifetime decays, which requires large signals for a good signal-to-noise ratio. This confines the approach to very low frame rates and limits the number of frames which can be acquired before bleaching the sample. Recently, a computationally efficient and intuitive graphical representation, the phasor approach, has been proposed as an alternative method for FLIM data analysis at the ensemble and single-molecule level. In this article, we illustrate the advantages of combining phasor analysis with a widefield time-resolved single photon-counting detector (the H33D detector) for FLIM applications. In particular we show that phasor analysis allows real-time subsecond identification of species by their lifetimes and rapid representation of their spatial distribution, thanks to the parallel acquisition of FLIM information over a wide field of view by the H33D detector. We also discuss possible improvements of the H33D detector’s performance made possible by the simplicity of phasor analysis and its relaxed timing accuracy requirements compared to standard time-correlated single-photon counting (TCSPC) methods. PMID:22352658

  20. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors.

    PubMed

    Dutton, Neale A W; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K

    2016-01-01

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed. PMID:27447643

  1. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors

    PubMed Central

    Dutton, Neale A. W.; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K.

    2016-01-01

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed. PMID:27447643

  2. Photon counting pixel architecture for x-ray and gamma-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Goldan, Amir H.; Ng, Li; Rowlands, J. A.; Karim, Karim S.

    2007-03-01

    Photon counting is emerging as an alternative detection technique to conventional photon integration. In photon counting systems, the value of each image pixel is equal to the number of photons that are absorbed by the radiation detector. The proposed pixel architecture provides a method for energy windowing and serial readout for low-dose gamma-ray imaging. Each pixel is comprised of a radiation detector and integrated analog and digital circuitry. A prototype was developed on a printed circuit board (PCB) using discrete electronic components. In this research, we present the experimental results for the operation of the photon counting pixel with energy windowing and investigate the compromise between pixel noise level and photon count rate.

  3. High-Resolution Mosaic Imaging with Multifocal, Multiphoton Photon-Counting Microscopy

    SciTech Connect

    Chandler, E.; Hoover, E.; Field, J.; Sheetz, K.; Amir, W.; Carriles, R.; Ding, S. Y.; Squier, J.

    2009-04-10

    High-resolution mosaic imaging is performed for the first time to our knowledge with a multifocal, multiphoton, photon-counting imaging system. We present a novel design consisting of a home-built femtosecond Yb-doped KGdWO{sub 4} laser with an optical multiplexer, which is coupled with a commercial Olympus IX-71 microscope frame. Photon counting is performed using single-element detectors and an inexpensive electronic demultiplexer and counters.

  4. Development of low read noise high conversion gain CMOS image sensor for photon counting level imaging

    NASA Astrophysics Data System (ADS)

    Seo, Min-Woong; Kawahito, Shoji; Kagawa, Keiichiro; Yasutomi, Keita

    2016-05-01

    A CMOS image sensor with deep sub-electron read noise and high pixel conversion gain has been developed. Its performance is recognized through image outputs from an area image sensor, confirming the capability of photoelectroncounting- level imaging. To achieve high conversion gain, the proposed pixel has special structures to reduce the parasitic capacitances around FD node. As a result, the pixel conversion gain is increased due to the optimized FD node capacitance, and the noise performance is also improved by removing two noise sources from power supply. For the first time, high contrast images from the reset-gate-less CMOS image sensor, with less than 0.3e- rms noise level, have been generated at an extremely low light level of a few electrons per pixel. In addition, the photon-counting capability of the developed CMOS imager is demonstrated by a measurement, photoelectron-counting histogram (PCH).

  5. A Photon Counting Imaging Detector for NASA Exoplanet Mission

    NASA Astrophysics Data System (ADS)

    Figer, Donald

    The key objective of the proposed project is to advance the maturity of a 256x256 pixel single-photon optical imaging detector. The detector has zero read noise and is resilient against the harsh effects of radiation in space. We expect that the device will have state-of-the-art performance in other parameters, e.g., high quantum efficiency from UV to 1 #m, low dark current, etc.

  6. Estimating ROI activity concentration with photon-processing and photon-counting SPECT imaging systems

    NASA Astrophysics Data System (ADS)

    Jha, Abhinav K.; Frey, Eric C.

    2015-03-01

    Recently a new class of imaging systems, referred to as photon-processing (PP) systems, are being developed that uses real-time maximum-likelihood (ML) methods to estimate multiple attributes per detected photon and store these attributes in a list format. PP systems could have a number of potential advantages compared to systems that bin photons based on attributes such as energy, projection angle, and position, referred to as photon-counting (PC) systems. For example, PP systems do not suffer from binning-related information loss and provide the potential to extract information from attributes such as energy deposited by the detected photon. To quantify the effects of this advantage on task performance, objective evaluation studies are required. We performed this study in the context of quantitative 2-dimensional single-photon emission computed tomography (SPECT) imaging with the end task of estimating the mean activity concentration within a region of interest (ROI). We first theoretically outline the effect of null space on estimating the mean activity concentration, and argue that due to this effect, PP systems could have better estimation performance compared to PC systems with noise-free data. To evaluate the performance of PP and PC systems with noisy data, we developed a singular value decomposition (SVD)-based analytic method to estimate the activity concentration from PP systems. Using simulations, we studied the accuracy and precision of this technique in estimating the activity concentration. We used this framework to objectively compare PP and PC systems on the activity concentration estimation task. We investigated the effects of varying the size of the ROI and varying the number of bins for the attribute corresponding to the angular orientation of the detector in a continuously rotating SPECT system. The results indicate that in several cases, PP systems offer improved estimation performance compared to PC systems.

  7. Photon Counting Imaging with an Electron-Bombarded Pixel Image Sensor

    PubMed Central

    Hirvonen, Liisa M.; Suhling, Klaus

    2016-01-01

    Electron-bombarded pixel image sensors, where a single photoelectron is accelerated directly into a CCD or CMOS sensor, allow wide-field imaging at extremely low light levels as they are sensitive enough to detect single photons. This technology allows the detection of up to hundreds or thousands of photon events per frame, depending on the sensor size, and photon event centroiding can be employed to recover resolution lost in the detection process. Unlike photon events from electron-multiplying sensors, the photon events from electron-bombarded sensors have a narrow, acceleration-voltage-dependent pulse height distribution. Thus a gain voltage sweep during exposure in an electron-bombarded sensor could allow photon arrival time determination from the pulse height with sub-frame exposure time resolution. We give a brief overview of our work with electron-bombarded pixel image sensor technology and recent developments in this field for single photon counting imaging, and examples of some applications. PMID:27136556

  8. Photon Counting Imaging with an Electron-Bombarded Pixel Image Sensor.

    PubMed

    Hirvonen, Liisa M; Suhling, Klaus

    2016-01-01

    Electron-bombarded pixel image sensors, where a single photoelectron is accelerated directly into a CCD or CMOS sensor, allow wide-field imaging at extremely low light levels as they are sensitive enough to detect single photons. This technology allows the detection of up to hundreds or thousands of photon events per frame, depending on the sensor size, and photon event centroiding can be employed to recover resolution lost in the detection process. Unlike photon events from electron-multiplying sensors, the photon events from electron-bombarded sensors have a narrow, acceleration-voltage-dependent pulse height distribution. Thus a gain voltage sweep during exposure in an electron-bombarded sensor could allow photon arrival time determination from the pulse height with sub-frame exposure time resolution. We give a brief overview of our work with electron-bombarded pixel image sensor technology and recent developments in this field for single photon counting imaging, and examples of some applications. PMID:27136556

  9. Reduction of CMOS Image Sensor Read Noise to Enable Photon Counting

    PubMed Central

    Guidash, Michael; Ma, Jiaju; Vogelsang, Thomas; Endsley, Jay

    2016-01-01

    Recent activity in photon counting CMOS image sensors (CIS) has been directed to reduction of read noise. Many approaches and methods have been reported. This work is focused on providing sub 1 e− read noise by design and operation of the binary and small signal readout of photon counting CIS. Compensation of transfer gate feed-through was used to provide substantially reduced CDS time and source follower (SF) bandwidth. SF read noise was reduced by a factor of 3 with this method. This method can be applied broadly to CIS devices to reduce the read noise for small signals to enable use as a photon counting sensor. PMID:27070625

  10. Reduction of CMOS Image Sensor Read Noise to Enable Photon Counting.

    PubMed

    Guidash, Michael; Ma, Jiaju; Vogelsang, Thomas; Endsley, Jay

    2016-01-01

    Recent activity in photon counting CMOS image sensors (CIS) has been directed to reduction of read noise. Many approaches and methods have been reported. This work is focused on providing sub 1 e(-) read noise by design and operation of the binary and small signal readout of photon counting CIS. Compensation of transfer gate feed-through was used to provide substantially reduced CDS time and source follower (SF) bandwidth. SF read noise was reduced by a factor of 3 with this method. This method can be applied broadly to CIS devices to reduce the read noise for small signals to enable use as a photon counting sensor. PMID:27070625

  11. Photon counting imaging and centroiding with an electron-bombarded CCD using single molecule localisation software

    NASA Astrophysics Data System (ADS)

    Hirvonen, Liisa M.; Barber, Matthew J.; Suhling, Klaus

    2016-06-01

    Photon event centroiding in photon counting imaging and single-molecule localisation in super-resolution fluorescence microscopy share many traits. Although photon event centroiding has traditionally been performed with simple single-iteration algorithms, we recently reported that iterative fitting algorithms originally developed for single-molecule localisation fluorescence microscopy work very well when applied to centroiding photon events imaged with an MCP-intensified CMOS camera. Here, we have applied these algorithms for centroiding of photon events from an electron-bombarded CCD (EBCCD). We find that centroiding algorithms based on iterative fitting of the photon events yield excellent results and allow fitting of overlapping photon events, a feature not reported before and an important aspect to facilitate an increased count rate and shorter acquisition times.

  12. Photon counting imaging and centroiding with an electron-bombarded CCD using single molecule localisation software

    PubMed Central

    Hirvonen, Liisa M.; Barber, Matthew J.; Suhling, Klaus

    2016-01-01

    Photon event centroiding in photon counting imaging and single-molecule localisation in super-resolution fluorescence microscopy share many traits. Although photon event centroiding has traditionally been performed with simple single-iteration algorithms, we recently reported that iterative fitting algorithms originally developed for single-molecule localisation fluorescence microscopy work very well when applied to centroiding photon events imaged with an MCP-intensified CMOS camera. Here, we have applied these algorithms for centroiding of photon events from an electron-bombarded CCD (EBCCD). We find that centroiding algorithms based on iterative fitting of the photon events yield excellent results and allow fitting of overlapping photon events, a feature not reported before and an important aspect to facilitate an increased count rate and shorter acquisition times. PMID:27274604

  13. Optical image encryption via photon-counting imaging and compressive sensing based ptychography

    NASA Astrophysics Data System (ADS)

    Rawat, Nitin; Hwang, In-Chul; Shi, Yishi; Lee, Byung-Geun

    2015-06-01

    In this study, we investigate the integration of compressive sensing (CS) and photon-counting imaging (PCI) techniques with a ptychography-based optical image encryption system. Primarily, the plaintext real-valued image is optically encrypted and recorded via a classical ptychography technique. Further, the sparse-based representations of the original encrypted complex data can be produced by combining CS and PCI techniques with the primary encrypted image. Such a combination takes an advantage of reduced encrypted samples (i.e., linearly projected random compressive complex samples and photon-counted complex samples) that can be exploited to realize optical decryption, which inherently serves as a secret key (i.e., independent to encryption phase keys) and makes an intruder attack futile. In addition to this, recording fewer encrypted samples provides a substantial bandwidth reduction in online transmission. We demonstrate that the fewer sparse-based complex samples have adequate information to realize decryption. To the best of our knowledge, this is the first report on integrating CS and PCI with conventional ptychography-based optical image encryption.

  14. The time-resolved imaging mode (TRIM) of the ESA photon counting detector

    NASA Astrophysics Data System (ADS)

    di Serego Alighieri, S.; Perryman, M. A. C.

    1986-01-01

    The ESA Photon Counting Detector, a scientific model for the Faint Object Camera of the Hubble Space Telescope, has a time-resolved imaging mode in which photon-counts are recorded separately for every frame (normally 30 msec long) and for every pixel (a 512 x 512 format is normally used). The system and its operation at the telescope are described, as well as some of the data reduction facilities. A discussion and sample observations are given for astronomical applications such as fast photometry of known sources, search for optical counterparts of variable sources, and image sharpening.

  15. Comparison of spectral CT imaging methods based a photon-counting detector: Experimental study

    NASA Astrophysics Data System (ADS)

    Lee, Youngjin; Lee, Seungwan; Kim, Hee-Joung

    2016-04-01

    Photon-counting detectors allow spectral computed tomography (CT) imaging using energy-resolved information from a polychromatic X-ray spectrum. The spectral CT images based on the photon-counting detectors are dependent on the energy ranges defined by energy bins for image acquisition. In this study, K-edge and energy weighting imaging methods were experimentally implemented by using a spectral CT system with a cadmium zinc telluride (CZT)-based photon-counting detector. The spectral CT images were obtained by various energy bins and compared in terms of CNR improvement for investigating the effect of energy bins and the efficiency of the spectral CT imaging methods. The results showed that the spectral CT image quality was improved by using the particular energy bins, which were optimized for each spectral CT imaging method and target material. The CNR improvement was different for the spectral CT imaging methods and target materials. It can be concluded that an appropriate selection of imaging method for each target material and the optimization of energy bin can maximize the quality of spectral CT images.

  16. A Multispectral Photon-Counting Double Random Phase Encoding Scheme for Image Authentication

    PubMed Central

    Yi, Faliu; Moon, Inkyu; Lee, Yeon H.

    2014-01-01

    In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI) and double random phase encoding (DRPE) schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color) in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images. PMID:24854208

  17. Calibration of photon counting imaging microchannel plate detectors for EUV astronomy

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Vallerga, J.; Jelinsky, P.

    1986-01-01

    The calibration of photon counting imaging detectors for satellite based EUV astronomy is a complex process designed to ensure the validity of the data received 'in orbit'. The methods developed to accomplish calibration of microchannel plate detectors for the Extreme Ultraviolet Explorer are described and illustrated. The characterization of these detectors can be subdivided into three categories: stabilization, performance tests, and environmental tests.

  18. X-ray Photon Counting and Two-Color X-ray Imaging Using Indirect Detection

    PubMed Central

    Dierickx, Bart; Yao, Qiang; Witvrouwen, Nick; Uwaerts, Dirk; Vandewiele, Stijn; Gao, Peng

    2016-01-01

    In this paper, we report on the design and performance of a 1 cm2, 90 × 92-pixel image sensor. It is made X-ray sensitive by the use of a scintillator. Its pixels have a charge packet counting circuit topology with two channels, each realizing a different charge packet size threshold and analog domain event counting. Here, the sensor’s performance was measured in setups representative of a medical X-ray environment. Further, two-energy-level photon counting performance is demonstrated, and its capabilities and limitations are documented. We then provide an outlook on future improvements. PMID:27240362

  19. X-ray Photon Counting and Two-Color X-ray Imaging Using Indirect Detection.

    PubMed

    Dierickx, Bart; Yao, Qiang; Witvrouwen, Nick; Uwaerts, Dirk; Vandewiele, Stijn; Gao, Peng

    2016-01-01

    In this paper, we report on the design and performance of a 1 cm², 90 × 92-pixel image sensor. It is made X-ray sensitive by the use of a scintillator. Its pixels have a charge packet counting circuit topology with two channels, each realizing a different charge packet size threshold and analog domain event counting. Here, the sensor's performance was measured in setups representative of a medical X-ray environment. Further, two-energy-level photon counting performance is demonstrated, and its capabilities and limitations are documented. We then provide an outlook on future improvements. PMID:27240362

  20. Edge-on illumination photon-counting for medical imaging

    NASA Astrophysics Data System (ADS)

    Doni, M.; Visser, J.; Koffeman, E.; Herrmann, C.

    2015-08-01

    In medical X-ray Computed Tomography (CT) a silicon based sensor (300-1000 μm) in face-on configuration does not collect the incoming X-rays effectively because of their high energy (40-140 keV). For example, only 2% of the incoming photons at 100 keV are stopped by a 500 μm thick silicon layer. To increase the efficiency, one possibility is to use materials with higher Z (e.g. GaAs, CZT), which have some drawbacks compared to silicon, such as short carrier lifetime or low mobility. Therefore, we investigate whether illuminating silicon edge-on instead of face-on is a solution. Aim of the project is to find and take advantage of the benefits of this new geometry when used for a pixel detector. In particular, we employ a silicon hybrid pixel detector, which is read out by a chip from the Medipix family. Its capabilities to be energy selective will be a notable advantage in energy resolved (spectral) X-ray CT.

  1. Photon counting pixel and array in amorphous silicon technology for large area digital medical imaging applications

    NASA Astrophysics Data System (ADS)

    Yazdandoost, Mohammad Y.; Shin, Kyung W.; Safavian, Nader; Taghibakhsh, Farhad; Karim, Karim S.

    2010-04-01

    A single photon counting Voltage Controlled Oscillator (VCO) based pixel architecture in amorphous silicon (a-Si) technology is reported for large area digital medical imaging. The VCO converts X-ray generated input charge into an output oscillating frequency signal. Experimental results for an in-house fabricated VCO circuit in a-Si technology are presented and external readout circuits to extract the image information from the VCO's frequency output are discussed. These readout circuits can be optimized to reduce the fixed pattern noise and fringing effects in an imaging array containing many such VCO pixels. Noise estimations, stability simulations and measurements for the fabricated VCO are presented. The reported architecture is particularly promising for large area photon counting applications (e.g. low dose fluoroscopy, dental computed tomography (CT)) due to its very low input referred electronic noise, high sensitivity and ease of fabrication in low cost a-Si technology.

  2. Study of high speed quenching circuits in photon counting imaging lidar system

    NASA Astrophysics Data System (ADS)

    Zheng, Xiangyang; Ding, Yuxing; Huang, Genghua; Shu, Rong

    2015-10-01

    Detection theory of single photon avalanche diodes(SPADs),which are applied in photon counting imaging light detection and ranging(LIDAR)system, is analyzed in detail in this paper. Four types of common quenching circuits based on SPADs, namely passive quenching, active quenching, gate-control quenching, and hybrid quenching circuits are studied. Furthermore,operational principle and performance characteristics of each of these four types of quenching circuits are fully discussed. Besides, an improved hybrid quenching circuit prone to be integrated with ASIC technology is brought up. Analysis shows that this new circuit can quench and reset SPADs with high speed, meeting the demands for qualities of quenching circuits in photon counting imaging LIDAR system. Also, results of theoretical study indicate that some performance indexes like response rate, quenching speed and dead time are satisfactory. Above all, this quenching circuit is simpler in structure and its cost is much smaller compared with common quenching circuits known to us in papers published so far. As a result, the prospect of this new circuit is probably good after more efforts are taken to integrate it with photon counting imaging LIDAR.

  3. Photon-counting detector arrays based on microchannel array plates. [for image enhancement

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1975-01-01

    The recent development of the channel electron multiplier (CEM) and its miniaturization into the microchannel array plate (MCP) offers the possibility of fully combining the advantages of the photographic and photoelectric detection systems. The MCP has an image-intensifying capability and the potential of being developed to yield signal outputs superior to those of conventional photomultipliers. In particular, the MCP has a photon-counting capability with a negligible dark-count rate. Furthermore, the MCP can operate stably and efficiently at extreme-ultraviolet and soft X-ray wavelengths in a windowless configuration or can be integrated with a photo-cathode in a sealed tube for use at ultraviolet and visible wavelengths. The operation of one- and two-dimensional photon-counting detector arrays based on the MCP at extreme-ultraviolet wavelengths is described, and the design of sealed arrays for use at ultraviolet and visible wavelengths is briefly discussed.

  4. A dynamic attenuator improves spectral imaging with energy-discriminating, photon counting detectors.

    PubMed

    Hsieh, Scott S; Pelc, Norbert J

    2015-03-01

    Energy-discriminating, photon counting (EDPC) detectors have high potential in spectral imaging applications but exhibit degraded performance when the incident count rate approaches or exceeds the characteristic count rate of the detector. In order to reduce the requirements on the detector, we explore the strategy of modulating the X-ray flux field using a recently proposed dynamic, piecewise-linear attenuator. A previous paper studied this modulation for photon counting detectors but did not explore the impact on spectral applications. In this work, we modeled detection with a bipolar triangular pulse shape (Taguchi et al., 2011) and estimated the Cramer-Rao lower bound (CRLB) of the variance of material selective and equivalent monoenergetic images, assuming deterministic errors at high flux could be corrected. We compared different materials for the dynamic attenuator and found that rare earth elements, such as erbium, outperformed previously proposed materials such as iron in spectral imaging. The redistribution of flux reduces the variance or dose, consistent with previous studies on benefits with conventional detectors. Numerical simulations based on DICOM datasets were used to assess the impact of the dynamic attenuator for detectors with several different characteristic count rates. The dynamic attenuator reduced the peak incident count rate by a factor of 4 in the thorax and 44 in the pelvis, and a 10 Mcps/mm (2) EDPC detector with dynamic attenuator provided generally superior image quality to a 100 Mcps/mm (2) detector with reference bowtie filter for the same dose. The improvement is more pronounced in the material images. PMID:25265628

  5. Photon-counting H33D detector for biological fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Michalet, X.; Siegmund, O. H. W.; Vallerga, J. V.; Jelinsky, P.; Millaud, J. E.; Weiss, S.

    2006-11-01

    We have developed a photon-counting High-temporal and High-spatial resolution, High-throughput 3-Dimensional detector (H33D) for biological imaging of fluorescent samples. The design is based on a 25 mm diameter S20 photocathode followed by a 3-microchannel plate stack, and a cross-delay line anode. We describe the bench performance of the H33D detector, as well as preliminary imaging results obtained with fluorescent beads, quantum dots and live cells and discuss applications of future generation detectors for single-molecule imaging and high-throughput study of biomolecular interactions.

  6. Photon-Counting H33D Detector for Biological Fluorescence Imaging.

    PubMed

    Michalet, X; Siegmund, O H W; Vallerga, J V; Jelinsky, P; Millaud, J E; Weiss, S

    2006-11-01

    We have developed a photon-counting High-temporal and High-spatial resolution, High-throughput 3-Dimensional detector (H33D) for biological imaging of fluorescent samples. The design is based on a 25 mm diameter S20 photocathode followed by a 3-microchannel plate stack, and a cross delay line anode. We describe the bench performance of the H33D detector, as well as preliminary imaging results obtained with fluorescent beads, quantum dots and live cells and discuss applications of future generation detectors for single-molecule imaging and high-throughput study of biomolecular interactions. PMID:20151021

  7. Polychromatic Iterative Statistical Material Image Reconstruction for Photon-Counting Computed Tomography.

    PubMed

    Weidinger, Thomas; Buzug, Thorsten M; Flohr, Thomas; Kappler, Steffen; Stierstorfer, Karl

    2016-01-01

    This work proposes a dedicated statistical algorithm to perform a direct reconstruction of material-decomposed images from data acquired with photon-counting detectors (PCDs) in computed tomography. It is based on local approximations (surrogates) of the negative logarithmic Poisson probability function. Exploiting the convexity of this function allows for parallel updates of all image pixels. Parallel updates can compensate for the rather slow convergence that is intrinsic to statistical algorithms. We investigate the accuracy of the algorithm for ideal photon-counting detectors. Complementarily, we apply the algorithm to simulation data of a realistic PCD with its spectral resolution limited by K-escape, charge sharing, and pulse-pileup. For data from both an ideal and realistic PCD, the proposed algorithm is able to correct beam-hardening artifacts and quantitatively determine the material fractions of the chosen basis materials. Via regularization we were able to achieve a reduction of image noise for the realistic PCD that is up to 90% lower compared to material images form a linear, image-based material decomposition using FBP images. Additionally, we find a dependence of the algorithms convergence speed on the threshold selection within the PCD. PMID:27195003

  8. Polychromatic Iterative Statistical Material Image Reconstruction for Photon-Counting Computed Tomography

    PubMed Central

    Weidinger, Thomas; Buzug, Thorsten M.; Flohr, Thomas; Kappler, Steffen; Stierstorfer, Karl

    2016-01-01

    This work proposes a dedicated statistical algorithm to perform a direct reconstruction of material-decomposed images from data acquired with photon-counting detectors (PCDs) in computed tomography. It is based on local approximations (surrogates) of the negative logarithmic Poisson probability function. Exploiting the convexity of this function allows for parallel updates of all image pixels. Parallel updates can compensate for the rather slow convergence that is intrinsic to statistical algorithms. We investigate the accuracy of the algorithm for ideal photon-counting detectors. Complementarily, we apply the algorithm to simulation data of a realistic PCD with its spectral resolution limited by K-escape, charge sharing, and pulse-pileup. For data from both an ideal and realistic PCD, the proposed algorithm is able to correct beam-hardening artifacts and quantitatively determine the material fractions of the chosen basis materials. Via regularization we were able to achieve a reduction of image noise for the realistic PCD that is up to 90% lower compared to material images form a linear, image-based material decomposition using FBP images. Additionally, we find a dependence of the algorithms convergence speed on the threshold selection within the PCD. PMID:27195003

  9. Photon counting spectral CT versus conventional CT: comparative evaluation for breast imaging application

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.; Fritz, Shannon G.

    2011-04-01

    Spectral CT systems with photon counting detectors have more advantages compared to conventional CT systems. However, clinical applications have been hampered for a long time due to the high demands of clinical systems and limitations of spectroscopic x-ray detectors. Photon counting detector technology has gained considerable improvements in the past decade, and spectral CT has become a hot topic. Several experimental spectral CT systems are under investigation. The purpose of this work was to perform the first direct, side-by-side comparison of existing spectral CT technology with a mature clinical CT system based on a conventional energy integrating detector. We have built an experimental spectral CT system whose main parameters are similar to the parameters of a clinical CT system. The system uses a spectroscopic cadmium zinc telluride (CZT) detector. The detector includes two rows of CZT pixels with 256 pixels in each row. The pixel size is 1 × 1 mm2, and the maximum count rate is 2 Mcounts/pixel/s. The spectral CT system has a magnification factor of 1.62 and the source to detector and source to image distances of 85 and 53 cm, respectively. The above parameters are similar to those of the clinical CT system, Siemens Sensation 16, used for comparison. The two systems were compared by imaging spatial resolution and contrast resolution phantoms made from acrylic cylinders with 14 cm diameters. The resolution phantom included Al wires with 0.3, 0.6, and 1 mm diameters, and 0.25 g cc-1 CaCO3 contrast. The contrast phantom included contrast elements with 1.7, 5, and 15 mg cc-1 iodine, and 1.1, 3.3, and 10 mg cc-1 gadolinium. The phantoms were imaged with the two systems using 120 kVp tube voltage and 470 mR total skin exposure. The spectral CT showed CT numbers, image noise, and spatial and contrast resolutions to be similar within 10% compared to the Siemens 16 system, and provided an average of 10% higher CNR. However, the spectral CT system had a major

  10. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-09-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  11. Vision 20/20: Single photon counting x-ray detectors in medical imaging

    PubMed Central

    Taguchi, Katsuyuki; Iwanczyk, Jan S.

    2013-01-01

    Photon counting detectors (PCDs) with energy discrimination capabilities have been developed for medical x-ray computed tomography (CT) and x-ray (XR) imaging. Using detection mechanisms that are completely different from the current energy integrating detectors and measuring the material information of the object to be imaged, these PCDs have the potential not only to improve the current CT and XR images, such as dose reduction, but also to open revolutionary novel applications such as molecular CT and XR imaging. The performance of PCDs is not flawless, however, and it seems extremely challenging to develop PCDs with close to ideal characteristics. In this paper, the authors offer our vision for the future of PCD-CT and PCD-XR with the review of the current status and the prediction of (1) detector technologies, (2) imaging technologies, (3) system technologies, and (4) potential clinical benefits with PCDs. PMID:24089889

  12. The Slope Imaging Multi-Polarization Photon-Counting Lidar: Development and Performance Results

    NASA Technical Reports Server (NTRS)

    Dabney, Phillip

    2010-01-01

    The Slope Imaging Multi-polarization Photon-counting Lidar is an airborne instrument developed to demonstrate laser altimetry measurement methods that will enable more efficient observations of topography and surface properties from space. The instrument was developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryosphere remote sensing. The SIMPL transmitter is an 11 KHz, 1064 nm, plane-polarized micropulse laser transmitter that is frequency doubled to 532 nm and split into four push-broom beams. The receiver employs single-photon, polarimetric ranging at 532 and 1064 nm using Single Photon Counting Modules in order to achieve simultaneous sampling of surface elevation, slope, roughness and depolarizing scattering properties, the latter used to differentiate surface types. Data acquired over ice-covered Lake Erie in February, 2009 are documenting SIMPL s measurement performance and capabilities, demonstrating differentiation of open water and several ice cover types. ICESat-2 will employ several of the technologies advanced by SIMPL, including micropulse, single photon ranging in a multi-beam, push-broom configuration operating at 532 nm.

  13. Underwater depth imaging using time-correlated single-photon counting.

    PubMed

    Maccarone, Aurora; McCarthy, Aongus; Ren, Ximing; Warburton, Ryan E; Wallace, Andy M; Moffat, James; Petillot, Yvan; Buller, Gerald S

    2015-12-28

    A depth imaging system, based on the time-of-flight approach and the time-correlated single-photon counting (TCSPC) technique, was investigated for use in highly scattering underwater environments. The system comprised a pulsed supercontinuum laser source, a monostatic scanning transceiver, with a silicon single-photon avalanche diode (SPAD) used for detection of the returned optical signal. Depth images were acquired in the laboratory at stand-off distances of up to 8 attenuation lengths, using per-pixel acquisition times in the range 0.5 to 100 ms, at average optical powers in the range 0.8 nW to 950 μW. In parallel, a LiDAR model was developed and validated using experimental data. The model can be used to estimate the performance of the system under a variety of scattering conditions and system parameters. PMID:26832050

  14. Multifocal multiphoton excitation and time correlated single photon counting detection for 3-D fluorescence lifetime imaging.

    PubMed

    Kumar, S; Dunsby, C; De Beule, P A A; Owen, D M; Anand, U; Lanigan, P M P; Benninger, R K P; Davis, D M; Neil, M A A; Anand, P; Benham, C; Naylor, A; French, P M W

    2007-10-01

    We report a multifocal multiphoton time-correlated single photon counting (TCSPC) fluorescence lifetime imaging (FLIM) microscope system that uses a 16 channel multi-anode PMT detector. Multiphoton excitation minimizes out-of-focus photobleaching, multifocal excitation reduces non-linear in-plane photobleaching effects and TCSPC electronics provide photon-efficient detection of the fluorescence decay profile. TCSPC detection is less prone to bleaching- and movement-induced artefacts compared to wide-field time-gated or frequency-domain FLIM. This microscope is therefore capable of acquiring 3-D FLIM images at significantly increased speeds compared to single beam multiphoton microscopy and we demonstrate this with live cells expressing a GFP tagged protein. We also apply this system to time-lapse FLIM of NAD(P)H autofluorescence in single live cells and report measurements on the change in the fluorescence decay profile following the application of a known metabolic inhibitor. PMID:19550524

  15. Material decomposition and virtual non-contrast imaging in photon counting computed tomography: an animal study

    NASA Astrophysics Data System (ADS)

    Gutjahr, R.; Polster, C.; Kappler, S.; Pietsch, H.; Jost, G.; Hahn, K.; Schöck, F.; Sedlmair, M.; Allmendinger, T.; Schmidt, B.; Krauss, B.; Flohr, T. G.

    2016-03-01

    The energy resolving capabilities of Photon Counting Detectors (PCD) in Computed Tomography (CT) facilitate energy-sensitive measurements. The provided image-information can be processed with Dual Energy and Multi Energy algorithms. A research PCD-CT firstly allows acquiring images with a close to clinical configuration of both the X-ray tube and the CT-detector. In this study, two algorithms (Material Decomposition and Virtual Non-Contrast-imaging (VNC)) are applied on a data set acquired from an anesthetized rabbit scanned using the PCD-CT system. Two contrast agents (CA) are applied: A gadolinium (Gd) based CA used to enhance contrasts for vascular imaging, and xenon (Xe) and air as a CA used to evaluate local ventilation of the animal's lung. Four different images are generated: a) A VNC image, suppressing any traces of the injected Gd imitating a native scan, b) a VNC image with a Gd-image as an overlay, where contrast enhancements in the vascular system are highlighted using colored labels, c) another VNC image with a Xe-image as an overlay, and d) a 3D rendered image of the animal's lung, filled with Xe, indicating local ventilation characteristics. All images are generated from two images based on energy bin information. It is shown that a modified version of a commercially available dual energy software framework is capable of providing images with diagnostic value obtained from the research PCD-CT system.

  16. Solid-state Image Sensor with Focal-plane Digital Photon-counting Pixel Array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Pain, Bedabrata

    1997-01-01

    A solid-state focal-plane imaging system comprises an NxN array of high gain. low-noise unit cells. each unit cell being connected to a different one of photovoltaic detector diodes, one for each unit cell, interspersed in the array for ultra low level image detection and a plurality of digital counters coupled to the outputs of the unit cell by a multiplexer(either a separate counter for each unit cell or a row of N of counters time shared with N rows of digital counters). Each unit cell includes two self-biasing cascode amplifiers in cascade for a high charge-to-voltage conversion gain (greater than 1mV/e(-)) and an electronic switch to reset input capacitance to a reference potential in order to be able to discriminate detection of an incident photon by the photoelectron (e(-))generated in the detector diode at the input of the first cascode amplifier in order to count incident photons individually in a digital counter connected to the output of the second cascade amplifier. Reseting the input capacitance and initiating self-biasing of the amplifiers occurs every clock cycle of an integratng period to enable ultralow light level image detection by the may of photovoltaic detector diodes under such ultralow light level conditions that the photon flux will statistically provide only a single photon at a time incident on anyone detector diode during any clock cycle.

  17. Image-based spectral distortion correction for photon-counting x-ray detectors

    SciTech Connect

    Ding Huanjun; Molloi, Sabee

    2012-04-15

    Purpose: To investigate the feasibility of using an image-based method to correct for distortions induced by various artifacts in the x-ray spectrum recorded with photon-counting detectors for their application in breast computed tomography (CT). Methods: The polyenergetic incident spectrum was simulated with the tungsten anode spectral model using the interpolating polynomials (TASMIP) code and carefully calibrated to match the x-ray tube in this study. Experiments were performed on a Cadmium-Zinc-Telluride (CZT) photon-counting detector with five energy thresholds. Energy bins were adjusted to evenly distribute the recorded counts above the noise floor. BR12 phantoms of various thicknesses were used for calibration. A nonlinear function was selected to fit the count correlation between the simulated and the measured spectra in the calibration process. To evaluate the proposed spectral distortion correction method, an empirical fitting derived from the calibration process was applied on the raw images recorded for polymethyl methacrylate (PMMA) phantoms of 8.7, 48.8, and 100.0 mm. Both the corrected counts and the effective attenuation coefficient were compared to the simulated values for each of the five energy bins. The feasibility of applying the proposed method to quantitative material decomposition was tested using a dual-energy imaging technique with a three-material phantom that consisted of water, lipid, and protein. The performance of the spectral distortion correction method was quantified using the relative root-mean-square (RMS) error with respect to the expected values from simulations or areal analysis of the decomposition phantom. Results: The implementation of the proposed method reduced the relative RMS error of the output counts in the five energy bins with respect to the simulated incident counts from 23.0%, 33.0%, and 54.0% to 1.2%, 1.8%, and 7.7% for 8.7, 48.8, and 100.0 mm PMMA phantoms, respectively. The accuracy of the effective attenuation

  18. Imaging of small children with a prototype for photon counting tomosynthesis

    NASA Astrophysics Data System (ADS)

    del Risco Norrlid, Lilián; Fredenberg, Erik; Hemmendorff, Magnus; Jackowski, Christian; Danielsson, Mats

    2009-02-01

    We present data on a first prototype for photon counting tomosynthesis imaging of small children, which we call photoncounting tomosynthesis (PCT). A photon counting detector can completely eliminate electronic noise, which makes it ideal for tomosynthesis because of the low dose in each projection. Another advantage is that the detector allows for energy sensitivity in later versions, which will further lower the radiation dose. In-plane resolution is high and has been measured to be 5 lp/mm, at least 4 times better than in CT, while the depth resolution was significantly lower than typical CT resolution. The image SNR decreased from 30 to 10 for a detail of 10 mm depth in increasing thickness of PMMA from 10 to 80 mm. The air kerma measured for PCT was 5.2 mGy, which leads to an organ dose to the brain of approximately 0.7 mGy. This dose is 96 % lower than a typical CT dose. PCT can be appealing for pediatric imaging since young children have an increased sensitivity to radiation induced cancers. We have acquired post mortem images of a newborn with the new device and with a state-of-the-art CT and compared the diagnostic information and dose levels of the two modalities. The results are promising but more work is needed to provide input to a next generation prototype that would be suitable for clinical trials.

  19. Energy-resolved CT imaging with a photon-counting silicon-strip detector

    NASA Astrophysics Data System (ADS)

    Persson, Mats; Huber, Ben; Karlsson, Staffan; Liu, Xuejin; Chen, Han; Xu, Cheng; Yveborg, Moa; Bornefalk, Hans; Danielsson, Mats

    2014-03-01

    Photon-counting detectors are promising candidates for use in the next generation of x-ray CT scanners. Among the foreseen benefits are higher spatial resolution, better trade-off between noise and dose, and energy discriminating capabilities. Silicon is an attractive detector material because of its low cost, mature manufacturing process and high hole mobility. However, it is sometimes claimed to be unsuitable for use in computed tomography because of its low absorption efficiency and high fraction of Compton scatter. The purpose of this work is to demonstrate that high-quality energy-resolved CT images can nonetheless be acquired with clinically realistic exposure parameters using a photon-counting silicon-strip detector with eight energy thresholds developed in our group. We use a single detector module, consisting of a linear array of 50 0.5 × 0.4 mm detector elements, to image a phantom in a table-top lab setup. The phantom consists of a plastic cylinder with circular inserts containing water, fat and aqueous solutions of calcium, iodine and gadolinium, in different concentrations. We use basis material decomposition to obtain water, calcium, iodine and gadolinium basis images and demonstrate that these basis images can be used to separate the different materials in the inserts. We also show results showing that the detector has potential for quantitative measurements of substance concentrations.

  20. Energy-resolved CT imaging with a photon-counting silicon-strip detector

    NASA Astrophysics Data System (ADS)

    Persson, Mats; Huber, Ben; Karlsson, Staffan; Liu, Xuejin; Chen, Han; Xu, Cheng; Yveborg, Moa; Bornefalk, Hans; Danielsson, Mats

    2014-11-01

    Photon-counting detectors are promising candidates for use in the next generation of x-ray computed tomography (CT) scanners. Among the foreseen benefits are higher spatial resolution, better trade-off between noise and dose and energy discriminating capabilities. Silicon is an attractive detector material because of its low cost, mature manufacturing process and high hole mobility. However, it is sometimes overlooked for CT applications because of its low absorption efficiency and high fraction of Compton scatter. The purpose of this work is to demonstrate that silicon is a feasible material for CT detectors by showing energy-resolved CT images acquired with an 80 kVp x-ray tube spectrum using a photon-counting silicon-strip detector with eight energy thresholds developed in our group. We use a single detector module, consisting of a linear array of 50 0.5 × 0.4 mm detector elements, to image a phantom in a table-top lab setup. The phantom consists of a plastic cylinder with circular inserts containing water, fat and aqueous solutions of calcium, iodine and gadolinium, in different concentrations. By using basis material decomposition we obtain water, calcium, iodine and gadolinium basis images and demonstrate that these basis images can be used to separate the different materials in the inserts. We also show results showing that the detector has potential for quantitative measurements of substance concentrations.

  1. Design and performance of a fiber array coupled multi-channel photon counting, 3D imaging, airborne lidar system

    NASA Astrophysics Data System (ADS)

    Huang, Genghua; Shu, Rong; Hou, Libing; Li, Ming

    2014-06-01

    Photon counting lidar has an ultra-high sensitivity which can be hundreds even thousands of times higher than the linear detection lidar. It can significantly increase the system's capability of detection rang and imaging density, saving size and power consumings in airborne or space-borne applications. Based on Geiger-mode Si avalanche photodiodes (Si-APD), a prototype photon counting lidar which used 8 APDs coupled with a 1×8-pixel fiber array has been made in June, 2011. The experiments with static objects showed that the photon counting lidar could operate in strong solar background with 0.04 receiving photoelectrons on average. Limited by less counting times in moving platforms, the probability of detection and the 3D imaging density would be lower than that in static platforms. In this paper, a latest fiber array coupled multi-channel photon counting, 3D imaging, airborne lidar system is introduced. The correlation range receiver algorithm of photon counting 3D imaging is improved for airborne signal photon events extraction and noise filter. The 3D imaging experiments in the helicopter shows that the false alarm rate is less than 6×10-7, and the correct rate is better than 99.9% with 4 received photoelectrons and 0.7MHz system noise on average.

  2. The RELAXd project: Development of four-side tilable photon-counting imagers

    NASA Astrophysics Data System (ADS)

    Vykydal, Zdenek; Visschers, Jan; Tezcan, Deniz Sabuncuoglu; De Munck, Koen; Borgers, Tom; Ruythooren, Wouter; De Moor, Piet

    2008-06-01

    The feasibility of using photon-counting imaging techniques with X-rays, neutrons or other types of radiation for many applications in materials analysis and bio-medical sciences has already been well demonstrated. A hybrid imager consisting of an appropriate sensor chip flip-chipped on top of a Medipix2 readout ASIC is an example of such a device. It can count single X-ray photons, without any noise or dark current, at high fluxes (several Gigaphotons per cm 2 per second). The limiting factors for more widespread usage of these devices in bio-medical applications (e.g. mammography or small animal imaging) are the small size of the active area (about 2 cm 2 per chip) and the low frame rate. The aim of the RELAXd project (high REsolution Large Area X-ray Detector) is to develop a high frame-rate, fully 3D-integrated microsystem, consisting of four Medipix2 readout chips bump-bonded to one silicon sensor chip forming the basic building module. This paper presents the first results of this task focusing on the used wafer-level postprocessing technologies which are needed to achieve the 3D architecture, required for four-side tiling.

  3. New Possibilities in Medical X-Ray Imaging with Photon Counting Pixel Detectors

    NASA Astrophysics Data System (ADS)

    Durst, J.; Bartl, P.; Guni, E.; Haas, W.; Ritter, A.; Takoukam Talla, P.; Weber, T.; Michel, T.; Anton, G.

    2010-04-01

    The new generation of X-ray photon counting pixel detectors like the Medipix2 and the Medipix3 opens a new field of applications in medical X-ray imaging. These detectors work with one or more energy windows, which makes energy information available in addition to the intensity. A detailled understanding of the detector response of such detectors is important. Results will be presented for Si and CdTe as sensor material. With this knowledge two methods called spectrum reconstruction and material reconstruction can be applied to energy resolved images in absorption radiography and computed tomography. Another new application is the measurement of the phase information in computed tomography in addition to the absorption information. The potential of phase contrast imaging will be discussed.

  4. The Slope Imaging Multi-polarization Photon-counting Lidar: an Advanced Technology Airborne Laser Altimeter

    NASA Astrophysics Data System (ADS)

    Dabney, P.; Harding, D. J.; Huss, T.; Valett, S.; Yu, A. W.; Zheng, Y.

    2009-12-01

    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) is an airborne laser altimeter developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryopshere remote sensing. The SIMPL instrument incorporates a variety of advanced technologies in order to demonstrate measurement approaches of potential benefit for improved airborne laser swath mapping and spaceflight laser altimeter missions. SIMPL incorporates beam splitting, single-photon ranging and polarimetry technologies at green and near-infrared wavelengths in order to achieve simultaneous sampling of surface elevation, slope, roughness and scattering properties, the latter used to differentiate surface types. The transmitter is a 1 nsec pulse width, 11 kHz, 1064 nm microchip laser, frequency doubled to 532 nm and split into four plane-polarized beams using birefringent calcite crystal in order to maintain co-alignment of the two colors. The 16 channel receiver splits the received energy for each beam into the two colors and each color is split into energy parallel and perpendicular to the transmit polarization plane thereby proving a measure of backscatter depolarization. The depolarization ratio is sensitive to the proportions of specular reflection and surface and volume scattering, and is a function of wavelength. The ratio can differentiate, for example, water, young translucent ice, older granular ice and snow. The solar background count rate is controlled by spatial filtering using a pinhole array and by spectral filtering using temperature-controlled narrow bandwidth filters. The receiver is fiber coupled to 16 Single Photon Counting Modules (SPCMs). To avoid range biases due to the long dead time of these detectors the probability of detection per laser fire on each channel is controlled to be below 30%, using mechanical irises and flight altitude. Event timers with 0.1 nsec resolution in combination the narrow transmit pulse yields single

  5. Photon counting digital holography

    NASA Astrophysics Data System (ADS)

    Demoli, Nazif; Skenderović, Hrvoje; Stipčević, Mario; Pavičić, Mladen

    2016-05-01

    Digital holography uses electronic sensors for hologram recording and numerical method for hologram reconstruction enabling thus the development of advanced holography applications. However, in some cases, the useful information is concealed in a very wide dynamic range of illumination intensities and successful recording requires an appropriate dynamic range of the sensor. An effective solution to this problem is the use of a photon-counting detector. Such detectors possess counting rates of the order of tens to hundreds of millions counts per second, but conditions of recording holograms have to be investigated in greater detail. Here, we summarize our main findings on this problem. First, conditions for optimum recording of digital holograms for detecting a signal significantly below detector's noise are analyzed in terms of the most important holographic measures. Second, for time-averaged digital holograms, optimum recordings were investigated for exposures shorter than the vibration cycle. In both cases, these conditions are studied by simulations and experiments.

  6. Solid-state image sensor with focal-plane digital photon-counting pixel array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)

    1995-01-01

    A photosensitive layer such as a-Si for a UV/visible wavelength band is provided for low light level imaging with at least a separate CMOS amplifier directly connected to each PIN photodetector diode to provide a focal-plane array of NxN pixels, and preferably a separate photon-counting CMOS circuit directly connected to each CMOS amplifier, although one row of counters may be time shared for reading out the photon flux rate of each diode in the array, together with a buffer memory for storing all rows of the NxN image frame before transfer to suitable storage. All CMOS circuitry is preferably fabricated in the same silicon layer as the PIN photodetector diode for a monolithic structure, but when the wavelength band of interest requires photosensitive material different from silicon, the focal-plane array may be fabricated separately on a different semiconductor layer bump-bonded or otherwise bonded for a virtually monolithic structure with one free terminal of each diode directly connected to the input terminal of its CMOS amplifier and digital counter for integration of the photon flux rate at each photodetector of the array.

  7. Dual adaptive statistical approach for quantitative noise reduction in photon-counting medical imaging: application to nuclear medicine images

    NASA Astrophysics Data System (ADS)

    Hannequin, Pascal Paul

    2015-06-01

    Noise reduction in photon-counting images remains challenging, especially at low count levels. We have developed an original procedure which associates two complementary filters using a Wiener-derived approach. This approach combines two statistically adaptive filters into a dual-weighted (DW) filter. The first one, a statistically weighted adaptive (SWA) filter, replaces the central pixel of a sliding window with a statistically weighted sum of its neighbors. The second one, a statistical and heuristic noise extraction (extended) (SHINE-Ext) filter, performs a discrete cosine transformation (DCT) using sliding blocks. Each block is reconstructed using its significant components which are selected using tests derived from multiple linear regression (MLR). The two filters are weighted according to Wiener theory. This approach has been validated using a numerical phantom and a real planar Jaszczak phantom. It has also been illustrated using planar bone scintigraphy and myocardial single-photon emission computed tomography (SPECT) data. Performances of filters have been tested using mean normalized absolute error (MNAE) between the filtered images and the reference noiseless or high-count images. Results show that the proposed filters quantitatively decrease the MNAE in the images and then increase the signal-to-noise Ratio (SNR). This allows one to work with lower count images. The SHINE-Ext filter is well suited to high-size images and low-variance areas. DW filtering is efficient for low-size images and in high-variance areas. The relative proportion of eliminated noise generally decreases when count level increases. In practice, SHINE filtering alone is recommended when pixel spacing is less than one-quarter of the effective resolution of the system and/or the size of the objects of interest. It can also be used when the practical interest of high frequencies is low. In any case, DW filtering will be preferable. The proposed filters have been applied to nuclear

  8. Dual adaptive statistical approach for quantitative noise reduction in photon-counting medical imaging: application to nuclear medicine images.

    PubMed

    Hannequin, Pascal Paul

    2015-06-01

    Noise reduction in photon-counting images remains challenging, especially at low count levels. We have developed an original procedure which associates two complementary filters using a Wiener-derived approach. This approach combines two statistically adaptive filters into a dual-weighted (DW) filter. The first one, a statistically weighted adaptive (SWA) filter, replaces the central pixel of a sliding window with a statistically weighted sum of its neighbors. The second one, a statistical and heuristic noise extraction (extended) (SHINE-Ext) filter, performs a discrete cosine transformation (DCT) using sliding blocks. Each block is reconstructed using its significant components which are selected using tests derived from multiple linear regression (MLR). The two filters are weighted according to Wiener theory. This approach has been validated using a numerical phantom and a real planar Jaszczak phantom. It has also been illustrated using planar bone scintigraphy and myocardial single-photon emission computed tomography (SPECT) data. Performances of filters have been tested using mean normalized absolute error (MNAE) between the filtered images and the reference noiseless or high-count images.Results show that the proposed filters quantitatively decrease the MNAE in the images and then increase the signal-to-noise Ratio (SNR). This allows one to work with lower count images. The SHINE-Ext filter is well suited to high-size images and low-variance areas. DW filtering is efficient for low-size images and in high-variance areas. The relative proportion of eliminated noise generally decreases when count level increases. In practice, SHINE filtering alone is recommended when pixel spacing is less than one-quarter of the effective resolution of the system and/or the size of the objects of interest. It can also be used when the practical interest of high frequencies is low. In any case, DW filtering will be preferable.The proposed filters have been applied to nuclear

  9. Practical energy response estimation of photon counting detectors for spectral X-ray imaging

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Goo; Lee, Jongha; Sung, Younghun; Lee, SeongDeok

    2010-04-01

    Spectral X-ray imaging is a promising technique to drastically improve the diagnostic quality of radiography and computed tomography (CT), since it enables material decomposition and/or identification based on the energy dependency of material-specific X-ray attenuation. Unlike the charge-integration based X-ray detectors, photon counting X-ray detectors (PCXDs) can discriminate the energies of incident X-ray photons and thereby multi-energy images can be obtained in single exposure. However, the measured data are not accurate since the spectra of incident X-rays are distorted according to the energy response function (ERF) of a PCXD. Thus ERF should be properly estimated in advance for accurate spectral imaging. This paper presents a simple method for ERF estimation based on a polychromatic X-ray source that is widely used for medical imaging. The method consists of three steps: source spectra measurement, detector spectra reconstruction, and ERF inverse estimation. Real spectra of an X-ray tube are first measured at all kVs by using an X-ray spectrometer. The corresponding detector spectra are obtained by threshold scans. The ERF is then estimated by solving the inverse problem. Simulations are conducted to demonstrate the concept of the proposed method.

  10. Fundamental and practical limitations of FUV/EUV photon-counting image detectors

    NASA Technical Reports Server (NTRS)

    Lampton, M.

    1991-01-01

    In EUV and FUV space-astronomy applications, the best contemporary detector designs are based on the use of microchannel plates due to their ability to deliver photon-counting performance with high efficiency. The major unresolved issue is the choice of position-readout system for the individual photoevents. Electrical event-readout systems are divided into two classes: the discrete wire anodes that perform coordinate digitization by wire-group selection, and the continuous centroid-position encoders for which coordinates are digitized in the associated electronics. The centroid-position encoder techniques are discussed in terms of how they overcome the four chief limitations of the discrete-wire readouts - their limited format size, their flat focal surface, their fundamental hex-channel vs squared-pixel moire pattern, and their image undersampling. With these limitations overcome, microchannel based image systems can deliver the performance demanded by the forthcoming generation of applications in space astronomy.

  11. Amorphous selenium detector utilizing a Frisch grid for photon-counting imaging applications

    NASA Astrophysics Data System (ADS)

    Goldan, A. H.; Fang, Y.; Karim, K. S.; Tousignant, O.; Mani, H.; Laperrière, L.

    2009-02-01

    Incomplete charge collection due to poor electron mobility in amorphous selenium (a-Se) results in depth-dependent signal variations. The slow signal rise-time for the portion of the induced charge due to electron-movement towards the anode and significant electron trapping cause ballistic deficit. In this paper, we investigate Frisch-grid detector design to reduce the depth dependent noise, increase the photon count-rate, and improve the spectral performance of positively biased amorphous selenium radiation detectors. In addition, we analyze the impact of using the Frisch grid detector design on x-ray sensitivity, detective quantum efficiency (DQE), modulation transfer function (MTF), and image lag of integrating-mode a-Se radiation detectors. Preliminary results based on theory are presented for emerging digital medical imaging modalities such as mammography tomosynthesis and fluoroscopy.

  12. Task-based weights for photon counting spectral x-ray imaging

    SciTech Connect

    Bornefalk, Hans

    2011-11-15

    Purpose: To develop a framework for taking the spatial frequency composition of an imaging task into account when determining optimal bin weight factors for photon counting energy sensitive x-ray systems. A second purpose of the investigation is to evaluate the possible improvement compared to using pixel based weights. Methods: The Fourier based approach of imaging performance and detectability index d' is applied to pulse height discriminating photon counting systems. The dependency of d' on the bin weight factors is made explicit, taking into account both differences in signal and noise transfer characteristics across bins and the spatial frequency dependency of interbin correlations from reabsorbed scatter. Using a simplified model of a specific silicon detector, d' values for a high and a low frequency imaging task are determined for optimal weights and compared to pixel based weights. Results: The method successfully identifies bins where a large point spread function degrades detection of high spatial frequency targets. The method is also successful in determining how to downweigh highly correlated bins. Quantitative predictions for the simplified silicon detector model indicate that improvements in the detectability index when applying task-based weights instead of pixel based weights are small for high frequency targets, but could be in excess of 10% for low frequency tasks where scatter-induced correlation otherwise degrade detectability. Conclusions: The proposed method makes the spatial frequency dependency of complex correlation structures between bins and their effect on the system detective quantum efficiency easier to analyze and allows optimizing bin weights for given imaging tasks. A potential increase in detectability of double digit percents in silicon detector systems operated at typical CT energies (100 kVp) merits further evaluation on a real system. The method is noted to be of higher relevance for silicon detectors than for cadmium (zink

  13. The role of x-ray Swank factor in energy-resolving photon-counting imaging

    SciTech Connect

    Tanguay, Jesse; Kim, Ho Kyung; Cunningham, Ian. A.

    2010-12-15

    Purpose: Energy-resolved x-ray imaging has the potential to improve contrast-to-noise ratio by measuring the energy of each interacting photon and applying optimal weighting factors. The success of energy-resolving photon-counting (EPC) detectors relies on the ability of an x-ray detector to accurately measure the energy of each interacting photon. However, the escape of characteristic emissions and Compton scatter degrades spectral information. This article makes the theoretical connection between accuracy and imprecision in energy measurements with the x-ray Swank factor for a-Se, Si, CdZnTe, and HgI{sub 2}-based detectors. Methods: For a detector that implements adaptive binning to sum all elements in which x-ray energy is deposited for a single interaction, energy imprecision is shown to depend on the Swank factor for a large element with x rays incident at the center. The response function for each converter material is determined using Monte Carlo methods and used to determine energy accuracy, Swank factor, and relative energy imprecision in photon-energy measurements. Results: For each material, at energies below the respective K edges, accuracy is close to unity and imprecision is only a few percent. Above the K-edge energies, characteristic emission results in a drop in accuracy and precision that depends on escape probability. In Si, and to some extent a-Se, Compton-scatter escape also degrades energy precision with increasing energy. The influence of converter thickness on energy accuracy and imprecision is modest for low-Z materials but becomes important when using high-Z materials at energies greater than the K-edge energies. Conclusions: Accuracy and precision in energy measurements by EPC detectors are determined largely by the energy-dependent x-ray Swank factor. Modest decreases in the Swank factor (5%-15%) result in large increases in relative imprecision (30%-40%).

  14. Advanced Photon Counting Imaging Detectors with 100ps Timing for Astronomical and Space Sensing Applications

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Vallerga, J.; Welsh, B.; Rabin, M.; Bloch, J.

    In recent years EAG has implemented a variety of high-resolution, large format, photon-counting MCP detectors in space instrumentation for satellite FUSE, GALEX, IMAGE, SOHO, HST-COS, rocket, and shuttle payloads. Our scheme of choice has been delay line readouts encoding photon event position centroids, by determination of the difference in arrival time of the event charge at the two ends of a distributed resistive-capacitive (RC) delay line. Our most commonly used delay line configuration is the cross delay line (XDL). In its simplest form the delay-line encoding electronics consists of a fast amplifier for each end of the delay line, followed by time-to-digital converters (TDC's). We have achieved resolutions of < 25 μm in tests over 65 mm x 65 mm (3k x3k resolution elements) with excellent linearity. Using high speed TDC's, we have been able to encode event positions for random photon rates of ~1 MHz, while time tagging events using the MCP output signal to better than 100 ps. The unique ability to record photon X,Y,T high fidelity information has advantages over "frame driven" recording devices for some important applications. For example we have built open face and sealed tube cross delay line detectors used for biological fluorescence lifetime imaging, observation of flare stars, orbital satellites and space debris with the GALEX satellite, and time resolved imaging of the Crab Pulsar with a telescope as small as 1m. Although microchannel plate delay line detectors meet many of the imaging and timing demands of various applications, they have limitations. The relatively high gain (107) reduces lifetime and local counting rate, and the fixed delay (10's of ns) makes multiple simultaneous event recording problematic. To overcome these limitations we have begun development of cross strip readout anodes for microchannel plate detectors. The cross strip (XS) anode is a coarse (~0.5 mm) multi-layer metal and ceramic pattern of crossed fingers on an alumina

  15. Image-based Material Decomposition with a General Volume Constraint for Photon-Counting CT

    PubMed Central

    Li, Zhoubo; Leng, Shuai; Yu, Lifeng; Yu, Zhicong; McCollough, Cynthia H.

    2015-01-01

    Photon-counting CT (PCCT) potentially offers both improved dose efficiency and material decomposition capabilities relative to CT systems using energy integrating detectors. With respect to material decomposition, both projection-based and image-based methods have been proposed, most of which require accurate a priori information regarding the shape of the x-ray spectra and the response of the detectors. Additionally, projection-based methods require access to projection data. These data can be difficult to obtain, since spectra, detector response, and projection data formats are proprietary information. Further, some published image-based, 3-material decomposition methods require a volume conservation assumption, which is often violated in solutions. We have developed an image-based material decomposition method that can overcome those limitations. We introduced a general condition on volume constraint that does not require the volume to be conserved in a mixture. An empirical calibration can be performed with various concentrations of basis materials. The material decomposition method was applied to images acquired from a prototype whole-body PCCT scanner. The results showed good agreement between the estimation and known mass concentration values. Factors affecting the performance of material decomposition, such as energy threshold configuration and volume conservation constraint, were also investigated. Changes in accuracy of the mass concentration estimates were demonstrated for four different energy configurations and when volume conservation was assumed. PMID:26229220

  16. Optimization of beam quality for photon-counting spectral computed tomography in head imaging: simulation study.

    PubMed

    Chen, Han; Xu, Cheng; Persson, Mats; Danielsson, Mats

    2015-10-01

    Head computed tomography (CT) plays an important role in the comprehensive evaluation of acute stroke. Photon-counting spectral detectors, as promising candidates for use in the next generation of x-ray CT systems, allow for assigning more weight to low-energy x-rays that generally contain more contrast information. Most importantly, the spectral information can be utilized to decompose the original set of energy-selective images into several basis function images that are inherently free of beam-hardening artifacts, a potential advantage for further improving the diagnosis accuracy. We are developing a photon-counting spectral detector for CT applications. The purpose of this work is to determine the optimal beam quality for material decomposition in two head imaging cases: nonenhanced imaging and K-edge imaging. A cylindrical brain tissue of 16-cm diameter, coated by a 6-mm-thick bone layer and 2-mm-thick skin layer, was used as a head phantom. The imaging target was a 5-mm-thick blood vessel centered in the head phantom. In K-edge imaging, two contrast agents, iodine and gadolinium, with the same concentration ([Formula: see text]) were studied. Three parameters that affect beam quality were evaluated: kVp settings (50 to 130 kVp), filter materials ([Formula: see text] to 83), and filter thicknesses [0 to 2 half-value layer (HVL)]. The image qualities resulting from the varying x-ray beams were compared in terms of two figures of merit (FOMs): squared signal-difference-to-noise ratio normalized by brain dose ([Formula: see text]) and that normalized by skin dose ([Formula: see text]). For nonenhanced imaging, the results show that the use of the 120-kVp spectrum filtered by 2 HVL copper ([Formula: see text]) provides the best performance in both FOMs. When iodine is used in K-edge imaging, the optimal filter is 2 HVL iodine ([Formula: see text]) and the optimal kVps are 60 kVp in terms of [Formula: see text] and 75 kVp in terms of [Formula: see text]. A

  17. Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime

    SciTech Connect

    Zhou Yu; Simon, Jason; Liu Jianbin; Shih, Yanhua

    2010-04-15

    In a near-field three-photon correlation measurement, we observed the third-order temporal and spatial correlation functions of chaotic thermal light in the single-photon counting regime. In the study, we found that the probability of jointly detecting three randomly radiated photons from a chaotic thermal source by three individual detectors is 6 times greater if the photodetection events fall in the coherence time and coherence area of the radiation field than if they do not. From the viewpoint of quantum mechanics, the observed phenomenon is the result of three-photon interference. By making use of this property, we measured the three-photon thermal light lensless ghost image of a double spot and achieved higher visibility compared with the two-photon thermal light ghost image.

  18. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M.; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F.; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L.; McCollough, Cynthia H.

    2016-02-01

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  19. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array

    PubMed Central

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L; McCollough, Cynthia H

    2016-01-01

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  20. Multichannel single-photon-counting NIR imager for coregistration with MRI

    NASA Astrophysics Data System (ADS)

    Ntziachristos, Vasilis; Ma, Xuhui; Schnall, Mitchell; Chance, Britton

    1997-12-01

    An effective way to investigate the competence of NIR Imaging is to associate NIR images with ones from other, well established modalities, such as X-ray Mammography, Tomography or Magnetic Resonance Imaging (MRI). MRI is an excellent candidate for such an approach since besides having immense sensitivity and rendering great anatomical information, it also employs non-ionizing radiation. The simultaneous acquisition of MR and NIR data may afford very precise co-registration of images and investigate the potential and limitations of the technique. In return, by establishing confidence on the NIR Tomography capability, the MR specificity may be enhanced due to the additional information content of the simultaneous examination. We have developed a 24 X 8 source-detector multi-channel NIR imager and spectrometer based on the time-correlated single photon counting technique. The instrument is capable of operating as a stand-alone modality or coupled to an MR scanner. We have tested the instrument as a breast imager with volunteers and patients in the MR examination room. We have used specially designed soft compression plates bearing the optical fibers and the MR coils. The acquisition time has been optimized to be within the time limits of a typical MR breast examination protocol. We have obtained approximately 25 dB signal to noise ratio per sec of averaging time for 6 cm breast separation and sensitivity of absorption coefficient changes, following contrast agent administration, of the order of 10-3 cm-1. Additionally we demonstrate the use of the instrument as a stand-alone motor cortex activity imager/spectrometer.

  1. Multichannel single-photon-counting NIR imager for coregistration with MRI

    NASA Astrophysics Data System (ADS)

    Ntziachristos, Vasilis; Ma, XuHui; Schnall, Mitchell D.; Chance, Britton

    1998-01-01

    An effective way to investigate the competence of NIR Imaging is to associate NIR images with ones from other, well established modalities, such as X-ray Mammography, Tomography or Magnetic Resonance Imaging (MRI). MRI is an excellent candidate for such an approach since besides having immense sensitivity and rendering great anatomical information, it also employs non-ionizing radiation. The simultaneous acquisition of MR and NIR data may afford very precise co-registration of images and investigate the potential and limitations of the technique. In return, by establishing confidence on the NIR Tomography capability, the MR specificity may be enhanced due to the additional information content of the simultaneous examination. We have developed a 24 X 8 source-detector multi-channel NIR imager and spectrometer based on the time-correlated single photon counting technique. The instrument is capable of operating as a stand-alone modality or coupled to an MR scanner. We have tested the instrument as a breast imager with volunteers and patients in the MR examination room. We have used specially designed soft compression plates bearing the optical fibers and the MR coils. The acquisition time has been optimized to be within the time limits of a typical MR breast examination protocol. We have obtained approximately 25 dB signal to noise ratio per sec of averaging time for 6 cm breast separation and sensitivity of absorption coefficient changes, following contrast agent administration, of the order of 10-3 cm-1. Additionally we demonstrate the use of the instrument as a stand-alone motor cortex activity imager/spectrometer.

