Science.gov

Sample records for photon emission microscope

  1. Ion photon emission microscope

    DOEpatents

    Doyle, Barney L.

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  2. Improved Photon-Emission-Microscope System

    NASA Technical Reports Server (NTRS)

    Vu, Duc

    2006-01-01

    An improved photon-emission-microscope (PEM) instrumentation system has been developed for use in diagnosing failure conditions in semiconductor devices, including complex integrated circuits. This system is designed primarily to image areas that emit photons, at wavelengths from 400 to 1,100 nm, associated with device failures caused by leakage of electric current through SiO2 and other dielectric materials used in multilayer semiconductor structures. In addition, the system is sensitive enough to image areas that emit photons during normal operation.

  3. THz wave emission microscope

    NASA Astrophysics Data System (ADS)

    Yuan, Tao

    Sensing and imaging using Terahertz (THz) radiation has attracted more and more interest in the last two decades thanks to the abundant material 'finger prints' in the THz frequency range. The low photon energy also makes THz radiation an attractive tool for nondestructive evaluation of materials and devices, biomedical applications, security checks and explosive screening. Due to the long wavelength, the far-field THz wave optical systems have relatively low spatial resolution. This physical limitation confines THz wave sensing and imaging to mostly macro-size samples. To investigate local material properties or micro-size structures and devices, near-field technology has to be employed. In this dissertation, the Electro-Optical THz wave emission microscope is investigated. The basic principle is to focus the femtosecond laser to a tight spot on a thin THz emitter layer to produce a THz wave source with a similar size as the focus spot. The apparatus provides a method for placing a THz source with sub-wavelength dimension in the near-field range of the investigated sample. Spatial resolution to the order of one tenth of the THz wavelength is demonstrated by this method. The properties of some widely used THz wave emission materials under tight focused pump light are studied. As an important branch of THz time domain spectroscopy (THz-TDS), THz wave emission spectroscopy has been widely used as a tool to investigate the material physics, such as energy band structure, carrier dynamics, material nonlinear properties and dynamics. As the main work of this dissertation, we propose to combine the THz wave emission spectroscopy with scanning probe microscopy (SPM) to build a tip-assisted THz wave emission microscope (TATEM), which is a valuable extension to current SPM science and technology. Illuminated by a femtosecond laser, the biased SPM tip forms a THz wave source inside the sample beneath the tip. The source size is proportional to the apex size of the tip so

  4. Ion photon emission microscopy

    NASA Astrophysics Data System (ADS)

    Rossi, P.; Doyle, B. L.; Banks, J. C.; Battistella, A.; Gennaro, G.; McDaniel, F. D.; Mellon, M.; Vittone, E.; Vizkelethy, G.; Wing, N. D.

    2003-09-01

    A new ion-induced emission microscopy has been invented and demonstrated, which is called ion photon emission microscopy (IPEM). It employs a low current, broad ion beam impinging on a sample, previously coated or simply covered with a few microns of a fast, highly efficient phosphor layer. The light produced at the single ion impact point is collected with an optical microscope and projected at high magnification onto a single photon position sensitive detector (PSD). This allows maps of the ion strike effects to be produced, effectively removing the need for a microbeam. Irradiation in air and even the use of alpha particle sources with no accelerator are possible. Potential applications include ion beam induced charge collection studies of semiconducting and insulating materials, single event upset studies on microchips and even biological cells in radiobiological effectiveness experiments. We describe the IPEM setup, including a 60× OM-40 microscope with a 1.5 mm hole for the beam transmission and a Quantar PSD with 60 μm pixel. Bicron plastic scintillator blades of 10 μm were chosen as a phosphor for their nanosecond time resolution, homogeneity, utility and commercial availability. The results given in this paper are for a prototype IPEM system. They indicate a resolution of ˜12 μm, the presence of a spatial halo and a He-ion efficiency of ˜20%. This marks the first time that nuclear microscopy has been performed with a radioactive source.

  5. Ballistic-Electron-Emission Microscope

    NASA Technical Reports Server (NTRS)

    Kaiser, William J.; Bell, L. Douglas

    1990-01-01

    Ballistic-electron-emission microscope (BEEM) employs scanning tunneling-microscopy (STM) methods for nondestructive, direct electrical investigation of buried interfaces, such as interface between semiconductor and thin metal film. In BEEM, there are at least three electrodes: emitting tip, biasing electrode, and collecting electrode, receiving current crossing interface under investigation. Signal-processing device amplifies electrode signals and converts them into form usable by computer. Produces spatial images of surface by scanning tip; in addition, provides high-resolution images of buried interface under investigation. Spectroscopic information extracted by measuring collecting-electrode current as function of one of interelectrode voltages.

  6. Photon enhanced thermionic emission

    SciTech Connect

    Schwede, Jared; Melosh, Nicholas; Shen, Zhixun

    2014-10-07

    Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200.degree. C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

  7. Thermodynamic Laws of Neutrino and Photon Emission.

    ERIC Educational Resources Information Center

    Walsh, P. J.; Gallo, C. F.

    1980-01-01

    Compares neutrino and photon emissions, develops the thermodynamic blackbody laws of neutrino emission analogous to laws governing photon emission, points out that combined radiation from a "true blackbody" consists of both photon and neutrino emissions of comparable magnitude, and speculates upon the existence of blackbody neutrino emitters in…

  8. Photon upconversion with directed emission.

    PubMed

    Börjesson, K; Rudquist, P; Gray, V; Moth-Poulsen, K

    2016-01-01

    Photon upconversion has the potential to increase the efficiency of single bandgap solar cells beyond the Shockley Queisser limit. Efficient light management is an important point in this context. Here we demonstrate that the direction of upconverted emission can be controlled in a reversible way, by embedding anthracene derivatives together with palladium porphyrin in a liquid crystalline matrix. The system is employed in a triplet-triplet annihilation photon upconversion scheme demonstrating controlled switching of directional anti Stokes emission. Using this approach an emission ratio of 0.37 between the axial and longitudinal emission directions and a directivity of 1.52 is achieved, reasonably close to the theoretical maximal value of 2 obtained from a perfectly oriented sample. The system can be switched for multiple cycles without any visible degradation and the speed of switching is only limited by the intrinsic rate of alignment of the liquid crystalline matrix. PMID:27573539

  9. Microscopic fungi as significant sesquiterpene emission sources

    NASA Astrophysics Data System (ADS)

    HorváTh, Eszter; Hoffer, AndráS.; SebőK, Flóra; Dobolyi, Csaba; Szoboszlay, SáNdor; Kriszt, BaláZs; GelencséR, AndráS.

    2011-08-01

    Among the volatile organic compounds emitted by vegetation, isoprene, monoterpenes, sesquiterpenes, and their derivatives are thought to contribute to secondary organic aerosol formation. Although it is well known that microscopic fungi globally turn over vast amount of carbon by decomposing the organic matter in the soil, vegetation is considered as the exclusive source of biogenic secondary organic aerosol precursors in various atmospheric models. Secondary fungal metabolites including sesquiterpenes have been recognized as characteristic volatile organic compounds emitted by fungi. In the present study, we investigated the rates of sesquiterpene emission of microscopic fungi to establish their potential significance compared to those from vegetation. To sample the headspace of the pure culture of some common fungi, we used an aseptic flow-through apparatus designed for solid phase microextraction in our laboratory. The identified sesquiterpenes in the headspace extracts were quantified for eight strains of microscopic fungi belonging to four different genera. Our results showed that microscopic fungi emit a considerable amount of sesquiterpenes. Based on our first estimations microscopic fungi may be considered as potentially significant sesquiterpene emission sources whose contribution to secondary organic aerosol formation may be comparable to that of vegetation.

  10. Integrated photoacoustic, confocal, and two-photon microscope

    PubMed Central

    Rao, Bin; Soto, Florentina; Kerschensteiner, Daniel; Wang, Lihong V.

    2014-01-01

    Abstract. The invention of green fluorescent protein and other molecular fluorescent probes has promoted applications of confocal and two-photon fluorescence microscopy in biology and medicine. However, exogenous fluorescence contrast agents may affect cellular structure and function, and fluorescence microscopy cannot image nonfluorescent chromophores. We overcome this limitation by integrating optical-resolution photoacoustic microscopy into a modern Olympus IX81 confocal, two-photon, fluorescence microscope setup to provide complementary, label-free, optical absorption contrast. Automatically coregistered images can be generated from the same sample. Imaging applications in ophthalmology, developmental biology, and plant science are demonstrated. For the first time, in a familiar microscopic fluorescence imaging setting, this trimodality microscope provides a platform for future biological and medical discoveries. PMID:24589986

  11. Two-Photon Fluorescence Microscope for Microgravity Research

    NASA Technical Reports Server (NTRS)

    Fischer, David G.; Zimmerli, Gregory A.; Asipauskas, Marius

    2005-01-01

    A two-photon fluorescence microscope has been developed for the study of biophysical phenomena. Two-photon microscopy is a novel form of laser-based scanning microscopy that enables three-dimensional imaging without many of the problems inherent in confocal microscopy. Unlike one-photon optical microscopy, two-photon microscopy utilizes the simultaneous nonlinear absorption of two near-infrared photons. However, the efficiency of two-photon absorption is much lower than that of one-photon absorption, so an ultra-fast pulsed laser source is typically employed. On the other hand, the critical energy threshold for two-photon absorption leads to fluorophore excitation that is intrinsically localized to the focal volume. Consequently, two-photon microscopy enables optical sectioning and confocal performance without the need for a signal-limiting pinhole. In addition, there is a reduction (relative to one-photon optical microscopy) in photon-induced damage because of the longer excitation wavelength. This reduction is especially advantageous for in vivo studies. Relative to confocal microscopy, there is also a reduction in background fluorescence, and, because of a reduction in Rayleigh scattering, there is a 4 increase of penetration depth. The prohibitive cost of a commercial two-photon fluorescence-microscope system, as well as a need for modularity, has led to the construction of a custom-built system (see Figure 1). This system includes a coherent mode-locked titanium: sapphire laser emitting 120-fs-duration pulses at a repetition rate of 80 MHz. The pulsed laser has an average output power of 800 mW and a wavelength tuning range of 700 to 980 nm, enabling the excitation of a variety of targeted fluorophores. The output from the laser is attenuated, spatially filtered, and then directed into a confocal scanning head that has been modified to provide for side entry of the laser beam. The laser output coupler has been replaced with a dichroic filter that reflects the

  12. Single photon emission computed tomography

    SciTech Connect

    Piez, C.W. Jr.; Holman, B.L.

    1985-07-01

    Single photon emission computed tomography (SPECT) is becoming an increasingly important part of routine clinical nuclear medicine. By providing tomographic reconstructions in multiple planes through the patient, SPECT expands the clinical applications in nuclear medicine as well as providing better contrast, edge definition and separation of target from background activities. Imaging techniques have been developed for the evaluation of regional cerebral blood flow using radiolabeled amines. Thus, cerebral functional imaging can be used in the diagnosis of acute cerebral infarction, cerebral vascular disease, dementia and epilepsy. SPECT plays a complementary role in the evaluation of coronary artery disease, particularly when it is coupled with thallium-201 and exercise testing. SPECT extends our diagnostic capabilities in additional areas, such as liver and bone scintigraphy as well as tumor imaging with gallium-67.

  13. Single-photon emission tomography.

    PubMed

    Goffin, Karolien; van Laere, Koen

    2016-01-01

    Single-photon emission computed tomography (SPECT) is a functional nuclear imaging technique that allows visualization and quantification of different in vivo physiologic and pathologic features of brain neurobiology. It has been used for many years in diagnosis of several neurologic and psychiatric disorders. In this chapter, we discuss the current state-of-the-art of SPECT imaging of brain perfusion and dopamine transporter (DAT) imaging. Brain perfusion SPECT imaging plays an important role in the localization of the seizure onset zone in patients with refractory epilepsy. In cerebrovascular disease, it can be useful in determining the cerebrovascular reserve. After traumatic brain injury, SPECT has shown perfusion abnormalities despite normal morphology. In the context of organ donation, the diagnosis of brain death can be made with high accuracy. In neurodegeneration, while amyloid or (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) are the nuclear diagnostic tools of preference for early and differential diagnosis of dementia, perfusion SPECT imaging can be useful, albeit with slightly lower accuracy. SPECT imaging of the dopamine transporter system is widely available in Europe and Asia, but since recently also in the USA, and has been accepted as an important diagnostic tool in the early and differential diagnosis of parkinsonism in patients with unclear clinical features. The combination of perfusion SPECT (or FDG-PET) and DAT imaging provides differential diagnosis between idiopathic Parkinson's disease, Parkinson-plus syndromes, dementia with Lewy bodies, and essential tremor. PMID:27432669

  14. Single Photon Emission Computed Tomography (SPECT)

    MedlinePlus

    ... High Blood Pressure Tools & Resources Stroke More Single Photon Emission Computed Tomography (SPECT) Updated:Sep 11,2015 ... Persantine) or dobutamine. The tests may take between 2 and 2 1/2 hours. What happens after ...

  15. An ultrafast electron microscope gun driven by two-photon photoemission from a nanotip cathode

    NASA Astrophysics Data System (ADS)

    Bormann, Reiner; Strauch, Stefanie; Schäfer, Sascha; Ropers, Claus

    2015-11-01

    We experimentally and numerically investigate the performance of an advanced ultrafast electron source, based on two-photon photoemission from a tungsten needle cathode incorporated in an electron microscope gun geometry. Emission properties are characterized as a function of the electrostatic gun settings, and operating conditions leading to laser-triggered electron beams of very low emittance (below 20 nm mrad) are identified. The results highlight the excellent suitability of optically driven nano-cathodes for the further development of ultrafast transmission electron microscopy.

  16. An ultrafast electron microscope gun driven by two-photon photoemission from a nanotip cathode

    SciTech Connect

    Bormann, Reiner; Strauch, Stefanie; Schäfer, Sascha Ropers, Claus

    2015-11-07

    We experimentally and numerically investigate the performance of an advanced ultrafast electron source, based on two-photon photoemission from a tungsten needle cathode incorporated in an electron microscope gun geometry. Emission properties are characterized as a function of the electrostatic gun settings, and operating conditions leading to laser-triggered electron beams of very low emittance (below 20 nm mrad) are identified. The results highlight the excellent suitability of optically driven nano-cathodes for the further development of ultrafast transmission electron microscopy.

  17. Imaging living cells with a combined high-resolution multi-photon-acoustic microscope

    NASA Astrophysics Data System (ADS)

    Schenkl, Selma; Weiss, Eike; Stark, Martin; Stracke, Frank; Riemann, Iris; Lemor, Robert; König, Karsten

    2007-02-01

    With increasing demand for in-vivo observation of living cells, microscope techniques that do not need staining become more and more important. In this talk we present a combined multi-photon-acoustic microscope with the possibility to measure synchronously properties addressed by ultrasound and two-photon fluorescence. Ultrasound probes the local mechanical properties of a cell, while the high resolution image of the two-photon fluorescence delivers insight in cell morphology and activity. In the acoustic part of the microscope an ultrasound wave, with a frequency of GHz, is focused by an acoustic sapphire lens and detected by a piezo electric transducer assembled to the lens. The achieved lateral resolution is in the range of 1μm. Contrast in the images arises mainly from the local absorption of sound in the cells, related to properties, such as mass density, stiffness and viscose damping. Additionally acoustic microscopy can access the cell shape and the state of the cell membrane as it is a intrinsic volume scanning technique.The optical part bases on the emission of fluorescent biomolecules naturally present in cells (e.g. NAD(P)H, protophorphyrin IX, lipofuscin, melanin). The nonlinear effect of two-photon absorption provides a high lateral and axial resolution without the need of confocal detection. In addition, in the near-IR cell damages are drastically reduced in comparison to direct excitation in the visible or UV. Both methods can be considered as minimal invasive, as they relay on intrinsic contrast mechanisms and dispense with the need of staining. First results on living cells are presented and discussed.

  18. Compact scanning transmission x-ray microscope at the photon factory

    NASA Astrophysics Data System (ADS)

    Takeichi, Yasuo; Inami, Nobuhito; Suga, Hiroki; Takahashi, Yoshio; Ono, Kanta

    2016-01-01

    We report the design and performance of a compact scanning transmission X-ray microscope developed at the Photon Factory. Piezo-driven linear stages are used as coarse stages of the microscope to realize excellent compactness, mobility, and vibrational and thermal stability. An X-ray beam with an intensity of ˜107 photons/s was focused to a diameter of ˜40 nm at the sample. At the soft X-ray undulator beamline used with the microscope, a wide range of photon energies (250-1600 eV) is available. The microscope has been used to research energy materials and in environmental sciences.

  19. Controlling spontaneous emission in bioreplica photonic crystals

    NASA Astrophysics Data System (ADS)

    Jorgensen, Matthew R.; Butler, Elizabeth S.; Bartl, Michael H.

    2012-04-01

    Sophisticated methods have been created by nature to produce structure-based colors as a way to address the need of a wide variety of organisms. This pallet of available structures presents a unique opportunity for the investigation of new photonic crystal designs. Low-temperature sol-gel biotemplating methods were used to transform a single biotemplate into a variety of inorganic oxide structures. The density of optical states was calculated for a diamond-based natural photonic crystal, as well as several structures templated from it. Calculations were experimentally probed by spontaneous emission studies using time correlated single photon counting measurements.

  20. Measuring calcium levels in Saprolegnia ferax using the two-photon laser scanning microscope

    NASA Astrophysics Data System (ADS)

    Lilje, Osu

    2003-07-01

    xThe genus Saprolegnia in the phylum Oomycetes contains a number of parasitic species that can cause a range of important animal diseases. The aim of this study was to measure the calcium gradient, one of the growth regulating mechanisms, in Saprolegnia ferax. The two-photon laser scanning microscope allowed for detailed physiological measurements of calcium levels along the fungus-like hyphae of S.ferax. Calcium concentration was determined by making ratiometric calculation of emission levels of the calcium-sensitive fluorochrome Indo-1 at 485nm to 405nm. The calculated values were compared to the intracellular calibration values. The advantage of the two-photon laser scanning microscope is that it allows minor changes in concentration to be detected in highly localized regions of the hyphae. The technique used in this study minimized background and autofluorescence and therefore allowed for more accurate changes in intracellular Ca2+ concentration to be detected. The calcium concentration at the hyphal tip and 5, 10 and 40μm distal to the tip were calculated to be 65, 17, 38 and 20nM respectively, confirming other studies that suggest a tip-high calcium gradient.

  1. Secondary photon emission in plasma processing

    SciTech Connect

    Moshkalyov, S.; Machida, M.; Campos, D.; Dulkin, A.

    1997-05-01

    Optical emission spectroscopy with high spatial resolution was applied for the study of plasma{endash}material interaction in low-pressure reactive ion etching. Atomic and molecular emission by sputtered material has been found to be strongly localized near the surface. Excited particles are produced during sputtering by energetic ions, with the mechanisms being different for atoms and molecules. In atomic secondary photon emission, a cascade from highly excited levels is shown to be important. This method can be used as a probe during plasma processing. {copyright} {ital 1997 American Institute of Physics.}

  2. Photonic translation of DNAs between microscopic beads and a substrate for a photonic DNA memory

    NASA Astrophysics Data System (ADS)

    Ogura, Yusuke; Beppu, Taro; Shogenji, Rui; Tanida, Jun

    2006-08-01

    A DNA memory is a storage system utilizing inherent features of DNA, which is promising as a fundamental technology of nanoscale computing. Realizing a practical DNA memory requires establishment of a method for accessing to and controlling certain DNA strands among a lot of strands in a solution with high accuracy and selectivity. For addressing this issue, we have proposed a DNA memory using photonic techniques: the photonic DNA memory. Manipulation of information by using DNAs on a nanoscale and light on a microscale is effective in achieving a high capacity and flexible memory. This paper reports on experimental results of photonic translation of DNAs containing data between microscopic beads and a substrate. The technique is expected to be useful in writing, transferring, and reading necessary information in a photonic DNA memory effectively. In the experiments, we prepared a glass substrate coated with titanylphthalocyanine for light absorption and gold for DNA attachment. Data container DNA strands, which were labeled by fluorescence-dye for observation, were attached on the substrate by hybridization with their complementary strands immobilized on the substrate; then a solution containing 6-micrometer-diameter beads on which DNA strands including the complementary sequence of the data container DNA was placed on the substrate. After a bead was irradiated with a laser beam and translated on the substrate, the fluorescence intensity of the substrate decreased and that of the bead increased. The result indicates that the data container DNA was moved from the substrate to the bead owing to change of the temperature of the solution at the irradiated area.

  3. Auto-aligning stimulated emission depletion microscope using adaptive optics

    PubMed Central

    Gould, Travis J.; Kromann, Emil B.; Burke, Daniel; Booth, Martin J.; Bewersdorf, Joerg

    2013-01-01

    Stimulated emission depletion (STED) microscopy provides diffraction-unlimited resolution in fluorescence microscopy. Imaging at the nanoscale, however, requires precise alignment of the depletion and excitation laser foci of the STED microscope. We demonstrate here that adaptive optics can be implemented to automatically align STED and confocal images with a precision of 4.3 ± 2.3 nm. PMID:23722769

  4. Photon emission in (anti)neutrino neutral current interactions with nuclei

    SciTech Connect

    Wang En; Alvarez-Ruso, Luis; Nieves, Juan

    2013-06-10

    Photon emission induced by E{sub {nu}}{approx} 1 GeV (anti)neutrino neutral current (NC) interactions with nuclei is studied with a dynamical microscopic model. This process is a relevant background for {nu}{sub e} appearance oscillation experiments. We find a strong reduction of the cross section due to nuclear effects.

  5. Optical microscope using an interferometric source of two-color, two-beam entangled photons

    DOEpatents

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-07-13

    Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.

  6. Application and development of a spectrally-resolved confocal microscope: A study of lipofuscin emission properties

    NASA Astrophysics Data System (ADS)

    Haralampus-Grynaviski, Nicole Marie

    A unique spectrally-resolved confocal microscope is developed for use in biophysical applications. This microscope enables the rapid collection of the complete emission spectra for every pixel in a fluorescence image. The basic optical design and function of the device are assessed through examination of fluorescently labeled beads, using both one- and two-photon excitation. The spatial resolution of the device is found to approach the diffraction limit in the lateral plane and ˜2 mum in the axial plane. This device can readily distinguish between overlapping emissions which are not easily differentiated using standard filter techniques. The potential of this device to be used as a detection method in DNA sequence experiments is demonstrated. Images of a human skin tissue section and a mouse kidney section are presented which demonstrate the structure and spectra of biologic samples can be resolved. The emission properties of human ocular lipofuscin, LF, a heterogeneous auto-fluorescent material associated with age-related macular degeneration is investigated in detail. Isolated LF granules show substantial variation in emission spectra. Near-field scanning microscopy experiments find the emissive regions on a single LF granule are homogeneous on the ˜150 nm scale and confirm results obtained on the microscope developed here. For ˜100 studied LF deposits, the histogram of the measured peak emission is centered around 18,000 cm-1 (555 nm). The average emission spectra for large LF aggregates (peak 17,150 cm-1) is red-shifted compared to the average emission from small individual granules (peak 17,600 cm-1). The average LF granule emission observed here is similar to previously reported bulk LF emission and the emission of a previously identified LF chromophore, A2E. Individual LF granules show a broad range in emission maximum whether the LF is isolated from multiple donors or examined within the cells of a single donor. Multiple as yet unidentified chromophores

  7. Atlas of solar hidden photon emission

    NASA Astrophysics Data System (ADS)

    Redondo, Javier

    2015-07-01

    Hidden photons, gauge bosons of a U(1) symmetry of a hidden sector, can constitute the dark matter of the universe and a smoking gun for large volume compactifications of string theory. In the sub-eV mass range, a possible discovery experiment consists on searching the copious flux of these particles emitted from the Sun in a helioscope setup à la Sikivie. In this paper, we compute in great detail the flux of HPs from the Sun, a necessary ingredient for interpreting such experiments. We provide a detailed exposition of transverse photon-HP oscillations in inhomogenous media, with special focus on resonance oscillations, which play a leading role in many cases. The region of the Sun emitting HPs resonantly is a thin spherical shell for which we justify an averaged-emission formula and which implies a distinctive morphology of the angular distribution of HPs on Earth in many cases. Low mass HPs with energies in the visible and IR have resonances very close to the photosphere where the solar plasma is not fully ionised and requires building a detailed model of solar refraction and absorption. We present results for a broad range of HP masses (from 0-1 keV) and energies (from the IR to the X-ray range), the most complete atlas of solar HP emission to date.

  8. Atlas of solar hidden photon emission

    SciTech Connect

    Redondo, Javier

    2015-07-20

    Hidden photons, gauge bosons of a U(1) symmetry of a hidden sector, can constitute the dark matter of the universe and a smoking gun for large volume compactifications of string theory. In the sub-eV mass range, a possible discovery experiment consists on searching the copious flux of these particles emitted from the Sun in a helioscope setup à la Sikivie. In this paper, we compute in great detail the flux of HPs from the Sun, a necessary ingredient for interpreting such experiments. We provide a detailed exposition of transverse photon-HP oscillations in inhomogenous media, with special focus on resonance oscillations, which play a leading role in many cases. The region of the Sun emitting HPs resonantly is a thin spherical shell for which we justify an averaged-emission formula and which implies a distinctive morphology of the angular distribution of HPs on Earth in many cases. Low mass HPs with energies in the visible and IR have resonances very close to the photosphere where the solar plasma is not fully ionised and requires building a detailed model of solar refraction and absorption. We present results for a broad range of HP masses (from 0–1 keV) and energies (from the IR to the X-ray range), the most complete atlas of solar HP emission to date.

  9. Development of a two photon microscope for tracking Drosophila larvae

    NASA Astrophysics Data System (ADS)

    Karagyozov, Doycho; Mihovilovic Skanata, Mirna; Gershow, Marc

    Current in vivo methods for measuring neural activity in Drosophila larva require immobilization of the animal. Although we can record neural signals while stimulating the sensory organs, we cannot read the behavioral output because we have prevented the animal from moving. Many research questions cannot be answered without observation of neural activity in behaving (freely-moving) animals. Our project aims to develop a tracking microscope that maintains the neurons of interest in the field of view and in focus during the rapid three dimensional motion of a free larva.

  10. Ultraweak photon emission from herbivory-injured maize plants

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Naoko; Kato, Kimihiko; Kageyama, Chizuko; Fujisaki, Kenji; Nishida, Ritsuo; Mori, Naoki

    2006-01-01

    Following perception of herbivory or infection, plants exhibit a wide range of inducible responses. In this study, we found ultraweak photon emissions from maize leaves damaged by Helicoverpa armigera (Noctuidae). Interestingly, mechanically damaged maize leaves treated with caterpillar regurgitants emitted the same intensity and pattern of photon emissions as those from maize leaves damaged by caterpillars. Furthermore, two-dimensional imaging of the leaf section treated with the oral secretions clearly shows that photon emissions were observed specifically at the lip of the wound exposed to the secretions. These results suggest that the direct interaction between maize leaf cells and chemicals contained in caterpillar regurgitants triggers these photon emissions.

  11. Multi-photon microscope driven by novel green laser pump

    NASA Astrophysics Data System (ADS)

    Marti, Dominik; Djurhuus, Martin; Jensen, Ole Bjarlin; Andersen, Peter E.

    2016-03-01

    Multi-photon microscopy is extensively used in research due to its superior possibilities when compared to other microscopy modalities. The technique also has the possibility to advance diagnostics in clinical applications, due to its capabilities complementing existing technology in a multimodal system. However, translation is hindered due to the high cost, high training demand and large footprint of a standard setup. We show in this article that minification of the setup, while also reducing cost and complexity, is indeed possible without compromising on image quality, by using a novel diode laser replacing the commonly used conventional solid state laser as the pump for the femtosecond system driving the imaging.

  12. Predicting vehicular emissions in high spatial resolution using pervasively measured transportation data and microscopic emissions model

    NASA Astrophysics Data System (ADS)

    Nyhan, Marguerite; Sobolevsky, Stanislav; Kang, Chaogui; Robinson, Prudence; Corti, Andrea; Szell, Michael; Streets, David; Lu, Zifeng; Britter, Rex; Barrett, Steven R. H.; Ratti, Carlo

    2016-09-01

    Air pollution related to traffic emissions pose an especially significant problem in cities; this is due to its adverse impact on human health and well-being. Previous studies which have aimed to quantify emissions from the transportation sector have been limited by either simulated or coarsely resolved traffic volume data. Emissions inventories form the basis of urban pollution models, therefore in this study, Global Positioning System (GPS) trajectory data from a taxi fleet of over 15,000 vehicles were analyzed with the aim of predicting air pollution emissions for Singapore. This novel approach enabled the quantification of instantaneous drive cycle parameters in high spatio-temporal resolution, which provided the basis for a microscopic emissions model. Carbon dioxide (CO2), nitrogen oxides (NOx), volatile organic compounds (VOCs) and particulate matter (PM) emissions were thus estimated. Highly localized areas of elevated emissions levels were identified, with a spatio-temporal precision not possible with previously used methods for estimating emissions. Relatively higher emissions areas were mainly concentrated in a few districts that were the Singapore Downtown Core area, to the north of the central urban region and to the east of it. Daily emissions quantified for the total motor vehicle population of Singapore were found to be comparable to another emissions dataset. Results demonstrated that high-resolution spatio-temporal vehicle traces detected using GPS in large taxi fleets could be used to infer highly localized areas of elevated acceleration and air pollution emissions in cities, and may become a complement to traditional emission estimates, especially in emerging cities and countries where reliable fine-grained urban air quality data is not easily available. This is the first study of its kind to investigate measured microscopic vehicle movement in tandem with microscopic emissions modeling for a substantial study domain.

  13. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; An Nguyen, Thien; Alfano, Robert R.

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S2 state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  14. Stimulated photon emission and two-photon Raman scattering in a coupled-cavity QED system

    PubMed Central

    Li, C.; Song, Z.

    2016-01-01

    We study the scattering problem of photon and polariton in a one-dimensional coupled-cavity system. Analytical approximate analysis and numerical simulation show that a photon can stimulate the photon emission from a polariton through polariton-photon collisions. This observation opens the possibility of photon-stimulated transition from insulating to radiative phase in a coupled-cavity QED system. Inversely, we also find that a polariton can be generated by a two-photon Raman scattering process. This paves the way towards single photon storage by the aid of atom-cavity interaction. PMID:26877252

  15. Femtosecond single optical fiber tweezers enabled two-photon fluorescence excitation of trapped microscopic objects

    NASA Astrophysics Data System (ADS)

    Mishra, Yogeshwar N.; Pinto, Mervyn; Ingle, Ninad; Mohanty, Samarendra K.