  2. Temporal binning of time-correlated single photon counting data improves exponential decay fits and imaging speed

    PubMed Central

    Walsh, Alex J.; Sharick, Joe T.; Skala, Melissa C.; Beier, Hope T.

    2016-01-01

    Time-correlated single photon counting (TCSPC) enables acquisition of fluorescence lifetime decays with high temporal resolution within the fluorescence decay. However, many thousands of photons per pixel are required for accurate lifetime decay curve representation, instrument response deconvolution, and lifetime estimation, particularly for two-component lifetimes. TCSPC imaging speed is inherently limited due to the single photon per laser pulse nature and low fluorescence event efficiencies (<10%) required to reduce bias towards short lifetimes. Here, simulated fluorescence lifetime decays are analyzed by SPCImage and SLIM Curve software to determine the limiting lifetime parameters and photon requirements of fluorescence lifetime decays that can be accurately fit. Data analysis techniques to improve fitting accuracy for low photon count data were evaluated. Temporal binning of the decays from 256 time bins to 42 time bins significantly (p<0.0001) improved fit accuracy in SPCImage and enabled accurate fits with low photon counts (as low as 700 photons/decay), a 6-fold reduction in required photons and therefore improvement in imaging speed. Additionally, reducing the number of free parameters in the fitting algorithm by fixing the lifetimes to known values significantly reduced the lifetime component error from 27.3% to 3.2% in SPCImage (p<0.0001) and from 50.6% to 4.2% in SLIM Curve (p<0.0001). Analysis of nicotinamide adenine dinucleotide–lactate dehydrogenase (NADH-LDH) solutions confirmed temporal binning of TCSPC data and a reduced number of free parameters improves exponential decay fit accuracy in SPCImage. Altogether, temporal binning (in SPCImage) and reduced free parameters are data analysis techniques that enable accurate lifetime estimation from low photon count data and enable TCSPC imaging speeds up to 6x and 300x faster, respectively, than traditional TCSPC analysis. PMID:27446663

  3. High Speed Optical Imaging Photon Counting Microchannel Plate Detectors for Astronomical and Space Sensing Applications

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Vallerga, J.; Welsh, B.; McPhate, J.; Rogers, D.

    In recent years we have implemented a variety of high-resolution, photon-counting MCP detectors in space instrumentation for satellite FUSE, GALEX, IMAGE, SOHO, SSULI, HST-COS, rocket, and shuttle payloads as well as sensors for ground based Astronomy, reconnaissance and biology. These detectors can meet many of the challenging imaging and timing demands of applications including astronomy of transient and time-variable sources, Earth atmospheric imaging and spectroscopy for real time space weather monitoring, biological single-molecule fluorescence lifetime microscopy, airborne and space situational awareness, and optical night-time/reconnaissance. Our recent work on high performance photon counting imaging readouts enables significant advancements over previous detector systems used for these applications. We have developed novel Cross-Strip and Cross-Delay-Line anode structures that can, in combination with small pore MCP's in sealed tube detectors, can achieve high spatial resolution (better than 10 um FWHM) with self triggered ~1 ns timing accuracy at up to 10 MHz event rates. Sealed tubes with formats, of 18mm, and 25mm with efficient S25 photocathodes have been built and are being used in several applications. The detectors and their properties will be discussed in this paper. Our installation and astronomical commissioning of one of these detectors at the South African Astronomical Observatory, South African Large Telescope (SALT) 10m telescope will be described. Our photometer is positioned in an auxiliary instrument port of the SALT. This is a stand-alone instrument that includes our detector system with two filter wheels (neutral density and U, B, V), an iris, and all the control modules necessary to operate the system. This instrument gives us access to the southern sky with significant sensitivity and unprecedented time resolution (microsec). High time resolution astronomy is still in its infancy, such that high cadence observations of the variable

  4. Flare star monitoring with a new photon-counting imaging detector

    SciTech Connect

    Casperson, D.

    1997-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A search for faint time-varying optical signals from the nighttime sky has been conducted in parallel with the programmatic development of a new type of imaging detector. This detector combines high spatial and high temporal resolution with single-photon-counting sensitivity over a 40-mm diameter large-area format. It is called a microchannel plate with crossed delay line readout, or MCP/CDL, and is placed in the focal plane of a telescope to collect time-resolved images from objects such as flaring stars and other astrophysical transient sources. A short-lived prototype MCP/CDL was used to provide the initial stellar images for this project, but the author could not generate any extended database with which to characterize flare star populations. Consequently, a supplementary experimental search for optical transients was begun, utilizing the NASA 3-meter-aperture Liquid Mirror Telescope (LMT) facility in Cloudcroft, NM.

  5. Metabolic imaging in microregions of tumors and normal tissues with bioluminescence and photon counting

    SciTech Connect

    Mueller-Klieser, W.; Walenta, S.; Paschen, W.; Kallinowski, F.; Vaupel, P.

    1988-08-03

    A method has been developed for metabolic imaging on a microscopic level in tumors, tumor spheroids, and normal tissues. The technique makes it possible to determine the spatial distribution of glucose, lactate, and ATP in absolute terms at similar locations within tissues or cell aggregates. The substrate distributions are registered in serial cryostat sections from tissue cryobiopsies or from frozen spheroids with the use of bioluminescence reactions. The light emission is measured directly by a special imaging photon counting system enabling on-line image analysis. The technique has been applied to human breast cancer xenografts, to spheroids originating from a human colon adenocarcinoma, and to skeletal rat muscle. Preliminary data obtained indicate that heterogeneities in the substrate distributions measured are much more pronounced in tumors than in normal tissue. There was no obvious correlation among the three quantities measured at similar locations within the tissues. The distribution of ATP corresponded well with the histological structure of larger spheroids; values were low in the necrotic center and high in the viable rim of these cell aggregates.

  6. High background photon counting lidar

    NASA Technical Reports Server (NTRS)

    Lentz, W. J.

    1992-01-01

    Photon counting with lidar returns is usually limited to low light levels, while wide dynamic range is achieved by counting for long times. The broad emission spectrum of inexpensive high-power semiconductor lasers makes receiver filters pass too much background light for traditional photon counting in daylight. Very high speed photon counting is possible, however, at more than 500 MHz which allows the construction of eyesafe lidar operating in the presence of bright clouds. Detector improvements are possible to count to 20 GHz producing a single shot dynamic range of ten decades.

  7. Second generation airborne 3D imaging lidars based on photon counting

    NASA Astrophysics Data System (ADS)

    Degnan, John J.; Wells, David; Machan, Roman; Leventhal, Edward

    2007-09-01

    The first successful photon-counting airborne laser altimeter was demonstrated in 2001 under NASA's Instrument Incubator Program (IIP). This "micro-altimeter" flew at altitudes up to 22,000 ft (6.7 km) and, using single photon returns in daylight, successfully recorded high resolution images of the underlying topography including soil, low-lying vegetation, tree canopies, water surfaces, man-made structures, ocean waves, and moving vehicles. The lidar, which operated at a wavelength of 532 nm near the peak of the solar irradiance curve, was also able to see the underlying terrain through trees and thick atmospheric haze and performed shallow water bathymetry to depths of a few meters over the Atlantic Ocean and Assawoman Bay off the Virginia coast. Sigma Space Corporation has recently developed second generation systems suitable for use in a small aircraft or mini UAV. A frequency-doubled Nd:YAG microchip laser generates few microjoule, subnanosecond pulses at fire rates up to 22 kHz. A Diffractive Optical Element (DOE) breaks the transmit beam into a 10x10 array of quasi-uniform spots which are imaged by the receive optics onto individual anodes of a high efficiency 10x10 GaAsP segmented anode microchannel plate photomultiplier. Each anode is input to one channel of a 100 channel, multistop timer demonstrated to have a 100 picosecond timing (1.5 cm range) resolution and an event recovery time less than 2 nsec. The pattern and frequency of a dual wedge optical scanner, synchronized to the laser fire rate, are tailored to provide contiguous coverage of a ground scene in a single overflight.

  8. Improvement of the visibility for x-ray phase contrast imaging using photon counting detector

    NASA Astrophysics Data System (ADS)

    Sano, S.; Tanabe, K.; Yoshimuta, T.; Kimura, K.; Shirai, T.; Doki, T.; Horiba, A.; Sato, T.

    2016-03-01

    In the case of employing Talbot interferometer to the medical imaging, a practical X-ray tube should be combined with the interferometer. Practical x-ray tubes radiate continuous X-rays and the interference intensity (so-called visibility) becomes worse because of the wide spectrum of continuous X-rays. In order to achieve high visibility, we have estimated the visibility improvement effect using the photon counting detector (PCD). The detected spectra using a 2D imaging PCD are distorted due to charge sharing and pileup, which would make visibility worse. First, we have made a model for Monte-Calro calculation to calculate the distorted spectra and point spread function (PSF) for the charge sharing. The calculation model is based on the summation of the monochromatic response function which is the detected charge on the interested pixel for one photon injection. Distortion of spectra was calculated taking into account the charge sharing effect and pulse pileup. Then we have obtained an estimation result of the visibility improvement effect using the PCD of CdTe. The visibilities of the energy integrating detector (EID) of CdTe and the PCD are calculated and compared, where the Talbot interferometer type is a fringe scanning using phase grating and absorption grating. Visibility of the EID is 36% and that of PCD is 60% without pileup effect. In high dose rate condition, the CNR decreasing ratio is remarkable. The visibility decreasing effect and quantum noise increasing effect are correlated and the both effect worsen the CNR.

  9. Photon counting imaging with an electron-bombarded CCD: Towards a parallel-processing photoelectronic time-to-amplitude converter

    SciTech Connect

    Hirvonen, Liisa M.; Jiggins, Stephen; Sergent, Nicolas; Zanda, Gianmarco; Suhling, Klaus

    2014-12-15

    We have used an electron-bombarded CCD for optical photon counting imaging. The photon event pulse height distribution was found to be linearly dependent on the gain voltage. We propose on this basis that a gain voltage sweep during exposure in an electron-bombarded sensor would allow photon arrival time determination with sub-frame exposure time resolution. This effectively uses an electron-bombarded sensor as a parallel-processing photoelectronic time-to-amplitude converter, or a two-dimensional photon counting streak camera. Several applications that require timing of photon arrival, including Fluorescence Lifetime Imaging Microscopy, may benefit from such an approach. A simulation of a voltage sweep performed with experimental data collected with different acceleration voltages validates the principle of this approach. Moreover, photon event centroiding was performed and a hybrid 50% Gaussian/Centre of Gravity + 50% Hyperbolic cosine centroiding algorithm was found to yield the lowest fixed pattern noise. Finally, the camera was mounted on a fluorescence microscope to image F-actin filaments stained with the fluorescent dye Alexa 488 in fixed cells.

  10. Efficient asymmetric image authentication schemes based on photon counting-double random phase encoding and RSA algorithms.

    PubMed

    Moon, Inkyu; Yi, Faliu; Han, Mingu; Lee, Jieun

    2016-06-01

    Recently, double random phase encoding (DRPE) has been integrated with the photon counting (PC) imaging technique for the purpose of secure image authentication. In this scheme, the same key should be securely distributed and shared between the sender and receiver, but this is one of the most vexing problems of symmetric cryptosystems. In this study, we propose an efficient asymmetric image authentication scheme by combining the PC-DRPE and RSA algorithms, which solves key management and distribution problems. The retrieved image from the proposed authentication method contains photon-limited encrypted data obtained by means of PC-DRPE. Therefore, the original image can be protected while the retrieved image can be efficiently verified using a statistical nonlinear correlation approach. Experimental results demonstrate the feasibility of our proposed asymmetric image authentication method. PMID:27411183

  11. Abdominal Imaging with Contrast-enhanced Photon-counting CT: First Human Experience.

    PubMed

    Pourmorteza, Amir; Symons, Rolf; Sandfort, Veit; Mallek, Marissa; Fuld, Matthew K; Henderson, Gregory; Jones, Elizabeth C; Malayeri, Ashkan A; Folio, Les R; Bluemke, David A

    2016-04-01

    Purpose To evaluate the performance of a prototype photon-counting detector (PCD) computed tomography (CT) system for abdominal CT in humans and to compare the results with a conventional energy-integrating detector (EID). Materials and Methods The study was HIPAA-compliant and institutional review board-approved with informed consent. Fifteen asymptomatic volunteers (seven men; mean age, 58.2 years ± 9.8 [standard deviation]) were prospectively enrolled between September 2 and November 13, 2015. Radiation dose-matched delayed contrast agent-enhanced spiral and axial abdominal EID and PCD scans were acquired. Spiral images were scored for image quality (Wilcoxon signed-rank test) in five regions of interest by three radiologists blinded to the detector system, and the axial scans were used to assess Hounsfield unit accuracy in seven regions of interest (paired t test). Intraclass correlation coefficient (ICC) was used to assess reproducibility. PCD images were also used to calculate iodine concentration maps. Spatial resolution, noise-power spectrum, and Hounsfield unit accuracy of the systems were estimated by using a CT phantom. Results In both systems, scores were similar for image quality (median score, 4; P = .19), noise (median score, 3; P = .30), and artifact (median score, 1; P = .17), with good interrater agreement (image quality, noise, and artifact ICC: 0.84, 0.88, and 0.74, respectively). Hounsfield unit values, spatial resolution, and noise-power spectrum were also similar with the exception of mean Hounsfield unit value in the spinal canal, which was lower in the PCD than the EID images because of beam hardening (20 HU vs 36.5 HU; P < .001). Contrast-to-noise ratio of enhanced kidney tissue was improved with PCD iodine mapping compared with EID (5.2 ± 1.3 vs 4.0 ± 1.3; P < .001). Conclusion The performance of PCD showed no statistically significant difference compared with EID when the abdomen was evaluated in a conventional scan mode. PCD provides

  12. Optimized acquisition time for x-ray fluorescence imaging of gold nanoparticles: a preliminary study using photon counting detector

    NASA Astrophysics Data System (ADS)

    Ren, Liqiang; Wu, Di; Li, Yuhua; Chen, Wei R.; Zheng, Bin; Liu, Hong

    2016-03-01

    X-ray fluorescence (XRF) is a promising spectroscopic technique to characterize imaging contrast agents with high atomic numbers (Z) such as gold nanoparticles (GNPs) inside small objects. Its utilization for biomedical applications, however, is greatly limited to experimental research due to longer data acquisition time. The objectives of this study are to apply a photon counting detector array for XRF imaging and to determine an optimized XRF data acquisition time, at which the acquired XRF image is of acceptable quality to allow the maximum level of radiation dose reduction. A prototype laboratory XRF imaging configuration consisting of a pencil-beam X-ray and a photon counting detector array (1 × 64 pixels) is employed to acquire the XRF image through exciting the prepared GNP/water solutions. In order to analyze the signal to noise ratio (SNR) improvement versus the increased exposure time, all the XRF photons within the energy range of 63 - 76KeV that include two Kα gold fluorescence peaks are collected for 1s, 2s, 3s, and so on all the way up to 200s. The optimized XRF data acquisition time for imaging different GNP solutions is determined as the moment when the acquired XRF image just reaches a quality with a SNR of 20dB which corresponds to an acceptable image quality.

  13. Photon-counting passive 3D image sensing and processing for automatic target recognition

    NASA Astrophysics Data System (ADS)

    Yeom, Seokwon; Javidi, Bahram; Watson, Edward

    2008-04-01

    In this paper we overview the nonlinear matched filtering for photon counting recognition with 3D passive sensing. The first and second order statistical properties of the nonlinear matched filtering can improve the recognition performance compared to the linear matched filtering. Automatic target reconstruction and recognition are addressed for partially occluded objects. The recognition performance is shown to be improved significantly in the reconstruction space. The discrimination capability is analyzed in terms of Fisher ratio (FR) and receiver operating characteristic (ROC) curves.

  14. SIS Detectors for Terahertz Photon Counting System

    NASA Astrophysics Data System (ADS)

    Ezawa, Hajime; Matsuo, Hiroshi; Ukibe, Masahiro; Fujii, Go; Shiki, Shigetomo

    2016-07-01

    An Intensity interferometer with photon counting detector is a candidate to realize a THz interferometer for astronomical observations. We have demonstrated that synthesis imaging is possible even with intensity interferometers. An SIS junction (or STJ) with low leakage current of 1 pA is a suitable device for photon counting detectors. Readout circuit utilizing FETs with low gate leakage, low gate capacitance, and fast response is discussed.

  15. Development and analysis of a photon-counting three-dimensional imaging laser detection and ranging (LADAR) system.

    PubMed

    Oh, Min Seok; Kong, Hong Jin; Kim, Tae Hoon; Jo, Sung Eun; Kim, Byung Wook; Park, Dong Jo

    2011-05-01

    In this paper, a photon-counting three-dimensional imaging laser detection and ranging (LADAR) system that uses a Geiger-mode avalanche photodiode (GAPD) of relatively short dead time (45 ns) is described. A passively Q-switched microchip laser is used as a laser source and a compact peripheral component interconnect system, which includes a time-to-digital converter (TDC), is set up for fast signal processing. The combination of a GAPD with short dead time and a TDC with a multistop function enables the system to operate in a single-hit or a multihit mode during the acquisition of time-of-flight data. The software for the three-dimensional visualization and an algorithm for the removal of noise are developed. For the photon-counting LADAR system, we establish a theoretical model of target-detection and false-alarm probabilities in both the single-hit and multihit modes with a Poisson statistic; this model provides the prediction of the performance of the system and a technique for the acquisition of a noise image with a GAPD. Both the noise image and the three-dimensional image of a scene acquired by the photon-counting LADAR system during the day are presented. PMID:21532685

  16. Integral imaging acquisition and processing for visualization of photon counting images in the mid-wave infrared range

    NASA Astrophysics Data System (ADS)

    Latorre-Carmona, P.; Pla, F.; Javidi, B.

    2016-06-01

    In this paper, we present an overview of our previously published work on the application of the maximum likelihood (ML) reconstruction method to integral images acquired with a mid-wave infrared detector on two different types of scenes: one of them consisting of a road, a group of trees and a vehicle just behind one of the trees (being the car at a distance of more than 200m from the camera), and another one consisting of a view of the Wright Air Force Base airfield, with several hangars and different other types of installations (including warehouses) at distances ranging from 600m to more than 2km. Dark current noise is considered taking into account the particular features this type of sensors have. Results show that this methodology allows to improve visualization in the photon counting domain.

  17. Photon counting compressive depth mapping.

    PubMed

    Howland, Gregory A; Lum, Daniel J; Ware, Matthew R; Howell, John C

    2013-10-01

    We demonstrate a compressed sensing, photon counting lidar system based on the single-pixel camera. Our technique recovers both depth and intensity maps from a single under-sampled set of incoherent, linear projections of a scene of interest at ultra-low light levels around 0.5 picowatts. Only two-dimensional reconstructions are required to image a three-dimensional scene. We demonstrate intensity imaging and depth mapping at 256 × 256 pixel transverse resolution with acquisition times as short as 3 seconds. We also show novelty filtering, reconstructing only the difference between two instances of a scene. Finally, we acquire 32 × 32 pixel real-time video for three-dimensional object tracking at 14 frames-per-second. PMID:24104293

  18. X-ray differential phase contrast imaging using a grating interferometer and a single photon counting detector

    NASA Astrophysics Data System (ADS)

    Ge, Yongshuai; Zhang, Ran; Li, Ke; Chen, Guang-Hong

    2016-03-01

    For grating interferometer-based x-ray differential phase contrast (DPC) imaging systems, their noise performance is strongly dependent on both the visibility of the interference fringe pattern and the total number of photons used to acquire and extract the DPC signal. For a given interferometer, it is usually designed to work at a specific x-ray energy, therefore any deviation from the designed energy may result in certain visibility loss. In this work, a single photon counting detector (PCD) was incorporated into a DPC imaging system, which enabled photons with energies close to the designed operation energy of the interferometer to be selectively used for DPC signal extraction. This approach led to significant boost in the fringe visibility, but it also discarded x-ray photons with other energies incident on the detector and might result in degradations of the overall radiation dose efficiency of the DPC imaging systems. This work presents a novel singular value decomposition (SVD)-based method to leverage the entire spectrum of x-ray photons detected by the PCD, enabling both fringe visibility improvement and reduction in image noise. As evidenced by the results of experimental phantom studies, the contrast-to-noise ratio of the final DPC images could be effectively improved by the proposed method.

  19. Evaluation of a photon-counting x-ray imaging detector based on microchannel plates for mammography applications

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.; Xu, Tong; Molloi, Sabee

    2004-05-01

    Experimental prototype of a photon counting scanning slit X-ray imaging system is being evaluated for potential application in digital mammography. This system is based on a recently developed and tested "edge-on" illuminated Microchannel Plate (MCP) detector. The MCP detectors are well known for providing a combination of capabilities such as direct conversion, physical charge amplification, pulse counting, high spatial and temporal resolution, and very low noise. However, their application for medical imaging was hampered by their low detection efficiency. This limitation was addressed using an "edge-on" illumination mode for MCP. The current experimental prototype was developed to investigate the imaging performance of this detector concept for digital mammography. The current prototype provides a 60 mm field of view, 200 kHz count rate with 20% non-paralysable dead time and >7 lp/mm limiting resolution. A 0.3 mm focal spot W target X-ray tube was used for image acquisition. The detector noise is 0.3 count/pixel for 50x50 micron pixels. The count rate of the current prototype is limited by the delay line readout electronics, which causes long scanning times (minutes) and high tube loading. This problem will be addressed using multichannel ASIC electronics for clinical implementation. However, the current readout architecture is adequate for evaluation of the performance parameters of the new detector concept. It is very simple and provides a maximum intrinsic resolution of 28 micron FWHM. The prototype was evaluated using resolution, contrast detail and breast Phantoms. The MTF and DQE of the system are being evaluated at different tube voltages. The design parameters of a scanning multiple slit mammography system are being evaluated. It is concluded that a photon counting, quantum limited and virtually scatter free digital mammography system can be developed based on the proposed detector.

  20. Characterization of a photon counting EMCCD for space-based high contrast imaging spectroscopy of extrasolar planets

    NASA Astrophysics Data System (ADS)

    Wilkins, Ashlee N.; McElwain, Michael W.; Norton, Timothy J.; Rauscher, Bernie J.; Rothe, Johannes F.; Malatesta, Michael; Hilton, George M.; Bubeck, James R.; Grady, Carol A.; Lindler, Don J.

    2014-07-01

    We present the progress of characterization of a low-noise, photon counting Electron Multiplying Charged Coupled Device (EMCCD) operating in optical wavelengths and demonstrate possible solutions to the problems of Clock-Induced Charge (CIC) and other trapped charge through sub-bandgap illumination. Such a detector will be vital to the feasibility of future space-based direct imaging and spectroscopy missions for exoplanet characterization, and is scheduled to y on-board the AFTA-WFIRST mission. The 512×512 EMCCD is an e2v detector housed and clocked by a Nüvü Cameras controller. Through a multiplication gain register, this detector produces as many as 5000 electrons for a single, incident-photon-induced photoelectron produced in the detector, enabling single photon counting operation with read noise and dark current orders of magnitude below that of standard CCDs. With the extremely high contrasts (Earth-to-Sun flux ratio is ~ 10-10) and extremely faint targets (an Earth analog would measure 28th - 30th magnitude or fainter), a photon-counting EMCCD is absolutely necessary to measure the signatures of habitability on an Earth-like exoplanet within the timescale of a mission's lifetime, and we discuss the concept of operations for an EMCCD making such measurements.

  1. On the single-photon-counting (SPC) modes of imaging using an XFEL source

    SciTech Connect

    Wang, Zhehui

    2015-12-14

    In this study, the requirements to achieve high detection efficiency (above 50%) and gigahertz (GHz) frame rate for the proposed 42-keV X-ray free-electron laser (XFEL) at Los Alamos are summarized. Direct detection scenarios using C (diamond), Si, Ge and GaAs semiconductor sensors are analyzed. Single-photon counting (SPC) mode and weak SPC mode using Si can potentially meet the efficiency and frame rate requirements and be useful to both photoelectric absorption and Compton physics as the photon energy increases. Multilayer three-dimensional (3D) detector architecture, as a possible means to realize SPC modes, is compared with the widely used two-dimensional (2D) hybrid planar electrode structure and 3D deeply entrenched electrode architecture. Demonstration of thin film cameras less than 100-μm thick with onboard thin ASICs could be an initial step to realize multilayer 3D detectors and SPC modes for XFELs.

  2. On the Single-Photon-Counting (SPC) modes of imaging using an XFEL source

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui

    2015-12-01

    The requirements to achieve high detection efficiency (above 50%) and gigahertz (GHz) frame rate for the proposed 42-keV X-ray free-electron laser (XFEL) at Los Alamos are summarized. Direct detection scenarios using C (diamond), Si, Ge and GaAs semiconductor sensors are analyzed. Single-photon counting (SPC) mode and weak SPC mode using Si can potentially meet the efficiency and frame rate requirements and be useful to both photoelectric absorption and Compton physics as the photon energy increases. Multilayer three-dimensional (3D) detector architecture, as a possible means to realize SPC modes, is compared with the widely used two-dimensional (2D) hybrid planar electrode structure and 3D deeply entrenched electrode architecture. Demonstration of thin film cameras less than 100-μm thick with onboard thin ASICs could be an initial step to realize multilayer 3D detectors and SPC modes for XFELs.

  3. Spectral X-Ray CT Image Reconstruction with a Combination of Energy-Integrating and Photon-Counting Detectors.

    PubMed

    Yang, Qingsong; Cong, Wenxiang; Xi, Yan; Wang, Ge

    2016-01-01

    The purpose of this paper is to develop an algorithm for hybrid spectral computed tomography (CT) which combines energy-integrating and photon-counting detectors. While the energy-integrating scan is global, the photon-counting scan can have a local field of view (FOV). The algorithm synthesizes both spectral data and energy-integrating data. Low rank and sparsity prior is used for spectral CT reconstruction. An initial estimation is obtained from the projection data based on physical principles of x-ray interaction with the matter, which provides a more accurate Taylor expansion than previous work and can guarantee the convergence of the algorithm. Numerical simulation with clinical CT images are performed. The proposed algorithm produces very good spectral features outside the FOV when no K-edge material exists. Exterior reconstruction of K-edge material can be partially achieved. PMID:27171153

  4. Spectral X-Ray CT Image Reconstruction with a Combination of Energy-Integrating and Photon-Counting Detectors

    PubMed Central

    Yang, Qingsong; Cong, Wenxiang; Xi, Yan; Wang, Ge

    2016-01-01

    The purpose of this paper is to develop an algorithm for hybrid spectral computed tomography (CT) which combines energy-integrating and photon-counting detectors. While the energy-integrating scan is global, the photon-counting scan can have a local field of view (FOV). The algorithm synthesizes both spectral data and energy-integrating data. Low rank and sparsity prior is used for spectral CT reconstruction. An initial estimation is obtained from the projection data based on physical principles of x-ray interaction with the matter, which provides a more accurate Taylor expansion than previous work and can guarantee the convergence of the algorithm. Numerical simulation with clinical CT images are performed. The proposed algorithm produces very good spectral features outside the FOV when no K-edge material exists. Exterior reconstruction of K-edge material can be partially achieved. PMID:27171153

  5. Advances in photon counting for bioluminescence

    NASA Astrophysics Data System (ADS)

    Ingle, Martin B.; Powell, Ralph

    1998-11-01

    Photon counting systems were originally developed for astronomy, initially by the astronomical community. However, a major application area is in the study of luminescent probes in living plants, fishes and cell cultures. For these applications, it has been necessary to develop camera system capability at very low light levels -- a few photons occasionally -- and also at reasonably high light levels to enable the systems to be focused and to collect quality images of the object under study. The paper presents new data on MTF at extremely low photon flux and conventional ICCD illumination, counting efficiency and dark noise as a function of temperature.

  6. Photon Counting - One More Time

    NASA Astrophysics Data System (ADS)

    Stanton, Richard H.

    2012-05-01

    Photon counting has been around for more than 60 years, and has been available to amateurs for most of that time. In most cases single photons are detected using photomultiplier tubes, "old technology" that became available after the Second World War. But over the last couple of decades the perfection of CCD devices has given amateurs the ability to perform accurate photometry with modest telescopes. Is there any reason to still count photons? This paper discusses some of the strengths of current photon counting technology, particularly relating to the search for fast optical transients. Technology advances in counters and photomultiplier modules are briefly mentioned. Illustrative data are presented including FFT analysis of bright star photometry and a technique for finding optical pulses in a large file of noisy data. This latter technique is shown to enable the discovery of a possible optical flare on the polar variable AM Her.

  7. Detection and Estimation of an Optical Image by Photon-Counting Techniques. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wang, Lily Lee

    1973-01-01

    Statistical description of a photoelectric detector is given. The photosensitive surface of the detector is divided into many small areas, and the moment generating function of the photo-counting statistic is derived for large time-bandwidth product. The detection of a specified optical image in the presence of the background light by using the hypothesis test is discussed. The ideal detector based on the likelihood ratio from a set of numbers of photoelectrons ejected from many small areas of the photosensitive surface is studied and compared with the threshold detector and a simple detector which is based on the likelihood ratio by counting the total number of photoelectrons from a finite area of the surface. The intensity of the image is assumed to be Gaussian distributed spatially against the uniformly distributed background light. The numerical approximation by the method of steepest descent is used, and the calculations of the reliabilities for the detectors are carried out by a digital computer.

  8. Digital lock-in detection system based on single photon counting for near-infrared functional brain imaging

    NASA Astrophysics Data System (ADS)

    Meng, Wei; Guo, Hui; Liu, Ming; Yi, Xi; Wu, Linhui; Zhao, Huijuan; Gao, Feng

    2013-03-01

    Near infrared (NIR) diffuse optical imaging (DOI) are increasingly used to detect hemodynamic changes in the cerebral cortex induced by brain activity. For the sake of capturing the dynamic changes in real-time imaging applications, such as brain imaging, digital lock-in detection technique could be applied. Using particular modulation and sampling constraints and averaging filters, one can achieve optimal noise reduction and discrimination between sources in different modulation frequencies. In this paper, we designed and developed a compact dual-wavelength continuous wave DOI system based on the single photon counting digital lock-in detection technique. According to the frequency division multiplexing light source coding technique, sine waves with different frequencies are generated so as to amplitude-modulate two laser sources with different wavelengths. The diffuse light is detected by photomultiplier tubes (PMTs) and the data is collected by the detection channels simultaneously. A digital lock-in detection circuit for photon counting measurement module and a DDS (Direct Digital Synthesizer) signal generation module were separately implemented in two FPGA development platforms. To validate the feasibility and functionality of the developed system, a series of experimental tests were performed. Preliminary results show that the system could be used to reconstruct the absorption coefficient and could separate the response of the dual wavelength sources which were modulated by sine signals of different frequencies effectively. In addition, several imaging experiments were performed on the semi-infinite solid phantom to find the "best imaging position" for a given source-detector placement.

  9. Three-dimensional photon counting double-random-phase encryption.

    PubMed

    Cho, Myungjin; Javidi, Bahram

    2013-09-01

    In this Letter, we present a three-dimensional (3D) photon counting double-random-phase encryption (DRPE) technique using passive integral imaging. A 3D photon counting DRPE can encrypt a 3D scene and provides more security and authentications due to photon counting Poisson nonlinear transformation on the encrypted image. In addition, 3D imaging allows verification of the 3D object at different depths. Preliminary results and performance evaluation have been presented. PMID:23988912

  10. Photon counting X-ray imaging with CdTe pixel detectors based on XPAD2 circuit

    NASA Astrophysics Data System (ADS)

    Franchi, Romain; Glasser, Francis; Gasse, Adrien; Clemens, Jean-Claude

    2006-07-01

    A semiconductor hybrid pixel detector for photon counting X-ray imaging has been developed and tested under radiation. The sensor is based on recent uniform CdTe single crystal associated with XPAD 2 counting chip via innovative processes of interconnection. The building detector is 1 mm thick, with an area of 1 cm 2 and consists of 600 square pixels cells 330 μm side. The readout chip working in electron collection mode is capable of setting homogeneous threshold with only a dispersion of 730 e -. Maximum noise level has been evaluated around 15 keV. First experiments under X-rays demonstrate a very good efficiency of detection. Moreover, imaging system allows excellent linearity over a large-scale achieving count rate of 3×10 6 photons/s/mm 2. Spectrometric measurements point up the system potential in multi-energies applications by locating and resolving X-rays lines of 241Am and 57Co sources.

  11. On the single-photon-counting (SPC) modes of imaging using an XFEL source

    DOE PAGESBeta

    Wang, Zhehui

    2015-12-14

    In this study, the requirements to achieve high detection efficiency (above 50%) and gigahertz (GHz) frame rate for the proposed 42-keV X-ray free-electron laser (XFEL) at Los Alamos are summarized. Direct detection scenarios using C (diamond), Si, Ge and GaAs semiconductor sensors are analyzed. Single-photon counting (SPC) mode and weak SPC mode using Si can potentially meet the efficiency and frame rate requirements and be useful to both photoelectric absorption and Compton physics as the photon energy increases. Multilayer three-dimensional (3D) detector architecture, as a possible means to realize SPC modes, is compared with the widely used two-dimensional (2D) hybridmore » planar electrode structure and 3D deeply entrenched electrode architecture. Demonstration of thin film cameras less than 100-μm thick with onboard thin ASICs could be an initial step to realize multilayer 3D detectors and SPC modes for XFELs.« less

  12. Comparison of photon counting and conventional scintillation detectors in a pinhole SPECT system for small animal imaging: Monte carlo simulation studies

    NASA Astrophysics Data System (ADS)

    Lee, Young-Jin; Park, Su-Jin; Lee, Seung-Wan; Kim, Dae-Hong; Kim, Ye-Seul; Kim, Hee-Joung

    2013-05-01

    The photon counting detector based on cadmium telluride (CdTe) or cadmium zinc telluride (CZT) is a promising imaging modality that provides many benefits compared to conventional scintillation detectors. By using a pinhole collimator with the photon counting detector, we were able to improve both the spatial resolution and the sensitivity. The purpose of this study was to evaluate the photon counting and conventional scintillation detectors in a pinhole single-photon emission computed tomography (SPECT) system. We designed five pinhole SPECT systems of two types: one type with a CdTe photon counting detector and the other with a conventional NaI(Tl) scintillation detector. We conducted simulation studies and evaluated imaging performance. The results demonstrated that the spatial resolution of the CdTe photon counting detector was 0.38 mm, with a sensitivity 1.40 times greater than that of a conventional NaI(Tl) scintillation detector for the same detector thickness. Also, the average scatter fractions of the CdTe photon counting and the conventional NaI(Tl) scintillation detectors were 1.93% and 2.44%, respectively. In conclusion, we successfully evaluated various pinhole SPECT systems for small animal imaging.

  13. Projection-based energy weighting on photon-counting X-ray images in digital subtraction mammography: a feasibility study

    NASA Astrophysics Data System (ADS)

    Choi, Sung-Hoon; Lee, Seung-Wan; Choi, Yu-Na; Lee, Young-Jin; Kim, Hee-Joung

    2014-03-01

    In digital subtraction mammography where subtracts the one image (with contrast medium) from the other (anatomical background) for observing the tumor structure, tumors which include more blood vessels than normal tissue could be distinguished through the enhancement of contrast-to-noise ratio (CNR). In order to improve CNR, we adopted projection-based energy weighting for iodine solutions with four different concentrations embedded in a breast phantom (50% adipose and 50% glandular tissues). In this study, a Monte Carlo simulation was used to simulate a 40 mm thickness breast phantom, which has 15 and 30 mg/cm3 iodine solutions with two different thicknesses, and an energy resolving photon-counting system. The input energy spectrum was simulated in a range of 20 to 45 keV in order to reject electronic noise and include k-edge energy of iodine (33.2 keV). The results showed that the projection-based energy weighting improved the CNR by factors of 1.05-1.86 compared to the conventional integrating images. Consequently, the CNR of images from the digital subtraction mammography could be improved by the projection-based energy weighting with photon-counting detectors.

  14. A prototype high-purity germanium detector system with fast photon-counting circuitry for medical imaging.

    PubMed

    Hasegawa, B H; Stebler, B; Rutt, B K; Martinez, A; Gingold, E L; Barker, C S; Faulkner, K G; Cann, C E; Boyd, D P

    1991-01-01

    A data-acquisition system designed for x-ray medical imaging utilizes a segmented high-purity germanium (HPGe) detector array with 2-mm wide and 6-mm thick elements. The detectors are contained within a liquid-nitrogen cryostat designed to minimize heat losses. The 50-ns pulse-shaping time of the preamplifier electronics is selected as the shortest time constant compatible with the 50-ns charge collection time of the detector. This provides the detection system with the fastest count-rate capabilities and immunity from microphonics, with moderate energy resolution performance. A theoretical analysis of the preamplifier electronics shows that its noise performance is limited primarily by its input capacitance, and is independent of detector leakage current up to approximately 100 nA. The system experimentally demonstrates count rates exceeding 1 million counts per second per element with an energy resolution of 7 keV for the 60-keV gamma ray photon from 241Am. The results demonstrate the performance of a data acquisition system utilizing HPGe detector systems which would be suitable for dual-energy imaging as well as systems offering simultaneous x-ray transmission and radionuclide emission imaging. PMID:1961152

  15. Multidimensional time-correlated single photon counting

    NASA Astrophysics Data System (ADS)

    Becker, Wolfgang; Bergmann, Axel

    2006-10-01

    Time-correlated single photon counting (TCSPC) is based on the detection of single photons of a periodic light signal, measurement of the detection time of the photons, and the build-up of the photon distribution versus the time in the signal period. TCSPC achieves a near ideal counting efficiency and transit-time-spread-limited time resolution for a given detector. The drawback of traditional TCSPC is the low count rate, long acquisition time, and the fact that the technique is one-dimensional, i.e. limited to the recording of the pulse shape of light signals. We present an advanced TCSPC technique featuring multi-dimensional photon acquisition and a count rate close to the capability of currently available detectors. The technique is able to acquire photon distributions versus wavelength, spatial coordinates, and the time on the ps scale, and to record fast changes in the fluorescence lifetime and fluorescence intensity of a sample. Biomedical applications of advanced TCSPC techniques are time-domain optical tomography, recording of transient phenomena in biological systems, spectrally resolved fluorescence lifetime imaging, FRET experiments in living cells, and the investigation of dye-protein complexes by fluorescence correlation spectroscopy. We demonstrate the potential of the technique for selected applications.

  16. Characteristic performance evaluation of a photon counting Si strip detector for low dose spectral breast CT imaging

    PubMed Central

    Cho, Hyo-Min; Barber, William C.; Ding, Huanjun; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: The possible clinical applications which can be performed using a newly developed detector depend on the detector's characteristic performance in a number of metrics including the dynamic range, resolution, uniformity, and stability. The authors have evaluated a prototype energy resolved fast photon counting x-ray detector based on a silicon (Si) strip sensor used in an edge-on geometry with an application specific integrated circuit to record the number of x-rays and their energies at high flux and fast frame rates. The investigated detector was integrated with a dedicated breast spectral computed tomography (CT) system to make use of the detector's high spatial and energy resolution and low noise performance under conditions suitable for clinical breast imaging. The aim of this article is to investigate the intrinsic characteristics of the detector, in terms of maximum output count rate, spatial and energy resolution, and noise performance of the imaging system. Methods: The maximum output count rate was obtained with a 50 W x-ray tube with a maximum continuous output of 50 kVp at 1.0 mA. A109Cd source, with a characteristic x-ray peak at 22 keV from Ag, was used to measure the energy resolution of the detector. The axial plane modulation transfer function (MTF) was measured using a 67 μm diameter tungsten wire. The two-dimensional (2D) noise power spectrum (NPS) was measured using flat field images and noise equivalent quanta (NEQ) were calculated using the MTF and NPS results. The image quality parameters were studied as a function of various radiation doses and reconstruction filters. The one-dimensional (1D) NPS was used to investigate the effect of electronic noise elimination by varying the minimum energy threshold. Results: A maximum output count rate of 100 million counts per second per square millimeter (cps/mm2) has been obtained (1 million cps per 100 × 100 μm pixel). The electrical noise floor was less than 4 keV. The energy resolution

  17. Characteristic performance evaluation of a photon counting Si strip detector for low dose spectral breast CT imaging

    SciTech Connect

    Cho, Hyo-Min; Ding, Huanjun; Molloi, Sabee; Barber, William C.; Iwanczyk, Jan S.

    2014-09-15

    Purpose: The possible clinical applications which can be performed using a newly developed detector depend on the detector's characteristic performance in a number of metrics including the dynamic range, resolution, uniformity, and stability. The authors have evaluated a prototype energy resolved fast photon counting x-ray detector based on a silicon (Si) strip sensor used in an edge-on geometry with an application specific integrated circuit to record the number of x-rays and their energies at high flux and fast frame rates. The investigated detector was integrated with a dedicated breast spectral computed tomography (CT) system to make use of the detector's high spatial and energy resolution and low noise performance under conditions suitable for clinical breast imaging. The aim of this article is to investigate the intrinsic characteristics of the detector, in terms of maximum output count rate, spatial and energy resolution, and noise performance of the imaging system. Methods: The maximum output count rate was obtained with a 50 W x-ray tube with a maximum continuous output of 50 kVp at 1.0 mA. A{sup 109}Cd source, with a characteristic x-ray peak at 22 keV from Ag, was used to measure the energy resolution of the detector. The axial plane modulation transfer function (MTF) was measured using a 67 μm diameter tungsten wire. The two-dimensional (2D) noise power spectrum (NPS) was measured using flat field images and noise equivalent quanta (NEQ) were calculated using the MTF and NPS results. The image quality parameters were studied as a function of various radiation doses and reconstruction filters. The one-dimensional (1D) NPS was used to investigate the effect of electronic noise elimination by varying the minimum energy threshold. Results: A maximum output count rate of 100 million counts per second per square millimeter (cps/mm{sup 2}) has been obtained (1 million cps per 100 × 100 μm pixel). The electrical noise floor was less than 4 keV. The energy

  18. Photon counting with an EMCCD

    NASA Astrophysics Data System (ADS)

    Daigle, Olivier; Blais-Ouellette, Sébastien

    2010-01-01

    In order to make faint flux imaging efficient with an EMCCD, the Clock Induced Charges (CIC) must be reduced to a minimum. Some techniques were proposed to reduce the CIC but until now, neither commercially available CCD controller nor commercial cameras were able to implement them and get satisfying results. CCCP, the CCD Controller for Counting Photons, has been designed with the aim of reducing the CIC generated when an EMCCD is read out. It is optimized for driving EMCCDs at high speed (>= 10MHz), but may be used also for driving conventional CCDs (or the conventional output of an EMCCD) at high, moderate, or low speed. This new controller provides an arbitrary clock generator, yielding a timing resolution of ~20 ps and a voltage resolution of ~2mV of the overlap of the clocks used to drive the EMCCD. The frequency components of the clocks can be precisely controlled, and the inter-clock capacitance effect of the CCD can be nulled to avoid overshoots and undershoots. Using this controller, CIC levels as low as 0.001 - 0.002 e per pixel per frame were measured on a 512×512 CCD97 operating in inverted mode, at an EM gain of ~2000. This is 5 to 10 times less than what is usually seen in commercial EMCCD cameras using the same EMCCD chip.

  19. A High-Resolution Imaging Technique using a Whole-body, Research Photon Counting Detector CT System

    PubMed Central

    Leng, S.; Yu, Z.; Halaweish, A.; Kappler, S.; Hahn, K.; Henning, A.; Li, Z.; Lane, J.; Levin, D. L.; Jorgensen, S.; Ritman, E.; McCollough, C.

    2016-01-01

    A high-resolution (HR) data collection mode has been introduced to the whole-body, research photon-counting-detector CT system installed in our laboratory. In this mode, 64 rows of 0.45 mm × 0.45 mm detectors pixels were used, which corresponded to a pixel size of 0.225 mm × 0.225 mm at the iso-center. Spatial resolution of this HR mode was quantified by measuring the MTF from a scan of a 50 micron wire phantom. An anthropomorphic lung phantom, cadaveric swine lung, temporal bone and heart specimens were scanned using the HR mode, and image quality was subjectively assessed by two experienced radiologists. Comparison of the HR mode images against their energy integrating system (EID) equivalents using comb filters was also performed. High spatial resolution of the HR mode was evidenced by the MTF measurement, with 15 lp/cm and 20 lp/cm at 10% and 2% MTF. Images from anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures, such as lung vessels, lung nodules, temporal bone structures, and coronary arteries. Temporal bone images showed critical anatomy (i.e. stapes superstructure) that was clearly visible in the PCD system but hardly visible with the EID system. These results demonstrated the potential application of this imaging mode in lung, temporal bone, and vascular imaging. Other clinical applications that require high spatial resolution, such as musculoskeletal imaging, may also benefit from this high resolution mode. PMID:27330238

  20. Phasor-based single-molecule fluorescence lifetime imaging using a wide-field photon-counting detector

    PubMed Central

    Colyer, R.; Siegmund, O.; Tremsin, A.; Vallerga, J.; Weiss, S.; Michalet, X.

    2011-01-01

    Fluorescence lifetime imaging (FLIM) is a powerful approach to studying the immediate environment of molecules. For example, it is used in biology to study changes in the chemical environment, or to study binding processes, aggregation, and conformational changes by measuring Förster resonance energy transfer (FRET) between donor and acceptor fluorophores. FLIM can be acquired by time-domain measurements (time-correlated single-photon counting) or frequency-domain measurements (with PMT modulation or digital frequency domain acquisition) in a confocal setup, or with wide-field systems (using time-gated cameras). In the best cases, the resulting data is analyzed in terms of multicomponent fluorescence lifetime decays with demanding requirements in terms of signal level (and therefore limited frame rate). Recently, the phasor approach has been proposed as a powerful alternative for fluorescence lifetime analysis of FLIM, ensemble, and single-molecule experiments. Here we discuss the advantages of combining phasor analysis with a new type of FLIM acquisition hardware presented previously, consisting of a high temporal and spatial resolution wide-field single-photon counting device (the H33D detector). Experimental data with live cells and quantum dots will be presented as an illustration of this new approach. PMID:21625298

  1. A high-resolution imaging technique using a whole-body, research photon counting detector CT system

    NASA Astrophysics Data System (ADS)

    Leng, S.; Yu, Z.; Halaweish, A.; Kappler, S.; Hahn, K.; Henning, A.; Li, Z.; Lane, J.; Levin, D. L.; Jorgensen, S.; Ritman, E.; McCollough, C.

    2016-03-01

    A high-resolution (HR) data collection mode has been introduced to a whole-body, research photon-counting-detector CT system installed in our laboratory. In this mode, 64 rows of 0.45 mm x 0.45 mm detector pixels were used, which corresponded to a pixel size of 0.25 mm x 0.25 mm at the iso-center. Spatial resolution of this HR mode was quantified by measuring the MTF from a scan of a 50 micron wire phantom. An anthropomorphic lung phantom, cadaveric swine lung, temporal bone and heart specimens were scanned using the HR mode, and image quality was subjectively assessed by two experienced radiologists. High spatial resolution of the HR mode was evidenced by the MTF measurement, with 15 lp/cm and 20 lp/cm at 10% and 2% modulation. Images from anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures, such as lung vessels, lung nodules, temporal bone structures, and coronary arteries. Temporal bone images showed critical anatomy (i.e. stapes superstructure) that was clearly visible in the PCD system. These results demonstrated the potential application of this imaging mode in lung, temporal bone, and vascular imaging. Other clinical applications that require high spatial resolution, such as musculoskeletal imaging, may also benefit from this high resolution mode.

  2. The Swath Imaging Multi-polarization Photon-counting Lidar (SIMPL): A Pathfinder for the LIDAR Surface Topography (LIST) Mission

    NASA Astrophysics Data System (ADS)

    Dabney, P.; Harding, D.; Abshire, J.; Seas, A.; Sun, X.; Shuman, C.; Scambos, T.

    2007-12-01

    The Swath Imaging Multi-polarization Photon-counting Lidar (SIMPL) is an airborne prototype in development to demonstrate laser altimetry measurement methods and components that enable efficient, high-resolution, swath mapping of topography and surface properties from space. This demonstration is advancing technologies that are applicable to the global elevation mapping objectives (5 m spatial resolution, 10 cm vertical precision) of the LIDAR Surface Topography (LIST) mission recommended by the National Research Council in the Earth Science Decadal Survey report to NASA and NOAA. The main focus of this instrument development, sponsored by the NASA Earth Science and Technology Office Instrument Incubator Program, is to demonstrate an approach for detailed monitoring of ice sheet, sea ice and glacier change from a spacecraft in low Earth orbit. Although it currently emphasizes polar-region cryosphere objectives, the SIMPL approach is also applicable in other applications including measuring changes in land topography, forest height and structure, and inland water and snow cover height and extent. SIMPL employs a short-pulse (1 nsec) fiber laser transmitters operating at 1064 nm and 532 nm, a beam splitter to divide the energy into four parallel beams displaced cross-track, single photon counting modules (SPCM) detectors, and high precision timing electronics to achieve < 15 cm range precision per single detected photon. Measurement of the backscatter energy with polarization parallel and perpendicular to the laser transmit pulse provides the depolarization ratio of the surface returns at 532 and 1064 nm, in order to differentiate surface types based on their scattering properties. Results of laboratory testing of a single beam breadboard and the design and implementation of the four-beam flight instrument will be described.

  3. Physical characterization of photon-counting tomosynthesis

    NASA Astrophysics Data System (ADS)

    Berggren, Karl; Lundqvist, Mats; Cederström, Björn; Danielsson, Mats E.; Fredenberg, Erik

    2015-03-01

    Tomosynthesis is emerging as a next generation technology in mammography. Combined with photon-counting detectors with the ability for energy discrimination, a novel modality is enabled — spectral tomosynthesis. Further advantages of photon-counting detectors in the context of tomosynthesis include elimination of electronic noise, efficient scatter rejection (in some geometries) and no lag. Fourier-based linear-systems analysis is a well-established method for optimizing image quality in two-dimensional x-ray systems. The method has been successfully adapted to threedimensional imaging, including tomosynthesis, but several areas need further investigation. This study focuses on two such areas: 1) Adaption of the methodology to photon-counting detectors, and 2) violation of the shift-invariance and stationarity assumptions in non-cylindrical geometries. We have developed a Fourier-based framework to study the image quality in a photon-counting tomosynthesis system, assuming locally linear, stationary, and shift-invariant system response. The framework includes a cascaded-systems model to propagate the modulation-transfer function (MTF) and noise-power spectrum (NPS) through the system. The model was validated by measurements of the MTF and NPS. High degrees of non-shift invariance and non-stationarity were observed, in particular for the depth resolution as the angle of incidence relative the reconstruction plane varied throughout the imaging volume. The largest effects on image quality in a given point in space were caused by interpolation from the inherent coordinate system of the x-rays to the coordinate system that was used for reconstruction. This study is part of our efforts to fully characterize the spectral tomosynthesis system, we intend to extend the model further to include the detective-quantum efficiency, observer modelling, and spectral effects.

  4. Laser transmitter design and performance for the slope imaging multi-polarization photon-counting lidar (SIMPL) instrument

    NASA Astrophysics Data System (ADS)

    Yu, Anthony W.; Harding, David J.; Dabney, Philip W.

    2016-03-01

    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) is a polarimetric, two-color, multi-beam push broom laser altimeter developed through the NASA Earth Science Technology Office Instrument Incubator Program. It has flown successfully on multiple airborne platforms beginning in 2008.1 It was developed to demonstrate new altimetry capabilities that combine height measurements and information about surface composition and properties. In this talk we will discuss the laser transmitter design and performance and present recent science data collected over the Greenland ice sheet and arctic sea ice in support of the second NASA Ice Cloud and land Elevation Satellite (ICESat-2) mission to be launched in 2017.2

  5. Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach

    SciTech Connect

    Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Aslund, Magnus

    2012-09-15

    Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption

  6. Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach

    PubMed Central

    Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Åslund, Magnus

    2012-01-01

    Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption

  7. Photon counts from stellar occultation sources

    NASA Technical Reports Server (NTRS)

    Buglia, James J.

    1987-01-01

    The feasibility of using stars as radiation sources for Earth atmospheric occultation experiments is investigated. Exoatmospheric photon counts of the order of 10 to the 6th power photons/sq cm/sec are realized for the 15 visually brightest stars. Most photon counts appear to be marginally detectable unless photomultiplier or cascade detection devices can be used.

  8. Lock-in-photon-counting-based highly-sensitive and large-dynamic imaging system for continuous-wave diffuse optical tomography

    PubMed Central

    Chen, Weiting; Wang, Xin; Wang, Bingyuan; Wang, Yihan; Zhang, Yanqi; Zhao, Huijuan; Gao, Feng

    2016-01-01

    We implemented a novel lock-in photon-counting detection architecture that combines the ultra-high sensitivity of the photon-counting detection and the measurement parallelism of the lock-in technique. Based on this technique, a dual-wavelength simultaneous measurement continuous wave diffuse optical tomography system was developed with a configuration of 16 sources and 16 detectors that works in a tandem serial-to-parallel fashion. Methodology validation and performance assessment of the system were conducted using phantom experiments that demonstrate excellent measurement linearity, moderate-term system stability, robustness to noise and negligible inter-wavelength crosstalk. 2-D imaging experiments further validate high sensitivity of the lock-in photon-counting methodology as well as high reliability of the proposed system. The advanced detection principle can be adapted to achieving a fully parallelized instrumentation for the extended applications. PMID:26977358

  9. Lock-in-photon-counting-based highly-sensitive and large-dynamic imaging system for continuous-wave diffuse optical tomography.

    PubMed

    Chen, Weiting; Wang, Xin; Wang, Bingyuan; Wang, Yihan; Zhang, Yanqi; Zhao, Huijuan; Gao, Feng

    2016-02-01

    We implemented a novel lock-in photon-counting detection architecture that combines the ultra-high sensitivity of the photon-counting detection and the measurement parallelism of the lock-in technique. Based on this technique, a dual-wavelength simultaneous measurement continuous wave diffuse optical tomography system was developed with a configuration of 16 sources and 16 detectors that works in a tandem serial-to-parallel fashion. Methodology validation and performance assessment of the system were conducted using phantom experiments that demonstrate excellent measurement linearity, moderate-term system stability, robustness to noise and negligible inter-wavelength crosstalk. 2-D imaging experiments further validate high sensitivity of the lock-in photon-counting methodology as well as high reliability of the proposed system. The advanced detection principle can be adapted to achieving a fully parallelized instrumentation for the extended applications. PMID:26977358

  10. Particle and Photon Detection: Counting and Energy Measurement.

    PubMed

    Janesick, James; Tower, John

    2016-01-01

    Fundamental limits for photon counting and photon energy measurement are reviewed for CCD and CMOS imagers. The challenges to extend photon counting into the visible/nIR wavelengths and achieve energy measurement in the UV with specific read noise requirements are discussed. Pixel flicker and random telegraph noise sources are highlighted along with various methods used in reducing their contribution on the sensor's read noise floor. Practical requirements for quantum efficiency, charge collection efficiency, and charge transfer efficiency that interfere with photon counting performance are discussed. Lastly we will review current efforts in reducing flicker noise head-on, in hopes to drive read noise substantially below 1 carrier rms. PMID:27187398

  11. Objective assessment of image quality. V. Photon-counting detectors and list-mode data

    PubMed Central

    Caucci, Luca; Barrett, Harrison H.

    2012-01-01

    A theoretical framework for detection or discrimination tasks with list-mode data is developed. The object and imaging system are rigorously modeled via three random mechanisms: randomness of the object being imaged, randomness in the attribute vectors, and, finally, randomness in the attribute vector estimates due to noise in the detector outputs. By considering the list-mode data themselves, the theory developed in this paper yields a manageable expression for the likelihood of the list-mode data given the object being imaged. This, in turn, leads to an expression for the optimal Bayesian discriminant. Figures of merit for detection tasks via the ideal and optimal linear observers are derived. A concrete example discusses detection performance of the optimal linear observer for the case of a known signal buried in a random lumpy background. PMID:22673432

  12. Inflight performance of a second-generation photon-counting 3D imaging lidar

    NASA Astrophysics Data System (ADS)

    Degnan, John; Machan, Roman; Leventhal, Ed; Lawrence, David; Jodor, Gabriel; Field, Christopher

    2008-04-01

    Sigma Space Corporation has recently developed a compact 3D imaging and polarimetric lidar suitable for use in a small aircraft or mini-UAV. A frequency-doubled Nd:YAG microchip laser generates 6 microjoule, subnanosecond pulses at fire rates up to 22 kHz. A Diffractive Optical Element (DOE) breaks the 532 nm beam into a 10x10 array of Gaussian beamlets, each containing about 1 mW of laser power (50 nJ @ 20 kHz). The reflected radiation in each beamlet is imaged by the receive optics onto individual pixels of a high efficiency, 10x10 pixel, multistop detector. Each pixel is then input to one channel of a 100 channel, multistop timer demonstrated to have a 93 picosecond timing (1.4 cm range) resolution and an event recovery time of only 1.6 nsec. Thus, each green laser pulse produces a 100 pixel volumetric 3D image. The residual infrared energy at 1064 nm is used for polarimetry. The scan pattern and frequency of a dual wedge optical scanner, synchronized to the laser fire rate, are tailored to provide contiguous coverage of a ground scene in a single overflight. In both rooftop and preliminary flight tests, the lidar has produced high spatial resolution 3D images of terrain, buildings, tree structures, power lines, and bridges with a data acquisition rate up to 2.2 million multistop 3D pixels per second. Current tests are aimed at defining the lidar's ability to image through water columns and tree canopies.

  13. Noise Reduction Techniques and Scaling Effects towards Photon Counting CMOS Image Sensors

    PubMed Central

    Boukhayma, Assim; Peizerat, Arnaud; Enz, Christian

    2016-01-01

    This paper presents an overview of the read noise in CMOS image sensors (CISs) based on four-transistors (4T) pixels, column-level amplification and correlated multiple sampling. Starting from the input-referred noise analytical formula, process level optimizations, device choices and circuit techniques at the pixel and column level of the readout chain are derived and discussed. The noise reduction techniques that can be implemented at the column and pixel level are verified by transient noise simulations, measurement and results from recently-published low noise CIS. We show how recently-reported process refinement, leading to the reduction of the sense node capacitance, can be combined with an optimal in-pixel source follower design to reach a sub-0.3erms- read noise at room temperature. This paper also discusses the impact of technology scaling on the CIS read noise. It shows how designers can take advantage of scaling and how the Metal-Oxide-Semiconductor (MOS) transistor gate leakage tunneling current appears as a challenging limitation. For this purpose, both simulation results of the gate leakage current and 1/f noise data reported from different foundries and technology nodes are used.

  14. Monochromatic X-ray photon counting using an energy-selecting device and its application to iodine imaging

    NASA Astrophysics Data System (ADS)

    Oda, Yasuyuki; Sato, Eiichi; Yamaguchi, Satoshi; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Watanabe, Manabu; Kusachi, Shinya

    2015-08-01

    Quasi-monochromatic photon counting was performed using a cadmium telluride detector and an energy-selecting device, consisting of two comparators and a microcomputer (MC). The two threshold energies are determined using low and high-energy comparators, respectively. The MC produces a single logical pulse when only a logical pulse from a low-energy comparator is input to the MC. Next, the MC never produces the pulse when two pulses from low and high-energy comparators are input to the MC, simultaneously. The logical pulses from the MC are input to a frequency-voltage converter (FVC) to convert count rates into voltages; the rate is proportional to the voltage. The output voltage from the FVC is sent to a personal computer through an analog-digital converter to reconstruct tomograms. The X-ray projection curves for tomography are obtained by repeated linear scans and rotations of the object at a tube voltage of 70 kV and a current of 12 μA. Iodine (I) K-edge CT was performed using contrast media and X-ray photons with a count rate of 2.2 kilocounts per second and energies ranging from 34 to 50 keV, since these photons with energies beyond I-K-edge energy 33.2 keV are absorbed effectively by I atoms.

  15. A Monte Carlo simulation study of the effect of energy windows in computed tomography images based on an energy-resolved photon counting detector

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Wan; Choi, Yu-Na; Cho, Hyo-Min; Lee, Young-Jin; Ryu, Hyun-Ju; Kim, Hee-Joung

    2012-08-01

    The energy-resolved photon counting detector provides the spectral information that can be used to generate images. The novel imaging methods, including the K-edge imaging, projection-based energy weighting imaging and image-based energy weighting imaging, are based on the energy-resolved photon counting detector and can be realized by using various energy windows or energy bins. The location and width of the energy windows or energy bins are important because these techniques generate an image using the spectral information defined by the energy windows or energy bins. In this study, the reconstructed images acquired with K-edge imaging, projection-based energy weighting imaging and image-based energy weighting imaging were simulated using the Monte Carlo simulation. The effect of energy windows or energy bins was investigated with respect to the contrast, coefficient-of-variation (COV) and contrast-to-noise ratio (CNR). The three images were compared with respect to the CNR. We modeled the x-ray computed tomography system based on the CdTe energy-resolved photon counting detector and polymethylmethacrylate phantom, which have iodine, gadolinium and blood. To acquire K-edge images, the lower energy thresholds were fixed at K-edge absorption energy of iodine and gadolinium and the energy window widths were increased from 1 to 25 bins. The energy weighting factors optimized for iodine, gadolinium and blood were calculated from 5, 10, 15, 19 and 33 energy bins. We assigned the calculated energy weighting factors to the images acquired at each energy bin. In K-edge images, the contrast and COV decreased, when the energy window width was increased. The CNR increased as a function of the energy window width and decreased above the specific energy window width. When the number of energy bins was increased from 5 to 15, the contrast increased in the projection-based energy weighting images. There is a little difference in the contrast, when the number of energy bin is

  16. Active pixel and photon counting imagers based on poly-Si TFTs: rewriting the rule book on large area flat panel x-ray devices

    NASA Astrophysics Data System (ADS)

    Antonuk, Larry E.; Koniczek, Martin; El-Mohri, Youcef; Zhao, Qihua

    2009-02-01

    The near-ubiquity of large area, active matrix, flat-panel imagers (AMFPIs) in medical x-ray imaging applications is a testament to the usefulness and adaptability of the relatively simple concept of array pixels based on a single amorphous silicon (a-Si:H) TFT coupled to a pixel storage capacitor. Interestingly, the fundamental advantages of a-Si:H thin film electronics (including compatibility with very large area processing, high radiation damage resistance, and continued development driven by interest in mainstream consumer products) are shared by the rapidly advancing technology of polycrystalline silicon (poly-Si) TFTs. Moreover, the far higher mobilities of poly-Si TFTs, compared to those of a- Si:H, facilitate the creation of faster and more complex circuits than are possible with a-Si:H TFTs, leading to the possibility of new classes of large area, flat panel imagers. Given recent progress in the development of initial poly-Si imager prototypes, the creation of increasingly sophisticated active pixel arrays offering pixel-level amplification, variable gain, very high frame rates, and excellent signal-to-noise performance under all fluoroscopic and radiographic conditions (including very low exposures and high spatial frequencies), appears within reach. In addition, it is conceivable that the properties of poly-Si TFTs could allow the development of large area imagers providing single xray photon counting capabilities. In this article, the factors driving the possible realization of clinically practical active pixel and photon counting imagers based on poly-Si TFTs are described and simple calculational estimates related to photon counting imagers are presented. Finally, the prospect for future development of such imagers is discussed.

  17. Enabling photon counting detectors with dynamic attenuators

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-03-01

    Photon-counting x-ray detectors (PCXDs) are being investigated as a replacement for conventional x-ray detectors because they promise several advantages, including better dose efficiency, higher resolution and spectral imaging. However, many of these advantages disappear when the x-ray flux incident on the detector is too high. We recently proposed a dynamic, piecewise-linear attenuator (or beam shaping filter) that can control the flux incident on the detector. This can restrict the operating range of the PCXD to keep the incident count rate below a given limit. We simulated a system with the piecewise-linear attenuator and a PCXD using raw data generated from forward projected DICOM files. We investigated the classic paralyzable and nonparalyzable PCXD as well as a weighted average of the two, with the weights chosen to mimic an existing PCXD (Taguchi et al, Med Phys 2011). The dynamic attenuator has small synergistic benefits with the nonparalyzable detector and large synergistic benefits with the paralyzable detector. Real PCXDs operate somewhere between these models, and the weighted average model still shows large benefits from the dynamic attenuator. We conclude that dynamic attenuators can reduce the count rate performance necessary for adopting PCXDs.

  18. Improved photon counting efficiency calibration using superconducting single photon detectors

    NASA Astrophysics Data System (ADS)

    Gan, Haiyong; Xu, Nan; Li, Jianwei; Sun, Ruoduan; Feng, Guojin; Wang, Yanfei; Ma, Chong; Lin, Yandong; Zhang, Labao; Kang, Lin; Chen, Jian; Wu, Peiheng

    2015-10-01

    The quantum efficiency of photon counters can be measured with standard uncertainty below 1% level using correlated photon pairs generated through spontaneous parametric down-conversion process. Normally a laser in UV, blue or green wavelength range with sufficient photon energy is applied to produce energy and momentum conserved photon pairs in two channels with desired wavelengths for calibration. One channel is used as the heralding trigger, and the other is used for the calibration of the detector under test. A superconducting nanowire single photon detector with advantages such as high photon counting speed (<20 MHz), low dark count rate (<50 counts per second), and wideband responsivity (UV to near infrared) is used as the trigger detector, enabling correlated photons calibration capabilities into shortwave visible range. For a 355nm single longitudinal mode pump laser, when a superconducting nanowire single photon detector is used as the trigger detector at 1064nm and 1560nm in the near infrared range, the photon counting efficiency calibration capabilities can be realized at 532nm and 460nm. The quantum efficiency measurement on photon counters such as photomultiplier tubes and avalanche photodiodes can be then further extended in a wide wavelength range (e.g. 400-1000nm) using a flat spectral photon flux source to meet the calibration demands in cutting edge low light applications such as time resolved fluorescence and nonlinear optical spectroscopy, super resolution microscopy, deep space observation, and so on.

  19. Detecting liquid threats with x-ray diffraction imaging (XDi) using a hybrid approach to navigate trade-offs between photon count statistics and spatial resolution

    NASA Astrophysics Data System (ADS)

    Skatter, Sondre; Fritsch, Sebastian; Schlomka, Jens-Peter

    2016-05-01

    The performance limits were explored for an X-ray Diffraction based explosives detection system for baggage scanning. This XDi system offers 4D imaging that comprises three spatial dimensions with voxel sizes in the order of ~(0.5cm)3, and one spectral dimension for material discrimination. Because only a very small number of photons are observed for an individual voxel, material discrimination cannot work reliably at the voxel level. Therefore, an initial 3D reconstruction is performed, which allows the identification of objects of interest. Combining all the measured photons that scattered within an object, more reliable spectra are determined on the object-level. As a case study we looked at two liquid materials, one threat and one innocuous, with very similar spectral characteristics, but with 15% difference in electron density. Simulations showed that Poisson statistics alone reduce the material discrimination performance to undesirable levels when the photon counts drop to 250. When additional, uncontrolled variation sources are considered, the photon count plays a less dominant role in detection performance, but limits the performance also for photon counts of 500 and higher. Experimental data confirmed the presence of such non-Poisson variation sources also in the XDi prototype system, which suggests that the present system can still be improved without necessarily increasing the photon flux, but by better controlling and accounting for these variation sources. When the classification algorithm was allowed to use spectral differences in the experimental data, the discrimination between the two materials improved significantly, proving the potential of X-ray diffraction also for liquid materials.

  20. Femtosecond Photon-Counting Receiver

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time-pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  1. Femtosecond Photon-Counting Receiver

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time/pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  2. Application of a charge-coupled device photon-counting technique to three-dimensional element analysis of a plant seed (alfalfa) using a full-field x-ray fluorescence imaging microscope

    SciTech Connect

    Hoshino, Masato; Ishino, Toyoaki; Namiki, Takashi; Yamada, Norimitsu; Watanabe, Norio; Aoki, Sadao

    2007-07-15

    A full-field x-ray fluorescence imaging microscope using a Wolter mirror was constructed at Photon Factory BL3C2. White x rays from a bending magnet were used to excite x-ray fluorescence and to enhance the x-ray fluorescence intensity. A photon-counting method using a charge-coupled device was applied to obtain an x-ray fluorescence spectrum at the image plane. The spatial distributions of some specific atoms such as Fe and Zn were obtained from photon-counting calculations. An energy resolution of 220 eV at the Fe K{alpha} line was obtained from the x-ray fluorescence spectrum by the photon-counting method. The newly developed three-dimensional element mappings of the specific atoms were accomplished by the photon-counting method and a reconstruction technique using computed tomography.

  3. A simulation study of high-resolution x-ray computed tomography imaging using irregular sampling with a photon-counting detector

    NASA Astrophysics Data System (ADS)

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2013-10-01

    The purpose of this study was to improve the spatial resolution for the x-ray computed tomography (CT) imaging with a photon-counting detector using an irregular sampling method. The geometric shift-model of detector was proposed to produce the irregular sampling pattern and increase the number of samplings in the radial direction. The conventional micro-x-ray CT system and the novel system with the geometric shift-model of detector were simulated using analytic and Monte Carlo simulations. The projections were reconstructed using filtered back-projection (FBP), algebraic reconstruction technique (ART), and total variation (TV) minimization algorithms, and the reconstructed images were compared in terms of normalized root-mean-square error (NRMSE), full-width at half-maximum (FWHM), and coefficient-of-variation (COV). The results showed that the image quality improved in the novel system with the geometric shift-model of detector, and the NRMSE, FWHM, and COV were lower for the images reconstructed using the TV minimization technique in the novel system with the geometric shift-model of detector. The irregular sampling method produced by the geometric shift-model of detector can improve the spatial resolution and reduce artifacts and noise for reconstructed images obtained from an x-ray CT system with a photon-counting detector.

  4. Photon-counting imaging camera for high-resolution X-ray and γ-ray applications

    NASA Astrophysics Data System (ADS)

    Hall, D. J.; Holland, A.

    2011-01-01

    Standard X-ray imaging techniques using CCDs require the integration of thousands of X-ray photons into a single image frame. Through the addition of a scintillating layer to the CCD it is possible to greatly increase the X-ray detection efficiency at high energies. Using standard imaging techniques with the inclusion of the scintillating layer does, however, leave serious limitations on the spatial resolution achievable due to the spreading of the light generated in the scintillator. The Electron-Multiplying CCD (EM-CCD) shares much of the common architecture of the standard CCD but for the inclusion of a supplementary readout register. This additional high-voltage register allows the signal electrons to be `multiplied' before reaching the readout node of the CCD, increasing the signal before any significant noise is introduced. The increase in the signal-to-noise ratio allows very low signals to be extracted above the noise floor, leading to the common use of EM-CCDs in night-vision and security applications. Through the coupling of a scintillator to an EM-CCD it is possible to resolve individual X-ray photon interactions in the scintillator above the noise floor. Without this extra gain these low signals would be lost beneath the noise floor. Using various centroiding techniques it is possible to locate the interaction position of the incident X-ray photon in the scintillator to the sub-pixel level, with measurements here at 59.5 keV giving an initial FWHM of the line spread function of 31μm. This high-resolution, hard X-ray imager has many potential applications in medical and biological imaging, where energy discrimination at a high resolution is desired. Further applications include synchrotron-based research, an area in which high-resolution imaging is essential.

  5. Cascaded systems analysis of photon counting detectors

    PubMed Central

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W.; Taguchi, K.; Lundqvist, M.; Fredenberg, E.; Carrino, J. A.; Siewerdsen, J. H.

    2014-01-01

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at

  6. Cascaded systems analysis of photon counting detectors

    SciTech Connect

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W.; Taguchi, K.; Carrino, J. A.; Lundqvist, M.; Fredenberg, E.; Siewerdsen, J. H.

    2014-10-15

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f{sub 50} (spatial

  7. Imaging performance comparison between a LaBr3: Ce scintillator based and a CdTe semiconductor based photon counting compact gamma camera.

    PubMed

    Russo, P; Mettivier, G; Pani, R; Pellegrini, R; Cinti, M N; Bennati, P

    2009-04-01

    The authors report on the performance of two small field of view, compact gamma cameras working in single photon counting in planar imaging tests at 122 and 140 keV. The first camera is based on a LaBr3: Ce scintillator continuous crystal (49 x 49 x 5 mm3) assembled with a flat panel multianode photomultiplier tube with parallel readout. The second one belongs to the class of semiconductor hybrid pixel detectors, specifically, a CdTe pixel detector (14 x 14 x 1 mm3) with 256 x 256 square pixels and a pitch of 55 microm, read out by a CMOS single photon counting integrated circuit of the Medipix2 series. The scintillation camera was operated with selectable energy window while the CdTe camera was operated with a single low-energy detection threshold of about 20 keV, i.e., without energy discrimination. The detectors were coupled to pinhole or parallel-hole high-resolution collimators. The evaluation of their overall performance in basic imaging tasks is presented through measurements of their detection efficiency, intrinsic spatial resolution, noise, image SNR, and contrast recovery. The scintillation and CdTe cameras showed, respectively, detection efficiencies at 122 keV of 83% and 45%, intrinsic spatial resolutions of 0.9 mm and 75 microm, and total background noises of 40.5 and 1.6 cps. Imaging tests with high-resolution parallel-hole and pinhole collimators are also reported. PMID:19472638

  8. Particle and Photon Detection: Counting and Energy Measurement

    PubMed Central

    Janesick, James; Tower, John

    2016-01-01

    Fundamental limits for photon counting and photon energy measurement are reviewed for CCD and CMOS imagers. The challenges to extend photon counting into the visible/nIR wavelengths and achieve energy measurement in the UV with specific read noise requirements are discussed. Pixel flicker and random telegraph noise sources are highlighted along with various methods used in reducing their contribution on the sensor’s read noise floor. Practical requirements for quantum efficiency, charge collection efficiency, and charge transfer efficiency that interfere with photon counting performance are discussed. Lastly we will review current efforts in reducing flicker noise head-on, in hopes to drive read noise substantially below 1 carrier rms. PMID:27187398

  9. High-speed multi-exposure laser speckle contrast imaging with a single-photon counting camera

    PubMed Central

    Dragojević, Tanja; Bronzi, Danilo; Varma, Hari M.; Valdes, Claudia P.; Castellvi, Clara; Villa, Federica; Tosi, Alberto; Justicia, Carles; Zappa, Franco; Durduran, Turgut

    2015-01-01

    Laser speckle contrast imaging (LSCI) has emerged as a valuable tool for cerebral blood flow (CBF) imaging. We present a multi-exposure laser speckle imaging (MESI) method which uses a high-frame rate acquisition with a negligible inter-frame dead time to mimic multiple exposures in a single-shot acquisition series. Our approach takes advantage of the noise-free readout and high-sensitivity of a complementary metal-oxide-semiconductor (CMOS) single-photon avalanche diode (SPAD) array to provide real-time speckle contrast measurement with high temporal resolution and accuracy. To demonstrate its feasibility, we provide comparisons between in vivo measurements with both the standard and the new approach performed on a mouse brain, in identical conditions. PMID:26309751

  10. Synchrotron beam test with a photon-counting pixel detector.

    PubMed

    Brönnimann, C; Florin, S; Lindner, M; Schmitt, B; Schulze-Briese, C

    2000-09-01

    Synchrotron beam measurements were performed with a single-photon-counting pixel detector to investigate the influence of threshold settings on charge sharing. Improvement of image homogeneity by adjusting the threshold of each pixel individually was demonstrated. With a flat-field correction, the homogeneity could be improved. A measurement of the point spread function is reported. PMID:16609212

  11. Size-dependent scanning parameters (kVp and mAs) for photon-counting spectral CT system in pediatric imaging: simulation study.

    PubMed

    Chen, Han; Danielsson, Mats; Xu, Cheng

    2016-06-01

    We are developing a photon-counting spectral CT detector with a small pixel size of [Formula: see text] mm(2), offering a potential advantage for better visualization of small structures in pediatric patients. The purpose of this study is to determine the patient size dependent scanning parameters (kVp and mAs) for pediatric CT in two imaging cases: adipose imaging and iodinated blood imaging. Cylindrical soft-tissue phantoms of diameters between 10-25 cm were used to mimic patients of different ages from 0 to 15 y. For adipose imaging, a 5 mm diameter adipose sphere was assumed as an imaging target, while in the case of iodinated imaging, an iodinated blood sphere of 1 mm in diameter was assumed. By applying the geometry of a commercial CT scanner (GE Lightspeed VCT), simulations were carried out to calculate the detectability index, [Formula: see text], with tube potentials varying from 40 to 140 kVp. The optimal kVp for each phantom in each imaging case was determined such that the dose-normalized detectability index, [Formula: see text]dose, is maximized. With the assumption that the detectability index in pediatric imaging is required the same as in typical adult imaging, the value of mAs at optimal kVp for each phantom was selected to achieve a reference detectability index that was obtained by scanning an adult phantom (30 cm in diameter) in a typical adult CT procedure (120 kVp and 200 mAs) using a modeled energy-integrating system. For adipose imaging, the optimal kVps are 50, 60, 80, and 120 kVp, respectively, for phantoms of 10, 15, 20, and 25 cm in diameter. The corresponding mAs values required to achieve the reference detectability index are only 9%, 23%, 24%, and 54% of the mAs that is used for adult patients at 120 kVp, for 10, 15, 20, and 25 cm diameter phantoms, respectively. In the case of iodinated imaging, a tube potential of 60 kVp was found optimal for all phantoms investigated, and the mAs values required to achieve the reference

  12. Size-dependent scanning parameters (kVp and mAs) for photon-counting spectral CT system in pediatric imaging: simulation study

    NASA Astrophysics Data System (ADS)

    Chen, Han; Danielsson, Mats; Xu, Cheng

    2016-06-01

    We are developing a photon-counting spectral CT detector with a small pixel size of 0.4× 0.5 mm2, offering a potential advantage for better visualization of small structures in pediatric patients. The purpose of this study is to determine the patient size dependent scanning parameters (kVp and mAs) for pediatric CT in two imaging cases: adipose imaging and iodinated blood imaging. Cylindrical soft-tissue phantoms of diameters between 10–25 cm were used to mimic patients of different ages from 0 to 15 y. For adipose imaging, a 5 mm diameter adipose sphere was assumed as an imaging target, while in the case of iodinated imaging, an iodinated blood sphere of 1 mm in diameter was assumed. By applying the geometry of a commercial CT scanner (GE Lightspeed VCT), simulations were carried out to calculate the detectability index, {{d}\\prime 2} , with tube potentials varying from 40 to 140 kVp. The optimal kVp for each phantom in each imaging case was determined such that the dose-normalized detectability index, {{d}\\prime 2}/ dose, is maximized. With the assumption that the detectability index in pediatric imaging is required the same as in typical adult imaging, the value of mAs at optimal kVp for each phantom was selected to achieve a reference detectability index that was obtained by scanning an adult phantom (30 cm in diameter) in a typical adult CT procedure (120 kVp and 200 mAs) using a modeled energy-integrating system. For adipose imaging, the optimal kVps are 50, 60, 80, and 120 kVp, respectively, for phantoms of 10, 15, 20, and 25 cm in diameter. The corresponding mAs values required to achieve the reference detectability index are only 9%, 23%, 24%, and 54% of the mAs that is used for adult patients at 120 kVp, for 10, 15, 20, and 25 cm diameter phantoms, respectively. In the case of iodinated imaging, a tube potential of 60 kVp was found optimal for all phantoms investigated, and the mAs values required to achieve the reference detectability

  13. Imaging performance comparison between a LaBr{sub 3}:Ce scintillator based and a CdTe semiconductor based photon counting compact gamma camera

    SciTech Connect

    Russo, P.; Mettivier, G.; Pani, R.; Pellegrini, R.; Cinti, M. N.; Bennati, P.

    2009-04-15

    The authors report on the performance of two small field of view, compact gamma cameras working in single photon counting in planar imaging tests at 122 and 140 keV. The first camera is based on a LaBr{sub 3}:Ce scintillator continuous crystal (49x49x5 mm{sup 3}) assembled with a flat panel multianode photomultiplier tube with parallel readout. The second one belongs to the class of semiconductor hybrid pixel detectors, specifically, a CdTe pixel detector (14x14x1 mm{sup 3}) with 256x256 square pixels and a pitch of 55 {mu}m, read out by a CMOS single photon counting integrated circuit of the Medipix2 series. The scintillation camera was operated with selectable energy window while the CdTe camera was operated with a single low-energy detection threshold of about 20 keV, i.e., without energy discrimination. The detectors were coupled to pinhole or parallel-hole high-resolution collimators. The evaluation of their overall performance in basic imaging tasks is presented through measurements of their detection efficiency, intrinsic spatial resolution, noise, image SNR, and contrast recovery. The scintillation and CdTe cameras showed, respectively, detection efficiencies at 122 keV of 83% and 45%, intrinsic spatial resolutions of 0.9 mm and 75 {mu}m, and total background noises of 40.5 and 1.6 cps. Imaging tests with high-resolution parallel-hole and pinhole collimators are also reported.

  14. Optimization of the K-edge imaging for vulnerable plaques using gold nanoparticles and energy-resolved photon counting detectors: a simulation study

    PubMed Central

    Alivov, Yahya; Baturin, Pavlo; Le, Huy Q.; Ducote, Justin; Molloi, Sabee

    2014-01-01

    We investigated the effect of different imaging parameters such as dose, beam energy, energy resolution, and number of energy bins on image quality of K-edge spectral computed tomography (CT) of gold nanoparticles (GNP) accumulated in an atherosclerotic plaque. Maximum likelihood technique was employed to estimate the concentration of GNP, which served as a targeted intravenous contrast material intended to detect the degree of plaque's inflammation. The simulations studies used a single slice parallel beam CT geometry with an X-ray beam energy ranging between 50 and 140 kVp. The synthetic phantoms included small (3 cm in diameter) cylinder and chest (33x24 cm2) phantom, where both phantoms contained tissue, calcium, and gold. In the simulation studies GNP quantification and background (calcium and tissue) suppression task were pursued. The X-ray detection sensor was represented by an energy resolved photon counting detector (e.g., CdZnTe) with adjustable energy bins. Both ideal and more realistic (12% FWHM energy resolution) implementations of photon counting detector were simulated. The simulations were performed for the CdZnTe detector with pixel pitch of 0.5-1 mm, which corresponds to the performance without significant charge sharing and cross-talk effects. The Rose model was employed to estimate the minimum detectable concentration of GNPs. A figure of merit (FOM) was used to optimize the X-ray beam energy (kVp) to achieve the highest signal-to-noise ratio (SNR) with respect to patient dose. As a result, the successful identification of gold and background suppression was demonstrated. The highest FOM was observed at 125 kVp X-ray beam energy. The minimum detectable GNP concentration was determined to be approximately 1.06 μmol/mL (0.21 mg/mL) for an ideal detector and about 2.5 μmol/mL (0.49 mg/mL) for more realistic (12% FWHM) detector. The studies show the optimal imaging parameters at lowest patient dose using an energy resolved photon counting detector

  15. Reducing radiation dose by application of optimized low-energy x-ray filters to K-edge imaging with a photon counting detector.

    PubMed

    Choi, Yu-Na; Lee, Seungwan; Kim, Hee-Joung

    2016-01-21

    K-edge imaging with photon counting x-ray detectors (PCXDs) can improve image quality compared with conventional energy integrating detectors. However, low-energy x-ray photons below the K-edge absorption energy of a target material do not contribute to image formation in the K-edge imaging and are likely to be completely absorbed by an object. In this study, we applied x-ray filters to the K-edge imaging with a PCXD based on cadmium zinc telluride for reducing radiation dose induced by low-energy x-ray photons. We used aluminum (Al) filters with different thicknesses as the low-energy x-ray filters and implemented the iodine K-edge imaging with an energy bin of 34-48 keV at the tube voltages of 50, 70 and 90 kVp. The effects of the low-energy x-ray filters on the K-edge imaging were investigated with respect to signal-difference-to-noise ratio (SDNR), entrance surface air kerma (ESAK) and figure of merit (FOM). The highest value of SDNR was observed in the K-edge imaging with a 2 mm Al filter, and the SDNR decreased as a function of the filter thicknesses. Compared to the K-edge imaging with a 2 mm Al filter, the ESAK was reduced by 66%, 48% and 39% in the K-edge imaging with a 12 mm Al filter for 50 kVp, 70 kVp and 90 kVp, respectively. The FOM values, which took into account the ESAK and SDNR, were maximized for 8, 6 to 8 and 4 mm Al filters at 50 kVp, 70 kVp and 90 kVp, respectively. We concluded that the use of an optimal low-energy filter thickness, which was determined by maximizing the FOM, could significantly reduce radiation dose while maintaining image quality in the K-edge imaging with the PCXD. PMID:26733235

  16. Reducing radiation dose by application of optimized low-energy x-ray filters to K-edge imaging with a photon counting detector

    NASA Astrophysics Data System (ADS)

    Choi, Yu-Na; Lee, Seungwan; Kim, Hee-Joung

    2016-01-01

    K-edge imaging with photon counting x-ray detectors (PCXDs) can improve image quality compared with conventional energy integrating detectors. However, low-energy x-ray photons below the K-edge absorption energy of a target material do not contribute to image formation in the K-edge imaging and are likely to be completely absorbed by an object. In this study, we applied x-ray filters to the K-edge imaging with a PCXD based on cadmium zinc telluride for reducing radiation dose induced by low-energy x-ray photons. We used aluminum (Al) filters with different thicknesses as the low-energy x-ray filters and implemented the iodine K-edge imaging with an energy bin of 34-48 keV at the tube voltages of 50, 70 and 90 kVp. The effects of the low-energy x-ray filters on the K-edge imaging were investigated with respect to signal-difference-to-noise ratio (SDNR), entrance surface air kerma (ESAK) and figure of merit (FOM). The highest value of SDNR was observed in the K-edge imaging with a 2 mm Al filter, and the SDNR decreased as a function of the filter thicknesses. Compared to the K-edge imaging with a 2 mm Al filter, the ESAK was reduced by 66%, 48% and 39% in the K-edge imaging with a 12 mm Al filter for 50 kVp, 70 kVp and 90 kVp, respectively. The FOM values, which took into account the ESAK and SDNR, were maximized for 8, 6 to 8 and 4 mm Al filters at 50 kVp, 70 kVp and 90 kVp, respectively. We concluded that the use of an optimal low-energy filter thickness, which was determined by maximizing the FOM, could significantly reduce radiation dose while maintaining image quality in the K-edge imaging with the PCXD.

  17. Co-phasing of a diluted aperture synthesis instrument for direct imaging. II. Experimental demonstration in the photon-counting regime with a temporal hypertelescope

    NASA Astrophysics Data System (ADS)

    Bouyeron, L.; Delage, L.; Baudoin, R.; Gomes, J. T.; Grossard, L.; Reynaud, F.

    2014-07-01

    Context. Amongst the new techniques currently developed for high-resolution and high-dynamics imaging, the hypertelescope architecture is very promising for direct imaging of objects such as exoplanets. The performance of this instrument strongly depends on the co-phasing process accuracy. In a previous high-flux experimental study with an eight-telescope array, we successfully implemented a co-phasing system based on the joint use of a genetic algorithm and a sub-aperture piston phase diversity using the object itself as a source for metrology. Aims: To fit the astronomical context, we investigate the impact of photon noise on the co-phasing performance operating our laboratory prototype at low flux. This study provides experimental results on the sensitivity and the dynamics that could be reached for real astrophysical observations. Methods: Simulations were carried out to optimize the critical parameters to be applied in the co-phasing system running in the photon-counting regime. We used these parameters experimentally to acquire images with our temporal hypertelescope test bench for different photon flux levels. A data reduction method allows highly contrasted images to be extracted. Results: The optical path differences have been servo-controlled over one hour with an accuracy of 22.0 nm and 15.7 nm for 200 and 500 photons/frame, respectively. The data reduction greatly improves the signal-to-noise ratio and allows us to experimentally obtain highly contrasted images. The related normalized point spread function is characterized by a 1.1 × 10-4 and 5.4 × 10-5 intensity standard deviation over the dark field (for 15 000 snapshots with 200 and 500 photons/frame, respectively). Conclusions: This laboratory experiment demonstrates the potential of our hypertelescope concept, which could be directly transposed to a space-based telescope array. Assuming eight telescopes with a 30 cm diameter, the I-band limiting magnitude of the main star would be 7.3, allowing

  18. Capacity approaching codes for photon counting receivers

    NASA Astrophysics Data System (ADS)

    Mondin, Marina; Daneshgaran, Fred; Bari, Inam; Delgado, Maria Teresa

    2012-10-01

    [1] a low-complexity photon-counting receiver has been presented, which may be employed for weak-energy optical communications and which is typically modeled through its equivalent Binary Symmetric Channel (BSC) model. In this paper we consider the scheme described in [1], we model it as a time varying Binary Input-Multiple Output (BIMO) channel and analyze its performance in presence of soft-metric based capacity approaching iteratively decoded error correcting codes, and in particular using soft-metric based Low Density Parity Check (LDPC) codes. To take full advantage of such detector, soft information is generated in the form of Log-Likelihood Ratios (LLRs), achieving reduction in Bit Error Rate (BER) and Frame Error Rate (FER) with respect to classical BSC and Additive White Gaussian Noise (AWGN) channel models. Furthermore, we explore the limits of the achievable performance gains when using photon counting detectors as compared to the case when such detectors are not available. To this end, we find the classical capacity of the considered BIMO channel, clearly showing the potential gains that photon counting detectors can provide in the context of a realistic cost-effective scheme from an implementation point of view. Furthermore, we show that from a channel modeling point of view, we can observe that the BIMO channel can be approximated with an AWGN channel for high values of mean photon count Nc, while the AWGN model offers an unreliable result with a low mean photon number Nc, (i.e. with low raw BER). This effect is more evident with lower coding rates.

  19. Photon Counting Using Edge-Detection Algorithm

    NASA Technical Reports Server (NTRS)

    Gin, Jonathan W.; Nguyen, Danh H.; Farr, William H.

    2010-01-01

    New applications such as high-datarate, photon-starved, free-space optical communications require photon counting at flux rates into gigaphoton-per-second regimes coupled with subnanosecond timing accuracy. Current single-photon detectors that are capable of handling such operating conditions are designed in an array format and produce output pulses that span multiple sample times. In order to discern one pulse from another and not to overcount the number of incoming photons, a detection algorithm must be applied to the sampled detector output pulses. As flux rates increase, the ability to implement such a detection algorithm becomes difficult within a digital processor that may reside within a field-programmable gate array (FPGA). Systems have been developed and implemented to both characterize gigahertz bandwidth single-photon detectors, as well as process photon count signals at rates into gigaphotons per second in order to implement communications links at SCPPM (serial concatenated pulse position modulation) encoded data rates exceeding 100 megabits per second with efficiencies greater than two bits per detected photon. A hardware edge-detection algorithm and corresponding signal combining and deserialization hardware were developed to meet these requirements at sample rates up to 10 GHz. The photon discriminator deserializer hardware board accepts four inputs, which allows for the ability to take inputs from a quadphoton counting detector, to support requirements for optical tracking with a reduced number of hardware components. The four inputs are hardware leading-edge detected independently. After leading-edge detection, the resultant samples are ORed together prior to deserialization. The deserialization is performed to reduce the rate at which data is passed to a digital signal processor, perhaps residing within an FPGA. The hardware implements four separate analog inputs that are connected through RF connectors. Each analog input is fed to a high-speed 1

  20. The non-linearity of the ESA Photon Counting Detector

    NASA Astrophysics Data System (ADS)

    Llebaria, A.; Nieto, J.-L.; di Serego Alighieri, S.

    1986-11-01

    The time-resolved imaging mode (TRIM) suggested by di Serego Alighieri and Perryman (1986), in which photons are recorded separately on each television camera frame, was used to analyze the data obtained in 1984 on the nucleus of M31 with the ESA Photon Counting Detector (PCD) on the Canada-France-Hawaii telescope. Through the examination of the TRIM data, it was possible to detect nonlinearity in the response of the ESA PCD, which is interpreted as being due to phosphorescence in the intensifier. A quantitative measurement of this effect is shown. It is argued that if the interpretation is correct, the same kind of nonlinearity should be found in all photon counting detectors with phosphor screen. The amount of the nonlinearity is presumably higher in detectors with lower thresholds.

  1. All-digital full waveform recording photon counting flash lidar

    NASA Astrophysics Data System (ADS)

    Grund, Christian J.; Harwit, Alex

    2010-08-01

    Current generation analog and photon counting flash lidar approaches suffer from limitation in waveform depth, dynamic range, sensitivity, false alarm rates, optical acceptance angle (f/#), optical and electronic cross talk, and pixel density. To address these issues Ball Aerospace is developing a new approach to flash lidar that employs direct coupling of a photocathode and microchannel plate front end to a high-speed, pipelined, all-digital Read Out Integrated Circuit (ROIC) to achieve photon-counting temporal waveform capture in each pixel on each laser return pulse. A unique characteristic is the absence of performance-limiting analog or mixed signal components. When implemented in 65nm CMOS technology, the Ball Intensified Imaging Photon Counting (I2PC) flash lidar FPA technology can record up to 300 photon arrivals in each pixel with 100 ps resolution on each photon return, with up to 6000 range bins in each pixel. The architecture supports near 100% fill factor and fast optical system designs (f/#<1), and array sizes to 3000×3000 pixels. Compared to existing technologies, >60 dB ultimate dynamic range improvement, and >104 reductions in false alarm rates are anticipated, while achieving single photon range precision better than 1cm. I2PC significantly extends long-range and low-power hard target imaging capabilities useful for autonomous hazard avoidance (ALHAT), navigation, imaging vibrometry, and inspection applications, and enables scannerless 3D imaging for distributed target applications such as range-resolved atmospheric remote sensing, vegetation canopies, and camouflage penetration from terrestrial, airborne, GEO, and LEO platforms. We discuss the I2PC architecture, development status, anticipated performance advantages, and limitations.

  2. Deep UV photon-counting detectors and applications

    NASA Astrophysics Data System (ADS)

    Shaw, Gary A.; Siegel, Andrew M.; Model, Joshua; Geboff, Adam; Soloviev, Stanislav; Vert, Alexey; Sandvik, Peter

    2009-05-01

    Photon counting detectors are used in many diverse applications and are well-suited to situations in which a weak signal is present in a relatively benign background. Examples of successful system applications of photon-counting detectors include ladar, bio-aerosol detection, communication, and low-light imaging. A variety of practical photon-counting detectors have been developed employing materials and technologies that cover the waveband from deep ultraviolet (UV) to the near-infrared. However, until recently, photoemissive detectors (photomultiplier tubes (PMTs) and their variants) were the only viable technology for photon-counting in the deep UV region of the spectrum. While PMTs exhibit extremely low dark count rates and large active area, they have other characteristics which make them unsuitable for certain applications. The characteristics and performance limitations of PMTs that prevent their use in some applications include bandwidth limitations, high bias voltages, sensitivity to magnetic fields, low quantum efficiency, large volume and high cost. Recently, DARPA has initiated a program called Deep UV Avalanche Photodiode (DUVAP) to develop semiconductor alternatives to PMTs for use in the deep UV. The higher quantum efficiency of Geiger-mode avalanche photodiode (GM-APD) detectors and the ability to fabricate arrays of individually-addressable detectors will open up new applications in the deep UV. In this paper, we discuss the system design trades that must be considered in order to successfully replace low-dark count, large-area PMTs with high-dark count, small-area GM-APD detectors. We also discuss applications that will be enabled by the successful development of deep UV GM-APD arrays, and we present preliminary performance data for recently fabricated silicon carbide GM-APD arrays.

  3. A Monte Carlo simulation study of an improved K-edge log-subtraction X-ray imaging using a photon counting CdTe detector

    NASA Astrophysics Data System (ADS)

    Lee, Youngjin; Lee, Amy Candy; Kim, Hee-Joung

    2016-09-01

    Recently, significant effort has been spent on the development of photons counting detector (PCD) based on a CdTe for applications in X-ray imaging system. The motivation of developing PCDs is higher image quality. Especially, the K-edge subtraction (KES) imaging technique using a PCD is able to improve image quality and useful for increasing the contrast resolution of a target material by utilizing contrast agent. Based on above-mentioned technique, we presented an idea for an improved K-edge log-subtraction (KELS) imaging technique. The KELS imaging technique based on the PCDs can be realized by using different subtraction energy width of the energy window. In this study, the effects of the KELS imaging technique and subtraction energy width of the energy window was investigated with respect to the contrast, standard deviation, and CNR with a Monte Carlo simulation. We simulated the PCD X-ray imaging system based on a CdTe and polymethylmethacrylate (PMMA) phantom which consists of the various iodine contrast agents. To acquired KELS images, images of the phantom using above and below the iodine contrast agent K-edge absorption energy (33.2 keV) have been acquired at different energy range. According to the results, the contrast and standard deviation were decreased, when subtraction energy width of the energy window is increased. Also, the CNR using a KELS imaging technique is higher than that of the images acquired by using whole energy range. Especially, the maximum differences of CNR between whole energy range and KELS images using a 1, 2, and 3 mm diameter iodine contrast agent were acquired 11.33, 8.73, and 8.29 times, respectively. Additionally, the optimum subtraction energy width of the energy window can be acquired at 5, 4, and 3 keV for the 1, 2, and 3 mm diameter iodine contrast agent, respectively. In conclusion, we successfully established an improved KELS imaging technique and optimized subtraction energy width of the energy window, and based on

  4. Phase unwrapping in spectral X-ray differential phase-contrast imaging with an energy-resolving photon-counting pixel detector.

    PubMed

    Epple, Franz M; Ehn, Sebastian; Thibault, Pierre; Koehler, Thomas; Potdevin, Guillaume; Herzen, Julia; Pennicard, David; Graafsma, Heinz; Noël, Peter B; Pfeiffer, Franz

    2015-03-01

    Grating-based differential phase-contrast imaging has proven to be feasible with conventional X-ray sources. The polychromatic spectrum generally limits the performance of the interferometer but benefit can be gained with an energy-sensitive detector. In the presented work, we employ the energy-discrimination capability to correct for phase-wrapping artefacts. We propose to use the phase shifts, which are measured in distinct energy bins, to estimate the optimal phase shift in the sense of maximum likelihood. We demonstrate that our method is able to correct for phase-wrapping artefacts, to improve the contrast-to-noise ratio and to reduce beam hardening due to the modelled energy dependency. The method is evaluated on experimental data which are measured with a laboratory Talbot-Lau interferometer equipped with a conventional polychromatic X-ray source and an energy-sensitive photon-counting pixel detector. Our work shows, that spectral imaging is an important step to move differential phase-contrast imaging closer to pre-clinical and clinical applications, where phase wrapping is particularly problematic. PMID:25163054

  5. Investigation of a photon counting avalanche photodiode from Hamamatsu photonics

    NASA Astrophysics Data System (ADS)

    Britvitch, I.; Musienko, Y.; Renker, D.

    2006-11-01

    Multi-cell avalanche photodiodes (APDs) operating in Geiger mode have been shown to be a very promising alternative to photomultiplier tubes for the detection of single photons at room temperature. Like a photomultiplier they have high gain and a fast rise time and they are insensitive to pickup. Beyond it they operate in high magnetic fields, are compact and need a relatively low bias voltage. It is expected that the MOS production technique makes them cheap. Recently PSI and Hamamatsu Photonics worked together for the development of a radiation-hard APD for CMS ECAL and had very good success. The development continued based on a similar design for a photon counting multielement Geiger-mode APD with an area of 1×1 mm 2. The properties of this device have been measured and will be reported.

  6. Ultrafast photon counting applied to resonant scanning STED microscopy.

    PubMed

    Wu, Xundong; Toro, Ligia; Stefani, Enrico; Wu, Yong

    2015-01-01

    To take full advantage of fast resonant scanning in super-resolution stimulated emission depletion (STED) microscopy, we have developed an ultrafast photon counting system based on a multigiga sample per second analogue-to-digital conversion chip that delivers an unprecedented 450 MHz pixel clock (2.2 ns pixel dwell time in each scan). The system achieves a large field of view (∼50 × 50 μm) with fast scanning that reduces photobleaching, and advances the time-gated continuous wave STED technology to the usage of resonant scanning with hardware-based time-gating. The assembled system provides superb signal-to-noise ratio and highly linear quantification of light that result in superior image quality. Also, the system design allows great flexibility in processing photon signals to further improve the dynamic range. In conclusion, we have constructed a frontier photon counting image acquisition system with ultrafast readout rate, excellent counting linearity, and with the capacity of realizing resonant-scanning continuous wave STED microscopy with online time-gated detection. PMID:25227160

  7. Ultrafast Photon Counting Applied to Resonant Scanning STED Microscopy

    PubMed Central

    Wu, Xundong; Toro, Ligia; Stefani, Enrico; Wu, Yong

    2014-01-01

    Summary To take full advantage of fast resonant scanning in super-resolution STimulated Emission Depletion (STED) microscopy, we have developed an ultrafast photon counting system based on a multi-giga-sample per second analog-to-digital conversion (ADC) chip that delivers an unprecedented 450 MHz pixel clock (2.2 ns pixel dwell time in each scan). The system achieves a large field of view (~50 × 50 μm) with fast scanning that reduces photobleaching, and advances the time-gated continuous wave (CW) STED technology to the usage of resonant scanning with hardware based time-gating. The assembled system provides superb signal-to-noise ratio and highly linear quantification of light that result in superior image quality. Also, the system design allows great flexibility in processing photon signals to further improve the dynamic range. In conclusion, we have constructed a frontier photon counting image acquisition system with ultrafast readout rate, excellent counting linearity, and with the capacity of realizing resonant-scanning CW-STED microscopy with on-line time-gated detection. PMID:25227160

  8. Jigsaw phase III: a miniaturized airborne 3-D imaging laser radar with photon-counting sensitivity for foliage penetration

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, Mohan; Blask, Steven; Higgins, Thomas; Clifton, William; Davidsohn, Daniel; Carson, Ryan; Reynolds, Van; Pfannenstiel, Joanne; Cannata, Richard; Marino, Richard; Drover, John; Hatch, Robert; Schue, David; Freehart, Robert; Rowe, Greg; Mooney, James; Hart, Carl; Stanley, Byron; McLaughlin, Joseph; Lee, Eui-In; Berenholtz, Jack; Aull, Brian; Zayhowski, John; Vasile, Alex; Ramaswami, Prem; Ingersoll, Kevin; Amoruso, Thomas; Khan, Imran; Davis, William; Heinrichs, Richard

    2007-04-01

    Jigsaw three-dimensional (3D) imaging laser radar is a compact, light-weight system for imaging highly obscured targets through dense foliage semi-autonomously from an unmanned aircraft. The Jigsaw system uses a gimbaled sensor operating in a spot light mode to laser illuminate a cued target, and autonomously capture and produce the 3D image of hidden targets under trees at high 3D voxel resolution. With our MIT Lincoln Laboratory team members, the sensor system has been integrated into a geo-referenced 12-inch gimbal, and used in airborne data collections from a UH-1 manned helicopter, which served as a surrogate platform for the purpose of data collection and system validation. In this paper, we discuss the results from the ground integration and testing of the system, and the results from UH-1 flight data collections. We also discuss the performance results of the system obtained using ladar calibration targets.

  9. PIXIE III: a very large area photon-counting CMOS pixel ASIC for sharp X-ray spectral imaging

    NASA Astrophysics Data System (ADS)

    Bellazzini, R.; Brez, A.; Spandre, G.; Minuti, M.; Pinchera, M.; Delogu, P.; de Ruvo, P. L.; Vincenzi, A.

    2015-01-01

    PIXIE III is the third generation of very large area (32 × 25 mm2) pixel ASICs developed by Pixirad Imaging Counters s.r.l. to be used in combination with suitable X-ray sensor materials (Silicon, CdTe, GaAs) in hybrid assemblies using flip-chip bonding. A Pixirad unit module based on PIXIE III shows several advances compared to what has been available up to now. It has a very broad energy range (from 2 to 100 keV before full pulse saturation), high speed (100 ns peaking time), high frame rate (larger than 500 fps), dead-time-free operation, good energy resolution (around 2 keV at 20 keV), high photo-peak fraction and sharp spectral separation between the color images. In this paper the results obtained with PIXIE III both in a test bench set-up as well in X-ray imaging applications are discussed.

  10. Dark-count-less photon-counting x-ray computed tomography system using a YAP-MPPC detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Sato, Yuich; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2012-10-01

    A high-sensitive X-ray computed tomography (CT) system is useful for decreasing absorbed dose for patients, and a dark-count-less photon-counting CT system was developed. X-ray photons are detected using a YAP(Ce) [cerium-doped yttrium aluminum perovskite] single crystal scintillator and an MPPC (multipixel photon counter). Photocurrents are amplified by a high-speed current-voltage amplifier, and smooth event pulses from an integrator are sent to a high-speed comparator. Then, logical pulses are produced from the comparator and are counted by a counter card. Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The image contrast of gadolinium medium slightly fell with increase in lower-level voltage (Vl) of the comparator. The dark count rate was 0 cps, and the count rate for the CT was approximately 250 kcps.

  11. Low noise imaging photon counter for astronomy

    NASA Technical Reports Server (NTRS)

    Mertz, L.; Tarbell, T. D.; Title, A.

    1982-01-01

    The characteristics and performance of a Ranicon photon-counting system combined with digital tape recording are described. The most important features are a bialkali photocathode response over 256 X 256 digital pixels, with approximately 100 X 100 resolvable pixels at 50% MTF, a dead time of 16 microsec/count, a maximum recordable count rate of 14,400/sec, and a background of less than 1 count/digital pixel/h. A video cassette recorder serves for the digital recording which retains the temporal sequence of the registered photons. Astronomical applications will include low light level quantitative imaging and speckle imaging.

  12. Algol - CPNG: photon counting cameras for interferometry in visible wavelengths

    NASA Astrophysics Data System (ADS)

    Blazit, A.; Thiébaut, E.; Vakili, F.; Abe, L.; Spang, A.; Clausse, J.-M.; Mourard, D.; Foy, R.; Rondeau, X.

    Images in visible interferometry are characterised by their low coherence time, and except for brightest stars, the flux on the detector is much less than one photon per pixel per image. Algol and Comptage de Photons Nouvelle Génération (CPNG) are new photon counting cameras developed for high angular resolution in the visible. They are intensified CCDs built to benefit from improvements in photonic commercial components, and personal computer processing power. We present how we achieve optimal performances (sensitivity and spatiotemporal resolution) by the combination of proper optical and electronics design, and real-time elaborated data processing. The number of pixels is 532× 516 and 768× 640 read at a frame rate of 262 Hz and 50 Hz for CPNG and Algol respectively. The dark current is very low: 5×10-4 electron.pixel-1.s-1. Quantum efficiencies reach up to 36% in the visible with the GaAsP photocathodes and and 26% in the red with the GaAs ones, thanks to the sensitivity of the photocathodes and to the photon centroiding algorithm; they are likely the highest values reported for ICCDs.

  13. A high-resolution photon-counting breast CT system with tensor-framelet based iterative image reconstruction for radiation dose reduction

    NASA Astrophysics Data System (ADS)

    Ding, Huanjun; Gao, Hao; Zhao, Bo; Cho, Hyo-Min; Molloi, Sabee

    2014-10-01

    Both computer simulations and experimental phantom studies were carried out to investigate the radiation dose reduction with tensor framelet based iterative image reconstruction (TFIR) for a dedicated high-resolution spectral breast computed tomography (CT) based on a silicon strip photon-counting detector. The simulation was performed with a 10 cm-diameter water phantom including three contrast materials (polyethylene, 8 mg ml-1 iodine and B-100 bone-equivalent plastic). In the experimental study, the data were acquired with a 1.3 cm-diameter polymethylmethacrylate (PMMA) phantom containing iodine in three concentrations (8, 16 and 32 mg ml-1) at various radiation doses (1.2, 2.4 and 3.6 mGy) and then CT images were reconstructed using the filtered-back-projection (FBP) technique and the TFIR technique, respectively. The image quality between these two techniques was evaluated by the quantitative analysis on contrast-to-noise ratio (CNR) and spatial resolution that was evaluated using the task-based modulation transfer function (MTF). Both the simulation and experimental results indicated that the task-based MTF obtained from TFIR reconstruction with one-third of the radiation dose was comparable to that from the FBP reconstruction for low contrast target. For high contrast target, the TFIR was substantially superior to the FBP reconstruction in terms of spatial resolution. In addition, TFIR was able to achieve a factor of 1.6-1.8 increase in CNR, depending on the target contrast level. This study demonstrates that the TFIR can reduce the required radiation dose by a factor of two-thirds for a CT image reconstruction compared to the FBP technique. It achieves much better CNR and spatial resolution for high contrast target in addition to retaining similar spatial resolution for low contrast target. This TFIR technique has been implemented with a graphic processing unit system and it takes approximately 10 s to reconstruct a single-slice CT image

  14. A high-resolution photon-counting breast CT system with tensor-framelet based iterative image reconstruction for radiation dose reduction.

    PubMed

    Ding, Huanjun; Gao, Hao; Zhao, Bo; Cho, Hyo-Min; Molloi, Sabee

    2014-10-21

    Both computer simulations and experimental phantom studies were carried out to investigate the radiation dose reduction with tensor framelet based iterative image reconstruction (TFIR) for a dedicated high-resolution spectral breast computed tomography (CT) based on a silicon strip photon-counting detector. The simulation was performed with a 10 cm-diameter water phantom including three contrast materials (polyethylene, 8 mg ml(-1) iodine and B-100 bone-equivalent plastic). In the experimental study, the data were acquired with a 1.3 cm-diameter polymethylmethacrylate (PMMA) phantom containing iodine in three concentrations (8, 16 and 32 mg ml(-1)) at various radiation doses (1.2, 2.4 and 3.6 mGy) and then CT images were reconstructed using the filtered-back-projection (FBP) technique and the TFIR technique, respectively. The image quality between these two techniques was evaluated by the quantitative analysis on contrast-to-noise ratio (CNR) and spatial resolution that was evaluated using the task-based modulation transfer function (MTF). Both the simulation and experimental results indicated that the task-based MTF obtained from TFIR reconstruction with one-third of the radiation dose was comparable to that from the FBP reconstruction for low contrast target. For high contrast target, the TFIR was substantially superior to the FBP reconstruction in terms of spatial resolution. In addition, TFIR was able to achieve a factor of 1.6-1.8 increase in CNR, depending on the target contrast level. This study demonstrates that the TFIR can reduce the required radiation dose by a factor of two-thirds for a CT image reconstruction compared to the FBP technique. It achieves much better CNR and spatial resolution for high contrast target in addition to retaining similar spatial resolution for low contrast target. This TFIR technique has been implemented with a graphic processing unit system and it takes approximately 10 s to reconstruct a single-slice CT image

  15. Photon counting modules using RCA silicon avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Lightstone, Alexander W.; Macgregor, Andrew D.; Macsween, Darlene E.; Mcintyre, Robert J.; Trottier, Claude; Webb, Paul P.

    1989-01-01

    Avalanche photodiodes (APD) are excellent small area, solid state detectors for photon counting. Performance possibilities include: photon detection efficiency in excess of 50 percent; wavelength response from 400 to 1000 nm; count rate to 10 (exp 7) counts per sec; afterpulsing at negligible levels; timing resolution better than 1 ns. Unfortunately, these performance levels are not simultaneously available in a single detector amplifier configuration. By considering theoretical performance predictions and previous and new measurements of APD performance, the anticipated performance of a range of proposed APD-based photon counting modules is derived.

  16. Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.

    2009-01-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  17. The LAMBDA photon-counting pixel detector

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Lange, S.; Smoljanin, S.; Hirsemann, H.; Graafsma, H.; Epple, M.; Zuvic, M.; Lampert, M.-O.; Fritzsch, T.; Rothermund, M.

    2013-03-01

    The Medipix3 photon-counting detector chip has a number of novel features that are attractive for synchrotron experiments, such as a high frame rate with zero dead time and high spatial resolution. DESY are developing a large-area Medipix3-based detector array (LAMBDA). A single LAMBDA module consists of 2 by 6 Medipix3 chips on a ceramic carrier board, bonded to either a single large silicon sensor or two smaller high-Z sensors. The readout system fits behind the carrier board to allow module tiling, and uses a large on-board RAM and multiple 10 Gigabit Ethernet links to permit high-speed readout. Currently, the first large silicon modules have been constructed and read out at low speed, and the firmware for highspeed readout is being developed. In addition to these silicon sensors, we are developing a germanium hybrid pixel detector in collaboration with Canberra for higher-energy beamlines. Canberra have produced a set of 256-by-256-pixel planar germanium sensors with 55μm pitch, and these are currently being bonded to Medipix3 readout chips by Fraunhofer IZM (Berlin).

  18. Single photon counting pixel detectors for synchrotron radiation experiments

    NASA Astrophysics Data System (ADS)

    Toyokawa, H.; Broennimann, Ch.; Eikenberry, E. F.; Henrich, B.; Kawase, M.; Kobas, M.; Kraft, P.; Sato, M.; Schmitt, B.; Suzuki, M.; Tanida, H.; Uruga, T.

    2010-11-01

    At the Paul Scherrer Institute PSI an X-ray single photon counting pixel detector (PILATUS) based on the hybrid-pixel detector technology was developed in collaboration with SPring-8. The detection element is a 320 or 450 μm thick silicon sensor forming pixelated pn-diodes with a pitch of 172 μm×172 μm. An array of 2×8 custom CMOS readout chips are indium bump-bonded to the sensor, which leads to 33.5 mm×83.8 mm detective area. Each pixel contains a charge-sensitive amplifier, a single level discriminator and a 20 bit counter. This design realizes a high dynamic range, short readout time of less than 3 ms, a high framing rate of over 200 images per second and an excellent point-spread function. The maximum counting rate achieves more than 2×10 6 X-rays/s/pixel.

  19. A photon-counting multichannel spectrometer. [for astronomical optical spectroscopy

    NASA Technical Reports Server (NTRS)

    Shectman, S. A.; Hiltner, W. A.

    1977-01-01

    A multichannel detector system is described in which the positions of individual photon events in a high-gain image intensifier are decoded in the output of a video detector. The high-gain intensifier consists of a pair of three-stage electrostatic image-tube assemblies each containing three fiber-optically-coupled tubes potted in a rugged package with an internal high-voltage supply. Operation of the electrooptical system is discussed along with the pulse-detection process and the operation of the spectrograph in which the image-tube assembly is mounted. It is noted that the spectrometer detects 1.0 count/sec per A for an object of magnitude 13.0 at the peak of its response in the visual band when no light is lost on the slit, that a 10% coincidence correction is reached at an overall count rate of 860 per sec, and that the response follows an exponential law up to count rates of about 4000 per sec. The measured spectrum of the Seyfert galaxy NGC 5548 is provided as an example of the raw data produced by the instrument on a 1.5 meter telescope.

  20. Mean and variance of single photon counting with deadtime

    NASA Astrophysics Data System (ADS)

    Yu, Daniel F.; Fessler, Jeffrey A.

    2000-07-01

    The statistics of photon counting by systems affected by deadtime are potentially important for statistical image reconstruction methods. We present a new way of analysing the moments of the counting process for a counter system affected by various models of deadtime related to PET and SPECT imaging. We derive simple and exact expressions for the first and second moments of the number of recorded events under various models. From our mean expression for a SPECT deadtime model, we derive a simple estimator for the actual intensity of the underlying Poisson process; simulations show that our estimator is unbiased even for extremely high count rates. From this analysis, we study the suitability of the Poisson statistical model assumed in most statistical image reconstruction algorithms. For systems containing `modules' with several detector elements, where each element can cause deadtime losses for the entire module, such as block PET detectors or Anger cameras, the Poisson statistical model appears to be adequate even in the presence of deadtime losses.

  1. Maturing CCD photon-counting technology for space flight

    NASA Astrophysics Data System (ADS)

    Mallik, Udayan; Lyon, Richard; Petrone, Peter; McElwain, Michael; Benford, Dominic; Clampin, Mark; HIcks, Brian

    2015-09-01

    This paper discusses charge blooming and starlight saturation - two potential technical problems - when using an Electron Multiplying Charge Coupled Device (EMCCD) type detector in a high-contrast instrument for imaging exoplanets. These problems especially affect an interferometric type coronagraph - coronagraphs that do not use a mask to physically block starlight in the science channel of the instrument. These problems are presented using images taken with a commercial Princeton Instrument EMCCD camera in the Goddard Space Flight Center's (GSFC), Interferometric Coronagraph facility. In addition, this paper discusses techniques to overcome such problems. This paper also discusses the development and architecture of a Field Programmable Gate Array and Digital-to-Analog Converter based shaped clock controller for a photon-counting EMCCD camera. The discussion contained here will inform high-contrast imaging groups in their work with EMCCD detectors.

  2. Laser ranging and mapping with a photon-counting detector.

    PubMed

    Priedhorsky, W C; Smith, R C; Ho, C

    1996-01-20

    We propose a new technique for remote sensing: photon-counting laser mapping. MicroChannel plate detectors with a crossed delay-line (MCP/CDL) readout combine high position accuracy and subnanosecond photon timing, at event rates of 10(6) detected photons per second and more. A mapping system would combine an MCP/CDL detector with a fast-pulse, high-repetition-rate laser illuminator. The system would map solid targets with exceptional in-range and cross-range resolution. The resulting images would be intrinsically three dimensional, without resorting to multiple viewing angles, so that objects of identical albedo could be discriminated. For a detector time resolution and pulse width of the order of 10(-10) s, the in-range resolution would be a few centimeters, permitting the discrimination of surfaces by their textures. Images could be taken at night, at illumination levels up to full moonlight, from ground, airborne, or space platforms. We discuss signal to noise as a function of laser flux and background level and present simulated images. PMID:21069029

  3. Providing reference standards and metrology for the few photon-photon counting community

    NASA Astrophysics Data System (ADS)

    Beaumont, Andrew R.; Cheung, Jessica Y.; Chunnilall, Christopher J.; Ireland, Jane; White, Malcolm G.

    2009-10-01

    The main drivers for developing few-photon metrological techniques are the rapidly progressing field of quantum information processing, which requires the development of high-efficiency photon-counting detectors, and the wider use of photon-counting technology in biology, medical physics and nuclear physics. This paper will focus on the provision of standards for the few photon community and the development of techniques for the characterisation of photon-counting detectors. At the high-power end, microwatts, we are developing a low-power absolute radiometer as a primary standard that will be used to provide traceability over a much broader spectral range. At the few photon-photon-counting level we are developing a conventional calibration technique, which is traceable to the primary standard through a reference trap detector. This method can be used in both analogue and photon-counting modes and provides a convenient route for providing customer calibration at few-photon levels across the optical spectrum. At the photon-counting/single-photon level we are developing a technique based on correlated photons. These are produced via parametric downconversion and can be used to measure directly the detection efficiency of photon-counting detectors. A cross-validation of the correlated photon and conventional technique is reported. Finally we discuss this work in the context of an EU project, that is aimed at establishing the route towards the re-definition of the candela, the SI unit for optical radiation.

  4. Avalanche photodiode photon counting receivers for space-borne lidars

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic M.

    1991-01-01

    Avalanche photodiodes (APD) are studied for uses as photon counting detectors in spaceborne lidars. Non-breakdown APD photon counters, in which the APD's are biased below the breakdown point, are shown to outperform: (1) conventional APD photon counters biased above the breakdown point; (2) conventional APD photon counters biased above the breakdown point; and (3) APD's in analog mode when the received optical signal is extremely weak. Non-breakdown APD photon counters were shown experimentally to achieve an effective photon counting quantum efficiency of 5.0 percent at lambda = 820 nm with a dead time of 15 ns and a dark count rate of 7000/s which agreed with the theoretically predicted values. The interarrival times of the counts followed an exponential distribution and the counting statistics appeared to follow a Poisson distribution with no after pulsing. It is predicted that the effective photon counting quantum efficiency can be improved to 18.7 percent at lambda = 820 nm and 1.46 percent at lambda = 1060 nm with a dead time of a few nanoseconds by using more advanced commercially available electronic components.

  5. A microcontroller-based failsafe for single photon counting modules

    NASA Astrophysics Data System (ADS)

    Gordon, Matthew P.; Selvin, Paul R.

    2003-02-01

    Avalanche photodiode-based single photon counting modules (SPCMs) can be damaged by exposure to excessive light levels. A flexible and inexpensive failsafe is presented which has been shown to protect SPCMs from light levels far exceeding the damage threshold.

  6. A flat-field correction method for photon-counting-detector-based micro-CT

    NASA Astrophysics Data System (ADS)

    Park, So E.; Kim, Jae G.; Hegazy, M. A. A.; Cho, Min H.; Lee, Soo Y.

    2014-03-01

    As low-dose computed tomography becomes a hot issue in the field of clinical x-ray imaging, photon counting detectors have drawn great attention as alternative x-ray image sensors. Even though photon-counting image sensors have several advantages over the integration-type sensors, such as low noise and high DQE, they are known to be more sensitive to the various experimental conditions like temperature and electric drift. Particularly, time-varying detector response during the CT scan is troublesome in photon-counting-detector-based CTs. To overcome the time-varying behavior of the image sensor during the CT scan, we developed a flat-field correction method together with an automated scanning mechanism. We acquired the flat-field images and projection data every view alternatively. When we took the flat-field image, we moved down the imaging sample away from the field-of-view with aid of computer controlled linear positioning stage. Then, we corrected the flat-field effects view-by-view with the flat-field image taken at given view. With a CdTe photon-counting image sensor (XRI-UNO, IMATEK), we took CT images of small bugs. The CT images reconstructed with the proposed flat-field correction method were much superior to the ones reconstructed with the conventional flat-field correction method.

  7. Feasibility of Amorphous Selenium Based Photon Counting Detectors for Digital Breast Tomosynthesis

    SciTech Connect

    Chen, J.; O'Connor, P.; Lehnert, J., De Geronimo, G., Dolazza, E., Tousignant, O., Laperriere, L., Greenspan, J., Zhao, W.

    2009-02-27

    Amorphous selenium (a-Se) has been incorporated successfully in direct conversion flat panel x-ray detectors, and has demonstrated superior image quality in screening mammography and digital breast tomosynthesis (DBT) under energy integration mode. The present work explores the potential of a-Se for photon counting detectors in DBT. We investigated major factors contributing to the variation in the charge collected by a pixel upon absorption of each x-ray photon. These factors included x-ray photon interaction, detector geometry, charge transport, and the pulse shaping and noise properties of the photon counting readout circuit. Experimental measurements were performed on a linear array test structure constructed by evaporating an a-Se layer onto an array of 100 {mu}m pitch strip electrodes, which are connected to a 32 channel low noise photon counting integrated circuit. The measured pulse height spectrum (PHS) under polychromatic xray exposure was interpreted quantitatively using the factors identified. Based on the understanding of a-Se photon counting performance, design parameters were proposed for a 2D detector with high quantum efficiency and count rate that could meet the requirements of photon counting detector for DBT.

  8. Optical cross-talk effect in a semiconductor photon-counting detector array

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Hamal, Karel; Kral, Lukas; Blazej, Josef

    2005-09-01

    Solid state single photon detectors are getting more and more attention in various areas of applied physics: optical sensors, communication, quantum key distribution, optical ranging and Lidar, time resolved spectroscopy, opaque media imaging and ballistic photon identification. Avalanche photodiodes specifically designed for single photon counting semiconductor avalanche structures have been developed on the basis of various materials: Si, Ge, GaP, GaAsP and InGaAs/InGaAsP at the Czech Technical University in Prague during the last 20 years. They have been tailored for numerous applications. Recently, there is a strong demand for the photon counting detector in a form of an array; even small arrays 10x1 or 3x3 are of great importance for users. Although the photon counting array can be manufactured, there exists a serious limitation for its performance: the optical cross-talk between individual detecting cells. This cross-talk is caused by the optical emission of the avalanche photon counting structure which accompanies the photon detection process. We have studied in detail the optical emission of the avalanche photon counting structure in the silicon shallow junction type photodiode. The timing properties, radiation pattern and spectral distribution of the emitted light have been measured for various detection structures and their different operating conditions. The ultimate limit for the cross-talk has been determined and the methods for its limitation have been proposed.

  9. Optimal selection of thresholds for photon counting CT

    NASA Astrophysics Data System (ADS)

    O'Donnell, Thomas; Schoeck, Friederike; Cheheltani, Rabee; Cormode, David; Fayad, Zahi A.

    2016-03-01

    Recent advances in Photon Counting CT (PCCT) have facilitated the simultaneous acquisition of multiple image volumes with differing energy thresholds. This presents the user with several choices for energy threshold combinations. As compared to standard clinical Dual kVp CT , where the user typically has only three choices of kVp pairings (e.g., 80/150Sn, 90/150Sn, 100/150Sn), a "quad" PCCT system with 14 threshold settings has Choose(14,4)= 1001 possible threshold combinations (assuming no restrictions). In this paper we describe a computationally tractable means to order, from best (most accurate) to worst (least accurate), threshold combinations for the task of discriminating pure materials of assumed approximate concentrations using the Bhattacharyya Coefficient. We observe that this ordering is not necessarily identical to the ordering for the task of decomposing material mixtures into their components. We demonstrate our approach on phantom data.

  10. Advantages of Photon Counting Detectors for Terahertz Astronomy

    NASA Astrophysics Data System (ADS)

    Matsuo, Hiroshi; Ezawa, Hajime

    2016-08-01

    For astronomical observation at terahertz frequencies, a variety of cryogenic detector technologies are being developed to achieve background-limited observation from space, where a noise equivalent power (NEP) of less than 10^{-18} W/Hz^{0.5} is often required. When each photon signal is resolved in time, the requirements on NEP are reduced and 1 ns time resolution corresponds to an NEP of approximately 10^{-17} W/Hz^{0.5} at THz frequencies. Furthermore, fast photon counting detectors have a high dynamic range to observe bright terahertz sources such as stars and active galactic nuclei. Applications of photon counting detector are discussed for cosmic microwave background and photon counting terahertz interferometry.

  11. Photon counting detector array algorithms for deep space optical communications

    NASA Astrophysics Data System (ADS)

    Srinivasan, Meera; Andrews, Kenneth S.; Farr, William H.; Wong, Andre

    2016-03-01

    For deep-space optical communications systems utilizing an uplink optical beacon, a single-photon-counting detector array on the flight terminal can be used to simultaneously perform uplink tracking and communications as well as accurate downlink pointing at photon-starved (pW=m2) power levels. In this paper, we discuss concepts and algorithms for uplink signal acquisition, tracking, and parameter estimation using a photon-counting camera. Statistical models of detector output data and signal processing algorithms are presented, incorporating realistic effects such as Earth background and detector/readout blocking. Analysis and simulation results are validated against measured laboratory data using state-of-the-art commercial photon-counting detector arrays, demonstrating sub-microradian tracking errors under channel conditions representative of deep space optical links.

  12. Comparison of contrast enhancement methods using photon counting detector in spectral mammography

    NASA Astrophysics Data System (ADS)

    Kim, Hyemi; Park, Su-Jin; Jo, Byungdu; Kim, Dohyeon; Kim, Hee-Joung

    2016-03-01

    The photon counting detector with energy discrimination capabilities provides the spectral information and energy of each photon with single exposure. The energy-resolved photon counting detector makes it possible to improve the visualization of contrast agent by selecting the appropriate energy window. In this study, we simulated the photon counting spectral mammography system using a Monte Carlo method and compared three contrast enhancement methods (K-edge imaging, projection-based energy weighting imaging, and dual energy subtraction imaging). For the quantitative comparison, we used the homogeneous cylindrical breast phantom as a reference and the heterogeneous XCAT breast phantom. To evaluate the K-edge imaging methods, we obtained images by increasing the energy window width based on K-edge absorption energy of iodine. The iodine which has the K-edge discontinuity in the attenuation coefficient curve can be separated from the background. The projection-based energy weighting factor was defined as the difference in the transmissions between the contrast agent and the background. Each weighting factor as a function of photon energy was calculated and applied to the each energy bin. For the dual energy subtraction imaging, we acquired two images with below and above the iodine K-edge energy using single exposure. To suppress the breast tissue in high energy images, the weighting factor was applied as the ratio of the linear attenuation coefficients of the breast tissue at high and low energies. Our results demonstrated the CNR improvement of the K-edge imaging was the highest among the three methods. These imaging techniques based on the energy-resolved photon counting detector improved image quality with the spectral information.

  13. Lossless compression of projection data from photon counting detectors

    NASA Astrophysics Data System (ADS)

    Shunhavanich, Picha; Pelc, Norbert J.