    2011-03-01

    Analysis of trapped microscopic objects using fluorescence and Raman spectroscopy is gaining considerable interest. We report on the development of single fiber femto second optical tweezers and its use in two-photon fluorescence (TPF) excitation of trapped fluorescent particles. Trapping of the floating objects led to stable fluorescence emission intensity over a long period of time, suitable for spectroscopic measurements. Trapping depth of few cm was achieved inside colloidal sample with TPF from the trapped particle being visible to the naked eye. Furthermore, the fiber optic trapping was so stable that the trapped particle could be moved in 3D even by holding the fiber in hand and slow maneuvering of the same. Owing to the propagation distance of the Bessel-like beam emerging from the axicon-fiber tip, a relatively longer streak of fluorescence was observed along the microsphere length. The cone angle of axicon was engineered so as to provide better trapping stability and high axial confinement of TPF. The theoretical simulation of fiber optical microbeam profiles emerging from the axicon tip and trapping force estimations was found to be in good agreement with the experimentally observed stiffness and TPF patterns. Apart from miniaturization capability into lab-on- a-chip micro-fluidic devices, the proposed non-invasive micro axicon tipped optical fiber can be used in multifunctional mode for in-depth trapping, rotation, sorting and ablation as well as for two-photon fluorescence excitation of motile sample which will revolutionize biophysics and research in material science.

  16. Engineering photonic and plasmonic light emission enhancement

    NASA Astrophysics Data System (ADS)

    Lawrence, Nathaniel

    Semiconductor photonic devices are a rapidly maturing technology which currently occupy multi-billion dollar markets in the areas of LED lighting and optical data communication. LEDs currently demonstrate the highest luminous efficiency of any light source for general lighting. Long-haul optical data communication currently forms the backbone of the global communication network. Proper design of light management is required for photonic devices, which can increase the overall efficiency or add new device functionality. In this thesis, novel methods for the control of light propagation and confinement are developed for the use in integrated photonic devices. The first part of this work focuses on the engineering of field confinement within deep subwavelength plasmonic resonators for the enhancement of light-matter interaction. In this section, plasmonic ring nanocavities are shown to form gap plasmon modes confined to the dielectric region between two metal layers. The scattering properties, near-field enhancement and photonic density of states of nanocavity devices are studied using analytic theory and 3D finite difference time domain simulations. Plasmonic ring nanocavities are fabricated and characterized using photoluminescence intensity and decay rate measurements. A 25 times increase in the radiative decay rate of Er:Si02 is demonstrated in nanocavities where light is confined to volumes as small as 0.01( ln )3. The potential to achieve lasing, due to the enhancement of stimulated emission rate in ring nanocavities, is studied as a route to Si-compatible plasmon-enhanced nanolasers. The second part of this work focuses on the manipulation of light generated in planar semiconductor devices using arrays of dielectric nanopillars. In particular, aperiodic arrays of nanopillars are engineered for omnidirectional light extraction enhancement. Arrays of Er:SiNx, nanopillars are fabricated and a ten times increase in light extraction is experimentally demonstrated

  17. Ultraweak photon emission in the brain.

    PubMed

    Salari, V; Valian, H; Bassereh, H; Bókkon, I; Barkhordari, A

    2015-09-01

    Besides the low-frequency electromagnetic body-processes measurable through the electroencephalography (EEG), electrocardiography (ECG), etc. there are processes that do not need external excitation, emitting light within or close to the visible spectra. Such ultraweak photon emission (UPE), also named biophoton emission, reflects the cellular (and body) oxidative status. Recently, a growing body of evidence shows that UPE may play an important role in the basic functioning of living cells. Moreover, interesting evidences are beginning to emerge that UPE may well play an important role in neuronal functions. In fact, biophotons are byproducts in cellular metabolism and produce false signals (e.g., retinal discrete dark noise) but on the other side neurons contain many light sensitive molecules that makes it hard to imagine how they might not be influenced by UPE, and thus UPE may carry informational contents. Here, we investigate UPE in the brain from different points of view such as experimental evidences, theoretical modeling, and physiological significance. PMID:26336891

  18. Ultraweak and induced photon emission after wounding of plants.

    PubMed

    Winkler, R; Guttenberger, H; Klima, H

    2009-01-01

    The ultraweak and induced photon emission were measured by a single photon counting equipment (Photomultiplier Hamamatsu R562) on Cucurbita pepo variaca styriacae after wounding. Wounding significantly changes the emission from a stationary to a nonstationary state and the shape of the decay curve obtained after light illumination. The rise in the ultraweak photon emission depends on the kind of wounding and its localization on the plant. The decay curves obtained after wounding could be better fit by an exponential function than by a hyperbolic one. So the biophoton emission correlates with physiological and bioelectrical changes like membrane depolarizations as they also depend on the kind of injury. PMID:19254235

  19. Single-photon emission computed tomography (SPECT): Applications and potential

    SciTech Connect

    Holman, B.L.; Tumeh, S.S. )

    1990-01-26

    Single-photon emission computed tomography has received increasing attention as radiopharmaceuticals that reflect perfusion, metabolism, and receptor and cellular function have become widely available. Perfusion single-photon emission computed tomography of the brain provides functional information useful for the diagnosis and management of stroke, dementia, and epilepsy. Single-photon emission computed tomography has been applied to myocardial, skeletal, hepatic, and tumor scintigraphy, resulting in increased diagnostic accuracy over planar imaging because background activity and overlapping tissues interfere far less with activity from the target structure when tomographic techniques are used. Single-photon emission computed tomography is substantially less expensive and far more accessible than positron emission tomography and will become an increasingly attractive alternative for transferring the positron emission tomography technology to routine clinical use.

  20. A field emission microscope in an advanced students' laboratory

    NASA Astrophysics Data System (ADS)

    Greczylo, Tomasz; Mazur, Piotr; Debowska, Ewa

    2006-03-01

    This paper describes a university level experiment during which students can observe the surface structure and determine the work function of a clean single tungsten crystal and a crystal covered with barium. The authors used a commercial field emission microscope offered by Leybold Didactic and designed an experiment which can be easily reproduced and performed in a students' laboratory. The use of a digital camera and computer allowed simultaneous observation and imaging of the surface of the body-centred cubic structure of the single tungsten crystal. Some interesting results about the changes in tungsten work function with time and with barium coverage are presented and discussed. The data help to improve knowledge and skills in the calculation of measurement uncertainty.

  1. Highly charged ion based time of flight emission microscope

    DOEpatents

    Barnes, Alan V.; Schenkel, Thomas; Hamza, Alex V.; Schneider, Dieter H.; Doyle, Barney

    2001-01-01

    A highly charged ion based time-of-flight emission microscope has been designed, which improves the surface sensitivity of static SIMS measurements because of the higher ionization probability of highly charged ions. Slow, highly charged ions are produced in an electron beam ion trap and are directed to the sample surface. The sputtered secondary ions and electrons pass through a specially designed objective lens to a microchannel plate detector. This new instrument permits high surface sensitivity (10.sup.10 atoms/cm.sup.2), high spatial resolution (100 nm), and chemical structural information due to the high molecular ion yields. The high secondary ion yield permits coincidence counting, which can be used to enhance determination of chemical and topological structure and to correlate specific molecular species.

  2. Subtraction threshold for an isotropic fluorescence emission difference microscope

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Kobayashi, Takayoshi

    2015-12-01

    Isotropic fluorescence emission difference microscopy proposed recently provides a simple method to enhance the spatial resolution in three-dimensions (3D) for fluorescence imaging. However, the subtraction threshold to achieve the condition for appropriately resolving the sample in 3D have not been studied. Then the subtraction factors used in this type of microscopes are still experientially chosen. Based on vector diffraction theory and a 3D numerical model developed here, the subtraction threshold is numerically investigated for the isotropic fluorescence subtraction microscopy. The subtraction factors and peak intensities at the threshold are obtained and comparied both in lateral and axial planes for achieving most appropriate subtraction and inspecting the isotropic characteristic. The effects of radius ratios of implemented 0-π annular phase plate for generating three dimensional donut spot on the subtracted resolution, peak intensity and negative sidebands are also discussed.

  3. Single photon emission from ZnO nanoparticles

    SciTech Connect

    Choi, Sumin; Ton-That, Cuong; Phillips, Matthew R.; Aharonovich, Igor; Johnson, Brett C.; Castelletto, Stefania

    2014-06-30

    Room temperature single photon emitters are very important resources for photonics and emerging quantum technologies. In this work, we study single photon emission from defect centers in 20 nm zinc oxide (ZnO) nanoparticles. The emitters exhibit bright broadband fluorescence in the red spectral range centered at 640 nm with polarized excitation and emission. The studied emitters showed continuous blinking; however, bleaching can be suppressed using a polymethyl methacrylate coating. Furthermore, hydrogen termination increased the density of single photon emitters. Our results will contribute to the identification of quantum systems in ZnO.

  4. Absorption and emission properties of photonic crystals and metamaterials

    SciTech Connect

    Peng, Lili

    2007-08-03

    We study the emission and absorption properties of photonic crystals and metamaterials using Comsol Multiphysics and Ansoft HFSS as simulation tools. We calculate the emission properties of metallic designs using drude model and the results illustrate that an appropriate termination of the surface of the metallic structure can significantly increase the absorption and therefore the thermal emissivity. We investigate the spontaneous emission rate modifications that occur for emitters inside two-dimensional photonic crystals and find the isotropic and directional emissions with respect to different frequencies as we have expected.

  5. COMPACT NON-CONTACT TOTAL EMISSION DETECTION FOR IN-VIVO MULTI-PHOTON EXCITATION MICROSCOPY

    PubMed Central

    Glancy, Brian; Karamzadeh, Nader S.; Gandjbakhche, Amir H.; Redford, Glen; Kilborn, Karl; Knutson, Jay R.; Balaban, Robert S.

    2014-01-01

    Summary We describe a compact, non-contact design for a Total Emission Detection (c-TED) system for intra-vital multi-photon imaging. To conform to a standard upright two-photon microscope design, this system uses a parabolic mirror surrounding a standard microscope objective in concert with an optical path that does not interfere with normal microscope operation. The non-contact design of this device allows for maximal light collection without disrupting the physiology of the specimen being examined. Tests were conducted on exposed tissues in live animals to examine the emission collection enhancement of the c-TED device compared to heavily optimized objective-based emission collection. The best light collection enhancement was seen from murine fat (5×-2× gains as a function of depth), while murine skeletal muscle and rat kidney showed gains of over two and just under two-fold near the surface, respectively. Gains decreased with imaging depth (particularly in the kidney). Zebrafish imaging on a reflective substrate showed close to a two-fold gain throughout the entire volume of an intact embryo (approximately 150 μm deep). Direct measurement of bleaching rates confirmed that the lower laser powers (enabled by greater light collection efficiency) yielded reduced photobleaching in vivo. The potential benefits of increased light collection in terms of speed of imaging and reduced photo-damage, as well as the applicability of this device to other multi-photon imaging methods is discussed. PMID:24251437

  6. Selective scanning tunneling microscope light emission from rutile phase of VO2.

    PubMed

    Sakai, Joe; Kuwahara, Masashi; Hotsuki, Masaki; Katano, Satoshi; Uehara, Yoichi

    2016-09-28

    We observed scanning tunneling microscope light emission (STM-LE) induced by a tunneling current at the gap between an Ag tip and a VO2 thin film, in parallel to scanning tunneling spectroscopy (STS) profiles. The 34 nm thick VO2 film grown on a rutile TiO2 (0 0 1) substrate consisted of both rutile (R)- and monoclinic (M)-structure phases of a few 10 nm-sized domains at room temperature. We found that STM-LE with a certain photon energy of 2.0 eV occurs selectively from R-phase domains of VO2, while no STM-LE was observed from M-phase. The mechanism of STM-LE from R-phase VO2 was determined to be an interband transition process rather than inverse photoemission or inelastic tunneling processes. PMID:27460183

  7. Selective scanning tunneling microscope light emission from rutile phase of VO2

    NASA Astrophysics Data System (ADS)

    Sakai, Joe; Kuwahara, Masashi; Hotsuki, Masaki; Katano, Satoshi; Uehara, Yoichi

    2016-09-01

    We observed scanning tunneling microscope light emission (STM-LE) induced by a tunneling current at the gap between an Ag tip and a VO2 thin film, in parallel to scanning tunneling spectroscopy (STS) profiles. The 34 nm thick VO2 film grown on a rutile TiO2 (0 0 1) substrate consisted of both rutile (R)- and monoclinic (M)-structure phases of a few 10 nm-sized domains at room temperature. We found that STM-LE with a certain photon energy of 2.0 eV occurs selectively from R-phase domains of VO2, while no STM-LE was observed from M-phase. The mechanism of STM-LE from R-phase VO2 was determined to be an interband transition process rather than inverse photoemission or inelastic tunneling processes.

  8. Simultaneous imaging of multiple focal planes using a two-photon scanning microscope

    NASA Astrophysics Data System (ADS)

    Amir, W.; Carriles, R.; Hoover, E. E.; Planchon, T. A.; Durfee, C. G.; Squier, J. A.

    2007-06-01

    Despite all the advances in nonlinear microscopy, all existing instruments are constrained to obtain images of one focal plane at a time. In this Letter we demonstrate a two-photon absorption fluorescence scanning microscope capable of imaging two focal planes simultaneously. This is accomplished by temporally demultiplexing the signal coming from two focal volumes at different sample depths. The scheme can be extended to three or more focal planes.

  9. 910nm femtosecond Nd-doped fiber laser for in vivo two-photon microscopic imaging.

    PubMed

    Chen, Bingying; Jiang, Tongxiao; Zong, Weijian; Chen, Liangyi; Zhang, Zhigang; Wang, Aimin

    2016-07-25

    Pre-chirp technique was used in an Nd-doped fiber amplifier to optimize high-quality 910 nm pulses with the pulses width of 114 fs and pulse energy of 4.4 nJ. The in vivo zebrafish imaging results from our totally home-made microscopy proves our femtosecond Nd fiber laser an ideal source in two-photon microscopic imaging. PMID:27464109

  10. Trapping and two-photon fluorescence excitation of microscopic objects using ultrafast single-fiber optical tweezers

    NASA Astrophysics Data System (ADS)

    Mishra, Yogeshwar N.; Ingle, Ninad; Mohanty, Samarendra K.

    2011-10-01

    Analysis of trapped microscopic objects using fluorescence and Raman spectroscopy is gaining considerable interest. We report on the development of single fiber ultrafast optical tweezers and its use in simultaneous two-photon fluorescence (TPF) excitation of trapped fluorescent microscopic objects. Using this method, trapping depth of a few centimeters was achieved inside a colloidal sample with TPF from the trapped particle being visible to the naked eye. Owing to the propagation distance of the Bessel-like beam emerging from the axicon-fiber tip, a relatively longer streak of fluorescence was observed along the microsphere length. The cone angle of the axicon was engineered so as to provide better trapping stability and high axial confinement of TPF. Trapping of the floating objects led to stable fluorescence emission intensity over a long period of time, suitable for spectroscopic measurements. Furthermore, the stability of the fiber optic trapping was confirmed by holding and maneuvering the fiber by hand so as to move the trapped fluorescent particle in three dimensions. Apart from miniaturization capability into lab-on-a-chip microfluidic devices, the proposed noninvasive microaxicon tipped optical fiber can be used in multifunctional mode for in-depth trapping, rotation, sorting, and ablation, as well as for two-photon fluorescence excitation of a motile sample.

  11. Compact two-photon laser-scanning microscope made from minimally modified commercial components

    NASA Astrophysics Data System (ADS)

    Iyer, Vijay; Hoogland, Tycho; Losavio, Bradley E.; McQuiston, A. R.; Saggau, Peter

    2002-06-01

    A compact two-photon laser-scanning microscope (TPLSM) was constructed using a diode-pumped, mode-locked Nd:YLF laser (Biolight 1000, Coherent Laser Group) and a small confocal laser scan-head (PCM2000, Nikon Bioscience). The laser emits at 1047nm and is fiber-coupled to a compact compressor unit producing a pulse-width of ~175fsec. Both the pulse compressor and confocal scan head were interfaced on a small optical breadboard that was directly attached to an upright research microscope (Eclipse E600FN, Nikon Bioscience). Two-photon fluorescence emitted from the specimen was collected into a multimode fiber and transmitted directly to an external PMT supplied with the Nikon confocal system. The modifications to the scanhead were minimal (a single mirror replacement) and did not interfere with its confocal function. The resulting system offers several advantages: compact size, turnkey operation, and the ability to translate the microscope rather than an often delicate specimen. In addition, it is possible to switch between confocal and two-photon operation, allowing for straightforward comparison. Using this compact TPLSM, we obtained structural and functional images from hippocampal neurons in living brain slices using commonly available fluorophores.

  12. Quantitative modeling of fluorescent emission in photonic crystals

    NASA Astrophysics Data System (ADS)

    Gutmann, Johannes; Zappe, Hans; Goldschmidt, Jan Christoph

    2013-11-01

    Photonic crystals affect the photon emission of embedded emitters due to an altered local density of photon states (LDOS). We review the calculation of the LDOS from eigenmodes in photonic crystals and propose a rate equation model for fluorescent emitters to determine the changes in emission induced by the LDOS. We show how to calculate the modifications of three experimentally accessible characteristics: emission spectrum (spectral redistribution), emitter quantum yield, and fluorescence lifetime. As an example, we present numerical results for the emission of the dye Rhodamine B inside an opal photonic crystal. For such photonic crystals with small permittivity contrast, the LDOS is only weakly modified, resulting in rather small changes. We point out that in experiments, however, usually only part of the emitted light is detected, which can have a very different spectral distribution (e.g., due to a photonic band gap in the direction of detection). We demonstrate the calculation of this detected spectrum for a typical measurement setup. With this reasoning, we explain the previously not fully understood experimental observation that strong spectral modifications occurred, while at the same time only small changes in lifetime were found. With our approach, the mentioned effects can be quantitatively calculated for fluorescent emitters in any photonic crystal.

  13. Photon emission as a source of coherent behavior of polaritons.

    PubMed

    Vinck-Posada, Herbert; Rodriguez, Boris A; Guimaraes, P S S; Cabo, Alejandro; Gonzalez, Augusto

    2007-04-20

    We show that the combined effect of photon emission and Coulomb interactions may drive an exciton-polariton system towards a dynamical coherent state, even without phonon thermalization or any other relaxation mechanism. Exact diagonalization results for a finite system (a multilevel quantum dot interacting with the lowest-energy photon mode of a microcavity) are presented in support of this statement. PMID:17501462

  14. Dilepton and photon emission rates from a hadronic gas. II

    SciTech Connect

    Steele, J.V.; Yamagishi, H.; Zahed, I.

    1997-11-01

    We extend our recent analysis of the dilepton and photon emission rates to the case of finite temperature and baryon density, within the context of a density expansion. To leading order, the effects of the baryon density are assessed using data (photon emission) or constraints from broken chiral symmetry (dilepton emission). Next-to-leading-order effects are worked out, and their contribution qualitatively assessed. The opening of the {pi}N cut causes the photon rate to saturate the upper limits for the photon yield from WA80 for a nucleon density that just reaches the lower limits of the low mass dileptons seen at CERES. {copyright} {ital 1997} {ital The American Physical Society}

  15. Photon emission from translational energy in atomic collisions: A dynamic Casimir-Polder effect

    SciTech Connect

    Westlund, Per-Olof; Wennerstroem, H.

    2005-06-15

    It is demonstrated, using a Liouville formalism, that the relative motion of two atoms can result in the emission of photons and conversely that photons can be absorbed to excite the relative translational motion. The mechanism responsible for the energy transfer between the radiation field and the translational motion of the atoms is a dynamic version of the long-range Casimir-Polder interaction between two fixed atoms. The phenomenon is analogous to the dynamic Casimir effect discussed for moving macro- (or meso)scopic objects and we term it the dynamic Casimir-Polder effect. The absorption or emission is a two-photon process and we find that the transition probability is proportional to the spectral density of a correlation function involving the relative translational motion of two atoms. An energy transfer only occurs for photons with energies smaller than or of the same magnitude as the thermal energy. The effect provides a microscopic mechanism for establishing thermal equilibrium between the radiation field and a gas. A sufficiently large volume of gas would be perceived as a black-body radiator. Applications of the dynamic Casimir-Polder effect might be found in the microscopic description of the cosmic low-temperature black-body radiation.

  16. Wide-band acousto-optic deflectors for large field of view two-photon microscope.

    PubMed

    Jiang, Runhua; Zhou, Zhenqiao; Lv, Xiaohua; Zeng, Shaoqun

    2012-04-01

    Acousto-optic deflector (AOD) is an attractive scanner for two-photon microscopy because it can provide fast and versatile laser scanning and does not involve any mechanical movements. However, due to the small scan range of available AOD, the field of view (FOV) of the AOD-based microscope is typically smaller than that of the conventional galvanometer-based microscope. Here, we developed a novel wide-band AOD to enlarge the scan angle. Considering the maximum acceptable acoustic attenuation in the acousto-optic crystal, relatively lower operating frequencies and moderate aperture were adopted. The custom AOD was able to provide 60 MHz 3-dB bandwidth and 80% peak diffraction efficiency at 840 nm wavelength. Based on a pair of such AOD, a large FOV two-photon microscope was built with a FOV up to 418.5 μm (40× objective). The spatiotemporal dispersion was compensated simultaneously with a single custom-made prism. By means of dynamic power modulation, the variation of laser intensity within the FOV was reduced below 5%. The lateral and axial resolution of the system were 0.58-2.12 μm and 2.17-3.07 μm, respectively. Pollen grain images acquired by this system were presented to demonstrate the imaging capability at different positions across the entire FOV. PMID:22559541

  17. Spatially resolved quantum nano-optics of single photons using an electron microscope.

    PubMed

    Tizei, L H G; Kociak, M

    2013-04-12

    We report on the experimental demonstration of single-photon state generation and characterization in an electron microscope. In this aim we have used low intensity relativistic (energy between 60 and 100 keV) electrons beams focused in a ca. 1 nm probe to excite diamond nanoparticles. This triggered individual neutral nitrogen-vacancy centers to emit photons which could be gathered and sent to a Hanbury Brown-Twiss intensity interferometer. The detection of a dip in the correlation function at small time delays clearly demonstrates antibunching and thus the creation of nonclassical light states. Specifically, we have also demonstrated single-photon states detection. We unveil the mechanism behind quantum states generation in an electron microscope, and show that it clearly makes cathodoluminescence the nanometer scale analog of photoluminescence. By using an extremely small electron probe size and the ability to monitor its position with subnanometer resolution, we also show the possibility of measuring the quantum character of the emitted beam with deep subwavelength resolution. PMID:25167267

  18. Magnetic two-photon scattering and two-photon emission - Cross sections and redistribution functions

    NASA Technical Reports Server (NTRS)

    Alexander, S. G.; Meszaros, P.

    1991-01-01

    The magnetic two-photon scattering cross section is discussed within the framework of QED, and the corresponding scattering redistribution function for this process and its inverse, as well as the scattering source function are calculated explicitly. In a similar way, the magnetic two-photon emission process which follows the radiative excitation of Landau levels above ground is calculated. The two-photon scattering and two-photon emission are of the same order as the single-photon magnetic scattering. All three of these processes, and in optically thick cases also their inverses, are included in radiative transport calculations modeling accreting pulsars and gamma-ray bursters. These processes play a prominent role in determining the relative strength of the first two cyclotron harmonics, and their effects extend also to the higher harmonics.

  19. Design and performance of an ultra-flexible two-photon microscope for in vivo research.

    PubMed

    Mayrhofer, Johannes M; Haiss, Florent; Haenni, Dominik; Weber, Stefan; Zuend, Marc; Barrett, Matthew J P; Ferrari, Kim David; Maechler, Philipp; Saab, Aiman S; Stobart, Jillian L; Wyss, Matthias T; Johannssen, Helge; Osswald, Harald; Palmer, Lucy M; Revol, Vincent; Schuh, Claus-Dieter; Urban, Claus; Hall, Andrew; Larkum, Matthew E; Rutz-Innerhofer, Edith; Zeilhofer, Hanns Ulrich; Ziegler, Urs; Weber, Bruno

    2015-11-01

    We present a cost-effective in vivo two-photon microscope with a highly flexible frontend for in vivo research. Our design ensures fast and reproducible access to the area of interest, including rotation of imaging plane, and maximizes space for auxiliary experimental equipment in the vicinity of the animal. Mechanical flexibility is achieved with large motorized linear stages that move the objective in the X, Y, and Z directions up to 130 mm. 360° rotation of the frontend (rotational freedom for one axis) is achieved with the combination of a motorized high precision bearing and gearing. Additionally, the modular design of the frontend, based on commercially available optomechanical parts, allows straightforward updates to future scanning technologies. The design exceeds the mobility of previous movable microscope designs while maintaining high optical performance. PMID:26600989

  20. Design and performance of an ultra-flexible two-photon microscope for in vivo research

    PubMed Central

    Mayrhofer, Johannes M.; Haiss, Florent; Haenni, Dominik; Weber, Stefan; Zuend, Marc; Barrett, Matthew J. P.; Ferrari, Kim David; Maechler, Philipp; Saab, Aiman S.; Stobart, Jillian L.; Wyss, Matthias T.; Johannssen, Helge; Osswald, Harald; Palmer, Lucy M.; Revol, Vincent; Schuh, Claus-Dieter; Urban, Claus; Hall, Andrew; Larkum, Matthew E.; Rutz-Innerhofer, Edith; Zeilhofer, Hanns Ulrich; Ziegler, Urs; Weber, Bruno

    2015-01-01

    We present a cost-effective in vivo two-photon microscope with a highly flexible frontend for in vivo research. Our design ensures fast and reproducible access to the area of interest, including rotation of imaging plane, and maximizes space for auxiliary experimental equipment in the vicinity of the animal. Mechanical flexibility is achieved with large motorized linear stages that move the objective in the X, Y, and Z directions up to 130 mm. 360° rotation of the frontend (rotational freedom for one axis) is achieved with the combination of a motorized high precision bearing and gearing. Additionally, the modular design of the frontend, based on commercially available optomechanical parts, allows straightforward updates to future scanning technologies. The design exceeds the mobility of previous movable microscope designs while maintaining high optical performance. PMID:26600989

  1. Improving z-tracking accuracy in the two-photon single-particle tracking microscope

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, Y.-L.; Perillo, E. P.; Jiang, N.; Dunn, A. K.; Yeh, H.-C.

    2015-10-01

    Here, we present a method that can improve the z-tracking accuracy of the recently invented TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination) microscope. This method utilizes a maximum likelihood estimator (MLE) to determine the particle's 3D position that maximizes the likelihood of the observed time-correlated photon count distribution. Our Monte Carlo simulations show that the MLE-based tracking scheme can improve the z-tracking accuracy of TSUNAMI microscope by 1.7 fold. In addition, MLE is also found to reduce the temporal correlation of the z-tracking error. Taking advantage of the smaller and less temporally correlated z-tracking error, we have precisely recovered the hybridization-melting kinetics of a DNA model system from thousands of short single-particle trajectories in silico. Our method can be generally applied to other 3D single-particle tracking techniques.

  2. Blu-ray disk lens as the objective of a miniaturized two-photon fluorescence microscope.

    PubMed

    Chung, Hsiang-Yu; Kuo, Wei-Cheng; Cheng, Yu-Hsiang; Yu, Che-Hang; Chia, Shih-Hsuan; Lin, Cheng-Yung; Chen, Jie-Shin; Tsai, Huai-Jen; Fedotov, Andrey B; Ivanov, Anatoly A; Zheltikov, Aleksei M; Sun, Chi-Kuang

    2013-12-16

    In this paper, we examine the performance of a Blu-ray disk (BD) aspheric lens as the objective of a miniaturized scanning nonlinear optical microscope. By combining a single 2D micro-electro mechanical system (MEMS) mirror as the scanner and with different tube lens pairs, the field of view (FOV) of the studied microscope varies from 59 μm × 93 μm up to 178 μm × 280 μm, while the corresponding lateral resolution varies from 0.6 μm to 2 μm for two-photon fluorescence (2PF) signals. With a 34/s video frame rate, in vivo dynamic observation of zebrafish heartbeat through 2PF of the excited green fluorescence protein (GFP) is demonstrated. PMID:24514733

  3. Two-photon microscope for multisite microphotolysis of caged neurotransmitters in acute brain slices

    NASA Astrophysics Data System (ADS)

    Losavio, Bradley E.; Iyer, Vijay; Saggau, Peter

    2009-11-01

    We developed a two-photon microscope optimized for physiologically manipulating single neurons through their postsynaptic receptors. The optical layout fulfills the stringent design criteria required for high-speed, high-resolution imaging in scattering brain tissue with minimal photodamage. We detail the practical compensation of spectral and temporal dispersion inherent in fast laser beam scanning with acousto-optic deflectors, as well as a set of biological protocols for visualizing nearly diffraction-limited structures and delivering physiological synaptic stimuli. The microscope clearly resolves dendritic spines and evokes electrophysiological transients in single neurons that are similar to endogenous responses. This system enables the study of multisynaptic integration and will assist our understanding of single neuron function and dendritic computation.

  4. Improving z-tracking accuracy in the two-photon single-particle tracking microscope

    SciTech Connect

    Liu, C.; Liu, Y.-L.; Perillo, E. P.; Jiang, N.; Dunn, A. K. E-mail: tim.yeh@austin.utexas.edu; Yeh, H.-C. E-mail: tim.yeh@austin.utexas.edu

    2015-10-12

    Here, we present a method that can improve the z-tracking accuracy of the recently invented TSUNAMI (Tracking of Single particles Using Nonlinear And Multiplexed Illumination) microscope. This method utilizes a maximum likelihood estimator (MLE) to determine the particle's 3D position that maximizes the likelihood of the observed time-correlated photon count distribution. Our Monte Carlo simulations show that the MLE-based tracking scheme can improve the z-tracking accuracy of TSUNAMI microscope by 1.7 fold. In addition, MLE is also found to reduce the temporal correlation of the z-tracking error. Taking advantage of the smaller and less temporally correlated z-tracking error, we have precisely recovered the hybridization-melting kinetics of a DNA model system from thousands of short single-particle trajectories in silico. Our method can be generally applied to other 3D single-particle tracking techniques.

  5. Two-photon microscope for multisite microphotolysis of caged neurotransmitters in acute brain slices

    PubMed Central

    Losavio, Bradley E.; Iyer, Vijay; Saggau, Peter

    2009-01-01

    We developed a two-photon microscope optimized for physiologically manipulating single neurons through their postsynaptic receptors. The optical layout fulfills the stringent design criteria required for high-speed, high-resolution imaging in scattering brain tissue with minimal photodamage. We detail the practical compensation of spectral and temporal dispersion inherent in fast laser beam scanning with acousto-optic deflectors, as well as a set of biological protocols for visualizing nearly diffraction-limited structures and delivering physiological synaptic stimuli. The microscope clearly resolves dendritic spines and evokes electrophysiological transients in single neurons that are similar to endogenous responses. This system enables the study of multisynaptic integration and will assist our understanding of single neuron function and dendritic computation. PMID:20059271

  6. Multiple photon emission in heavy particle decays

    NASA Technical Reports Server (NTRS)

    Asakimori, K.; Burnett, T. H.; Cherry, M. L.; Christl, M. J.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.

    1994-01-01

    Cosmic ray interactions, at energies above 1 TeV/nucleon, in emulsion chambers flown on high altitude balloons have yielded two events showing apparent decays of a heavy particle into one charged particle and four photons. The photons converted into electron pairs very close to the decay vertex. Attempts to explain this decay topology with known particle decays are presented. Unless both events represent a b yields u transition, which is statistically unlikely, then other known decay modes for charmed or bottom particles do not account satisfactorily for these observations. This could indicate, possibly, a new decay channel.

  7. Microscope-on-chip: combining lens-free microscopy with integrated photonics

    NASA Astrophysics Data System (ADS)

    Stahl, Richard; Vercruysse, Dries; Claes, Tom; Vanmeerbeeck, Geert; Mukund, Vignesh; Jansen, Roelof; Song, Jeonghwan; Hoffman, Luis; Rottenberg, Xavier; Lambrechts, Andy; Lagae, Liesbet

    2015-03-01

    Lens-free in-line Holographic Microscopy (LHM) is a promising imaging technique for many biomedical and industrial applications. The main advantage of the technique is the simplicity of the imaging hardware, requiring no lenses nor high-precision mechanical components. Nevertheless, the LHM systems achieve high imaging performance only in combination with a high-quality and complex illumination. Furthermore, to achieve truly high-throughput imaging capabilities, many applications require a complete on-chip integration. We demonstrate the strength, versatility and scalability of our integrated approach on two microscopes-on-chip instances that combine image sensor technologies with photonics (and micro-fluidics): a fully integrated Point-Source (PS) LHM module for in-flow cell inspection and Large Field-of-View (LFoV) microscope with on-chip photonic illumination for large-area imaging applications. The proposed PS-LHM module consists of a photonic illumination, a micro-fluidic channel and an imager, integrated in a total volume smaller than 0.5 mm3. A low-loss single-mode photonic waveguide is adapted to generate a high- NA illumination spot. Experimental results show strong focusing capabilities and sufficient overall coupling efficiency. Current PS-LHM prototype reaches imaging resolution below 600nm. Our LFoV-LHM system is extremely vertically compact as it consists of only one 1mm-thick illumination chip and one 3mm-thick imaging module. The illumination chip is based on fractal-layout phase-matched waveguides designed to generate multiple light sources that create a quasi-planar illumination wavefront over an area few square millimeter large. Current illumination prototype has active area of approximately 1.2×1.2mm2. Our LFoV-LHM prototype reaches imaging resolution of 870nm using image sensor with 1.12μm pixel pitch with maximum FoV of 16.47mm2.

  8. Demonstration of photon-echo rephasing of spontaneous emission.

    PubMed

    Beavan, Sarah E; Hedges, Morgan P; Sellars, Matthew J

    2012-08-31

    In this paper we report the first demonstration of "rephased amplified spontaneous emission" (RASE) with photon-counting detection. This protocol provides an all-in-one photon-pair source and quantum-memory that has applications as a quantum repeater node. The RASE protocol is temporally multimode, and in this demonstration the photon echo was generated in a way that is spatially multimode and includes intermediate storage between two potentially long-lived spin states. A correlation between spontaneous emission and its photon echo was observed, using an ensemble of Pr(3+) ions doped into a Y2SiO5 crystal. Alterations that would allow for the measurement of nonclassical correlations are identified. These should generally apply for future experiments in rare-earth ion crystals, which are promising systems for implementing highly-multiplexed quantum repeater operations. PMID:23002833

  9. Diagnosis of dementia with single photon emission computed tomography

    SciTech Connect

    Jagust, W.J.; Budinger, T.F.; Reed, B.R.

    1987-03-01

    Single photon emission computed tomography is a practical modality for the study of physiologic cerebral activity in vivo. We utilized single photon emission computed tomography and N-isopropyl-p-iodoamphetamine iodine 123 to evaluate regional cerebral blood flow in nine patients with Alzheimer's disease (AD), five healthy elderly control subjects, and two patients with multi-infarct dementia. We found that all subjects with AD demonstrated flow deficits in temporoparietal cortex bilaterally, and that the ratio of activity in bilateral temporoparietal cortex to activity in the whole slice allowed the differentiation of all patients with AD from both the controls and from the patients with multi-infarct dementia. Furthermore, this ratio showed a strong correlation with disease severity in the AD group. Single photon emission computed tomography appears to be useful in the differential diagnosis of dementia and reflects clinical features of the disease.

  10. Single-wavelength two-photon excitation–stimulated emission depletion (SW2PE-STED) superresolution imaging

    PubMed Central

    Bianchini, Paolo; Harke, Benjamin; Galiani, Silvia; Vicidomini, Giuseppe; Diaspro, Alberto

    2012-01-01

    We developed a new class of two-photon excitation–stimulated emission depletion (2PE-STED) optical microscope. In this work, we show the opportunity to perform superresolved fluorescence imaging, exciting and stimulating the emission of a fluorophore by means of a single wavelength. We show that a widely used red-emitting fluorophore, ATTO647N, can be two-photon excited at a wavelength allowing both 2PE and STED using the very same laser source. This fact opens the possibility to perform 2PE microscopy at four to five times STED-improved resolution, while exploiting the intrinsic advantages of nonlinear excitation. PMID:22493221

  11. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf

    PubMed Central

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; An Nguyen, Thien; Alfano, Robert R.

    2014-01-01

    Abstract. Two-photon (2P) excitation of the second singlet (S2) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the “tissue optical window” (650 to 950 nm). S2 state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S2 state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue. PMID:24967915

  12. Manipulating light propagation and emission using photonic crystals

    SciTech Connect

    Nair, Rajesh V.; Jagatap, B. N.

    2014-03-31

    We discuss the synthesis and characterization of self-assembled photonic crystals using polymer colloids having sub-micron diameters. The angle resolved optical reflectivity measurements indicate the hybridization between stop gaps in the multiple Bragg diffraction regimes. Each diffraction resonances in the multiple Bragg diffraction regimes are assigned to respective crystal planes. We also discuss laser-induced studies of spontaneous emission in self-assembled photonic crystals having Rhodamine-B dye doped colloids. Our experimental results reveal more than 51% inhibition in emission intensity within the stop gap as compared to a proper reference sample.

  13. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    SciTech Connect

    See, Gloria G.; Xu, Lu; Nuzzo, Ralph G.; Sutanto, Erick; Alleyne, Andrew G.; Cunningham, Brian T.

    2015-08-03

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure.

  14. Thermodynamics of photon-enhanced thermionic emission solar cells

    SciTech Connect

    Reck, Kasper; Hansen, Ole

    2014-01-13

    Photon-enhanced thermionic emission (PETE) cells in which direct photon energy as well as thermal energy can be harvested have recently been suggested as a new candidate for high efficiency solar cells. Here, we present an analytic thermodynamical model for evaluation of the efficiency of PETE solar cells including an analysis of the entropy production due to thermionic emission of general validity. The model is applied to find the maximum efficiency of a PETE cell for given cathode and anode work functions and temperatures.

  15. Angular restriction of photon emission for ultra-efficient photovoltaics

    NASA Astrophysics Data System (ADS)

    Braun, Avi; Katz, Eugene A.; Feuermann, Daniel; Kayes, Brendan M.; Gordon, Jeffrey M.

    2013-09-01

    We present experimental evidence for improving the open-circuit voltage - and thereby efficiency - of photovoltaics via the external recycling of photon emission. This strategy is equivalent to limiting the angular extent of photon emission - effective only in photovoltaics with high external luminescent efficiency. This is why the effect has not been observed in current solar cell technologies. It is attainable with the latest generation of ultra-efficient single-junction non-concentrator thin-film GaAs cells. The findings are explained in terms of basic photovoltaic thermodynamics.

  16. Photonic Crystal and Photonic Band-Gap Structures for Light Extraction and Emission Control

    NASA Astrophysics Data System (ADS)

    de La Rue, Richard M.

    Research into photonic crystal (PhC) and photonic band-gap (PBG) structures has been motivated, from the start, by their possible use in controlling, modifying and enhancing the light emission process from high refractive index solid materials. This chapter considers the possible role of such structures when incorporated into semiconductor diode based light-emitting devices. Both light-emitting diodes (LEDs) and lasers will be considered. In order to provide a proper framework for discussion and analysis, space is devoted to the historical development of III-V semiconductor based LEDs — and to competing alternative approaches that have been demonstrated for enhanced light extraction. The possible advantages of photonic quasi-crystal (PQC) structures over regularly periodic photon crystal structures for advanced LED designs are also considered. Photonic crystal structures potentially provide major enhancements in the performance of laser diodes (LDs) — and progress towards this performance enhancement will be reviewed.

  17. Low Threshold Two-Photon-Pumped Amplified Spontaneous Emission in CH3NH3PbBr3 Microdisks.

    PubMed

    Yang, Bin; Mao, Xin; Yang, Songqiu; Li, Yajuan; Wang, Yanqiu; Wang, Meishan; Deng, Weiqiao; Han, Keli

    2016-08-01

    Two-photon-pumped amplified spontaneous emission (ASE) of CH3NH3PbBr3 microdisks (MDs) were investigated by using femtosecond laser system. Low threshold at 2.2 mJ cm(-2) was obtained. Also, emission spectral tunability from 500 to 570 nm was demonstrated by synthesis the mixed halide perovskite MDs. The spatial effect of photoluminescence (PL) properties under one-photon and two-photon excitation were also studied by means of two-photon laser scanning microscope (TPLSM) and time-resolved PL spectroscopy. It was found that the band to band emission of near-surface regions and photocarriers' diffusion from near-surface regions to interior regions is significant for one-photon excitation. By contrast, reabsorption of emission under two-photon excitation plays a major role in the emission properties of the MDs. These results will give a more comprehensive understanding of the nonlinear effect of CH3NH3PbBr3 single crystals. PMID:27391527

  18. Controlling the Two-Photon-Induced Photon Cascade Emission in a Gd3+/Tb3+-Codoped Glass for Multicolor Display

    NASA Astrophysics Data System (ADS)

    Yuan, Mao-Hui; Fan, Hai-Hua; Li, Hui; Lan, Sheng; Tie, Shao-Long; Yang, Zhong-Min

    2016-02-01

    We reported the first observation of the two-photon-induced quantum cutting phenomenon in a Gd3+/Tb3+-codoped glass in which two photons at ~400 nm are simultaneously absorbed, leading to the cascade emission of three photons in the visible spectral region. The two-photon absorption induced by femtosecond laser pulses allows the excitation of the energy states in Gd3+ which are inactive for single-photon excitation and enables the observation of many new electric transitions which are invisible in the single-photon-induced luminescence. The competition between the two-photon-induced photon cascade emission and the single-photon-induced emission was manipulated to control the luminescence color of the glass. We demonstrated the change of the luminescence color from red to yellow and eventually to green by varying either the excitation wavelength or the excitation power density.

  19. Controlling the Two-Photon-Induced Photon Cascade Emission in a Gd3+/Tb3+-Codoped Glass for Multicolor Display

    PubMed Central

    Yuan, Mao-Hui; Fan, Hai-Hua; Li, Hui; Lan, Sheng; Tie, Shao-Long; Yang, Zhong-Min

    2016-01-01

    We reported the first observation of the two-photon-induced quantum cutting phenomenon in a Gd3+/Tb3+-codoped glass in which two photons at ~400 nm are simultaneously absorbed, leading to the cascade emission of three photons in the visible spectral region. The two-photon absorption induced by femtosecond laser pulses allows the excitation of the energy states in Gd3+ which are inactive for single-photon excitation and enables the observation of many new electric transitions which are invisible in the single-photon-induced luminescence. The competition between the two-photon-induced photon cascade emission and the single-photon-induced emission was manipulated to control the luminescence color of the glass. We demonstrated the change of the luminescence color from red to yellow and eventually to green by varying either the excitation wavelength or the excitation power density. PMID:26899189

  20. Controlling the Two-Photon-Induced Photon Cascade Emission in a Gd(3+)/Tb(3+)-Codoped Glass for Multicolor Display.

    PubMed

    Yuan, Mao-Hui; Fan, Hai-Hua; Li, Hui; Lan, Sheng; Tie, Shao-Long; Yang, Zhong-Min

    2016-01-01

    We reported the first observation of the two-photon-induced quantum cutting phenomenon in a Gd(3+)/Tb(3+)-codoped glass in which two photons at ~400 nm are simultaneously absorbed, leading to the cascade emission of three photons in the visible spectral region. The two-photon absorption induced by femtosecond laser pulses allows the excitation of the energy states in Gd(3+) which are inactive for single-photon excitation and enables the observation of many new electric transitions which are invisible in the single-photon-induced luminescence. The competition between the two-photon-induced photon cascade emission and the single-photon-induced emission was manipulated to control the luminescence color of the glass. We demonstrated the change of the luminescence color from red to yellow and eventually to green by varying either the excitation wavelength or the excitation power density. PMID:26899189

  1. Photonic band-edge-induced enhancement in absorption and emission

    NASA Astrophysics Data System (ADS)

    Ummer, Karikkuzhi Variyath; Vijaya, Ramarao

    2015-01-01

    An enhancement in photonic band-edge-induced absorption and emission from rhodamine-B dye doped polystyrene pseudo gap photonic crystals is studied. The band-edge-induced enhancement in absorption is achieved by selecting the incident angle of the excitation beam so that the absorption spectrum of the emitter overlaps the photonic band edge. The band-edge-induced enhancement in emission, on the other hand, is possible with and without an enhancement in band-edge-induced absorption, depending on the collection angle of emission. Through a simple set of measurements with suitably chosen angles for excitation and emission, we achieve a maximum enhancement of 70% in emission intensity with band-edge-induced effects over and above the intrinsic emission in the case of self-assembled opals. This is a comprehensive effort to interpret tunable lasing in opals as well as to predict the wavelength of lasing arising as a result of band-edge-induced distributed feedback effects.

  2. Reassignment of scattered emission photons in multifocal multiphoton microscopy.

    PubMed

    Cha, Jae Won; Singh, Vijay Raj; Kim, Ki Hean; Subramanian, Jaichandar; Peng, Qiwen; Yu, Hanry; Nedivi, Elly; So, Peter T C

    2014-01-01

    Multifocal multiphoton microscopy (MMM) achieves fast imaging by simultaneously scanning multiple foci across different regions of specimen. The use of imaging detectors in MMM, such as CCD or CMOS, results in degradation of image signal-to-noise-ratio (SNR) due to the scattering of emitted photons. SNR can be partly recovered using multianode photomultiplier tubes (MAPMT). In this design, however, emission photons scattered to neighbor anodes are encoded by the foci scan location resulting in ghost images. The crosstalk between different anodes is currently measured a priori, which is cumbersome as it depends specimen properties. Here, we present the photon reassignment method for MMM, established based on the maximum likelihood (ML) estimation, for quantification of crosstalk between the anodes of MAPMT without a priori measurement. The method provides the reassignment of the photons generated by the ghost images to the original spatial location thus increases the SNR of the final reconstructed image. PMID:24898470

  3. Reassignment of Scattered Emission Photons in Multifocal Multiphoton Microscopy

    PubMed Central

    Cha, Jae Won; Singh, Vijay Raj; Kim, Ki Hean; Subramanian, Jaichandar; Peng, Qiwen; Yu, Hanry; Nedivi, Elly; So, Peter T. C.

    2014-01-01

    Multifocal multiphoton microscopy (MMM) achieves fast imaging by simultaneously scanning multiple foci across different regions of specimen. The use of imaging detectors in MMM, such as CCD or CMOS, results in degradation of image signal-to-noise-ratio (SNR) due to the scattering of emitted photons. SNR can be partly recovered using multianode photomultiplier tubes (MAPMT). In this design, however, emission photons scattered to neighbor anodes are encoded by the foci scan location resulting in ghost images. The crosstalk between different anodes is currently measured a priori, which is cumbersome as it depends specimen properties. Here, we present the photon reassignment method for MMM, established based on the maximum likelihood (ML) estimation, for quantification of crosstalk between the anodes of MAPMT without a priori measurement. The method provides the reassignment of the photons generated by the ghost images to the original spatial location thus increases the SNR of the final reconstructed image. PMID:24898470

  4. Reassignment of Scattered Emission Photons in Multifocal Multiphoton Microscopy

    NASA Astrophysics Data System (ADS)

    Cha, Jae Won; Singh, Vijay Raj; Kim, Ki Hean; Subramanian, Jaichandar; Peng, Qiwen; Yu, Hanry; Nedivi, Elly; So, Peter T. C.

    2014-06-01

    Multifocal multiphoton microscopy (MMM) achieves fast imaging by simultaneously scanning multiple foci across different regions of specimen. The use of imaging detectors in MMM, such as CCD or CMOS, results in degradation of image signal-to-noise-ratio (SNR) due to the scattering of emitted photons. SNR can be partly recovered using multianode photomultiplier tubes (MAPMT). In this design, however, emission photons scattered to neighbor anodes are encoded by the foci scan location resulting in ghost images. The crosstalk between different anodes is currently measured a priori, which is cumbersome as it depends specimen properties. Here, we present the photon reassignment method for MMM, established based on the maximum likelihood (ML) estimation, for quantification of crosstalk between the anodes of MAPMT without a priori measurement. The method provides the reassignment of the photons generated by the ghost images to the original spatial location thus increases the SNR of the final reconstructed image.

  5. Single photon emission computed tomography and other selected computer topics

    SciTech Connect

    Price, R.R.; Gilday, D.L.; Croft, B.Y.

    1980-01-01

    This volume includes an overview of single photon emission computed tomography and numerous papers that describe and evaluate specific systems and techniques. Papers cover such topics as Auger cameras; seven-pinhole and slant-hole collimators; brain; cardiac; and gated blood-pool studies; and the BICLET and SPECT systems.

  6. Synchrotron contribution to photon emission from quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Zakharov, B. G.

    2016-08-01

    We study the inuence of the magnetic field on the photon emission from the quark-gluon plasma created in AA collisions. We find that even for very optimistic assumption on the magnitude of the magnetic field for noncentral AA collisions the effect of magnetic field is very small.

  7. Effective image filtration of pediatric single photon emission tomograms

    SciTech Connect

    Gilday, D.L.; Green, M.D.; Puntillo, R.; Ash, J.M.

    1984-01-01

    Single Photon Emission Computed Tomography (SPECT) in children suffers from relatively poor photon statistics due to the lower radiopharmaceutical dose when compared with adults. Consequently, the authors have made a major effort to improve the resultant tomographic images. The authors compared the effect that different measurements had on the basic reconstruction. The baseline study was a reconstruction with an internal filter appropriate to the planar image's photon density. The first enhancement was to three dimensionally filter planar images prior to reconstructing with an internal ''high resolution'' filter. The second was to apply three dimensional filter to the images which were reconstructed with an internal ''high resolution'' filter. The filtration and reconstruction were performed on both MDS-A/sup 2/, A/sup 3/ and GE Star computers. The results showed that planar images which were of poor photon flux produced much better reconstructions when pre-filtered, whereas the difference was not nearly so dramatic with high photon flux studies. Therefore, the authors recommend routine pre-reconstruction three dimensional filtering on all SPECT studies, especially those of poor photon flux. In fact in some very low photon flux 24 hour CSF, Thallium and Gallium studies, it was only possible to interpret those images when pre-filtered first.

  8. Microscopic Theory of Modified Spontaneous Emission in a Dielectric

    NASA Astrophysics Data System (ADS)

    Berman, P. R.; Milonni, P. W.

    2004-02-01

    The modification of the radiative decay rate of a source atom embedded in a uniform, isotropic dielectric is calculated to first order in the density of the dielectric atoms using a microscopic approach. In contrast to the recent results of Crenshaw and Bowden [

    Phys. Rev. Lett. 85, 1851 (2000)
    ], the decay rate is found to be consistent with macroscopic theories based on quantization of the field in the dielectric.

  9. A photonic microscope for observing real-time vibrations of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Barnard, Arthur W.; Zhang, Mian; Wiederhecker, Gustavo; Lipson, Michal; McEuen, Paul L.

    Vibrational modes in suspended carbon nanotubes (CNTs) are incredibly responsive to small forces, which makes them a prime candidate as nano-mechanical sensors. However, transducing this mechanical motion into detectable signals is a considerable challenge. Electrical detection, which has been the prevailing method thus far, suffers a significant impedance mismatch to macroscopic electronics and is thus susceptible to noise. We demonstrate an alternative: optical readout of CNT vibrations in real-time. By combining a unique CNT microtweezer platform with a high-finesse optical microdisk resonator, we dramatically enhance the naturally small optical cross-section of CNTs and thereby achieve unprecedented detection sensitivity. With this novel photonic microscope, we directly measure the thermal Brownian motion of CNTs and observe marked spectral diffusion at room temperature, shedding light on CNTs unique thermal physics. By further enhancing the optical coupling, we demonstrate optical amplification of CNT vibrations and directly observe period-doubling in the amplified state.

  10. Two-photon spectral fluorescence lifetime and second-harmonic generation imaging of the porcine cornea with a 12-femtosecond laser microscope

    NASA Astrophysics Data System (ADS)

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten

    2016-03-01

    Five dimensional microscopy with a 12-fs laser scanning microscope based on spectrally resolved two-photon autofluorescence lifetime and second-harmonic generation (SHG) imaging was used to characterize all layers of the porcine cornea. This setup allowed the simultaneous excitation of both metabolic cofactors, NAD(P)H and flavins, and their discrimination based on their spectral emission properties and fluorescence decay characteristics. Furthermore, the architecture of the stromal collagen fibrils was assessed by SHG imaging in both forward and backward directions. Information on the metabolic state and the tissue architecture of the porcine cornea were obtained with subcellular resolution, and high temporal and spectral resolutions.

  11. Photon emission in neutral current interactions at the T2K experiment

    NASA Astrophysics Data System (ADS)

    Wang, E.; Alvarez-Ruso, L.; Hayato, Y.; Mahn, K.; Nieves, J.

    2015-09-01

    We have applied a microscopic model for single photon emission in neutral current interactions on nucleons and nuclei to determine the number and distributions of such events at the Super-Kamiokande detector, for the flux and beam exposure of the T2K experiment in neutrino mode. These reactions represent an effectively irreducible background in electron-(anti)neutrino appearance measurements aimed at a precise measurement of mixing angle θ13 and the C P violating phase. We have obtained a total number of photon events that is twice as large as the one from the NEUT event generator (version 5.1.4.2) used in the analysis of T2K data. Detailed comparisons of energy and angular distributions for the νμ and ν¯μ fluxes have also been performed.

  12. Ultra-weak photon emission of hands in aging prediction.

    PubMed

    Zhao, Xin; van Wijk, Eduard; Yan, Yu; van Wijk, Roeland; Yang, Huanming; Zhang, Yan; Wang, Jian

    2016-09-01

    Aging has been one of the several topics intensely investigated during recent decades. More scientists have been scrutinizing mechanisms behind the human aging process. Ultra-weak photon emission is known as one type of spontaneous photon emission that can be detected with a highly sensitive single photon counting photomultiplier tube (PMT) from the surface of human bodies. It may reflect the body's oxidative damage. Our aim was to examine whether ultra-weak photon emission from a human hand is able to predict one's chronological age. Sixty subjects were recruited and grouped by age. We examined four areas of each hand: palm side of fingers, palm side of hand, dorsum side of fingers, and dorsum side of hand. Left and right hand were measured synchronously with two independent PMTs. Mean strength and Fano factor values of photon counts were utilized to compare the UPE patterns of males and females of different age groups. Subsequently, we utilized UPE data from the most sensitive PMT to develop an age prediction model. We randomly picked 49 subjects to construct the model, whereas the remaining 11 subjects were utilized for validation. The results demonstrated that the model was a good regression compared to the observed values (Pearson's r=0.6, adjusted R square=0.4, p=9.4E-7, accuracy=49/60). Further analysis revealed that the average difference between the chronological age and predicted age was only 7.6±0.8years. It was concluded that this fast and non-invasive photon technology is sufficiently promising to be developed for the estimation of biological aging. PMID:27472904

  13. Microscopic dynamics in nanocomposite photosensitive films studied by X-ray photon correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Orsi, Davide; Cristofolini, Luigi; Fontana, Marco P.; Pontecorvo, Emanuele; Caronna, Chiara; Fluerasu, Andrei; Zontone, Federico; Madsen, Anders

    2011-05-01

    X-ray photon correlation spectroscopy measurements are reported of microscale dynamics in Langmuir-Schaeffer deposited multilayers of a photosensitive azopolymer with a low concentration of gold nanoparticles embedded. Correlation functions were measured as a function of exchanged momentum and illumination conditions (dark and UV light) and fitted with the Kohlrausch-Williams-Watts (KWW) exponential form. The microscopic dynamic of the nanoparticles was quantified, evidencing a non-Brownian superdiffusive behavior with relaxation times τ ≈ q -1, a result analogous to what previously had been observed in the pure azopolymer. Such behavior has been related to intermittent rearrangements or random dipolar interactions within an elastic medium. Photoperturbation with UV light makes the dynamics faster, in accordance with the reduction of the viscosity of the polymer found by shear rheology, but the KWW form of the correlation functions persists. At constant temperature, the dynamics of the nanoparticles embedded in the polymeric matrix is sensibly faster than the slow microscopic dynamic of the polymer. At the same time, the Vogel-Fulcher-Tammann law for the relaxation times indicates a less pronounced temperature dependence than for the pure polymer, resulting in a slightly lower activation temperature T A.

  14. Novel failure analysis techniques using photon probing with a scanning optical microscope

    SciTech Connect

    Cole, E.I. Jr.; Soden, J.M.; Rife, J.L.; Barton, D.L.; Henderson, C.L.

    1993-12-31

    Three new failure analysis techniques for integrated circuits (ICs) have been developed using localized photon probing with a scanning optical microscope (SOM). The first two are light-induced voltage alteration (LIVA) imaging techniques that (1) localize open-circuited and damaged junctions and (2) image transistor logic states. The third technique uses the SOM to control logic states optically from the IC backside. LIVA images are produced by monitoring the voltage fluctuations of a constant current power supply as a laser beam is scanned over the IC. High selectivity for localizing defects has been demonstrated using the LIVA approach. Logic state mapping results, similar to previous work using biased optical beam induced current (OBIC) and laser probing approaches have also been produced using LIVA. Application of the two LIVA based techniques to backside failure analysis has been demonstrated using an infrared laser source. Optical logic state control is based upon earlier work examining transistor response to photon injection. The physics of each method and their applications for failure analysis are described.

  15. Quantum random number generator based on photonic emission in semiconductors.

    PubMed

    Stipcević, M; Rogina, B Medved

    2007-04-01

    We report upon the realization of a novel fast nondeterministic random number generator whose randomness relies on the intrinsic randomness of the quantum physical processes of photonic emission in semiconductors and subsequent detection by the photoelectric effect. Timing information of detected photons is used to generate binary random digits-bits. The bit extraction method based on the restartable clock method theoretically eliminates both bias and autocorrelation while reaching efficiency of almost 0.5 bits per random event. A prototype has been built and statistically tested. PMID:17477690

  16. High energy photon emission from wakefields

    NASA Astrophysics Data System (ADS)

    Farinella, D. M.; Lau, C. K.; Zhang, X. M.; Koga, J. K.; Taimourzadeh, S.; Hwang, Y.; Abazajian, K.; Canac, N.; Ebisuzaki, T.; Taborek, P.; Tajima, T.

    2016-07-01

    Experimental evidence has accumulated to indicate that wakefield acceleration (WFA) accompanies intense and sometimes coherent emission of radiation such as from betatron radiation. The investigation of this issue has additional impetus nowadays because we are learning (1) there is an additional acceleration process of the ponderomotive acceleration; (2) WFA may become relevant in much higher density regimes; (3) WFA has been proposed as the mechanism for extreme high energy cosmic ray acceleration and gamma ray bursts for active galactic nuclei. These require us to closely examine the radiative mechanisms in WFA anew. We report studies of radiation from wakefield (self-injected betatron) and ponderomotive (laser field) mechanisms in scalings of the frequency and intensity of the driver, as well as the plasma density.

  17. High-performance imaging of stem cells using single-photon emissions

    NASA Astrophysics Data System (ADS)

    Wagenaar, Douglas J.; Moats, Rex A.; Hartsough, Neal E.; Meier, Dirk; Hugg, James W.; Yang, Tang; Gazit, Dan; Pelled, Gadi; Patt, Bradley E.

    2011-10-01

    Radiolabeled cells have been imaged for decades in the field of autoradiography. Recent advances in detector and microelectronics technologies have enabled the new field of "digital autoradiography" which remains limited to ex vivo specimens of thin tissue slices. The 3D field-of-view (FOV) of single cell imaging can be extended to millimeters if the low energy (10-30 keV) photon emissions of radionuclides are used for single-photon nuclear imaging. This new microscope uses a coded aperture foil made of highly attenuating elements such as gold or platinum to form the image as a kind of "lens". The detectors used for single-photon emission microscopy are typically silicon detectors with a pixel pitch less than 60 μm. The goal of this work is to image radiolabeled mesenchymal stem cells in vivo in an animal model of tendon repair processes. Single-photon nuclear imaging is an attractive modality for translational medicine since the labeled cells can be imaged simultaneously with the reparative processes by using the dual-isotope imaging technique. The details our microscope's two-layer gold aperture and the operation of the energy-dispersive, pixellated silicon detector are presented along with the first demonstration of energy discrimination with a 57Co source. Cell labeling techniques have been augmented by genetic engineering with the sodium-iodide symporter, a type of reporter gene imaging method that enables in vivo uptake of free 99mTc or an iodine isotope at a time point days or weeks after the insertion of the genetically modified stem cells into the animal model. This microscopy work in animal research may expand to the imaging of reporter-enabled stem cells simultaneously with the expected biological repair process in human clinical trials of stem cell therapies.