    2016-03-01

    With many attractive attributes, photon counting detectors with many energy bins are being considered for clinical CT systems. In practice, a large amount of projection data acquired for multiple energy bins must be transferred in real time through slip rings and data storage subsystems, causing a bandwidth bottleneck problem. The higher resolution of these detectors and the need for faster acquisition additionally contribute to this issue. In this work, we introduce a new approach to lossless compression, specifically for projection data from photon counting detectors, by utilizing the dependencies in the multi-energy data. The proposed predictor estimates the value of a projection data sample as a weighted average of its neighboring samples and an approximation from other energy bins, and the prediction residuals are then encoded. Context modeling using three or four quantized local gradients is also employed to detect edge characteristics of the data. Using three simulated phantoms including a head phantom, compression of 2.3:1-2.4:1 was achieved. The proposed predictor using zero, three, and four gradient contexts was compared to JPEG-LS and the ideal predictor (noiseless projection data). Among our proposed predictors, three-gradient context is preferred with a compression ratio from Golomb coding 7% higher than JPEG-LS and only 3% lower than the ideal predictor. In encoder efficiency, the Golomb code with the proposed three-gradient contexts has higher compression than block floating point. We also propose a lossy compression scheme, which quantizes the prediction residuals with scalar uniform quantization using quantization boundaries that limit the ratio of quantization error variance to quantum noise variance. Applying our proposed predictor with three-gradient context, the lossy compression achieved a compression ratio of 3.3:1 but inserted a 2.1% standard deviation of error compared to that of quantum noise in reconstructed images. From the initial

  14. Low-dose performance of a whole-body research photon-counting CT scanner

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Leng, Shuai; Kappler, Steffen; Hahn, Katharina; Li, Zhoubo; Halaweish, Ahmed F.; Henning, Andre; Ritman, Erik L.; McCollough, Cynthia H.

    2016-04-01

    Photon-counting CT (PCCT) is an emerging technique that may bring new possibilities to clinical practice. Compared to conventional CT, PCCT is able to exclude electronic noise that may severely impair image quality at low photon counts. This work focused on assessing the low-dose performance of a whole-body research PCCT scanner consisting of two subsystems, one equipped with an energy-integrating detector, and the other with a photon-counting detector. Evaluation of the low-dose performance of the research PCCT scanner was achieved by comparing the noise performance of the two subsystems, with an emphasis on examining the impact of electronic noise on image quality in low-dose situations.

  15. Species-resolved imaging and gated photon counting spectroscopy of laser ablation plume dynamics during KrF- and ArF-laser PLD of amorphous diamond films

    SciTech Connect

    Geohegan, D.B.; Puretzky, A.A.

    1995-12-01

    Gated photon counting spectroscopy and species-resolved ICCD photography were used to study the weak plasma luminescence following the propagation of the initial ablation plume in vacuum and during the rebound of the plume with a substrate during pulsed laser deposition of amorphous diamond. These methods techniques were required in order to investigate notable differences between amorphous diamond-like carbon films formed by pulsed laser deposition from ArF (193 nm) and KrF (248 nm) irradiation of pyrolytic graphite in vacuum. Three principal regions of plume emission were found: (1) a bright luminescent ball (v {approximately}3--5 cm/{mu}s) displaying nearly entirely C{sup +} emission which appears to result from laser interaction with the initial ejecta, (2) a spherical ball of emission (v {approximately} 1 cm/{mu}s) displaying neutral carbon atomic emission lines and, at early times, jets of excited C{sub 2}, and (3) a well-defined region of broadband emission (v {approximately} 0.3 cm/{mu}s) near the target surface first containing emission bands from C{sub 2}, then weak, continuum emission thought to result from C{sub 3} and higher clusters and/or blackbody emission from hot clusters or nanoparticles.

  16. The piecewise-linear dynamic attenuator reduces the impact of count rate loss with photon-counting detectors.

    PubMed

    Hsieh, Scott S; Pelc, Norbert J

    2014-06-01

    Photon counting x-ray detectors (PCXDs) offer several advantages compared to standard energy-integrating x-ray detectors, but also face significant challenges. One key challenge is the high count rates required in CT. At high count rates, PCXDs exhibit count rate loss and show reduced detective quantum efficiency in signal-rich (or high flux) measurements. In order to reduce count rate requirements, a dynamic beam-shaping filter can be used to redistribute flux incident on the patient. We study the piecewise-linear attenuator in conjunction with PCXDs without energy discrimination capabilities. We examined three detector models: the classic nonparalyzable and paralyzable detector models, and a 'hybrid' detector model which is a weighted average of the two which approximates an existing, real detector (Taguchi et al 2011 Med. Phys. 38 1089-102). We derive analytic expressions for the variance of the CT measurements for these detectors. These expressions are used with raw data estimated from DICOM image files of an abdomen and a thorax to estimate variance in reconstructed images for both the dynamic attenuator and a static beam-shaping ('bowtie') filter. By redistributing flux, the dynamic attenuator reduces dose by 40% without increasing peak variance for the ideal detector. For non-ideal PCXDs, the impact of count rate loss is also reduced. The nonparalyzable detector shows little impact from count rate loss, but with the paralyzable model, count rate loss leads to noise streaks that can be controlled with the dynamic attenuator. With the hybrid model, the characteristic count rates required before noise streaks dominate the reconstruction are reduced by a factor of 2 to 3. We conclude that the piecewise-linear attenuator can reduce the count rate requirements of the PCXD in addition to improving dose efficiency. The magnitude of this reduction depends on the detector, with paralyzable detectors showing much greater benefit than nonparalyzable detectors. PMID

  17. The piecewise-linear dynamic attenuator reduces the impact of count rate loss with photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-06-01

    Photon counting x-ray detectors (PCXDs) offer several advantages compared to standard energy-integrating x-ray detectors, but also face significant challenges. One key challenge is the high count rates required in CT. At high count rates, PCXDs exhibit count rate loss and show reduced detective quantum efficiency in signal-rich (or high flux) measurements. In order to reduce count rate requirements, a dynamic beam-shaping filter can be used to redistribute flux incident on the patient. We study the piecewise-linear attenuator in conjunction with PCXDs without energy discrimination capabilities. We examined three detector models: the classic nonparalyzable and paralyzable detector models, and a ‘hybrid’ detector model which is a weighted average of the two which approximates an existing, real detector (Taguchi et al 2011 Med. Phys. 38 1089-102 ). We derive analytic expressions for the variance of the CT measurements for these detectors. These expressions are used with raw data estimated from DICOM image files of an abdomen and a thorax to estimate variance in reconstructed images for both the dynamic attenuator and a static beam-shaping (‘bowtie’) filter. By redistributing flux, the dynamic attenuator reduces dose by 40% without increasing peak variance for the ideal detector. For non-ideal PCXDs, the impact of count rate loss is also reduced. The nonparalyzable detector shows little impact from count rate loss, but with the paralyzable model, count rate loss leads to noise streaks that can be controlled with the dynamic attenuator. With the hybrid model, the characteristic count rates required before noise streaks dominate the reconstruction are reduced by a factor of 2 to 3. We conclude that the piecewise-linear attenuator can reduce the count rate requirements of the PCXD in addition to improving dose efficiency. The magnitude of this reduction depends on the detector, with paralyzable detectors showing much greater benefit than nonparalyzable detectors.

  18. The piecewise-linear dynamic attenuator reduces the impact of count rate loss with photon-counting detectors

    PubMed Central

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-01-01

    Photon counting x-ray detectors (PCXDs) offer several advantages compared to standard, energy-integrating x-ray detectors but also face significant challenges. One key challenge is the high count rates required in CT. At high count rates, PCXDs exhibit count rate loss and show reduced detective quantum efficiency in signal-rich (or high flux) measurements. In order to reduce count rate requirements, a dynamic beam-shaping filter can be used to redistribute flux incident on the patient. We study the piecewise-linear attenuator in conjunction with PCXDs without energy discrimination capabilities. We examined three detector models: the classic nonparalyzable and paralyzable detector models, and a “hybrid” detector model which is a weighted average of the two which approximates an existing, real detector (Taguchi et al, Med Phys 2011). We derive analytic expressions for the variance of the CT measurements for these detectors. These expressions are used with raw data estimated from DICOM image files of an abdomen and a thorax to estimate variance in reconstructed images for both the dynamic attenuator and a static beam-shaping (“bowtie”) filter. By redistributing flux, the dynamic attenuator reduces dose by 40% without increasing peak variance for the ideal detector. For non-ideal PCXDs, the impact of count rate loss is also reduced. The nonparalyzable detector shows little impact from count rate loss, but with the paralyzable model, count rate loss leads to noise streaks that can be controlled with the dynamic attenuator. With the hybrid model, the characteristic count rates required before noise streaks dominate the reconstruction are reduced by a factor of two to three. We conclude that the piecewise-linear attenuator can reduce the count rate requirements of the PCXD in addition to improving dose efficiency. The magnitude of this reduction depends on the detector, with paralyzable detectors showing much greater benefit than nonparalyzable detectors. PMID

  19. Count rate performance of a silicon-strip detector for photon-counting spectral CT

    NASA Astrophysics Data System (ADS)

    Liu, X.; Grönberg, F.; Sjölin, M.; Karlsson, S.; Danielsson, M.

    2016-08-01

    A silicon-strip detector is developed for spectral computed tomography. The detector operates in photon-counting mode and allows pulse-height discrimination with 8 adjustable energy bins. In this work, we evaluate the count-rate performance of the detector in a clinical CT environment. The output counts of the detector are measured for x-ray tube currents up to 500 mA at 120 kV tube voltage, which produces a maximum photon flux of 485 Mphotons/s/mm2 for the unattenuated beam. The corresponding maximum count-rate loss of the detector is around 30% and there are no saturation effects. A near linear relationship between the input and output count rates can be observed up to 90 Mcps/mm2, at which point only 3% of the input counts are lost. This means that the loss in the diagnostically relevant count-rate region is negligible. A semi-nonparalyzable dead-time model is used to describe the count-rate performance of the detector, which shows a good agreement with the measured data. The nonparalyzable dead time τn for 150 evaluated detector elements is estimated to be 20.2±5.2 ns.

  20. Ultrafast three-photon counting in a photomultiplier tube.

    PubMed

    Nevet, Amir; Hayat, Alex; Orenstein, Meir

    2011-03-01

    We demonstrate experimentally ultrafast three-photon counting by three-photon absorption in a GaAsP photomultiplier tube at the wavelength range of 1800-1900 nm, and analyze its sensitivity and time response. Pulse energy of ∼500 fJ is shown to be detectable for ultrafast 170 fs pulses. The presented three-photon counter may serve as a unique tool for ultrafast quantum state characterization as well as for ultrasensitive third-order temporal measurements. PMID:21368962

  1. Counting constituents in molecular complexes by fluorescence photon antibunching

    SciTech Connect

    Fore, S; Laurence, T; Hollars, C; Huser, T

    2007-04-17

    Modern single molecule fluorescence microscopy offers new, highly quantitative ways of studying the systems biology of cells while keeping the cells healthy and alive in their natural environment. In this context, a quantum optical technique, photon antibunching, has found a small niche in the continuously growing applications of single molecule techniques to small molecular complexes. Here, we review some of the most recent applications of photon antibunching in biophotonics, and we provide a guide for how to conduct photon antibunching experiments at the single molecule level by applying techniques borrowed from time-correlated single photon counting. We provide a number of new examples for applications of photon antibunching to the study of multichromophoric molecules and small molecular complexes.

  2. Correction for nonlinear photon counting effects in lidar systems

    NASA Technical Reports Server (NTRS)

    Donovan, D. P.; Whiteway, J. A.; Carswell, A. I.

    1992-01-01

    Photomultiplier tubes (PMT's) employed in the photon counting (PC) mode of operation are widely used as detectors in lidar systems. In our laboratory, we have developed a versatile Nd:YAG lidar which is used for measurement of both the middle atmosphere and the troposphere. With this system, we encounter a very wide range of signal levels ranging from the extremely weak signals from the top of the mesosphere to the very strong returns from low level clouds. Although the system is capable of operating the PMT's in either the analog detection or photon counting mode, we find that often when we use photon counting we have portions of our lidar return which contain very useful information but are not within the linear operating regime of the PC system. We report the results of our efforts to explore the extent to which such high intensity PC signals can be quantitatively analyzed. In particular, a useful model relating the mean 'true' count rate and the observed count rate is presented and it's application to our system demonstrated. This model takes into account the variation in height of the PMT output pulses and the effect of the pulse height discrimination threshold.

  3. Novel Photon-Counting Detectors for Free-Space Communication

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff

    2016-01-01

    We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.

  4. Novel photon-counting detectors for free-space communication

    NASA Astrophysics Data System (ADS)

    Krainak, M. A.; Yang, G.; Sun, X.; Lu, W.; Merritt, S.; Beck, J.

    2016-03-01

    We present performance data for novel photon-counting detectors for free space optical communication. NASA GSFC is testing the performance of three types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We present and compare dark count, photon-detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array routinely demonstrated photon detection efficiencies of greater than 50% across 5 arrays, with one array reaching a maximum PDE of 70%. We performed high-resolution pixel-surface spot scans and measured the junction diameters of its diodes. We found that decreasing the junction diameter from 31 μm to 25 μm doubled the e- APD gain from 470 for an array produced in the year 2010 to a gain of 1100 on an array delivered to NASA GSFC recently. The mean single-photon SNR was over 12 and the excess noise factors measurements were 1.2-1.3. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output.

  5. Towards a Graphene-Based Low Intensity Photon Counting Photodetector.

    PubMed

    Williams, Jamie O D; Alexander-Webber, Jack A; Lapington, Jon S; Roy, Mervyn; Hutchinson, Ian B; Sagade, Abhay A; Martin, Marie-Blandine; Braeuninger-Weimer, Philipp; Cabrero-Vilatela, Andrea; Wang, Ruizhi; De Luca, Andrea; Udrea, Florin; Hofmann, Stephan

    2016-01-01

    Graphene is a highly promising material in the development of new photodetector technologies, in particular due its tunable optoelectronic properties, high mobilities and fast relaxation times coupled to its atomic thinness and other unique electrical, thermal and mechanical properties. Optoelectronic applications and graphene-based photodetector technology are still in their infancy, but with a range of device integration and manufacturing approaches emerging this field is progressing quickly. In this review we explore the potential of graphene in the context of existing single photon counting technologies by comparing their performance to simulations of graphene-based single photon counting and low photon intensity photodetection technologies operating in the visible, terahertz and X-ray energy regimes. We highlight the theoretical predictions and current graphene manufacturing processes for these detectors. We show initial experimental implementations and discuss the key challenges and next steps in the development of these technologies. PMID:27563903

  6. Time-Correlated Photon Counting (TCPC) technique based on a photon-number-resolving photodetector

    NASA Astrophysics Data System (ADS)

    Li, Baicheng; Miao, Quanlong; Wang, Shenyuan; Hui, Debin; Zhao, Tianqi; Liang, Kun; Yang, Ru; Han, Dejun

    2016-05-01

    In this report, we present Time-Correlated Photon Counting (TCPC) technique and its applications in time-correlated Raman spectroscopy. The main difference between TCPC and existing Time-Correlated Single Photon Counting (TCSPC) is that the TCPC employs a photon-number-resolving photodetector (SiPM, silicon photomultiplier) and measures exact photon number rather than counting single photon by reducing pulse light intensity, thus high measurement speed and efficiency can be expected. A home-made Raman spectrometer has demonstrated an Instrument Response Function (IRF) ~100ps (FWHM) based on TCPC with a strip SiPM (1mm×0.05mm, containing 500 micro cells), fast and weak Raman signals was separated from slow and strong fluorescence background of bulk trinitrotoluene TNT sample. The original Raman spectrum of bulk TNT, measured by TCPC technique, is compared with the result obtained by a commercial Micro-Raman Spectrometer.

  7. Novel Photon-Counting Detectors for Free-Space Communication

    NASA Technical Reports Server (NTRS)

    Krainak, M. A.; Yang, G.; Sun, X.; Lu, W.; Merritt, S.; Beck, J.

    2016-01-01

    We present performance data for novel photon-counting detectors for free space optical communication. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We present and compare dark count, photon-detection efficiency, wavelength response and communication performance data for these detectors. We successfully measured real-time communication performance using both the 2 detected-photon threshold and AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects. The HgCdTe APD array routinely demonstrated photon detection efficiencies of greater than 50% across 5 arrays, with one array reaching a maximum PDE of 70%. We performed high-resolution pixel-surface spot scans and measured the junction diameters of its diodes. We found that decreasing the junction diameter from 31 micrometers to 25 micrometers doubled the e- APD gain from 470 for an array produced in the year 2010 to a gain of 1100 on an array delivered to NASA GSFC recently. The mean single-photon SNR was over 12 and the excess noise factors measurements were 1.2-1.3. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output.

  8. Energy response calibration of photon-counting detectors using X-ray fluorescence: a feasibility study

    PubMed Central

    Cho, H-M; Ding, H; Ziemer, BP; Molloi, S

    2014-01-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using X-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for X-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm2 in detection area. The angular dependence of X-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded X-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of X-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of X-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic X-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the X-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory. PMID:25369288

  9. Breakdown of the cross-Kerr scheme for photon counting.

    PubMed

    Fan, Bixuan; Kockum, Anton F; Combes, Joshua; Johansson, Göran; Hoi, Io-chun; Wilson, C M; Delsing, Per; Milburn, G J; Stace, Thomas M

    2013-02-01

    We show, in the context of single-photon detection, that an atomic three-level model for a transmon in a transmission line does not support the predictions of the nonlinear polarizability model known as the cross-Kerr effect. We show that the induced displacement of a probe in the presence or absence of a single photon in the signal field, cannot be resolved above the quantum noise in the probe. This strongly suggests that cross-Kerr media are not suitable for photon counting or related single-photon applications. Our results are presented in the context of a transmon in a one-dimensional microwave waveguide, but the conclusions also apply to optical systems. PMID:23414018

  10. Characterization of a hybrid energy-resolving photon-counting detector

    NASA Astrophysics Data System (ADS)

    Zang, A.; Pelzer, G.; Anton, G.; Ballabriga Sune, R.; Bisello, F.; Campbell, M.; Fauler, A.; Fiederle, M.; Llopart Cudie, X.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W. S.; Michel, T.

    2014-03-01

    Photon-counting detectors in medical x-ray imaging provide a higher dose efficiency than integrating detectors. Even further possibilities for imaging applications arise, if the energy of each photon counted is measured, as for example K-edge-imaging or optimizing image quality by applying energy weighting factors. In this contribution, we show results of the characterization of the Dosepix detector. This hybrid photon- counting pixel detector allows energy resolved measurements with a novel concept of energy binning included in the pixel electronics. Based on ideas of the Medipix detector family, it provides three different modes of operation: An integration mode, a photon-counting mode, and an energy-binning mode. In energy-binning mode, it is possible to set 16 energy thresholds in each pixel individually to derive a binned energy spectrum in every pixel in one acquisition. The hybrid setup allows using different sensor materials. For the measurements 300 μm Si and 1 mm CdTe were used. The detector matrix consists of 16 x 16 square pixels for CdTe (16 x 12 for Si) with a pixel pitch of 220 μm. The Dosepix was originally intended for applications in the field of radiation measurement. Therefore it is not optimized towards medical imaging. The detector concept itself still promises potential as an imaging detector. We present spectra measured in one single pixel as well as in the whole pixel matrix in energy-binning mode with a conventional x-ray tube. In addition, results concerning the count rate linearity for the different sensor materials are shown as well as measurements regarding energy resolution.

  11. Noise filtering techniques for photon-counting ladar data

    NASA Astrophysics Data System (ADS)

    Magruder, Lori A.; Wharton, Michael E., III; Stout, Kevin D.; Neuenschwander, Amy L.

    2012-06-01

    Many of the recent small, low power ladar systems provide detection sensitivities on the photon(s) level for altimetry applications. These "photon-counting" instruments, many times, are the operational solution to high altitude or space based platforms where low signal strength and size limitations must be accommodated. Despite the many existing algorithms for lidar data product generation, there remains a void in techniques available for handling the increased noise level in the photon-counting measurements as the larger analog systems do not exhibit such low SNR. Solar background noise poses a significant challenge to accurately extract surface features from the data. Thus, filtering is required prior to implementation of other post-processing efforts. This paper presents several methodologies for noise filtering photoncounting data. Techniques include modified Canny Edge Detection, PDF-based signal extraction, and localized statistical analysis. The Canny Edge detection identifies features in a rasterized data product using a Gaussian filter and gradient calculation to extract signal photons. PDF-based analysis matches local probability density functions with the aggregate, thereby extracting probable signal points. The localized statistical method assigns thresholding values based on a weighted local mean of angular variances. These approaches have demonstrated the ability to remove noise and subsequently provide accurate surface (ground/canopy) determination. The results presented here are based on analysis of multiple data sets acquired with the high altitude NASA MABEL system and photon-counting data supplied by Sigma Space Inc. configured to simulate the NASA upcoming ICESat-2 mission instrument expected data product.

  12. High quantum efficiency S-20 photocathodes in photon counting detectors

    NASA Astrophysics Data System (ADS)

    Orlov, D. A.; DeFazio, J.; Duarte Pinto, S.; Glazenborg, R.; Kernen, E.

    2016-04-01

    Based on conventional S-20 processes, a new series of high quantum efficiency (QE) photocathodes has been developed that can be specifically tuned for use in the ultraviolet, blue or green regions of the spectrum. The QE values exceed 30% at maximum response, and the dark count rate is found to be as low as 30 Hz/cm2 at room temperature. This combination of properties along with a fast temporal response makes these photocathodes ideal for application in photon counting detectors, which is demonstrated with an MCP photomultiplier tube for single and multi-photoelectron detection.

  13. Spectroscopic micro-tomography of metallic-organic composites by means of photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Pichotka, M.; Jakubek, J.; Vavrik, D.

    2015-12-01

    The presumed capabilities of photon counting detectors have aroused major expectations in several fields of research. In the field of nuclear imaging ample benefits over standard detectors are to be expected from photon counting devices. First of all a very high contrast, as has by now been verified in numerous experiments. The spectroscopic capabilities of photon counting detectors further allow material decomposition in computed tomography and therefore inherently adequate beam hardening correction. For these reasons measurement setups featuring standard X-ray tubes combined with photon counting detectors constitute a possible replacement of the much more cost intensive tomographic setups at synchrotron light-sources. The actual application of photon counting detectors in radiographic setups in recent years has been impeded by a number of practical issues, above all by restrictions in the detectors size. Currently two tomographic setups in Czech Republic feature photon counting large-area detectors (LAD) fabricated in Prague. The employed large area hybrid pixel-detector assemblies [1] consisting of 10×10/10×5 Timepix devices have a surface area of 143×143 mm2 / 143×71,5 mm2 respectively, suitable for micro-tomographic applications. In the near future LAD devices featuring the Medipix3 readout chip as well as heavy sensors (CdTe, GaAs) will become available. Data analysis is obtained by a number of in house software tools including iterative multi-energy volume reconstruction.In this paper tomographic analysis of of metallic-organic composites is employed to illustrate the capabilities of our technology. Other than successful material decomposition by spectroscopic tomography we present a method to suppress metal artefacts under certain conditions.

  14. Fluorescence lifetime microscopy with a time- and space-resolved single-photon counting detector

    NASA Astrophysics Data System (ADS)

    Michalet, X.; Siegmund, O. H. W.; Vallerga, J. V.; Jelinsky, P.; Pinaud, F. F.; Millaud, J. E.; Weiss, S.

    2006-10-01

    We have recently developed a wide-field photon-counting detector (the H33D detector) having high-temporal and highspatial resolutions and capable of recording up to 500,000 photons per sec. Its temporal performance has been previously characterized using solutions of fluorescent materials with different lifetimes, and its spatial resolution using sub-diffraction objects (beads and quantum dots). Here we show its application to fluorescence lifetime imaging of live cells and compare its performance to a scanning confocal TCSPC approach. With the expected improvements in photocathode sensitivity and increase in detector throughput, this technology appears as a promising alternative to the current lifetime imaging solutions.

  15. Spectral X-Ray Diffraction using a 6 Megapixel Photon Counting Array Detector

    PubMed Central

    Muir, Ryan D.; Pogranichniy, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.

    2016-01-01

    Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging. PMID:27041789

  16. On the Use of Shot Noise for Photon Counting

    NASA Astrophysics Data System (ADS)

    Zmuidzinas, Jonas

    2015-11-01

    Lieu et al. have recently claimed that it is possible to substantially improve the sensitivity of radio-astronomical observations. In essence, their proposal is to make use of the intensity of the photon shot noise as a measure of the photon arrival rate. Lieu et al. provide a detailed quantum-mechanical calculation of a proposed measurement scheme that uses two detectors and conclude that this scheme avoids the sensitivity degradation that is associated with photon bunching. If correct, this result could have a profound impact on radio astronomy. Here I present a detailed analysis of the sensitivity attainable using shot-noise measurement schemes that use either one or two detectors, and demonstrate that neither scheme can avoid the photon bunching penalty. I perform both semiclassical and fully quantum calculations of the sensitivity, obtaining consistent results, and provide a formal proof of the equivalence of these two approaches. These direct calculations are furthermore shown to be consistent with an indirect argument based on a correlation method that establishes an independent limit to the sensitivity of shot-noise measurement schemes. Furthermore, these calculations are directly applicable to the regime of interest identified by Lieu et al. Collectively, these results conclusively demonstrate that the photon-bunching sensitivity penalty applies to shot-noise measurement schemes just as it does to ordinary photon counting, in contradiction to the fundamental claim made by Lieu et al. The source of this contradiction is traced to a logical fallacy in their argument.

  17. Multimode model for projective photon-counting measurements

    SciTech Connect

    Tualle-Brouri, Rosa; Ourjoumtsev, Alexei; Dantan, Aurelien; Grangier, Philippe; Wubs, Martijn; Soerensen, Anders S.

    2009-07-15

    We present a general model to account for the multimode nature of the quantum electromagnetic field in projective photon-counting measurements. We focus on photon-subtraction experiments, where non-Gaussian states are produced conditionally. These are useful states for continuous-variable quantum-information processing. We present a general method called mode reduction that reduces the multimode model to an effective two-mode problem. We apply this method to a multimode model describing broadband parametric down-conversion, thereby improving the analysis of existing experimental results. The main improvement is that spatial and frequency filters before the photon detector are taken into account explicitly. We find excellent agreement with previously published experimental results, using fewer free parameters than before, and discuss the implications of our analysis for the optimized production of states with negative Wigner functions.

  18. OPTIMA: A Photon Counting High-Speed Photometer

    NASA Astrophysics Data System (ADS)

    Straubmeier, C.; Kanbach, G.; Schrey, F.

    OPTIMA is a small, versatile high-speed photometer which is primarily intended for time resolved observations of young high energy pulsars at optical wavelengths. The detector system consists of eight fiber fed photon counters based on avalanche photodiodes, a GPS timing receiver, an integrating CCD camera to ensure the correct pointing of the telescope and a computerized control unit. Since January 1999 OPTIMA proves its scientific potential by measuring a very detailed lightcurve of the Crab Pulsar as well as by observing cataclysmic variable stars on very short timescales. In this article we describe the design of the detector system focussing on the photon counting units and the software control which correlates the detected photons with the GPS timing signal.

  19. Performance evaluation of a photon-counting intensified CCD

    NASA Astrophysics Data System (ADS)

    Bergamini, Paolo; Bonelli, Giuseppe; D'Angelo, Sergio; Latorre, Stefano; Poletto, Luca; Sechi, Giacomo; Tanzi, Enrico G.; Tondello, Giuseppe; Uslenghi, Michela

    1997-10-01

    The performance of a prototype photon counting imaging detector, being developed for the international UV space mission spectrum-UV, is presented. The detector is based on a 4-cm diameter, Z stack, high gain microchannel plate (MCP) intensifier endowed with a RbTe photocathode. The electron cascade generated by the MCP intensifier is transduced, via a phosphor screen and a 1:3.6 fiber optics reducer, into a 5 by 5 pixel(superscript 2), quasi-Gaussian charge distribution on a 15 micrometer, 512 by 512 pixel(superscript 2) format CCD matrix read out in the frame-transfer mode at 20 MHz, corresponding to 60 frame sec(superscript -1) in the full frame mode and to 220 frame sec(superscript -1) in the window (128 by 512 pixel(superscript 2)) mode. The data flow is acquired serially as to generate a 5 by 5 pixel(superscript 2) event sash that sweeps dynamically the CCD matrix at the 50 ns place of the readout clock. Each and every event sash is searched for the presence of events whose charge distribution lie within set thresholds and satisfy given morphological rules, i.e. a peaked charge profile. The centroid coordinates of identified events are subsequently determined with sub-pixel accuracy and stored in an external, high resolution memory. The data acquisition and processing system, based on field programmable gate array technology, is well able to resolve the front MCP pore geometry (10 micrometer diameter pores at 12 micrometer pitch).

  20. Linear operating region in the ozone dial photon counting system

    NASA Technical Reports Server (NTRS)

    Andrawis, Madeleine

    1995-01-01

    Ozone is a relatively unstable molecule found in Earth's atmosphere. An ozone molecule is made up of three atoms of oxygen. Depending on where ozone resides, it can protect or harm life on Earth. High in the atmosphere, about 15 miles up, ozone acts as a shield to protect Earth's surface from the sun's harmful ultraviolet radiation. Without this shield, we would be more susceptible to skin cancer, cataracts, and impaired immune systems. Closer to Earth, in the air we breathe, ozone is a harmful pollutant that causes damage to lung tissue and plants. Since the early 1980's, airborne lidar systems have been used for making measurements of ozone. The differential absorption lidar (DIAL) technique is used in the remote measurement of O3. This system allows the O3 to be measured as function of the range in the atmosphere. Two frequency-doubled Nd:YAG lasers are used to pump tunable dye lasers. The lasers are operating at 289 nm for the DIAL on-line wavelength of O3, and the other one is operated at 300 nm for the off-line wavelength. The DIAL wavelengths are produced in sequential laser pulses with a time separation of 300 micro s. The backscattered laser energy is collected by telescopes and measured using photon counting systems. The photon counting system measures the light signal by making use of the photon nature of light. The output pulse from the Photo-Multiplier Tube (PE), caused by a photon striking the PMT photo-cathode, is amplified and passed to a pulse height discriminator. The peak value of the pulse is compared to a reference voltage (discrimination level). If the pulse amplitude exceeds the discrimination level, the discriminator generates a standard pulse which is counted by the digital counter. Non-linearity in the system is caused by the overlapping of pulses and the finite response time of the electronics. At low count rates one expects the system to register one event for each output pulse from the PMT corresponding to a photon incident upon the

  1. Investigation of energy weighting using an energy discriminating photon counting detector for breast CT

    PubMed Central

    Kalluri, Kesava S.; Mahd, Mufeed; Glick, Stephen J.

    2013-01-01

    Purpose: Breast CT is an emerging imaging technique that can portray the breast in 3D and improve visualization of important diagnostic features. Early clinical studies have suggested that breast CT has sufficient spatial and contrast resolution for accurate detection of masses and microcalcifications in the breast, reducing structural overlap that is often a limiting factor in reading mammographic images. For a number of reasons, image quality in breast CT may be improved by use of an energy resolving photon counting detector. In this study, the authors investigate the improvements in image quality obtained when using energy weighting with an energy resolving photon counting detector as compared to that with a conventional energy integrating detector. Methods: Using computer simulation, realistic CT images of multiple breast phantoms were generated. The simulation modeled a prototype breast CT system using an amorphous silicon (a-Si), CsI based energy integrating detector with different x-ray spectra, and a hypothetical, ideal CZT based photon counting detector with capability of energy discrimination. Three biological signals of interest were modeled as spherical lesions and inserted into breast phantoms; hydroxyapatite (HA) to represent microcalcification, infiltrating ductal carcinoma (IDC), and iodine enhanced infiltrating ductal carcinoma (IIDC). Signal-to-noise ratio (SNR) of these three lesions was measured from the CT reconstructions. In addition, a psychophysical study was conducted to evaluate observer performance in detecting microcalcifications embedded into a realistic anthropomorphic breast phantom. Results: In the energy range tested, improvements in SNR with a photon counting detector using energy weighting was higher (than the energy integrating detector method) by 30%–63% and 4%–34%, for HA and IDC lesions and 12%–30% (with Al filtration) and 32%–38% (with Ce filtration) for the IIDC lesion, respectively. The average area under the

  2. Investigation of energy weighting using an energy discriminating photon counting detector for breast CT

    SciTech Connect

    Kalluri, Kesava S.; Mahd, Mufeed; Glick, Stephen J.

    2013-08-15

    Purpose: Breast CT is an emerging imaging technique that can portray the breast in 3D and improve visualization of important diagnostic features. Early clinical studies have suggested that breast CT has sufficient spatial and contrast resolution for accurate detection of masses and microcalcifications in the breast, reducing structural overlap that is often a limiting factor in reading mammographic images. For a number of reasons, image quality in breast CT may be improved by use of an energy resolving photon counting detector. In this study, the authors investigate the improvements in image quality obtained when using energy weighting with an energy resolving photon counting detector as compared to that with a conventional energy integrating detector.Methods: Using computer simulation, realistic CT images of multiple breast phantoms were generated. The simulation modeled a prototype breast CT system using an amorphous silicon (a-Si), CsI based energy integrating detector with different x-ray spectra, and a hypothetical, ideal CZT based photon counting detector with capability of energy discrimination. Three biological signals of interest were modeled as spherical lesions and inserted into breast phantoms; hydroxyapatite (HA) to represent microcalcification, infiltrating ductal carcinoma (IDC), and iodine enhanced infiltrating ductal carcinoma (IIDC). Signal-to-noise ratio (SNR) of these three lesions was measured from the CT reconstructions. In addition, a psychophysical study was conducted to evaluate observer performance in detecting microcalcifications embedded into a realistic anthropomorphic breast phantom.Results: In the energy range tested, improvements in SNR with a photon counting detector using energy weighting was higher (than the energy integrating detector method) by 30%–63% and 4%–34%, for HA and IDC lesions and 12%–30% (with Al filtration) and 32%–38% (with Ce filtration) for the IIDC lesion, respectively. The average area under the receiver

  3. The Goddard Integral Field Spectrograph at Apache Point Observatory: Current Status and Progress Towards Photon Counting

    NASA Astrophysics Data System (ADS)

    McElwain, Michael W.; Grady, Carol A.; Bally, John; Brinkmann, Jonathan V.; Bubeck, James; Gong, Qian; Hilton, George M.; Ketzeback, William F.; Lindler, Don; Llop Sayson, Jorge; Malatesta, Michael A.; Norton, Timothy; Rauscher, Bernard J.; Rothe, Johannes; Straka, Lorrie; Wilkins, Ashlee N.; Wisniewski, John P.; Woodgate, Bruce E.; York, Donald G.

    2015-01-01

    We present the current status and progress towards photon counting with the Goddard Integral Field Spectrograph (GIFS), a new instrument at the Apache Point Observatory's ARC 3.5m telescope. GIFS is a visible light imager and integral field spectrograph operating from 400-1000 nm over a 2.8' x 2.8' and 14' x 14' field of view, respectively. As an IFS, GIFS obtains over 1000 spectra simultaneously and its data reduction pipeline reconstructs them into an image cube that has 32 x 32 spatial elements and more than 200 spectral channels. The IFS mode can be applied to a wide variety of science programs including exoplanet transit spectroscopy, protostellar jets, the galactic interstellar medium probed by background quasars, Lyman-alpha emission line objects, and spectral imaging of galactic winds. An electron-multiplying CCD (EMCCD) detector enables photon counting in the high spectral resolution mode to be demonstrated at the ARC 3.5m in early 2015. The EMCCD work builds upon successful operational and characterization tests that have been conducted in the IFS laboratory at NASA Goddard. GIFS sets out to demonstrate an IFS photon-counting capability on-sky in preparation for future exoplanet direct imaging missions such as the AFTA-Coronagraph, Exo-C, and ATLAST mission concepts. This work is supported by the NASA APRA program under RTOP 10-APRA10-0103.

  4. Improving material decomposition by spectral optimization of photon counting computed tomography

    NASA Astrophysics Data System (ADS)

    Polster, C.; Hahn, K.; Gutjahr, R.; Schöck, F.; Kappler, S.; Dietrich, O.; Flohr, T. G.

    2016-03-01

    Photon counting detectors in computed tomography facilitate measurements of spectral distributions of detected X-ray quanta in discrete energy bins. Along with the dependency on wavelength and atomic number of the mass attenuation coefficient, this information allows for reconstruction of CT images of different material bases. Decomposition of two materials is considered standard in today's dual-energy techniques. With photon-counting detectors the decomposition of more than two materials becomes achievable. Efficient detection of CT-typical X-ray spectra is a hard requirement in a clinical environment. This is fulfilled by only a few sensor materials such as CdTe or CdZnTe. In contrast to energy integrating CT-detectors, the pixel dimensions must be reduced to avoid pulse pile-up problems at clinically relevant count rates. However, reducing pixel sizes leads to increased K-escape and charge sharing effects. As a consequence, the correlation between incident and detected X-ray energy is reduced. This degradation is quantified by the detector response function. The goal of this study is to improve the achievable material decomposition by adapting the incident X-ray spectrum with respect to the properties (i.e. the detector response function) of a photon counting detector. A significant improvement of a material decomposition equivalent metric is achievable when using specific materials as X-ray pre-filtration (K-edge filtering) while maintaining the applied patient dose and image quality.

  5. Statistical treatment of photon/electron counting: extending the linear dynamic range from the dark count rate to saturation.

    PubMed

    Kissick, David J; Muir, Ryan D; Simpson, Garth J

    2010-12-15

    An experimentally simple photon counting method is demonstrated providing 7 orders of magnitude in linear dynamic range (LDR) for a single photomultiplier tube (PMT) detector. In conventional photon/electron counting methods, the linear range is dictated by the agreement between the binomially distributed measurement of counted events and the underlying Poisson distribution of photons/electrons. By explicitly considering the log-normal probability distribution in voltage transients as a function of the number of photons present and the Poisson distribution of photons, observed counts for a given threshold can be related to the mean number of photons well beyond the conventional limit. Analytical expressions are derived relating counts and photons that extend the linear range to an average of ∼11 photons arriving simultaneously with a single threshold. These expressions can be evaluated numerically for multiple thresholds extending the linear range to the saturation point of the PMT. The peak voltage distributions are experimentally shown to follow a Poisson weighted sum of log-normal distributions that can all be derived from the single photoelectron voltage peak-height distribution. The LDR that results from this method is compared to conventional single photon counting (SPC) and to signal averaging by analog to digital conversion (ADC). PMID:21114249

  6. MicroCT with energy-resolved photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Wang, X.; Meier, D.; Mikkelsen, S.; Maehlum, G. E.; Wagenaar, D. J.; Tsui, B. M. W.; Patt, B. E.; Frey, E. C.

    2011-05-01

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with K-absorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences.

  7. MicroCT with energy-resolved photon-counting detectors.

    PubMed

    Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, B M W; Patt, B E; Frey, E C

    2011-05-01

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with K-absorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences. PMID:21464527

  8. Performance of single-photon-counting PILATUS detector modules

    PubMed Central

    Kraft, P.; Bergamaschi, A.; Broennimann, Ch.; Dinapoli, R.; Eikenberry, E. F.; Henrich, B.; Johnson, I.; Mozzanica, A.; Schlepütz, C. M.; Willmott, P. R.; Schmitt, B.

    2009-01-01

    PILATUS is a silicon hybrid pixel detector system, operating in single-photon-counting mode, that has been developed at the Paul Scherrer Institut for the needs of macromolecular crystallography at the Swiss Light Source (SLS). A calibrated PILATUS module has been characterized with monochromatic synchrotron radiation. The influence of charge sharing on the count rate and the overall energy resolution of the detector were investigated. The dead-time of the system was determined using the attenuated direct synchrotron beam. A single module detector was also tested in surface diffraction experiments at the SLS, whereby its performance regarding fluorescence suppression and saturation tolerance were evaluated, and have shown to greatly improve the sensitivity, reliability and speed of surface diffraction data acquisition. PMID:19395800

  9. Photon counting photodiode array detector for far ultraviolet (FUV) astronomy

    NASA Technical Reports Server (NTRS)

    Hartig, G. F.; Moos, H. W.; Pembroke, R.; Bowers, C.

    1982-01-01

    A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location. Previously announced in STAR as N82-19118

  10. Measurement of the atom number distribution in an optical tweezer using single-photon counting

    SciTech Connect

    Fuhrmanek, A.; Sortais, Y. R. P.; Grangier, P.; Browaeys, A.

    2010-08-15

    We demonstrate in this paper a method to reconstruct the atom number distribution of a cloud containing a few tens of cold atoms. The atoms are first loaded from a magneto-optical trap into a microscopic optical dipole trap and then released in a resonant light probe where they undergo a Brownian motion and scatter photons. We count the number of photon events detected on an image intensifier. Using the response of our detection system to a single atom as a calibration, we extract the atom number distribution when the trap is loaded with more than one atom. The atom number distribution is found to be compatible with a Poisson distribution.

  11. Wavefunction collapse through backaction of counting weakly interacting photons

    NASA Astrophysics Data System (ADS)

    Harrell, L. E.

    2016-03-01

    We apply the formalism of quantum measurement theory to the idealized measurement of the position of a particle with an optical interferometer, finding that the backaction of counting entangled photons systematically collapses the particle's wavefunction toward a narrow Gaussian wavepacket at the location xest determined by the measurement without appeal to environmental decoherence or other spontaneous collapse mechanism. Further, the variance in the particle's position, as calculated from the post-measurement wavefunction, agrees precisely with shot-noise limited uncertainty of the measured xest. Both the identification of the absolute square of the particle's initial wavefunction as the probability density for xest and the de Broglie hypothesis emerge as consequences of interpreting the intensity of the optical field as proportional to the probability of detecting a photon. Linear momentum information that is encoded in the particle's initial wavefunction survives the measurement, and the pre-measurement expectation values are preserved in the ensemble average.

  12. Underwater optical communications with a single photon-counting system

    NASA Astrophysics Data System (ADS)

    Hiskett, Philip A.; Lamb, Robert A.

    2014-05-01

    This paper discusses the system engineering challenges involved with the transmission of optically encoded data through water. The scenarios of data transmission from an airborne platform to a submerged platform and data transmission from a submerged platform to another submerged platform will be discussed. A photon-counting experimental system was constructed to investigate the transmission of optical data through a 1m long tank of water. This test system incorporated a laser diode operating at a wavelength of 450nm and an optical receiver containing a shallow junction, silicon single photon avalanche diode. The optical data was transmitted through the tank containing ~100 litres of water at transmission rates equivalent to 40Mb/s. The attenuation of the optical path was increased by increasing the level of scattering of the photons using Maalox. The effects on the temporal distribution of photons in the optical pulse from adding Maalox are also discussed. The synchronisation of the transmitter and receiver clocks was investigated using reference headers appended to the encoded message signal which the receiver used to correct for timing drift. The performance of this experimental system and experimental results are discussed.

  13. Prospects of photon counting lidar for savanna ecosystem structural studies

    NASA Astrophysics Data System (ADS)

    Gwenzi, D.; Lefsky, M. A.

    2014-11-01

    Discrete return and waveform lidar have demonstrated a capability to measure vegetation height and the associated structural attributes such as aboveground biomass and carbon storage. Since discrete return lidar (DRL) is mainly suitable for small scale studies and the only existing spaceborne lidar sensor (ICESat-GLAS) has been decommissioned, the current question is what the future holds in terms of large scale lidar remote sensing studies. The earliest planned future spaceborne lidar mission is ICESat-2, which will use a photon counting technique. To pre-validate the capability of this mission for studying three dimensional vegetation structure in savannas, we assessed the potential of the measurement approach to estimate canopy height in a typical savanna landscape. We used data from the Multiple Altimeter Beam Experimental Lidar (MABEL), an airborne photon counting lidar sensor developed by NASA Goddard. MABEL fires laser pulses in the green (532 nm) and near infrared (1064 nm) bands at a nominal repetition rate of 10 kHz and records the travel time of individual photons that are reflected back to the sensor. The photons' time of arrival and the instrument's GPS positions and Inertial Measurement Unit (IMU) orientation are used to calculate the distance the light travelled and hence the elevation of the surface below. A few transects flown over the Tejon ranch conservancy in Kern County, California, USA were used for this work. For each transect we extracted the data from one near infrared channel that had the highest number of photons. We segmented each transect into 50 m, 25 m and 10 m long blocks and aggregated the photons in each block into a histogram based on their elevation values. We then used an expansion window algorithm to identify cut off points where the cumulative density of photons from the highest elevation resembles the canopy top and likewise where such cumulative density from the lowest elevation resembles mean ground elevation. These cut off

  14. Pseudo-random single photon counting: a high-speed implementation

    PubMed Central

    Zhang, Qiang; Chen, Ling; Chen, Nanguang

    2010-01-01

    Pseudo-random single photon counting (PRSPC) is a new time-resolved optical measurement method which combines the spread spectrum time-resolved method with single photon counting. A pseudo-random bit sequence is used to modulate a continuous wave laser diode, while single photon counting is used to build up the optical signal in response to the modulated excitation. Periodic cross-correlation is performed to obtain the temporal profile of the subject of interest. Compared with conventional time-correlated single photon counting (TCSPC), PRSPC enjoys many advantages such as low cost and high count rate without compromising the sensitivity and time-resolution. In this paper, we report a PRSPC system that can be used for high-speed acquisition of the temporal point spread function of diffuse photons. It can reach a photon count rate as high as 3 Mcps (counts per second). Phantom experiments have been conducted to demonstrate the system performance. PMID:21258444

  15. Subnanosecond time-correlated photon counting with tunable lasers.

    PubMed

    Spears, K G; Cramer, L E; Hoffland, L D

    1978-02-01

    We present several laser based methods to improve the technique of time-correlated photon counting. Our Ar(+) laser pumped tunable dye laser can be operated in three timing configurations: acousto-optically mode locked, cavity dumped, and cavity dumped-mode locked. Performance characteristics of the laser system in various operational modes are described along with measurement techniques for both gas and liquid phase. The subnanosecond pulses generated by mode locking are extremely stable and they maintain identical pulse shapes over a 6-h period, as shown via photon counting measurements at a 15-psec channel resolution. Our RCA C31034 photomultiplier with a red sensitive GaAs photocathode provides wavelength-independent response to detected fluorescence in both the visible and ultraviolet. The present limit of our apparatus is controlled by the accuracy of deconvoluting fluorescence decay from the finite response width caused by photomultiplier transit time dispersion (0.8 nsec FWHM). Our system stability is sufficient to accurately determine exponential decays as short as 50 psec. Furthermore, we can successfully analyze dual exponential decays such as those arising from solution reorientation times of 390 psec competing with a fluorescence lifetime of 725 psec. Examples of the laser performance are selected from a variety of measurements in the gas phase and from the fluorescent dye rose bengal in the liquid phase. PMID:18699071

  16. Signal-to-noise ratio of Geiger-mode avalanche photodiode single-photon counting detectors

    NASA Astrophysics Data System (ADS)

    Kolb, Kimberly

    2014-08-01

    Geiger-mode avalanche photodiodes (GM-APDs) use the avalanche mechanism of semiconductors to amplify signals in individual pixels. With proper thresholding, a pixel will be either "on" (avalanching) or "off." This discrete detection scheme eliminates read noise, which makes these devices capable of counting single photons. Using these detectors for imaging applications requires a well-developed and comprehensive expression for the expected signal-to-noise ratio (SNR). This paper derives the expected SNR of a GM-APD detector in gated operation based on gate length, number of samples, signal flux, dark count rate, photon detection efficiency, and afterpulsing probability. To verify the theoretical results, carrier-level Monte Carlo simulation results are compared to the derived equations and found to be in good agreement.

  17. Photon-counting CT: modeling and compensating of spectral distortion effects

    NASA Astrophysics Data System (ADS)

    Cammin, Jochen; Kappler, Steffen; Weidinger, Thomas; Taguchi, Katsuyuki

    2015-03-01

    Spectral computed tomography (CT) with photon-counting detectors (PCDs) has the potential to substantially advance diagnostic CT imaging by reducing image noise and dose to the patient, by improving contrast and tissue specificity, and by enabling molecular and functional imaging. However, the current PCD technology is limited by two main factors: imperfect energy measurement (spectral response effects, SR) and count rate non-linearity (pulse pileup effects, PP, due to detector deadtimes) resulting in image artifacts and quantitative inaccuracies for material specification. These limitations can be lifted with image reconstruction algorithms that compensate for both SR and PP. A prerequisite for this approach is an accurate model of the count losses and spectral distortions in the PCD. In earlier work we developed a cascaded SR-PP model and evaluated it using a physical PCD. In this paper we show the robustness of our approach by modifying the cascaded SR-PP model for a faster PCD with smaller pixels and a different pulse shape. We compare paralyzable and non-paralyzable detector models. First, the SR-PP model is evaluated at low and high count rates using two sets of attenuators. Then, the accuracy of the compensation is evaluated by estimating the thicknesses of three basis functions.

  18. Slow Images and Entangled Photons

    SciTech Connect

    Swordy, Simon

    2007-06-20

    I will discuss some recent experiments using slow light and entangled photons. We recently showed that it was possible to map a two dimensional image onto very low light level signals, slow them down in a hot atomic vapor while preserving the amplitude and phase of the images. If time remains, I will discuss some of our recent work with time-energy entangled photons for quantum cryptography. We were able to show that we could have a measurable state space of over 1000 states for a single pair of entangled photons in fiber.

  19. Detecting small debris using a ground-based photon counting detector

    SciTech Connect

    Ho, C.; Priedhorsky, W.C.; Baron, M.H.

    1993-05-01

    We describe a sensitive technique for detecting small space debris that exploits a fast photon-counting imager. Microchannel plate detectors using crossed delay-line readout can achieve a resolution of 2048 {times} 2048 spatial pixels and a maximum count rate of about 10{sup 6} photons per second. A baseline debris-tracking system might couple this detector to a 16-cm aperture telescope. The detector yields x, y, and time information for each detected photon. When visualized in (x, y, t) space, photons from a fast-moving orbital object appear on a straight line. They can be distinguished from diffuse background photons, randomly scattered in the space, and star photons, which fall on a line with sidereal velocity. By searching for this unique signature, we can detect and track small debris objects. At dawn and dusk, a spherical object of 1.3 cm diameter at 400 km will reflect sunlight for an apparent magnitude of V {approx} 16. The baseline system would detect about 16 photons from this object as it crosses a 1 degree field of view in about 1 second. The Ene in (x, y, t) space will be significant in a diffuse background of {approximately} 10{sup 6} photons. We discuss the data processing scheme and line detection algorithm. The advantages of this technique are that one can (1) detect cm-size debris objects with a small telescope, and (2) detect debris moving with any direction and velocity. In this paper, we describe the progress in the development of detector and data acquisition system, the preparation for a field test for such a system, and the development and optimization of the data analysis algorithm. Detection sensitivity would currently be constrained by the capability of the data acquisition and the data processing systems, but further improvements could alleviate these bottlenecks.

  20. Detecting small debris using a ground-based photon counting detector

    SciTech Connect

    Ho, C.; Priedhorsky, W.C.; Baron, M.H.

    1993-01-01

    We describe a sensitive technique for detecting small space debris that exploits a fast photon-counting imager. Microchannel plate detectors using crossed delay-line readout can achieve a resolution of 2048 [times] 2048 spatial pixels and a maximum count rate of about 10[sup 6] photons per second. A baseline debris-tracking system might couple this detector to a 16-cm aperture telescope. The detector yields x, y, and time information for each detected photon. When visualized in (x, y, t) space, photons from a fast-moving orbital object appear on a straight line. They can be distinguished from diffuse background photons, randomly scattered in the space, and star photons, which fall on a line with sidereal velocity. By searching for this unique signature, we can detect and track small debris objects. At dawn and dusk, a spherical object of 1.3 cm diameter at 400 km will reflect sunlight for an apparent magnitude of V [approx] 16. The baseline system would detect about 16 photons from this object as it crosses a 1 degree field of view in about 1 second. The Ene in (x, y, t) space will be significant in a diffuse background of [approximately] 10[sup 6] photons. We discuss the data processing scheme and line detection algorithm. The advantages of this technique are that one can (1) detect cm-size debris objects with a small telescope, and (2) detect debris moving with any direction and velocity. In this paper, we describe the progress in the development of detector and data acquisition system, the preparation for a field test for such a system, and the development and optimization of the data analysis algorithm. Detection sensitivity would currently be constrained by the capability of the data acquisition and the data processing systems, but further improvements could alleviate these bottlenecks.

  1. Integrated array of 2-μm antimonide-based single-photon counting devices.

    PubMed

    Diagne, M A; Greszik, M; Duerr, E K; Zayhowski, J J; Manfra, M J; Bailey, R J; Donnelly, J P; Turner, G W

    2011-02-28

    A 32x32 Sb-based Geiger-mode (GM) avalanche photodiode array, operating at 2 μm with three-dimensional imaging capability, is presented. The array is interfaced with a ROIC (readout integrated circuit) in which each pixel can detect a photon and record the arrival time. The hybridized unit for the 1000-element focal plane array, when operated at 77K with 1 V overbias range, shows an average dark count rate of 1.5 kHz. Three-dimensional range images of objects were acquired. PMID:21369250

  2. Photon counting x-ray CT with 3D holograms by CdTe line sensor

    NASA Astrophysics Data System (ADS)

    Koike, A.; Yomori, M.; Morii, H.; Neo, Y.; Aoki, T.; Mimura, H.

    2008-08-01

    The novel 3-D display system is required in the medical treatment field and non-destructive testing field. In these field, the X-ray CT system is used for obtaining 3-D information. However, there are no meaningful 3-D information in X-ray CT data, and there are also no practical 3-D display system. Therefore, in this paper, we propose an X-ray 3-D CT display system by combining a photon-counting X-ray CT system and a holographic image display system. The advantage of this system was demonstrated by comparing the holographic calculation time and recognizability of a reconstructed image.

  3. Detective quantum efficiency of photon-counting x-ray detectors

    SciTech Connect

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A.

    2015-01-15

    Purpose: Single-photon-counting (SPC) x-ray imaging has the potential to improve image quality and enable novel energy-dependent imaging methods. Similar to conventional detectors, optimizing image SPC quality will require systems that produce the highest possible detective quantum efficiency (DQE). This paper builds on the cascaded-systems analysis (CSA) framework to develop a comprehensive description of the DQE of SPC detectors that implement adaptive binning. Methods: The DQE of SPC systems can be described using the CSA approach by propagating the probability density function (PDF) of the number of image-forming quanta through simple quantum processes. New relationships are developed to describe PDF transfer through serial and parallel cascades to accommodate scatter reabsorption. Results are applied to hypothetical silicon and selenium-based flat-panel SPC detectors including the effects of reabsorption of characteristic/scatter photons from photoelectric and Compton interactions, stochastic conversion of x-ray energy to secondary quanta, depth-dependent charge collection, and electronic noise. Results are compared with a Monte Carlo study. Results: Depth-dependent collection efficiency can result in substantial broadening of photopeaks that in turn may result in reduced DQE at lower x-ray energies (20–45 keV). Double-counting interaction events caused by reabsorption of characteristic/scatter photons may result in falsely inflated image signal-to-noise ratio and potential overestimation of the DQE. Conclusions: The CSA approach is extended to describe signal and noise propagation through photoelectric and Compton interactions in SPC detectors, including the effects of escape and reabsorption of emission/scatter photons. High-performance SPC systems can be achieved but only for certain combinations of secondary conversion gain, depth-dependent collection efficiency, electronic noise, and reabsorption characteristics.

  4. Two-photon imaging of stem cells

    NASA Astrophysics Data System (ADS)

    Uchugonova, A.; Gorjup, E.; Riemann, I.; Sauer, D.; König, K.

    2008-02-01

    A variety of human and animal stem cells (rat and human adult pancreatic stem cells, salivary gland stem cells, dental pulpa stem cells) have been investigated by femtosecond laser 5D two-photon microscopy. Autofluorescence and second harmonic generation have been imaged with submicron spatial resolution, 270 ps temporal resolution, and 10 nm spectral resolution. In particular, NADH and flavoprotein fluorescence was detected in stem cells. Major emission peaks at 460nm and 530nm with typical mean fluorescence lifetimes of 1.8 ns and 2.0 ns, respectively, were measured using time-correlated single photon counting and spectral imaging. Differentiated stem cells produced the extracellular matrix protein collagen which was detected by SHG signals at 435 nm.

  5. A comparison of simulation tools for photon-counting spectral CT

    NASA Astrophysics Data System (ADS)

    Nasirudin, Radin A.; Penchev, Petar; Mei, Kai; Rummeny, Ernst J.; Fiebich, Martin; Noël, Peter B.

    2014-03-01

    Photon-counting detectors (PCD) not only have the advantage of providing spectral information but also offer high quantum efficiencies, producing high image quality in combination with a minimal amount of radiation dose. Due to the clinical unavailability of photon-counting CT, the need to evaluate different CT simulation tools for researching different applications for photon-counting systems is essential. In this work, we investigate two different methods to simulate PCD data: Monte-Carlo based simulation (MCS) and analytical based simulation (AS). The MCS is a general-purpose photon transport simulation based on EGSnrc C++ class library. The AS uses analytical forward-projection in combination with additional acquisition parameters. MCS takes into account all physical effects, but is computationally expensive (several days per CT acquisition). AS is fast (several minutes), but lacks the accurateness of MCS with regard to physical interactions. To evaluate both techniques an entrance spectra of 100kvp, a modified CTP515 module of the CatPhan 600 phantom, and a detector system with six thresholds was simulated. For evaluation the simulated projection data are decomposed via a maximum likelihood technique, and reconstructed via standard filtered-back projection (FBP). Image quality from both methods is subjectively and objectively assessed. Visually, the difference in the image quality was not significant. When further evaluated, the relative difference was below 4%. As a conclusion, both techniques offer different advantages, while at different stages of development the accelerated calculations via AS can make a significant difference. For the future one could foresee a combined method to join accuracy and speed.

  6. Photon Counting Detectors for the 1.0 - 2.0 Micron Wavelength Range

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    2004-01-01

    We describe results on the development of greater than 200 micron diameter, single-element photon-counting detectors for the 1-2 micron wavelength range. The technical goals include quantum efficiency in the range 10-70%; detector diameter greater than 200 microns; dark count rate below 100 kilo counts-per-second (cps), and maximum count rate above 10 Mcps.

  7. Polarimetric 3D integral imaging in photon-starved conditions.

    PubMed

    Carnicer, Artur; Javidi, Bahram

    2015-03-01

    We develop a method for obtaining 3D polarimetric integral images from elemental images recorded in low light illumination conditions. Since photon-counting images are very sparse, calculation of the Stokes parameters and the degree of polarization should be handled carefully. In our approach, polarimetric 3D integral images are generated using the Maximum Likelihood Estimation and subsequently reconstructed by means of a Total Variation Denoising filter. In this way, polarimetric results are comparable to those obtained in conventional illumination conditions. We also show that polarimetric information retrieved from photon starved images can be used in 3D object recognition problems. To the best of our knowledge, this is the first report on 3D polarimetric photon counting integral imaging. PMID:25836861

  8. Photon-counting technique for rapid fluorescence-decay measurement.

    PubMed

    Pack, S D; Renfro, M W; King, G B; Laurendeau, N M

    1998-08-01

    We report on a novel laser-induced fluorescence triple-integration method (LIFTIME) that is capable of making rapid, continuous fluorescence lifetime measurements by a unique photon-counting technique. The LIFTIME has been convolved with picosecond time-resolved laser-induced fluorescence, which employs a high-repetition-rate mode-locked laser, permitting the eventual monitoring of instantaneous species concentrations in turbulent flames. We verify the technique by application of the LIFTIME to two known fluorescence media, diphenyloxazole (PPO) and quinine sulfate monohydrate (QSM). PPO has a fluorescence lifetime of 1.28 ns, whereas QSM has a fluorescence lifetime that can be varied from 1.0 to 3.0 ns. From these liquid samples we demonstrate that fluorescence lifetime can currently be monitored at a sampling rate of up to 500 Hz with less than 10% uncertainty (1 sigma) . PMID:18087478

  9. Time-averaged photon-counting digital holography.

    PubMed

    Demoli, Nazif; Skenderović, Hrvoje; Stipčević, Mario

    2015-09-15

    Time-averaged holography has been using photo-emulsions (early stage) and digital photo-sensitive arrays (later) to record holograms. We extend the recording possibilities by utilizing a photon-counting camera, and we further investigate the possibility of obtaining accurate hologram reconstructions in rather severe experimental conditions. To achieve this, we derived an expression for fringe function comprising the main parameters affecting the hologram recording. Influence of the main parameters, namely the exposure time and the number of averaged holograms, is analyzed by simulations and experiments. It is demonstrated that taking long exposure times can be avoided by averaging over many holograms with the exposure times much shorter than the vibration cycle. Conditions in which signal-to-noise ratio in reconstructed holograms can be substantially increased are provided. PMID:26371907

  10. Development of a Photon Counting System for Differential Lidar Signal Detection

    NASA Technical Reports Server (NTRS)

    Elsayed-Ali, Hani

    1997-01-01

    Photon counting has been chosen as a means to extend the detection range of current airborne DIAL ozone measurements. Lidar backscattered return signals from the on and off-line lasers experience a significant exponential decay. To extract further data from the decaying ozone return signals, photon counting will be used to measure the low light levels, thus extending the detection range. In this application, photon counting will extend signal measurement where the analog return signal is too weak. The current analog measurement range is limited to approximately 25 kilometers from an aircraft flying at 12 kilometers. Photon counting will be able to exceed the current measurement range so as to follow the mid-latitude model of ozone density as a function of height. This report describes the development of a photon counting system. The initial development phase begins with detailed evaluation of individual photomultiplier tubes. The PMT qualities investigated are noise count rates, single electron response peaks, voltage versus gain values, saturation effects, and output signal linearity. These evaluations are followed by analysis of two distinctive tube base gating schemes. The next phase is to construct and operate a photon counting system in a laboratory environment. The laboratory counting simulations are used to determine optimum discriminator setpoints and to continue further evaluations of PMT properties. The final step in the photon counting system evaluation process is the compiling of photon counting measurements on the existing ozone DIAL laser system.

  11. Zero-dark-counting high-speed X-ray photon detection using a cerium-doped yttrium aluminum perovskite crystal and a small photomultiplier tube and its application to gadolinium imaging

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Satoshi; Sato, Eiichi; Oda, Yasuyuki; Nakamura, Ryuji; Oikawa, Hirobumi; Yabuushi, Tomonori; Ariga, Hisanori; Ehara, Shigeru

    2014-04-01

    X-ray photons are detected using a cerium-doped yttrium aluminum perovskite [YAP(Ce)] single-crystal scintillator with a decay time of 30 ns and a small-sized photomultiplier tube (SPMT). The negative output pulse from the SPMT is amplified by a high-speed inverse amplifier, and the event pulses are sent to a multichannel analyzer to measure X-ray spectra. The energy resolution of the spectrometer was 15% at 59.5 keV. We carried out photon-counting computed tomography using gadolinium media with a maximum rate of 650 kilo counts per second and confirmed the energy-dispersive effect with changes in the description voltage of event pulses using a high-speed comparator.

  12. Development of new photon-counting detectors for single-molecule fluorescence microscopy

    PubMed Central

    Michalet, X.; Colyer, R. A.; Scalia, G.; Ingargiola, A.; Lin, R.; Millaud, J. E.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Cheng, A.; Levi, M.; Aharoni, D.; Arisaka, K.; Villa, F.; Guerrieri, F.; Panzeri, F.; Rech, I.; Gulinatti, A.; Zappa, F.; Ghioni, M.; Cova, S.

    2013-01-01

    Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level. PMID:23267185

  13. Photon counting altimeter and lidar for air and spaceborne applications

    NASA Astrophysics Data System (ADS)

    Vacek, Michael; Michalek, Vojtech; Peca, Marek; Prochazka, Ivan; Blazej, Josef; Kodet, Jan

    2011-06-01

    We are presenting the concept and preliminary design of modular multipurpose device for space segment: single photon counting laser altimeter, atmospheric lidar, laser transponder and one way laser ranging receiver. For all the mentioned purposes, the same compact configuration of the device is appropriate. Overall estimated device weight should not exceed 5 kg with the power consumption below 10 W. The device will consists of three main parts, namely, receiver, transmitter and control and processing unit. As a transmitter a commercial solid state laser at 532 nm wavelength with 10 mW power will be used. The transmitter optics will have a diameter at most of 50 mm. The laser pulse width will be of hundreds of picoseconds order. For the laser altimeter and atmospheric lidar application, the repetition rate of 10 kHz is planned in order to obtain sufficient number of data for a distance value computing. The receiver device will be composed of active quenched Single Photon Avalanche Diode module, tiny optics, and narrow-band optical filter. The core part of the control and processing unit including high precision timing unit is implemented using single FPGA chip. The preliminary device concept includes considerations on energy balance, and statistical algorithms to meet all the mentioned purposes. Recently, the bread board version of the device is under construction in our labs. The concept, construction, and timing results will be presented.