  18. Development of a confocal laser scanning fluorescence microscope using two-photon excitation in combination with time-gated detection

    NASA Astrophysics Data System (ADS)

    Sytsma, Joost; Vroom, Jurrien; Gerritsen, Hans C.; Levine, Yehudi K.

    1995-03-01

    Fluorescent molecules having single-photon absorption in the blue and the UV can be excited with infra-red light via a process known as two-photon excitation. The combination of this technique with scanning techniques can be exploited for 3D microscopic imaging. The two- photon process is confined to a restricted volume in the sample determined by the laser focus, resulting in inherent confocality. Other advantages are reduced photo-bleaching of the samples and a larger penetration depth of the excitation light. The implementation of time-gated detection techniques allows fluorescent lifetime imaging. This drastically improves the selectivity and contrast of the images.

  19. Photonic Crystals-Inhibited Spontaneous Emission: Optical Antennas-Enhanced Spontaneous Emission

    NASA Astrophysics Data System (ADS)

    Yablonovitch, Eli

    Photonic crystals are also part of everyday technological life in opto-electronic telecommunication devices that provide us with internet, cloud storage, and email. But photonic crystals have also been identified in nature, in the coloration of peacocks, parrots, chameleons, butterflies and many other species.In spite of its broad applicability, the original motivation of photonic crystals was to create a ``bandgap'' in which the spontaneous emission of light would be inhibited. Conversely, the opposite is now possible. The ``optical antenna'' can accelerate spontaneous emission. Over 100 years after the radio antenna, we finally have tiny ``optical antennas'' which can act on molecules and quantum dots. Employing optical antennas, spontaneous light emission can become faster than stimulated emission.

  20. Photonically excited electron emission from modified graphitic nanopetal arrays

    SciTech Connect

    McCarthy, Patrick T.; Fisher, Timothy S.; School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907 ; Vander Laan, Scott J.; Janes, David B.; School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907

    2013-05-21

    Efficient electron emission for energy conversion requires a low work function and a stable emitter material. The work function of graphene-based carbon materials can decrease significantly by intercalation with alkali metals, thus increasing their emission current. In this work, electron emission from potassium-intercalated carbon nanosheet extensions grown on electrode graphite is investigated. These petal-like structures, composed of 5-25 layers of graphene, are synthesized using microwave plasma chemical vapor deposition. Samples are intercalated with potassium, and a hemispherical energy analyzer is used to measure the emission intensity caused by both thermal and photonic excitation. The emission from the potassium-intercalated structures is found to consistently decrease the work function by 2.4 to 2.8 eV relative to non-intercalated samples. High emission intensity induced by photonic excitation from a solar simulator, with a narrow electron energy distribution relative to established theory, suggests that electron scattering decreases emitted electron energy as compared to surface photoemission. A modified photoemission theory is applied to account for electron scattering, and the sample work function and mean number of scattering events are used as parameters to fit theory to experimental data. The thermal stability of the intercalated nanopetals is investigated, and after an initial heating and cooling cycle, the samples are stable at low temperatures.

  1. Enhanced trion emission from colloidal quantum dots with photonic crystals by two-photon excitation.

    PubMed

    Xu, Xingsheng

    2013-01-01

    For colloidal quantum dots, the ongoing biggest problem is their fluorescence blinking. Until now, there is no generally accepted model for this fluorescence blinking. Here, two-photon excited fluorescence from CdSe/ZnS nanocrystals on silicon nitride photonic crystals is studied using a femtosecond laser. From analysis of the spectra and decay processes, most of the relative trion efficiency is larger than 10%, and the largest relative trion efficiency reaches 46.7%. The photonic crystals enhance the trion emission of CdSe/ZnS nanocrystals, where the enhancement is due to the coupling of the trion emission to the leaky mode of the photonic crystal slab. Moreover, the photonic crystals enhance the Auger-assisted trapping efficiency of electrons/holes to surface states, and then enhance the efficiency of the generations of charge separation and DC electric field, which modifies the trion spectrum. Therefore, a model is present for explaining the mechanism of fluorescence blinking including the effect of the environment. PMID:24231669

  2. Photon-enhanced thermionic emission for solar concentrator systems.

    PubMed

    Schwede, Jared W; Bargatin, Igor; Riley, Daniel C; Hardin, Brian E; Rosenthal, Samuel J; Sun, Yun; Schmitt, Felix; Pianetta, Piero; Howe, Roger T; Shen, Zhi-Xun; Melosh, Nicholas A

    2010-09-01

    Solar-energy conversion usually takes one of two forms: the 'quantum' approach, which uses the large per-photon energy of solar radiation to excite electrons, as in photovoltaic cells, or the 'thermal' approach, which uses concentrated sunlight as a thermal-energy source to indirectly produce electricity using a heat engine. Here we present a new concept for solar electricity generation, photon-enhanced thermionic emission, which combines quantum and thermal mechanisms into a single physical process. The device is based on thermionic emission of photoexcited electrons from a semiconductor cathode at high temperature. Temperature-dependent photoemission-yield measurements from GaN show strong evidence for photon-enhanced thermionic emission, and calculated efficiencies for idealized devices can exceed the theoretical limits of single-junction photovoltaic cells. The proposed solar converter would operate at temperatures exceeding 200 degrees C, enabling its waste heat to be used to power a secondary thermal engine, boosting theoretical combined conversion efficiencies above 50%. PMID:20676086

  3. Photon-enhanced thermionic emission for solar concentrator systems

    NASA Astrophysics Data System (ADS)

    Schwede, Jared W.; Bargatin, Igor; Riley, Daniel C.; Hardin, Brian E.; Rosenthal, Samuel J.; Sun, Yun; Schmitt, Felix; Pianetta, Piero; Howe, Roger T.; Shen, Zhi-Xun; Melosh, Nicholas A.

    2010-09-01

    Solar-energy conversion usually takes one of two forms: the `quantum' approach, which uses the large per-photon energy of solar radiation to excite electrons, as in photovoltaic cells, or the `thermal' approach, which uses concentrated sunlight as a thermal-energy source to indirectly produce electricity using a heat engine. Here we present a new concept for solar electricity generation, photon-enhanced thermionic emission, which combines quantum and thermal mechanisms into a single physical process. The device is based on thermionic emission of photoexcited electrons from a semiconductor cathode at high temperature. Temperature-dependent photoemission-yield measurements from GaN show strong evidence for photon-enhanced thermionic emission, and calculated efficiencies for idealized devices can exceed the theoretical limits of single-junction photovoltaic cells. The proposed solar converter would operate at temperatures exceeding 200°C, enabling its waste heat to be used to power a secondary thermal engine, boosting theoretical combined conversion efficiencies above 50%.

  4. Photon assisted processes: Probability amplitudes for the absorption and emission of photons and dc-photocurrents

    SciTech Connect

    Micu, C.; Racolta, D.; Papp, E.

    2014-11-24

    In this paper one deals with the derivation of probability amplitudes characterizing the photon assisted injection of electrons in a two-terminal quantum conductor. For this purpose one accounts for spatially constant but time dependent periodic voltages applied on an Ohmic contact. Resorting to the discrete Fourier transform provides the probability amplitudes for the emission and absorption of photons in terms of squared Bessel functions of the first kind and integer order. Several kinds of ac-pulses like sinusoidal and dc+sinusoidal are assumed. Mean square values concerning photon numbers have been discussed in some more detail. Time averages of squared time dependent classical currents and leading corrections to the rescaled dc-photocurrent have also been accounted for.

  5. Modification of Thermal Emission via Metallic Photonic Crystals

    SciTech Connect

    Norris, David J.; Stein, Andreas; George, Steven M.

    2012-07-30

    Photonic crystals are materials that are periodically structured on an optical length scale. It was previously demonstrated that the glow, or thermal emission, of tungsten photonic crystals that have a specific structure - known as the 'woodpile structure' - could be modified to reduce the amount of infrared radiation from the material. This ability has implications for improving the efficiency of thermal emission sources and for thermophotovoltaic devices. The study of this effect had been limited because the fabrication of metallic woodpile structures had previously required a complex fabrication process. In this project we pursued several approaches to simplify the fabrication of metallic photonic crystals that are useful for modification of thermal emission. First, we used the self-assembly of micrometer-scale spheres into colloidal crystals known as synthetic opals. These opals can then be infiltrated with a metal and the spheres removed to obtain a structure, known as an inverse opal, in which a three-dimensional array of bubbles is embedded in a film. Second, we used direct laser writing, in which the focus of an infrared laser is moved through a thin film of photoresist to form lines by multiphoton polymerization. Proper layering of such lines can lead to a scaffold with the woodpile structure, which can be coated with a refractory metal. Third, we explored a completely new approach to modified thermal emission - thin metal foils that contain a simple periodic surface pattern, as shown in Fig. 1. When such a foil is heated, surface plasmons are excited that propagate along the metal interface. If these waves strike the pattern, they can be converted into thermal emission with specific properties.

  6. Spontaneous emission of a photon: Wave-packet structures and atom-photon entanglement

    SciTech Connect

    Fedorov, M.V.; Efremov, M.A.; Kazakov, A.E.; Chan, K.W.; Eberly, J.H.; Law, C.K.

    2005-09-15

    Spontaneous emission of a photon by an atom is described theoretically in three dimensions with the initial wave function of a finite-mass atom taken in the form of a finite-size wave packet. Recoil and wave-packet spreading are taken into account. The total atom-photon wave function is found in the momentum and coordinate representations as the solution of an initial-value problem. The atom-photon entanglement arising in such a process is shown to be closely related to the structure of atom and photon wave packets which can be measured in the coincidence and single-particle schemes of measurements. Two predicted effects, arising under the conditions of high entanglement, are anomalous narrowing of the coincidence wave packets and, under different conditions, anomalous broadening of the single-particle wave packets. Fundamental symmetry relations between the photon and atom single-particle and coincidence wave-packet widths are established. The relationship with the famous scenario of Einstein-Podolsky-Rosen is discussed.

  7. Thermal photon emission from the πρω system

    NASA Astrophysics Data System (ADS)

    Holt, Nathan P. M.; Hohler, Paul M.; Rapp, Ralf

    2016-01-01

    We investigate thermal photon emission rates in hot hadronic matter from a system consisting of π, ρ, and ω mesons. The rates are calculated using both relativistic kinetic theory with Born diagrams as well as thermal field theory at the two-loop level. This enables us to cross-check our calculations and to manage a pole contribution that arises in the Born approximation corresponding to the ω →π0 γ radiative decay. After implementing hadronic form factors to account for finite-size corrections, we find that the resulting photo-emission rates are comparable to existing results from πρ → πγ processes in the energy regime of 1-3 GeV. We expect that our new sources will provide a non-negligible contribution to the total hadronic rates, thereby enhancing calculated thermal photon spectra from heavy-ion collisions, which could improve the description of current direct-photon data from experiment.

  8. Two-photon excited fluorescence emission from hemoglobin

    NASA Astrophysics Data System (ADS)

    Sun, Qiqi; Zeng, Yan; Zhang, Wei; Zheng, Wei; Luo, Yi; Qu, Jianan Y.

    2015-03-01

    Hemoglobin, one of the most important proteins in blood, is responsible for oxygen transportation in almost all vertebrates. Recently, we discovered two-photon excited hemoglobin fluorescence and achieved label-free microvascular imaging based on the hemoglobin fluorescence. However, the mechanism of its fluorescence emission still remains unknown. In this work, we studied the two-photon excited fluorescence properties of the hemoglobin subunits, heme/hemin (iron (II)/(III) protoporphyrin IX) and globin. We first studied the properties of heme and the similar spectral and temporal characteristics of heme and hemoglobin fluorescence provide strong evidence that heme is the fluorophore in hemoglobin. Then we studied the fluorescence properties of hemin, globin and methemoglobin, and found that the hemin may have the main effect on the methemoglobin fluorescence and that globin has tryptophan fluorescence like other proteins. Finally, since heme is a centrosymmetric molecule, that the Soret band fluorescence of heme and hemoglobin was not observed in the single photon process in the previous study may be due to the parity selection rule. The discovery of heme two-photon excited fluorescence may open a new window for heme biology research, since heme as a cofactor of hemoprotein has many functions, including chemical catalysis, electron transfer and diatomic gases transportation.

  9. Photon Enhanced Thermionic Emission for Solar Concentrator Systems

    NASA Astrophysics Data System (ADS)

    Schwede, Jared; Bargatin, Igor; Riley, Dan; Hardin, Brian; Howe, Roger; Melosh, Nick; Shen, Zhi-Xun

    2010-03-01

    Photon Enhanced Thermionic Emission (PETE) is a newly proposed method of solar energy harvesting which combines quantum and thermal processes into a single electricity generating mechanism. The proposed PETE device can be thought of as a synthesis of a photovoltaic (PV) cell and thermionic converter, and the process is expected to overcome some of the challenges which limit either of its intellectual antecedents. Because PETE can harvest the energy of sub-bandgap photons and recover heat produced by thermalization and recombination, possible PETE conversion efficiencies exceed the theoretical limits of single junction PV cells. A PETE converter operates most efficiently at high temperatures, which would allow the waste heat of the device to be used to power a secondary thermal cycle. Principles of PETE operation and limiting efficiencies are described.

  10. Ultra-weak photon emission from human hand: influence of temperature and oxygen concentration on emission.

    PubMed

    Nakamura, Kimitsugu; Hiramatsu, Mitsuo

    2005-08-01

    We have studied ultra-weak photon emission (UPE) from living organisms. We report here some features of the UPE from human hand by means of photon counting techniques. The intensity of the UPE depended on the position of human hand; nail>finger>palm. As the temperature declined, the intensity of the UPE from the palm decreased. Further, as oxygen concentration around the palm was lowered, the intensity of the UPE from the palm decreased. These results show the UPE from the palm partly contains emissions based on oxidation reaction on skin surface as a potential. When we used mineral oil between the photomultiplier tube and the palm, the intensity of the UPE increased twice as much, which indicates the UPE from the inside of the skin certainly exists. The fact may be explained by refractive index matching. As mentioned above, we considered the generation mechanism of photons emitted from the human hand. PMID:15935689

  11. Photon, Electron and Secondary Ion Emission from Single C60 keV Impacts

    PubMed Central

    Fernandez-Lima, F. A.; Eller, M. J.; Verkhoturov, S. V.; Della-Negra, S.; Schweikert, E. A.

    2010-01-01

    This paper presents the first observation of coincidental emission of photons, electrons and secondary ions from individual C60 keV impacts. An increase in photon, electron and secondary ion yields is observed as a function of C60 projectile energy. The effect of target structure/composition on photon and electron emissions at the nanometer level is shown for a CsI target. The time-resolved photon emission may be characterized by a fast component emission in the UV-Vis range with a short decay time, while the electron and secondary ion emission follow a Poisson distribution. PMID:21218166

  12. Efficient photon transport in positron emission tomography simulations using VMC++

    NASA Astrophysics Data System (ADS)

    Kawrakow, I.; Mitev, K.; Gerganov, G.; Madzhunkov, J.; Kirov, A.

    2008-02-01

    vmcPET, a VMC++ based fast code for simulating photon transport through the patient geometry for use in positron emission tomography related calculations, is presented. vmcPET is shown to be between 250 and 425 times faster than GATE in completely analog mode and up to 50000 times faster when using advanced variance reduction techniques. Excellent agreement between vmcPET and EGSnrc and GATE benchmarks is found. vmcPET is coupled to GATE via phase-space files of particles emerging from the patient geometry.

  13. Elemental analysis with a full-field X-ray fluorescence microscope and a CCD photon-counting system.

    PubMed

    Ohigashi, Takuji; Watanabe, Norio; Yokosuka, Hiroki; Aota, Tatsuya; Takano, Hidekazu; Takeuchi, Akihisa; Aoki, Sadao

    2002-05-01

    The first result is presented of an X-ray fluorescence microscope with a Wolter mirror in combination with a CCD camera used as an energy-resolved two-dimensional detector in photon-counting mode. Two-dimensional elemental maps of metallic wires, such as Fe, Co, Ni and Cu, and inclusions of a synthesized diamond could be obtained with an energy resolution of 350 eV. PMID:11972365

  14. Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals

    SciTech Connect

    Nikolaev, Ivan S.; Lodahl, Peter; Vos, Willem L.

    2005-05-15

    We have performed angle-resolved measurements of spontaneous-emission spectra from laser dyes and quantum dots in opal and inverse opal photonic crystals. Pronounced directional dependencies of the emission spectra are observed: angular ranges of strongly reduced emission adjoin with angular ranges of enhanced emission. It appears that emission from embedded light sources is affected both by the periodicity and by the structural imperfections of the crystals: the photons are Bragg diffracted by lattice planes and scattered by unavoidable structural disorder. Using a model comprising diffuse light transport and photonic band structure, we quantitatively explain the directional emission spectra. This work provides detailed understanding of the transport of spontaneously emitted light in real photonic crystals, which is essential in the interpretation of quantum optics in photonic-band-gap crystals and for applications wherein directional emission and total emission power are controlled.

  15. Dilepton and photon emission rates from a hadronic gas. III

    SciTech Connect

    Lee, C.; Zahed, I.; Yamagishi, H.

    1998-11-01

    We extend our early analyses of the dilepton and photon emission rates from a hadronic gas to account for strange mesons using a density expansion. The emission rates are reduced to vacuum correlation functions using three-flavor chiral reduction formulas, and the latter are assessed in terms of empirical data. Using a fire- ball, we compare our results to the low and intermediate mass dilepton data available from CERN. Our results suggest that a baryon free hadronic gas does not account for the excess of low mass dielectrons observed at CERES but does well in accounting for the intermediate dimuons at HELIOS. The same observations apply to the recent low and high p{sub t} dielectron rates from CERES. thinsp {copyright} {ital 1998} {ital The American Physical Society}

  16. Efficient computation of spontaneous emission dynamics in arbitrary photonic structures

    NASA Astrophysics Data System (ADS)

    Teimourpour, M. H.; El-Ganainy, R.

    2015-12-01

    Defining a quantum mechanical wavefunction for photons is one of the remaining open problems in quantum physics. Thus quantum states of light are usually treated within the realm of second quantization. Consequently, spontaneous emission (SE) in arbitrary photonic media is often described by Fock space Hamiltonians. Here, we present a real space formulation of the SE process that can capture the physics of the problem accurately under different coupling conditions. Starting from first principles, we map the unitary evolution of a dressed two-level quantum emitter onto the problem of electromagnetic radiation from a self-interacting complex harmonic oscillator. Our formalism naturally leads to an efficient computational scheme of SE dynamics using finite difference time domain method without the need for calculating the photonic eigenmodes of the surrounding environment. In contrast to earlier investigations, our computational framework provides a unified numerical treatment for both weak and strong coupling regimes alike. We illustrate the versatility of our scheme by considering several different examples.

  17. Bright UV Single Photon Emission at Point Defects in h-BN.

    PubMed

    Bourrellier, Romain; Meuret, Sophie; Tararan, Anna; Stéphan, Odile; Kociak, Mathieu; Tizei, Luiz H G; Zobelli, Alberto

    2016-07-13

    To date, quantum sources in the ultraviolet (UV) spectral region have been obtained only in semiconductor quantum dots. Color centers in wide bandgap materials may represent a more effective alternative. However, the quest for UV quantum emitters in bulk crystals faces the difficulty of combining an efficient UV excitation/detection optical setup with the capability of addressing individual color centers in potentially highly defective materials. In this work we overcome this limit by employing an original experimental setup coupling cathodoluminescence within a scanning transmission electron microscope to a Hanbury-Brown-Twiss intensity interferometer. We identify a new extremely bright UV single photon emitter (4.1 eV) in hexagonal boron nitride. Hyperspectral cathodoluminescence maps show a high spatial localization of the emission (∼80 nm) and a typical zero-phonon line plus phonon replica spectroscopic signature, indicating a point defect origin, most likely carbon substitutional at nitrogen sites. An additional nonsingle-photon broad emission may appear in the same spectral region, which can be attributed to intrinsic defects related to electron irradiation. PMID:27299915

  18. Solar energy conversion with photon-enhanced thermionic emission

    NASA Astrophysics Data System (ADS)

    Kribus, Abraham; Segev, Gideon

    2016-07-01

    Photon-enhanced thermionic emission (PETE) converts sunlight to electricity with the combined photonic and thermal excitation of charge carriers in a semiconductor, leading to electron emission over a vacuum gap. Theoretical analyses predict conversion efficiency that can match, or even exceed, the efficiency of traditional solar thermal and photovoltaic converters. Several materials have been examined as candidates for radiation absorbers and electron emitters, with no conclusion yet on the best set of materials to achieve high efficiency. Analyses have shown the complexity of the energy conversion and transport processes, and the significance of several loss mechanisms, requiring careful control of material properties and optimization of the device structure. Here we survey current research on PETE modeling, materials, and device configurations, outline the advances made, and stress the open issues and future research needed. Based on the substantial progress already made in this young topic, and the potential of high conversion efficiency based on theoretical performance limits, continued research in this direction is very promising and may yield a competitive technology for solar electricity generation.

  19. Pencil lead tips: A field ion and field electron emission microscopic study

    NASA Astrophysics Data System (ADS)

    Khairnar, Rajendra S.; Dharmadhikari, C. V.; Joag, Dilip S.

    1989-06-01

    Pencil lead tips composed of graphite flakes were subjected to field ion and field emission microscopic investigations. The ion micrographs showed elongated images of ledge atoms of the graphite flakes due to uneven magnification over the layers of the flake. The gross features of the field evaporated tip surface were observed by scanning electron microscopy. The field emission pattern showed emitting lobes which displayed intensity fluctuations consisting of a combination of emission spots turning on and off randomly and a localized flicker of individual spots. These effects gave rise to noise in the emission current involving isolated spikes of rapid rise time and trains of digital pulses of constant height. The variation of noise with residual gas pressure, emission current, and temperature has also been investigated. The results are discussed in view of the microtopography of the pencil lead tips and the nature of the emitting sites on the surface.

  20. Time-reversal constraint limits unidirectional photon emission in slow-light photonic crystals.

    PubMed

    Lang, Ben; Beggs, Daryl M; Oulton, Ruth

    2016-08-28

    Photonic crystal waveguides are known to support C-points-point-like polarization singularities with local chirality. Such points can couple with dipole-like emitters to produce highly directional emission, from which spin-photon entanglers can be built. Much is made of the promise of using slow-light modes to enhance this light-matter coupling. Here we explore the transition from travelling to standing waves for two different photonic crystal waveguide designs. We find that time-reversal symmetry and the reciprocal nature of light places constraints on using C-points in the slow-light regime. We observe two distinctly different mechanisms through which this condition is satisfied in the two waveguides. In the waveguide designs, we consider a modest group velocity of vg≈c/10 is found to be the optimum for slow-light coupling to the C-points.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'. PMID:27458258

  1. Imaging of a Polycrystalline Silicon Solar Cell Using a Laser Terahertz Emission Microscope

    NASA Astrophysics Data System (ADS)

    Nakanishi, Hidetoshi; Fujiwara, Shogo; Takayama, Kazuhisa; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi

    2012-11-01

    We employed a laser terahertz (THz) emission microscope (LTEM) as a novel tool for evaluating solar cells. LTEM images are obtained by exciting a polycrystalline silicon solar cell with femtosecond laser illumination and visualizing the local distribution of the optical response. THz emission signals also provide various types of information, such as the screening effect of the built-in electrical field near pn junctions. These results indicate that this technique can be used to evaluate the local photoelectric conversion efficiency distribution and dynamic behavior of optically excited carriers in solar cells.

  2. Comparison between laser terahertz emission microscope and conventional methods for analysis of polycrystalline silicon solar cell

    SciTech Connect

    Nakanishi, Hidetoshi Ito, Akira; Takayama, Kazuhisa Kawayama, Iwao Murakami, Hironaru Tonouchi, Masayoshi

    2015-11-15

    A laser terahertz emission microscope (LTEM) can be used for noncontact inspection to detect the waveforms of photoinduced terahertz emissions from material devices. In this study, we experimentally compared the performance of LTEM with conventional analysis methods, e.g., electroluminescence (EL), photoluminescence (PL), and laser beam induced current (LBIC), as an inspection method for solar cells. The results showed that LTEM was more sensitive to the characteristics of the depletion layer of the polycrystalline solar cell compared with EL, PL, and LBIC and that it could be used as a complementary tool to the conventional analysis methods for a solar cell.

  3. Noncontact inspection technique for electrical failures in semiconductor devices using a laser terahertz emission microscope

    NASA Astrophysics Data System (ADS)

    Yamashita, Masatsugu; Otani, Chiko; Kawase, Kodo; Nikawa, Kiyoshi; Tonouchi, Masayoshi

    2008-07-01

    We have proposed and demonstrated a novel technique for the noncontact inspection of electrical failures in semiconductor devices using a laser terahertz emission microscope. It was found that the waveforms of the terahertz pulses, emitted by exciting p-n junctions in semiconductor circuits with focused ultrafast laser pulses, depend on the interconnection structures of the circuits. We successfully distinguished damaged silicon metal-oxide-semiconductor field effect transistor circuits with disconnected wires from normal ones by comparing the images of terahertz emission amplitudes between a normal chip and a defective one.

  4. Single photon emission computed tomography (SPECT) in epilepsy

    SciTech Connect

    Leroy, R.F.

    1991-12-31

    Epilepsy is a common neurologic disorder which has just begun to be studied with single photon emission computerized tomography (SPECT). Epilepsy usually is studied with electroencephalographic (EEG) techniques that demonstrate the physiologic changes that occur during seizures, and with neuroimaging techniques that show the brain structures where seizures originate. Neither method alone has been adequate to describe the pathophysiology of the patient with epilepsy. EEG techniques lack anatomic sensitivity, and there are no structural abnormalities shown by neuroimaging which are specific for epilepsy. Functional imaging (FI) has developed as a physiologic tool with anatomic sensitivity, and SPECT has been promoted as a FI technique because of its potentially wide availability. However, SPECT is early in its development and its clinical utility for epilepsy still has to be demonstrated. To understand this role of SPECT, consideration must be given to the pathophysiology of epilepsy, brain physiology, types of seizure, epileptic syndromes, and the SPECT technique itself. 44 refs., 2 tabs.

  5. Single photon emission computed tomography in AIDS dementia complex

    SciTech Connect

    Pohl, P.; Vogl, G.; Fill, H.; Roessler, H.Z.; Zangerle, R.; Gerstenbrand, F.

    1988-08-01

    Single photon emission computed tomography (SPECT) studies were performed in AIDS dementia complex using IMP in 12 patients (and HM-PAO in four of these same patients). In all patients, SPECT revealed either multiple or focal uptake defects, the latter corresponding with focal signs or symptoms in all but one case. Computerized tomography showed a diffuse cerebral atrophy in eight of 12 patients, magnetic resonance imaging exhibited changes like atrophy and/or leukoencephalopathy in two of five cases. Our data indicate that both disturbance of cerebral amine metabolism and alteration of local perfusion share in the pathogenesis of AIDS dementia complex. SPECT is an important aid in the diagnosis of AIDS dementia complex and contributes to the understanding of the pathophysiological mechanisms of this disorder.

  6. Photon emission in neutral current interactions with nucleons and nuclei

    SciTech Connect

    Alvarez-Ruso, L.; Nieves, J.; Wang, E.

    2015-05-15

    We report on our study of photon emission induced by E{sub ν} ∼ 1 GeV (anti)neutrino neutral current interactions with nucleons and nuclei. This process is an important background for ν{sub e} appearance oscillation experiments. At the relevant energies, the reaction is dominated by the excitation of the Δ(1232) resonance but there are also non-resonant contributions that, close to threshold, are fully determined by the effective chiral Lagrangian of strong interactions. We have obtained differential and integrated cross section for the (anti)neutrino-nucleon scattering and compare them with previous results. Furthermore, we have extended the model to nuclear targets taking into account Fermi motion, Pauli blocking and the in-medium modifications of the Δ properties. This study is important in order to reduce systematic effects in neutrino oscillation experiments.

  7. Photon emission and quantum signalling in biological systems

    NASA Astrophysics Data System (ADS)

    Mayburov, S. N.

    2015-05-01

    Ultra-weak, non-termal photon emission is universal feature of living organisms and plants. In our experiment the fine structure of optical radiation emitted by the loach fish eggs is studied. It was shown earlier that such radiation performs the signaling between the distant fish egg samples, which result in significant correlations of their growth. The optical radiation of biological sample was measured by the cooled photomultiplier in photocurrent regime, it was found that the main bulk of radiation is produced in form of short-time quasi-periodic bursts. The analysis of radiation temporal structure indicates that the information about egg age and growth is encoded via the values of time intervals between neighbor bursts with the height higher than some fixed level. The applications of such biological radiation in medical diagnostics and biotechnology are considered.

  8. Virtual fluorescence emission difference microscopy based on photon reassignment.

    PubMed

    Ma, Ye; Kuang, Cuifang; Fang, Yue; Ge, Baoliang; Li, Dian; Liu, Xu

    2015-10-15

    A method for high-resolution imaging that we call virtual fluorescence emission difference microscopy (vFED) is presented. In vFED the analyzed samples are scanned only by a doughnut-shaped pattern and imaged by a detector array, which is very different from the previous FED system. By using photon reassignment, we can obtain imaging results with matched solid and hollow point spread functions, and the difference between them is used to estimate the spatial distribution of the analyzed sample. This method results in greatly simplified equipment in the configuration and enhanced imaging speed. Results show that the resolution can be enhanced by at least 27% compared with that in confocal microscopy with a point detector, or is 1.8-2-fold higher than that in wide-field microscopy. Plus, negative intensities can be avoided by using vFED during the subtraction process, leading to the elimination of the deformation in reconstructed images. PMID:26469580

  9. Heavy Ion Radiation Effects Studies With Ion Photon Emission Microscopy

    SciTech Connect

    Branson, J. V.; Hattar, K.; Vizkelethy, G.; Powell, C. J.; Doyle, B. L.; Rossi, P.