  14. Pulse detection logic for multibin photon counting detectors: beyond the simple comparator

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2015-03-01

    Energy-discriminating, photon counting (EDPC) detectors have been proposed for CT systems for their spectral imaging capabilities, improved dose efficiency and higher spatial resolution. However, these advantages disappear at high flux because of the damaging effects of pulse pileup. From an information theoretic standpoint, spectral information is lost. The information loss is particularly high when we assume that the EDPC detector extracts information using a bank of comparators, as current EDPC detectors do. We analyze the use of alternative pulse detection logic which could preserve information in the presence of pileup. For example, the peak-only detector counts only a single event at the peak energy of multiple pulses which are piled up. We describe and evaluate five of these alternatives in simulation by numerically estimating the Cramer-Rao lower bound of the variance. At high flux, alternative mechanisms outperform comparators. In spectral imaging tasks, the variance reduction can be as high as an order of magnitude.

  15. Photon-counting lidars for contiguous high resolution topographic mapping of planets and moons

    NASA Astrophysics Data System (ADS)

    Degnan, John J.

    2007-08-01

    Planetary scientists have long expressed interest in obtaining globally contiguous, high resolution (few meter horizontal, decimeter vertical) 3D topographic maps of planets and moons. For example, the goal of NASA's LIST mission, scheduled for launch in the 2016-2020 time frame, is a globally contiguous, 5 meter resolution, topographic map of the Earth. Unfortunately, achieving such a capability through a simple scaling of the laser power and/or telescope aperture from prior art NASA laser altimeters (e.g. MOLA, GLAS, and MLA) is not practical. This is especially true of laser altimeters destined for orbit about distant planets or moons where instrument mass and prime power usage is severely constrained. Photon counting receivers permit each range measurement to be made with a single received photon, even in daylight, and the surface sampling rate of an orbiting altimeter can be increased by three to four orders of magnitude by emitting the available laser photons in a high frequency train of low energy pulses instead of a low frequency train of high energy pulses typical of past spaceborne lidars. The feasibility of the photon-counting approach in the presence of a strong solar background was first successfully demonstrated from a high altitude aircraft under NASA's Instrument Incubator Program in 2001. Sigma Space Corporation has subsequently developed a second generation of scanning 3D imaging and polarimetric lidars for use in small aircraft and Unmanned Aerial Vehicles (UAV's). Future space applications include: (1) decimeter vertical resolution topographic mapping of extraterrestrial terrain from orbiters, balloons, or other aerial vehicles for determining safe landing sites; (2) monitoring the terrain in real time and increasingly higher resolution during spacecraft descent; or (3) for truly contiguous few meter resolution imaging of planetary terrain on a global scale from orbit. Targets of particular interest to NASA are the Earth, Moon, Mars, the Jovian

  16. Material separation in x-ray CT with energy resolved photon-counting detectors

    SciTech Connect

    Wang Xiaolan; Meier, Dirk; Taguchi, Katsuyuki; Wagenaar, Douglas J.; Patt, Bradley E.; Frey, Eric C.

    2011-03-15

    Purpose: The objective of the study was to demonstrate that, in x-ray computed tomography (CT), more than two types of materials can be effectively separated with the use of an energy resolved photon-counting detector and classification methodology. Specifically, this applies to the case when contrast agents that contain K-absorption edges in the energy range of interest are present in the object. This separation is enabled via the use of recently developed energy resolved photon-counting detectors with multiple thresholds, which allow simultaneous measurements of the x-ray attenuation at multiple energies. Methods: To demonstrate this capability, we performed simulations and physical experiments using a six-threshold energy resolved photon-counting detector. We imaged mouse-sized cylindrical phantoms filled with several soft-tissue-like and bone-like materials and with iodine-based and gadolinium-based contrast agents. The linear attenuation coefficients were reconstructed for each material in each energy window and were visualized as scatter plots between pairs of energy windows. For comparison, a dual-kVp CT was also simulated using the same phantom materials. In this case, the linear attenuation coefficients at the lower kVp were plotted against those at the higher kVp. Results: In both the simulations and the physical experiments, the contrast agents were easily separable from other soft-tissue-like and bone-like materials, thanks to the availability of the attenuation coefficient measurements at more than two energies provided by the energy resolved photon-counting detector. In the simulations, the amount of separation was observed to be proportional to the concentration of the contrast agents; however, this was not observed in the physical experiments due to limitations of the real detector system. We used the angle between pairs of attenuation coefficient vectors in either the 5-D space (for non-contrast-agent materials using energy resolved photon-counting

  17. Small-angle scatter tomography with a photon-counting detector array

    NASA Astrophysics Data System (ADS)

    Pang, Shuo; Zhu, Zheyuan; Wang, Ge; Cong, Wenxiang

    2016-05-01

    Small-angle x-ray scatter imaging has a high intrinsic contrast in cancer research and other applications, and provides information on molecular composition and micro-structure of the tissue. In general, the implementations of small-angle coherent scatter imaging can be divided into two main categories: direct tomography and angular dispersive computerized tomography. Based on the recent development of energy-discriminative photon-counting detector array, here we propose a computerized tomography setup based on energy-dispersive measurement with a photon-counting detector array. To show merits of the energy-dispersive approach, we have performed numerical tests with a phantom containing various tissue types, in comparison with the existing imaging approaches. The results show that with an energy resolution of ~6 keV, the energy dispersive tomography system with a broadband tabletop x-ray would outperform the angular dispersive system, which makes the x-ray small-angle scatter tomography promising for high-specificity tissue imaging.

  18. Small-angle scatter tomography with a photon-counting detector array.

    PubMed

    Pang, Shuo; Zhu, Zheyuan; Wang, Ge; Cong, Wenxiang

    2016-05-21

    Small-angle x-ray scatter imaging has a high intrinsic contrast in cancer research and other applications, and provides information on molecular composition and micro-structure of the tissue. In general, the implementations of small-angle coherent scatter imaging can be divided into two main categories: direct tomography and angular dispersive computerized tomography. Based on the recent development of energy-discriminative photon-counting detector array, here we propose a computerized tomography setup based on energy-dispersive measurement with a photon-counting detector array. To show merits of the energy-dispersive approach, we have performed numerical tests with a phantom containing various tissue types, in comparison with the existing imaging approaches. The results show that with an energy resolution of ~6 keV, the energy dispersive tomography system with a broadband tabletop x-ray would outperform the angular dispersive system, which makes the x-ray small-angle scatter tomography promising for high-specificity tissue imaging. PMID:27082147

  19. Multiscale image restoration for photon imaging systems

    NASA Astrophysics Data System (ADS)

    Jammal, Ghada; Bijaoui, Albert

    1999-05-01

    Nuclear medicine imaging is a widely used commercial imaging modality which relies on photon detection as the basis of image formation. As a diagnosis tool, it is unique in that it documents organ function and structure. It is a way to gather information that may be otherwise unavailable or require surgery. Practical limitations on imaging time and the amount of activity that can be administered safely to patients are serious impediments to substantial further improvements in nuclear medicine imaging. Hence, improvements of image quality via optimized image processing represent a significant opportunity to advance the state-of-the-art int his field. We present in this paper a new multiscale image restoration method that is concerned with eliminating one of the major sources of error in nuclear medicine imaging, namely Poisson noise, which degrades images in both quantitative and qualitative senses and hinders image analysis and interpretation. The paper then quantitatively evaluates the performances of the proposed method.

  20. Exploration of maximum count rate capabilities for large-area photon counting arrays based on polycrystalline silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua

    2016-03-01

    Pixelated photon counting detectors with energy discrimination capabilities are of increasing clinical interest for x-ray imaging. Such detectors, presently in clinical use for mammography and under development for breast tomosynthesis and spectral CT, usually employ in-pixel circuits based on crystalline silicon - a semiconductor material that is generally not well-suited for economic manufacture of large-area devices. One interesting alternative semiconductor is polycrystalline silicon (poly-Si), a thin-film technology capable of creating very large-area, monolithic devices. Similar to crystalline silicon, poly-Si allows implementation of the type of fast, complex, in-pixel circuitry required for photon counting - operating at processing speeds that are not possible with amorphous silicon (the material currently used for large-area, active matrix, flat-panel imagers). The pixel circuits of two-dimensional photon counting arrays are generally comprised of four stages: amplifier, comparator, clock generator and counter. The analog front-end (in particular, the amplifier) strongly influences performance and is therefore of interest to study. In this paper, the relationship between incident and output count rate of the analog front-end is explored under diagnostic imaging conditions for a promising poly-Si based design. The input to the amplifier is modeled in the time domain assuming a realistic input x-ray spectrum. Simulations of circuits based on poly-Si thin-film transistors are used to determine the resulting output count rate as a function of input count rate, energy discrimination threshold and operating conditions.

  1. Monitoring cellular mechanosensing using time-correlated single photon counting

    NASA Astrophysics Data System (ADS)

    Tabouillot, Tristan; Gullapalli, Ramachandra; Butler, Peter J.

    2006-10-01

    Endothelial cells (ECs) convert mechanical stimuli into chemical signaling pathways to regulate their functions and properties. It is hypothesized that perturbation of cellular structures by force is accompanied by changes in molecular dynamics. In order to address these fundamental issues in mechanosensation and transduction, we have developed a hybrid multimodal microscopy - time-correlated single photon counting (TCSPC) spectroscopy system intended to determine time- and position dependent mechanically-induced changes in the dynamics of molecules in live cells as determined from fluorescence lifetimes and autocorrelation analysis (fluorescence correlation spectroscopy). Colocalization of cell-structures and mechanically-induced changes in molecular dynamics can be done in post-processing by comparing TCSPC data with 3-D models generated from total internal reflection fluorescence (TIRF), differential interference contrast (DIC), epifluorescence, and deconvolution. We present control experiments in which the precise location of the apical cell membrane with respect to a confocal probe is assessed using information obtainable only from TCSPC. Such positional accuracy of TCSPC measurements is essential to understanding the role of the membrane in mechanotransduction. We predict that TCSPC will become a useful method to obtain high temporal and spatial resolution information on localized mechanical phenomena in living endothelial cells. Such insight into mechanotransduction phenomenon may uncover the origins of mechanically-related diseases such as atherosclerosis.

  2. Characterization of a photon-counting ICCD prototype

    NASA Astrophysics Data System (ADS)

    Bergamini, Paolo; Bonelli, Giuseppe; Poletto, Luca; Tanzi, Enrico G.; Uslenghi, Michela; Tondello, Giuseppe

    1998-11-01

    The result obtained in the course of the characterization of a photon-counting ICCD prototype. The detector consists of a 40 mm diameter, Z stack, high gain microchannel plate intensifier, endowed with a RbTe photocathode. The intensifier electron cascade is transduced, via a phosphor screen and a 1:3.6 fiber optics reducer, into a 3 by 3 pixel, quasi-gaussian charge distribution on a 512 by 512 pixel format CCD matrix with square pixels of 15 micrometers . The CCD is read out, in the frame-transfer mode, through a single output amplifier at a frequency of 20 MHz. The data flow is acquired serially and fed to a virtual shift- register system, as to generate a 3 by 3 pixel even sash that sweeps dynamically the CCD matrix at the 50 ns clock pace. Each and every events has is searched for the presence of events whose integral charge distribution lie within set threshold levels, and satisfy given morphological rules, i.e. a single-peaked charge profile. The centroid coordinates of identified events are then determined with sub-pixel accuracy and subsequently stored in an external, high resolution memory. Detective quantum efficiency, spatial resolution and dynamic range obtained for the prototype system in the 150-600 nm spectral domain, are given and discussed, together with the up-graded performance expected for a second-generation prototype, presently being assembled.

  3. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    NASA Astrophysics Data System (ADS)

    Zang, A.; Anton, G.; Ballabriga, R.; Bisello, F.; Campbell, M.; Celi, J. C.; Fauler, A.; Fiederle, M.; Jensch, M.; Kochanski, N.; Llopart, X.; Michel, N.; Mollenhauer, U.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W.; Michel, T.

    2015-04-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation was carried out to use the Dosepix detector as a kVp-meter, that means to determine the applied acceleration voltage from measured X-ray tubes spectra.

  4. Polarimetric, Two-Color, Photon-Counting Laser Altimeter Measurements of Forest Canopy Structure

    NASA Technical Reports Server (NTRS)

    Harding, David J.; Dabney, Philip W.; Valett, Susan

    2011-01-01

    Laser altimeter measurements of forest stands with distinct structures and compositions have been acquired at 532 nm (green) and 1064 nm (near-infrared) wavelengths and parallel and perpendicular polarization states using the Slope Imaging Multi-polarization Photon Counting Lidar (SIMPL). The micropulse, single photon ranging measurement approach employed by SIMPL provides canopy structure measurements with high vertical and spatial resolution. Using a height distribution analysis method adapted from conventional, 1064 nm, full-waveform lidar remote sensing, the sensitivity of two parameters commonly used for above-ground biomass estimation are compared as a function of wavelength. The results for the height of median energy (HOME) and canopy cover are for the most part very similar, indicating biomass estimations using lidars operating at green and near-infrared wavelengths will yield comparable estimates. The expected detection of increasing depolarization with depth into the canopies due to volume multiple-scattering was not observed, possibly due to the small laser footprint and the small detector field of view used in the SIMPL instrument. The results of this work provide pathfinder information for NASA's ICESat-2 mission that will employ a 532 nm, micropulse, photon counting laser altimeter.

  5. Development of a single-photon-counting camera with use of a triple-stacked micro-channel plate.

    PubMed

    Yasuda, Naruomi; Suzuki, Hitoshi; Katafuchi, Tetsuro

    2016-01-01

    At the quantum-mechanical level, all substances (not merely electromagnetic waves such as light and X-rays) exhibit wave–particle duality. Whereas students of radiation science can easily understand the wave nature of electromagnetic waves, the particle (photon) nature may elude them. Therefore, to assist students in understanding the wave–particle duality of electromagnetic waves, we have developed a photon-counting camera that captures single photons in two-dimensional images. As an image intensifier, this camera has a triple-stacked micro-channel plate (MCP) with an amplification factor of 10(6). The ultra-low light of a single photon entering the camera is first converted to an electron through the photoelectric effect on the photocathode. The electron is intensified by the triple-stacked MCP and then converted to a visible light distribution, which is measured by a high-sensitivity complementary metal oxide semiconductor image sensor. Because it detects individual photons, the photon-counting camera is expected to provide students with a complete understanding of the particle nature of electromagnetic waves. Moreover, it measures ultra-weak light that cannot be detected by ordinary low-sensitivity cameras. Therefore, it is suitable for experimental research on scintillator luminescence, biophoton detection, and similar topics. PMID:26486629

  6. SU-E-I-77: A Noise Reduction Technique for Energy-Resolved Photon-Counting Detectors

    SciTech Connect

    Lam Ng, A; Ding, H; Cho, H; Molloi, S

    2014-06-01

    Purpose: Finding the optimal energy threshold setting for an energy-resolved photon-counting detector has an important impact on the maximization of contrast-to-noise-ratio (CNR). We introduce a noise reduction method to enhance CNR by reducing the noise in each energy bin without altering the average gray levels in the projection and image domains. Methods: We simulated a four bin energy-resolved photon-counting detector based on Si with a 10 mm depth of interaction. TASMIP algorithm was used to simulate a spectrum of 65 kVp with 2.7 mm Al filter. A 13 mm PMMA phantom with hydroxyapatite and iodine at different concentrations (100, 200 and 300 mg/ml for HA, and 2, 4, and 8 mg/ml for Iodine) was used. Projection-based and Image-based energy weighting methods were used to generate weighted images. A reference low noise image was used for noise reduction purposes. A Gaussian-like weighting function which computes the similarity between pixels of interest was calculated from the reference image and implemented on a pixel by pixel basis for the noisy images. Results: CNR improvement compared to different methods (Charge-Integrated, Photon-Counting and Energy-Weighting) and after noise reduction was highly task-dependent. The CNR improvement with respect to the Charge-Integrated CNR for hydroxyapatite and iodine were 1.8 and 1.5, respectively. In each of the energy bins, the noise was reduced by approximately factor of two without altering their respective average gray levels. Conclusion: The proposed noise reduction technique for energy-resolved photon-counting detectors can significantly reduce image noise. This technique can be used as a compliment to the current energy-weighting methods in CNR optimization.

  7. High event rate ROICs (HEROICs) for astronomical UV photon counting detectors

    NASA Astrophysics Data System (ADS)

    Harwit, Alex; France, Kevin; Argabright, Vic; Franka, Steve; Freymiller, Ed; Ebbets, Dennis

    2014-07-01

    The next generation of astronomical photocathode / microchannel plate based UV photon counting detectors will overcome existing count rate limitations by replacing the anode arrays and external cabled electronics with anode arrays integrated into imaging Read Out Integrated Circuits (ROICs). We have fabricated a High Event Rate ROIC (HEROIC) consisting of a 32 by 32 array of 55 μm square pixels on a 60 μm pitch. The pixel sensitivity (threshold) has been designed to be globally programmable between 1 × 103 and 1 × 106 electrons. To achieve the sensitivity of 1 × 103 electrons, parasitic capacitances had to be minimized and this was achieved by fabricating the ROIC in a 65 nm CMOS process. The ROIC has been designed to support pixel counts up to 4096 events per integration period at rates up to 1 MHz per pixel. Integration time periods can be controlled via an external signal with a time resolution of less than 1 microsecond enabling temporally resolved imaging and spectroscopy of astronomical sources. An electrical injection port is provided to verify functionality and performance of each ROIC prior to vacuum integration with a photocathode and microchannel plate amplifier. Test results on the first ROICs using the electrical injection port demonstrate sensitivities between 3 × 103 and 4 × 105 electrons are achieved. A number of fixes are identified for a re-spin of this ROIC.

  8. Dual energy CT with photon counting and dual source systems: comparative evaluation

    NASA Astrophysics Data System (ADS)

    Atak, Haluk; Shikhaliev, Polad M.

    2015-12-01

    Recently, new dual energy (DE) computed tomography (CT) systems—dual source CT (DSCT) and photon counting CT (PCCT) have been introduced. Although these systems have the same clinical targets, they have major differences as they use dual and single kVp acquisitions and different x-ray detection and energy resolution concepts. The purpose of this study was theoretical and experimental comparisons of DSCT and PCCT. The DSCT Siemens Somatom Flash was modeled for simulation study. The PCCT had the same configuration as DSCT except it used a photon counting detector. The soft tissue phantoms with 20, 30, and 38 cm diameters included iodine, CaCO3, adipose, and water samples. The dose (air kerma) was 14 mGy for all studies. The low and high energy CT data were simulated at 80 kVp and 140 kVp for DSCT, and in 20-58 keV and 59-120 keV energy ranges for PCCT, respectively. The experiments used Somatom Flash DSCT system and PCCT system based on photon counting CdZnTe detector with 2  ×  256 pixel configuration and 1  ×  1 mm2 pixels size. In simulated general CT images, PCCT provided higher contrast-to-noise ratio (CNR) than DSCT with 0.4/0.8 mm Sn filters. The PCCT with K-edge filter provided higher CNR than the PCCT with a Cu filter, and DSCT with 0.4 mm Sn filter provided higher CNR than the DSCT with a 0.8 mm Sn filter. In simulated DE subtracted images, CNR of the DSCT was comparable to the PCCT with a Cu filter. However, DE PCCT with Ho a K-edge filter provided 30-40% higher CNR than the DE DSCT with 0.4/0.8 mm Sn filters. The experimental PCCT provided higher CNR in general imaging compared to the DSCT. In experimental DE subtracted images, the DSCT provided higher CNR than the PCCT with a Cu filter. However, experimental CNR with DE PCCT with K-edge filter was 15% higher than in DE DSCT, which is less than 30-40% increase predicted by the simulation study. It is concluded that ideal PCCT can provide substantial advantages over ideal

  9. Dual energy CT with photon counting and dual source systems: comparative evaluation.

    PubMed

    Atak, Haluk; Shikhaliev, Polad M

    2015-12-01

    Recently, new dual energy (DE) computed tomography (CT) systems-dual source CT (DSCT) and photon counting CT (PCCT) have been introduced. Although these systems have the same clinical targets, they have major differences as they use dual and single kVp acquisitions and different x-ray detection and energy resolution concepts. The purpose of this study was theoretical and experimental comparisons of DSCT and PCCT. The DSCT Siemens Somatom Flash was modeled for simulation study. The PCCT had the same configuration as DSCT except it used a photon counting detector. The soft tissue phantoms with 20, 30, and 38 cm diameters included iodine, CaCO3, adipose, and water samples. The dose (air kerma) was 14 mGy for all studies. The low and high energy CT data were simulated at 80 kVp and 140 kVp for DSCT, and in 20-58 keV and 59-120 keV energy ranges for PCCT, respectively. The experiments used Somatom Flash DSCT system and PCCT system based on photon counting CdZnTe detector with 2  ×  256 pixel configuration and 1  ×  1 mm(2) pixels size. In simulated general CT images, PCCT provided higher contrast-to-noise ratio (CNR) than DSCT with 0.4/0.8 mm Sn filters. The PCCT with K-edge filter provided higher CNR than the PCCT with a Cu filter, and DSCT with 0.4 mm Sn filter provided higher CNR than the DSCT with a 0.8 mm Sn filter. In simulated DE subtracted images, CNR of the DSCT was comparable to the PCCT with a Cu filter. However, DE PCCT with Ho a K-edge filter provided 30-40% higher CNR than the DE DSCT with 0.4/0.8 mm Sn filters. The experimental PCCT provided higher CNR in general imaging compared to the DSCT. In experimental DE subtracted images, the DSCT provided higher CNR than the PCCT with a Cu filter. However, experimental CNR with DE PCCT with K-edge filter was 15% higher than in DE DSCT, which is less than 30-40% increase predicted by the simulation study. It is concluded that ideal PCCT can provide substantial advantages over ideal

  10. Spectral response compensation for photon-counting clinical x-ray CT using sinogram restoration

    NASA Astrophysics Data System (ADS)

    Srivastava, Somesh; Cammin, Jochen; Fung, George S. K.; Tsui, Benjamin M. W.; Taguchi, Katsuyuki

    2012-03-01

    The x-ray spectrum recorded by a photon-counting x-ray detector (PCXD) is distorted due to the following physical effects which are independent of the count rate: finite energy-resolution, Compton scattering, charge-sharing, and Kescape. If left uncompensated, the spectral response (SR) of a PCXD due to the above effects will result in image artifacts and inaccurate material decomposition. We propose a new SR compensation (SRC) algorithm using the sinogram restoration approach. The two main contributions of our proposed algorithm are: (1) our algorithm uses an efficient conjugate gradient method in which the first and second derivatives of the cost functions are directly calculated analytically, whereas a slower optimization method that requires numerous function evaluations was used in other work; (2) our algorithm guarantees convergence by combining the non-linear conjugate gradient method with line searches that satisfy Wolfe conditions, whereas the algorithm in other work is not backed by theorems from optimization theory to guarantee convergence. In this study, we validate the performance of the proposed algorithm using computer simulations. The bias was reduced to zero from 11%, and image artifacts were removed from the reconstructed images. Quantitative K-edge imaging in possible only when SR compensation is done.

  11. Improving the counting efficiency in time-correlated single photon counting experiments by dead-time optimization

    NASA Astrophysics Data System (ADS)

    Peronio, P.; Acconcia, G.; Rech, I.; Ghioni, M.

    2015-11-01

    Time-Correlated Single Photon Counting (TCSPC) has been long recognized as the most sensitive method for fluorescence lifetime measurements, but often requiring "long" data acquisition times. This drawback is related to the limited counting capability of the TCSPC technique, due to pile-up and counting loss effects. In recent years, multi-module TCSPC systems have been introduced to overcome this issue. Splitting the light into several detectors connected to independent TCSPC modules proportionally increases the counting capability. Of course, multi-module operation also increases the system cost and can cause space and power supply problems. In this paper, we propose an alternative approach based on a new detector and processing electronics designed to reduce the overall system dead time, thus enabling efficient photon collection at high excitation rate. We present a fast active quenching circuit for single-photon avalanche diodes which features a minimum dead time of 12.4 ns. We also introduce a new Time-to-Amplitude Converter (TAC) able to attain extra-short dead time thanks to the combination of a scalable array of monolithically integrated TACs and a sequential router. The fast TAC (F-TAC) makes it possible to operate the system towards the upper limit of detector count rate capability (˜80 Mcps) with reduced pile-up losses, addressing one of the historic criticisms of TCSPC. Preliminary measurements on the F-TAC are presented and discussed.

  12. Improving the counting efficiency in time-correlated single photon counting experiments by dead-time optimization.

    PubMed

    Peronio, P; Acconcia, G; Rech, I; Ghioni, M

    2015-11-01

    Time-Correlated Single Photon Counting (TCSPC) has been long recognized as the most sensitive method for fluorescence lifetime measurements, but often requiring "long" data acquisition times. This drawback is related to the limited counting capability of the TCSPC technique, due to pile-up and counting loss effects. In recent years, multi-module TCSPC systems have been introduced to overcome this issue. Splitting the light into several detectors connected to independent TCSPC modules proportionally increases the counting capability. Of course, multi-module operation also increases the system cost and can cause space and power supply problems. In this paper, we propose an alternative approach based on a new detector and processing electronics designed to reduce the overall system dead time, thus enabling efficient photon collection at high excitation rate. We present a fast active quenching circuit for single-photon avalanche diodes which features a minimum dead time of 12.4 ns. We also introduce a new Time-to-Amplitude Converter (TAC) able to attain extra-short dead time thanks to the combination of a scalable array of monolithically integrated TACs and a sequential router. The fast TAC (F-TAC) makes it possible to operate the system towards the upper limit of detector count rate capability (∼80 Mcps) with reduced pile-up losses, addressing one of the historic criticisms of TCSPC. Preliminary measurements on the F-TAC are presented and discussed. PMID:26628115

  13. Improving the counting efficiency in time-correlated single photon counting experiments by dead-time optimization

    SciTech Connect

    Peronio, P.; Acconcia, G.; Rech, I.; Ghioni, M.

    2015-11-15

    Time-Correlated Single Photon Counting (TCSPC) has been long recognized as the most sensitive method for fluorescence lifetime measurements, but often requiring “long” data acquisition times. This drawback is related to the limited counting capability of the TCSPC technique, due to pile-up and counting loss effects. In recent years, multi-module TCSPC systems have been introduced to overcome this issue. Splitting the light into several detectors connected to independent TCSPC modules proportionally increases the counting capability. Of course, multi-module operation also increases the system cost and can cause space and power supply problems. In this paper, we propose an alternative approach based on a new detector and processing electronics designed to reduce the overall system dead time, thus enabling efficient photon collection at high excitation rate. We present a fast active quenching circuit for single-photon avalanche diodes which features a minimum dead time of 12.4 ns. We also introduce a new Time-to-Amplitude Converter (TAC) able to attain extra-short dead time thanks to the combination of a scalable array of monolithically integrated TACs and a sequential router. The fast TAC (F-TAC) makes it possible to operate the system towards the upper limit of detector count rate capability (∼80 Mcps) with reduced pile-up losses, addressing one of the historic criticisms of TCSPC. Preliminary measurements on the F-TAC are presented and discussed.

  14. Initial results from a prototype whole-body photon-counting computed tomography system

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Leng, S.; Jorgensen, S. M.; Li, Z.; Gutjahr, R.; Chen, B.; Duan, X.; Halaweish, A. F.; Yu, L.; Ritman, E. L.; McCollough, C. H.

    2015-03-01

    X-ray computed tomography (CT) with energy-discriminating capabilities presents exciting opportunities for increased dose efficiency and improved material decomposition analyses. However, due to constraints imposed by the inability of photon-counting detectors (PCD) to respond accurately at high photon flux, to date there has been no clinical application of PCD-CT. Recently, our lab installed a research prototype system consisting of two x-ray sources and two corresponding detectors, one using an energy-integrating detector (EID) and the other using a PCD. In this work, we report the first third-party evaluation of this prototype CT system using both phantoms and a cadaver head. The phantom studies demonstrated several promising characteristics of the PCD sub-system, including improved longitudinal spatial resolution and reduced beam hardening artifacts, relative to the EID sub-system. More importantly, we found that the PCD sub-system offers excellent pulse pileup control in cases of x-ray flux up to 550 mA at 140 kV, which corresponds to approximately 2.5×1011 photons per cm2 per second. In an anthropomorphic phantom and a cadaver head, the PCD sub-system provided image quality comparable to the EID sub-system for the same dose level. Our results demonstrate the potential of the prototype system to produce clinically-acceptable images in vivo.

  15. Initial steps toward the realization of large area arrays of single photon counting pixels based on polycrystalline silicon TFTs

    NASA Astrophysics Data System (ADS)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Jiang, Hao; Street, Robert A.; Lu, Jeng Ping

    2014-03-01

    The thin-film semiconductor processing methods that enabled creation of inexpensive liquid crystal displays based on amorphous silicon transistors for cell phones and televisions, as well as desktop, laptop and mobile computers, also facilitated the development of devices that have become ubiquitous in medical x-ray imaging environments. These devices, called active matrix flat-panel imagers (AMFPIs), measure the integrated signal generated by incident X rays and offer detection areas as large as ~43×43 cm2. In recent years, there has been growing interest in medical x-ray imagers that record information from X ray photons on an individual basis. However, such photon counting devices have generally been based on crystalline silicon, a material not inherently suited to the cost-effective manufacture of monolithic devices of a size comparable to that of AMFPIs. Motivated by these considerations, we have developed an initial set of small area prototype arrays using thin-film processing methods and polycrystalline silicon transistors. These prototypes were developed in the spirit of exploring the possibility of creating large area arrays offering single photon counting capabilities and, to our knowledge, are the first photon counting arrays fabricated using thin film techniques. In this paper, the architecture of the prototype pixels is presented and considerations that influenced the design of the pixel circuits, including amplifier noise, TFT performance variations, and minimum feature size, are discussed.

  16. Investigation of linear-mode photon-counting HgCdTe APDs for astronomical observations

    NASA Astrophysics Data System (ADS)

    Bryan, Marta L.; Chapman, George; Hall, Donald N. B.; Jack, Michael D.; Jacobson, Shane M.; Wehner, Justin

    2012-07-01

    The unique linear avalanche properties of HgCdTe preserve the Poisson statistics of the incoming photons, opening up new opportunities for GHz bandwidth LADAR and space communications applications. Raytheon has developed and previously reported (1) unique linear mode photon counting arrays based on combining advanced HgCdTe linear mode APDs with their high gain SB415B readout. Their use of HgCdTe APDs preserves the Poisson statistics of the incoming photons, enabling (noiseless) photon counting. This technology is of great potential interest to infrared astronomy but requires extension of noiseless linear HgCdTe avalanching down to much lower bandwidths (100 to 0.001 Hz) with corresponding reductions in dark count rate. We have hybridized the SB415B readout to SWIR HgCdTe APDs optimized for low dark count rate and have characterized their photon counting properties at bandwidths down to 1 KHz. As bandwidth is reduced, the performance becomes limited by the intrinsic properties of the SB415B readout, particularly readout glow, stability and 1/f noise. We report the results of these measurements and the status of hybrid arrays utilizing a newly developed readout which draws on Raytheon’s astronomical readout heritage, specifically the Virgo charge integrating source follower, as a path to much lower dark count rate photon counting operation.

  17. Performance of in-pixel circuits for photon counting arrays (PCAs) based on polycrystalline silicon TFTs.

    PubMed

    Liang, Albert K; Koniczek, Martin; Antonuk, Larry E; El-Mohri, Youcef; Zhao, Qihua; Street, Robert A; Lu, Jeng Ping

    2016-03-01

    Photon counting arrays (PCAs), defined as pixelated imagers which measure the absorbed energy of x-ray photons individually and record this information digitally, are of increasing clinical interest. A number of PCA prototypes with a 1 mm pixel-to-pixel pitch have recently been fabricated with polycrystalline silicon (poly-Si)-a thin-film technology capable of creating monolithic imagers of a size commensurate with human anatomy. In this study, analog and digital simulation frameworks were developed to provide insight into the influence of individual poly-Si transistors on pixel circuit performance-information that is not readily available through empirical means. The simulation frameworks were used to characterize the circuit designs employed in the prototypes. The analog framework, which determines the noise produced by individual transistors, was used to estimate energy resolution, as well as to identify which transistors contribute the most noise. The digital framework, which analyzes how well circuits function in the presence of significant variations in transistor properties, was used to estimate how fast a circuit can produce an output (referred to as output count rate). In addition, an algorithm was developed and used to estimate the minimum pixel pitch that could be achieved for the pixel circuits of the current prototypes. The simulation frameworks predict that the analog component of the PCA prototypes could have energy resolution as low as 8.9% full width at half maximum (FWHM) at 70 keV; and the digital components should work well even in the presence of significant thin-film transistor (TFT) variations, with the fastest component having output count rates as high as 3 MHz. Finally, based on conceivable improvements in the underlying fabrication process, the algorithm predicts that the 1 mm pitch of the current PCA prototypes could be reduced significantly, potentially to between ~240 and 290 μm. PMID:26878107

  18. Performance of in-pixel circuits for photon counting arrays (PCAs) based on polycrystalline silicon TFTs

    NASA Astrophysics Data System (ADS)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Street, Robert A.; Lu, Jeng Ping

    2016-03-01

    Photon counting arrays (PCAs), defined as pixelated imagers which measure the absorbed energy of x-ray photons individually and record this information digitally, are of increasing clinical interest. A number of PCA prototypes with a 1 mm pixel-to-pixel pitch have recently been fabricated with polycrystalline silicon (poly-Si)—a thin-film technology capable of creating monolithic imagers of a size commensurate with human anatomy. In this study, analog and digital simulation frameworks were developed to provide insight into the influence of individual poly-Si transistors on pixel circuit performance—information that is not readily available through empirical means. The simulation frameworks were used to characterize the circuit designs employed in the prototypes. The analog framework, which determines the noise produced by individual transistors, was used to estimate energy resolution, as well as to identify which transistors contribute the most noise. The digital framework, which analyzes how well circuits function in the presence of significant variations in transistor properties, was used to estimate how fast a circuit can produce an output (referred to as output count rate). In addition, an algorithm was developed and used to estimate the minimum pixel pitch that could be achieved for the pixel circuits of the current prototypes. The simulation frameworks predict that the analog component of the PCA prototypes could have energy resolution as low as 8.9% full width at half maximum (FWHM) at 70 keV; and the digital components should work well even in the presence of significant thin-film transistor (TFT) variations, with the fastest component having output count rates as high as 3 MHz. Finally, based on conceivable improvements in the underlying fabrication process, the algorithm predicts that the 1 mm pitch of the current PCA prototypes could be reduced significantly, potentially to between ~240 and 290 μm.

  19. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    PubMed Central

    Ding, Huanjun; Cho, Hyo-Min; Barber, William C.; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  20. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    SciTech Connect

    Ding, Huanjun; Cho, Hyo-Min; Molloi, Sabee; Barber, William C.; Iwanczyk, Jan S.

    2014-12-15

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  1. SWAD: inherent photon counting performance of amorphous selenium multi-well avalanche detector

    NASA Astrophysics Data System (ADS)

    Stavro, Jann; Goldan, Amir H.; Zhao, Wei

    2016-03-01

    Photon counting detectors (PCDs) have the potential to improve x-ray imaging, however they are still hindered by several performance limitations and high production cost. By using amorphous Selenium (a-Se) the cost of PCDs can be significantly reduced compared to crystalline materials and enable large area detector fabrication. To overcome the problem of low carrier mobility and low charge conversion gain in a-Se, we are developing a novel direct conversion a- Se field-Shaping multi-Well Avalanche Detector (SWAD). SWAD circumvents the charge transport limitation by using a Frisch grid built within the readout circuit, reducing charge collection time to ~200 ns. Field shaping permits depth independent avalanche gain in wells, resulting in total conversion gain that is comparable to Si and CdTe. In the present work we investigate the effects of charge sharing and energy loss to understand the inherent photon counting performance for SWAD at x-ray energies used in breast imaging applications (20-50keV). The energy deposition profile for each interacting x-ray was determined with Monte Carlo simulation. For the energy ranges we are interested in, photoelectric interaction dominates, with a k-fluorescence yield of approximately 60%. Using a monoenergetic 45 keV beam incident on a target pixel in 400um of a-Se, our results show that only 20.42 % and 22.4 % of primary interacting photons have kfluorescence emissions which escape the target pixel for 100um and 85um pixel sizes respectively, demonstrating SWAD's potential for high spatial resolution applications.

  2. Physical characterization of a scanning photon counting digital mammography system based on Si-strip detectors

    SciTech Connect

    Aaslund, Magnus; Cederstroem, Bjoern; Lundqvist, Mats; Danielsson, Mats

    2007-06-15

    The physical performance of a scanning multislit full field digital mammography system was determined using basic image quality parameters. The system employs a direct detection detector comprised of linear silicon strip sensors in an edge-on geometry connected to photon counting electronics. The pixel size is 50 {mu}m and the field of view 24x26 cm{sup 2}. The performance was quantified using the presampled modulation transfer function, the normalized noise power spectrum and the detective quantum efficiency (DQE). Compared to conventional DQE methods, the scanning geometry with its intrinsic scatter rejection poses additional requirements on the measurement setup, which are investigated in this work. The DQE of the photon counting system was found to be independent of the dose level to the detector in the 7.6-206 {mu}Gy range. The peak DQE was 72% and 73% in the scan and slit direction, respectively, measured with a 28 kV W-0.5 mm Al anode-filter combination with an added 2 mm Al filtration.

  3. Physical characterization of a scanning photon counting digital mammography system based on Si-strip detectors.

    PubMed

    Aslund, Magnus; Cederström, Björn; Lundqvist, Mats; Danielsson, Mats

    2007-06-01

    The physical performance of a scanning multislit full field digital mammography system was determined using basic image quality parameters. The system employs a direct detection detector comprised of linear silicon strip sensors in an edge-on geometry connected to photon counting electronics. The pixel size is 50 microm and the field of view 24 x 26 cm2. The performance was quantified using the presampled modulation transfer function, the normalized noise power spectrum and the detective quantum efficiency (DQE). Compared to conventional DQE methods, the scanning geometry with its intrinsic scatter rejection poses additional requirements on the measurement setup, which are investigated in this work. The DQE of the photon counting system was found to be independent of the dose level to the detector in the 7.6-206 microGy range. The peak DQE was 72% and 73% in the scan and slit direction, respectively, measured with a 28 kV W-0.5 mm Al anode-filter combination with an added 2 mm Al filtration. PMID:17654894

  4. 4x4 Individually Addressable InGaAs APD Arrays Optimized for Photon Counting Applications

    NASA Technical Reports Server (NTRS)

    Gu, Y.; Wu, X.; Wu, S.; Choa, F. S.; Yan, F.; Shu, P.; Krainak, M.

    2007-01-01

    InGaAs APDs with improved photon counting characteristics were designed and fabricated and their performance improvements were observed. Following the results, a 4x4 individually addressable APD array was designed, fabricated, and results are reported.

  5. Gluing Lidar Signals Detected in Analog-to-Digital and Photon Counting Modes

    NASA Astrophysics Data System (ADS)

    Feng, Chang-Zhong; Liu, Bing-Yi; Liu, Jin-Tao; Wu, Song-Hua

    2016-06-01

    Lidar is one of the most effective tools for atmospheric remote sensing. For a ground-based lidar system, the backscattered light usually has large dynamic range. Photon-counting mode has the capability to measure weak signal from high altitude, while Analog-to-Digital mode with better linearity is good at measuring strong signal at low altitude. In some lidar systems, atmospheric return signal is measured in both Analog-to-Digital and Photon Counting modes and combined into an entire profile by using a gluing algorithm. A method for gluing atmospheric return signal is developed and tested. For the Photon Counting signal, the saturation characteristics are analyzed to calculate the coefficients for correction. Then the Analog-to-Digital and Photon Counting signals are glued by a weighted average process. Results show the glued signal is reliable at both low and high altitudes.

  6. τ-SPAD: a new red sensitive single-photon counting module

    NASA Astrophysics Data System (ADS)

    Kell, Gerald; Bülter, Andreas; Wahl, Michael; Erdmann, Rainer

    2011-05-01

    Single Photon Avalanche Diodes (SPADs) are valuable detectors in numerous photon counting applications in the fields of quantum physics, quantum communication, astronomy, metrology and biomedical analytics. They typically feature a much higher photon detection efficiency than photomultiplier tubes, most importantly in the red to near-infrared range of the spectrum. Very often SPADs are combined with Time-Correlated Single Photon Counting (TCSPC) electronics for time-resolved data acquisition and the temporal resolution ("jitter") of a SPAD is therefore one of the key parameters for selecting a detector. We show technical data and first application results from a new type of red sensitive single photon counting module ("τ-SPAD"), which is targeted at timing applications, most prominently in the area of Single Molecule Spectroscopy (SMS). The τ-SPAD photon counting module combines Laser Components' ultra-low noise VLoK silicon avalanche photodiode with specially developed quenching and readout electronics from PicoQuant. It features an extremely high photon detection efficiency of 75% at 670 nm and can be used to detect single photons over the 400 nm to 1100 nm wavelength range. The timing jitter of the output of the τ-SPAD can be as low as 350 ps, making it suitable for time-resolved fluorescence detection applications. First photon coincidence correlation measurements also show that the typical breakdown flash of SPADs is of comparably low intensity for these new SPADs.

  7. Digital filter based on the Fisher linear discriminant to reduce dead-time paralysis in photon counting

    NASA Astrophysics Data System (ADS)

    Sullivan, Shane Z.; Schmitt, Paul D.; DeWalt, Emma L.; Muir, Ryan D.; Simpson, Garth J.

    2013-03-01

    Photon counting represents the Poisson limit in signal to noise, but can often be complicated in imaging applications by detector paralysis, arising from the finite rise / fall time of the detector upon photon absorption. We present here an approach for reducing dead-time by generating a deconvolution digital filter based on optimizing the Fisher linear discriminant. In brief, two classes are defined, one in which a photon event is initiated at the origin of the digital filter, and one in the photon event is non-coincident with the filter origin. Linear discriminant analysis (LDA) is then performed to optimize the digital filter that best resolves the coincident and non-coincident training set data.1 Once trained, implementation of the filter can be performed quickly, significantly reducing dead-time issues and measurement bias in photon counting applications. Experimental demonstration of the LDA-filter approach was performed in fluorescence microscopy measurements using a highly convolved impulse response with considerable ringing. Analysis of the counts supports the capabilities of the filter in recovering deconvolved impulse responses under the conditions considered in the study. Potential additional applications and possible limitations are also considered.

  8. HgCdTe APD-based linear-mode photon counting components and ladar receivers

    NASA Astrophysics Data System (ADS)

    Jack, Michael; Wehner, Justin; Edwards, John; Chapman, George; Hall, Donald N. B.; Jacobson, Shane M.

    2011-05-01

    Linear mode photon counting (LMPC) provides significant advantages in comparison with Geiger Mode (GM) Photon Counting including absence of after-pulsing, nanosecond pulse to pulse temporal resolution and robust operation in the present of high density obscurants or variable reflectivity objects. For this reason Raytheon has developed and previously reported on unique linear mode photon counting components and modules based on combining advanced APDs and advanced high gain circuits. By using HgCdTe APDs we enable Poisson number preserving photon counting. A metric of photon counting technology is dark count rate and detection probability. In this paper we report on a performance breakthrough resulting from improvement in design, process and readout operation enabling >10x reduction in dark counts rate to ~10,000 cps and >104x reduction in surface dark current enabling long 10 ms integration times. Our analysis of key dark current contributors suggest that substantial further reduction in DCR to ~ 1/sec or less can be achieved by optimizing wavelength, operating voltage and temperature.

  9. Cascaded-systems analyses of photon-counting x-ray detectors

    NASA Astrophysics Data System (ADS)

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A.

    2013-03-01

    Single-photon counting (SPC) x-ray imaging has the potential to improve image quality and enable new advanced energy-dependent methods. Recently, cascaded systems analysis (CSA) has been extended to the description of the detective quantum efficiency (DQE) of SPC detectors. In this article we apply the new CSA approach to the description of the DQE of hypothetical direct-conversion selenium (Sc) and cadmium zinc telluride (CdZnTc) detectors including the effects of poly-energetic x-ray spectra, stochastic conversion of x-ray energy to electron­ hole (c-h) pairs, depth-dependent collection of e-h pairs using the Hecht relation, additive electronic noise, and thresholding. Comparisons arc made to an energy-integrating model. For this simple model, with the exception of thick (1- 10 mm) Sc-bascd convertors, we found that the SPC DQE was 5-20 %greater than that of the energy­ integrating model. This trend was tnw even when additive noise was included in the SPC model and excluded from the energy-integrating model. However, the DQE of SPC detectors with poor collection efficiency (such as thick (<1 mm) Sc detectors) and high levels of additive noise can be degraded by 40-90 % for all energies and x-ray spectra considered. vVhile photon-counting approaches arc not yet ready for routine diagnostic imaging, the available DQE is equal to or higher than that of conventional energy-integrating detectors under a wide range of x-ray energies and convertor thickness. However, like energy-integrating detectors, the DQE of SPC detectors will be degraded by the combination of poor collection efficiency and high levels of additive noise.

  10. Photon counting CT of the liver with dual-contrast enhancement

    NASA Astrophysics Data System (ADS)

    Muenzel, Daniela; Proksa, Roland; Daerr, Heiner; Fingerle, Alexander A.; Pfeiffer, Franz; Rummeny, Ernst J.; Noël, Peter B.

    2016-03-01

    The diagnostic quality of photon counting computed tomography (PCCT) is one the unexplored areas in medical imaging; at the same time, it seems to offer the opportunity as a fast and highly sensitive diagnostic tool. Today, conventional computed tomography (CT) is the standard imaging technique for diagnostic evaluation of the parenchyma of the liver. However, considerations on radiation dose are still an important factor in CT liver imaging, especially with regard to multi-phase contrast enhanced CT. In this work we report on a feasibility study for multi-contrast PCCT for simultaneous liver imaging at different contrast phases. PCCT images of the liver were simulated for a contrast-enhanced examination performed with two different contrast agents (CA), iodine (CA 1) and gadolinium (CA 2). PCCT image acquisition was performed at the time point with portal venous contrast distribution of CA 1 and arterial contrast phase for CA 2. Therefore, a contrast injection protocol was planned with sequential injection of CA 1 and CA 2 to provide a time dependent difference in contrast distribution of both CAs in the vessels and parenchyma of the liver. Native, arterial, and portal venous contrast enhanced images have been calculated based on the spectral separation of PCCT. In simulated PCCT images, we were able to differentiate between the tissue enhancement of CA 1 and CA 2. The distribution of both CA within the parenchyma of the liver was illustrated with perfusion maps for CA 1 and CA 2. In addition, virtual noncontrast enhanced image were calculated. In conclusion, multi-phase PCCT imaging of the liver based on a single scan is a novel approach for spectral PCCT imaging, offering detailed contrast information in a single scan volume and a significant reduction of radiation dose.

  11. Photon-counting gamma camera based on columnar CsI(Tl) optically coupled to a back-illuminated CCD

    PubMed Central

    Miller, Brian W.; Barber, H. Bradford; Barrett, Harrison H.; Chen, Liying; Taylor, Sean J.

    2010-01-01

    Recent advances have been made in a new class of CCD-based, single-photon-counting gamma-ray detectors which offer sub-100 μm intrinsic resolutions.1–7 These detectors show great promise in small-animal SPECT and molecular imaging and exist in a variety of configurations. Typically, a columnar CsI(Tl) scintillator or a radiography screen (Gd2O2S:Tb) is imaged onto the CCD. Gamma-ray interactions are seen as clusters of signal spread over multiple pixels. When the detector is operated in a charge-integration mode, signal spread across pixels results in spatial-resolution degradation. However, if the detector is operated in photon-counting mode, the gamma-ray interaction position can be estimated using either Anger (centroid) estimation or maximum-likelihood position estimation resulting in a substantial improvement in spatial resolution.2 Due to the low-light-level nature of the scintillation process, CCD-based gamma cameras implement an amplification stage in the CCD via electron multiplying (EMCCDs)8–10 or via an image intensifier prior to the optical path.1 We have applied ideas and techniques from previous systems to our high-resolution LumiSPECT detector.11, 12 LumiSPECT is a dual-modality optical/SPECT small-animal imaging system which was originally designed to operate in charge-integration mode. It employs a cryogenically cooled, high-quantum-efficiency, back-illuminated large-format CCD and operates in single-photon-counting mode without any intermediate amplification process. Operating in photon-counting mode, the detector has an intrinsic spatial resolution of 64 μm compared to 134 μm in integrating mode. PMID:20890397

  12. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    NASA Astrophysics Data System (ADS)

    Kumpová, I.; Vavřík, D.; Fíla, T.; Koudelka, P.; Jandejsek, I.; Jakůbek, J.; Kytýř, D.; Zlámal, P.; Vopálenský, M.; Gantar, A.

    2016-02-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical simulations.

  13. Single photon counting for space based quantum experiments

    NASA Astrophysics Data System (ADS)

    Chandrasekara, R.; Tang, Z. K.; Tan, Y. C.; Cheng, C.; Wildfeuer, C.; Ling, A.

    2015-05-01

    We present a software based control system for Geiger-mode avalanche photodiodes (GM-APDs) that enables constant photon detection efficiency irrespective of the diode's junction temperature. Furthermore, we demonstrate that this control system enables passively quenched GM-APDs to double the rate of photon detection events before saturation compared to the standard control method that fixes the junction temperature and applied bias voltage. We present data demonstrating the robustness of the GM-APD control system when tested in near-space conditions using a correlated photon pair source carried by a weather balloon to an altitude of 35.5 km.

  14. Photon-Counting Multikilohertz Microlaser Altimeters for Airborne and Spaceborne Topographic Measurements

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2000-01-01

    We consider the optimum design of photon-counting microlaser altimeters operating from airborne and spaceborne platforms under both day and night conditions. Extremely compact Q-switched microlaser transmitters produce trains of low energy pulses at multi-kHz rates and can easily generate subnanosecond pulse-widths for precise ranging. To guide the design, we have modeled the solar noise background and developed simple algorithms, based on Post-Detection Poisson Filtering (PDPF), to optimally extract the weak altimeter signal from a high noise background during daytime operations. Practical technology issues, such as detector and/or receiver dead times, have also been considered in the analysis. We describe an airborne prototype, being developed under NASA's instrument Incubator Program, which is designed to operate at a 10 kHz rate from aircraft cruise altitudes up to 12 km with laser pulse energies on the order of a few microjoules. We also analyze a compact and power efficient system designed to operate from Mars orbit at an altitude of 300 km and sample the Martian surface at rates up to 4.3 kHz using a 1 watt laser transmitter and an 18 cm telescope. This yields a Power-Aperture Product of 0.24 W-square meter, corresponding to a value almost 4 times smaller than the Mars Orbiting Laser Altimeter (0. 88W-square meter), yet the sampling rate is roughly 400 times greater (4 kHz vs 10 Hz) Relative to conventional high power laser altimeters, advantages of photon-counting laser altimeters include: (1) a more efficient use of available laser photons providing up to two orders of magnitude greater surface sampling rates for a given laser power-telescope aperture product; (2) a simultaneous two order of magnitude reduction in the volume, cost and weight of the telescope system; (3) the unique ability to spatially resolve the source of the surface return in a photon counting mode through the use of pixellated or imaging detectors; and (4) improved vertical and

  15. Wide-field time-correlated single-photon counting (TCSPC) lifetime microscopy with microsecond time resolution.

    PubMed

    Hirvonen, Liisa M; Festy, Frederic; Suhling, Klaus

    2014-10-01

    A 1 MHz frame rate complementary metal-oxide semiconductor (CMOS) camera was used in combination with an image intensifier for wide-field time-correlated single-photon counting (TCSPC) imaging. The system combines an ultrafast frame rate with single-photon sensitivity and was employed on a fluorescence microscope to image decays of ruthenium compound Ru(dpp) with lifetimes from around 1 to 5 μs. A submicrowatt excitation power over the whole field of view is sufficient for this approach, and compatibility with live-cell imaging was demonstrated by imaging europium-containing beads with a lifetime of 570 μs in living HeLa cells. A standard two-photon excitation scanning fluorescence lifetime imaging (FLIM) system was used to independently verify the lifetime for the europium beads. This approach brings together advantageous features for time-resolved live-cell imaging such as low excitation intensity, single-photon sensitivity, ultrafast camera frame rates, and short acquisition times. PMID:25360938

  16. A Quantification Method for Breast Tissue Thickness and Iodine Concentration Using Photon-Counting Detector.

    PubMed

    Han, Seokmin

    2015-10-01

    The purpose of contrast-enhanced digital mammography (CEDM) is to facilitate detection and characterization of the lesions in the breast using intravenous injection of an iodinated contrast agent. CEDM produces iodine images with gray levels proportional to iodine concentration at each pixel, which can be considered as quantification of iodine. While dual-energy CEDM requires an accurate knowledge of the thickness of compressed breast for the quantification, it is known that the accuracy of the built-in thickness measurement is not satisfactory. Triple-energy CEDM, which can provide a third image, can alleviate the limitation of dual-energy CEDM. If triple exposure technique is applied, it can lead to increased risk of motion artifact. An energy-resolving photon-counting detector (PCD) that can acquire multispectral X-ray images can reduce the risk of motion artifact. In this research, an easily implementable method for iodine quantification in breast imaging was suggested, and it was applied to the images of breast phantom with various iodine concentrations. The iodine concentrations in breast phantom simulate lesions filled with different iodine concentrations in the breast. The result shows that the proposed method can quantify the iodine concentrations in breast phantom accurately. PMID:25708894

  17. Four-dimensional multiphoton microscopy with time-correlated single-photon counting.

    PubMed

    Schönle, A; Glatz, M; Hell, S W

    2000-12-01

    We report on the implementation of fluorescence-lifetime imaging in multiphoton excitation microscopy that uses PC-compatible modules for time-correlated single-photon counting. Four-dimensional data stacks are produced with each pixel featuring fluorescence-decay curves that consist of as many as 4096 bins. Fluorescence lifetime(s) and their amplitude(s) are extracted by statistical methods at each pixel or in arbitrarily defined regions of interest. When employing an avalanche photodiode the width of the temporal response function is 420 ps. Although this response confines the temporal resolution to values greater than several hundreds of picoseconds, the lifetime precision is determined by the signal-to-noise ratio and can be in the range of tens of picosconds. Lifetime changes are visualized in pulsed-laser-deposited fluorescent layers as well as in cyan fluorescent proteins that transfer energy to yellow fluorescent proteins in live mammalian cells. PMID:18354639

  18. Entangled-photon compressive ghost imaging

    SciTech Connect

    Zerom, Petros; Chan, Kam Wai Clifford; Howell, John C.; Boyd, Robert W.

    2011-12-15

    We have experimentally demonstrated high-resolution compressive ghost imaging at the single-photon level using entangled photons produced by a spontaneous parametric down-conversion source and using single-pixel detectors. For a given mean-squared error, the number of photons needed to reconstruct a two-dimensional image is found to be much smaller than that in quantum ghost imaging experiments employing a raster scan. This procedure not only shortens the data acquisition time, but also suggests a more economical use of photons for low-light-level and quantum image formation.

  19. Simulation of autocorrelation function and photon counting distribution in fluorescence fluctuation spectroscopy.

    PubMed

    Shingaryov, Igor P; Skakun, Victor V; Apanasovich, Vladimir V

    2014-01-01

    In modern fluorescence fluctuation spectroscopy, the autocorrelation function and photon counting distribution are two widely used statistical characteristics of the measured fluctuating fluorescence intensity signal. Applying special analysis methods such as fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) to these properties, it is possible to recover values of different parameters of fluorescent molecules such as the concentration, diffusion coefficient, molecular brightness, and kinetic rate constants. The development of new analysis methods is senseless without testing their validity, accuracy, and robustness. The most appropriate check of a method is its application to experimental data. However, sometimes it is more convenient and easier to verify a method on simulated data. Simulation is also useful for better understanding the processes that were modeled during the development of analysis methods. Here, we present two simulation models providing an autocorrelation function and photon counting distribution of a sequence of photon arrival times detected in fluorescence fluctuation spectroscopy. PMID:24108653

  20. Development and construction of the photon counting receiver for the European laser time transfer space mission

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Blazej, Josef; Kodet, Jan; Brinek, Jan

    2011-06-01

    We are presenting the work progress and recent results in the development and construction of the photon counting receiver, which is prepared for the European Laser Timing experiment in space. It is an optical link prepared in the frame of the ESA mission Atomic Clock Ensemble in Space. The ultra short laser pulses will be used to synchronize the time scales ground to space with picosecond precision. To minimize the timing biases the photon counting concept of the space born receiver was selected. The requirements put on the photon counting receiver are quite challenging in terms of the long term detection delay stability, wide operation temperature range, extremely high background photon flux and others. Recently, the bread board version of the detector has been constructed and is under extensive test in our labs. The concept and construction will be presented along with the achieved device parameters.

  1. Contrast-enhanced spectral mammography with a photon-counting detector

    SciTech Connect

    Fredenberg, Erik; Hemmendorff, Magnus; Cederstroem, Bjoern; Aaslund, Magnus; Danielsson, Mats

    2010-05-15

    Purpose: Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. The authors have investigated a photon-counting spectral imaging system with two energy bins for contrast-enhanced mammography. System optimization and the potential benefit compared to conventional non-energy-resolved absorption imaging was studied. Methods: A framework for system characterization was set up that included quantum and anatomical noise and a theoretical model of the system was benchmarked to phantom measurements. Results: Optimal combination of the energy-resolved images corresponded approximately to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging in the phantom study. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, yielded only a minute improvement. In a simulation of a clinically more realistic case, spectral imaging was predicted to perform approximately 30% better than absorption imaging for an average glandularity breast with an average level of anatomical noise. For dense breast tissue and a high level of anatomical noise, however, a rise in detectability by a factor of 6 was predicted. Another {approx}70%-90% improvement was found to be within reach for an optimized system. Conclusions: Contrast-enhanced spectral mammography is feasible and beneficial with the current system, and there is room for additional improvements. Inclusion of anatomical noise is essential for optimizing spectral imaging systems.

  2. A fast readout and processing electronics for photon counting intensified charge-coupled device

    NASA Astrophysics Data System (ADS)

    Bergamini, P.; Bonelli, G.; Tanzi, E. G.; Uslenghi, M.; Poletto, L.; Tondello, G.

    2000-04-01

    The design features and the performances of a prototype photon counting imaging detector, being developed for the international ultraviolet (UV) space mission Spectrum UV, are presented. The photon counter is an intensified charge coupled device (ICCD) in which photon events, generating an electron cascade through a high gain microchannel plate (MCP) stack, are transduced, via a phosphor screen and a fiber optics reducer, into a 3×3 pixel2, quasi-Gaussian charge distributions on a 15×15 μm2,512×512 pixel2 format CCD matrix. The CCD is read out in the frame-transfer mode at a pixel rate of 19.75 MHz, and its output data flow is acquired serially as to generate a 3×3 pixel2 event sash that sweeps dynamically the CCD matrix at the 50.6 ns rate of the readout clock. Each and every event sash is searched for the presence of events whose charge content lie within proper limits and satisfy a given set of morphological rules, i.e., a single peak charge profile. The centroid coordinates of identified events are determined with subpixel accuracy (up to a 210 bin/pixel) and subsequently stored as photon list coordinate pairs. The data acquisition and processing system is based on field programmable gate array technology and is capable of satisfying the requirements of real-time operation. The modular construction of the data acquisition and processing electronics provides a great deal of flexibility for supporting advancements in CCD readout techniques (multiple output and higher clocking speed) and of MCPs (larger formats, smaller pore, and higher dynamic range). The results of the performance verification of the data acquisition and processing system integrated with a laboratory ICCD prototype are presented and discussed.

  3. Photon-efficient imaging with a single-photon camera

    NASA Astrophysics Data System (ADS)

    Shin, Dongeek; Xu, Feihu; Venkatraman, Dheera; Lussana, Rudi; Villa, Federica; Zappa, Franco; Goyal, Vivek K.; Wong, Franco N. C.; Shapiro, Jeffrey H.

    2016-06-01

    Reconstructing a scene's 3D structure and reflectivity accurately with an active imaging system operating in low-light-level conditions has wide-ranging applications, spanning biological imaging to remote sensing. Here we propose and experimentally demonstrate a depth and reflectivity imaging system with a single-photon camera that generates high-quality images from ~1 detected signal photon per pixel. Previous achievements of similar photon efficiency have been with conventional raster-scanning data collection using single-pixel photon counters capable of ~10-ps time tagging. In contrast, our camera's detector array requires highly parallelized time-to-digital conversions with photon time-tagging accuracy limited to ~ns. Thus, we develop an array-specific algorithm that converts coarsely time-binned photon detections to highly accurate scene depth and reflectivity by exploiting both the transverse smoothness and longitudinal sparsity of natural scenes. By overcoming the coarse time resolution of the array, our framework uniquely achieves high photon efficiency in a relatively short acquisition time.

  4. Photon-efficient imaging with a single-photon camera

    PubMed Central

    Shin, Dongeek; Xu, Feihu; Venkatraman, Dheera; Lussana, Rudi; Villa, Federica; Zappa, Franco; Goyal, Vivek K.; Wong, Franco N. C.; Shapiro, Jeffrey H.

    2016-01-01

    Reconstructing a scene's 3D structure and reflectivity accurately with an active imaging system operating in low-light-level conditions has wide-ranging applications, spanning biological imaging to remote sensing. Here we propose and experimentally demonstrate a depth and reflectivity imaging system with a single-photon camera that generates high-quality images from ∼1 detected signal photon per pixel. Previous achievements of similar photon efficiency have been with conventional raster-scanning data collection using single-pixel photon counters capable of ∼10-ps time tagging. In contrast, our camera's detector array requires highly parallelized time-to-digital conversions with photon time-tagging accuracy limited to ∼ns. Thus, we develop an array-specific algorithm that converts coarsely time-binned photon detections to highly accurate scene depth and reflectivity by exploiting both the transverse smoothness and longitudinal sparsity of natural scenes. By overcoming the coarse time resolution of the array, our framework uniquely achieves high photon efficiency in a relatively short acquisition time. PMID:27338821

  5. Photon-efficient imaging with a single-photon camera.

    PubMed

    Shin, Dongeek; Xu, Feihu; Venkatraman, Dheera; Lussana, Rudi; Villa, Federica; Zappa, Franco; Goyal, Vivek K; Wong, Franco N C; Shapiro, Jeffrey H

    2016-01-01

    Reconstructing a scene's 3D structure and reflectivity accurately with an active imaging system operating in low-light-level conditions has wide-ranging applications, spanning biological imaging to remote sensing. Here we propose and experimentally demonstrate a depth and reflectivity imaging system with a single-photon camera that generates high-quality images from ∼1 detected signal photon per pixel. Previous achievements of similar photon efficiency have been with conventional raster-scanning data collection using single-pixel photon counters capable of ∼10-ps time tagging. In contrast, our camera's detector array requires highly parallelized time-to-digital conversions with photon time-tagging accuracy limited to ∼ns. Thus, we develop an array-specific algorithm that converts coarsely time-binned photon detections to highly accurate scene depth and reflectivity by exploiting both the transverse smoothness and longitudinal sparsity of natural scenes. By overcoming the coarse time resolution of the array, our framework uniquely achieves high photon efficiency in a relatively short acquisition time. PMID:27338821

  6. Image-based red cell counting for wild animals blood.

    PubMed

    Mauricio, Claudio R M; Schneider, Fabio K; Dos Santos, Leonilda Correia

    2010-01-01

    An image-based red blood cell (RBC) automatic counting system is presented for wild animals blood analysis. Images with 2048×1536-pixel resolution acquired on an optical microscope using Neubauer chambers are used to evaluate RBC counting for three animal species (Leopardus pardalis, Cebus apella and Nasua nasua) and the error found using the proposed method is similar to that obtained for inter observer visual counting method, i.e., around 10%. Smaller errors (e.g., 3%) can be obtained in regions with less grid artifacts. These promising results allow the use of the proposed method either as a complete automatic counting tool in laboratories for wild animal's blood analysis or as a first counting stage in a semi-automatic counting tool. PMID:21096766

  7. Silicon Geiger-mode avalanche photodiode arrays for photon-starved imaging

    NASA Astrophysics Data System (ADS)

    Aull, Brian F.

    2015-05-01

    Geiger-mode avalanche photodiodes (GMAPDs) are capable of detecting single photons. They can be operated to directly trigger all-digital circuits, so that detection events are digitally counted or time stamped in each pixel. An imager based on an array of GMAPDs therefore has zero readout noise, enabling quantum-limited sensitivity for photon-starved imaging applications. In this review, we discuss devices developed for 3D imaging, wavefront sensing, and passive imaging.

  8. Indirect-detection single-photon-counting x-ray detector for breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Kaercher, Joerg; Durst, Roger

    2016-03-01

    X-ray mammography is a crucial screening tool for early identification of breast cancer. However, the overlap of anatomical features present in projection images often complicates the task of correctly identifying suspicious masses. As a result, there has been increasing interest in acquisition of volumetric information through digital breast tomosynthesis (DBT) which, compared to mammography, offers the advantage of depth information. Since DBT requires acquisition of many projection images, it is desirable that the noise in each projection image be dominated by the statistical noise of the incident x-ray quanta and not by the additive noise of the imaging system (referred to as quantum-limited imaging) and that the cumulative dose be as low as possible (e.g., no more than for a mammogram). Unfortunately, the electronic noise (~2000 electrons) present in current DBT systems based on active matrix, flat-panel imagers (AMFPIs) is still relatively high compared with modest x-ray gain of the a-Se and CsI:Tl x-ray converters often used. To overcome the modest signal-to-noise ratio (SNR) limitations of current DBT systems, we have developed a large-area x-ray imaging detector with the combination of an extremely low noise (~20 electrons) active-pixel CMOS and a specially designed high resolution scintillator. The high sensitivity and low noise of such system provides better SNR by at least an order of magnitude than current state-of-art AMFPI systems and enables x-ray indirect-detection single photon counting (SPC) at mammographic energies with the potential of dose reduction.

  9. Portable, Photon-Counting Cameras for Observing Occultations, Eclipses, and Transits

    NASA Astrophysics Data System (ADS)

    Gulbis, A. A. S.; Elliot, J. L.; Person, M. J.; Babcock, B. A.; Pasachoff, J. M.; Souza, S. P.

    2005-08-01

    Occultations, eclipses, and transits can produce data of the highest spatial resolution for any Earth-based observing method and are thus used to determine planetary diameters and probe atmospheric profiles. Observing these events requires precise geographic and temporal information. For occultations, the size of the shadow on the Earth is a function of the occulting body's size and distance. This shadow is significantly smaller than the Earth's angular diameter for objects in which we are particularly interested (Triton, Pluto, Charon, and Kuiper belt objects). Therefore, instruments capable of traveling to a predicted shadow path increase the opportunities for observing events. Having multiple systems is also beneficial, since multiple chords must be observed to derive a body's shape. We have constructed four portable observing systems (POETS; Portable Occultation Eclipse and Transit Systems), which can be transported as carry-on luggage and attached to portable or fixed telescopes. The cameras have E2V CCD97 sensors: a 512 x 512 array of 16 micron pixels, back illuminated, with > 90% QE. The CCDs are thermoelectrically cooled to ˜80 degrees C in air. Readout modes are 1, 3, 5 and 10 MHz, with a maximum data rate of 32 full frames per second. Binning and subframes increase the rate to a few hundred frames per second. The lowest achievable read noise in conventional mode is approximately 6 electrons. One of the two amplifiers employs electron multiplying gain, which effectively reduces the read noise to sub-electron levels and allows the cameras to be used for counting photons. Event timing is done using a state-of-the-art GPS receiver to trigger images. We present details of the systems, an analysis of the use of photon counting in the field of small body occultations, and sample occultation data. Funding for this work is provided by NASA Planetary Astronomy grants NNG04GE48G, NNG04GF25G, and NNH04ZSS001N.

  10. Fluorescence detection of single molecules using pulsed near-field optical excitation and time correlated photon counting

    SciTech Connect

    Ambrose, W.P.; Goodwin, P.M.; Martin, J.C.; Keller, R.A.

    1994-03-01

    Pulsed excitation, time correlated single photon counting and time gated detection are used in near-field optical microscopy to enhance fluorescence images and measure the fluorescence lifetimes of single molecules of Rhodamine 6G on silica surfaces. Time gated detection is used to reject prompt scattered background and to improve the image signal to noise ratio. The excited state lifetime of a single Rhodamine 6G molecule is found to depend on the position of the near-field probe. We attribute the lifetime variations to spontaneous emission rate alterations by the fluorescence reflected from and quenching by the aluminum coated probe.

  11. The detective quantum efficiency of photon-counting x-ray detectors using cascaded-systems analyses

    SciTech Connect

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A.

    2013-04-15

    Purpose: Single-photon counting (SPC) x-ray imaging has the potential to improve image quality and enable new advanced energy-dependent methods. The purpose of this study is to extend cascaded-systems analyses (CSA) to the description of image quality and the detective quantum efficiency (DQE) of SPC systems. Methods: Point-process theory is used to develop a method of propagating the mean signal and Wiener noise-power spectrum through a thresholding stage (required to identify x-ray interaction events). The new transfer relationships are used to describe the zero-frequency DQE of a hypothetical SPC detector including the effects of stochastic conversion of incident photons to secondary quanta, secondary quantum sinks, additive noise, and threshold level. Theoretical results are compared with Monte Carlo calculations assuming the same detector model. Results: Under certain conditions, the CSA approach can be applied to SPC systems with the additional requirement of propagating the probability density function describing the total number of image-forming quanta through each stage of a cascaded model. Theoretical results including DQE show excellent agreement with Monte Carlo calculations under all conditions considered. Conclusions: Application of the CSA method shows that false counts due to additive electronic noise results in both a nonlinear image signal and increased image noise. There is a window of allowable threshold values to achieve a high DQE that depends on conversion gain, secondary quantum sinks, and additive noise.

  12. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials.

    PubMed

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D; Hennessy, John J; Carver, Alexander G; Jones, Todd J; Goodsall, Timothy M; Hamden, Erika T; Suvarna, Puneet; Bulmer, J; Shahedipour-Sandvik, F; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L Douglas

    2016-01-01

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100-300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399

  13. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

    PubMed Central

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D.; Hennessy, John J.; Carver, Alexander G.; Jones, Todd J.; Goodsall, Timothy M.; Hamden, Erika T.; Suvarna, Puneet; Bulmer, J.; Shahedipour-Sandvik, F.; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L. Douglas

    2016-01-01

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100–300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399

  14. FPGA-based gating and logic for multichannel single photon counting

    SciTech Connect

    Pooser, Raphael C; Earl, Dennis Duncan; Evans, Philip G; Williams, Brian P; Schaake, Jason; Humble, Travis S

    2012-01-01

    We present results characterizing multichannel InGaAs single photon detectors utilizing gated passive quenching circuits (GPQC), self-differencing techniques, and field programmable gate array (FPGA)-based logic for both diode gating and coincidence counting. Utilizing FPGAs for the diode gating frontend and the logic counting backend has the advantage of low cost compared to custom built logic circuits and current off-the-shelf detector technology. Further, FPGA logic counters have been shown to work well in quantum key distribution (QKD) test beds. Our setup combines multiple independent detector channels in a reconfigurable manner via an FPGA backend and post processing in order to perform coincidence measurements between any two or more detector channels simultaneously. Using this method, states from a multi-photon polarization entangled source are detected and characterized via coincidence counting on the FPGA. Photons detection events are also processed by the quantum information toolkit for application testing (QITKAT)

  15. Experiment and modeling of scintillation photon-counting and current measurement for PMT gain stabilization

    NASA Astrophysics Data System (ADS)

    Stein, Jürgen; Kreuels, Achim; Kong, Yong; Lentering, Ralf; Ruhnau, Kai; Scherwinski, Falko; Wolf, Andreas

    2015-05-01

    Scintillation detectors with light readout are used for gamma, x-ray and particle detection. Where applicable, photon counting is principally superior to charge integration with regard to accuracy. Most scintillation detectors, however, generate a large number of photons per microsecond for a typical scintillation pulse resulting in significant amounts of pileup. This precludes the separation, and thus direct counting of single photoelectron charges. The algorithm developed and presented in this paper quantifies the coarseness of fast digitized current tracks to construct a photon count dependent, however, electron gain independent charge calculation function. Underlying photoelectrons are interpreted as noise components and retrieved by a modified statistical variance calculation. This method is verified for modeled scintillation pulses and scintillation detector data. It provides a new means for PMT gain stabilization in digital multi-channel analyzers by pulse current analysis.

  16. Reconfigurable Computing As an Enabling Technology for Single-Photon-Counting Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Powell, Wesley; Hicks, Edward; Pinchinat, Maxime; Dabney, Philip; McGarry, Jan; Murray, Paul

    2003-01-01

    Single-photon-counting laser altimetry is a new measurement technique offering significant advantages in vertical resolution, reducing instrument size, mass, and power, and reducing laser complexity as compared to analog or threshold detection laser altimetry techniques. However, these improvements come at the cost of a dramatically increased requirement for onboard real-time data processing. Reconfigurable computing has been shown to offer considerable performance advantages in performing this processing. These advantages have been demonstrated on the Multi-KiloHertz Micro-Laser Altimeter (MMLA), an aircraft based single-photon-counting laser altimeter developed by NASA Goddard Space Flight Center with several potential spaceflight applications. This paper describes how reconfigurable computing technology was employed to perform MMLA data processing in real-time under realistic operating constraints, along with the results observed. This paper also expands on these prior results to identify concepts for using reconfigurable computing to enable spaceflight single-photon-counting laser altimeter instruments.

  17. The Los Alamos Photon Counting Detector Debris Detection Project: An update

    SciTech Connect

    Ho, Cheng; Priedhorsky, W.; Baron, M.; Casperson, D.

    1995-03-01

    At Los Alamos, the authors have been pursuing a project for space debris detection using a photon counting detector with high spatial and time resolution. By exploiting the three dimensionality of the high quality data, they expect to be able to detect an orbiting object of size below 2 cm, using a moderate size telescope and state-of-the-art photon counting detector. A working tube has been used to collect skyward looking data during dusk. In this paper, they discuss the progress in the development of detector and data acquisition system. They also report on analysis and results of these data sets.

  18. A high resolution laser ranging system based on time-correlated single-photon counting technology

    NASA Astrophysics Data System (ADS)

    Yang, Yixin; Wang, Huanqin; Huang, Zhe; Cao, Yangyang; Gui, Huaqiao

    2014-12-01

    Laser ranging has become an important method for both distance measurements and acquisition of threedimensional (3D) images. In this paper, a laser ranging system based on Time-Correlated Single-Photon Counting technology (TCSPC) is developed. A Geiger-mode avalanche photodiode (G-APD), which has the ability of detecting single-photon events, is used to capture the weak light scattered from the long-range target. In order to improve the ranging resolution of TCSPC based measurement system, a high repetition frequency of subnanosecond narrow pulse generator circuit based on the avalanche effect of RF-BJT is designed and applied as the light source. Moreover, some optimized optical light designs have been done to improve the system signal to noise rate (SNR), including using a special aspherical lens as projecting lens, adopting a telephoto camera lens with small view angle and short depth of field before detector. Experimental tests for evaluation of the laser raging system performance are described. As a means of echo signal analysis, three different algorithms have been introduced, in which the cross-correlation algorithm was demonstrated to be the most effective algorithm to determining the round trip time to a target, even based on histograms with a significant amount of background noise photons. It was found that centimeter ranging resolution can be achieved thanks to the use of Time-to-Digital Converter (TDC) with picosecond resolution and the Cross-Correlation algorithm. The proposed laser ranging system has advantages of high range resolution, short response time and simple structure, which was potential applications for 3D object recognition, computer vision, reverse engineering and virtual reality.

  19. Photon-counting phase-modulation fluorometer for lifetime measurements

    NASA Astrophysics Data System (ADS)

    Iwata, Tetsuo; Hori, Akio; Kamada, Takeshi

    2001-05-01

    We propose a phase-modulation fluorometer that is applicable to a very weak fluorescence intensity level. In order to counter the single-photon event situation, we have introduced a combination of a time-to-amplitude converter (TAC) and a pulse height analyzer (PHA) to the phase- modulation fluorometer, the combination of which is usually used in the single-photon correlation method to measure fluorescence decay waveforms by pulsed excitation. In the proposed fluorometer, a sinusoidal response waveform that is shifted in phase over the reference one is obtained statistically as a histogram in the PHA memory and then the fluorescence lifetime can be calculated by the same procedure as the conventional analog phase-modulation method. The excitation light source used was a current- modulated ultraviolet light-emitting diode (UV LED), whose center wavelength was 370 nm and its spectral bandwidth was 10 nm. Fluorescence lifetimes of 17.6 ns and 5.7 ns obtained for 10 ppb quinine sulfate in 0.1 N H2SO4 and for 10 ppb rhodamine 6G in ethanol, respectively, agreed well with those reported in the literature.

  20. Photon-Counting Microlaser Rangers, Transponders, and Altimeters

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2000-01-01

    Unlike current manned systems, NASA's next generation SLR2000 Satellite Laser Ranging (SLR) station is fully autonomous. eye-safe, relatively compact and inexpensive. and, during daytime tracking operates at signal-to-noise ratios several orders of magnitude below unity. Tiny, passively Q-switched microlasers generate ultra-short pulses with output energies on the order of 100 micron-J at few kHz rates to achieve mm-level ranging precision to satellite altitudes of 20,000 km. Special ranging receivers, combined with Poisson statistical analysis of the received photon distribution, enable the system to rapidly and reliably identify and extract the single photon laser echoes from the solar background. The enhanced rate of return, combined with a uniform signal strength, can actually drive down both systematic and random range errors. The new SLR2000 technology has already spawned exciting new applications. Compact microlaser altimeters, capable of mapping the surface of a planet or other celestial body at multikilohertz rates, is one such application, and a high altitude, airborne version is currently being developed under NASA's Instrument Incubator Program. Interplanetary microlaser transponders would be capable of performing decimeter ranging or subnanosecond time transfer to spacecraft throughout the inner Solar System. resulting in improved knowledge of planetary motions and liberations and enhanced General Relativity experiments.

  1. Microcalcification detectability using a bench-top prototype photon-counting breast CT based on a Si strip detector

    PubMed Central

    Cho, Hyo-Min; Ding, Huanjun; Barber, William C.; Iwanczyk, Jan S.; Molloi, Sabee

    2015-01-01

    Purpose: To investigate the feasibility of detecting breast microcalcification (μCa) with a dedicated breast computed tomography (CT) system based on energy-resolved photon-counting silicon (Si) strip detectors. Methods: The proposed photon-counting breast CT system and a bench-top prototype photon-counting breast CT system were simulated using a simulation package written in matlab to determine the smallest detectable μCa. A 14 cm diameter cylindrical phantom made of breast tissue with 20% glandularity was used to simulate an average-sized breast. Five different size groups of calcium carbonate grains, from 100 to 180 μm in diameter, were simulated inside of the cylindrical phantom. The images were acquired with a mean glandular dose (MGD) in the range of 0.7–8 mGy. A total of 400 images was used to perform a reader study. Another simulation study was performed using a 1.6 cm diameter cylindrical phantom to validate the experimental results from a bench-top prototype breast CT system. In the experimental study, a bench-top prototype CT system was constructed using a tungsten anode x-ray source and a single line 256-pixels Si strip photon-counting detector with a pixel pitch of 100 μm. Calcium carbonate grains, with diameter in the range of 105–215 μm, were embedded in a cylindrical plastic resin phantom to simulate μCas. The physical phantoms were imaged at 65 kVp with an entrance exposure in the range of 0.6–8 mGy. A total of 500 images was used to perform another reader study. The images were displayed in random order to three blinded observers, who were asked to give a 4-point confidence rating on each image regarding the presence of μCa. The μCa detectability for each image was evaluated by using the average area under the receiver operating characteristic curve (AUC) across the readers. Results: The simulation results using a 14 cm diameter breast phantom showed that the proposed photon-counting breast CT system can achieve high detection

  2. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector

    NASA Astrophysics Data System (ADS)

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2014-09-01

    Dual-energy computed tomography (CT) techniques have been used to decompose materials and characterize tissues according to their physical and chemical compositions. However, these techniques are hampered by the limitations of conventional x-ray detectors operated in charge integrating mode. Energy-resolved photon-counting detectors provide spectral information from polychromatic x-rays using multiple energy thresholds. These detectors allow simultaneous acquisition of data in different energy ranges without spectral overlap, resulting in more efficient material decomposition and quantification for dual-energy CT. In this study, a pre-reconstruction dual-energy CT technique based on volume conservation was proposed for three-material decomposition. The technique was combined with iterative reconstruction algorithms by using a ray-driven projector in order to improve the quality of decomposition images and reduce radiation dose. A spectral CT system equipped with a CZT-based photon-counting detector was used to implement the proposed dual-energy CT technique. We obtained dual-energy images of calibration and three-material phantoms consisting of low atomic number materials from the optimal energy bins determined by Monte Carlo simulations. The material decomposition process was accomplished by both the proposed and post-reconstruction dual-energy CT techniques. Linear regression and normalized root-mean-square error (NRMSE) analyses were performed to evaluate the quantitative accuracy of decomposition images. The calibration accuracy of the proposed dual-energy CT technique was higher than that of the post-reconstruction dual-energy CT technique, with fitted slopes of 0.97-1.01 and NRMSEs of 0.20-4.50% for all basis materials. In the three-material phantom study, the proposed dual-energy CT technique decreased the NRMSEs of measured volume fractions by factors of 0.17-0.28 compared to the post-reconstruction dual-energy CT technique. It was concluded that the

  3. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector.

    PubMed

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2014-09-21

    Dual-energy computed tomography (CT) techniques have been used to decompose materials and characterize tissues according to their physical and chemical compositions. However, these techniques are hampered by the limitations of conventional x-ray detectors operated in charge integrating mode. Energy-resolved photon-counting detectors provide spectral information from polychromatic x-rays using multiple energy thresholds. These detectors allow simultaneous acquisition of data in different energy ranges without spectral overlap, resulting in more efficient material decomposition and quantification for dual-energy CT. In this study, a pre-reconstruction dual-energy CT technique based on volume conservation was proposed for three-material decomposition. The technique was combined with iterative reconstruction algorithms by using a ray-driven projector in order to improve the quality of decomposition images and reduce radiation dose. A spectral CT system equipped with a CZT-based photon-counting detector was used to implement the proposed dual-energy CT technique. We obtained dual-energy images of calibration and three-material phantoms consisting of low atomic number materials from the optimal energy bins determined by Monte Carlo simulations. The material decomposition process was accomplished by both the proposed and post-reconstruction dual-energy CT techniques. Linear regression and normalized root-mean-square error (NRMSE) analyses were performed to evaluate the quantitative accuracy of decomposition images. The calibration accuracy of the proposed dual-energy CT technique was higher than that of the post-reconstruction dual-energy CT technique, with fitted slopes of 0.97-1.01 and NRMSEs of 0.20-4.50% for all basis materials. In the three-material phantom study, the proposed dual-energy CT technique decreased the NRMSEs of measured volume fractions by factors of 0.17-0.28 compared to the post-reconstruction dual-energy CT technique. It was concluded that the

  4. Spectral CT of the extremities with a silicon strip photon counting detector

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Zbijewski, W.; Stayman, J. W.; Xu, J.; Taguchi, K.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Photon counting x-ray detectors (PCXDs) are an important emerging technology for spectral imaging and material differentiation with numerous potential applications in diagnostic imaging. We report development of a Si-strip PCXD system originally developed for mammography with potential application to spectral CT of musculoskeletal extremities, including challenges associated with sparse sampling, spectral calibration, and optimization for higher energy x-ray beams. Methods: A bench-top CT system was developed incorporating a Si-strip PCXD, fixed anode x-ray source, and rotational and translational motions to execute complex acquisition trajectories. Trajectories involving rotation and translation combined with iterative reconstruction were investigated, including single and multiple axial scans and longitudinal helical scans. The system was calibrated to provide accurate spectral separation in dual-energy three-material decomposition of soft-tissue, bone, and iodine. Image quality and decomposition accuracy were assessed in experiments using a phantom with pairs of bone and iodine inserts (3, 5, 15 and 20 mm) and an anthropomorphic wrist. Results: The designed trajectories improved the sampling distribution from 56% minimum sampling of voxels to 75%. Use of iterative reconstruction (viz., penalized likelihood with edge preserving regularization) in combination with such trajectories resulted in a very low level of artifacts in images of the wrist. For large bone or iodine inserts (>5 mm diameter), the error in the estimated material concentration was <16% for (50 mg/mL) bone and <8% for (5 mg/mL) iodine with strong regularization. For smaller inserts, errors of 20-40% were observed and motivate improved methods for spectral calibration and optimization of the edge-preserving regularizer. Conclusion: Use of PCXDs for three-material decomposition in joint imaging proved feasible through a combination of rotation-translation acquisition trajectories and

  5. Estimation of mammary gland composition using CdTe series detector developed for photon-counting mammography

    NASA Astrophysics Data System (ADS)

    Ihori, Akiko; Okamoto, Chizuru; Yamakawa, Tsutomu; Yamamoto, Shuichiro; Okada, Masahiro; Nakajima, Ai; Kato, Misa; Kodera, Yoshie

    2016-03-01

    Energy resolved photon-counting mammography is a new technology, which counts the number of photons that passes through an object, and presents it as a pixel value in an image of the object. Silicon semiconductor detectors are currently used in commercial mammography. However, the disadvantage of silicon is the low absorption efficiency for high X-ray energies. A cadmium telluride (CdTe) series detector has a high absorption efficiency over a wide energy range. In this study, we proposed a method to estimate the composition of the mammary gland using a CdTe series detector as a photon-counting detector. The fact that the detection rate of breast cancer in mammography is affected by mammary gland composition is now widely accepted. Assessment of composition of the mammary gland has important implications. An important advantage of our proposed technique is its ability to discriminate photons using three energy bins. We designed the CdTe series detector system using the MATLAB simulation software. The phantom contains nine regions with the ratio of glandular tissue and adipose varying in increments of 10%. The attenuation coefficient for each bin's energy was calculated from the number of input and output photons possessed by each. The evaluation results obtained by plotting the attenuation coefficient μ in a three-dimensional (3D) scatter plot show that the plots had a regular composition order congruent with that of the mammary gland. Consequently, we believe that our proposed method can be used to estimate the composition of the mammary gland.

  6. Approaching high temperature photon counting with electron-injection detectors

    NASA Astrophysics Data System (ADS)

    Fathipour, V.; Jang, S. J.; Hassaninia, I.; Mohseni, H.

    2014-10-01

    Our group has designed and developed a novel telecom band photon detector called the electron-injection detector. The detector provides a high avalanche-free internal-amplification and a stable excess noise factor of near unity while operating at linear-mode with low bias voltages. In our previous reports on un-isolated detectors, the large dark current of the detectors prevented long integration times in the camera. Furthermore, the bandwidth of the un-isolated detectors was in the KHz range. Recently, by changing the 3D geometry and isolating the detectors from each other, we have achieved 3 orders of magnitude reduction in dark current at same bias voltage and temperature compared to our previous results. Isolated detectors have internal dark current densities of 0.1nA/cm2 at 160 K. Furthermore, they have a bandwidth that is 4 orders of magnitude higher than the un-isolated devices. In this paper we report room temperature and low temperature characteristics of the isolated electron-injection detectors. We show that the measured optical gain displays a small dependence on temperature over our measured range down to 220 K.

  7. Photon counting spectral CT: improved material decomposition with K-edge-filtered x-rays

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.

    2012-03-01

    Photon counting spectral computed tomography (PCSCT) provides material selective CT imaging at a single CT scan and fixed tube voltage. The PCSCT data are acquired in several energy ranges (bins) arranged over the x-ray spectrum. The quasi-monoenergetic CT images are acquired in these energy bins and are used for material decomposition. The PCSCT exhibits inherent limitations when material decomposition is performed using energy bins. For effective material decomposition, the energy bins used for material decomposition should be sufficiently narrow and well separated. However, when narrow bins are used, a large fraction of the detected x-ray counts is lost and statistical noise is increased. Alternatively, the x-ray spectrum can be split into a few larger bins with no gap in between and all detected x-ray photons can be used for material decomposition. However, in this case the energy bins are too wide and not well separated, which results in suboptimal material decomposition. The above contradictory requirements can be resolved if the x-ray photons are physically removed from the regions of the energy spectrum between the energy bins. Such a selective removal can be performed using filtration of the x-ray beam by high-Z filter materials with appropriate positions of K-edge energies. The K-edge filtration of x-rays can, therefore, provide necessary gaps between the energy bins with no dose penalty to the patient. In the current work, we proposed using selective K-edge filtration of x-rays in PCSCT and performed the first experimental investigation of this approach. The PCSCT system included a cadmium zinc telluride semiconductor detector with 2 × 256 pixels and 1 × 1 mm2 pixel size, and five energy bins. The CT phantom had 14 cm diameter and included contrast elements of iodine, gold and calcifications with clinically relevant concentrations. The tube voltages of 60, 90 and 120 kVp were used. K-edge filters based on Ba (Ek = 37.44 keV) were used for a 60 kVp tube

  8. Photoionization of Trapped Carriers in Avalanche Photodiodes to Reduce Afterpulsing During Geiger-Mode Photon Counting

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    2005-01-01

    We reduced the afterpulsing probability by a factor of five in a Geiger-mode photon-counting InGaAs avalanche photodiode by using sub-band-gap (lambda = 1.95 micron) laser diode illumination, which we believe photoionizes the trapped carriers.

  9. Gain dispersion in Visible Light Photon Counters as a function of counting rate

    SciTech Connect

    Bross, A.; Buscher, V.; Estrada, J.; Ginther, G.; Molina, J.; /Rio de Janeiro State U.

    2005-03-01

    We present measurements of light signals using Visible Light Photon Counters (VLPC), that indicate an increase in gain dispersion as the counting rate increases. We show that this dispersion can be understood on the basis of a recent observation of localized field reduction in VLPCs at high input rates.

  10. High counting rates of x-ray photon detection using APD detectors on synchrotron machines

    SciTech Connect

    Kakuno, E. M.; Giacomolli, B. A.; Scorzato, C. R.

    2012-05-17

    In this work we show the results of 10 x 10 mm{sup 2} Si-APD detector's test with guard ring detecting x-rays. The result of mapping surface is also exhibited. We show and discuss the difficulty of single photon detection in high counting rate experiments in synchrotrons machines.

  11. Characterizing time decay of bibenzyl scintillator using time correlated single photon counting.

    PubMed

    Hatarik, R; Bernstein, L A; Caggiano, J A; Carman, M L; Schneider, D H G; Zaitseva, N P; Wiedeking, M

    2012-10-01

    The time decay of several scintillation materials has been measured using the time correlated single photon counting method and a new organic crystal with a highly suppressed delayed light has been identified. Results comparing the light decay of the bibenzyl crystal with a xylene based detector, which is currently installed at National Ignition Facility will be presented. PMID:23126914

  12. Characterizing time decay of bibenzyl scintillator using time correlated single photon counting

    SciTech Connect

    Hatarik, R.; Bernstein, L. A.; Caggiano, J. A.; Carman, M. L.; Schneider, D. H. G.; Zaitseva, N. P.; Wiedeking, M.

    2012-10-15

    The time decay of several scintillation materials has been measured using the time correlated single photon counting method and a new organic crystal with a highly suppressed delayed light has been identified. Results comparing the light decay of the bibenzyl crystal with a xylene based detector, which is currently installed at National Ignition Facility will be presented.

  13. Spontaneously generated coherence in a Rb atom via photon counting statistics

    NASA Astrophysics Data System (ADS)

    Song, Zhuo; Peng, Yonggang; Sun, Zhen-Dong; Zheng, Yujun

    2016-01-01

    We study the spontaneously generated coherence (SGC) in a Rb atom by employing photon counting statistics based on the four-level Y-type model driven by a probe field and two coherent control fields. A transparency channel induced by coherent population trapping (CPT) and ultra-narrow probe absorption peaks in the presence of SGC are found.

  14. Near-infrared Single-photon-counting Detectors for Free-space Laser Receivers

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Sun, Xiaoli; Hasselbrack, William; Wu, Stewart; Waczynski, Augustyn; Miko, Laddawan

    2007-01-01

    We compare several photon-counting detector technologies for use as near-infrared timeresolved laser receivers in science instrument, communication and navigation systems. The key technologies are InGaAs(P) photocathode hybrid photomultiplier tubes and InGaAs(P) and HgCdTe avalanche photodiodes. We discuss recent experimental results and application.

  15. Historical review of lung counting efficiencies for low energy photon emitters

    DOE PAGESBeta

    Jeffers, Karen L.; Hickman, David P.

    2014-03-01

    This publication reviews the measured efficiency and variability over time of a high purity planar germanium in vivo lung count system for multiple photon energies using increasingly thick overlays with the Lawrence Livermore Torso Phantom. Furthermore, the measured variations in efficiency are compared with the current requirement for in vivo bioassay performance as defined by the American National Standards Institute Standard.

  16. A photon counting and a squeezing measurement method by the exact absorption and dispersion spectrum of Λ-type Atoms.

    PubMed

    Naeimi, Ghasem; Alipour, Samira; Khademi, Siamak

    2016-01-01

    Recently, the master equations for the interaction of two-mode photons with a three-level Λ-type atom are exactly solved for the coherence terms. In this paper the exact absorption spectrum is applied for the presentation of a non-demolition photon counting method, for a few number of coupling photons, and its benefits are discussed. The exact scheme is also applied where the coupling photons are squeezed and the photon counting method is also developed for the measurement of the squeezing parameter of the coupling photons. PMID:27610321

  17. Efficient photon counting and single-photon generation using resonant nonlinear optics

    SciTech Connect

    Johnsson, Mattias; Fleischhauer, Michael

    2003-06-01

    The behavior of an atomic double {lambda} system in the presence of a strong off-resonant classical field and a few-photon resonant quantum field is examined. It is shown that the system possesses properties that allow a single-photon state to be distilled from a multiphoton input wave packet. In addition, the system is also capable of functioning as an efficient photodetector discriminating between one- and two-photon wave packets with high efficiency.

  18. Development of mammography system using CdTe photon counting detector for the exposure dose reduction

    NASA Astrophysics Data System (ADS)

    Maruyama, Sho; Niwa, Naoko; Yamazaki, Misaki; Yamakawa, Tsutomu; Nagano, Tatsuya; Kodera, Yoshie

    2014-03-01

    We propose a new mammography system using a cadmium telluride (CdTe) photon-counting detector for exposure dose reduction. In contrast to conventional mammography, this system uses high-energy X-rays. This study evaluates the usefulness of this system in terms of the absorbed dose distribution and contrast-to-noise ratio (CNR) at acrylic step using a Monte Carlo simulation. In addition, we created a prototype system that uses a CdTe detector and automatic movement stage. For various conditions, we measured the properties and evaluated the quality of images produced by the system. The simulation result for a tube voltage of 40 kV and tungsten/barium (W/Ba) as a target/filter shows that the surface dose was reduced more than 60% compared to that under conventional conditions. The CNR of our proposal system also became higher than that under conventional conditions. The point at which the CNRs coincide for 4 cm polymethyl methacrylate (PMMA) at the 2-mm-thick step corresponds to a dose reduction of 30%, and these differences increased with increasing phantom thickness. To improve the image quality, we determined the problematic aspects of the scanning system. The results of this study indicate that, by using a higher X-ray energy than in conventional mammography, it is possible to obtain a significant exposure dose reduction without loss of image quality. Further, the image quality of the prototype system can be improved by optimizing the balance between the shift-and-add operation and the output of the X-ray tube. In future work, we will further examine these improvement points.

  19. Time-and-frequency-gated photon coincidence counting; a novel multidimensional spectroscopy tool

    NASA Astrophysics Data System (ADS)

    Dorfman, Konstantin E.; Mukamel, Shaul

    2016-08-01

    Coherent multidimensional optical spectroscopy is broadly applied across the electromagnetic spectrum ranging from NMR to UV. These techniques reveal the properties of matter through the correlation plots of signal fields generated in response to sequences of short pulses with variable delays. Here we discuss a new class of multidimensional techniques obtained by the time-and-frequency-resolved photon coincidence counting measurements of N photons, which constitute a 2N dimensional spectrum. A compact description of these signals is developed based on time-ordered superoperators rather than the normally ordered ordinary operators used in Glauber's photon counting formalism. The independent control of the time and frequency gate parameters reveals fine details of matter dynamics not available otherwise. These signal are illustrated for application to an anharmonic oscillator model with fluctuating energy and anharmonicity.

  20. Photon Counting System for High-Sensitivity Detection of Bioluminescence at Optical Fiber End.

    PubMed

    Iinuma, Masataka; Kadoya, Yutaka; Kuroda, Akio

    2016-01-01

    The technique of photon counting is widely used for various fields and also applicable to a high-sensitivity detection of luminescence. Thanks to recent development of single photon detectors with avalanche photodiodes (APDs), the photon counting system with an optical fiber has become powerful for a detection of bioluminescence at an optical fiber end, because it allows us to fully use the merits of compactness, simple operation, highly quantum efficiency of the APD detectors. This optical fiber-based system also has a possibility of improving the sensitivity to a local detection of Adenosine triphosphate (ATP) by high-sensitivity detection of the bioluminescence. In this chapter, we are introducing a basic concept of the optical fiber-based system and explaining how to construct and use this system. PMID:27424915

  1. 0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays.

    PubMed

    Krstajić, Nikola; Poland, Simon; Levitt, James; Walker, Richard; Erdogan, Ahmet; Ameer-Beg, Simon; Henderson, Robert K

    2015-09-15

    We present a digital architecture for fast acquisition of time correlated single photon counting (TCSPC) events from a 32×32 complementary metal oxide semiconductor (CMOS) single photon avalanche detector (SPAD) array (Megaframe) to the computer memory. Custom firmware was written to transmit event codes from 1024-TCSPC-enabled pixels for fast transfer of TCSPC events. Our 1024-channel TCSPC system is capable of acquiring up to 0.5×10(9) TCSPC events per second with 16 histogram bins spanning a 14 ns width. Other options include 320×10(6) TCSPC events per second with 256 histogram bins spanning either a 14 or 56 ns time window. We present a wide-field fluorescence microscopy setup demonstrating fast fluorescence lifetime data acquisition. To the best of our knowledge, this is the fastest direct TCSPC transfer from a single photon counting device to the computer to date. PMID:26371922

  2. Transuranic waste detection by photon interrogation and on-line delayed neutron counting

    NASA Astrophysics Data System (ADS)

    Lyoussi, A.; Romeyer-Dherbey, J.; Jallu, F.; Payan, E.; Buisson, A.; Nurdin, G.; Allano, J.

    2000-02-01

    A comprehensive program is currently in progress at several laboratories for the development of sensitive, practical, non-destructive assay techniques for the quantification of low-level transuranics (TRUs) in bulk solid wastes. This paper describes the method being developed to assay high density TRU waste packages using photon interrogation. The system uses a pulsed electron beam from an electron linear accelerator to produce high-energy photon bursts from a metallic converter. The photons induce fissions in a TRU waste package which is inside an original neutron separating and counting cavity (NS2C). When fission is induced in trace amounts of TRU contaminants in waste material, it provides “signatures” from fission products that can be used to assay the material before disposal. We give here the results from counting photofission-induced delayed neutrons from 239Pu, 235U and 238U in sample matrices. We counted delayed neutrons emitted after each pulse of the LINAC by using the sequential photon interrogation and neutron counting signatures (SPHINCS) technique which had been developed in the present framework. The SPHINCS method enhances the available counts by a factor of about 20 compared with the counting of delayed neutrons only, after the irradiation period. Furthermore, the use of SPHINCS measurement technique coupled with the NS2C facility improves the signal-to-noise ratio by a factor of about 30. This decreases the detection limit. The electron linear accelerator operates at 15 MeV, 140 mA, and 2.5 μs wide pulse at a 50 and 6.25 Hz rate. The dynamics of photofission and delayed neutron production, NS2C advantages and performances, use of an electron linear accelerator as a particle source, experimental and electronics details, and future experimental works are discussed.

  3. Transuranic waste detection by photon interrogation and on-line delayed neutron counting

    NASA Astrophysics Data System (ADS)

    Lyoussi, A.; Romeyer-Dherbey, J.; Jallu, F.; Payan, E.; Buisson, A.; Nurdin, G.; Allano, J.

    1999-02-01

    A comprehensive program is currently in progress at several laboratories for the development of sensitive, practical, non-destructive assay techniques for the quantification of low-level transuranics (TRUs) in bulk solid wastes. This paper describes the method being developed to assay high density TRU waste packages using photon interrogation. The system uses a pulsed electron beam from an electron linear accelerator to produce high-energy photon bursts from a metallic converter. The photons induce fissions in a TRU waste package which is inside an original neutron separating and counting cavity (NS2C). When fission is induced in trace amounts of TRU contaminants in waste material, it provides "signatures" from fission products that can be used to assay the material before disposal. We give here the results from counting photofission-induced delayed neutrons from 239Pu, 235U and 238U in sample matrices. We counted delayed neutrons emitted after each pulse of the LINAC by using the sequential photon interrogation and neutron counting signatures (SPHINCS) technique which had been developed in the present framework. The SPHINCS method enhances the available counts by a factor of about 20 compared with the counting of delayed neutrons only, after the irradiation period. Furthermore, the use of SPHINCS measurement technique coupled with the NS2C facility improves the signal-to-noise ratio by a factor of about 30. This decreases the detection limit. The electron linear accelerator operates at 15 MeV, 140 mA, and 2.5 μs wide pulse at a 50 and 6.25 Hz rate. The dynamics of photofission and delayed neutron production, NS2C advantages and performances, use of an electron linear accelerator as a particle source, experimental and electronics details, and future experimental works are discussed.

  4. Bubble Counts for Rayleigh-Taylor Instability Using Image Analysis

    SciTech Connect

    Miller, P L; Gezahegne, A G; Cook, A W; Cabot, W H; Kamath, C

    2007-01-24

    We describe the use of image analysis to count bubbles in 3-D, large-scale, LES [1] and DNS [2] of the Rayleigh-Taylor instability. We analyze these massive datasets by first converting the 3-D data to 2-D, then counting the bubbles in the 2-D data. Our plots for the bubble count indicate there are four distinct regimes in the process of the mixing of the two fluids. We also show that our results are relatively insensitive to the choice of parameters in our analysis algorithms.

  5. Development of a fast read-out system of a single photon counting detector for mammography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Lopez, F. C.; Rigon, L.; Longo, R.; Arfelli, F.; Bergamaschi, A.; Chen, R. C.; Dreossi, D.; Schmitt, B.; Vallazza, E.; Castelli, E.

    2011-12-01

    A single-photon counting detector read-out system for mammography with synchrotron radiation has been developed with the aim to meet the needs of the mammographic imaging station of the SYRMEP beamline at ELETTRA. The system called PICASSO (Phase Imaging for Clinical Application with Silicon detector and Synchrotron radiatiOn) is a modular detector that implements a read-out system with MYTHEN II ASICs, an embedded Linux-based controller board and a Scientific Linux acquisition workstation. The system architecture and characteristics are herein presented. The system was tested at the SYRMEP beamline and achieved a frame rate of 33 Hz for 8448 channels at 24-bit dynamic range, and it is capable of continuously acquiring up to 2000 frames. Standard mammographic phantoms were imaged and good quality images were obtained at doses comparable with what is delivered in conventional full field mammographic systems.

  6. A comparative analysis of OTF, NPS, and DQE in energy integrating and photon counting digital x-ray detectors

    SciTech Connect

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2010-12-15

    Purpose: One of the benefits of photon counting (PC) detectors over energy integrating (EI) detectors is the absence of many additive noise sources, such as electronic noise and secondary quantum noise. The purpose of this work is to demonstrate that thresholding voltage gains to detect individual x rays actually generates an unexpected source of white noise in photon counters. Methods: To distinguish the two detector types, their point spread function (PSF) is interpreted differently. The PSF of the energy integrating detector is treated as a weighting function for counting x rays, while the PSF of the photon counting detector is interpreted as a probability. Although this model ignores some subtleties of real imaging systems, such as scatter and the energy-dependent amplification of secondary quanta in indirect-converting detectors, it is useful for demonstrating fundamental differences between the two detector types. From first principles, the optical transfer function (OTF) is calculated as the continuous Fourier transform of the PSF, the noise power spectra (NPS) is determined by the discrete space Fourier transform (DSFT) of the autocovariance of signal intensity, and the detective quantum efficiency (DQE) is found from combined knowledge of the OTF and NPS. To illustrate the calculation of the transfer functions, the PSF is modeled as the convolution of a Gaussian with the product of rect functions. The Gaussian reflects the blurring of the x-ray converter, while the rect functions model the sampling of the detector. Results: The transfer functions are first calculated assuming outside noise sources such as electronic noise and secondary quantum noise are negligible. It is demonstrated that while OTF is the same for two detector types possessing an equivalent PSF, a frequency-independent (i.e., ''white'') difference in their NPS exists such that NPS{sub PC}{>=}NPS{sub EI} and hence DQE{sub PC}{<=}DQE{sub EI}. The necessary and sufficient condition for

  7. A comparative analysis of OTF, NPS, and DQE in energy integrating and photon counting digital x-ray detectors

    PubMed Central

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2010-01-01

    Purpose: One of the benefits of photon counting (PC) detectors over energy integrating (EI) detectors is the absence of many additive noise sources, such as electronic noise and secondary quantum noise. The purpose of this work is to demonstrate that thresholding voltage gains to detect individual x rays actually generates an unexpected source of white noise in photon counters. Methods: To distinguish the two detector types, their point spread function (PSF) is interpreted differently. The PSF of the energy integrating detector is treated as a weighting function for counting x rays, while the PSF of the photon counting detector is interpreted as a probability. Although this model ignores some subtleties of real imaging systems, such as scatter and the energy-dependent amplification of secondary quanta in indirect-converting detectors, it is useful for demonstrating fundamental differences between the two detector types. From first principles, the optical transfer function (OTF) is calculated as the continuous Fourier transform of the PSF, the noise power spectra (NPS) is determined by the discrete space Fourier transform (DSFT) of the autocovariance of signal intensity, and the detective quantum efficiency (DQE) is found from combined knowledge of the OTF and NPS. To illustrate the calculation of the transfer functions, the PSF is modeled as the convolution of a Gaussian with the product of rect functions. The Gaussian reflects the blurring of the x-ray converter, while the rect functions model the sampling of the detector. Results: The transfer functions are first calculated assuming outside noise sources such as electronic noise and secondary quantum noise are negligible. It is demonstrated that while OTF is the same for two detector types possessing an equivalent PSF, a frequency-independent (i.e., “white”) difference in their NPS exists such that NPSPC≥NPSEI and hence DQEPC≤DQEEI. The necessary and sufficient condition for equality is that the PSF is a

  8. Single-photon imaging in complementary metal oxide semiconductor processes

    PubMed Central

    Charbon, E.

    2014-01-01

    This paper describes the basics of single-photon counting in complementary metal oxide semiconductors, through single-photon avalanche diodes (SPADs), and the making of miniaturized pixels with photon-counting capability based on SPADs. Some applications, which may take advantage of SPAD image sensors, are outlined, such as fluorescence-based microscopy, three-dimensional time-of-flight imaging and biomedical imaging, to name just a few. The paper focuses on architectures that are best suited to those applications and the trade-offs they generate. In this context, architectures are described that efficiently collect the output of single pixels when designed in large arrays. Off-chip readout circuit requirements are described for a variety of applications in physics, medicine and the life sciences. Owing to the dynamic nature of SPADs, designs featuring a large number of SPADs require careful analysis of the target application for an optimal use of silicon real estate and of limited readout bandwidth. The paper also describes the main trade-offs involved in architecting such chips and the solutions adopted with focus on scalability and miniaturization. PMID:24567470

  9. Single-photon imaging in complementary metal oxide semiconductor processes.

    PubMed

    Charbon, E

    2014-03-28

    This paper describes the basics of single-photon counting in complementary metal oxide semiconductors, through single-photon avalanche diodes (SPADs), and the making of miniaturized pixels with photon-counting capability based on SPADs. Some applications, which may take advantage of SPAD image sensors, are outlined, such as fluorescence-based microscopy, three-dimensional time-of-flight imaging and biomedical imaging, to name just a few. The paper focuses on architectures that are best suited to those applications and the trade-offs they generate. In this context, architectures are described that efficiently collect the output of single pixels when designed in large arrays. Off-chip readout circuit requirements are described for a variety of applications in physics, medicine and the life sciences. Owing to the dynamic nature of SPADs, designs featuring a large number of SPADs require careful analysis of the target application for an optimal use of silicon real estate and of limited readout bandwidth. The paper also describes the main trade-offs involved in architecting such chips and the solutions adopted with focus on scalability and miniaturization. PMID:24567470

  10. Statistical connection of binomial photon counting and photon averaging in high dynamic range beam-scanning microscopy

    PubMed Central

    Muir, Ryan D.; Kissick, David J.; Simpson, Garth J.

    2012-01-01

    Data from photomultiplier tubes are typically analyzed using either counting or averaging techniques, which are most accurate in the dim and bright signal limits, respectively. A statistical means of adjoining these two techniques is presented by recovering the Poisson parameter from averaged data and relating it to the statistics of binomial counting from Kissick et al. [Anal. Chem. 82, 10129 (2010)]. The point at which binomial photon counting and averaging have equal signal to noise ratios is derived. Adjoining these two techniques generates signal to noise ratios at 87% to approaching 100% of theoretical maximum across the full dynamic range of the photomultiplier tube used. The technique is demonstrated in a second harmonic generation microscope. PMID:22535131

  11. Statistical connection of binomial photon counting and photon averaging in high dynamic range beam-scanning microscopy.

    PubMed

    Muir, Ryan D; Kissick, David J; Simpson, Garth J

    2012-04-23

    Data from photomultiplier tubes are typically analyzed using either counting or averaging techniques, which are most accurate in the dim and bright signal limits, respectively. A statistical means of adjoining these two techniques is presented by recovering the Poisson parameter from averaged data and relating it to the statistics of binomial counting from Kissick et al. [Anal. Chem. 82, 10129 (2010)]. The point at which binomial photon counting and averaging have equal signal to noise ratios is derived. Adjoining these two techniques generates signal to noise ratios at 87% to approaching 100% of theoretical maximum across the full dynamic range of the photomultiplier tube used. The technique is demonstrated in a second harmonic generation microscope. PMID:22535131

  12. Spectral lesion characterization on a photon-counting mammography system

    NASA Astrophysics Data System (ADS)

    Erhard, Klaus; Fredenberg, Erik; Homann, Hanno; Roessl, Ewald

    2014-03-01

    Spectral X-ray imaging allows to differentiate between two given tissue types, provided their spectral absorption characteristics differ measurably. In mammography, this method is used clinically to determine a decomposition of the breast into adipose and glandular tissue compartments, from which the glandular tissue fraction and, hence, the volumetric breast density (VBD) can be computed. Another potential application of this technique is the characterization of lesions by spectral mammography. In particular, round lesions are relatively easily detected by experienced radiologists, but are often difficult to characterize. Here, a method is described that aims at discriminating cystic from solid lesions directly on a spectral mammogram, obtained with a calibrated spectral mammography system and using a hypothesis-testing algorithm based on a maximum likelihood approach. The method includes a parametric model describing the lesion shape, compression height variations and breast composition. With the maximum likelihood algorithm, the model parameters are estimated separately under the cyst and solid hypothesis. The resulting ratio of the maximum likelihood values is used for the final tissue characterization. Initial results using simulations and phantom measurements are presented.

  13. Note: Spectrometer with multichannel photon-counting detector for beam emission spectroscopy in magnetic fusion devices

    NASA Astrophysics Data System (ADS)

    Lizunov, A.; Khilchenko, A.; Khilchenko, V.; Kvashnin, A.; Zubarev, P.

    2015-12-01

    A spectrometer based on a linear array photomultiplier tube (PMT) has been developed and calibrated. A 0.635 m focal length Czerny-Turner monochromator combined with a coupling optics provides an image of a narrow 0.5 nm spectral range with a resolution of 0.015 nm/channel on a 32-anode PMT. The system aims at spectroscopy of Dα or Hα lines emitted by a diagnostic atomic beam in a plasma (primarily a motional Stark effect diagnostics). To record a low photon flux of ˜106 s-1 per channel with the time resolution of 100 μs, a pulse counting approach has been used. Wideband amplifiers scale single-electron pulses and transmit them to a digital data processing core hardwired in a programmable logic matrix. Calibrations have shown that the aberration-limited instrument function fits to a single detector channel of 1 mm width. Pilot results of passive measurements of Dα light emission from the plasma confined in a magnetic trap are presented.

  14. The LAMBDA photon-counting pixel detector and high-Z sensor development

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Smoljanin, S.; Struth, B.; Hirsemann, H.; Fauler, A.; Fiederle, M.; Tolbanov, O.; Zarubin, A.; Tyazhev, A.; Shelkov, G.; Graafsma, H.

    2014-12-01

    Many X-ray experiments at third-generation synchrotrons benefit from using single-photon-counting detectors, due to their high signal-to-noise ratio and potential for high-speed measurements. LAMBDA (Large Area Medipix3-Based Detector Array) is a pixel detector system based on the Medipix3 readout chip. It combines the features of Medipix3, such as a small pixel size of 55 μm and flexible functionality, with a large tileable module design consisting of 12 chips (1536 × 512 pixels) and a high-speed readout system capable of running at 2000 frames per second. To enable high-speed experiments with hard X-rays, the LAMBDA system has been combined with different high-Z sensor materials. Room-temperature systems using GaAs and CdTe systems have been produced and tested with X-ray tubes and at synchrotron beamlines. Both detector materials show nonuniformities in their raw image response, but the pixel yield is high and the uniformity can be improved by flat-field correction, particularly in the case of GaAs. High-frame-rate experiments show that useful information can be gained on millisecond timescales in synchrotron experiments with these sensors.

  15. Note: Spectrometer with multichannel photon-counting detector for beam emission spectroscopy in magnetic fusion devices

    SciTech Connect

    Lizunov, A.; Khilchenko, A.; Khilchenko, V.; Kvashnin, A.; Zubarev, P.

    2015-12-15

    A spectrometer based on a linear array photomultiplier tube (PMT) has been developed and calibrated. A 0.635 m focal length Czerny-Turner monochromator combined with a coupling optics provides an image of a narrow 0.5 nm spectral range with a resolution of 0.015 nm/channel on a 32-anode PMT. The system aims at spectroscopy of D{sub α} or H{sub α} lines emitted by a diagnostic atomic beam in a plasma (primarily a motional Stark effect diagnostics). To record a low photon flux of ∼10{sup 6} s{sup −1} per channel with the time resolution of 100 μs, a pulse counting approach has been used. Wideband amplifiers scale single-electron pulses and transmit them to a digital data processing core hardwired in a programmable logic matrix. Calibrations have shown that the aberration-limited instrument function fits to a single detector channel of 1 mm width. Pilot results of passive measurements of D{sub α} light emission from the plasma confined in a magnetic trap are presented.

  16. Note: Spectrometer with multichannel photon-counting detector for beam emission spectroscopy in magnetic fusion devices.

    PubMed

    Lizunov, A; Khilchenko, A; Khilchenko, V; Kvashnin, A; Zubarev, P

    2015-12-01

    A spectrometer based on a linear array photomultiplier tube (PMT) has been developed and calibrated. A 0.635 m focal length Czerny-Turner monochromator combined with a coupling optics provides an image of a narrow 0.5 nm spectral range with a resolution of 0.015 nm/channel on a 32-anode PMT. The system aims at spectroscopy of D(α) or H(α) lines emitted by a diagnostic atomic beam in a plasma (primarily a motional Stark effect diagnostics). To record a low photon flux of ∼10(6) s(-1) per channel with the time resolution of 100 μs, a pulse counting approach has been used. Wideband amplifiers scale single-electron pulses and transmit them to a digital data processing core hardwired in a programmable logic matrix. Calibrations have shown that the aberration-limited instrument function fits to a single detector channel of 1 mm width. Pilot results of passive measurements of D(α) light emission from the plasma confined in a magnetic trap are presented. PMID:26724090

  17. Maximum Likelihood Time-of-Arrival Estimation of Optical Pulses via Photon-Counting Photodetectors

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris I.; Moision, Bruce E.

    2010-01-01

    Many optical imaging, ranging, and communications systems rely on the estimation of the arrival time of an optical pulse. Recently, such systems have been increasingly employing photon-counting photodetector technology, which changes the statistics of the observed photocurrent. This requires time-of-arrival estimators to be developed and their performances characterized. The statistics of the output of an ideal photodetector, which are well modeled as a Poisson point process, were considered. An analytical model was developed for the mean-square error of the maximum likelihood (ML) estimator, demonstrating two phenomena that cause deviations from the minimum achievable error at low signal power. An approximation was derived to the threshold at which the ML estimator essentially fails to provide better than a random guess of the pulse arrival time. Comparing the analytic model performance predictions to those obtained via simulations, it was verified that the model accurately predicts the ML performance over all regimes considered. There is little prior art that attempts to understand the fundamental limitations to time-of-arrival estimation from Poisson statistics. This work establishes both a simple mathematical description of the error behavior, and the associated physical processes that yield this behavior. Previous work on mean-square error characterization for ML estimators has predominantly focused on additive Gaussian noise. This work demonstrates that the discrete nature of the Poisson noise process leads to a distinctly different error behavior.

  18. Time-to-digital converter card for multichannel time-resolved single-photon counting applications

    NASA Astrophysics Data System (ADS)

    Tamborini, Davide; Portaluppi, Davide; Tisa, Simone; Tosi, Alberto

    2015-03-01

    We present a high performance Time-to-Digital Converter (TDC) card that provides 10 ps timing resolution and 20 ps (rms) timing precision with a programmable full-scale-range from 160 ns to 10 μs. Differential Non-Linearity (DNL) is better than 1.3% LSB (rms) and Integral Non-Linearity (INL) is 5 ps rms. Thanks to the low power consumption (400 mW) and the compact size (78 mm x 28 mm x 10 mm), this card is the building block for developing compact multichannel time-resolved instrumentation for Time-Correlated Single-Photon Counting (TCSPC). The TDC-card outputs the time measurement results together with the rates of START and STOP signals and the number of valid TDC conversions. These additional information are needed by many TCSPC-based applications, such as: Fluorescence Lifetime Imaging (FLIM), Time-of-Flight (TOF) ranging measurements, time-resolved Positron Emission Tomography (PET), single-molecule spectroscopy, Fluorescence Correlation Spectroscopy (FCS), Diffuse Optical Tomography (DOT), Optical Time-Domain Reflectometry (OTDR), quantum optics, etc.

  19. Characterization of Si-PIN radiation detector with photon counting mode CMOS readout front-end

    NASA Astrophysics Data System (ADS)

    Jeon, Sungchae; Huh, Young; Jin, Seongoh; Park, Jongduk; Lee, Jae Yun; Kang, Bo Sun; Cho, Gyuseong

    2007-06-01

    An X-ray pixel detector with photon counting technique for digital X-ray imaging was designed and developed. Si detector was fabricated starting from 5 in., FZ-refined, 620 μm-thick, <1 1 1> oriented, n-typed silicon wafer with high resistivity of 6000-12,000 Ω cm. Readout front-end, which consists of the preamplifier, comparator, and bias circuits including the band-gap reference circuits, was designed and fabricated using 0.25 μm-triple-well CMOS standard process. In detector, the several types of guard-ring structures were tested. The biased p-type guard ring showed more reasonable results in the leakage current and breakdown voltage. The experimental results for the readout chip prove that its functionality is correctly operated up to 100 mV, 2.5 M events/s. In radiation experiment under irradiation of 60Co at dose rate 10 krad/h the measurement indicate that the band gap reference generator (BGR) circuits work up to 240 krad and the maximum variation of output voltage is 0.4% (peak-to-peak) of operational voltage at the range of 0-240 krad. It cannot lead to any critical problem for use in its operation.

  20. Energy calibration of energy-resolved photon-counting pixel detectors using laboratory polychromatic x-ray beams

    NASA Astrophysics Data System (ADS)

    Youn, Hanbean; Han, Jong Chul; Kam, Soohwa; Yun, Seungman; Kim, Ho Kyung

    2014-10-01

    Recently, photon-counting detectors capable of resolving incident x-ray photon energies have been considered for use in spectral x-ray imaging applications. For reliable use of energy-resolved photon-counting detectors (ERPCDs), energy calibration is an essential procedure prior to their use because variations in responses from each pixel of the ERPCD for incident photons, even at the same energy, are inevitable. Energy calibration can be performed using a variety of methods. In all of these methods, the photon spectra with well-defined peak energies are recorded. Every pixel should be calibrated on its own. In this study, we suggest the use of a conventional polychromatic x-ray source (that is typically used in laboratories) for energy calibration. The energy calibration procedure mainly includes the determination of the peak energies in the spectra, flood-field irradiation, determination of peak channels, and determination of calibration curves (i.e., the slopes and intercepts of linear polynomials). We applied a calibration algorithm to a CdTe ERPCD comprised of 128×128 pixels with a pitch of 0.35 mm using highly attenuated polychromatic x-ray beams to reduce the pulse pile-up effect, and to obtain a narrow-shaped spectrum due to beam hardening. The averaged relative error in calibration curves obtained from 16,384 pixels was about 0.56% for 59.6 keV photons from an Americium radioisotope. This pixel-by-pixel energy calibration enhanced the signal- and contrast-to-noise ratios in images, respectively, by a factor of ~5 and 3 due to improvement in image homogeneity, compared to those obtained without energy calibration. One secondary finding of this study was that the x-ray photon spectra obtained using a common algorithm for computing x-ray spectra reasonably described the peaks in the measured spectra, which implies easier peak detection without the direct measurement of spectra using a separate spectrometer. The proposed method will be a useful alternative to

  1. Low-level transuranic waste assay by photon interrogation and neutron counting

    SciTech Connect

    Lyoussi, A.; Edeline, J.C.; Romeyer-Dherbey, J.; Buisson, A.

    1993-12-31

    A comprehensive program is currently in progress at several laboratories for the development of sensitive, practical, non-destructive assay techniques for the quantification of low-level transuranics (TRU) in bulk solid wastes. This report describes the method being developed to assay high density TRU waste packages using photon interrogation. The system uses a pulsed electron beam from a linear accelerator (LINAC) to produce high-energy photon bursts from a metallic converter. The photons induce fissions in TRU. When fission is induced in trace amounts of TRU contaminants in waste material, it provides ``signatures`` from fission products that can be used to assay the material before disposal. The authors give here the results from counting photofission-induced delayed neutrons from {sup 239}Pu, {sup 235}U and {sup 238}U in sample matrices. They counted delayed neutrons emitted after each pulse of the LINAC. This enhances the available counts by a factor about 20 compared with the counting of delayed neutrons only after the irradiation period. The electron linear accelerator operates at 15 MeV, 140 mA, and 2.5 {mu}s wide pulse at a 50 Hz rate. The dynamics of photofission and delayed neutron production, use of an electron linear accelerator as a particle source, experimental and electronics details, and a future experimental works are discussed.

  2. The statistical distribution of the number of counted scintillation photons in digital silicon photomultipliers: model and validation.

    PubMed

    van Dam, Herman T; Seifert, Stefan; Schaart, Dennis R

    2012-08-01

    In the design and application of scintillation detectors based on silicon photomultipliers (SiPMs), e.g. in positron emission tomography imaging, it is important to understand and quantify the non-proportionality of the SiPM response due to saturation, crosstalk and dark counts. A new type of SiPM, the so-called digital silicon photomultiplier (dSiPM), has recently been introduced. Here, we develop a model of the probability distribution of the number of fired microcells, i.e. the number of counted scintillation photons, in response to a given amount of energy deposited in a scintillator optically coupled to a dSiPM. Based on physical and functional principles, the model elucidates the statistical behavior of dSiPMs. The model takes into account the photon detection efficiency of the detector; the light yield, excess variance and time profile of the scintillator; and the crosstalk probability, dark count rate, integration time and the number of microcells of the dSiPM. Furthermore, relations for the expectation value and the variance of the number of fired cells are deduced. These relations are applied in the experimental validation of the model using a dSiPM coupled to a LSO:Ce,Ca scintillator. Finally, we propose an accurate method for the correction of energy spectra measured with dSiPM-based scintillation detectors. PMID:22796633

  3. Modelling the channel-wise count response of a photon-counting spectral CT detector to a broad x-ray spectrum

    NASA Astrophysics Data System (ADS)

    Liu, Xuejin; Chen, Han; Bornefalk, Hans; Danielsson, Mats; Karlsson, Staffan; Persson, Mats; Xu, Cheng; Huber, Ben

    2015-03-01

    Variations among detector channels in CT very sensitively lead to ring artefacts in the reconstructed images. For material decomposition in the projection domain, the variations can result in intolerable biases in the material line integral estimates. A typical way to overcome these effects is to apply calibration methods that try to unify spectral responses from different detector channels to an ideal response from a detector model. However, the calibration procedure can be rather complex and require excessive calibration measurements for a multitude of combinations of x-ray shapes, tissue combinations and thicknesses. In this paper, we propose a channel-wise model for a multibin photon-counting detector for spectral CT. Predictions of this channel-wise model match well with their physical performances, which can thus be used to eliminate ring artefacts in CT images and achieve projection-basis material decomposition. In an experimental validation, image data show significant improvement with respect to ring artefacts compared to images calibrated with flat-fielding data. Projection-based material decomposition gives basis material images showing good separation among individual materials and good quantification of iodine and gadolinium contrast agents. The work indicates that the channel-wise model can be used for quantitative CT with this detector.

  4. Methodological Study of a Single Photon Counting Pixel Detector at SPring-8

    SciTech Connect

    Toyokawa, H.; Suzuki, M.; Broennimann, Ch.; Eikenberry, E. F.; Henrich, B.; Huelsen, G.; Kraft, P.

    2007-01-19

    PILATUS (Pixel Apparatus for the SLS) is a challenging project to develop a large area single photon counting pixel detector for synchrotron radiation experiments. SPring-8 examined the PLATUS single module detectors in collaboration with the Paul Scherrer Institute. The PILATUS-II single module detector has a desired performance with almost zero defective pixels and a fast frame rate up to 100 Hz using a newly developed PCI readout system on a Linux-PC. The maximum counting rate achieves more than 2 x 106 X-rays/s/pixel.

  5. A study of pile-up in integrated time-correlated single photon counting systems.

    PubMed

    Arlt, Jochen; Tyndall, David; Rae, Bruce R; Li, David D-U; Richardson, Justin A; Henderson, Robert K

    2013-10-01

    Recent demonstration of highly integrated, solid-state, time-correlated single photon counting (TCSPC) systems in CMOS technology is set to provide significant increases in performance over existing bulky, expensive hardware. Arrays of single photon single photon avalanche diode (SPAD) detectors, timing channels, and signal processing can be integrated on a single silicon chip with a degree of parallelism and computational speed that is unattainable by discrete photomultiplier tube and photon counting card solutions. New multi-channel, multi-detector TCSPC sensor architectures with greatly enhanced throughput due to minimal detector transit (dead) time or timing channel dead time are now feasible. In this paper, we study the potential for future integrated, solid-state TCSPC sensors to exceed the photon pile-up limit through analytic formula and simulation. The results are validated using a 10% fill factor SPAD array and an 8-channel, 52 ps resolution time-to-digital conversion architecture with embedded lifetime estimation. It is demonstrated that pile-up insensitive acquisition is attainable at greater than 10 times the pulse repetition rate providing over 60 dB of extended dynamic range to the TCSPC technique. Our results predict future CMOS TCSPC sensors capable of live-cell transient observations in confocal scanning microscopy, improved resolution of near-infrared optical tomography systems, and fluorescence lifetime activated cell sorting. PMID:24182099

  6. Photon counting detector for space debris laser tracking and lunar laser ranging

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef; Kirchner, Georg; Koidl, Franz

    2014-08-01

    We are reporting on a design, construction and performance of solid state photon counting detector package which has been designed for laser tracking of space debris. The detector has been optimized for top photon detection efficiency and detection delay stability. The active area of the commercially available avalanche photodiode manufactured on Si (SAP500 supplied by Laser Components, Inc.) is circular with a diameter of 500 μm. The newly designed control circuit enables to operate the detection sensor at a broad range of biases 5-50 V above its breakdown voltage of 125 V. This permits to select a right trade-off between photon detection efficiency, timing resolution and dark count rate. The photon detection efficiency exceeds 70% at the wavelength of 532 nm. This is the highest photon detection efficiency ever reported for such a device. The timing properties of the detector have been investigated in detail. The timing resolution is better than 80 ps r.m.s, the detection delay is stable within units of picoseconds over several hours of operation. The detection delay stability in a sense of time deviation of 800 fs has been achieved. The temperature change of the detection delay is 0.5 ps/K. The detector has been tested as an echo signal detector in laser tracking of space debris at the satellite laser station in Graz, Austria. Its application in lunar laser ranging is under consideration by several laser stations.