    2011-06-01

    The development of a new radiation effects microscopy (REM) technique is crucial as emerging semiconductor technologies demonstrate smaller feature sizes and thicker back end of line (BEOL) layers. To penetrate these materials and still deposit sufficient energy into the device to induce single event effects, high energy heavy ions are required. Ion photon emission microscopy (IPEM) is a technique that utilizes coincident photons, which are emitted from the location of each ion impact to map out regions of radiation sensitivity in integrated circuits and devices, circumventing the obstacle of focusing high-energy heavy ions. Several versions of the IPEM have been developed and implemented at Sandia National Laboratories (SNL). One such instrument has been utilized on the microbeam line of the 6 MV tandem accelerator at SNL. Another IPEM was designed for ex-vacu use at the 88'' cyclotron at Lawrence Berkeley National Laboratory (LBNL). Extensive engineering is involved in the development of these IPEM systems, including resolving issues with electronics, event timing, optics, phosphor selection, and mechanics. The various versions of the IPEM and the obstacles, as well as benefits associated with each will be presented. In addition, the current stage of IPEM development as a user instrument will be discussed in the context of recent results.

  10. Effect of photonic bandgap on upconversion emission in YbPO4:Er inverse opal photonic crystals.

    PubMed

    Yang, Zhengwen; Zhu, Kan; Song, Zhiguo; Zhou, Dacheng; Yin, Zhaoyi; Qiu, Jianbei

    2011-01-20

    We obtained upconversion (UC) light-emitting photonic materials (YbPO(4):Er) with an inverse opal structure by the self-assembly technique in combination with a solgel method. The effect of the photonic stopband on the UC luminescence of the (2)H(11/2), (4)S(3/2)→(4)I(15/2), and (4)F(9/2)→(4)I(15/2) transitions of Er(3+) has been observed in the inverse opals of the Er(3+)-doped YbPO(4). Significant suppression of the UC emission was detected if the photonic bandgap overlapped with the Er(3+) ions emission band, while enhancement of the UC emission occurs if the emission band appears at the edge of the bandgap. PMID:21263723

  11. Label-free imaging of arterial tissues using photonic crystal fiber (PCF) based nonlinear optical microscopic system

    NASA Astrophysics Data System (ADS)

    Ko, Alex C. T.; Ridsdale, Andrew; Pegoraro, Adrian F.; Smith, Michael S. D.; Mostaço-Guidolin, Leila B.; Hewko, Mark D.; Kohlenberg, Elicia M.; Schattka, Bernie J.; Shiomi, Masashi; Stolow, Albert; Sowa, Michael G.

    2009-02-01

    Nonlinear optical (NLO) microscopy provides a minimally invasive optical method for fast molecular imaging at subcellular resolution with 3D sectioning capability in thick, highly scattering biological tissues. In the current study, we demonstrate the imaging of arterial tissue using a nonlinear optical microscope based on photonic crystal fiber and a single femto-second oscillator operating at 800nm. This NLO microscope system is capable of simultaneous imaging extracellular elastin/collagen structures and lipid distribution within aortic tissue obtained from coronary atherosclerosis-prone WHHLMI rabbits (Watanabe heritable hyperlipidemic rabbit-myocardial infarction) Clear pathological differences in arterial lumen surface were observed between healthy arterial tissue and atherosclerotic lesions through NLO imaging.

  12. Imaging of biological samples by a collection-mode photon scanning tunneling microscope with an apertured probe

    NASA Astrophysics Data System (ADS)

    Naya, Masayuki; Mononobe, Shuji; Uma Maheswari, R.; Saiki, Tosiharu; Ohtsu, Motoichi

    1996-02-01

    We report on high resolution imaging by a collection-mode photon scanning tunneling microscope (c-mode PSTM). In our PSTM system, we have used a novel probe with a nanometric protrusion formed from a metal coated sharpened fiber. By using this probe, flagellar filaments of salmonella of diameter 25 nm could be imaged to have a full width at half maximum of 50 nm. Obtained images strongly depended on the separation of the sample to the probe, the diameter of the aperture, and polarization of the irradiated light. Comments on the origins of these dependencies are given.

  13. Single photon emission tomography imaging in parkinsonian disorders: a review.

    PubMed

    Acton, P D; Mozley, P D

    2000-01-01

    Parkinsonian symptoms are associated with a number of neurodegenerative disorders, such as Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. Pathological evidence has shown clearly that these disorders are associated with a loss of neurons, particularly in the nigrostriatal dopaminergic pathway. Positron emission tomography (PET) and single photon emission tomography (SPECT) now are able to visualise and quantify changes in cerebral blood flow, glucose metabolism, and dopaminergic function produced by parkinsonian disorders. Both PET and SPECT have become important tools in the differential diagnosis of these diseases, and may have sufficient sensitivity to detect neuronal changes before the onset of clinical symptoms. Imaging is now being utilised to elucidate the genetic contribution to Parkinson's disease, and in longitudinal studies to assess the efficacy and mode of action of neuroprotective drug and surgical treatments. This review summarises recent applications of SPECT imaging in the study of parkinsonian disorders, with particular reference to the increasing role it is playing in the understanding, diagnosis and management of these diseases. PMID:11455039

  14. Dynamics of propagating surface plasmon induced photon emission from quantum dots: quantum history approach

    NASA Astrophysics Data System (ADS)

    Srisangyingcharoen, P.; Klinkla, R.; Boonchui, S.

    2015-11-01

    The quantum history approach is applied to investigate the first-photon emission of a quantum dot induced by propagating surface plasmons. The dynamics of the emission is described through the partitioning dynamics of a quantum system. The extended probability distribution which correspond to the photon emission rate is directly calculated. In the case that the Markov's approximation is satisfied, the well known double decay character of the first-photon emission is obtained accompanying with the analytic expression of decay amplitudes which has never been derived before. This is a merit of our approach which allows us to analytically investigate this interacting quantum system and goes beyond the master equation approach.

  15. Fabrication and characterization of solid-state nanopores using a field emission scanning electron microscope

    SciTech Connect

    Chang Hung; Iqbal, Samir M.; Stach, Eric A.; King, Alexander H.; Zaluzec, Nestor J.; Bashir, Rashid

    2006-03-06

    The fabrication of solid-state nanopores using the electron beam of a transmission electron microscope (TEM) has been reported in the past. Here, we report a similar method to fabricate solid-state nanopores using the electron source of a conventional field-emission scanning electron microscope (FESEM) instead. Micromachining was used to create initial pore diameters between 50 nm and 200 nm, and controlled pore shrinking to sub 10 nm diameters was performed subsequently during in situ processing in the FESEM. Noticeably, different shrinking behavior was observed when using irradiation from the electron source of the FESEM than the TEM. Unlike previous reports of TEM mediated pore shrinkage, the mechanism of pore shrinkage when using the FESEM could be a result of surface defects generated by radiolysis and subsequent motion of silicon atoms to the pore periphery.

  16. Axial resolution beyond the diffraction limit of a sheet illumination microscope with stimulated emission depletion.

    PubMed

    Friedrich, Mike; Harms, Gregory S

    2015-10-01

    Planar illumination imaging allows for illumination of the focal plane orthogonal to the imaging axis in various light forms and is advantageous for high optical sectioning, high imaging speed, low light exposure, and inherently deeper imaging penetration into small organisms and tissue sections. The drawback of the technique is the low inherent resolution, which can be overcome by the incorporation of a dual-sheet stimulated emission depletion (STED) beam to the planar illumination excitation. Our initiative is the implementation of STED into the planar illumination microscope for enhanced resolution. We demonstrate some of our implementations. The depletion of STED in the microscope follows an inverse square root saturation for up to 2.5-fold axial resolution improvements with both high and low numerical aperture imaging objectives. PMID:26469565

  17. Using AIE Luminogen for Long-term and Low-background Three-Photon Microscopic Functional Bioimaging

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenfeng; Leung, Chris W. T.; Zhao, Xinyuan; Wang, Yalun; Qian, Jun; Tang, Ben Zhong; He, Sailing

    2015-10-01

    Fluorescent probes are one of the most popularly used bioimaging markers to monitor metabolic processes of living cells. However, long-term light excitation always leads to photobleaching of fluorescent probes, unavoidable autofluorescence as well as photodamage of cells. To overcome these limitations, we synthesized a type of photostable luminogen named TPE-TPP with an aggregation induced emission (AIE) characteristic, and achieved its three-photon imaging with femtosecond laser excitation of 1020 nm. By using TPE-TPP as fluorescent probes, three-photon microscopy under 1020 nm excitation showed little photo-damage, as well as low autofluorescence to HeLa cells. Due to the AIE effect, the TPE-TPP nanoaggregates uptaken by cells were resistant to photobleaching under three-photon excitation for an extended period of time. Furthermore, we demonstrated that for the present TPE-TPP AIE the three-photon microscopy (with 1020 nm excitation) had a better signal to noise ratio than the two-photon microscopy (with 810 nm excitation) in tissue imaging.

  18. Using AIE Luminogen for Long-term and Low-background Three-Photon Microscopic Functional Bioimaging

    PubMed Central

    Zhu, Zhenfeng; Leung, Chris W. T.; Zhao, Xinyuan; Wang, Yalun; Qian, Jun; Tang, Ben Zhong; He, Sailing

    2015-01-01

    Fluorescent probes are one of the most popularly used bioimaging markers to monitor metabolic processes of living cells. However, long-term light excitation always leads to photobleaching of fluorescent probes, unavoidable autofluorescence as well as photodamage of cells. To overcome these limitations, we synthesized a type of photostable luminogen named TPE-TPP with an aggregation induced emission (AIE) characteristic, and achieved its three-photon imaging with femtosecond laser excitation of 1020 nm. By using TPE-TPP as fluorescent probes, three-photon microscopy under 1020 nm excitation showed little photo-damage, as well as low autofluorescence to HeLa cells. Due to the AIE effect, the TPE-TPP nanoaggregates uptaken by cells were resistant to photobleaching under three-photon excitation for an extended period of time. Furthermore, we demonstrated that for the present TPE-TPP AIE the three-photon microscopy (with 1020 nm excitation) had a better signal to noise ratio than the two-photon microscopy (with 810 nm excitation) in tissue imaging. PMID:26470006

  19. Study of photon emission by electron capture during solar nuclei acceleration. 3: Photon production evaluations

    NASA Technical Reports Server (NTRS)

    Gallegos, A.; Perez-Peraza, J.; Alvarez, M.

    1985-01-01

    Lower limits of photon fluxes were evaluated from electron capture during acceleration in solar flares, because the arbitrary q sub c asterisk assumed in this work evolves very slow with velocity, probably much more slowly than the physical actual situation: in fact, more emission is expected toward the IR region. Nevertheless the authors claim to show that the factibility of sounding acceleration processes, charge evolution processes and physical parameters of the source itself, by the observational analysis of this kind of emissions. For instance, it would be interesting to search observationally, for the predicted flux and energy drift of F sub e ions interacting with the atomic 0 and F sub e of the source matter, or, even more feasible for the X-ray lines at 4.2 keV and 2.624 + 0.003 KeV from Fe and S ions in ionized Fe at T = 10 to the 7th power K respectively, the 418 + or - 2 eV and 20 + or - 4 eV lines of Fe and S in ionized Fe at 5 x 10 to the 6th power K, which are predicted from Fermi acceleration.

  20. Single-photon emission from cubic GaN quantum dots

    SciTech Connect

    Kako, Satoshi; Holmes, Mark; Sergent, Sylvain; Bürger, Matthias; As, Donat J.; Arakawa, Yasuhiko

    2014-01-06

    We report the demonstration of single-photon emission from cubic GaN/AlN quantum dots grown by molecular beam epitaxy. We have observed spectrally clean and isolated emission peaks from these quantum dots. Clear single-photon emission was detected by analyzing one such peak at 4 K. The estimated g{sup (2)}[0] value is 0.25, which becomes 0.05 when corrected for background and detector dark counts. We have also observed the single-photon nature of the emission up to 100 K (g{sup (2)}[0] = 0.47). These results indicate that cubic GaN quantum dots are possible candidates for high-temperature operating UV single-photon sources with the possibility of integration into photonic nanostructures.

  1. A quantum dot single-photon source with on-the-fly all-optical polarization control and timed emission

    NASA Astrophysics Data System (ADS)

    Heinze, Dirk; Breddermann, Dominik; Zrenner, Artur; Schumacher, Stefan

    2015-10-01

    Sources of single photons are key elements for applications in quantum information science. Among the different sources available, semiconductor quantum dots excel with their integrability in semiconductor on-chip solutions and the potential that photon emission can be triggered on demand. Usually, the photon is emitted from a single-exciton ground state. Polarization of the photon and time of emission are either probabilistic or pre-determined by electronic properties of the system. Here, we study the direct two-photon emission from the biexciton. The two-photon emission is enabled by a laser pulse driving the system into a virtual state inside the band gap. From this intermediate state, the single photon of interest is then spontaneously emitted. We show that emission through this higher-order transition provides a versatile approach to generate a single photon. Through the driving laser pulse, polarization state, frequency and emission time of the photon can be controlled on-the-fly.

  2. Development and Trial Measurements of Hard X-ray Photoelectron Emission Microscope

    SciTech Connect

    Taniuchi, T.; Oshima, M.; Wakita, T.; Takagaki, M.; Kawamura, N.; Suzuki, M.; Nakamura, T.; Kobayashi, K.; Akinaga, H.; Muraoka, H.; Ono, K.

    2007-01-19

    Photoelectron emission microscope (PEEM) study is performed using hard x-ray illumination. We have successfully obtained images with high spatial resolution of 40 nm with hard x-rays. Spectro-microscopy of Co micro-patterns on Si substrates, which can be applied to XAFS measurements on a minute scale by PEEM. Magnetic imaging has been demonstrated at the Pt L-edges on perpendicular magnetic recording pattern of CoCrPt alloy. These results are the first step toward a new spectroscopic microscopy and magnetic imaging in a hard x-ray region.

  3. Single photon emission computed tomography-guided Cerenkov luminescence tomography

    NASA Astrophysics Data System (ADS)

    Hu, Zhenhua; Chen, Xueli; Liang, Jimin; Qu, Xiaochao; Chen, Duofang; Yang, Weidong; Wang, Jing; Cao, Feng; Tian, Jie

    2012-07-01

    Cerenkov luminescence tomography (CLT) has become a valuable tool for preclinical imaging because of its ability of reconstructing the three-dimensional distribution and activity of the radiopharmaceuticals. However, it is still far from a mature technology and suffers from relatively low spatial resolution due to the ill-posed inverse problem for the tomographic reconstruction. In this paper, we presented a single photon emission computed tomography (SPECT)-guided reconstruction method for CLT, in which a priori information of the permissible source region (PSR) from SPECT imaging results was incorporated to effectively reduce the ill-posedness of the inverse reconstruction problem. The performance of the method was first validated with the experimental reconstruction of an adult athymic nude mouse implanted with a Na131I radioactive source and an adult athymic nude mouse received an intravenous tail injection of Na131I. A tissue-mimic phantom based experiment was then conducted to illustrate the ability of the proposed method in resolving double sources. Compared with the traditional PSR strategy in which the PSR was determined by the surface flux distribution, the proposed method obtained much more accurate and encouraging localization and resolution results. Preliminary results showed that the proposed SPECT-guided reconstruction method was insensitive to the regularization methods and ignored the heterogeneity of tissues which can avoid the segmentation procedure of the organs.

  4. Proceedings of clinical SPECT (single photon emission computed tomography) symposium

    SciTech Connect

    Not Available

    1986-09-01

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base. (TEM)

  5. Brain single photon emission computed tomography in neonates

    SciTech Connect

    Denays, R.; Van Pachterbeke, T.; Tondeur, M.; Spehl, M.; Toppet, V.; Ham, H.; Piepsz, A.; Rubinstein, M.; Nol, P.H.; Haumont, D. )

    1989-08-01

    This study was designed to rate the clinical value of ({sup 123}I)iodoamphetamine (IMP) or ({sup 99m}Tc) hexamethyl propylene amine oxyme (HM-PAO) brain single photon emission computed tomography (SPECT) in neonates, especially in those likely to develop cerebral palsy. The results showed that SPECT abnormalities were congruent in most cases with structural lesions demonstrated by ultrasonography. However, mild bilateral ventricular dilatation and bilateral subependymal porencephalic cysts diagnosed by ultrasound were not associated with an abnormal SPECT finding. In contrast, some cortical periventricular and sylvian lesions and all the parasagittal lesions well visualized in SPECT studies were not diagnosed by ultrasound scans. In neonates with subependymal and/or intraventricular hemorrhage the existence of a parenchymal abnormality was only diagnosed by SPECT. These results indicate that ({sup 123}I)IMP or ({sup 99m}Tc)HM-PAO brain SPECT shows a potential clinical value as the neurodevelopmental outcome is clearly related to the site, the extent, and the number of cerebral lesions. Long-term clinical follow-up is, however, mandatory in order to define which SPECT abnormality is associated with neurologic deficit.

  6. In-plane emission of indistinguishable photons generated by an integrated quantum emitter

    SciTech Connect

    Kalliakos, Sokratis Bennett, Anthony J.; Ward, Martin B.; Ellis, David J. P.; Skiba-Szymanska, Joanna; Shields, Andrew J.; Brody, Yarden; Schwagmann, Andre; Farrer, Ian; Griffiths, Jonathan P.; Jones, Geb A. C.; Ritchie, David A.

    2014-06-02

    We demonstrate the emission of indistinguishable photons along a semiconductor chip originating from carrier recombination in an InAs quantum dot. The emitter is integrated in the waveguiding region of a photonic crystal structure, allowing for on-chip light propagation. We perform a Hong-Ou-Mandel-type of experiment with photons collected from the exit of the waveguide, and we observe two-photon interference under continuous wave excitation. Our results pave the way for the integration of quantum emitters in advanced photonic quantum circuits.

  7. Calorimetry in Medical Applications: Single-Photon Emission Computed Tomography and Positron Emission Tomography

    SciTech Connect

    Chen, C.-T.

    2006-10-27

    Positron emission tomography (PET) and single-photon emission computed tomography (SPECT), two nuclear medicine imaging modalities broadly used in clinics and research, share many common instrumentation, detector, and electronics technology platforms with calorimetry in high-energy physics, astronomy, and other physics sciences. Historically, advances made in calorimetry had played major roles in the development of novel approaches and critical technologies essential to the evolution of PET and SPECT. There have also been examples in which PET/SPECT developments had led to new techniques in calorimetry for other application areas. In recent years, several innovations have propelled advances in both calorimetry in general and PET/SPECT in particular. Examples include time-of-flight (TOF) measurements, silicon photomultipliers (SiPMs), etc.

  8. Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF4:Er3+/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW

    PubMed Central

    Liu, Jing; Wu, Ruitao; Li, Nana; Zhang, Xin; Zhan, Qiuqiang; He, Sailing

    2015-01-01

    It is challenging to achieve deep microscopic imaging for the strong scattering in biotissue. An efficient three-photon luminescence can effectively increase the penetration depth. Here we report that β-NaYF4: Er3+/NaYF4 UCNPs were excited by a 1480-nm CW-laser and emitted 543/653-nm light through a three-photon process. With the merit of the hexagonal crystal phase, sub-milliwatt laser power was utilized to excite the UCNP-probed cells to minimize the heating effect. The polymer-coated UCNPs were shown to be harmless to cells. The deep, high contrast in vitro microscopic imaging was implemented through an artificial phantom. Imaging depth of 800 μm was achieved using only 1.5 mW excitation and a 0.7 NA objective. The green/red emission intensities ratio after penetrating the phantom was studied, indicating that longer emission wavelength is preferred for deep multiphoton microscopy. The proposed and demonstrated β-UCNPs would have great potential in three-photon microscopy. PMID:26137385

  9. Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF4:Er(3+)/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW.

    PubMed

    Liu, Jing; Wu, Ruitao; Li, Nana; Zhang, Xin; Zhan, Qiuqiang; He, Sailing

    2015-05-01

    It is challenging to achieve deep microscopic imaging for the strong scattering in biotissue. An efficient three-photon luminescence can effectively increase the penetration depth. Here we report that β-NaYF4: Er(3+)/NaYF4 UCNPs were excited by a 1480-nm CW-laser and emitted 543/653-nm light through a three-photon process. With the merit of the hexagonal crystal phase, sub-milliwatt laser power was utilized to excite the UCNP-probed cells to minimize the heating effect. The polymer-coated UCNPs were shown to be harmless to cells. The deep, high contrast in vitro microscopic imaging was implemented through an artificial phantom. Imaging depth of 800 μm was achieved using only 1.5 mW excitation and a 0.7 NA objective. The green/red emission intensities ratio after penetrating the phantom was studied, indicating that longer emission wavelength is preferred for deep multiphoton microscopy. The proposed and demonstrated β-UCNPs would have great potential in three-photon microscopy. PMID:26137385

  10. Estimation of Photon Effects on Townsend Discharges for SecondaryElectronEmission Coefficient Measurements

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Tomokazu; Akashi, Haruaki

    2015-09-01

    A Monte Carlo simulation (MCS) is applied to investigate the secondary electron emission in Argon Townsend discharges. The influxes of ions, photons and metastable species onto the cathode surface are estimated simply from the number of inelastic collisions. The effect of photons becomes significant especially under higher pd conditions since the photon influx increases. This suggests the possibility of the estimation of the secondary electron emission coefficient of photons by examining breakdown voltage characteristics (Paschen curves). The effect of metastable species is much smaller than those of ions and photons and is negligible. The Paschen curves evaluated with MCS agrees well with the results of one-dimensional fluid model simulation when the photon effect is neglected, showing the necessity of further improvement. Supported by JSPS KAKENHI Grant Number 26820108.

  11. Single-photon emission of two-level system via rapid adiabatic passage

    PubMed Central

    Miao, Qiang; Zheng, Yujun

    2016-01-01

    In this paper, we present a high quality single-photon source based on the two-level system undergoing rapid adiabatic passage (RAP). A trigger strategy (sweet region) is suggested to optimize the single-photon emission and explain a counter-intuitive phenomenon on the optimal parameters. The RAP strategy of single-photon source is robust against control error and environmental fluctuation. PMID:27601295

  12. Single-photon emission of two-level system via rapid adiabatic passage.

    PubMed

    Miao, Qiang; Zheng, Yujun

    2016-01-01

    In this paper, we present a high quality single-photon source based on the two-level system undergoing rapid adiabatic passage (RAP). A trigger strategy (sweet region) is suggested to optimize the single-photon emission and explain a counter-intuitive phenomenon on the optimal parameters. The RAP strategy of single-photon source is robust against control error and environmental fluctuation. PMID:27601295

  13. PHOTONIC CRYSTAL SURFACE ENHANCED UPCONVERSION EMISSION OF YF3:Yb3+, Er3+ NANOPARTICLES

    NASA Astrophysics Data System (ADS)

    Shao, Bo; Yang, Zhengwen; Li, Jun; Liao, Jiayan; Lai, Shenfeng; Qiu, Jianbei; Song, Zhiguo; Yang, Yong; Zhou, Dacheng

    2015-11-01

    The opal photonic crystals made of polystyrene microspheres with 155, 230, 270 or 410 nm in diameter were used to enhance upconversion (UC) emission of YF3:Yb3+, Er3+ nanoparticles, respectively. The red or green UC emission of YF3:Yb3+, Er3+ nanoparticles can be selectively enhanced when the red or green UC emission wavelength overlapped with the photonic bandgaps of opals, which is attributed to Bragg reflection of photonic bandgap. In addition, when the 980 nm excitation light wavelength was in the region of the photonic bandgap, red and green UC emissions of YF3:Yb3+, Er3+ nanoparticles were enhanced due to the enhancement of excitation field.

  14. Two-photon-induced hot-electron transfer to a single molecule in a scanning tunneling microscope

    SciTech Connect

    Wu, S. W.; Ho, W.

    2010-08-15

    The junction of a scanning tunneling microscope (STM) operating in the tunneling regime was irradiated with femtosecond laser pulses. A photoexcited hot electron in the STM tip resonantly tunnels into an excited state of a single molecule on the surface, converting it from the neutral to the anion. The electron-transfer rate depends quadratically on the incident laser power, suggesting a two-photon excitation process. This nonlinear optical process is further confirmed by the polarization measurement. Spatial dependence of the electron-transfer rate exhibits atomic-scale variations. A two-pulse correlation experiment reveals the ultrafast dynamic nature of photoinduced charging process in the STM junction. Results from these experiments are important for understanding photoinduced interfacial charge transfer in many nanoscale inorganic-organic structures.

  15. Radiopharmaceuticals for single-photon emission computed tomography brain imaging.

    PubMed

    Kung, Hank F; Kung, Mei-Ping; Choi, Seok Rye

    2003-01-01

    In the past 10 years, significant progress on the development of new brain-imaging agents for single-photon emission computed tomography has been made. Most of the new radiopharmaceuticals are designed to bind specific neurotransmitter receptor or transporter sites in the central nervous system. Most of the site-specific brain radiopharmaceuticals are labeled with (123)I. Results from imaging of benzodiazepine (gamma-aminobutyric acid) receptors by [(123)I]iomazenil are useful in identifying epileptic seizure foci and changes of this receptor in psychiatric disorders. Imaging of dopamine D2/D3 receptors ([(123)I]iodobenzamide and [(123)I]epidepride) and transporters [(123)I]CIT (2-beta-carboxymethoxy-3-beta(4-iodophenyl)tropane) and [(123)I]FP-beta-CIT (N-propyl-2-beta-carboxymethoxy-3-beta(4-iodophenyl)-nortropane has proven to be a simple but powerful tool for differential diagnosis of Parkinson's and other neurodegenerative diseases. A (99m)Tc-labeled agent, [(99m)Tc]TRODAT (technetium, 2-[[2-[[[3-(4-chlorophenyl)-8-methyl-8-azabicyclo [3,2,1]oct-2-yl]methyl](2-mercaptoethyl)amino]ethyl]amino] ethanethiolato(3-)]oxo-[1R-(exo-exo)]-), for imaging dopamine transporters in the brain has been successfully applied in the diagnosis of Parkinson's disease. Despite the fact that (123)I radiopharmaceuticals have been widely used in Japan and in Europe, clinical application of (123)I-labeled brain radiopharmaceuticals in the United States is limited because of the difficulties in supplying such agents. Development of (99m)Tc agents will likely extend the application of site-specific brain radiopharmaceuticals for routine applications in aiding the diagnosis and monitoring treatments of various neurologic and psychiatric disorders. PMID:12605353

  16. Revisiting the mitogenetic effect of ultra-weak photon emission

    PubMed Central

    Volodyaev, Ilya; Beloussov, Lev V.

    2015-01-01

    This paper reviews the 90 years long controversial history of the so-called “mitogenetic radiation,” the first case of non-chemical distant interactions, reported by Gurwitsch (1923). It was soon described as ultraweak UV, emitted by a number of biological systems, and stimulating mitosis in “competent” (in this sense) cells. In the following 20 years this phenomenon attracted enormous interest of the scientific community, and gave rise to more than 700 publications around the world. Yet, this wave of research vanished after several ostensibly disproving works in late 1930-s, and was not resumed later, regardless of quite serious grounds for that. The authors discuss separately two aspects of the problem: (1) do living organisms emit ultraweak radiation in the UV range (irrespective of whether it has any biological role), and (2) are there any real effects of this ultraweak photon emission (UPE) upon cell division and/or other biological functions? Analysis of the available data permits to conclude, that UV fraction of UPE should be regarded real, while its biological effects are difficult to reproduce. This causes a paradox. A number of presently known qualities of UPE were initially discovered (predicted?) by the “early workers” on the basis of biological effects. Yet the qualities they discovered were proved later (the UV component of UPE, the sources of UPE among biological systems, etc…), while the biological effect they used for UPE “detection” remains questionable. Importance of this area for basic biology and medicine, and potential usefulness of UPE as a non-invasive research method, invite scientists to attack this problem again, applying powerful research facilities of modern science. Yet, because of complexity and uncertainty of the problem, further progress in this area demands comprehensive examination of both positive and negative works, with particular attention to their methodical details. PMID:26441668

  17. Femtosecond photoelectron point projection microscope

    SciTech Connect

    Quinonez, Erik; Handali, Jonathan; Barwick, Brett

    2013-10-15

    By utilizing a nanometer ultrafast electron source in a point projection microscope we demonstrate that images of nanoparticles with spatial resolutions of the order of 100 nanometers can be obtained. The duration of the emission process of the photoemitted electrons used to make images is shown to be of the order of 100 fs using an autocorrelation technique. The compact geometry of this photoelectron point projection microscope does not preclude its use as a simple ultrafast electron microscope, and we use simple analytic models to estimate temporal resolutions that can be expected when using it as a pump-probe ultrafast electron microscope. These models show a significant increase in temporal resolution when comparing to ultrafast electron microscopes based on conventional designs. We also model the microscopes spectroscopic abilities to capture ultrafast phenomena such as the photon induced near field effect.

  18. Quantifying distortions in two-photon remote focussing microscope images using a volumetric calibration specimen

    PubMed Central

    Corbett, Alexander D.; Burton, Rebecca A. B.; Bub, Gil; Salter, Patrick S.; Tuohy, Simon; Booth, Martin J.; Wilson, Tony

    2014-01-01

    Remote focussing microscopy allows sharp, in-focus images to be acquired at high speed from outside of the focal plane of an objective lens without any agitation of the specimen. However, without careful optical alignment, the advantages of remote focussing microscopy could be compromised by the introduction of depth-dependent scaling artifacts. To achieve an ideal alignment in a point-scanning remote focussing microscope, the lateral (XY) scan mirror pair must be imaged onto the back focal plane of both the reference and imaging objectives, in a telecentric arrangement. However, for many commercial objective lenses, it can be difficult to accurately locate the position of the back focal plane. This paper investigates the impact of this limitation on the fidelity of three-dimensional data sets of living cardiac tissue, specifically the introduction of distortions. These distortions limit the accuracy of sarcomere measurements taken directly from raw volumetric data. The origin of the distortion is first identified through simulation of a remote focussing microscope. Using a novel three-dimensional calibration specimen it was then possible to quantify experimentally the size of the distortion as a function of objective misalignment. Finally, by first approximating and then compensating the distortion in imaging data from whole heart rodent studies, the variance of sarcomere length (SL) measurements was reduced by almost 50%. PMID:25339910

  19. Modulation of the pupil function of microscope objective lens for multifocal multi-photon microscopy using a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Matsumoto, Naoya; Okazaki, Shigetoshi; Takamoto, Hisayoshi; Inoue, Takashi; Terakawa, Susumu

    2014-02-01

    We propose a method for high precision modulation of the pupil function of a microscope objective lens to improve the performance of multifocal multi-photon microscopy (MMM). To modulate the pupil function, we adopt a spatial light modulator (SLM) and place it at the conjugate position of the objective lens. The SLM can generate an arbitrary number of spots to excite the multiple fluorescence spots (MFS) at the desired positions and intensities by applying an appropriate computer-generated hologram (CGH). This flexibility allows us to control the MFS according to the photobleaching level of a fluorescent protein and phototoxicity of a specimen. However, when a large number of excitation spots are generated, the intensity distribution of the MFS is significantly different from the one originally designed due to misalignment of the optical setup and characteristics of the SLM. As a result, the image of a specimen obtained using laser scanning for the MFS has block noise segments because the SLM could not generate a uniform MFS. To improve the intensity distribution of the MFS, we adaptively redesigned the CGH based on the observed MFS. We experimentally demonstrate an improvement in the uniformity of a 10 × 10 MFS grid using a dye solution. The simplicity of the proposed method will allow it to be applied for calibration of MMM before observing living tissue. After the MMM calibration, we performed laser scanning with two-photon excitation to observe a real specimen without detecting block noise segments.