  7. A study of pile-up in integrated time-correlated single photon counting systems

    NASA Astrophysics Data System (ADS)

    Arlt, Jochen; Tyndall, David; Rae, Bruce R.; Li, David D.-U.; Richardson, Justin A.; Henderson, Robert K.

    2013-10-01

    Recent demonstration of highly integrated, solid-state, time-correlated single photon counting (TCSPC) systems in CMOS technology is set to provide significant increases in performance over existing bulky, expensive hardware. Arrays of single photon single photon avalanche diode (SPAD) detectors, timing channels, and signal processing can be integrated on a single silicon chip with a degree of parallelism and computational speed that is unattainable by discrete photomultiplier tube and photon counting card solutions. New multi-channel, multi-detector TCSPC sensor architectures with greatly enhanced throughput due to minimal detector transit (dead) time or timing channel dead time are now feasible. In this paper, we study the potential for future integrated, solid-state TCSPC sensors to exceed the photon pile-up limit through analytic formula and simulation. The results are validated using a 10% fill factor SPAD array and an 8-channel, 52 ps resolution time-to-digital conversion architecture with embedded lifetime estimation. It is demonstrated that pile-up insensitive acquisition is attainable at greater than 10 times the pulse repetition rate providing over 60 dB of extended dynamic range to the TCSPC technique. Our results predict future CMOS TCSPC sensors capable of live-cell transient observations in confocal scanning microscopy, improved resolution of near-infrared optical tomography systems, and fluorescence lifetime activated cell sorting.

  8. Counter Architectures for a Single Photon-Counting Pixel Detector such as Medipix3

    SciTech Connect

    Wong, W.; Ballabriga, R.; Campbell, M.; Llopart, X.; Tlustos, L.

    2007-11-26

    Medipix3 is a single photon-counting pixel readout chip whose new front-end architecture aims to eliminate the spectral distortion produced by charge diffusion in highly segmented semiconductor detectors. The chip requires area and power-efficient reconfigurable digital counters and shift registers that can be integrated with other photon-processing analog and digital circuits within the 55 {mu}mx55 {mu}m pixel area. This work proposes a configurable-depth, programmable mode digital counter for use in Medipix3.

  9. TU-F-18A-05: An X-Ray Fluorescence Technique for Energy Calibration of Photon-Counting Detectors

    SciTech Connect

    Ding, H; Cho, H; Molloi, S; Barber, W; Iwanczyk, J

    2014-06-15

    Purpose: To investigate the feasibility of energy response calibration of a Si strip photon-counting detector by using the x-ray fluorescence technique. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on Si strips. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing Ag, I, Ba, and Gd, were placed in small plastic aliquots with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known energies for materials. The energy resolution was derived from the full width at half maximum (FWHM) of the fluorescence peaks. In addition, the angular dependence of the recorded fluorescence spectra was studied at 30°, 60°, and 120°. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The recorded pulse height was calibrated with respect to photon energy and the gain and offset values were calculated to be 7.0 mV/keV and −69.3 mV, respectively. Negligible variation in energy calibration was observed among the four energy thresholds. The variation among different pixels was estimated to be approximately 1 keV. The energy resolution of the detector was estimated to be 7.9% within the investigated energy range. Conclusion: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the detector. The proposed x-ray fluorescence technique provides an accurate and efficient way to calibrate the energy response of a photon-counting detector.

  10. An image-processing program for automated counting

    USGS Publications Warehouse

    Cunningham, D.J.; Anderson, W.H.; Anthony, R.M.

    1996-01-01

    An image-processing program developed by the National Institute of Health, IMAGE, was modified in a cooperative project between remote sensing specialists at the Ohio State University Center for Mapping and scientists at the Alaska Science Center to facilitate estimating numbers of black brant (Branta bernicla nigricans) in flocks at Izembek National Wildlife Refuge. The modified program, DUCK HUNT, runs on Apple computers. Modifications provide users with a pull down menu that optimizes image quality; identifies objects of interest (e.g., brant) by spectral, morphometric, and spatial parameters defined interactively by users; counts and labels objects of interest; and produces summary tables. Images from digitized photography, videography, and high- resolution digital photography have been used with this program to count various species of waterfowl.

  11. Single photon imaging and timing array sensor apparatus and method

    DOEpatents

    Smith, R. Clayton

    2003-06-24

    An apparatus and method are disclosed for generating a three-dimension image of an object or target. The apparatus is comprised of a photon source for emitting a photon at a target. The emitted photons are received by a photon receiver for receiving the photon when reflected from the target. The photon receiver determines a reflection time of the photon and further determines an arrival position of the photon on the photon receiver. An analyzer is communicatively coupled to the photon receiver, wherein the analyzer generates a three-dimensional image of the object based upon the reflection time and the arrival position.

  12. Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Beck, Jeffrey D.; Scritchfield, Richard; Mitra, Pradip; Sullivan, William W.; Gleckler, Anthony D.; Strittmatter, Robert; Martin, Robert J.

    2014-08-01

    A linear mode photon counting focal plane array using HgCdTe mid-wave infrared (MWIR) cutoff electron initiated avalanche photodiodes (e-APDs) has been designed, fabricated, and characterized. The broad spectral range (0.4 to 4.3 μm) is unique among photon counters, making this a "first of its kind" system spanning the visible to the MWIR. The low excess noise [F(M)≈1] of the e-APDs allows for robust photon detection while operating at a stable linear avalanche gain in the range of 500-1000. The readout integrated circuit (ROIC) design included a very high gain-bandwidth product resistive transimpedance amplifier (3×1013 Ω-Hz) and a 4 ns output digital pulse width comparator. The ROIC had 16 high-bandwidth analogs and 16 low-voltage differential signaling digital outputs. The 2×8 array was integrated into an LN2 Dewar with a custom leadless chip carrier and daughter board design that preserved high-bandwidth analog and digital signal integrity. The 2×8 e-APD arrays were fabricated on 4.3 μm cutoff HgCdTe and operated at 84 K. The measured dark currents were approximately 1 pA at 13 V bias where the measured avalanche photodiode gain was 500. This translates to a predicted dark current induced dark count rate of less than 20 KHz. Single photon detection was achieved with a photon pulse signal-to-noise ratio of 13.7 above the amplifier noise floor. A photon detection efficiency of 50% was measured at a photon background limited false event rate of about 1 MHz. The measured jitter was in the range of 550-800 ps. The demonstrated minimum time between distinguishable events was less than 10 ns.

  13. Single-photon imaging camera development for night vision

    NASA Astrophysics Data System (ADS)

    Vasile, Stefan; Cheng, Jing; Lipson, Jerold; Liu, Jifeng; Michel, Jurgen

    2010-04-01

    Single-photon imaging in infrared will add a new valuable tool to night imaging cameras. Despite years of development, high-sensitivity SWIR cameras are still expensive and not ready for large-volume production. Germanium (Ge) is a promising semiconductor to convert SWIR radiation and it has seen extensive development in conjunction with highspeed optical communications. We are demonstrating a new low-light level infrared array technology based on the single-photon sensitive Geiger avalanche PhotoDiode (Si-GPD) array technology developed at aPeak and low-dislocation Germanium processing developed at MIT. The core of the imaging camera is a Ge:Si photon-counting GPD pixel with CMOS readout. The primary technology objective is to demonstrate through prototyping and semiconductor process development the technical feasibility of single-photon detection cameras sensitive in the SWIR and set the performance specifications. We report on prototype Ge:Si structures compatible with the GPD operation and technology. We demonstrate >80% quantum efficiency at 1310nm and 45%-60% quantum efficiency at 1550nm. Dark current measurements indicate that single-photon sensitivity (2.6x10-18W/pixel) is achievable by cooling the detector at cryogenic temperatures down to 53K. A digital developed to provide adjustable dynamic range and frame rate is reported. Because the GPD detectors have intrinsic excellent gating and ranging capability, the pixel architecture is developed to enable the dual mode operation - passive illumination two-dimensional imaging (night vision) and active illumination three-dimensional imaging.

  14. Development of photodetectors for recording lidar signals in the photon counting and analog modes

    NASA Astrophysics Data System (ADS)

    Slesar, A. S.; Chaikovskii, A. P.; Denisov, S. V.; Korol, M. M.; Osipenko, F. P.; Balin, Yu. S.; Kokhanenko, G. P.; Penner, I. E.; Novoselov, M. M.

    2015-11-01

    A number of unified photodetector modules providing for recording lidar signals in the wavelength range from 0.26 to 1.6 μm in the modes of analog signals and photon counting are developed on the basis of photomultiplier tubes and avalanche photodiodes. The software is created for control of the photodetector modules, as well as the test bench for measuring their characteristics is designed.

  15. Revealing Invisible Photonic Inscriptions: Images from Strain.

    PubMed

    Ding, Tao; Cao, Guoshuai; Schäfer, Christian G; Zhao, Qibin; Gallei, Markus; Smoukov, Stoyan K; Baumberg, Jeremy J

    2015-06-24

    Photonic structural materials have received intensive interest and have been strongly developed over the past few years for image displays, sensing, and anticounterfeit materials. Their "smartness" arises from their color responsivity to changes of environment, strain, or external fields. Here, we introduce a novel invisible photonic system that reveals encrypted images or characters by simply stretching, or immersing in solvents. This type of intriguing photonic material is composed of regularly arranged core-shell particles that are selectively cross-linked by UV irradiation, giving different strain response compared to un-cross-linked regions. The images reversibly appear and disappear when cycling the strain and releasing it. The unique advantages of this soft polymer opal system compared with other types of photonic gels are that it can be produced in roll to roll quantities, can be vigorously deformed to achieve strong color changes, and has no solvent evaporation issues because it is a photonic rubber system. We demonstrate potential applications together with a fabrication procedure which is straightforward and scalable, vital for user take-up. Our work deepens understanding of this rubbery photonic system based on core-shell nanospheres. PMID:26039279

  16. Revealing Invisible Photonic Inscriptions: Images from Strain

    PubMed Central

    2015-01-01

    Photonic structural materials have received intensive interest and have been strongly developed over the past few years for image displays, sensing, and anticounterfeit materials. Their “smartness” arises from their color responsivity to changes of environment, strain, or external fields. Here, we introduce a novel invisible photonic system that reveals encrypted images or characters by simply stretching, or immersing in solvents. This type of intriguing photonic material is composed of regularly arranged core–shell particles that are selectively cross-linked by UV irradiation, giving different strain response compared to un-cross-linked regions. The images reversibly appear and disappear when cycling the strain and releasing it. The unique advantages of this soft polymer opal system compared with other types of photonic gels are that it can be produced in roll to roll quantities, can be vigorously deformed to achieve strong color changes, and has no solvent evaporation issues because it is a photonic rubber system. We demonstrate potential applications together with a fabrication procedure which is straightforward and scalable, vital for user take-up. Our work deepens understanding of this rubbery photonic system based on core–shell nanospheres. PMID:26039279

  17. Linear fitting of multi-threshold counting data with a pixel-array detector for spectral X-ray imaging

    PubMed Central

    Muir, Ryan D.; Pogranichney, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.

    2014-01-01

    Experiments and modeling are described to perform spectral fitting of multi-threshold counting measurements on a pixel-array detector. An analytical model was developed for describing the probability density function of detected voltage in X-ray photon-counting arrays, utilizing fractional photon counting to account for edge/corner effects from voltage plumes that spread across multiple pixels. Each pixel was mathematically calibrated by fitting the detected voltage distributions to the model at both 13.5 keV and 15.0 keV X-ray energies. The model and established pixel responses were then exploited to statistically recover images of X-ray intensity as a function of X-ray energy in a simulated multi-wavelength and multi-counting threshold experiment. PMID:25178010

  18. Update on Linear Mode Photon Counting with the HgCdTe Linear Mode Avalanche Photodiode

    NASA Technical Reports Server (NTRS)

    Beck, Jeffrey D.; Kinch, Mike; Sun, Xiaoli

    2014-01-01

    The behavior of the gain-voltage characteristic of the mid-wavelength infrared cutoff HgCdTe linear mode avalanche photodiode (e-APD) is discussed both experimentally and theoretically as a function of the width of the multiplication region. Data are shown that demonstrate a strong dependence of the gain at a given bias voltage on the width of the n- gain region. Geometrical and fundamental theoretical models are examined to explain this behavior. The geometrical model takes into account the gain-dependent optical fill factor of the cylindrical APD. The theoretical model is based on the ballistic ionization model being developed for the HgCdTe APD. It is concluded that the fundamental theoretical explanation is the dominant effect. A model is developed that combines both the geometrical and fundamental effects. The model also takes into account the effect of the varying multiplication width in the low bias region of the gain-voltage curve. It is concluded that the lower than expected gain seen in the first 2 × 8 HgCdTe linear mode photon counting APD arrays, and higher excess noise factor, was very likely due to the larger than typical multiplication region length in the photon counting APD pixel design. The implications of these effects on device photon counting performance are discussed.

  19. Approaching the Ultimate Limits of Communication Efficiency with a Photon-Counting Detector

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris; Moision, Bruce; Dolinar, Samuel J.; Birnbaum, Kevin M.; Divsalar, Dariush

    2012-01-01

    Coherent states achieve the Holevo capacity of a pure-loss channel when paired with an optimal measurement, but a physical realization of this measurement is as of yet unknown, and it is also likely to be of high complexity. In this paper, we focus on the photon-counting measurement and study the photon and dimensional efficiencies attainable with modulations over classical- and nonclassical-state alphabets. We first review the state-of-the-art coherent on-off-keying (OOK) with a photoncounting measurement, illustrating its asymptotic inefficiency relative to the Holevo limit. We show that a commonly made Poisson approximation in thermal noise leads to unbounded photon information efficiencies, violating the conjectured Holevo limit. We analyze two binary-modulation architectures that improve upon the dimensional versus photon efficiency tradeoff achievable with conventional OOK. We show that at high photon efficiency these architectures achieve an efficiency tradeoff that differs from the best possible tradeoff--determined by the Holevo capacity--by only a constant factor. The first architecture we analyze is a coherent-state transmitter that relies on feedback from the receiver to control the transmitted energy. The second architecture uses a single-photon number-state source.

  20. Low noise, free running, high rate photon counting for space communication and ranging

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Krainak, Michael A.; Yang, Guangning; Sun, Xiaoli; Merritt, Scott

    2016-05-01

    communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies (>50%) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their space communication and ranging performances using both the 2 detected photon threshold and coincidence methods.

  1. Linear Mode HgCdTe Avalanche Photodiodes for Photon Counting Applications

    NASA Technical Reports Server (NTRS)

    Sullivan, William, III; Beck, Jeffrey; Scritchfield, Richard; Skokan, Mark; Mitra, Pradip; Sun, Xiaoli; Abshire, James; Carpenter, Darren; Lane, Barry

    2015-01-01

    An overview of recent improvements in the understanding and maturity of linear mode photon counting with HgCdTe electron-initiated avalanche photodiodes is presented. The first HgCdTe LMPC 2x8 format array fabricated in 2011 with 64 micron pitch was a remarkable success in terms of demonstrating a high single photon signal to noise ratio of 13.7 with an excess noise factor of 1.3-1.4, a 7 ns minimum time between events, and a broad spectral response extending from 0.4 micron to 4.2 micron. The main limitations were a greater than 10x higher false event rate than expected of greater than 1 MHz, a 5-7x lower than expected APD gain, and a photon detection efficiency of only 50% when greater than 60% was expected. This paper discusses the reasons behind these limitations and the implementation of their mitigations with new results.

  2. Time-Correlated Single-Photon Counting Range Profiling of Moving Objects

    NASA Astrophysics Data System (ADS)

    Hedborg, Julia; Jonsson, Per; Henriksson, Markus; Sjöqvist, Lars

    2016-06-01

    Time-correlated single-photon counting (TCSPC) is a laser radar technique that can provide range profiling with very high resolution. Range profiles of multiple surface objects and geometrical shapes are revealed using multiple laser pulses with very low pulse energy. The method relies on accurate time measurements between a laser pulse sync signal and the registration of a single-photon event of reflected photons from a target. TCSPC is a statistic method that requires an acquisition time and therefore the range profile of a non-stationary object (target) may be corrupted. Here, we present results showing that it is possible to reconstruct the range profile of a moving target and calculate the velocity of the target.

  3. A fast and high-sensitive dual-wavelength diffuse optical tomography system using digital lock-in photon-counting technique

    NASA Astrophysics Data System (ADS)

    Chen, Weiting; Yi, Xi; Zhao, Huijuan; Gao, Feng

    2014-09-01

    We presented a novel dual-wavelength diffuse optical imaging system which can perform 2-D or 3-D imaging fast and high-sensitively for monitoring the dynamic change of optical parameters. A newly proposed lock-in photon-counting detection method was adopted for week optical signal collection, which brought in excellent property as well as simplified geometry. Fundamental principles of the lock-in photon-counting detection were elaborately demonstrated, and the feasibility was strictly verified by the linearity experiment. Systemic performance of the prototype set up was experimentally accessed, including stray light rejection and inherent interference. Results showed that the system possessed superior anti-interference capability (under 0.58% in darkroom) compared with traditional photon-counting detection, and the crosstalk between two wavelengths was lower than 2.28%. For comprehensive assessment, 2-D phantom experiments towards relatively large dimension model (diameter of 4cm) were conducted. Different absorption targets were imaged to investigate detection sensitivity. Reconstruction image under all conditions was exciting, with a desirable SNR. Study on image quality v.s. integration time put forward a new method for accessing higher SNR with the sacrifice of measuring speed. In summary, the newly developed system showed great potential in promoting detection sensitivity as well as measuring speed. This will make substantial progress in dynamically tracking the blood concentration distribution in many clinical areas, such as small animal disease modeling, human brain activity research and thick tissues (for example, breast) diagnosis.

  4. Automated counting of bacterial colonies by image analysis.

    PubMed

    Chiang, Pei-Ju; Tseng, Min-Jen; He, Zong-Sian; Li, Chia-Hsun

    2015-01-01

    Research on microorganisms often involves culturing as a means to determine the survival and proliferation of bacteria. The number of colonies in a culture is counted to calculate the concentration of bacteria in the original broth; however, manual counting can be time-consuming and imprecise. To save time and prevent inconsistencies, this study proposes a fully automated counting system using image processing methods. To accurately estimate the number of viable bacteria in a known volume of suspension, colonies distributing over the whole surface area of a plate, including the central and rim areas of a Petri dish are taken into account. The performance of the proposed system is compared with verified manual counts, as well as with two freely available counting software programs. Comparisons show that the proposed system is an effective method with excellent accuracy with mean value of absolute percentage error of 3.37%. A user-friendly graphical user interface is also developed and freely available for download, providing researchers in biomedicine with a more convenient instrument for the enumeration of bacterial colonies. PMID:25451456

  5. Evaluation of models of spectral distortions in photon-counting detectors for computed tomography.

    PubMed

    Cammin, Jochen; Kappler, Steffen; Weidinger, Thomas; Taguchi, Katsuyuki

    2016-04-01

    A semi-analytical model describing spectral distortions in photon-counting detectors (PCDs) for clinical computed tomography was evaluated using simulated data. The distortions were due to count rate-independent spectral response effects and count rate-dependent pulse-pileup effects and the model predicted both the mean count rates and the spectral shape. The model parameters were calculated using calibration data. The model was evaluated by comparing the predicted x-ray spectra to Monte Carlo simulations of a PCD at various count rates. The data-model agreement expressed as weighted coefficient of variation [Formula: see text] was better than [Formula: see text] for dead time losses up to 28% and [Formula: see text] or smaller for dead time losses up to 69%. The accuracy of the model was also tested for the purpose of material decomposition by estimating material thicknesses from simulated projection data. The estimated attenuator thicknesses generally agreed with the true values within one standard deviation of the statistical uncertainty obtained from multiple noise realizations. PMID:27213165

  6. Modeling the performance of a photon counting x-ray detector for CT: Energy response and pulse pileup effects

    SciTech Connect

    Taguchi, Katsuyuki; Zhang, Mengxi; Frey, Eric C.; Wang Xiaolan; Iwanczyk, Jan S.; Nygard, Einar; Hartsough, Neal E.; Tsui, Benjamin M. W.; Barber, William C.

    2011-02-15

    Purpose: Recently, photon counting x-ray detectors (PCXDs) with energy discrimination capabilities have been developed for potential use in clinical computed tomography (CT) scanners. These PCXDs have great potential to improve the quality of CT images due to the absence of electronic noise and weights applied to the counts and the additional spectral information. With high count rates encountered in clinical CT, however, coincident photons are recorded as one event with a higher or lower energy due to the finite speed of the PCXD. This phenomenon is called a ''pulse pileup event'' and results in both a loss of counts (called ''deadtime losses'') and distortion of the recorded energy spectrum. Even though the performance of PCXDs is being improved, it is essential to develop algorithmic methods based on accurate models of the properties of detectors to compensate for these effects. To date, only one PCXD (model DXMCT-1, DxRay, Inc., Northridge, CA) has been used for clinical CT studies. The aim of that study was to evaluate the agreement between data measured by DXMCT-1 and those predicted by analytical models for the energy response, the deadtime losses, and the distorted recorded spectrum caused by pulse pileup effects. Methods: An energy calibration was performed using {sup 99m}Tc (140 keV), {sup 57}Co (122 keV), and an x-ray beam obtained with four x-ray tube voltages (35, 50, 65, and 80 kVp). The DXMCT-1 was placed 150 mm from the x-ray focal spot; the count rates and the spectra were recorded at various tube current values from 10 to 500 {mu}A for a tube voltage of 80 kVp. Using these measurements, for each pulse height comparator we estimated three parameters describing the photon energy-pulse height curve, the detector deadtime {tau}, a coefficient k that relates the x-ray tube current I to an incident count rate a by a=kxI, and the incident spectrum. The mean pulse shape of all comparators was acquired in a separate study and was used in the model to

  7. Photon dynamics in tissue imaging

    NASA Astrophysics Data System (ADS)

    Chance, Britton; Haselgrove, John C.; Wang, NaiGuang; Maris, Michael B.; Sevick-Muraca, Eva M.

    1991-11-01

    The emerging need for a fast, safe economical approach to global and localized measures of desaturation of hemoglobin with oxygen (HbO2) in the human brain motivates further research on time-resolved spectroscopy in four areas of study. (1) To afford quantization of hemoglobin saturation through time-resolved spectroscopy in the time domain (TD) and in the frequency domain (FD). Evaluation of dual-wavelength TD and FD spectrometers for determining quantitatively hemoglobin desaturation and blood-volume changes by calculations that are insensitive to mutual interference is proposed. The diffusion equation, as it applies especially to TD studies, and the absorption ((mu) a) and scattering ((mu) s) coefficients provide their independent determination from the late and early respective portions of the kinetics of the emergent photons in response to a short input pulse (50-100 psec). (2) The identification of the photon-pathlength change due to the arterial pulse in the brain tissue by FD methods with Fourier transformation affords an opportunity to employ principles of pulse oximetry to vessels localized deep within the brain tissue. (3) Localization of desaturation of hemoglobin in portions of the brain can be achieved through dual-wavelength scanning of the input/output optical fibers across the head for an X-Y coordinate and varying the distance between input and output ((rho) ) or the time delay in data acquisition to afford an in-depth Z scan. Localizations of shed blood, which have an effective concentration of over 10 times that of capillary-bed blood, are identified by X, Y, Z scans using only a single wavelength. (4) Independent measurements of absorption ((mu) a) and scattering ((mu) s) coefficients, particularly by TD techniques, affords structural mapping of the brain, which can be used to diagnose brain tumor and neuronal degeneration. Two experimental systems are used to critically evaluate these studies; the first, a hemoglobin/lipid/yeast model in which

  8. On Approaching the Ultimate Limits of Communication Using a Photon-Counting Detector

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris I.; Moision, Bruce E.; Dolinar, Samuel J.; Birnbaum, Kevin M.; Divsalar, Dariush

    2012-01-01

    Coherent states achieve the Holevo capacity of a pure-loss channel when paired with an optimal measurement, but a physical realization of this measurement scheme is as of yet unknown, and it is also likely to be of high complexity. In this paper, we focus on the photon-counting measurement and study the photon and dimensional efficiencies attainable with modulations over classical- and nonclassical-state alphabets. We analyze two binary modulation architectures that improve upon the dimensional versus photon efficiency tradeoff achievable with the state-of-the-art coherent-state on-off keying modulation. We show that at high photon efficiency these architectures achieve an efficiency tradeoff that differs from the best possible tradeoff--determined by the Holevo capacity--by only a constant factor. The first architecture we analyze is a coherent-state transmitter that relies on feedback from the receiver to control the transmitted energy. The second architecture uses a single-photon number-state source.

  9. Zero-dark-counting X-ray photon detection using a YAP(Ce)-MPPC detector and its application to computed tomography using gadolinium contrast media

    NASA Astrophysics Data System (ADS)

    Kami, Syouta; Sato, Eiichi; Kogita, Hayato; Numahata, Wataru; Hamaya, Tatsuki; Nihei, Shinichi; Arakawa, Yumeka; Oda, Yasuyuki; Kodama, Hajime; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira

    2014-07-01

    To measure X-ray spectra and to perform photon-counting computed tomography (PC-CT) with high count rates, we developed a zero-dark-counting spectrometer using a short-decay-time scintillator. A method exploiting a YAP(Ce) [cerium-doped yttrium aluminum perovskite] single crystal scintillator with a decay time of 30 ns and an MPPC (multipixel photon counter) has been developed to count X-ray photons. The photocurrent from the MPPC was amplified by a high-speed current-voltage amplifier, and the event pulse was sent to a multichannel analyzer (MCA) to measure X-ray spectra. The MPPC was driven under pre-Geiger mode at a bias voltage of the MPPC of 70.7 V and a temperature of 23 °C. The PC-CT was accomplished by repeated linear scans and rotations of an object, and projection curves of the object were obtained by the linear scan at a tube current of 1.0 mA. The exposure time for obtaining a tomogram was 10 min at a scan step of 0.5 mm and a rotation step of 1.0°. At a tube voltage of 100 kV, the maximum count rate was 200 kcps. In the PC-CT using gadolinium media, we observed image-contrast variations with changes in lower-level discrimination voltage of the event pulse using a comparator.

  10. Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate

    PubMed Central

    Schuck, Carsten; Pernice, Wolfram H. P.; Tang, Hong X.

    2013-01-01

    Superconducting nanowire single-photon detectors are an ideal match for integrated quantum photonic circuits due to their high detection efficiency for telecom wavelength photons. Quantum optical technology also requires single-photon detection with low dark count rate and high timing accuracy. Here we present very low noise superconducting nanowire single-photon detectors based on NbTiN thin films patterned directly on top of Si3N4 waveguides. We systematically investigate a large variety of detector designs and characterize their detection noise performance. Milli-Hz dark count rates are demonstrated over the entire operating range of the nanowire detectors which also feature low timing jitter. The ultra-low dark count rate, in combination with the high detection efficiency inherent to our travelling wave detector geometry, gives rise to a measured noise equivalent power at the 10−20 W/Hz1/2 level. PMID:23714696

  11. Direct measurement by single photon counting of lipid hydroperoxides in human plasma and lipoproteins.

    PubMed

    Zamburlini, A; Maiorino, M; Barbera, P; Roveri, A; Ursini, F

    1995-11-20

    A single photon counting procedure for measuring lipid hydroperoxides in human plasma or LDL-VLDL, escaping from extraction and chromatography, is described. This appears to be a relevant procedure because the recovery of phospholipid hydroperoxides from plasma is a critical point which, in our hands, was limited and poorly reproducible. The sample is added to a reaction mixture containing luminol, hemin, and Triton X-100 in an alkaline buffer, the photon emission is recorded, and the data are processed using the monoexponential decay of the photon emission rate. The measurement is applied to (a) plasma passed through a "desalting" cartridge to eliminate the small water-soluble antioxidants which inhibit the chemiluminescent process or (b) apo-B-containing lipoproteins (LDL-VLDL) isolated by heparin-Sepharose affinity chromatography. The content of lipid hydroperoxides is calculated using an internal calibration with palmitoyllinoleoylphosphatidylcholine hydroperoxide. This procedure, based on a single photon counting technology, was adopted to produce reliable results using samples from which inhibitors of the photon emission process have not been completely eliminated. The specificity of the signal for lipid hydroperoxides was validated by its complete disappearance following incubation of the sample with glutathione and phospholipid-hydroperoxide glutathione peroxidase (EC 1.11.1.12), the sole enzyme specific for all classes of lipid hydroperoxides in lipoproteins. The interassay variability was < 10%. The results indicated that the concentration of lipid hydroperoxides in the plasma of 20 healthy subjects was 353 +/- 78 nM. In different subjects, LDL-VLDL accounted for 40-80% of the lipid hydroperoxides in plasma. PMID:8600817

  12. Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements

    NASA Astrophysics Data System (ADS)

    Degnan, John J.

    2002-11-01

    We consider the optimum design of photon-counting microlaser altimeters operating from airborne and spaceborne platforms under both day and night conditions. Extremely compact, passively Q-switched microlaser transmitters produce trains of low energy pulses at multi-kHz rates and can easily generate subnanosecond pulsewidths for precise ranging. To guide the design, we have modeled the solar noise background and developed simple algorithms, based on post-detection Poisson filtering (PDPF), to optimally extract the weak altimeter signal from a high noise background during daytime operations. The advantages of photon-counting detector arrays followed by multichannel timing receivers for high resolution topographic mapping are discussed. Practical technology issues, such as detector and/or receiver dead times and their impact on signal detection and ranging accuracy and resolution, have also been considered in the analysis. The theoretical results are reinforced by data from an airborne microlaser altimeter, developed under NASA's Instrument Incubator Program. The latter instrument has operated at several kHz rates from aircraft cruise altitudes up to 6.7 km with laser pulse energies on the order of a few microjoules. The instrument has successfully recorded decimeter accuracy or better single photon returns from man-made structures, tree canopies and underlying terrain and has demonstrated shallow water bathymetry at depths to a few meters. We conclude the discussion by analyzing a photon counting instrument designed to produce, over a mission life of 3 years, a globally contiguous map of the Martian surface, with 5 m horizontal resolution and decimeter vertical accuracy, from an altitude of 300 km. The transmitter power-receive aperture product required is comparable to the Geoscience Laser Altimeter System (GLAS) but the number of individual range measurements to the surface is increased by three to four orders of magnitude. For more modest scientific goals, on a

  13. Exposure dose reduction for the high energy spectrum in the photon counting mammography: simulation study based on Japanese breast glandularity and thickness

    NASA Astrophysics Data System (ADS)

    Niwa, Naoko; Yamazaki, Misaki; Kodera, Yoshie; Yamamuro, Mika; Yamada, Kanako; Asai, Yoshiyuki; Yamada, Koji

    2015-03-01

    Recently, digital mammography with a photon counting silicon detector has been developed. With the aim of reducing the exposure dose, we have proposed a new mammography system that uses a cadmium telluride series photon counting detector. In addition, we also propose to use a high energy X-ray spectrum with a tungsten anode. The purpose of this study was assessed that the effectiveness of the high X-ray energy spectrum in terms of image quality using a Monte Carlo simulation. The proposed photon counting system with the high energy X-ray is compared to a conventional flat panel detector system with a Mo/Rh spectrum. The contrast-to-noise ratio (CNR) is calculated from simulation images with the use of breast phantoms. The breast model phantoms differed by glandularity and thickness, which were determined from Japanese clinical mammograms. We found that the CNR values were higher in the proposed system than in the conventional system. The number of photons incident on the detector was larger in the proposed system, so that the noise values was lower in comparison with the conventional system. Therefore, the high energy spectrum yielded the same CNR as using the conventional spectrum while allowing a considerable dose reduction to the breast.

  14. Two-photon fluorescence correlation spectroscopy with high count rates and low background using dielectric microspheres

    PubMed Central

    Aouani, Heykel; Schön, Peter; Brasselet, Sophie; Rigneault, Hervé; Wenger, Jérôme

    2010-01-01

    Two-photon excitation fluorescence is a powerful technique commonly used for biological imaging. However, the low absorption cross section of this non-linear process is a critical issue for performing biomolecular spectroscopy at the single molecule level. Enhancing the two-photon fluorescence signal would greatly improve the effectiveness of this technique, yet current methods struggle with medium enhancement factors and/or high background noise. Here, we show that the two-photon fluorescence signal from single Alexa Fluor 488 molecules can be enhanced up to 10 times by using a 3 µm diameter latex sphere while adding almost no photoluminescence background. We report a full characterization of the two-photon fluorescence enhancement by a single microsphere using fluorescence correlation spectroscopy. This opens new routes to enhance non-linear optical signals and extend biophotonic applications. PMID:21258531

  15. A photon-counting photodiode array detector for far ultraviolet (FUV) astronomy

    NASA Technical Reports Server (NTRS)

    Hartig, G. F.; Moos, H. W.; Pembroke, R.; Bowers, C.

    1982-01-01

    A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location.

  16. Denoising Two-Photon Calcium Imaging Data

    PubMed Central

    Malik, Wasim Q.; Schummers, James; Sur, Mriganka; Brown, Emery N.

    2011-01-01

    Two-photon calcium imaging is now an important tool for in vivo imaging of biological systems. By enabling neuronal population imaging with subcellular resolution, this modality offers an approach for gaining a fundamental understanding of brain anatomy and physiology. Proper analysis of calcium imaging data requires denoising, that is separating the signal from complex physiological noise. To analyze two-photon brain imaging data, we present a signal plus colored noise model in which the signal is represented as harmonic regression and the correlated noise is represented as an order autoregressive process. We provide an efficient cyclic descent algorithm to compute approximate maximum likelihood parameter estimates by combing a weighted least-squares procedure with the Burg algorithm. We use Akaike information criterion to guide selection of the harmonic regression and the autoregressive model orders. Our flexible yet parsimonious modeling approach reliably separates stimulus-evoked fluorescence response from background activity and noise, assesses goodness of fit, and estimates confidence intervals and signal-to-noise ratio. This refined separation leads to appreciably enhanced image contrast for individual cells including clear delineation of subcellular details and network activity. The application of our approach to in vivo imaging data recorded in the ferret primary visual cortex demonstrates that our method yields substantially denoised signal estimates. We also provide a general Volterra series framework for deriving this and other signal plus correlated noise models for imaging. This approach to analyzing two-photon calcium imaging data may be readily adapted to other computational biology problems which apply correlated noise models. PMID:21687727

  17. Two-Photon Ghost Image and Interference-Diffraction

    NASA Technical Reports Server (NTRS)

    Shih, Y. H.; Sergienko, A. V.; Pittman, T. B.; Strekalov, D. V.; Klyshko, D. N.

    1996-01-01

    One of the most surprising consequences of quantum mechanics is entanglement of two or more distance particles. The two-particle entangled state was mathematically formulated by Schrodinger. Based on this unusual quantum behavior, EPR defined their 'physical reality' and then asked the question: 'Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?' One may not appreciate EPR's criterion of physical reality and insist that 'no elementary quantum phenomenon is a phenomenon until it is a recorded phenomenon'. Optical spontaneous parametric down conversion (SPDC) is the most effective mechanism to generate an EPR type entangled two-photon state. In SPDC, an optical beam, called the pump, is incident on a birefringent crystal. The pump is intense enough so that nonlinear effects lead to the conversion of pump photons into pairs of photons, historically called signal and idler. Technically, the SPDC is said to be type-1 or type-2, depending on whether the signal and idler beams have parallel or orthogonal polarization. The SPDC conversion efficiency is typically on the order of 10(exp -9) to 10(exp -11), depending on the SPDC nonlinear material. The signal and idler intensities are extremely low, only single photon detection devices can register them. The quantum entanglement nature of SPDC has been demonstrated in EPR-Bohm experiments and Bell's inequality measurements. The following two experiments were recently performed in our laboratory, which are more closely related to the original 1935 EPR gedankenezperiment. The first experiment is a two-photon optical imaging type experiment, which has been named 'ghost image' by the physics community. The signal and idler beams of SPDC are sent in different directions, so that the detection of the signal and idler photons can be performed by two distant photon counting detectors. An aperture object (mask) is placed in front of the signal photon detector and illuminated by the signal beam through a

  18. Absolute calibration of an EMCCD camera by quantum correlation, linking photon counting to the analog regime.

    PubMed

    Avella, A; Ruo-Berchera, I; Degiovanni, I P; Brida, G; Genovese, M

    2016-04-15

    We show how the same setup and procedure, exploiting spatially multimode quantum correlations, allows the absolute calibration of an electron-multiplying charge-coupled (EMCCD) camera from the analog regime down to the single-photon-counting level, just by adjusting the brightness of the quantum source. At the single-photon level, an EMCCD can be operated as an on-off detector, where quantum efficiency depends on the discriminating threshold. We develop a simple model to explain the connection of the two different regimes demonstrating that the efficiency estimated in the analog (bright) regime allows us to accurately predict the detector behavior in the photocounting regime and vice versa. This work establishes a bridge between two regions of the optical measurements that up to now have been based on completely different standards, detectors, and measurement techniques. PMID:27082359

  19. A photon-counting optical communication system for underwater data transfer

    NASA Astrophysics Data System (ADS)

    Hiskett, Philip A.; Struthers, Robert; Tatton, Roy; Lamb, Robert

    2012-09-01

    We report on the performance of a photon-counting optical communication system which was used to transmit optical data at clock rates (not detection rates) of 40Mb/s at a wavelength of 450nm. The transmitted test data patterns comprised of one page of ASCII text preceded by a pseudo-random sequence used as a timing reference pattern by the receiver. The optical data patterns were transmitted through an aquarium tank containing ~110 litres of water and were detected at the receiver by a shallow junction silicon single photon avalanche diode detector. An antacid, brand name Maalox, was introduced into the tank to increase the scattering of the optical pulses. The bit error rate and bit rate of the transmitted data were investigated for a range of Maalox concentrations. The optical attenuation and pulse distortion caused by the introduction of Maalox was also investigated.

  20. The solid state photomultiplier: Status of photon counting beyond the near-infrared

    NASA Technical Reports Server (NTRS)

    Hays, K. M.; Laviolette, R. A.; Stapelbroek, M. G.; Petroff, M. D.

    1989-01-01

    Rockwell International's Solid State Photomultiplier (SSPM) is an impurity-band avalanche device which can count individual photons with wavelengths between 0.4 and 28 micrometers. Its response to a photon is a pulse of between 10(exp 4) and 10(exp 5) conduction electrons, making it an important device for use in phenomenology. The characteristics of the SSPM make it a potentially important device for use in astronomical applications. Contract NAS2-12400 was initiated in June 1986 to conduct modeling and characterization studies of the SSPM to provide a basis for assessing its use in astronomical systems. Some SSPM models and results of measurements which characterize the group of SSPMs recently fabricated on this contract are discussed.

  1. Lightweight Raman spectroscope using time-correlated photon-counting detection.

    PubMed

    Meng, Zhaokai; Petrov, Georgi I; Cheng, Shuna; Jo, Javier A; Lehmann, Kevin K; Yakovlev, Vladislav V; Scully, Marlan O

    2015-10-01

    Raman spectroscopy is an important tool in understanding chemical components of various materials. However, the excessive weight and energy consumption of a conventional CCD-based Raman spectrometer forbids its applications under extreme conditions, including unmanned aircraft vehicles (UAVs) and Mars/Moon rovers. In this article, we present a highly sensitive, shot-noise-limited, and ruggedized Raman signal acquisition using a time-correlated photon-counting system. Compared with conventional Raman spectrometers, over 95% weight, 65% energy consumption, and 70% cost could be removed through this design. This technique allows space- and UAV-based Raman spectrometers to robustly perform hyperspectral Raman acquisitions without excessive energy consumption. PMID:26392538

  2. Longitudinal Bunch Pattern Measurements through Single Photon Counting at SPEAR3

    SciTech Connect

    Wang, Hongyi; /UC, San Diego

    2012-09-07

    The Stanford Synchrotron Radiation Lightsource (SSRL), a division of SLAC National Accelerator Laboratory, is a synchrotron light source that provides x-rays for experimental use. As electrons are bent in the storage ring, they emit electromagnetic radiation. There are 372 different buckets which electrons can be loaded into. Different filling patterns produce different types of x-rays. What is the bunch pattern at a given time? Which filling pattern is better? Are there any flaws to the current injection system? These questions can be answered with this single photon counting experiment.

  3. Development and test of photon-counting microchannel plate detector arrays for use on space telescopes

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1976-01-01

    The full sensitivity, dynamic range, and photometric stability of microchannel array plates(MCP) are incorporated into a photon-counting detection system for space operations. Components of the system include feedback-free MCP's for high gain and saturated output pulse-height distribution with a stable response; multi-anode readout arrays mounted in proximity focus with the output face of the MCP; and multi-layer ceramic headers to provide electrical interface between the anode array in a sealed detector tube and the associated electronics.

  4. CCDs and photon counting devices: Applications in space and from the ground

    NASA Technical Reports Server (NTRS)

    Delamere, W. A.; Blouke, M. M.; Flores, J. S.; Frame, W. W.

    1992-01-01

    The development of the 2048 by 2048 CCD (Charge Coupled Device) for a second generation space telescope instrument has resulted in devices with very few defects, dark currents of less than 12 electrons/pixel/hour at -80 deg, readout noise levels of less than 4 electrons rms, and excellent charge transfer efficiency at signal levels of less than 10 electrons. A second generation of devices that capitalize on these characteristics have been produced and are currently in test. Faster frame transfer devices that preserve these characteristics have been designed that include tridirectional taps in the serial register. The state of the art in CCD's as photon counting detectors is reviewed.

  5. Lightweight Raman spectroscope using time-correlated photon-counting detection

    PubMed Central

    Meng, Zhaokai; Petrov, Georgi I.; Cheng, Shuna; Jo, Javier A.; Lehmann, Kevin K.; Yakovlev, Vladislav V.; Scully, Marlan O.

    2015-01-01

    Raman spectroscopy is an important tool in understanding chemical components of various materials. However, the excessive weight and energy consumption of a conventional CCD-based Raman spectrometer forbids its applications under extreme conditions, including unmanned aircraft vehicles (UAVs) and Mars/Moon rovers. In this article, we present a highly sensitive, shot-noise–limited, and ruggedized Raman signal acquisition using a time-correlated photon-counting system. Compared with conventional Raman spectrometers, over 95% weight, 65% energy consumption, and 70% cost could be removed through this design. This technique allows space- and UAV-based Raman spectrometers to robustly perform hyperspectral Raman acquisitions without excessive energy consumption. PMID:26392538

  6. Statistical method for resolving the photon-photoelectron-counting inversion problem

    SciTech Connect

    Wu Jinlong; Li Tiejun; Peng, Xiang; Guo Hong

    2011-02-01

    A statistical inversion method is proposed for the photon-photoelectron-counting statistics in quantum key distribution experiment. With the statistical viewpoint, this problem is equivalent to the parameter estimation for an infinite binomial mixture model. The coarse-graining idea and Bayesian methods are applied to deal with this ill-posed problem, which is a good simple example to show the successful application of the statistical methods to the inverse problem. Numerical results show the applicability of the proposed strategy. The coarse-graining idea for the infinite mixture models should be general to be used in the future.

  7. Nanosecond image processing using stimulated photon echoes.

    PubMed

    Xu, E Y; Kröll, S; Huestis, D L; Kachru, R; Kim, M K

    1990-05-15

    Processing of two-dimensional images on a nanosecond time scale is demonstrated using the stimulated photon echoes in a rare-earth-doped crystal (0.1 at. % Pr(3+):LaF(3)). Two spatially encoded laser pulses (pictures) resonant with the (3)P(0)-(3)H(4) transition of Pr(3+) were stored by focusing the image pulses sequentially into the Pr(3+):LaF(3) crystal. The stored information is retrieved and processed by a third read pulse, generating the echo that is the spatial convolution or correlation of the input images. Application of this scheme to high-speed pattern recognition is discussed. PMID:19768008

  8. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm.

    PubMed

    Scarcella, Carmelo; Tosi, Alberto; Villa, Federica; Tisa, Simone; Zappa, Franco

    2013-12-01

    We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 μm active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm. PMID:24387425

  9. Note: Simple calibration of the counting-rate dependence of the timing shift of single photon avalanche diodes by photon interval analysis

    SciTech Connect

    Otosu, Takuhiro; Ishii, Kunihiko; Tahara, Tahei

    2013-03-15

    The counting-rate dependence of the temporal response of single photon avalanche diodes (SPADs) is a critical issue for the accurate determination of the fluorescence lifetime. In this study, the response of SPADs was examined with analyzing the time interval of the detected photons. The results clearly show that the shift of the detection timing causes the counting-rate dependence of the temporal response, and this timing shift is solely determined by the time interval from the preceding photon. We demonstrate that this timing instability is readily calibrated by utilizing the macrotime data taken with the time-tag mode that is implemented in the time-correlated single photon counting modules.

  10. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm

    SciTech Connect

    Scarcella, Carmelo; Tosi, Alberto Villa, Federica; Tisa, Simone; Zappa, Franco

    2013-12-15

    We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 μm active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.

  11. Novel CMOS time-delay integration using single-photon counting for high-speed industrial and aerospace applications

    NASA Astrophysics Data System (ADS)

    El-Desouki, Munir M.; Al-Azem, Badeea

    2014-03-01

    Time-delay integration (TDI) is a popular imaging technique that is used in many applications such as machine vision, dental scanning and satellite earth observation. One of the main advantages of using TDI imagers is the increased effective integration time that is achieved while maintaining high frame-rates. Another use for TDI imagers is with moving objects, such as the earth's surface or industrial machine vision applications, where integration time is limited in order to avoid motion blurs. Such technique may even find its way in mobile and consumer based imaging applications where the reduction in pixel size can limit the performance during low-light and high speed applications. Until recently, TDI was only used with charge-coupled devices (CCDs) mainly due to their charge transfer characteristics. CCDs however, are power consuming and slow when compared to CMOS technology and are no longer favorable for mobile applications. In this work, we report on novel single-photon counting based TDI technique that is implemented in standard CMOS technology allowing for complete camera-on-a-chip solution. The imager was fabricated in a standard CMOS 150 nm 5-metal digital process from LFoundry.

  12. Development of a Schottky CdTe Medipix3RX hybrid photon counting detector with spatial and energy resolving capabilities

    NASA Astrophysics Data System (ADS)

    Gimenez, E. N.; Astromskas, V.; Horswell, I.; Omar, D.; Spiers, J.; Tartoni, N.

    2016-07-01

    A multichip CdTe-Medipix3RX detector system was developed in order to bring the advantages of photon-counting detectors to applications in the hard X-ray range of energies. The detector head consisted of 2×2 Medipix3RX ASICs bump-bonded to a 28 mm×28 mm e- collection Schottky contact CdTe sensor. Schottky CdTe sensors undergo performance degrading polarization which increases with temperature, flux and the longer the HV is applied. Keeping the temperature stable and periodically refreshing the high voltage bias supply was used to minimize the polarization and achieve a stable and reproducible detector response. This leads to good quality images and successful results on the energy resolving capabilities of the system.

  13. Three-photon imaging of ovarian cancer

    NASA Astrophysics Data System (ADS)

    Barton, Jennifer K.; Amirsolaimani, Babak; Rice, Photini; Hatch, Kenneth; Kieu, Khanh

    2016-02-01

    Optical imaging methods have the potential to detect ovarian cancer at an early, curable stage. Optical imaging has the disadvantage that high resolution techniques require access to the tissue of interest, but miniature endoscopes that traverse the natural orifice of the reproductive tract, or access the ovaries and fallopian tubes through a small incision in the vagina wall, can provide a minimally-invasive solution. We have imaged both rodent and human ovaries and fallopian tubes with a variety of endoscope-compatible modalities. The recent development of fiber-coupled femtosecond lasers will enable endoscopic multiphoton microscopy (MPM). We demonstrated two- and three-photon excited fluorescence (2PEF, 3PEF), and second- and third-harmonic generation microscopy (SHG, THG) in human ovarian and fallopian tube tissue. A study was undertaken to understand the mechanisms of contrast in these images. Six patients (normal, cystadenoma, and ovarian adenocarcinoma) provided ovarian and fallopian tube biopsies. The tissue was imaged with three-dimensional optical coherence tomography, multiphoton microscopy, and frozen for histological sectioning. Tissue sections were stained with hematoxylin and eosin, Masson's trichrome, and Sudan black. Approximately 1 μm resolution images were obtained with an excitation source at 1550 nm. 2PEF signal was absent. SHG signal was mainly from collagen. 3PEF and THG signal came from a variety of sources, including a strong signal from fatty connective tissue and red blood cells. Adenocarcinoma was characterized by loss of SHG signal, whereas cystic abnormalities showed strong SHG. There was limited overlap of two- and three- photon signals, suggesting that three-photon imaging can provide additional information for early diagnosis of ovarian cancer.

  14. MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development

    NASA Astrophysics Data System (ADS)

    Brunt, Kelly M.; Neumann, Thomas A.; Amundson, Jason M.; Kavanaugh, Jeffrey L.; Moussavi, Mahsa S.; Walsh, Kaitlin M.; Cook, William B.; Markus, Thorsten

    2016-08-01

    Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is scheduled to launch in late 2017 and will carry the Advanced Topographic Laser Altimeter System (ATLAS), which is a photon-counting laser altimeter and represents a new approach to satellite determination of surface elevation. Given the new technology of ATLAS, an airborne instrument, the Multiple Altimeter Beam Experimental Lidar (MABEL), was developed to provide data needed for satellite-algorithm development and ICESat-2 error analysis. MABEL was deployed out of Fairbanks, Alaska, in July 2014 to provide a test dataset for algorithm development in summer conditions with water-saturated snow and ice surfaces. Here we compare MABEL lidar data to in situ observations in Southeast Alaska to assess instrument performance in summer conditions and in the presence of glacier surface melt ponds and a wet snowpack. Results indicate the following: (1) based on MABEL and in situ data comparisons, the ATLAS 90 m beam-spacing strategy will provide a valid assessment of across-track slope that is consistent with shallow slopes (< 1°) of an ice-sheet interior over 50 to 150 m length scales; (2) the dense along-track sampling strategy of photon counting systems can provide crevasse detail; and (3) MABEL 532 nm wavelength light may sample both the surface and subsurface of shallow (approximately 2 m deep) supraglacial melt ponds. The data associated with crevasses and melt ponds indicate the potential ICESat-2 will have for the study of mountain and other small glaciers.

  15. High-security communication by coherence modulation at the photon-counting level.

    PubMed

    Rhodes, William T; Boughanmi, Abdellatif; Moreno, Yezid Torres

    2016-05-20

    We show that key-specified interferometer path-length difference modulation (often referred to as coherence modulation), operating in the photon-counting regime with a broadband source, can provide a quantifiably high level of physics-guaranteed security for binary signal transmission. Each signal bit is associated with many photocounts, perhaps numbering in the thousands. Of great importance, the presence of an eavesdropper can be quickly detected. We first review the operation of key-specified coherence modulation at high light levels, illustrating by means of an example its lack of security against attack. We then show, using the same example, that, through the reduction of light intensities to photon-counting levels, a high level of security can be attained. A particular attack on the system is analyzed to demonstrate the quantifiability of the scheme's security, and various remaining research issues are discussed. A potential weakness of the scheme lies in a possible vulnerability to light amplification by an attacker. PMID:27411120

  16. Photon-counting 1.0 GHz-phase-modulation fluorometer

    SciTech Connect

    Mizuno, T.; Nakao, S.; Mizutani, Y.; Iwata, T.

    2015-04-15

    We have constructed an improved version of a photon-counting phase-modulation fluorometer (PC-PMF) with a maximum modulation frequency of 1.0 GHz, where a phase domain measurement is conducted with a time-correlated single-photon-counting electronics. While the basic concept of the PC-PMF has been reported previously by one of the authors, little attention has been paid to its significance, other than its weak fluorescence measurement capability. Recently, we have recognized the importance of the PC-PMF and its potential for fluorescence lifetime measurements. One important aspect of the PC-PMF is that it enables us to perform high-speed measurements that exceed the frequency bandwidths of the photomultiplier tubes that are commonly used as fluorescence detectors. We describe the advantages of the PC-PMF and demonstrate its usefulness based on fundamental performance tests. In our new version of the PC-PMF, we have used a laser diode (LD) as an excitation light source rather than the light-emitting diode that was used in the primary version. We have also designed a simple and stable LD driver to modulate the device. Additionally, we have obtained a sinusoidal histogram waveform that has multiple cycles within a time span to be measured, which is indispensable for precise phase measurements. With focus on the fluorescence intensity and the resolution time, we have compared the performance of the PC-PMF with that of a conventional PMF using the analogue light detection method.

  17. Sequential data assimilation for single-molecule FRET photon-counting data

    SciTech Connect

    Matsunaga, Yasuhiro; Kidera, Akinori; Sugita, Yuji

    2015-06-07

    Data assimilation is a statistical method designed to improve the quality of numerical simulations in combination with real observations. Here, we develop a sequential data assimilation method that incorporates one-dimensional time-series data of smFRET (single-molecule Förster resonance energy transfer) photon-counting into conformational ensembles of biomolecules derived from “replicated” molecular dynamics (MD) simulations. A particle filter using a large number of “replicated” MD simulations with a likelihood function for smFRET photon-counting data is employed to screen the conformational ensembles that match the experimental data. We examine the performance of the method using emulated smFRET data and coarse-grained (CG) MD simulations of a dye-labeled polyproline-20. The method estimates the dynamics of the end-to-end distance from smFRET data as well as revealing that of latent conformational variables. The particle filter is also able to correct model parameter dependence in CG MD simulations. We discuss the applicability of the method to real experimental data for conformational dynamics of biomolecules.

  18. Sequential data assimilation for single-molecule FRET photon-counting data

    NASA Astrophysics Data System (ADS)

    Matsunaga, Yasuhiro; Kidera, Akinori; Sugita, Yuji

    2015-06-01

    Data assimilation is a statistical method designed to improve the quality of numerical simulations in combination with real observations. Here, we develop a sequential data assimilation method that incorporates one-dimensional time-series data of smFRET (single-molecule Förster resonance energy transfer) photon-counting into conformational ensembles of biomolecules derived from "replicated" molecular dynamics (MD) simulations. A particle filter using a large number of "replicated" MD simulations with a likelihood function for smFRET photon-counting data is employed to screen the conformational ensembles that match the experimental data. We examine the performance of the method using emulated smFRET data and coarse-grained (CG) MD simulations of a dye-labeled polyproline-20. The method estimates the dynamics of the end-to-end distance from smFRET data as well as revealing that of latent conformational variables. The particle filter is also able to correct model parameter dependence in CG MD simulations. We discuss the applicability of the method to real experimental data for conformational dynamics of biomolecules.

  19. Experimental study of two material decomposition methods using multi-bin photon counting detectors

    NASA Astrophysics Data System (ADS)

    Zimmerman, Kevin C.; Sidky, Emil Y.; Gilat Schmidt, Taly

    2014-03-01

    Photon-counting detectors with multi-bin pulse height analysis (PHA) are capable of extracting energy dependent information which can be exploited for material decomposition. Iterative decomposition algorithms have been previously implemented which require prior knowledge of the source spectrum, detector spectral response, and energy threshold settings. We experimentally investigated two material decomposition methods that do not require explicit knowledge of the source spectrum and spectral response. In the first method, the effective spectrum for each energy bin is estimated from calibration transmission measurements, followed by an iterative maximum likelihood decomposition algorithm. The second investigated method, first proposed and tested through simulations by Alvarez, uses a linearized maximum likelihood estimator which requires calibration transmission measurements. The Alvarez method has the advantage of being non-iterative. This study experimentally quantified and compared the material decomposition bias, as a percentage of material thickness, and standard deviation resulting from these two material decomposition estimators. Multi-energy x-ray transmission measurements were acquired through varying thicknesses of Teon, Delrin, and neoprene at two different flux settings and decomposed into PMMA and aluminum thicknesses using the investigated methods. In addition, a series of 200 equally spaced projections of a rod phantom were acquired over 360°. The multi-energy sinograms were decomposed using both empirical methods and then reconstructed using filtered backprojection producing two images representing each basis material. The Alvarez method decomposed Delrin into PMMA with a bias of 0.5-19% and decomposed neoprene into aluminum with a bias of less than 3%. The spectral estimation method decomposed Delrin into PMMA with a bias of 0.6-16% and decomposed neoprene into aluminum with a bias of 0.1-58%. In general, the spectral estimation method resulted in

  20. A high-throughput, multi-channel photon-counting detector with picosecond timing

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Fraser, G. W.; Miller, G. M.; Ashton, T. J. R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.

    2009-06-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.

  1. Towards a colony counting system using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Masschelein, B.; Robles-Kelly, A.; Blanch, C.; Tack, N.; Simpson-Young, B.; Lambrechts, A.

    2012-03-01

    Colony counting is a procedure used in microbiology laboratories for food quality monitoring, environmental management, etc. Its purpose is to detect the level of contamination due to the presence and growth of bacteria, yeasts and molds in a given product. Current automated counters require a tedious training and setup procedure per product and bacteria type and do not cope well with diversity. This contrasts with the setting at microbiology laboratories, where a wide variety of food and bacteria types have to be screened on a daily basis. To overcome the limitations of current systems, we propose the use of hyperspectral imaging technology and examine the spectral variations induced by factors such as illumination, bacteria type, food source and age and type of the agar. To this end, we perform experiments making use of two alternative hyperspectral processing pipelines and compare our classification results to those yielded by color imagery. Our results show that colony counting may be automated through the automatic recovery of the illuminant power spectrum and reflectance. This is consistent with the notion that the recovery of the illuminant should minimize the variations in the spectra due to reflections, shadows and other photometric artifacts. We also illustrate how, with the reflectance at hand, the colonies can be counted making use of classical segmentation and classification algorithms.

  2. Progress on the Use of Combined Analog and Photon Counting Detection for Raman Lidar

    NASA Technical Reports Server (NTRS)

    Newsom, Rob; Turner, Dave; Clayton, Marian; Ferrare, Richard

    2008-01-01

    The Atmospheric Radiation Measurement (ARM) program Raman Lidar (CARL) was upgraded in 2004 with a new data system that provides simultaneous measurements of both the photomultiplier analog output voltage and photon counts. The so-called merge value added procedure (VAP) was developed to combine the analog and count-rate signals into a single signal with improved dynamic range. Earlier versions of this VAP tended to cause unacceptably large biases in the water vapor mixing ratio during the daytime as a result of improper matching between the analog and count-rate signals in the presence of elevated solar background levels. We recently identified several problems and tested a modified version of the merge VAP by comparing profiles of water vapor mixing ratio derived from CARL with simultaneous sonde data over a six month period. We show that the modified merge VAP significantly reduces the daytime bias, and results in mean differences that are within approximately 1% for both nighttime and daytime measurements.

  3. Nuclear photonics at ultra-high counting rates and higher multipole excitations

    NASA Astrophysics Data System (ADS)

    Thirolf, P. G.; Habs, D.; Filipescu, D.; Gernhäuser, R.; Günther, M. M.; Jentschel, M.; Marginean, N.; Pietralla, N.

    2012-07-01

    Next-generation γ beams from laser Compton-backscattering facilities like ELI-NP (Bucharest)] or MEGa-Ray (Livermore) will drastically exceed the photon flux presently available at existing facilities, reaching or even exceeding 1013 γ/sec. The beam structure as presently foreseen for MEGa-Ray and ELI-NP builds upon a structure of macro-pulses (˜120 Hz) for the electron beam, accelerated with X-band technology at 11.5 GHz, resulting in a micro structure of 87 ps distance between the electron pulses acting as mirrors for a counterpropagating intense laser. In total each 8.3 ms a γ pulse series with a duration of about 100 ns will impinge on the target, resulting in an instantaneous photon flux of about 1018 γ/s, thus introducing major challenges in view of pile-up. Novel γ optics will be applied to monochromatize the γ beam to ultimately ΔE/E˜10-6. Thus level-selective spectroscopy of higher multipole excitations will become accessible with good contrast for the first time. Fast responding γ detectors, e.g. based on advanced scintillator technology (e.g. LaBr3(Ce)) allow for measurements with count rates as high as 106-107 γ/s without significant drop of performance. Data handling adapted to the beam conditions could be performed by fast digitizing electronics, able to sample data traces during the micro-pulse duration, while the subsequent macro-pulse gap of ca. 8 ms leaves ample time for data readout. A ball of LaBr3 detectors with digital readout appears to best suited for this novel type of nuclear photonics at ultra-high counting rates.

  4. Nuclear photonics at ultra-high counting rates and higher multipole excitations

    SciTech Connect

    Thirolf, P. G.; Habs, D.; Filipescu, D.; Gernhaeuser, R.; Guenther, M. M.; Jentschel, M.; Marginean, N.; Pietralla, N.

    2012-07-09

    Next-generation {gamma} beams from laser Compton-backscattering facilities like ELI-NP (Bucharest)] or MEGa-Ray (Livermore) will drastically exceed the photon flux presently available at existing facilities, reaching or even exceeding 10{sup 13}{gamma}/sec. The beam structure as presently foreseen for MEGa-Ray and ELI-NP builds upon a structure of macro-pulses ({approx}120 Hz) for the electron beam, accelerated with X-band technology at 11.5 GHz, resulting in a micro structure of 87 ps distance between the electron pulses acting as mirrors for a counterpropagating intense laser. In total each 8.3 ms a {gamma} pulse series with a duration of about 100 ns will impinge on the target, resulting in an instantaneous photon flux of about 10{sup 18}{gamma}/s, thus introducing major challenges in view of pile-up. Novel {gamma} optics will be applied to monochromatize the {gamma} beam to ultimately {Delta}E/E{approx}10{sup -6}. Thus level-selective spectroscopy of higher multipole excitations will become accessible with good contrast for the first time. Fast responding {gamma} detectors, e.g. based on advanced scintillator technology (e.g. LaBr{sub 3}(Ce)) allow for measurements with count rates as high as 10{sup 6}-10{sup 7}{gamma}/s without significant drop of performance. Data handling adapted to the beam conditions could be performed by fast digitizing electronics, able to sample data traces during the micro-pulse duration, while the subsequent macro-pulse gap of ca. 8 ms leaves ample time for data readout. A ball of LaBr{sub 3} detectors with digital readout appears to best suited for this novel type of nuclear photonics at ultra-high counting rates.

  5. Size distribution of linear and helical polymers in actin solution analyzed by photon counting histogram.

    PubMed

    Terada, Naofumi; Shimozawa, Togo; Ishiwata, Shin'ichi; Funatsu, Takashi

    2007-03-15

    Actin is a ubiquitous protein that is a major component of the cytoskeleton, playing an important role in muscle contraction and cell motility. At steady state, actin monomers and filaments (F-actin) coexist, and actin subunits continuously attach and detach at the filament ends. However, the size distribution of actin oligomers in F-actin solution has never been clarified. In this study, we investigated the size distribution of actin oligomers using photon-counting histograms. For this purpose, actin was labeled with a fluorescent dye, and the emitted photons were detected by confocal optics (the detection volume was of femtoliter (fL) order). Photon-counting histograms were analyzed to obtain the number distribution of actin oligomers in the detection area from their brightness, assuming that the brightness of an oligomer was proportional to the number of protomers. We found that the major populations at physiological ionic strength were 1-5mers. For data analysis, we successfully applied the theory of linear and helical aggregations of macromolecules. The model postulates three states of actin, i.e., monomers, linear polymers, and helical polymers. Here we obtained three parameters: the equilibrium constants for polymerization of linear polymers, K(l)=(5.2 +/- 1.1) x 10(6) M(-1), and helical polymers, K(h)=(1.6 +/- 0.5) x 10(7) M(-1); and the ratio of helical to linear trimers, gamma = (3.6 +/- 2.3) x 10(-2). The excess free energy of transforming a linear trimer to a helical trimer, which is assumed to be a nucleus for helical polymers, was calculated to be 2.0 kcal/mol. These analyses demonstrate that the oligomeric phase at steady state is predominantly composed of linear 1-5mers, and the transition from linear to helical polymers occurs on the level of 5-7mers. PMID:17172301

  6. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy

    PubMed Central

    Michalet, Xavier; Ingargiola, Antonino; Colyer, Ryan A.; Scalia, Giuseppe; Weiss, Shimon; Maccagnani, Piera; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo

    2014-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements. PMID:25309114

  7. Reconstruction of time-correlated single-photon counting range profiles of moving objects

    NASA Astrophysics Data System (ADS)

    Jonsson, Per; Hedborg, Julia; Henriksson, Markus; Sjöqvist, Lars

    2015-10-01

    Time-correlated single-photon counting (TCSPC) is a laser radar technique that can provide range profiling with subcentimetre range resolution. The method relies on accurate time measurements between a laser pulse sync signal and the registration of a single-photon detection of photons reflected from an object. The measurement is performed multiple times and a histogram of arrival times is computed to gain information about surfaces at different distances within the field of view of the laser radar. TCSPC is a statistic method that requires an integration time and therefore the range profile of a non-stationary object (target) will be corrupted. However, by dividing the measurement into time intervals much shorter than the total acquisition time and cross correlating the histogram from each time interval it is possible calculate how the target has moved relative to the first time interval. The distance as a function of time was fitted to a polynomic function. This result was used to calculate a distance correction of every single detection event and the equivalent stationary histogram was reconstructed. Series of measurements on the objects with constant or non-linear velocities up to 0.5 m/s were performed and compared with stationary measurements. The results show that it is possible to reconstruct range profiles of moving objects with this technique. Reconstruction of the signal requires no prior information of the original range profile and the instantaneous and average velocities of the object can be calculated.