  20. Method to quantify accuracy of position feedback signals of a three-dimensional two-photon laser-scanning microscope

    PubMed Central

    Kummer, Michael; Kirmse, Knut; Witte, Otto W.; Haueisen, Jens; Holthoff, Knut

    2015-01-01

    Two-photon laser-scanning microscopy enables to record neuronal network activity in three-dimensional space while maintaining single-cellular resolution. One of the proposed approaches combines galvanometric x-y scanning with piezo-driven objective movements and employs hardware feedback signals for position monitoring. However, readily applicable methods to quantify the accuracy of those feedback signals are currently lacking. Here we provide techniques based on contact-free laser reflection and laser triangulation for the quantification of positioning accuracy of each spatial axis. We found that the lateral feedback signals are sufficiently accurate (defined as <2.5 µm) for a wide range of scan trajectories and frequencies. We further show that axial positioning accuracy does not only depend on objective acceleration and mass but also its geometry. We conclude that the introduced methods allow a reliable quantification of position feedback signals in a cost-efficient, easy-to-install manner and should be applicable for a wide range of two-photon laser scanning microscopes. PMID:26504620

  1. Method to quantify accuracy of position feedback signals of a three-dimensional two-photon laser-scanning microscope.

    PubMed

    Kummer, Michael; Kirmse, Knut; Witte, Otto W; Haueisen, Jens; Holthoff, Knut

    2015-10-01

    Two-photon laser-scanning microscopy enables to record neuronal network activity in three-dimensional space while maintaining single-cellular resolution. One of the proposed approaches combines galvanometric x-y scanning with piezo-driven objective movements and employs hardware feedback signals for position monitoring. However, readily applicable methods to quantify the accuracy of those feedback signals are currently lacking. Here we provide techniques based on contact-free laser reflection and laser triangulation for the quantification of positioning accuracy of each spatial axis. We found that the lateral feedback signals are sufficiently accurate (defined as <2.5 µm) for a wide range of scan trajectories and frequencies. We further show that axial positioning accuracy does not only depend on objective acceleration and mass but also its geometry. We conclude that the introduced methods allow a reliable quantification of position feedback signals in a cost-efficient, easy-to-install manner and should be applicable for a wide range of two-photon laser scanning microscopes. PMID:26504620

  2. Acquisition of a High Resolution Field Emission Scanning Electron Microscope for the Analysis of Returned Samples

    NASA Technical Reports Server (NTRS)

    Nittler, Larry R.

    2003-01-01

    This grant furnished funds to purchase a state-of-the-art scanning electron microscope (SEM) to support our analytical facilities for extraterrestrial samples. After evaluating several instruments, we purchased a JEOL 6500F thermal field emission SEM with the following analytical accessories: EDAX energy-dispersive x-ray analysis system with fully automated control of instrument and sample stage; EDAX LEXS wavelength-dispersive x-ray spectrometer for high sensitivity light-element analysis; EDAX/TSL electron backscatter diffraction (EBSD) system with software for phase identification and crystal orientation mapping; Robinson backscatter electron detector; and an in situ micro-manipulator (Kleindiek). The total price was $550,000 (with $150,000 of the purchase supported by Carnegie institution matching funds). The microscope was delivered in October 2002, and most of the analytical accessories were installed by January 2003. With the exception of the wavelength spectrometer (which has been undergoing design changes) everything is working well and the SEM is in routine use in our laboratory.

  3. Apertureless scanning microscope probe as a detector of semiconductor laser emission

    SciTech Connect

    Dunaevskiy, Mikhail; Dontsov, Anton; Monakhov, Andrei; Alekseev, Prokhor; Titkov, Alexander; Baranov, Alexei; Girard, Paul; Arinero, Richard; Teissier, Roland

    2015-04-27

    An operating semiconductor laser has been studied using a scanning probe microscope. A shift of the resonance frequency of probe that is due to its heating by laser radiation has been analyzed. The observed shift is proportional to the absorbed radiation and can be used to measure the laser near field or its output power. A periodical dependence of the measured signal has been observed as a function of distance between the probe and the surface of the laser due to the interference of the outgoing and cantilever-reflected waves. Due to the multiple reflections resulting in the interference, the light absorption by the probe cantilever is greatly enhanced compared with a single pass case. Interaction of infrared emission of a diode laser with different probes has been studied.

  4. Enhancement of Tb-Yb quantum cutting emission by inverse opal photonic crystals

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Qiu, Jianbei; Song, Zhiguo; Yang, Zhengwen; Yin, Zhaoyi; Zhou, Dacheng; Wang, Siqin

    2016-04-01

    Yb3+, Tb3+ co-doped YPO4 inverse opal photonic crystal was prepared directly by sol-gel technique in combination with self-assembly method. With the influence of the photonic band gap, quantum cutting emission of Tb3+, Yb3+ was investigated in photonic crystals by photoluminescence and fluorescence lifetime. The result clearly shows that, when the spontaneous emission of donor Tb3+ is inhibited by photonic band gap, Tb3+-Yb3+ quantum cutting quantum efficiency from Tb3+ to Yb3+ could be enhanced from 131.2% to 140.5%. The mechanisms for the influence of the photonic band gap on quantum cutting process of Tb3+ and Yb3+ are discussed. We believe that the present work will be valuable for the foundational study of quantum cutting energy transfer process and application of quantum cutting optical devices in spectral modification materials for silicon solar cells.

  5. Mechanism of two-photon excited hemoglobin fluorescence emission

    NASA Astrophysics Data System (ADS)

    Sun, Qiqi; Zheng, Wei; Wang, Jiannong; Luo, Yi; Qu, Jianan Y.

    2015-10-01

    Hemoglobin, one of the most important proteins in the human body, is composed of "heme" groups (iron-containing rings) and "globins" (proteins). We investigate the two-photon excited fluorescence of hemoglobin and its subunit components (heme and globin). We measure the hemoglobin fluorescence lifetime by using a streak camera of ps resolution and confirm that its lifetime is in femtosecond scale. In the study of the fluorescence properties of heme and globin, the experimental results reveal that heme is the sole fluorophore of hemoglobin. Hemoglobin fluorescence can be effectively excited only via two-photon process, because heme has a centrosymmetric molecular structure and two-photon allowed transition is forbidden for single-photon process and vice versa due to the Laporte parity selection rule.

  6. Mechanism of two-photon excited hemoglobin fluorescence emission.

    PubMed

    Sun, Qiqi; Zheng, Wei; Wang, Jiannong; Luo, Yi; Qu, Jianan Y

    2015-10-01

    Hemoglobin, one of the most important proteins in the human body, is composed of “heme” groups (iron-containing rings) and “globins” (proteins). We investigate the two-photon excited fluorescence of hemoglobin and its subunit components (heme and globin). We measure the hemoglobin fluorescence lifetime by using a streak camera of ps resolution and confirm that its lifetime is in femtosecond scale. In the study of the fluorescence properties of heme and globin, the experimental results reveal that heme is the sole fluorophore of hemoglobin. Hemoglobin fluorescence can be effectively excited only via two-photon process, because heme has a centrosymmetric molecular structure and two-photon allowed transition is forbidden for single-photon process and vice versa due to the Laporte parity selection rule. PMID:26506468

  7. Dynamically controlling the emission of single excitons in photonic crystal cavities

    PubMed Central

    Pagliano, Francesco; Cho, YongJin; Xia, Tian; van Otten, Frank; Johne, Robert; Fiore, Andrea

    2014-01-01

    Single excitons in semiconductor microcavities represent a solid state and scalable platform for cavity quantum electrodynamics, potentially enabling an interface between flying (photon) and static (exciton) quantum bits in future quantum networks. While both single-photon emission and the strong coupling regime have been demonstrated, further progress has been hampered by the inability to control the coherent evolution of the cavity quantum electrodynamics system in real time, as needed to produce and harness charge–photon entanglement. Here using the ultrafast electrical tuning of the exciton energy in a photonic crystal diode, we demonstrate the dynamic control of the coupling of a single exciton to a photonic crystal cavity mode on a sub-nanosecond timescale, faster than the natural lifetime of the exciton. This opens the way to the control of single-photon waveforms, as needed for quantum interfaces, and to the real-time control of solid-state cavity quantum electrodynamics systems. PMID:25503405

  8. Dynamically controlling the emission of single excitons in photonic crystal cavities.

    PubMed

    Pagliano, Francesco; Cho, YongJin; Xia, Tian; van Otten, Frank; Johne, Robert; Fiore, Andrea

    2014-01-01

    Single excitons in semiconductor microcavities represent a solid state and scalable platform for cavity quantum electrodynamics, potentially enabling an interface between flying (photon) and static (exciton) quantum bits in future quantum networks. While both single-photon emission and the strong coupling regime have been demonstrated, further progress has been hampered by the inability to control the coherent evolution of the cavity quantum electrodynamics system in real time, as needed to produce and harness charge-photon entanglement. Here using the ultrafast electrical tuning of the exciton energy in a photonic crystal diode, we demonstrate the dynamic control of the coupling of a single exciton to a photonic crystal cavity mode on a sub-nanosecond timescale, faster than the natural lifetime of the exciton. This opens the way to the control of single-photon waveforms, as needed for quantum interfaces, and to the real-time control of solid-state cavity quantum electrodynamics systems. PMID:25503405

  9. A High Performance, Cost-Effective, Open-Source Microscope for Scanning Two-Photon Microscopy that Is Modular and Readily Adaptable

    PubMed Central

    Rosenegger, David G.; Tran, Cam Ha T.; LeDue, Jeffery; Zhou, Ning; Gordon, Grant R.

    2014-01-01

    Two-photon laser scanning microscopy has revolutionized the ability to delineate cellular and physiological function in acutely isolated tissue and in vivo. However, there exist barriers for many laboratories to acquire two-photon microscopes. Additionally, if owned, typical systems are difficult to modify to rapidly evolving methodologies. A potential solution to these problems is to enable scientists to build their own high-performance and adaptable system by overcoming a resource insufficiency. Here we present a detailed hardware resource and protocol for building an upright, highly modular and adaptable two-photon laser scanning fluorescence microscope that can be used for in vitro or in vivo applications. The microscope is comprised of high-end componentry on a skeleton of off-the-shelf compatible opto-mechanical parts. The dedicated design enabled imaging depths close to 1 mm into mouse brain tissue and a signal-to-noise ratio that exceeded all commercial two-photon systems tested. In addition to a detailed parts list, instructions for assembly, testing and troubleshooting, our plan includes complete three dimensional computer models that greatly reduce the knowledge base required for the non-expert user. This open-source resource lowers barriers in order to equip more laboratories with high-performance two-photon imaging and to help progress our understanding of the cellular and physiological function of living systems. PMID:25333934

  10. Detection efficiency and spatial resolution of the SIRAD ion electron emission microscope

    NASA Astrophysics Data System (ADS)

    Bisello, D.; Giubilato, P.; Kaminsky, A.; Mattiazzo, S.; Nigro, M.; Pantano, D.; Silvestrin, L.; Tessaro, M.; Wyss, J.; Bertazzoni, S.; Mongiardo, L.; Salmeri, M.; Salsano, A.

    2009-06-01

    An axial ion electron emission microscope (IEEM) has been built at the SIRAD irradiation facility at the 15 MV Tandem accelerator of INFN Legnaro National Laboratory (Padova, Italy) to obtain a micrometric sensitivity map to single event effects (SEE) of electronic devices. In this contribution we report on two experiments performed with the IEEM. Si 3N 4 ultra-thin membranes with a gold deposition were placed on the device under test (DUT) to ensure a uniform and abundant secondary electron emission In the first experiment we measured an IEEM ion detection efficiency of 83% with a 58Ni (220 MeV) beam, in good agreement with the expected value. The second experiment allowed us to estimate the lateral resolution of the IEEM. The positions of ion induced single event upsets (SEU) in a synchronous dynamic random access memory (SDRAM), used as a reference target, were compared with the corresponding ion impact points reconstructed by the IEEM. The result (FWHM ˜4.4 μm with a 79Br beam of 214 MeV) is encouraging because of the residual presence of distortions of the image and mechanical vibrations.

  11. Photon emission asymmetry in the elementary process of bremsstrahlung from transversely polarized electrons

    SciTech Connect

    Mergl, E.; Prinz, H.; Schroeter, C.D.; Nakel, W. )

    1992-08-10

    By using an electron-phonon coincidence method the photon emission asymmetry in the elementary process of bremsstrahlung from transversely polarized electrons was measured for fixed directions of the outgoing electrons and coplanar geometry. For an electron beam of 300 keV incident on a gold target, emission asymmetries up to 35% were found. Even in the case of no deflection of the decelerated outgoing electrons a nonzero photon emission asymmetry was observed. The measurements are a proper test for theories going beyond the first Born approximation.

  12. Single photon emission from site-controlled InGaN/GaN quantum dots

    SciTech Connect

    Zhang, Lei; Hill, Tyler A.; Deng, Hui; Teng, Chu-Hsiang; Lee, Leung-Kway; Ku, Pei-Cheng

    2013-11-04

    Single photon emission was observed from site-controlled InGaN/GaN quantum dots. The single-photon nature of the emission was verified by the second-order correlation function up to 90 K, the highest temperature to date for site-controlled quantum dots. Micro-photoluminescence study on individual quantum dots showed linearly polarized single exciton emission with a lifetime of a few nanoseconds. The dimensions of these quantum dots were well controlled to the precision of state-of-the-art fabrication technologies, as reflected in the uniformity of their optical properties. The yield of optically active quantum dots was greater than 90%, among which 13%–25% exhibited single photon emission at 10 K.

  13. Three-dimensional image cytometer based on a high-speed two-photon scanning microscope

    NASA Astrophysics Data System (ADS)

    Kim, Ki H.; Stitt, Molly S.; Hendricks, Carrie A.; Almeida, Karen H.; Engelward, Bevin P.; So, Peter T. C.

    2001-04-01

    We developed a 3-D image cytometer based on two-photon scanning microscopy. The system keeps the inherent advantages from two-photon scanning microscopy: (1) The ability of imaging thick tissue samples up to a few hundred micrometers, (2) The ability to study tissue structures with subcellular resolution, (3) The ability to monitor tissue biochemistry and metabolism, and (4) The reduction of specimen photobleaching and photodamage. Therefore, 3-D image cytometer has the ability to characterize multiple cell layer specimens, in contrast with 2-D image cytometer where only single cell layer samples can be imaged. 3-D image cytometry increases its frame rate by adapting a polygonal mirror scanner and high-speed photomultiplier tubes. The current frame rate is 13 frames per second. High throughput rate is achieved by imaging multiple cell layer specimens in 3-D at a high frame rate. The throughput rate of this system is dependent on the choice of objective lenses, specimen properties, and the speed of computer-controlled specimen stage. It can be up to approximately 100 cells per second which is comparable with that of 2-D image cytometers. With the high throughput rate and deep tissue imaging capability, 3-D image cytometer has the potential for the detection of rare cellular events inside living, intact tissues. A promising application of this 3-D image cytometer is the study of mitotic recombination in tissues. Mitotic recombination is a mechanism for genetic change. Therefore it is one of causes for carcinogenesis. However, the study of this process is difficult because recombination event is rare and it occurs at a rate of one cell in 105 cells. The new method for the study is (1) to engineer transgenic mice whose cells will express fluorescence in the presence of mitotic recombination, (2) to detect cells which have undergone mitotic recombination with 3-D image cytometry. The estimated time required to quantify spontaneous recombination rate is approximately

  14. Photon-induced emission of pions and protons from various nuclei in the Δ-resonance region

    NASA Astrophysics Data System (ADS)

    Arends, J.; Detemple, P.; Floss, N.; Huthmacher, S.; Kaul, G.; Mecking, B.; Nöldeke, G.; Stenz, R.

    1991-05-01

    Double differential cross sections for the photon induced emission of π-, π+ and protons from Be, C, O, Ti, and Pb have been measured in the photon energy range k = 220-450 MeV using the tagged photon beam of the Bonn 500 MeV synchrotron. The hadron detector consists of a magnetic spectrometer and a large acceptance scintillation counter array. For Be, the single-arm energy distributions show clear structures from quasi-free pion production and quasi-deuteron photodisintegration. These structures disappear with increasing target size. The dependence of the differential cross section on the nuclear size S at Θlab = 52° can be described by the power law dσ/ dΩ ∞ S α, where S is the number of protons or neutrons, respectively. The exponent is απ ≈ 0.6 for π- and π+ and αp ≈ 1.15 for protons. Data for pn, pp, and pπ coincidences are presented. The results are compared to intranuclear cascade codes (PICA and PIKI) and to microscopic calculations.

  15. Dynamic performance of MEMS deformable mirrors for use in an active/adaptive two-photon microscope

    NASA Astrophysics Data System (ADS)

    Zhang, Christian C.; Foster, Warren B.; Downey, Ryan D.; Arrasmith, Christopher L.; Dickensheets, David L.

    2016-03-01

    Active optics can facilitate two-photon microscopic imaging deep in tissue. We are investigating fast focus control mirrors used in concert with an aberration correction mirror to control the axial position of focus and system aberrations dynamically during scanning. With an adaptive training step, sample-induced aberrations may be compensated as well. If sufficiently fast and precise, active optics may be able to compensate under-corrected imaging optics as well as sample aberrations to maintain diffraction-limited performance throughout the field of view. Toward this end we have measured a Boston Micromachines Corporation Multi-DM 140 element deformable mirror, and a Revibro Optics electrostatic 4-zone focus control mirror to characterize dynamic performance. Tests for the Multi-DM included both step response and sinusoidal frequency sweeps of specific Zernike modes. For the step response we measured 10%-90% rise times for the target Zernike amplitude, and wavefront rms error settling times. Frequency sweeps identified the 3dB bandwidth of the mirror when attempting to follow a sinusoidal amplitude trajectory for a specific Zernike mode. For five tested Zernike modes (defocus, spherical aberration, coma, astigmatism and trefoil) we find error settling times for mode amplitudes up to 400nm to be less than 52 us, and 3 dB frequencies range from 6.5 kHz to 10 kHz. The Revibro Optics mirror was tested for step response only, with error settling time of 80 μs for a large 3 um defocus step, and settling time of only 18 μs for a 400nm spherical aberration step. These response speeds are sufficient for intra-scan correction at scan rates typical of two-photon microscopy.

  16. Hydrogen two-photon continuum emission from the Horseshoe filament in NGC 1275

    NASA Astrophysics Data System (ADS)

    Johnstone, R. M.; Canning, R. E. A.; Fabian, A. C.; Ferland, G. J.; Lykins, M.; Porter, R. L.; van Hoof, P. A. M.; Williams, R. J. R.

    2012-09-01

    Far-ultraviolet emission has been detected from a knot of Hα emission in the Horseshoe filament, far out in the NGC 1275 nebula. The flux detected relative to the brightness of the Hα line in the same spatial region is very close to that expected from hydrogen two-photon continuum emission in the particle heating model of Ferland et al. if reddening internal to the filaments is taken into account. We find no need to invoke other sources of far-ultraviolet emission such as hot stars or emission lines from C IV in intermediate-temperature gas to explain these data.

  17. Enhancing the emission directionality of organic light-emitting diodes by using photonic microstructures

    SciTech Connect

    Zhang, Shuyu; Turnbull, Graham A. E-mail: idws@st-andrews.ac.uk; Samuel, Ifor D. W. E-mail: idws@st-andrews.ac.uk

    2013-11-18

    We report microstructured organic light-emitting diodes (OLEDs) with directional emission based on efficient solution-processable europium-OLEDs patterned by solvent assisted microcontact molding. The angle dependence of the light emission is characterized for OLEDs with square-array photonic crystals with periods between 275 nm and 335 nm. The microstructured devices have emission patterns strongly modified from the Lambertian emission of planar OLEDs and can approximately double the emitted power in a desired angle range in both s- and p-polarizations. The modified emission is attributed to light diffracted out of the waveguide modes of the OLEDs.

  18. Investigation of intermittent enhancement of ion emission from a tungsten surface using the field-ion microscope.

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.

    1971-01-01

    The blinking effect, or the intermittent enhancement of ion emission, which is observed when a few parts per million neon are added to the imaging gas in a helium-tungsten field-ion microscope, has been investigated. Measurements of the characteristic quantities involved - i.e., blinking rate, voltage limits, etc. - and their variation with temperature, field, and gas pressure, are described.

  19. Factors affecting ultraviolet-A photon emission from β-irradiated human keratinocyte cells

    NASA Astrophysics Data System (ADS)

    Le, M.; Mothersill, C. E.; Seymour, C. B.; Ahmad, S. B.; Armstrong, A.; Rainbow, A. J.; McNeill, F. E.

    2015-08-01

    The luminescence intensity of 340+/- 5 nm photons emitted from HaCaT (human keratinocyte) cells was investigated using a single-photon-counting system during cellular exposure to 90Y β-particles. Multiple factors were assessed to determine their influence upon the quantity and pattern of photon emission from β-irradiated cells. Exposure of 1× {{10}4} cells/5 mL to 703 μCi resulted in maximum UVA photoemission at 44.8× {{10}3}+/- 2.5× {{10}3} counts per second (cps) from live HaCaT cells (background: 1-5 cps); a 16-fold increase above cell-free controls. Significant biophoton emission was achieved only upon stimulation and was also dependent upon presence of cells. UVA luminescence was measured for 90Y activities 14 to 703 μCi where a positive relationship between photoemission and 90Y activity was observed. Irradiation of live HaCaT cells plated at various densities produced a distinct pattern of emission whereby luminescence increased up to a maximum at 1× {{10}4} cells/5 mL and thereafter decreased. However, this result was not observed in the dead cell population. Both live and dead HaCaT cells were irradiated and were found to demonstrate different rates of photon emission at low β activities (⩽400 μCi). Dead cells exhibited greater photon emission rates than live cells which may be attributable to metabolic processes taking place to modulate the photoemissive effect. The results indicate that photon emission from HaCaT cells is perturbed by external stimulation, is dependent upon the activity of radiation delivered, the density of irradiated cells, and cell viability. It is postulated that biophoton emission may be modulated by a biological or metabolic process.

  20. Classical microscopic theory of dispersion, emission and absorption of light in dielectrics. Classical microscopic theory of dielectric susceptibility

    NASA Astrophysics Data System (ADS)

    Carati, Andrea; Galgani, Luigi

    2014-10-01

    This paper is a continuation of a recent one in which, apparently for the first time, the existence of polaritons in ionic crystals was proven in a microscopic electrodynamic theory. This was obtained through an explicit computation of the dispersion curves. Here the main further contribution consists in studying electric susceptibility, from which the spectrum can be inferred. We show how susceptibility is obtained by the Green-Kubo methods of Hamiltonian statistical mechanics, and give for it a concrete expression in terms of time-correlation functions. As in the previous paper, here too we work in a completely classical framework, in which the electrodynamic forces acting on the charges are all taken into account, both the retarded forces and the radiation reaction ones. So, in order to apply the methods of statistical mechanics, the system has to be previously reduced to a Hamiltonian one. This is made possible in virtue of two global properties of classical electrodynamics, namely, the Wheeler-Feynman identity and the Ewald resummation properties, the proofs of which were already given for ordered system. The second contribution consists in formulating the theory in a completely general way, so that in principle it applies also to disordered systems such as glasses, or liquids or gases, provided the two general properties mentioned above continue to hold. A first step in this direction is made here by providing a completely general proof of the Wheeler-Feynman identity, which is shown to be the counterpart of a general causality property of classical electrodynamics. Finally it is shown how a line spectrum can appear at all in classical systems, as a counterpart of suitable stability properties of the motions, with a broadening due to a coexistence of chaoticity. The relevance of some recent results of the theory of dynamical systems in this connection is also pointed out.

  1. Spontaneous ultraweak photon emission imaging of oxidative metabolic processes in human skin: effect of molecular oxygen and antioxidant defense system

    NASA Astrophysics Data System (ADS)

    Rastogi, Anshu; Pospíšil, Pavel

    2011-09-01

    All living organisms emit spontaneous ultraweak photon emission as a result of cellular metabolic processes. In this study, the involvement of reactive oxygen species (ROS) formed as the byproduct of oxidative metabolic processes in spontaneous ultraweak photon emission was studied in human hand skin. The effect of molecular oxygen and ROS scavengers on spontaneous ultraweak photon emission from human skin was monitored using a highly sensitive photomultiplier tube and charged coupled device camera. When spontaneous ultraweak photon emission was measured under anaerobic conditions, the photon emission was decreased, whereas under hyperaerobic condition the enhancement in photon emission was observed. Spontaneous ultraweak photon emission measured after topical application of glutathione, α-tocopherol, ascorbate, and coenzyme Q10 was observed to be decreased. These results reveal that ROS formed during the cellular metabolic processes in the epidermal cells play a significant role in the spontaneous ultraweak photon emission. It is proposed that spontaneous ultraweak photon emission can be used as a noninvasive tool for the temporal and spatial monitoring of the oxidative metabolic processes and intrinsic antioxidant system in human skin.

  2. Spontaneous emission control of quantum dots embedded in photonic crystals: Effects of external fields and dimension

    NASA Astrophysics Data System (ADS)

    Vaseghi, B.; Hashemi, H.

    2016-06-01

    In this paper simultaneous effects of external electric and magnetic fields and quantum confinement on the radiation properties of spherical quantum dot embedded in a photonic crystal are investigated. Under the influence of photonic band-gap, effects of external static fields and dot dimension on the amplitude and spectrum of different radiation fields emitted by the quantum dot are studied. Our results show the considerable effects of external fields and quantum confinement on the spontaneous emission of the system.

  3. Scalarized photon analysis of spontaneous emission in the uniform magnetic field free-electron laser

    NASA Astrophysics Data System (ADS)

    Soln, Josip

    1990-04-01

    The recently developed concept of scalarized photons (formally photons of any polarization) is used to analyze the spontaneous emission in the uniform magnetic field free-electron laser in the microwave spectral region. With the electron beam energy of up to 10 MeV and the uniform magnetic field of up to 4 Tesla, the radiation (occurring with the fundamental and higher harmonic frequencies) can easily cover a 10- to 10,000 GHz spectral region.

  4. Broadband Enhancement of Spontaneous Emission in Two-Dimensional Semiconductors Using Photonic Hypercrystals.

    PubMed

    Galfsky, Tal; Sun, Zheng; Considine, Christopher R; Chou, Cheng-Tse; Ko, Wei-Chun; Lee, Yi-Hsien; Narimanov, Evgenii E; Menon, Vinod M

    2016-08-10

    The low quantum yield observed in two-dimensional semiconductors of transition metal dichalcogenides (TMDs) has motivated the quest for approaches that can enhance the light emission from these systems. Here, we demonstrate broadband enhancement of spontaneous emission and increase in Raman signature from archetype two-dimensional semiconductors: molybdenum disulfide (MoS2) and tungsten disulfide (WS2) by placing the monolayers in the near field of a photonic hypercrystal having hyperbolic dispersion. Hypercrystals are characterized by a large broadband photonic density of states due to hyperbolic dispersion while having enhanced light in/out coupling by a subwavelength photonic crystal lattice. This dual advantage is exploited here to enhance the light emission from the 2D TMDs and can be utilized for developing light emitters and solar cells using two-dimensional semiconductors. PMID:27420735

  5. Cerenkov-like emission of pions by photons in a Lorentz-violating theory

    NASA Astrophysics Data System (ADS)

    Altschul, Brett

    2016-05-01

    In the presence of Lorentz violation, the Cerenkov-like process γ →γ +π0 may become allowed for sufficiently energetic photons. Photons above the threshold would lose energy rapidly through pion emission. The fact that propagating photons with energies of up to 80 TeV survive to be observed on Earth allows us to place a one-sided constraint on an isotropic Lorentz-violating parameter at the 7 ×10-13 level; this is more than an order of magnitude better than the best previous result.

  6. Surface acoustic wave regulated single photon emission from a coupled quantum dot-nanocavity system

    NASA Astrophysics Data System (ADS)

    Weiß, M.; Kapfinger, S.; Reichert, T.; Finley, J. J.; Wixforth, A.; Kaniber, M.; Krenner, H. J.

    2016-07-01

    A coupled quantum dot-nanocavity system in the weak coupling regime of cavity-quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a fSAW ≃ 800 MHz surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function, g(2). All relevant frequencies of our experiment are faithfully identified in the Fourier transform of g(2), demonstrating high fidelity regulation of the stream of single photons emitted by the system.

  7. Continuous-Wave Stimulated Emission Depletion Microscope for Imaging Actin Cytoskeleton in Fixed and Live Cells.

    PubMed

    Neupane, Bhanu; Jin, Tao; Mellor, Liliana F; Loboa, Elizabeth G; Ligler, Frances S; Wang, Gufeng

    2015-01-01

    Stimulated emission depletion (STED) microscopy provides a new opportunity to study fine sub-cellular structures and highly dynamic cellular processes, which are challenging to observe using conventional optical microscopy. Using actin as an example, we explored the feasibility of using a continuous wave (CW)-STED microscope to study the fine structure and dynamics in fixed and live cells. Actin plays an important role in cellular processes, whose functioning involves dynamic formation and reorganization of fine structures of actin filaments. Frequently used confocal fluorescence and STED microscopy dyes were employed to image fixed PC-12 cells (dyed with phalloidin- fluorescein isothiocyante) and live rat chondrosarcoma cells (RCS) transfected with actin-green fluorescent protein (GFP). Compared to conventional confocal fluorescence microscopy, CW-STED microscopy shows improved spatial resolution in both fixed and live cells. We were able to monitor cell morphology changes continuously; however, the number of repetitive analyses were limited primarily by the dyes used in these experiments and could be improved with the use of dyes less susceptible to photobleaching. In conclusion, CW-STED may disclose new information for biological systems with a proper characteristic length scale. The challenges of using CW-STED microscopy to study cell structures are discussed. PMID:26393614

  8. Continuous-Wave Stimulated Emission Depletion Microscope for Imaging Actin Cytoskeleton in Fixed and Live Cells

    PubMed Central

    Neupane, Bhanu; Jin, Tao; Mellor, Liliana F.; Loboa, Elizabeth G.; Ligler, Frances S.; Wang, Gufeng

    2015-01-01

    Stimulated emission depletion (STED) microscopy provides a new opportunity to study fine sub-cellular structures and highly dynamic cellular processes, which are challenging to observe using conventional optical microscopy. Using actin as an example, we explored the feasibility of using a continuous wave (CW)-STED microscope to study the fine structure and dynamics in fixed and live cells. Actin plays an important role in cellular processes, whose functioning involves dynamic formation and reorganization of fine structures of actin filaments. Frequently used confocal fluorescence and STED microscopy dyes were employed to image fixed PC-12 cells (dyed with phalloidin- fluorescein isothiocyante) and live rat chondrosarcoma cells (RCS) transfected with actin-green fluorescent protein (GFP). Compared to conventional confocal fluorescence microscopy, CW-STED microscopy shows improved spatial resolution in both fixed and live cells. We were able to monitor cell morphology changes continuously; however, the number of repetitive analyses were limited primarily by the dyes used in these experiments and could be improved with the use of dyes less susceptible to photobleaching. In conclusion, CW-STED may disclose new information for biological systems with a proper characteristic length scale. The challenges of using CW-STED microscopy to study cell structures are discussed. PMID:26393614

  9. Photonic emission from human body controlled by will

    NASA Astrophysics Data System (ADS)

    Matsueda, Hideaki

    2000-03-01

    Recent technology of photonic measurements provides direct observation of the weak modulation in the radiation from a human body, which may depends on psychological or mental conditions of the subject. We have been applying the photonic technology to detect the intensity modulation and spectra, from near ultraviolet to near infrared regime, to human subjects who claim healing ability in the art of qi and other Japanese holistic practices. The photomultiplier signal intensity has been observed to change in `on' and `off' and oscillatory manners, in accordance with the will of subjects. We will discuss the results of our optical as well as electrical measurements comprehensively, to investigate into this unexplored fields for the western science.

  10. New cardiac cameras: single-photon emission CT and PET.

    PubMed

    Slomka, Piotr J; Berman, Daniel S; Germano, Guido

    2014-07-01

    Nuclear cardiology instrumentation has evolved significantly in the recent years. Concerns about radiation dose and long acquisition times have propelled developments of dedicated high-efficiency cardiac SPECT scanners. Novel collimator designs, such as multipinhole or locally focusing collimators arranged in geometries that are optimized for cardiac imaging, have been implemented to enhance photon-detection sensitivity. Some of these new SPECT scanners use solid-state photon detectors instead of photomultipliers to improve image quality and to reduce the scanner footprint. These new SPECT devices allow dramatic up to 7-fold reduction in acquisition times or similar reduction in radiation dose. In addition, new hardware for photon attenuation correction allowing ultralow radiation doses has been offered by some vendors. To mitigate photon attenuation artifacts for the new SPECT scanners not equipped with attenuation correction hardware, 2-position (upright-supine or prone-supine) imaging has been proposed. PET hardware developments have been primarily driven by the requirements of oncologic imaging, but cardiac imaging can benefit from improved PET image quality and improved sensitivity of 3D systems. The time-of-flight reconstruction combined with resolution recovery techniques is now implemented by all major PET vendors. These new methods improve image contrast and image resolution and reduce image noise. High-sensitivity 3D PET without interplane septa allows reduced radiation dose for cardiac perfusion imaging. Simultaneous PET/MR hybrid system has been developed. Solid-state PET detectors with avalanche photodiodes or digital silicon photomultipliers have been introduced, and they offer improved imaging characteristics and reduced sensitivity to electromagnetic MR fields. Higher maximum count rate of the new PET detectors allows routine first-pass Rb-82 imaging, with 3D PET acquisition enabling clinical utilization of dynamic imaging with myocardial flow

  11. Coupling of semiconductor carbon nanotubes emission with silicon photonic micro ring resonators

    NASA Astrophysics Data System (ADS)

    Sarti, Francesco; Caselli, Niccolò; La China, Federico; Biccari, Francesco; Torrini, Ughetta; Intonti, Francesca; Vinattieri, Anna; Durán-Valdeiglesias, Elena; Zhang, Weiwei; Noury, Adrien; Alonso-Ramos, Carlos; Hoang, ThiHong Cam; Serna, Samuel; Le Roux, Xavier; Cassan, Eric; Izard, Nicolas; Yang, Hongliu; Bezugly, Viktor; Cuniberti, Gianaurelio; Filoramo, Arianna; Vivien, Laurent; Gurioli, Massimo

    2016-05-01

    Hybrid structures are needed to fully exploit the great advantages of Si photonics and several approaches have been addressed where Si devices are bonded to different materials and nanostructures. Here we study the use of semiconductor carbon nanotubes for emission in the 1300 nm wavelength range to functionalize Si photonic structures in view of optoelectronic applications. The Si micro-rings are fully characterized by near field forward resonant scattering with 100 nm resolution. We show that both TE and TM modes can be addressed on the top of the micro-rings in a vectorial imaging of the in-plane polarization components. We coupled the Si micro-resonators with selected carbon nanotubes for high photoluminescence emission. Coupling nanotubes with the evanescent tails in air of the electric field localized in the photonic modes of the micro-resonators is demonstrated by sharp resonances over imposed to the nanotube emission bands. By mapping the Si and the nanotube emission we demonstrate that strong enhancement of the nanotube photoluminescence can be achieved both in the photonic modes of micro-disks and slot micro-rings, whenever the spatial overlap between nano-emitters and photonic modes is fulfilled.

  12. In situ tuning the single photon emission from single quantum dots through hydrostatic pressure

    SciTech Connect

    Wu, Xuefei; Dou, Xiuming; Ding, Kun; Zhou, Pengyu; Ni, Haiqiao; Niu, Zhichuan; Jiang, Desheng; Sun, Baoquan

    2013-12-16

    We demonstrate that exciton emission wavelength in InAs/GaAs quantum dots (QDs) can be shifted up to 160 nm using hydrostatic pressure (0.4–4 GPa) in situ in an optical cryostat through an improved diamond anvil cell driven by piezoelectric actuator. It is confirmed that the high pressure does not destroy the photon anti-bunching properties of single QD emitter. Exciton emission intensity is not obviously weakened under the pressure range of 0–4 GPa. Such a tunable QD single photon emitter enables a flexibly tuned source for quantum optical experiments.

  13. Spectral discrimination between healthy people and cold patients using spontaneous photon emission

    PubMed Central

    Yang, Meina; Pang, Jiangxiang; Liu, Junyan; Liu, Yanli; Fan, Hua; Han, Jinxiang

    2015-01-01

    In this paper, ultra-weak photon emission (UPE) was used to distinguish cold patients from healthy subjects. The UPE intensity of fingertips of two hands from healthy subjects and cold patients was measured using a two-hand UPE detecting system and a group of cut-off filters. We found a significant difference in the maximum spectral peak and photon emission ratio between the filter of 550nm and 495nm, which can be used in distinguish cold patients from healthy people. Methods and results in this work could be useful for developing a new optical diagnostic tool for early disease diagnosis in the future. PMID:25909016

  14. Controlling the influence of Auger recombination on emission from colloidal quantum dots by photonic crystal.

    PubMed

    Xu, Xingsheng

    2014-07-01

    By investigating the time-resolved spectra of colloidal quantum dots (QDs) on silicon nitride (SiN) photonic crystals (PhCs), it is found that the ratio of charged-exciton (trion) emission and the multiexciton emission to the total emission can be controlled by two-dimensional PhCs. Even by conservative estimates, the ratios of trion to total emission from QDs on PCs reaches 10%, which is much larger than that of the dark state seen in the blinking phenomenon of single QDs. Therefore Auger recombination could be controlled by SiN PhCs. PMID:24978742

  15. Enhancement of the short wavelength upconversion emission in inverse opal photonic crystals.

    PubMed

    Wu, Hangjun; Zhu, Jialun; Yang, Zhengwen; Yan, Dong; Wang, Rongfei; Qiu, Jianbei; Song, Zhiguo; Yu, Xue; Yang, Yong; Zhou, Dacheng; Yin, Zhaoyi

    2014-05-01

    Upconversion luminescence properties of Yb-Tb codoped Bi4Ti3O12 inverse opals have been investigated. The results show that the upconversion emission can be modulated by the photonic band gap. More significantly, in the upconversion inverse opals, the excited-state absorption of Tb3+ is greatly enhanced by the suppression of upconversion spontaneous emissions of the intermediate excited state, and thus the short wavelength upconversion emission from Tb3+ is considerably improved. We believe that the present work will be valuable for not only the foundational study of upconversion emission modifications but also new optical devices in upconversion displays and short wavelength upconversion lasers. PMID:24734648

  16. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity

    NASA Astrophysics Data System (ADS)

    Gan, Xuetao; Gao, Yuanda; Fai Mak, Kin; Yao, Xinwen; Shiue, Ren-Jye; van der Zande, Arend; Trusheim, Matthew E.; Hatami, Fariba; Heinz, Tony F.; Hone, James; Englund, Dirk

    2013-10-01

    We report on controlling the spontaneous emission (SE) rate of a molybdenum disulfide (MoS2) monolayer coupled with a planar photonic crystal (PPC) nanocavity. Spatially resolved photoluminescence (PL) mapping shows strong variations of emission when the MoS2 monolayer is on the PPC cavity, on the PPC lattice, on the air gap, and on the unpatterned gallium phosphide substrate. Polarization dependences of the cavity-coupled MoS2 emission show a more than 5 times stronger extracted PL intensity than the un-coupled emission, which indicates an underlying cavity mode Purcell enhancement of the MoS2 SE rate exceeding a factor of 70.

  17. Simulating three-dimensional nonthermal high-energy photon emission in colliding-wind binaries

    SciTech Connect

    Reitberger, K.; Kissmann, R.; Reimer, A.; Reimer, O.

    2014-07-01

    Massive stars in binary systems have long been regarded as potential sources of high-energy γ rays. The emission is principally thought to arise in the region where the stellar winds collide and accelerate relativistic particles which subsequently emit γ rays. On the basis of a three-dimensional distribution function of high-energy particles in the wind collision region—as obtained by a numerical hydrodynamics and particle transport model—we present the computation of the three-dimensional nonthermal photon emission for a given line of sight. Anisotropic inverse Compton emission is modeled using the target radiation field of both stars. Photons from relativistic bremsstrahlung and neutral pion decay are computed on the basis of local wind plasma densities. We also consider photon-photon opacity effects due to the dense radiation fields of the stars. Results are shown for different stellar separations of a given binary system comprising of a B star and a Wolf-Rayet star. The influence of orbital orientation with respect to the line of sight is also studied by using different orbital viewing angles. For the chosen electron-proton injection ratio of 10{sup –2}, we present the ensuing photon emission in terms of two-dimensional projections maps, spectral energy distributions, and integrated photon flux values in various energy bands. Here, we find a transition from hadron-dominated to lepton-dominated high-energy emission with increasing stellar separations. In addition, we confirm findings from previous analytic modeling that the spectral energy distribution varies significantly with orbital orientation.

  18. Optical spectral analysis of ultra-weak photon emission from tissue culture and yeast cells

    NASA Astrophysics Data System (ADS)

    Nerudová, Michaela; Červinková, Kateřina; Hašek, Jiří; Cifra, Michal

    2015-01-01

    Optical spectral analysis of the ultra-weak photon emission (UPE) could be utilized for non-invasive diagnostic of state of biological systems and for elucidation of underlying mechanisms of UPE generation. Optical spectra of UPE from differentiated HL-60 cells and yeast cells (Saccharomyces cerevisiae) were investigated. Induced photon emission of neutrophil-like cells and spontaneous photon emission of yeast cells were measured using highly sensitive photomultiplier module Hamamatsu H7360-01 in a thermally regulated light-tight chamber. The respiratory burst of neutrophil-like HL-60 cells was induced with the PMA (phorbol 12-myristate, 13-acetate). PMA activates an assembly of NADPH oxidase, which induces a rapid formation of reactive oxygen species (ROS). Long-pass edge filters (wavelength 350, from 400 to 600 with 25 nm resolution and 650 nm) were used for optical spectral analysis. Propagation of error of indirect measurements and standard deviation were used to assess reliability of the measured spectra. Results indicate that the photon emission from both cell cultures is detectable in the six from eight examined wavelength ranges with different percentage distribution of cell suspensions, particularly 450-475, 475-500, 500-525, 525-550, 550-575 and 575-600 nm. The wavelength range of spectra from 450 to 550 nm coincides with the range of photon emission from triplet excited carbonyls (350-550 nm). The both cells cultures emitted photons in wavelength range from 550 to 600 nm but this range does not correspond with any known emitter. To summarize, we have demonstrated a clear difference in the UPE spectra between two organisms using rigorous methodology and error analysis.

  19. Photon-photon correlation statistics in the collective emission from ensembles of self-assembled quantum dots

    NASA Astrophysics Data System (ADS)

    Miftasani, Fitria; Machnikowski, Paweł

    2016-02-01

    We present a theoretical analysis of the intensity correlation functions for the spontaneous emission from a planar ensemble of self-assembled quantum dots. Using the quantum jump approach, we numerically simulate the evolution of the system and construct photon-photon delay time statistics that approximates the second-order correlation functions of the field. The form of this correlation function in the case of collective emission from a highly homogeneous ensemble qualitatively differs from that characterizing an ensemble of independent emitters (inhomogeneous ensemble of uncoupled dots). The signatures of collective emission are observed also in the case of an inhomogeneous but sufficiently strongly coupled ensemble. Different forms of the correlation functions are observed in the intensity autocorrelations and in cross correlations between various spectral ranges, revealing the quantum state projection associated with the detection event and the subsequent interaction-induced redistribution of occupations. The predicted effect of collective dynamics on the correlation functions appears under various excitation conditions. Thus, we show that the second-order correlation function of the emitted field provides a sensitive test of cooperative effects.

  20. Biocompatible and Photostable AIE Dots with Red Emission for In Vivo Two-Photon Bioimaging

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Qian, Jun; Qin, Wei; Qin, Anjun; Tang, Ben Zhong; He, Sailing

    2014-03-01

    Bioimaging systems with cytocompatibility, photostability, red fluorescence, and optical nonlinearity are in great demand. Herein we report such a bioimaging system. Integration of tetraphenylethene (T), triphenylamine (T), and fumaronitrile (F) units yielded adduct TTF with aggregation-induced emission (AIE). Nanodots of the AIE fluorogen with efficient red emission were fabricated by encapsulating TTF with phospholipid. The AIE dots enabled three-dimensional dynamic imaging with high resolution in blood vessels of mouse brain under two-photon excitation.

  1. Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities.

    PubMed

    Hoang, Thang B; Akselrod, Gleb M; Mikkelsen, Maiken H

    2016-01-13

    Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonstrate the regime of ultrafast spontaneous emission (∼10 ps) from a single quantum emitter coupled to a plasmonic nanocavity at room temperature. The nanocavity integrated with a single colloidal semiconductor quantum dot produces a 540-fold decrease in the emission lifetime and a simultaneous 1900-fold increase in the total emission intensity. At the same time, the nanocavity acts as a highly efficient optical antenna directing the emission into a single lobe normal to the surface. This plasmonic platform is a versatile geometry into which a variety of other quantum emitters, such as crystal color centers, can be integrated for directional, room-temperature single photon emission rates exceeding 80 GHz. PMID:26606001

  2. Photon-splitting limits to the hardness of emission in strongly magnetized soft gamma repeaters

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    1995-01-01

    Soft gamma repeaters are characterized by recurrent activity consisting of short-duration outbursts of high-energy emission that is typically of temperature less than 40 keV. One recent model of repeaters is that they originate in the environs of neutron stars with superstrong magnetic fields, perhaps greater than 10(exp 14) G. In such fields, the exotic process of magnetic photon splitting gamma yields gamma gamma acts very effectively to reprocess gamma-ray radiation down to hard X-ray energies. In this Letter, the action of photon splitting is considered in some detail, via the solution of photon kinetic equations, determining how it limits the hardness of emission in strongly magnetized repeaters, and thereby obtaining observational constraints to the field in SGR 1806-20.

  3. Multi-photon excited coherent random laser emission in ZnO powders

    NASA Astrophysics Data System (ADS)

    Tolentino Dominguez, Christian; Gomes, Maria De A.; Macedo, Zélia S.; de Araújo, Cid B.; Gomes, Anderson S. L.

    2014-11-01

    We report the observation and analysis of anti-Stokes coherent random laser (RL) emission from zinc oxide (ZnO) powders excited by one-, two- or three-photon femtosecond laser radiation. The ZnO powders were produced via a novel proteic sol-gel, low-cost and environmentally friendly route using coconut water in the polymerization step of the metal precursor. One- and two-photon excitation at 354 nm and 710 nm, respectively, generated single-band emissions centred at about 387 nm. For three-photon excitation, the emission spectra showed a strong ultraviolet (UV) band (380-396 nm) attributed to direct three-photon absorption from the valence band to the conduction band. The presence of an intensity threshold and a bandwidth narrowing of the UV band from about 20 to 4 nm are clear evidence of RL action. The observation of multiple sub-nanometre narrow peaks in the emission spectra for excitation above the RL threshold is consistent with random lasing by coherent feedback.

  4. Multi-photon excited coherent random laser emission in ZnO powders.

    PubMed

    Tolentino Dominguez, Christian; Gomes, Maria de A; Macedo, Zélia S; de Araújo, Cid B; Gomes, Anderson S L

    2015-01-01

    We report the observation and analysis of anti-Stokes coherent random laser (RL) emission from zinc oxide (ZnO) powders excited by one-, two- or three-photon femtosecond laser radiation. The ZnO powders were produced via a novel proteic sol-gel, low-cost and environmentally friendly route using coconut water in the polymerization step of the metal precursor. One- and two-photon excitation at 354 nm and 710 nm, respectively, generated single-band emissions centred at about 387 nm. For three-photon excitation, the emission spectra showed a strong ultraviolet (UV) band (380-396 nm) attributed to direct three-photon absorption from the valence band to the conduction band. The presence of an intensity threshold and a bandwidth narrowing of the UV band from about 20 to 4 nm are clear evidence of RL action. The observation of multiple sub-nanometre narrow peaks in the emission spectra for excitation above the RL threshold is consistent with random lasing by coherent feedback. PMID:25407414

  5. Insect spontaneous ultraweak photon emission as an indicator of insecticidal compounds.

    PubMed

    Tian, Yongqing; Yang, Chuping; Xu, Hanhong

    2014-11-01

    The influence of beta-cypermethrin, a commercial insecticide, and Cicuta virosa L. var. latisecta Celak (Umbelliferae:Cicutal), an insecticidal plant, on the spontaneous ultraweak photon emissions from larvae of Spodoptera litura Fabricius and Zophobas morio Fabricius were studied. The increased percentages of spontaneous photon emission intensities from S. litura treated with 0.1 and 1 μg/ml beta-cypermethrin were both lower than those of the control in the 24 post-treatment hours, remarkable difference could also be observed during the same period from Z. morio treated with beta-cypermethrin at 0.156, 0.313 and 0.625 μg/ml. The increased percentages of spontaneous photon emission intensities from the two mentioned insects treated with 10,100 and 1000 μg/ml petroleum ether fraction of C. virosa L. var. latisecta, which displayed little activity against whole insects, could also be changed noticeably. The present study indicated that change in the intensity of spontaneous ultraweak photon emission from insect could be used as a novel method for screening insecticidal compounds with very low content in plant. PMID:25108203

  6. Aberration corrected 1.2-MV cold field-emission transmission electron microscope with a sub-50-pm resolution

    SciTech Connect

    Akashi, Tetsuya; Takahashi, Yoshio; Tanigaki, Toshiaki Shimakura, Tomokazu; Kawasaki, Takeshi; Furutsu, Tadao; Shinada, Hiroyuki; Osakabe, Nobuyuki; Müller, Heiko; Haider, Maximilian; Tonomura, Akira

    2015-02-16

    Atomic-resolution electromagnetic field observation is critical to the development of advanced materials and to the unveiling of their fundamental physics. For this purpose, a spherical-aberration corrected 1.2-MV cold field-emission transmission electron microscope has been developed. The microscope has the following superior properties: stabilized accelerating voltage, minimized electrical and mechanical fluctuation, and coherent electron emission. These properties have enabled to obtain 43-pm information transfer. On the bases of these performances, a 43-pm resolution has been obtained by correcting lens aberrations up to the third order. Observations of GaN [411] thin crystal showed a projected atomic locations with a separation of 44 pm.

  7. Final LDRD report : enhanced spontaneous emission rate in visible III-nitride LEDs using 3D photonic crystal cavities.

    SciTech Connect

    Fischer, Arthur Joseph; Subramania, Ganapathi S.; Coley, Anthony J.; Lee, Yun-Ju; Li, Qiming; Wang, George T.; Luk, Ting Shan; Koleske, Daniel David; Fullmer, Kristine Wanta

    2009-09-01

    The fundamental spontaneous emission rate for a photon source can be modified by placing the emitter inside a periodic dielectric structure allowing the emission to be dramatically enhanced or suppressed depending on the intended application. We have investigated the relatively unexplored realm of interaction between semiconductor emitters and three dimensional photonic crystals in the visible spectrum. Although this interaction has been investigated at longer wavelengths, very little work has been done in the visible spectrum. During the course of this LDRD, we have fabricated TiO{sub 2} logpile photonic crystal structures with the shortest wavelength band gap ever demonstrated. A variety of different emitters with emission between 365 nm and 700 nm were incorporated into photonic crystal structures. Time-integrated and time-resolved photoluminescence measurements were performed to measure changes to the spontaneous emission rate. Both enhanced and suppressed emission were demonstrated and attributed to changes to the photonic density of states.

  8. Measurement of direct photon emission in the K(L) ---> pi+ pi- gamma decay mode

    SciTech Connect

    Abouzaid, E.; Arenton, M.; Barker, A.R.; Bellantoni, L.; Bellavance, A.; Blucher, E.; Bock, G.J.; Cheu, E.; Coleman, R.; Corcoran, M.D.; Corti, G.; /Virginia U. /Wisconsin U., Madison

    2006-04-01

    In this paper the KTeV collaboration reports the analysis of 112.1 x 10{sup 3} candidate K{sub L} {yields} {pi}{sup +}{pi}{sup -}{gamma} decays including a background of 671 {+-} 41 events with the objective of determining the photon production mechanisms intrinsic to the decay process. These decays have been analyzed to extract the relative contributions of the Cp violating bremsstrahlung process and the CP conserving M1 and CP violating E1 direct photon emission processes. The M1 direct photon emission amplitude and its associated vector form factor parameterized as |{bar g}{sub M1}|(1 + a{sub 1}/a{sub 2}/(M{sub {rho}}{sup 2}-M{sub K}{sup 2}) + 2M{sub K}E{sub {gamma}}) have been measured to be |{bar g}{sub M1}| = 1.198 {+-} 0.035(stat) {+-} 0.086(syst) and a{sub 1}/a{sub 2} = =0.738 {+-} 0.007(stat) {+-} 0.018(syst) GeV{sup 2}/c{sup 2} respectively. An upper limit for the CP violating E1 direct emission amplitude |g{sub E1}| {le} 0.1 (90%CL) has been found. The overall ratio of direct photon emission (DE) to total photon emission including the bremsstrahlung process (IB) has been determined to be DE/(DE + IB) = 0.689 {+-} 0.021 for E{sub {gamma}} {ge} 20 MeV.

  9. Extracting photon periodic orbits from spontaneous emission spectra in laterally confined vertically emitted cavities.

    PubMed

    Chen, Yung-Fu; Yu, Yan-Ting; Huang, Yu-Jen; Chiang, Po-Yi; Su, Kuan-Wei; Huang, Kai-Feng

    2010-08-15

    We report our observation of the signature of photon periodic orbits in the spontaneous emission spectra of large-aperture vertical-cavity surface-emitting lasers (VCSELs). The high-resolution measurement clearly demonstrates that over a thousand cavity modes with a narrow linewidth can be perfectly exhibited in the spontaneous emission spectrum just below the lasing threshold. The Fourier-transformed spectrum is analyzed to confirm that the spontaneous emission spectra of large-aperture VCSELs can be exploited to analogously investigate the energy spectra of the 2D quantum billiards. PMID:20717436

  10. Photon and dilepton production at the Facility for Proton and Anti-Proton Research and beam-energy scan at the Relativistic Heavy-Ion Collider using coarse-grained microscopic transport simulations

    NASA Astrophysics Data System (ADS)

    Endres, Stephan; van Hees, Hendrik; Bleicher, Marcus

    2016-05-01

    We present calculations of dilepton and photon spectra for the energy range Elab=2 A to35 A GeV which will be available for the Compressed Baryonic Matter (CBM) experiment at the future Facility for Proton and Anti-Proton Research (FAIR). The same energy regime will also be covered by phase II of the beam-energy scan at the Relativistic Heavy-Ion Collider (RHIC-BES). Coarse-grained dynamics from microscopic transport calculations of the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) model is used to determine temperature and chemical potentials, which allows for the use of dilepton and photon-emission rates from equilibrium quantum-field-theory calculations. The results indicate that nonequilibrium effects, the presence of baryonic matter, and the creation of a deconfined phase might show up in specific manners in the measurable dilepton invariant-mass spectra and in the photon transverse-momentum spectra. However, as the many influences are difficult to disentangle, we argue that the challenge for future measurements of electromagnetic probes will be to provide a high precision with uncertainties much lower than in previous experiments. Furthermore, a systematic study of the whole energy range covered by CBM at FAIR and RHIC-BES is necessary to discriminate between different effects, which influence the spectra, and to identify possible signatures of a phase transition.

  11. Two-photon-induced x-ray emission in neon atoms

    SciTech Connect

    Sun Yuping; Wang Chuankui; Rinkevicius, Zilvinas; Gel'mukhanov, Faris; Carniato, Stephane; Simon, Marc; Taieeb, Richard

    2010-10-15

    We investigated the resonant x-ray emission from a neon atom induced by the two-photon population of a double-core-hole excited state. Two qualitatively different schemes of this process are studied: The first one involves an off-resonant intermediate single-core-hole state; the second scheme passes through a resonant core-ionized intermediate state. The numerical simulations of the resonant x-ray emission performed for different peak intensities and pulse durations show significant population of the double-core-hole final states. Therefore, rather strong two-photon absorption-induced x-ray emission is predicted for both studied schemes. Thus, high counting rates in experimental measurements are expected.

  12. Probing the intrinsic optical Bloch-mode emission from a 3D photonic crystal.

    PubMed

    Hsieh, Mei-Li; Bur, James A; Du, Qingguo; John, Sajeev; Lin, Shawn-Yu

    2016-10-14

    We report experimental observation of intrinsic Bloch-mode emission from a 3D tungsten photonic crystal at low thermal excitation. After the successful removal of conventional metallic emission (normal emission), it is possible to make an accurate comparison of the Bloch-mode and the normal emission. For all biases, we found that the emission intensity of the Bloch-mode is higher than that of the normal emission. The Bloch-mode emission also exhibits a slower dependence on [Formula: see text] than that of the normal emission. The observed higher emission intensity and a different T-dependence is attributed to Bloch-mode assisted emission where emitters have been located into a medium having local density of states different than the isotropic case. Furthermore, our finite-difference time-domain (FDTD) simulation shows the presence of localized spots at metal-air boundaries and corners, having intense electric field. The enhanced plasmonic field and local non-equilibrium could induce a strong thermally stimulated emission and may be the cause of our unusual observation. PMID:27606574

  13. Collective Evidence for Inverse Compton Emission from External Photons in High-Power Blazars

    NASA Technical Reports Server (NTRS)

    Meyer, Eileen T.; Fossati, Giovanni; Georganopoulos, Markos; Lister, Matthew L.

    2012-01-01

    We present the first collective evidence that Fermi-detected jets of high kinetic power (L(sub kin)) are dominated by inverse Compton emission from upscattered external photons. Using a sample with a broad range in orientation angle, including radio galaxies and blazars, we find that very high power sources (L(sub kin) > 10(exp 45.5) erg/s) show a significant increase in the ratio of inverse Compton to synchrotron power (Compton dominance) with decreasing orientation angle, as measured by the radio core dominance and confirmed by the distribution of superluminal speeds. This increase is consistent with beaming expectations for external Compton (EC) emission, but not for synchrotron self Compton (SSC) emission. For the lowest power jets (L(sub kin) < 10(exp 43.5) erg /s), no trend between Compton and radio core dominance is found, consistent with SSC. Importantly, the EC trend is not seen for moderately high power flat spectrum radio quasars with strong external photon fields. Coupled with the evidence that jet power is linked to the jet speed, this finding suggests that external photon fields become the dominant source of seed photons in the jet comoving frame only for the faster and therefore more powerful jets.

  14. Controlled waveguide coupling for photon emission from colloidal PbS quantum dot using tunable microcavity made of optical polymer and silicon

    NASA Astrophysics Data System (ADS)

    Nozaka, Takahiro; Mukai, Kohki

    2016-04-01

    A tunable microcavity device composed of optical polymer and Si with a colloidal quantum dot (QD) is proposed as a single-photon source for planar optical circuit. Cavity size is controlled by electrostatic micromachine behavior with the air bridge structure to tune timing of photon injection into optical waveguide from QD. Three-dimensional positioning of a QD in the cavity structure is available using a nanohole on Si processed by scanning probe microscope lithography. We fabricated the prototype microcavity with PbS-QD-mixed polymenthyl methacrylate on a SOI (semiconductor-on-insulator) substrate to show the tunability of cavity size as the shift of emission peak wavelength of QD ensemble.