  8. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy.

    PubMed

    Michalet, Xavier; Ingargiola, Antonino; Colyer, Ryan A; Scalia, Giuseppe; Weiss, Shimon; Maccagnani, Piera; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo

    2014-11-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements. PMID:25309114

  9. Fast count-dependent digital filtering of nuclear medicine images: concise communication

    SciTech Connect

    King, M.A.; Doherty, P.W.; Schwinger, R.B.; Jacobs, D.A.; Kidder, R.E.; Miller, T.R.

    1983-11-01

    The formulation of an ''optimal'' filter for improving the quality of digitally recorded nuclear medicine images is reported in this paper. The method forms a Metz filter for each image based upon the total number of counts in the image, which in turn determines the average noise level. The parameters of the filter were optimized for a set of simulated images using the minimization of the mean-square error as the criterion. The speed of the image formation results from the use of an array processor. In a study of localization receiver operating characteristics (LROC) using the Alderson liver phantom, a significant improvement in tumor localization was found in images filtered with this technique, compared with the original digital images and those filtered by the nine-point binomial smoothing algorithm. The technique has been found useful for the filtering of static and dynamic studies as well as the two-dimensional pre-reconstruction filtering of images from single photon emission computerized tomography.

  10. Variation of the count-dependent Metz filter with imaging system modulation transfer function

    SciTech Connect

    King, M.A.; Schwinger, R.B.; Penney, B.C.

    1986-03-01

    A systematic investigation was conducted of how a number of parameters which alter the system modulation transfer function (MTF) influence the count-dependent Metz filter. Since restoration filters are most effective at those frequencies where the object power spectrum dominates that of the noise, it was observed that parameters which significantly degrade the MTF at low spatial frequencies strongly influence the formation of the Metz filter. Thus the radionuclide imaged and the depth of the source in a scattering medium had the most influence. This is because they alter the relative amount of scattered radiation being imaged. For low-energy photon emitters, the collimator employed and the distance from the collimator were found to have less of an influence but still to be significant. These cause alterations in the MTF which are more gradual, and hence are most pronounced at mid to high spatial frequencies. As long as adequate spatial sampling is employed, the Metz filter was determined to be independent of the exact size of the sampling bin width, to a first approximation. For planar and single photon emission computed tomographic (SPECT) imaging, it is shown that two-dimensional filtering with the Metz filter optimized for the imaging conditions is able to deconvolve scatter and other causes of spatial resolution loss while diminishing noise, all in a balanced manner.

  11. The Number of Accumulated Photons and the Quality of Stimulated Emission Depletion Lifetime Images

    SciTech Connect

    Syed, Aleem; Lesoine, Michael D; Bhattacharjee, Ujjal; Petrich, Jacob W; Smith, Emily A

    2014-03-03

    Time binning is used to increase the number of photon counts in the peak channel of stimulated emission depletion (STED) fluorescence lifetime decay curves to determine how it affects the resulting lifetime image. The fluorescence lifetime of the fluorophore, Alexa Fluor 594 phalloidin, bound to F-actin is probed in cultured S2 cells at a spatial resolution of ~40 nm. This corresponds to a tenfold smaller probe volume compared to confocal imaging, and a reduced number of photons contributing to the signal. Pixel-by-pixel fluorescence lifetime measurements and error analysis show that an average of 40 ± 30 photon counts in the peak channel with a signal-to-noise ratio of 20 is enough to calculate a reliable fluorescence lifetime from a single exponential fluorescence decay. No heterogeneity in the actin cytoskeleton in different regions of the cultured cells was measured in the 40- to 400-nm spatial regime.

  12. Correlation of striatal dopamine transporter imaging with post mortem substantia nigra cell counts.

    PubMed

    Kraemmer, Julia; Kovacs, Gabor G; Perju-Dumbrava, Laura; Pirker, Susanne; Traub-Weidinger, Tatiana; Pirker, Walter

    2014-12-01

    Dopamine transporter imaging is widely used for the differential diagnosis of parkinsonism. Only limited data are available on the relationship between striatal dopamine transporter binding and dopaminergic cell loss in the substantia nigra (SN). We analyzed postmortem SN cell counts in patients who had previously undergone dopamine transporter single-photon emission computed tomography (SPECT). Pathological diagnoses included Parkinson's disease (n = 1), dementia with Lewy bodies (n = 2), multiple system atrophy (n = 1), corticobasal degeneration (n = 2), atypical parkinsonism with multiple pathological conditions (n = 1), Alzheimer's disease (n = 1), and Creutzfeldt-Jakob disease (n = 1). [(12) (3) I]β-CIT SPECT had been performed in all subjects using a standardized protocol on the same triple-head gamma camera. The density of neuromelanin-containing and tyrosine hydroxylase-positive substantia nigra neurons/mm(2) was evaluated in paraffin-embedded tissue sections by morphometric methods. Mean disease duration at the time of dopamine transporter imaging was 2.3 years, and the mean interval from imaging to death was 29.3 months (range, 4-68 months). Visual analysis of dopamine transporter images showed reduced striatal uptake in all seven patients with neurodegenerative parkinsonism, but not in Alzheimer's and Creutzfeldt-Jakob disease cases. Averaged [(right+left)/2] striatal uptake was highly correlated with averaged SN cell counts (rs  = 0.98, P < 0.0005 for neuromelanin- and rs  = 0.96, P < 0.0005 for tyrosine hydroxylase-positive cells). Similar strong correlations were found in separate analyses for the right and left sides. Striatal dopamine transporter binding highly correlated with postmortem SN cell counts, confirming the validity of dopamine transporter imaging as an excellent in vivo marker of nigrostriatal dopaminergic degeneration. PMID:25048738

  13. A cascaded model of spectral distortions due to spectral response effects and pulse pileup effects in a photon-counting x-ray detector for CT

    SciTech Connect

    Cammin, Jochen E-mail: ktaguchi@jhmi.edu; Taguchi, Katsuyuki E-mail: ktaguchi@jhmi.edu; Xu, Jennifer; Barber, William C.; Iwanczyk, Jan S.; Hartsough, Neal E.

    2014-04-15

    Purpose: Energy discriminating, photon-counting detectors (PCDs) are an emerging technology for computed tomography (CT) with various potential benefits for clinical CT. The photon energies measured by PCDs can be distorted due to the interactions of a photon with the detector and the interaction of multiple coincident photons. These effects result in distorted recorded x-ray spectra which may lead to artifacts in reconstructed CT images and inaccuracies in tissue identification. Model-based compensation techniques have the potential to account for the distortion effects. This approach requires only a small number of parameters and is applicable to a wide range of spectra and count rates, but it needs an accurate model of the spectral distortions occurring in PCDs. The purpose of this study was to develop a model of those spectral distortions and to evaluate the model using a PCD (model DXMCT-1; DxRay, Inc., Northridge, CA) and various x-ray spectra in a wide range of count rates. Methods: The authors hypothesize that the complex phenomena of spectral distortions can be modeled by: (1) separating them into count-rate independent factors that we call the spectral response effects (SRE), and count-rate dependent factors that we call the pulse pileup effects (PPE), (2) developing separate models for SRE and PPE, and (3) cascading the SRE and PPE models into a combined SRE+PPE model that describes PCD distortions at both low and high count rates. The SRE model describes the probability distribution of the recorded spectrum, with a photo peak and a continuum tail, given the incident photon energy. Model parameters were obtained from calibration measurements with three radioisotopes and then interpolated linearly for other energies. The PPE model used was developed in the authors’ previous work [K. Taguchi et al., “Modeling the performance of a photon counting x-ray detector for CT: Energy response and pulse pileup effects,” Med. Phys. 38(2), 1089–1102 (2011

  14. Discrimination between normal breast tissue and tumor tissue using CdTe series detector developed for photon-counting mammography

    NASA Astrophysics Data System (ADS)

    Okamoto, Chizuru; Ihori, Akiko; Yamakawa, Tsutomu; Yamamoto, Shuichiro; Okada, Masahiro; Kato, Misa; Nakajima, Ai; Kodera, Yoshie

    2016-03-01

    We propose a new mammography system using a cadmium telluride (CdTe) series photon-counting detector, having high absorption efficiency over a wide energy range. In a previous study, we showed that the use of high X-ray energy in digital mammography is useful from the viewpoint of exposure dose and image quality. In addition, the CdTe series detector can acquire X-ray spectrum information following transmission through a subject. This study focused on the tissue composition identified using spectral information obtained by a new photon-counting detector. Normal breast tissue consists entirely of adipose and glandular tissues. However, it is very difficult to find tumor tissue in the region of glandular tissue via a conventional mammogram, especially in dense breast because the attenuation coefficients of glandular tissue and tumor tissue are very close. As a fundamental examination, we considered a simulation phantom and showed the difference between normal breast tissue and tumor tissue of various thicknesses in a three-dimensional (3D) scatter plot. We were able to discriminate between both types of tissues. In addition, there was a tendency for the distribution to depend on the thickness of the tumor tissue. Thinner tumor tissues were shown to be closer in appearance to normal breast tissue. This study also demonstrated that the difference between these tissues could be made obvious by using a CdTe series detector. We believe that this differentiation is important, and therefore, expect this technology to be applied to new tumor detection systems in the future.

  15. Scalable time-correlated photon counting system with multiple independent input channels.

    PubMed

    Wahl, Michael; Rahn, Hans-Jürgen; Röhlicke, Tino; Kell, Gerald; Nettels, Daniel; Hillger, Frank; Schuler, Ben; Erdmann, Rainer

    2008-12-01

    Time-correlated single photon counting continues to gain importance in a wide range of applications. Most prominently, it is used for time-resolved fluorescence measurements with sensitivity down to the single molecule level. While the primary goal of the method used to be the determination of fluorescence lifetimes upon optical excitation by short light pulses, recent modifications and refinements of instrumentation and methodology allow for the recovery of much more information from the detected photons, and enable entirely new applications. This is achieved most successfully by continuously recording individually detected photons with their arrival time and detection channel information (time tagging), thus avoiding premature data reduction and concomitant loss of information. An important property of the instrumentation used is the number of detection channels and the way they interrelate. Here we present a new instrument architecture that allows scalability in terms of the number of input channels while all channels are synchronized to picoseconds of relative timing and yet operate independent of each other. This is achieved by means of a modular design with independent crystal-locked time digitizers and a central processing unit for sorting and processing of the timing data. The modules communicate through high speed serial links supporting the full throughput rate of the time digitizers. Event processing is implemented in programmable logic, permitting classical histogramming, as well as time tagging of individual photons and their temporally ordered streaming to the host computer. Based on the time-ordered event data, any algorithms and methods for the analysis of fluorescence dynamics can be implemented not only in postprocessing but also in real time. Results from recently emerging single molecule applications are presented to demonstrate the capabilities of the instrument. PMID:19123551

  16. Photon-statistics-based classical ghost imaging with one single detector.

    PubMed

    Kuhn, Simone; Hartmann, Sébastien; Elsäßer, Wolfgang

    2016-06-15

    We demonstrate a novel ghost imaging (GI) scheme based on one single-photon-counting detector with subsequent photon statistics analysis. The key idea is that instead of measuring correlations between the object and reference beams such as in standard GI schemes, the light of the two beams is superimposed. The photon statistics analysis of this mixed light allows us to determine the photon number distribution as well as to calculate the central second-order correlation coefficient. The image information is obtained as a function of the spatial resolution of the reference beam. The performance of this photon-statistics-based GI system with one single detector (PS-GI) is investigated in terms of visibility and resolution. Finally, the knowledge of the complete photon statistics allows easy access to higher correlation coefficients such that we are able to perform here third- and fourth-order GI. The PS-GI concept can be seen as a complement to already existing GI technologies thus enabling a broader dissemination of GI as a superior metrology technique, paving the road for new applications in particular with advanced photon counting detectors. PMID:27304308

  17. Measurement of the light-field amplitude-correlation function through joint photon-count distributions.

    NASA Technical Reports Server (NTRS)

    Furcinitti, P.; Kuppenheimer, J. D.; Narducci, L. M.; Tuft , R. A.

    1972-01-01

    When an amplitude-stabilized He-Ne laser beam is scattered by a rotating ground glass with small surface inhomogeneities, the probability density of the instantaneous scattered-wave amplitude is Gaussian. In this paper, we suggest the use of the joint photon-count probability distribution to measure the absolute value of the electric-field amplitude-correlation function for random Gaussian light fields, and report the results of an experiment in which the Gaussian field is produced by scattering a light beam through a rotating ground glass. This procedure offers an alternative to other conventional methods, such as self-beating spectroscopy and irradiance-correlation techniques. The correlation time of the scattered-field amplitude in the present experiment has been measured with an accuracy of approximately 0.8%.

  18. Hybrid analog/digital, large format, photon counting detectors for astronomy

    NASA Astrophysics Data System (ADS)

    Crocker, J.; Rafal, M.; Denman, B.; Paresce, F.; Hiltner, A.

    1986-01-01

    The development of a new microchannel plate photon-counting detector with an analog readout method based on a resistive anode is reported. This detector exhibits extremely high, stable electron gains of 10 to the 8th. At this gain, the spatial resolution is no longer primarily limited by the noise of the resistive anode, so that digital methods of readout, such as discrete conductors, lose their advantage. These detectors can be readily scaled to 40 mm and 70 mm formats to match plate scales of 2-m (and larger) telescopes. New, high speed digital electronics fully exploit the high spatial and time resolution made possible by gains of this level. Analysis of the theoretical performance of this detector shows that the major limitation to the spatial resolution is the proximity focus of the photocathode and the first microchannel plate. The detector has been mated to an echelle spectrograph developed.

  19. Performance and capacity analysis of Poisson photon-counting based Iter-PIC OCDMA systems.

    PubMed

    Li, Lingbin; Zhou, Xiaolin; Zhang, Rong; Zhang, Dingchen; Hanzo, Lajos

    2013-11-01

    In this paper, an iterative parallel interference cancellation (Iter-PIC) technique is developed for optical code-division multiple-access (OCDMA) systems relying on shot-noise limited Poisson photon-counting reception. The novel semi-analytical tool of extrinsic information transfer (EXIT) charts is used for analysing both the bit error rate (BER) performance as well as the channel capacity of these systems and the results are verified by Monte Carlo simulations. The proposed Iter-PIC OCDMA system is capable of achieving two orders of magnitude BER improvements and a 0.1 nats of capacity improvement over the conventional chip-level OCDMA systems at a coding rate of 1/10. PMID:24216821

  20. Mu-Spec - A High Performance Ultra-Compact Photon Counting spectrometer for Space Submillimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Moseley, H.; Hsieh, W.-T.; Stevenson, T.; Wollack, E.; Brown, A.; Benford, D.; Sadleir; U-Yen, I.; Ehsan, N.; Zmuidzinas, J.; Bradford, M.

    2011-01-01

    We have designed and are testing elements of a fully integrated submillimeter spectrometer based on superconducting microstrip technology. The instrument can offer resolving power R approximately 1500, and its high frequency cutoff is set by the gap of available high performance superconductors. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using planar filter, and detected using photon counting MKID detector. This spectrometer promises to revolutionize submillimeter spectroscopy from space. It replaces instruments with the scale of 1m with a spectrometer on a 10 cm Si wafer. The reduction in mass and volume promises a much higher performance system within available resource in a space mission. We will describe the system and the performance of the components that have been fabricated and tested.

  1. Analysis of photon count data from single-molecule fluorescence experiments

    NASA Astrophysics Data System (ADS)

    Burzykowski, T.; Szubiakowski, J.; Rydén, T.

    2003-03-01

    We consider single-molecule fluorescence experiments with data in the form of counts of photons registered over multiple time-intervals. Based on the observation schemes, linking back to works by Dehmelt [Bull. Am. Phys. Soc. 20 (1975) 60] and Cook and Kimble [Phys. Rev. Lett. 54 (1985) 1023], we propose an analytical approach to the data based on the theory of Markov-modulated Poisson processes (MMPP). In particular, we consider maximum-likelihood estimation. The method is illustrated using a real-life dataset. Additionally, the properties of the proposed method are investigated through simulations and compared to two other approaches developed by Yip et al. [J. Phys. Chem. A 102 (1998) 7564] and Molski [Chem. Phys. Lett. 324 (2000) 301].

  2. In situ detection of warfarin using time-correlated single-photon counting

    SciTech Connect

    Rosengren, Annika M.; Karlsson, Bjoern C.G.; Naeslund, Inga; Andersson, Per Ola; Nicholls, Ian A.

    2011-04-01

    Highlights: {yields} Direct in situ measurement of specific isomeric forms of the anticoagulant warfarin. {yields} TCSPC spectroscopy in conjunction with synthetic Sudlow I binding site receptors. {yields} Development of sensor principle for use in clinical and environmental monitoring. -- Abstract: Here we report on a novel method for the direct in situ measurement of specific isomeric forms of the anticoagulant warfarin using time correlated single-photon counting (TCSPC) spectroscopy in conjunction with synthetic Sudlow I binding site receptors. The method is highly robust over the clinically significant concentration range, and demonstrates the potential of the binding site mimics in conjunction with the spectroscopic strategy employed here for the determination of this important pharmaceutical in clinical or even environmental samples.

  3. Feasibility study of sparse-angular sampling and sinogram interpolation in material decomposition with a photon-counting detector

    NASA Astrophysics Data System (ADS)

    Kim, Dohyeon; Jo, Byungdu; Park, Su-Jin; Kim, Hyemi; Kim, Hee-Joung

    2016-03-01

    Spectral computed tomography (SCT) is a promising technique for obtaining enhanced image with contrast agent and distinguishing different materials. We focused on developing the analytic reconstruction algorithm in material decomposition technique with lower radiation exposure and shorter acquisition time. Sparse-angular sampling can reduce patient dose and scanning time for obtaining the reconstruction images. In this study, the sinogram interpolation method was used to improve the quality of material decomposed images in sparse angular sampling. A prototype of spectral CT system with 64 pixels CZT-based photon counting detector was used. The source-to-detector distance and the source-tocenter of rotation distance were 1200 and 1015 mm, respectively. The x-ray spectrum at 90 kVp with a tube current of 110 μA was used. Two energy bins (23-33 keV and 34-44 keV) were set to obtain the two images for decomposed iodine and calcification. We used PMMA phantom and its height and radius were 50 mm and 17.5 mm, respectively. The phantom contained 4 materials including iodine, gadolinium, calcification, and liquid state lipid. We evaluated the signal to noise ratio (SNR) of materials to examine the significance of sinogram interpolation method. The decomposed iodine and calcification images were obtained by projection based subtraction method using two energy bins with 36 projection data. The SNR in decomposed images were improved by using sinogram interpolation method. And these results indicated that the signal of decomposed material was increased and the noise of decomposed material was reduced. In conclusion, the sinogram interpolation method can be used in material decomposition method with sparse-angular sampling.

  4. Operation of a Single-Photon-Counting X-Ray Charge-Coupled Device Camera Spectrometer in a Petawatt Environment

    SciTech Connect

    Stoeckl, C.; Theobald, W.; Sangster, T.C.; Key, M.H.; Patel, P.; Zhang, B.B.; Clarke, R.; Karsch, S.; Norreys, P.

    2004-10-12

    The use of a single-photon-counting x-ray CCD (charge-coupled device) camera as an x-ray spectrometer is a well-established technique in ultrashort-pulse laser experiments. In single-photon-counting mode, the pixel value of each readout pixel is proportional to the energy deposited from the incident x-ray photon. For photons below 100 keV, a significant fraction of the events deposits all the energy in a single pixel. A histogram of the pixel readout values gives a good approximation of the x-ray spectrum. This technique requires almost no alignment, but it is very sensitive to signal-to-background issues, especially in a high-energy petawatt environment.

  5. Limits on Achievable Dimensional and Photon Efficiencies with Intensity-Modulation and Photon-Counting Due to Non-Ideal Photon-Counter Behavior

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Erkmen, Baris I.; Farr, William; Dolinar, Samuel J.; Birnbaum, Kevin M.

    2012-01-01

    An ideal intensity-modulated photon-counting channel can achieve unbounded photon information efficiencies (PIEs). However, a number of limitations of a physical system limit the practically achievable PIE. In this paper, we discuss several of these limitations and illustrate their impact on the channel. We show that, for the Poisson channel, noise does not strictly bound PIE, although there is an effective limit, as the dimensional information efficiency goes as e[overline] e PIE beyond a threshold PIE. Since the Holevo limit is bounded in the presence of noise, this illustrates that the Poisson approximation is invalid at large PIE for any number of noise modes. We show that a finite transmitter extinction ratio bounds the achievable PIE to a maximum that is logarithmic in the extinction ratio. We show how detector jitter limits the ability to mitigate noise in the PPM signaling framework. We illustrate a method to model detector blocking when the number of detectors is large, and illustrate mitigation of blocking with spatial spreading and altering. Finally, we illustrate the design of a high photon efficiency system using state-of-the-art photo-detectors and taking all these effects into account.

  6. The role of charged particles in the positive corona-generated photon count in a rod to plane air gap

    SciTech Connect

    Bian, X. M.; Wang, Y. J.; MacAlpine, J. M. K.; Chen, L.; Wang, L. M.; Guan, Z. C.; Wan, S. W.; Liu, L.

    2013-08-26

    The relationship between the calculated charged-particle densities in positive corona, the rate of streamer production, and the photon count from the corona were investigated and found to be closely related. Both the densities of electrons and positive ions peaked at 11.8 kV, near the corona inception voltage; they then fell rapidly before slowly rising again. This behavior was exactly matched by the measured photon count. The calculation of the charged-particle density in a positive corona was achieved by means of a fluid model.

  7. Usefulness of an energy-binned photon-counting x-ray detector for dental panoramic radiographs

    NASA Astrophysics Data System (ADS)

    Fukui, Tatsumasa; Katsumata, Akitoshi; Ogawa, Koichi; Fujiwara, Shuu

    2015-03-01

    A newly developed dental panoramic radiography system is equipped with a photon-counting semiconductor detector. This photon-counting detector acquires transparent X-ray beams by dividing them into several energy bands. We developed a method to identify dental materials in the patient's teeth by means of the X-ray energy analysis of panoramic radiographs. We tested various dental materials including gold alloy, dental amalgam, dental cement, and titanium. The results of this study suggest that X-ray energy scattergram analysis could be used to identify a range of dental materials in a patient's panoramic radiograph.

  8. Near-Infrared Single-Photon-Counting Detectors for Laser Instrument Applications at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Xiaoli, Sun; Abshire, James B.

    2005-01-01

    We discuss single-photon-counting detectors requirements for NASA remote sensing and communications systems. We present experimental measurements on several different near-infrared single-photon-counting detectors including InGaAs/InP and InGaAs/InAlAs avalanche photodiodes (APD), an InGaAsP photocathode hybrid photomultiplier (PMT) and an InGaAs photomultiplier. We present the experimental performance of prototype instruments for laser ranging, communication, and trace-gas detection that use these detectors.

  9. A burst-mode photon counting receiver with automatic channel estimation and bit rate detection

    NASA Astrophysics Data System (ADS)

    Rao, Hemonth G.; DeVoe, Catherine E.; Fletcher, Andrew S.; Gaschits, Igor D.; Hakimi, Farhad; Hamilton, Scott A.; Hardy, Nicholas D.; Ingwersen, John G.; Kaminsky, Richard D.; Moores, John D.; Scheinbart, Marvin S.; Yarnall, Timothy M.

    2016-04-01

    We demonstrate a multi-rate burst-mode photon-counting receiver for undersea communication at data rates up to 10.416 Mb/s over a 30-foot water channel. To the best of our knowledge, this is the first demonstration of burst-mode photon-counting communication. With added attenuation, the maximum link loss is 97.1 dB at λ=517 nm. In clear ocean water, this equates to link distances up to 148 meters. For λ=470 nm, the achievable link distance in clear ocean water is 450 meters. The receiver incorporates soft-decision forward error correction (FEC) based on a product code of an inner LDPC code and an outer BCH code. The FEC supports multiple code rates to achieve error-free performance. We have selected a burst-mode receiver architecture to provide robust performance with respect to unpredictable channel obstructions. The receiver is capable of on-the-fly data rate detection and adapts to changing levels of signal and background light. The receiver updates its phase alignment and channel estimates every 1.6 ms, allowing for rapid changes in water quality as well as motion between transmitter and receiver. We demonstrate on-the-fly rate detection, channel BER within 0.2 dB of theory across all data rates, and error-free performance within 1.82 dB of soft-decision capacity across all tested code rates. All signal processing is done in FPGAs and runs continuously in real time.

  10. Photon counting image sensor development for astronomical applications

    NASA Technical Reports Server (NTRS)

    Jenkins, Edward B.

    1987-01-01

    Specially built intensified CCD (ICCD) detector tubes were purchased and the performance of the electron bombardment process was investigated. In addition to studying the signal characteristics of the photoevents, there was interest in demonstrating that back-illuminated chips were not susceptible to radiation damage to their clocking electrodes. How to perform a centroid analysis for a 2-dimensional Gaussian distribution of charge is described. Measurement of the projection (along columns or rows) of the average charge spread profile is discussed. The development and flight of the Interstellar Medium Absorption Profile Spectrograph (IMAPS) is discussed.

  11. Projection imaging of photon beams by the Cerenkov effect

    SciTech Connect

    Glaser, Adam K.; Davis, Scott C.; McClatchy, David M.; Zhang, Rongxiao; Pogue, Brian W.; Gladstone, David J.

    2013-01-15

    Purpose: A novel technique for beam profiling of megavoltage photon beams was investigated for the first time by capturing images of the induced Cerenkov emission in water, as a potential surrogate for the imparted dose in irradiated media. Methods: A high-sensitivity, intensified CCD camera (ICCD) was configured to acquire 2D projection images of Cerenkov emission from a 4 Multiplication-Sign 4 cm{sup 2} 6 MV linear accelerator (LINAC) x-ray photon beam operating at a dose rate of 400 MU/min incident on a water tank with transparent walls. The ICCD acquisition was gated to the LINAC sync pulse to reduce background light artifacts, and the measurement quality was investigated by evaluating the signal to noise ratio and measurement repeatability as a function of delivered dose. Monte Carlo simulations were used to derive a calibration factor for differences between the optical images and deposited dose arising from the anisotropic angular dependence of Cerenkov emission. Finally, Cerenkov-based beam profiles were compared to a percent depth dose (PDD) and lateral dose profile at a depth of d{sub max} from a reference dose distribution generated from the clinical Varian ECLIPSE treatment planning system (TPS). Results: The signal to noise ratio was found to be 20 at a delivered dose of 66.6 cGy, and proportional to the square root of the delivered dose as expected from Poisson photon counting statistics. A 2.1% mean standard deviation and 5.6% maximum variation in successive measurements were observed, and the Monte Carlo derived calibration factor resulted in Cerenkov emission images which were directly correlated to deposited dose, with some spatial issues. The dose difference between the TPS and PDD predicted by Cerenkov measurements was within 20% in the buildup region with a distance to agreement (DTA) of 1.5-2 mm and {+-}3% at depths beyond d{sub max}. In the lateral profile, the dose difference at the beam penumbra was within {+-}13% with a DTA of 0-2 mm

  12. Photon-counting chirped amplitude modulation lidar using a smart premixing method.

    PubMed

    Zhang, Zijing; Zhang, Jianlong; Wu, Long; Zhang, Yong; Zhao, Yuan; Su, Jianzhong

    2013-11-01

    We proposed a new premixing method for photon-counting chirped amplitude modulation lidar (PCCAML). Earlier studies used the counting results of the returned signal detected by a Geiger mode avalanche photodiode detector (Gm-APD) to mix with the reference signal, called the postmixing method. We use an alternative method known as the premixing method, in which the reference signal is used to directly modulate the sampling gate width of the Gm-APD, and the mixing of the returned signal and the reference signal is completed before the Gm-APD. This premixing method is more flexible and may perform better than the postmixing method in terms of signal-to-noise ratio by cutting down a separated mixer commonly used in the postmixing lidar system. Furthermore, this premixing method lowers the demand for the sampling frequency of the Gm-APD. It allows the use of a much wider modulation bandwidth to improve the range accuracy and resolution. To the best of our knowledge, this is the first report to use the premixing method in the PCCAML system, which will benefit future lidar applications. PMID:24177101

  13. Si-strip photon counting detectors for contrast-enhanced spectral mammography

    NASA Astrophysics Data System (ADS)

    Chen, Buxin; Reiser, Ingrid; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasi; Chen, Chin-Tu; Iwanczyk, Jan S.; Barber, William C.

    2015-08-01

    We report on the development of silicon strip detectors for energy-resolved clinical mammography. Typically, X-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a-Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting Si strip detectors. The required performance for mammography in terms of the output count rate, spatial resolution, and dynamic range must be obtained with sufficient field of view for the application, thus requiring the tiling of pixel arrays and particular scanning techniques. Room temperature Si strip detector, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the X-ray energy ranges of the application. We present our methods and results from the optimization of Si-strip detectors for contrast enhanced spectral mammography. We describe the method being developed for quantifying iodine contrast using the energy-resolved detector with fixed thresholds. We demonstrate the feasibility of the method by scanning an iodine phantom with clinically relevant contrast levels.

  14. Estimation of signal and noise for a whole-body photon counting research CT system

    NASA Astrophysics Data System (ADS)

    Li, Zhoubo; Leng, Shuai; Yu, Zhicong; Kappler, Steffen; McCollough, Cynthia H.

    2016-03-01

    Photon-counting CT (PCCT) may yield potential value for many clinical applications due to its relative immunity to electronic noise, increased geometric efficiency relative to current scintillating detectors, and the ability to resolve energy information about the detected photons. However, there are a large number of parameters that require optimization, particularly the energy thresholds configuration. Fast and accurate estimation of signal and noise in PCCT can benefit the optimization of acquisition parameters for specific diagnostic tasks. Based on the acquisition parameters and detector response of our research PCCT system, we derived mathematical models for both signal and noise. The signal model took the tube spectrum, beam filtration, object attenuation, water beam hardening, and detector response into account. The noise model considered the relationship between noise and radiation dose, as well as the propagation of noise as threshold data are subtracted to yield energy bin data. To determine the absolute noise value, a noise look-up table (LUT) was acquired using a limited number of calibration scans. The noise estimation algorithm then used the noise LUT to estimate noise for scans with a variety of combination of energy thresholds, dose levels, and object attenuation. Validation of the estimation algorithms was performed on our whole-body research PCCT system using semianthropomorphic water phantoms and solutions of calcium and iodine. The algorithms achieved accurate estimation of signal and noise for a variety of scanning parameter combinations. The proposed method can be used to optimize energy thresholds configuration for many clinical applications of PCCT.

  15. A Poisson resampling method for simulating reduced counts in nuclear medicine images

    NASA Astrophysics Data System (ADS)

    White, Duncan; Lawson, Richard S.

    2015-05-01

    Nuclear medicine computers now commonly offer resolution recovery and other software techniques which have been developed to improve image quality for images with low counts. These techniques potentially mean that these images can give equivalent clinical information to a full-count image. Reducing the number of counts in nuclear medicine images has the benefits of either allowing reduced activity to be administered or reducing acquisition times. However, because acquisition and processing parameters vary, each user should ideally evaluate the use of images with reduced counts within their own department, and this is best done by simulating reduced-count images from the original data. Reducing the counts in an image by division and rounding off to the nearest integer value, even if additional Poisson noise is added, is inadequate because it gives incorrect counting statistics. This technical note describes how, by applying Poisson resampling to the original raw data, simulated reduced-count images can be obtained while maintaining appropriate counting statistics. The authors have developed manufacturer independent software that can retrospectively generate simulated data with reduced counts from any acquired nuclear medicine image.

  16. Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging

    NASA Technical Reports Server (NTRS)

    Lu, Wei; Krainak, Michael A.; Yang, Guangning; Sun, Xiaoli; Merritt, Scott

    2016-01-01

    We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies ((is) greater than 50%) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.

  17. Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging

    NASA Technical Reports Server (NTRS)

    Lu, Wei; Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Merritt, Scott

    2016-01-01

    We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies (50) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.

  18. Energy Calibration of a CdTe Photon Counting Spectral Detector with Consideration of its Non-Convergent Behavior

    PubMed Central

    Lee, Jeong Seok; Kang, Dong-Goo; Jin, Seung Oh; Kim, Insoo; Lee, Soo Yeol

    2016-01-01

    Fast and accurate energy calibration of photon counting spectral detectors (PCSDs) is essential for their biomedical applications to identify and characterize bio-components or contrast agents in tissues. Using the x-ray tube voltage as a reference for energy calibration is known to be an efficient method, but there has been no consideration in the energy calibration of non-convergent behavior of PCSDs. We observed that a single pixel mode (SPM) CdTe PCSD based on Medipix-2 shows some non-convergent behaviors in turning off the detector elements when a high enough threshold is applied to the comparator that produces a binary photon count pulse. More specifically, the detector elements are supposed to stop producing photon count pulses once the threshold reaches a point of the highest photon energy determined by the tube voltage. However, as the x-ray exposure time increases, the threshold giving 50% of off pixels also increases without converging to a point. We established a method to take account of the non-convergent behavior in the energy calibration. With the threshold-to-photon energy mapping function established by the proposed method, we could better identify iodine component in a phantom consisting of iodine and other components. PMID:27077856

  19. Energy Calibration of a CdTe Photon Counting Spectral Detector with Consideration of its Non-Convergent Behavior.

    PubMed

    Lee, Jeong Seok; Kang, Dong-Goo; Jin, Seung Oh; Kim, Insoo; Lee, Soo Yeol

    2016-01-01

    Fast and accurate energy calibration of photon counting spectral detectors (PCSDs) is essential for their biomedical applications to identify and characterize bio-components or contrast agents in tissues. Using the x-ray tube voltage as a reference for energy calibration is known to be an efficient method, but there has been no consideration in the energy calibration of non-convergent behavior of PCSDs. We observed that a single pixel mode (SPM) CdTe PCSD based on Medipix-2 shows some non-convergent behaviors in turning off the detector elements when a high enough threshold is applied to the comparator that produces a binary photon count pulse. More specifically, the detector elements are supposed to stop producing photon count pulses once the threshold reaches a point of the highest photon energy determined by the tube voltage. However, as the x-ray exposure time increases, the threshold giving 50% of off pixels also increases without converging to a point. We established a method to take account of the non-convergent behavior in the energy calibration. With the threshold-to-photon energy mapping function established by the proposed method, we could better identify iodine component in a phantom consisting of iodine and other components. PMID:27077856

  20. Two-photon excited fluorescence lifetime imaging microscopy for FRET study on protein interactions

    NASA Astrophysics Data System (ADS)

    Qu, Junle; Lin, Ziyang; Liu, Lixin; Guo, Xuan; Chen, Danni; Niu, Hanben

    2005-01-01

    Two-photon excited fluorescence lifetime imaging (2P-FLIM) provides a more direct and precise approach to fluorescence resonance energy transfer (FRET), which allows studying the dynamic behavior of protein-protein interactions in living cells. In this paper, we describe the combination of a Leica TCS SP2 laser scanning microscope and a time-correlated single photon counting (TCSPC) lifetime imaging module developed by Becker & Hickl for two-photon excited fluorescence lifetime imaging. This 2P-FLIM system was used for FRET study on the interaction of heat shock protein hsp27 with p38 MAP kinase in the single living cell. Results show that the reduction in donor (CFP) lifetime in the presence of acceptor (YFP) reveals interactions between the two proteins.

  1. InGaAsP Avalanche Photodetectors for Non-Gated 1.06 micrometer Photon-Counting Receivers

    NASA Technical Reports Server (NTRS)

    Itzler, Mark A.; Jiang, Xudong; Ben-Michael, Rafael; Slomkowski, Krystyna; Krainak, Michael A.

    2007-01-01

    The efficient detection of single photons at 1.06 micron is of considerable interest for lidar/ladar systems designed for remote sensing an d ranging as well as for free-space optical transmission in photon-st arved applications. However, silicon-based single photon avalanche diodes (SPADs) used at shorter wavelengths have very low single photon d etection efficiency (approximately 1 - 2%) at 1.06 micron, and InP/In GaAs SPADs designed for telecommunications wavelengths near 1.5 micro n exhibit high dark count rates that generally inhibit non-gated (free-running) operation. To bridge this "single photon detection gap" for wavelengths just beyond 1 micron, we have developed high performance , large area (80 - 200 micron diameter) InP-based InGaAsP quaternary absorber SPADs optimized for operation at 1.06 micron and based on a highly reliable planar geometry avalanche photodiode structure. We wil l show that dark count rates are sufficiently low to allow for non-ga ted operation while achieving detection efficiencies far surpassing t hose found for Si SPADs. At a detection efficiency of 10%, 80 micron diameter devices exhibit dark count rates below 1000 Hz and count rate s of at least 3 MHz when operated at -40 C. Significantly higher dete ction efficiencies (30 - 50%) are achievable with acceptable tradeoff s in dark count rate. In this paper, we will also discuss performance modeling for these devices and compare their behavior with longer wav elength InP-based InGaAs ternary absorber SPADs fabricated on a relat ed device design platform.

  2. Time-resolved spectral imaging: better photon economy, higher accuracy

    NASA Astrophysics Data System (ADS)

    Fereidouni, Farzad; Reitsma, Keimpe; Blab, Gerhard A.; Gerritsen, Hans C.

    2015-03-01

    Lifetime and spectral imaging are complementary techniques that offer a non-invasive solution for monitoring metabolic processes, identifying biochemical compounds, and characterizing their interactions in biological tissues, among other tasks. Newly developed instruments that perform time-resolved spectral imaging can provide even more information and reach higher sensitivity than either modality alone. Here we report a multispectral lifetime imaging system based on a field-programmable gate array (FPGA), capable of operating at high photon count rates (12 MHz) per spectral detection channel, and with time resolution of 200 ps. We performed error analyses to investigate the effect of gate width and spectral-channel width on the accuracy of estimated lifetimes and spectral widths. Temporal and spectral phasors were used for analysis of recorded data, and we demonstrated blind un-mixing of the fluorescent components using information from both modalities. Fractional intensities, spectra, and decay curves of components were extracted without need for prior information. We further tested this approach with fluorescently doubly-labeled DNA, and demonstrated its suitability for accurately estimating FRET efficiency in the presence of either non-interacting or interacting donor molecules.

  3. Dark-count-less x-ray photon counting using an LSO-MPPC detector and its application to computed tomography

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Oda, Yasuyuki; Kodama, Hajime; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira

    2013-09-01

    X-ray photons are detected using an Lu2(SiO4)O [LSO] single-crystal scintillator with a decay time of 40 ns and a multipixel photon counter (MPPC). The photocurrent from the MPPC is amplified by a high-speed current-voltage amplifier with an 80 MHz-gain-band operational amplifier, and the 200-ns-width event pulses are sent to a multichannel analyzer to measure X-ray spectra. The MPPC is driven in the pre-Geiger mode at a bias voltage of 70.7 V and a temperature of 23°C. Photon-counting computed tomography (PC-CT) is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by linear scanning. The exposure time for obtaining a tomogram was 10 min with scan steps of 0.5 mm and rotation steps of 1.0°. At a tube voltage of 100 kV, the maximum count rate was 350 kcps/pixel. We carried out PC-CT using gadolinium media and confirmed the energydispersive effect with changes in the lower level voltage of event pulses using a comparator.

  4. High Throughput, High Yield Fabrication of High Quantum Efficiency Back-Illuminated Photon Counting, Far UV, UV, and Visible Detector Arrays

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh; Hoenk, M. E.; Carver, A. G.; Jones, T. J.; Greer, F.; Hamden, E.; Goodsall, T.

    2013-01-01

    In this paper we discuss the high throughput end-to-end post fabrication processing of high performance delta-doped and superlattice-doped silicon imagers for UV, visible, and NIR applications. As an example, we present our results on far ultraviolet and ultraviolet quantum efficiency (QE) in a photon counting, detector array. We have improved the QE by nearly an order of magnitude over microchannel plates (MCPs) that are the state-of-the-art UV detectors for many NASA space missions as well as defense applications. These achievements are made possible by precision interface band engineering of Molecular Beam Epitaxy (MBE) and Atomic Layer Deposition (ALD).

  5. Detective quantum efficiency for photon-counting hybrid pixel detectors in the tender X-ray domain: application to Medipix3RX.

    PubMed

    Rinkel, Jean; Magalhães, Debora; Wagner, Franz; Meneau, Florian; Cesar Vicentin, Flavio

    2016-01-01

    Synchrotron-radiation-based X-ray imaging techniques using tender X-rays are facing a growing demand, in particular to probe the K absorption edges of low-Z elements. Here, a mathematical model has been developed for estimating the detective quantum efficiency (DQE) at zero spatial frequency in the tender X-ray energy range for photon-counting detectors by taking into account the influence of electronic noise. The experiments were carried out with a Medipix3RX ASIC bump-bonded to a 300 µm silicon sensor at the Soft X-ray Spectroscopy beamline (D04A-SXS) of the Brazilian Synchrotron Light Laboratory (LNLS, Campinas, Brazil). The results show that Medipix3RX can be used to develop new imaging modalities in the tender X-ray range for energies down to 2 keV. The efficiency and optimal DQE depend on the energy and flux of the photons. The optimal DQE values were found in the 7.9-8.6 keV photon energy range. The DQE deterioration for higher energies due to the lower absorption efficiency of the sensor and for lower energies due to the electronic noise has been quantified. The DQE for 3 keV photons and 1 × 10(4) photons pixel(-1) s(-1) is similar to that obtained with 19 keV photons. Based on our model, the use of Medipix3RX could be extended down to 2 keV which is crucial for coming applications in imaging techniques at modern synchrotron sources. PMID:26698065

  6. Molecular imaging by single-photon emission

    NASA Astrophysics Data System (ADS)

    Cusanno, F.; Accorsi, R.; Cinti, M. N.; Colilli, S.; Fortuna, A.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lanza, R. C.; Loizzo, A.; Lucentini, M.; Pani, R.; Pellegrini, R.; Santavenere, F.; Scopinaro, F.

    2004-07-01

    In vivo imaging of pharmaceuticals labeled with radionuclides has proven to be a powerful tool in human subjects. The same imaging methods have often been applied to small animal but usually only within the nuclear medicine (NM) community, and usually only to evaluate the efficacy of new radiopharmaceuticals. We have built a compact mini gamma camera, a pixellated array of NaI(Tl) crystals coupled to 3'' R2486 Hamamatsu Position Sensitive PMT; in combination with a pinhole collimator, which allows for high resolution in vivo SPECT imaging. Calculations show that reasonable counting rates are possible. The system has been tested and preliminary measurements on mice have been done. The performances of the camera are in the expectations. Improvements will be done both on the collimation technique and on the detector. Simulations have been performed to study a coded aperture collimator. The results show that the efficiency can be greatly improved without sacrificing the spatial resolution. A dedicated mask has been designed and will be used soon.

  7. 8-channel acquisition system for time-correlated single-photon counting

    NASA Astrophysics Data System (ADS)

    Antonioli, S.; Miari, L.; Cuccato, A.; Crotti, M.; Rech, I.; Ghioni, M.

    2013-06-01

    Nowadays, an increasing number of applications require high-performance analytical instruments capable to detect the temporal trend of weak and fast light signals with picosecond time resolution. The Time-Correlated Single-Photon Counting (TCSPC) technique is currently one of the preferable solutions when such critical optical signals have to be analyzed and it is fully exploited in biomedical and chemical research fields, as well as in security and space applications. Recent progress in the field of single-photon detector arrays is pushing research towards the development of high performance multichannel TCSPC systems, opening the way to modern time-resolved multi-dimensional optical analysis. In this paper we describe a new 8-channel high-performance TCSPC acquisition system, designed to be compact and versatile, to be used in modern TCSPC measurement setups. We designed a novel integrated circuit including a multichannel Time-to-Amplitude Converter with variable full-scale range, a D/A converter, and a parallel adder stage. The latter is used to adapt each converter output to the input dynamic range of a commercial 8-channel Analog-to-Digital Converter, while the integrated DAC implements the dithering technique with as small as possible area occupation. The use of this monolithic circuit made the design of a scalable system of very small dimensions (95 × 40 mm) and low power consumption (6 W) possible. Data acquired from the TCSPC measurement are digitally processed and stored inside an FPGA (Field-Programmable Gate Array), while a USB transceiver allows real-time transmission of up to eight TCSPC histograms to a remote PC. Eventually, the experimental results demonstrate that the acquisition system performs TCSPC measurements with high conversion rate (up to 5 MHz/channel), extremely low differential nonlinearity (<0.04 peak-to-peak of the time bin width), high time resolution (down to 20 ps Full-Width Half-Maximum), and very low crosstalk between channels.

  8. Estimation of signal and noise for a whole-body photon counting research CT system

    PubMed Central

    Li, Zhoubo; Leng, Shuai; Yu, Zhicong; Kappler, Stephen; McCollough, Cynthia H.

    2016-01-01

    Photon-counting CT (PCCT) may yield potential value for many clinical applications due to its relative immunity to electronic noise, increased geometric efficiency relative to current scintillating detectors, and the ability to resolve energy information about the detected photons. However, there are a large number of parameters that require optimization, particularly the energy thresholds configurations. Fast and accurate estimation of signal and noise in PCCT can benefit the optimization of acquisition parameters for specific diagnostic tasks. Based on the acquisition parameters and detector response of our research PCCT system, we derived mathematical models for both signal and noise. The signal model took the tube spectrum, beam filtration, object attenuation, water beam hardening, and detector response into account. The noise model considered the relationship between noise and radiation dose, as well as the propagation of noise as threshold data are subtracted to yield energy bin data. To determine the absolute noise value, a noise look-up table (LUT) was acquired using a limited number of calibration scans. The noise estimation algorithm then used the noise LUT to estimate noise for scans with a variety of combination of energy thresholds, dose levels, and object attenuation. Validation of the estimation algorithms was performed on our whole-body research PCCT system using semi-anthropomorphic water phantoms and solutions of calcium and iodine. The algorithms achieved accurate estimation of signal and noise for a variety of scanning parameter combinations. The proposed method can be used to optimize energy thresholds configuration for many clinical applications of PCCT. PMID:27346908

  9. 8-Channel acquisition system for Time-Correlated Single-Photon Counting.

    PubMed

    Antonioli, S; Miari, L; Cuccato, A; Crotti, M; Rech, I; Ghioni, M

    2013-06-01

    Nowadays, an increasing number of applications require high-performance analytical instruments capable to detect the temporal trend of weak and fast light signals with picosecond time resolution. The Time-Correlated Single-Photon Counting (TCSPC) technique is currently one of the preferable solutions when such critical optical signals have to be analyzed and it is fully exploited in biomedical and chemical research fields, as well as in security and space applications. Recent progress in the field of single-photon detector arrays is pushing research towards the development of high performance multichannel TCSPC systems, opening the way to modern time-resolved multi-dimensional optical analysis. In this paper we describe a new 8-channel high-performance TCSPC acquisition system, designed to be compact and versatile, to be used in modern TCSPC measurement setups. We designed a novel integrated circuit including a multichannel Time-to-Amplitude Converter with variable full-scale range, a D∕A converter, and a parallel adder stage. The latter is used to adapt each converter output to the input dynamic range of a commercial 8-channel Analog-to-Digital Converter, while the integrated DAC implements the dithering technique with as small as possible area occupation. The use of this monolithic circuit made the design of a scalable system of very small dimensions (95 × 40 mm) and low power consumption (6 W) possible. Data acquired from the TCSPC measurement are digitally processed and stored inside an FPGA (Field-Programmable Gate Array), while a USB transceiver allows real-time transmission of up to eight TCSPC histograms to a remote PC. Eventually, the experimental results demonstrate that the acquisition system performs TCSPC measurements with high conversion rate (up to 5 MHz/channel), extremely low differential nonlinearity (<0.04 peak-to-peak of the time bin width), high time resolution (down to 20 ps Full-Width Half-Maximum), and very low crosstalk between channels

  10. A Single-Photon Avalanche Diode Array for Fluorescence Lifetime Imaging Microscopy.

    PubMed

    Schwartz, David Eric; Charbon, Edoardo; Shepard, Kenneth L

    2008-11-21

    We describe the design, characterization, and demonstration of a fully integrated single-photon avalanche diode (SPAD) imager for use in time-resolved fluorescence imaging. The imager consists of a 64-by-64 array of active SPAD pixels and an on-chip time-to-digital converter (TDC) based on a delay-locked loop (DLL) and calibrated interpolators. The imager can perform both standard time-correlated single-photon counting (TCSPC) and an alternative gated-window detection useful for avoiding pulse pile-up when measuring bright signal levels. To illustrate the use of the imager, we present measurements of the decay lifetimes of fluorescent dyes of several types with a timing resolution of 350 ps. PMID:23976789

  11. A Single-Photon Avalanche Diode Array for Fluorescence Lifetime Imaging Microscopy

    PubMed Central

    Schwartz, David Eric; Charbon, Edoardo; Shepard, Kenneth L.

    2013-01-01

    We describe the design, characterization, and demonstration of a fully integrated single-photon avalanche diode (SPAD) imager for use in time-resolved fluorescence imaging. The imager consists of a 64-by-64 array of active SPAD pixels and an on-chip time-to-digital converter (TDC) based on a delay-locked loop (DLL) and calibrated interpolators. The imager can perform both standard time-correlated single-photon counting (TCSPC) and an alternative gated-window detection useful for avoiding pulse pile-up when measuring bright signal levels. To illustrate the use of the imager, we present measurements of the decay lifetimes of fluorescent dyes of several types with a timing resolution of 350 ps. PMID:23976789

  12. Two-photon fluorescence anisotropy imaging

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Yi; Shao, Hanrong; He, Yonghong; Ma, Hui

    2006-09-01

    We have developed a novel method for imaging the fluorescence intensity and anisotropy by two-photon fluorescence microscopy and tested its capability in biological application. This method is applied to model sample including FITC and FITC-CD44 antibody solution and also FITC-CD44 stained cells. The fluorescence anisotropy (FA) of FITC-CD44ab solution is higher than the FITC solution with the same concentration. The fluorescence in cell sample has even higher FA than in solution because the rotation diffusion is restrained in membrane. The method is employed to study the effect of berberine a kind of Chinese medicine, on tumor metastasis. The results indicated that tumor cell membrane fluidity is decreasing with increasing the concentration of berberine in culture medium.

  13. Unveiling the Gamma-Ray Source Count Distribution Below the Fermi Detection Limit with Photon Statistics

    NASA Astrophysics Data System (ADS)

    Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza; Fornengo, Nicolao; Vittino, Andrea

    2016-08-01

    The source-count distribution as a function of their flux, {dN}/{dS}, is one of the main quantities characterizing gamma-ray source populations. We employ statistical properties of the Fermi Large Area Telescope (LAT) photon counts map to measure the composition of the extragalactic gamma-ray sky at high latitudes (| b| ≥slant 30°) between 1 and 10 GeV. We present a new method, generalizing the use of standard pixel-count statistics, to decompose the total observed gamma-ray emission into (a) point-source contributions, (b) the Galactic foreground contribution, and (c) a truly diffuse isotropic background contribution. Using the 6 yr Fermi-LAT data set (P7REP), we show that the {dN}/{dS} distribution in the regime of so far undetected point sources can be consistently described with a power law with an index between 1.9 and 2.0. We measure {dN}/{dS} down to an integral flux of ∼ 2× {10}-11 {{cm}}-2 {{{s}}}-1, improving beyond the 3FGL catalog detection limit by about one order of magnitude. The overall {dN}/{dS} distribution is consistent with a broken power law, with a break at {2.1}-1.3+1.0× {10}-8 {{cm}}-2 {{{s}}}-1. The power-law index {n}1={3.1}-0.5+0.7 for bright sources above the break hardens to {n}2=1.97+/- 0.03 for fainter sources below the break. A possible second break of the {dN}/{dS} distribution is constrained to be at fluxes below 6.4× {10}-11 {{cm}}-2 {{{s}}}-1 at 95% confidence level. The high-latitude gamma-ray sky between 1 and 10 GeV is shown to be composed of ∼25% point sources, ∼69.3% diffuse Galactic foreground emission, and ∼6% isotropic diffuse background.

  14. Dual-particle imaging system based on simultaneous detection of photon and neutron collision events

    NASA Astrophysics Data System (ADS)

    Poitrasson-Rivière, Alexis; Hamel, Michael C.; Polack, J. Kyle; Flaska, Marek; Clarke, Shaun D.; Pozzi, Sara A.

    2014-10-01

    A dual-particle imaging (DPI) system capable of simultaneously detecting and imaging fast neutrons and photons has been designed and built. Imaging fast neutrons and photons simultaneously is particularly desirable for nuclear nonproliferation and/or safeguards applications because typical sources of interest (special nuclear material) emit both particle types. The DPI system consists of three detection planes: the first two planes consist of organic-liquid scintillators and the third plane consists of NaI(Tl) inorganic scintillators. Pulse shape discrimination technique(s) may be used for the liquid scintillators to differentiate neutron and photon pulses whereas the NaI(Tl) scintillators are highly insensitive to neutrons. A prototype DPI system was set up using a digital data acquisition system as a proof of concept. Initial measurements showed potential for use of the DPI system with special nuclear material. The DPI system has efficiencies of the order of 10-4 correlated counts per incident particles for both neutron and photon correlated counts, with simple-backprojection images displaying peaks within a few degrees of the source location. This uncertainty is expected to decrease with more extensive data interpretation.

  15. The effects of extending the spectral information acquired by a photon-counting detector for spectral CT

    NASA Astrophysics Data System (ADS)

    Gilat Schmidt, Taly; Zimmerman, Kevin C.; Sidky, Emil Y.

    2015-02-01

    Photon-counting x-ray detectors with pulse-height analysis provide spectral information that may improve material decomposition and contrast-to-noise ratio (CNR) in CT images. The number of energy measurements that can be acquired simultaneously on a detector pixel is equal to the number of comparator channels. Some spectral CT designs have a limited number of comparator channels, due to the complexity of readout electronics. The spectral information could be extended by changing the comparator threshold levels over time, sub pixels, or view angle. However, acquiring more energy measurements than comparator channels increases the noise and/or dose, due to differences in noise correlations across energy measurements and decreased dose utilisation. This study experimentally quantified the effects of acquiring more energy measurements than comparator channels using a bench-top spectral CT system. An analytical and simulation study modeling an ideal detector investigated whether there was a net benefit for material decomposition or optimal energy weighting when acquiring more energy measurements than comparator channels. Experimental results demonstrated that in a two-threshold acquisition, acquiring the high-energy measurement independently from the low-energy measurement increased noise standard deviation in material-decomposition basis images by factors of 1.5-1.7 due to changes in covariance between energy measurements. CNR in energy-weighted images decreased by factors of 0.92-0.71. Noise standard deviation increased by an additional factor of \\sqrt{2} due to reduced dose utilisation. The results demonstrated no benefit for two-material decomposition noise or energy-weighted CNR when acquiring more energy measurements than comparator channels. Understanding the noise penalty of acquiring more energy measurements than comparator channels is important for designing spectral detectors and for designing experiments and interpreting data from prototype systems with a

  16. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef

    2016-05-01

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now.

  17. Optimal fine ϕ-slicing for single-photon-counting pixel detectors

    PubMed Central

    Mueller, Marcus; Wang, Meitian; Schulze-Briese, Clemens

    2012-01-01

    The data-collection parameters used in a macromolecular diffraction experiment have a strong impact on data quality. A careful choice of parameters leads to better data and can make the difference between success and failure in phasing attempts, and will also result in a more accurate atomic model. The selection of parameters has to account for the application of the data in various phasing methods or high-resolution refinement. Furthermore, experimental factors such as crystal characteristics, available experiment time and the properties of the X-ray source and detector have to be considered. For many years, CCD detectors have been the prevalent type of detectors used in macromolecular crystallography. Recently, hybrid pixel X-ray detectors that operate in single-photon-counting mode have become available. These detectors have fundamentally different characteristics compared with CCD detectors and different data-collection strategies should be applied. Fine ϕ-slicing is a strategy that is particularly well suited to hybrid pixel detectors because of the fast readout time and the absence of readout noise. A large number of data sets were systematically collected from crystals of four different proteins in order to investigate the benefit of fine ϕ-­slicing on data quality with a noise-free detector. The results show that fine ϕ-slicing can substantially improve scaling statistics and anomalous signal provided that the rotation angle is comparable to half the crystal mosaicity. PMID:22194332

  18. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability.

    PubMed

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef

    2016-05-01

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now. PMID:27250477

  19. Studying the optical second-order interference pattern formation process with classical light in the photon counting regime.

    PubMed

    He, Yuchen; Liu, Jianbin; Zhang, Songlin; Wang, Wentao; Bai, Bin; Le, Mingnan; Xu, Zhuo

    2015-12-01

    The formation process of the second-order interference pattern is studied experimentally in the photon counting regime by superposing two independent single-mode continuous-wave lasers. Two-photon interference based on the superposition principle in Feynman's path integral theory is employed to interpret the experimental results. The second-order interference pattern of classical light can be formulated when, with high probability, there are only two photons in the interferometer at one time. The studies are helpful in understanding the second-order interference of classical light in the language of photons. The method and conclusions can be generalized to the third- and higher-order interference of light and interference of massive particles. PMID:26831397

  20. Automatic counting and classification of bacterial colonies using hyperspectral imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detection and counting of bacterial colonies on agar plates is a routine microbiology practice to get a rough estimate of the number of viable cells in a sample. There have been a variety of different automatic colony counting systems and software algorithms mainly based on color or gray-scale pictu...

  1. Spatio-energetic cross-talks in photon counting detectors: detector model and correlated Poisson data generator

    NASA Astrophysics Data System (ADS)

    Taguchi, Katsuyuki; Polster, Christoph; Lee, Okkyun; Kappler, Steffen

    2016-03-01

    An x-ray photon interacts with photon counting detectors (PCDs) and generates an electron charge cloud or multiple clouds. The clouds (thus, the photon energy) may be split between two adjacent PCD pixels when the interaction occurs near pixel boundaries, producing a count at both of the two pixels. This is called double-counting with charge sharing. The output of individual PCD pixel is Poisson distributed integer counts; however, the outputs of adjacent pixels are correlated due to double-counting. Major problems are the lack of detector noise model for the spatio-energetic crosstalk and the lack of an efficient simulation tool. Monte Carlo simulation can accurately simulate these phenomena and produce noisy data; however, it is not computationally efficient. In this study, we developed a new detector model and implemented into an efficient software simulator which uses a Poisson random number generator to produce correlated noisy integer counts. The detector model takes the following effects into account effects: (1) detection efficiency and incomplete charge collection; (2) photoelectric effect with total absorption; (3) photoelectric effect with fluorescence x-ray emission and re-absorption; (4) photoelectric effect with fluorescence x-ray emission which leaves PCD completely; and (5) electric noise. The model produced total detector spectrum similar to previous MC simulation data. The model can be used to predict spectrum and correlation with various different settings. The simulated noisy data demonstrated the expected performance: (a) data were integers; (b) the mean and covariance matrix was close to the target values; (c) noisy data generation was very efficient

  2. Study on simulation of low light level images and photon images

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Yu, Xin; Chen, Yi-nan

    2008-03-01

    This paper concentrates on images formation simulation under low light level condition (10 -6photon limited condition (<10 -6lx). In the first part, we introduce the main characteristics and features of low light level images and system entire noise and simulate a deblurred image intensified by photon imaging system recently constructed under low light level condition. The influence of scene luminance and photon imaging system optical errors on the simulation is introduced. Then the system entire noise is appended to low light level images by a novel noise analysis and generation method based on experimental study method. The second part of this paper deals with simulation of photon images. Because of randomicity of photon images, roulette wheel selection is utilized to confirm the grey level of stochastic signal photon image and noise photon image is generated by poissson stochastic process pixel by pixel. The final photon image is acquired by synthesizing the two images. The simulation presented in this paper provides an economical and convenient method to investigate the detection ability of photon imaging system and image reconstruction algorithm under low light level condition and photon limited condition.

  3. Fluorescence depolarization of rhodamine 6G in glycerol: a photon-counting test of three-dimensional excitation transport theory

    SciTech Connect

    Anfinrud, P.A.; Hart, D.E.; Hedstrom, J.F.; Struve, W.S.

    1986-05-22

    Time-correlated photon counting has been used to measure fluorescence concentration depolarization for rhodamine 6G in glycerol. The excitation transport theory developed by Gochanour, Andersen, and Fayer yields good approximations to the experimental decay profiles over the concentration range 1.7 x 10/sup -4/ to 2.4 x 10/sup -3/ M. Although the differences between optimized theoretical and experimental profiles are fractionally small, they are readily characterized under present counting statistics. They prove to be dominated by experimental artifacts, arising from excitation trapping by rhodamine 6G aggregates and from self-absorption in solution cells thicker than approx. 10 ..mu..m.

  4. Sensitivity Measurements For Cargo Scanning Applications Using Photon Interrogation and Neutron Signature Counting Techniques

    NASA Astrophysics Data System (ADS)

    Ankrah, Maxwell

    2011-12-01

    In recent years, non-destructive evaluation techniques which use either photon or neutron sources from accelerators followed by neutron counting signatures have been used in many national security and nuclear nonproliferation applications [4, 60]. Although the United States customs and border protection initiated and implemented a cargo security initiative to discover threats from others countries before they embark to the US, detectors with better sensitivities are more necessary than ever in view of the global threats faced by nations around the world. Photofission based applications which use delayed neutron signal ores as viable detection schemes for fissile material detection have been ongoing for many years. Applications of this technology to include cargo scanning applications are however lacking. This work in this dissertation used the delayed neutron signature counting technique for fissile material detection in conjunction with new formulated Curries' expressions to establish the sensitivity (minimum detectable mass) limits. The fission reactions were induced in a uranyl nitrate solution containing 94.1 g of 238U using bremsstrahlung endpoint cue pies of 9 MeV to 21 MeV in 2 MeV steps. Preliminary data on the sensitvity measurement at bremsstrahlung end point energies of 9, 14, 18 and 22 MeV are also presented. We also present the effect of borated polyethylene and lead shielding on the sensitivity at 9 and 22 N1cV. The sensitivities were calculated for 5%u false positives and 5% fake negatives as well as for 1% false positives and 0.1% false negatives. A dose of 4 Gy, 5 mGy and 1 mGy were assumed to be delivered to Mutt cargo container. For a radiator and target-to-detector distance of 150 cm and 200 cup, the delayed neutron yield from calculation and experiment was also compared. Finally, feasibility studies was conducted to determine if the linac parameters used in this research was capable of detecting 1 mg, 1 g and 1 kg of 238U. This work was funded

  5. Novel approaches to address spectral distortions in photon counting x-ray CT using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Touch, M.; Clark, D. P.; Barber, W.; Badea, C. T.

    2016-04-01

    Spectral CT using a photon-counting x-ray detector (PCXD) can potentially increase accuracy of measuring tissue composition. However, PCXD spectral measurements suffer from distortion due to charge sharing, pulse pileup, and Kescape energy loss. This study proposes two novel artificial neural network (ANN)-based algorithms: one to model and compensate for the distortion, and another one to directly correct for the distortion. The ANN-based distortion model was obtained by training to learn the distortion from a set of projections with a calibration scan. The ANN distortion was then applied in the forward statistical model to compensate for distortion in the projection decomposition. ANN was also used to learn to correct distortions directly in projections. The resulting corrected projections were used for reconstructing the image, denoising via joint bilateral filtration, and decomposition into three-material basis functions: Compton scattering, the photoelectric effect, and iodine. The ANN-based distortion model proved to be more robust to noise and worked better compared to using an imperfect parametric distortion model. In the presence of noise, the mean relative errors in iodine concentration estimation were 11.82% (ANN distortion model) and 16.72% (parametric model). With distortion correction, the mean relative error in iodine concentration estimation was improved by 50% over direct decomposition from distorted data. With o