  15. Flexible nanomembrane photonic-crystal cavities for tensilely strained-germanium light emission

    NASA Astrophysics Data System (ADS)

    Yin, Jian; Cui, Xiaorui; Wang, Xiaowei; Sookchoo, Pornsatit; Lagally, Max G.; Paiella, Roberto

    2016-06-01

    Flexible photonic-crystal cavities in the form of Si-column arrays embedded in polymeric films are developed on Ge nanomembranes using direct membrane assembly. The resulting devices can sustain large biaxial tensile strain under mechanical stress, as a way to enhance the Ge radiative efficiency. Pronounced emission peaks associated with photonic-crystal cavity resonances are observed in photoluminescence measurements. These results show that ultrathin nanomembrane active layers can be effectively coupled to an optical cavity, while still preserving their mechanical flexibility. Thus, they are promising for the development of strain-enabled Ge lasers, and more generally uniquely flexible optoelectronic devices.

  16. Unsupervised image processing scheme for transistor photon emission analysis in order to identify defect location

    NASA Astrophysics Data System (ADS)

    Chef, Samuel; Jacquir, Sabir; Sanchez, Kevin; Perdu, Philippe; Binczak, Stéphane

    2015-01-01

    The study of the light emitted by transistors in a highly scaled complementary metal oxide semiconductor (CMOS) integrated circuit (IC) has become a key method with which to analyze faulty devices, track the failure root cause, and have candidate locations for where to start the physical analysis. The localization of defective areas in IC corresponds to a reliability check and gives information to the designer to improve the IC design. The scaling of CMOS leads to an increase in the number of active nodes inside the acquisition area. There are also more differences between the spot's intensities. In order to improve the identification of all of the photon emission spots, we introduce an unsupervised processing scheme. It is based on iterative thresholding decomposition (ITD) and mathematical morphology operations. It unveils all of the emission spots and removes most of the noise from the database thanks to a succession of image processing. The ITD approach based on five thresholding methods is tested on 15 photon emission databases (10 real cases and 5 simulated cases). The photon emission areas' localization is compared to an expert identification and the estimation quality is quantified using the object consistency error.

  17. Novel photonic crystal cavities and related structures.

    SciTech Connect

    Luk, Ting Shan

    2007-11-01

    The key accomplishment of this project is to achieve a much more in-depth understanding of the thermal emission physics of metallic photonic crystal through theoretical modeling and experimental measurements. An improved transfer matrix technique was developed to enable incorporation of complex dielectric function. Together with microscopic theory describing emitter radiative and non-radiative relaxation dynamics, a non-equilibrium thermal emission model is developed. Finally, experimental methodology was developed to measure absolute emissivity of photonic crystal at high temperatures with accuracy of +/-2%. Accurate emissivity measurements allow us to validate the procedure to treat the effect of the photonic crystal substrate.

  18. Tamm plasmon- and surface plasmon-coupled emission from hybrid plasmonic–photonic structures

    PubMed Central

    Chen, Yikai; Zhang, Douguo; Zhu, Liangfu; Wang, Ruxue; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.

    2015-01-01

    Photonic and plasmon-coupled emissions present new opportunities for control on light emission from fluorophores, and have many applications in the physical and biological sciences. The mechanism of and the influencing factors for the coupling between the fluorescent molecules and plasmon and/or photonic modes are active areas of research. In this paper, we describe a hybrid photonic–plasmonic structure that simultaneously contains two plasmon modes: surface plasmons (SPs) and Tamm plasmons (TPs), both of which can modulate fluorescence emission. Experimental results show that both SP-coupled emission (SPCE) and TP-coupled emission (TPCE) can be observed simultaneously with this hybrid structure. Due to the different resonant angles of the TP and SP modes, the TPCE and SPCE can be beamed in different directions and can be separated easily. Back focal plane images of the fluorescence emission show that the relative intensities of the SPCE and TPCE can be changed if the probes are at different locations inside the hybrid structure, which reveals the probe location-dependent different coupling strengths of the fluorescent molecules with SPs and TPs. The different coupling strengths are ascribed to the electric field distribution of the two modes in the structure. Here, we present an understanding of these factors influencing mode coupling with probes, which is vital for structure design for suitable applications in sensing and diagnostics. PMID:26526929

  19. The application of ultra-weak photon emission in dermatology.

    PubMed

    Ou-Yang, Hao

    2014-10-01

    Ultra-weak photo emission (UPE) is a phenomenon closely associated with life and provides us a rare window to look into oxidative reactions in life directly without the aid of other agents. Dozens of independent studies have investigated UPE in skin in the last 2 decades. Skin serves as a convenient target for the application of UPE. As the outmost layer of our body, skin is also subjected to the influences from environmental factors such as ultraviolet light. Therefore UPE measurement can help us better understand the interaction between skin and the outside world. A variety of dermatological interventions may benefit from UPE studies. In particular, those treatments aiming to manage the oxidative status of the skin can be monitored directly by UPE measurements. In recent years, UPE has already been used as a valuable in vivo tool to assist the selection of better skin care ingredients and products. The knowledge gained by UPE studies of skin may also help generate new insights and new targets for future treatments. This review emphasizes in vivo and clinical measurement of UPE in skin. The applications of UPE in skin research related to antioxidants and sunscreens are discussed. PMID:24275519

  20. Enhanced eumelanin emission by stepwise three-photon excitation

    NASA Astrophysics Data System (ADS)

    Kerimo, Josef; Rajadhyaksha, Milind; DiMarzio, Charles A.

    2011-03-01

    Eumelanin fluorescence from Sepia officinalis and black human hair was activated with near-infrared radiation and multiphoton excitation. A third order multiphoton absorption by a step-wise process appears to be the underlying mechanism. The activation was caused by a photochemical process since it could not be reproduced by simple heating. Both fluorescence and brightfield imaging indicate the near-infrared irradiation caused photodamage to the eumelanin and the activated emission originated from the photodamaged region. At least two different components with about thousand-fold enhanced fluorescence were activated and could be distinguished by their excitation properties. One component was excited with wavelengths in the visible region and exhibited linear absorption dependence. The second component could be excited with near-infrared wavelengths and had a third order dependence on the laser power. The third order dependence is explained by a step-wise excited state absorption (ESA) process since it could be observed equally with the CW and femtosecond lasers. The new method for photoactivating the eumelanin fluorescence was used to map the melanin content in human hair.

  1. Free radicals and low-level photon emission in human pathogenesis: state of the art.

    PubMed

    Van Wijk, Roeland; Van Wijk, Eduard P A; Wiegant, Fred A C; Ives, John

    2008-05-01

    Convincing evidence supports a role for oxidative stress in the pathogenesis of many chronic diseases. The model includes the formation of radical oxygen species (ROS) and the misassembly and aggregation of proteins when three tiers of cellular defence are insufficient: (a) direct antioxidative systems, (b) molecular damage repairing systems, and (c) compensatory chaperone synthesis. The aim of the present overview is to introduce (a) the basics of free radical and antioxidant metabolism, (b) the role of the protein quality control system in protecting cells from free radical damage and its relation to chronic diseases, (c) the basics of the ultraweak luminescence as marker of the oxidant status of biological systems, and (d) the research in human photon emission as a non-invasive marker of oxidant status in relation to chronic diseases. In considering the role of free radicals in disease, both their generation and their control by the antioxidant system are part of the story. Excessive free radical production leads to the production of heat shock proteins and chaperone proteins as a second line of protection against damage. Chaperones at the molecular level facilitate stress regulation vis-à-vis protein quali y control mechanisms. The manifestation of misfolded proteins and aggregates is a hallmark of a range of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amylotrophic lateral sclerosis, polyglutamine (polyQ) diseases, diabetes and many others. Each of these disorders exhibits aging-dependent onset and a progressive, usually fatal clinical course. The second part reviews the current status of human photon emission techniques and protocols for recording the human oxidative status. Sensitive photomultiplier tubes may provide a tool for non-invasive and continuous monitoring of oxidative metabolism. In that respect, recording ultraweak luminescence has been favored compared to other indirect assays. Several biological models have

  2. Enhancement of molecular sensitivity in positron emission tomography with quantum correlation of γ-ray photons

    SciTech Connect

    Sato, K.; Kobayashi, Y.

    2015-05-15

    Enhancement of molecular sensitivity in positron emission tomography (PET) has long been discussed with respect to imaging instrumentation and algorithms for data treatment. Here, the molecular sensitivity in PET is discussed on the basis of 2-dimensional coincident measurements of 511 keV γ ray photons resultant from two-photon annihilation. Introduction of an additional selection window based on the energy sum and difference of the coincidently measured γ ray photons, without any significant instrumental and algorithmic changes, showed an improvement in the signal-to-noise ratio (SNR) by an order of magnitude. Improvement of performance characteristics in the PET imaging system was demonstrated by an increase in the noise equivalent count rate (NECR) which takes both the SNR and the detection efficiency into consideration. A further improvement of both the SNR and the NECR is expected for the present system in real clinical and in-vivo environments, where much stronger positron sources are employed.

  3. The Number of Accumulated Photons and the Quality of Stimulated Emission Depletion Lifetime Images

    SciTech Connect

    Syed, Aleem; Lesoine, Michael D; Bhattacharjee, Ujjal; Petrich, Jacob W; Smith, Emily A

    2014-03-03

    Time binning is used to increase the number of photon counts in the peak channel of stimulated emission depletion (STED) fluorescence lifetime decay curves to determine how it affects the resulting lifetime image. The fluorescence lifetime of the fluorophore, Alexa Fluor 594 phalloidin, bound to F-actin is probed in cultured S2 cells at a spatial resolution of ~40 nm. This corresponds to a tenfold smaller probe volume compared to confocal imaging, and a reduced number of photons contributing to the signal. Pixel-by-pixel fluorescence lifetime measurements and error analysis show that an average of 40 ± 30 photon counts in the peak channel with a signal-to-noise ratio of 20 is enough to calculate a reliable fluorescence lifetime from a single exponential fluorescence decay. No heterogeneity in the actin cytoskeleton in different regions of the cultured cells was measured in the 40- to 400-nm spatial regime.

  4. Protecting remote atomic entanglement against spontaneous emission by separated photonic pulses

    NASA Astrophysics Data System (ADS)

    Zong, Xiao-Lan; Du, Chao-Qun; Yang, Ming; Zhang, Gang; Yang, Qing; Cao, Zhuo-Liang

    2015-07-01

    We study the entanglement dynamics between two spatially separated atoms trapped in two separate optical cavities. Based on cavity-assisted interactions between the atoms and separated photonic pulses, we propose a scheme for the implemention of a controlled-phase-flip gate (CPF gate) between each of the atoms and the photonic pulse to protect the remote atomic quantum entanglement against the decaying caused by spontaneous emission. What we need to do is to shoot the horizontally polarized photons onto the cavity mirror successively, plus a train of Hadamard operations on the atoms, and no measurement is needed here. It is shown that the quantum entanglement of the two remote atoms can be protected effectively in this way. We also extend our scheme to the case of weak coupling and low Q cavity cases. The simplicity of the current scheme may warrant its experimental realization.

  5. Single photon infrared emission spectroscopy: a study of IR emission from UV laser excited PAHs between 3 and 15 micrometers

    NASA Technical Reports Server (NTRS)

    Cook, D. J.; Schlemmer, S.; Balucani, N.; Wagner, D. R.; Harrison, J. A.; Steiner, B.; Saykally, R. J.

    1998-01-01

    Single-photon infrared emission spectroscopy (SPIRES) has been used to measure emission spectra from polycyclic aromatic hydrocarbons (PAHs). A supersonic free-jet expansion has been used to provide emission spectra of rotationally cold and vibrationally excited naphthalene and benzene. Under these conditions, the observed width of the 3.3-micrometers (C-H stretch) band resembles the bandwidths observed in experiments in which emission is observed from naphthalene with higher rotational energy. To obtain complete coverage of IR wavelengths relevant to the unidentified infrared bands (UIRs), UV laser-induced desorption was used to generate gas-phase highly excited PAHs. Lorentzian band shapes were convoluted with the monochromator-slit function in order to determine the widths of PAH emission bands under astrophysically relevant conditions. Bandwidths were also extracted from bands consisting of multiple normal modes blended together. These parameters are grouped according to the functional groups mostly involved in the vibration, and mean bandwidths are obtained. These bandwidths are larger than the widths of the corresponding UIR bands. However, when the comparison is limited to the largest PAHs studied, the bandwidths are slightly smaller than the corresponding UIR bands. These parameters can be used to model emission spectra from PAH cations and cations of larger PAHs, which are better candidate carriers of the UIRs.

  6. Single photon emission computed tomography in Alzheimer's disease. Abnormal iofetamine I 123 uptake reflects dementia severity

    SciTech Connect

    Johnson, K.A.; Holman, B.L.; Mueller, S.P.; Rosen, T.J.; English, R.; Nagel, J.S.; Growdon, J.H.

    1988-04-01

    To determine whether abnormalities in regional cerebral functional activity estimated by iofetamine hydrochloride I 123 and single photon emission computed tomography can be detected in mild or moderate as well as severe cases of Alzheimer's disease (AD), we performed iofetamine I 123-single photon emission computed tomography in 37 patients with probable AD (nine patients with mild, 18 patients with moderate, and ten patients with severe dementia) and nine age-matched control subjects. Iofetamine I 123 uptake was measured in right and left frontal, temporal, parietal, and occipital cortices. Mean (right and left) iofetamine I 123 activity was lowest in the parietal region of patients with AD and was significantly reduced in the other three regions compared with control subjects. Only in the parietal region was lower relative iofetamine I 123 activity associated with an impaired level of patient function and with cognitive deficit.

  7. Inhibition of light emission in a 2.5D photonic structure

    SciTech Connect

    Peretti, Romain; Seassal, Christian; Viktorovich, Pierre; Letartre, Xavier

    2014-07-14

    We analyse inhibition of emission in a 2.5D photonic structures made up of a photonic crystal (PhC) and Bragg mirrors using Finite Differences Time Domaine (FDTD) simulations. A comparison is made between an isolated PhC membrane and the same PhC suspended onto a Bragg mirror or sandwiched between 2 Bragg mirrors. Strong inhibition of the Purcell factor is observed in a broad spectral range, whatever the in-plane orientation and location of the emitting dipole. We analysed these results numerically and theoretically by simulating the experimentally observed lifetime of a collection of randomly distributed emitters, showing that their average emission rate is decreased by more than one decade, both for coupled or isolated emitters.

  8. Upconversion emission properties of CeO2: Tm3+, Yb3+ inverse opal photonic crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Gong; Wu, Hangjun; Yang, Zhengwen; Liao, Jiayan; Lai, Shenfeng; Qiu, Jianbei; Song, Zhiguo

    2014-10-01

    The ordered and disordered templates were assembled by vertical deposition of polystyrene microspheres. The CeO2: Tm3+, Yb3+ precursor solution was used to infiltrate into the voids of the ordered and disordered templates, respectively. Then the ordered and disordered templates were calcined at 950°C in an air furnace, and the CeO2: Tm3+, Yb3+ inverse opals were obtained. The upconversion emissions from CeO2: Tm3+, Yb3+ inverse opals were suppressed due to the photon trapping caused by Bragg reflection of lattice planes when the upconversion emission band was in the range of the photonic band gaps in the inverse opals.

  9. Analytic treatment of source photon emission times to reduce noise in implicit Monte Carlo calculations

    SciTech Connect

    Trahan, Travis J.; Gentile, Nicholas A.

    2012-09-10

    Statistical uncertainty is inherent to any Monte Carlo simulation of radiation transport problems. In space-angle-frequency independent radiative transfer calculations, the uncertainty in the solution is entirely due to random sampling of source photon emission times. We have developed a modification to the Implicit Monte Carlo algorithm that eliminates noise due to sampling of the emission time of source photons. In problems that are independent of space, angle, and energy, the new algorithm generates a smooth solution, while a standard implicit Monte Carlo solution is noisy. For space- and angle-dependent problems, the new algorithm exhibits reduced noise relative to standard implicit Monte Carlo in some cases, and comparable noise in all other cases. In conclusion, the improvements are limited to short time scales; over long time scales, noise due to random sampling of spatial and angular variables tends to dominate the noise reduction from the new algorithm.

  10. Photon and radiowave emission from peeling pressure sensitive adhesives in air

    NASA Technical Reports Server (NTRS)

    Donaldson, E. E.; Shen, X. A.; Dickinson, J. T.

    1985-01-01

    During separation of an adhesive from a polymer substrate in air, intense bursts of photons ('phE', for photon emission) and long wavelength electromagnetic radiation ('RE', for radiowave emission), similar to those reported earlier by Deryagin, et al. (1978) have been observed. In this paper, careful measurements of the phE time distributions, as well as time correlations between bursts of phE and RE, are reported. These results support the view that patches of electrical charge produced by charge separation between dissimilar materials lead to microdischarges in and near the crack tip. The role of these discharges in producing sustained phE after the discharge has been extinguished is also discussed.

  11. Spectrometer for single-shot x-ray emission and photon diagnostics

    NASA Astrophysics Data System (ADS)

    Frassetto, F.; Miotti, P.; Callegari, C.; de Simone, M.; Finetti, P.; Giangrisostomi, E.; Grazioli, C.; Iesari, F.; Kivimäki, A.; Mincigrucci, R.; Principi, E.; Stagira, S.; Di Cicco, A.; Coreno, M.; Poletto, L.

    2014-09-01

    We present the design and characterization of a compact and portable spectrometer realized for photon in-photon out experiments (in particular X-Ray Emission Spectroscopy, XES), in particular tailored to be used at the FERMI freeelectron- laser (FEL) at ELETTRA (Italy). The spectrometer can be installed on different end stations at variable distances from the target area both at synchrotron and FEL beamlines. Different input sections can be accommodated in order to fit the experimental requests, with/without an entrance slit and with/without an additional relay mirror. The design is compact in order to realize a portable instrument within a total footprint of less than one square meter. The instrument is based on the use of two flat-field grazing-incidence gratings and an EUV-enhanced CCD detector to cover the 25-800 eV spectral range, with spectral resolution better than 0.2%. The absolute response of the spectrometer, has been measured in the whole spectral region of operation, allowing calibrated measurements of the photon flux. The characterization on the Gas Phase beamline at ELETTRA Synchrotron as instrument for XES and some experimental data of the FEL emission taken at EIS-TIMEX beamline at FERMI, where the instrument has been used for photon beam diagnostics, are presented.

  12. Multidimensional characterization of an entangled photon-pair source via stimulated emission tomography.

    PubMed

    Fang, B; Liscidini, M; Sipe, J E; Lorenz, V O

    2016-05-01

    Using stimulated emission tomography, we characterize an entangled photon-pair source in the energy and polarization degrees of freedom, with a precision far exceeding what could be obtained by quantum state tomography. Through this multidimensional tomography we find that energy-polarization correlations are a cause of polarization-entanglement degradation, demonstrating that this technique provides useful information for source engineering and can accelerate the development of quantum information processing systems dependent on many degrees of freedom. PMID:27137611

  13. Ultraweak Photon Emission as a Non-Invasive Health Assessment: A Systematic Review

    PubMed Central

    Ives, John A.; van Wijk, Eduard P. A.; Bat, Namuun; Crawford, Cindy; Walter, Avi; Jonas, Wayne B.; van Wijk, Roeland; van der Greef, Jan

    2014-01-01

    We conducted a systematic review (SR) of the peer reviewed scientific literature on ultraweak photon emissions (UPE) from humans. The question was: Can ultraweak photon emissions from humans be used as a non-invasive health assessment? A systematic search was conducted across eight relevant databases: PubMed/MEDLINE, BIOSIS, CINAHL, PSYCHINFO, All of Cochrane EBM databases, GIDEON, DoD Biomedical Research, and clinicaltrials.gov from database inception to October 2011. Of the 1315 studies captured by the search strategy, 56 met the inclusion criteria, out of which 1 was a RCT, 27 were CCT, and 28 were observational and descriptive studies. There were no systematic reviews/meta-analyses that fit the inclusion criteria. In this report, the authors provide an assessment of the quality of the RCT included; describe the characteristics of all the included studies, the outcomes assessed, and the effectiveness of photon emission as a potential health assessment tool. This report demonstrates that the peer reviewed literature on UPE and human UPE measurement in particular is surprisingly large. Most of the human UPE literature is of good to high quality based on our systematic evaluation. However, an evaluation tool for systematically evaluating this type of “bio-evaluation” methodology is not currently available and would be worth developing. Publications in the peer reviewed literature over the last 50 years demonstrate that the use of “off-the-shelf” technologies and well described methodologies for the detection of human photon emissions are being used on a regular basis in medical and research settings. The overall quality of this literature is good and the use of this approach for determining inflammatory and oxidative states of patients indicate the growing use and value of this approach as both a medical and research tool. PMID:24586274

  14. Measurement of direct photon emission in K+-->pi(+)pi(0)gamma decay

    PubMed

    Adler; Aoki; Ardebili; Atiya; Bergbusch; Blackmore; Bryman; Chiang; Convery; Diwan; Frank; Haggerty; Inagaki; Ito; Kabe; Kettell; Kishi; Kitching; Kobayashi; Komatsubara; Konaka; Kuno; Kuriki; Kycia; Li; Littenberg

    2000-12-01

    We have performed a measurement of the K+-->pi(+)pi(0)gamma decay and have observed 2x10(4) events. The best fit to the decay spectrum gives a branching ratio for direct photon emission of (4.7+/-0.8+/-0. 3)x10(-6) in the pi(+) kinetic energy region of 55 to 90 MeV and requires no component due to interference with inner bremsstrahlung. PMID:11102135

  15. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity

    PubMed Central

    Gan, Xuetao; Gao, Yuanda; Fai Mak, Kin; Yao, Xinwen; Shiue, Ren-Jye; van der Zande, Arend; Trusheim, Matthew E.; Hatami, Fariba; Heinz, Tony F.; Hone, James; Englund, Dirk

    2013-01-01

    We report on controlling the spontaneous emission (SE) rate of a molybdenum disulfide (MoS2) monolayer coupled with a planar photonic crystal (PPC) nanocavity. Spatially resolved photoluminescence (PL) mapping shows strong variations of emission when the MoS2 monolayer is on the PPC cavity, on the PPC lattice, on the air gap, and on the unpatterned gallium phosphide substrate. Polarization dependences of the cavity-coupled MoS2 emission show a more than 5 times stronger extracted PL intensity than the un-coupled emission, which indicates an underlying cavity mode Purcell enhancement of the MoS2 SE rate exceeding a factor of 70. PMID:24273329

  16. Enhanced electron-hole droplet emission from surface-oxidized silicon photonic crystal nanocavities.

    PubMed

    Sumikura, Hisashi; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2016-01-25

    We have observed electron-hole droplet (EHD) emission enhanced by silicon photonic crystal (Si PhC) nanocavities with a surface oxide. The EHD is employed as a massive emitter that remains inside the nanocavity to achieve efficient cavity-emitter coupling. Time-resolved emission measurements demonstrate that the surface oxide greatly reduces the nonradiative annihilation of the EHDs and maintains them in the PhC nanocavities. It is found that the surface-oxidized Si PhC nanocavity enhances EHD emission in addition to the Purcell enhancement of the resonant cavity, which will contribute to works on Si light emission and the cavity quantum electrodynamics of electron-hole condensates. PMID:26832491

  17. Coherent field emission image of graphene predicted with a microscopic theory

    NASA Astrophysics Data System (ADS)

    Li, Zhibing; Xu, Ningsheng; Kreuzer, H. J.

    2012-03-01

    A general approach to the coherent field electron emission of nanoemitters is proposed and applied to graphene. We will show that the coherence of the Dirac quasiparticles of graphene can be transmitted into the vacuum via electric-field-assisted electron emission at temperatures up to 1000 K. A dragonfly emission pattern with a dark body and two pairs of wings is predicted for the armchair edge as evidence of the pseudospin mixing and the odd parity of the π orbitals. Thus the phase information of the quantum states of the nanoemitters is revealed by the emission image. Moreover, this phenomenon leads to a novel coherent electron line source that can produce interference patterns of extended objects with linear sizes comparable to the length of the graphene edge. The angular distribution of the emission and the total emission current will be given analytically.

  18. Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers

    NASA Astrophysics Data System (ADS)

    Jahnke, Frank; Gies, Christopher; Aßmann, Marc; Bayer, Manfred; Leymann, H. A. M.; Foerster, Alexander; Wiersig, Jan; Schneider, Christian; Kamp, Martin; Höfling, Sven

    2016-05-01

    Light is often characterized only by its classical properties, like intensity or coherence. When looking at its quantum properties, described by photon correlations, new information about the state of the matter generating the radiation can be revealed. In particular the difference between independent and entangled emitters, which is at the heart of quantum mechanics, can be made visible in the photon statistics of the emitted light. The well-studied phenomenon of superradiance occurs when quantum-mechanical correlations between the emitters are present. Notwithstanding, superradiance was previously demonstrated only in terms of classical light properties. Here, we provide the missing link between quantum correlations of the active material and photon correlations in the emitted radiation. We use the superradiance of quantum dots in a cavity-quantum electrodynamics laser to show a direct connection between superradiant pulse emission and distinctive changes in the photon correlation function. This directly demonstrates the importance of quantum-mechanical correlations and their transfer between carriers and photons in novel optoelectronic devices.

  19. Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers

    PubMed Central

    Jahnke, Frank; Gies, Christopher; Aßmann, Marc; Bayer, Manfred; Leymann, H. A. M.; Foerster, Alexander; Wiersig, Jan; Schneider, Christian; Kamp, Martin; Höfling, Sven

    2016-01-01

    Light is often characterized only by its classical properties, like intensity or coherence. When looking at its quantum properties, described by photon correlations, new information about the state of the matter generating the radiation can be revealed. In particular the difference between independent and entangled emitters, which is at the heart of quantum mechanics, can be made visible in the photon statistics of the emitted light. The well-studied phenomenon of superradiance occurs when quantum–mechanical correlations between the emitters are present. Notwithstanding, superradiance was previously demonstrated only in terms of classical light properties. Here, we provide the missing link between quantum correlations of the active material and photon correlations in the emitted radiation. We use the superradiance of quantum dots in a cavity-quantum electrodynamics laser to show a direct connection between superradiant pulse emission and distinctive changes in the photon correlation function. This directly demonstrates the importance of quantum–mechanical correlations and their transfer between carriers and photons in novel optoelectronic devices. PMID:27161302

  20. Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers.

    PubMed

    Jahnke, Frank; Gies, Christopher; Aßmann, Marc; Bayer, Manfred; Leymann, H A M; Foerster, Alexander; Wiersig, Jan; Schneider, Christian; Kamp, Martin; Höfling, Sven

    2016-01-01

    Light is often characterized only by its classical properties, like intensity or coherence. When looking at its quantum properties, described by photon correlations, new information about the state of the matter generating the radiation can be revealed. In particular the difference between independent and entangled emitters, which is at the heart of quantum mechanics, can be made visible in the photon statistics of the emitted light. The well-studied phenomenon of superradiance occurs when quantum-mechanical correlations between the emitters are present. Notwithstanding, superradiance was previously demonstrated only in terms of classical light properties. Here, we provide the missing link between quantum correlations of the active material and photon correlations in the emitted radiation. We use the superradiance of quantum dots in a cavity-quantum electrodynamics laser to show a direct connection between superradiant pulse emission and distinctive changes in the photon correlation function. This directly demonstrates the importance of quantum-mechanical correlations and their transfer between carriers and photons in novel optoelectronic devices. PMID:27161302

  1. Direct evidence of single quantum dot emission from GaN islands formed at threading dislocations using nanoscale cathodoluminescence: A source of single photons in the ultraviolet

    SciTech Connect

    Schmidt, Gordon Berger, Christoph; Veit, Peter; Metzner, Sebastian; Bertram, Frank; Bläsing, Jürgen; Dadgar, Armin; Strittmatter, André; Christen, Jürgen; Callsen, Gordon; Kalinowski, Stefan; Hoffmann, Axel

    2015-06-22

    Intense emission from GaN islands embedded in AlN resulting from GaN/AlN quantum well growth is directly resolved by performing cathodoluminescence spectroscopy in a scanning transmission electron microscope. Line widths down to 440 μeV are measured in a wavelength region between 220 and 310 nm confirming quantum dot like electronic properties in the islands. These quantum dot states can be structurally correlated to islands of slightly enlarged thicknesses of the GaN/AlN quantum well layer preferentially formed in vicinity to dislocations. The quantum dot states exhibit single photon emission in Hanbury Brown-Twiss experiments with a clear antibunching in the second order correlation function at zero time delay.

  2. Iofetamine I 123 single photon emission computed tomography is accurate in the diagnosis of Alzheimer's disease

    SciTech Connect

    Johnson, K.A.; Holman, B.L.; Rosen, T.J.; Nagel, J.S.; English, R.J.; Growdon, J.H. )

    1990-04-01

    To determine the diagnostic accuracy of iofetamine hydrochloride I 123 (IMP) with single photon emission computed tomography in Alzheimer's disease, we studied 58 patients with AD and 15 age-matched healthy control subjects. We used a qualitative method to assess regional IMP uptake in the entire brain and to rate image data sets as normal or abnormal without knowledge of subjects'clinical classification. The sensitivity and specificity of IMP with single photon emission computed tomography in AD were 88% and 87%, respectively. In 15 patients with mild cognitive deficits (Blessed Dementia Scale score, less than or equal to 10), sensitivity was 80%. With the use of a semiquantitative measure of regional cortical IMP uptake, the parietal lobes were the most functionally impaired in AD and the most strongly associated with the patients' Blessed Dementia Scale scores. These results indicated that IMP with single photon emission computed tomography may be a useful adjunct in the clinical diagnosis of AD in early, mild disease.

  3. Microscopic emission and reflectance thermal infrared spectroscopy: instrumentation for quantitative in situ mineralogy of complex planetary surfaces.

    PubMed

    Edwards, C S; Christensen, P R

    2013-04-10

    The diversity of investigations of planetary surfaces, especially Mars, using in situ instrumentation over the last decade is unprecedented in the exploration history of our solar system. The style of instrumentation that landed spacecraft can support is dependent on several parameters, including mass, power consumption, instrument complexity, cost, and desired measurement type (e.g., chemistry, mineralogy, petrology, morphology, etc.), all of which must be evaluated when deciding an appropriate spacecraft payload. We present a laboratory technique for a microscopic emission and reflectance spectrometer for the analysis of martian analog materials as a strong candidate for the next generation of in situ instruments designed to definitively assess sample mineralogy and petrology while preserving geologic context. We discuss the instrument capabilities, signal and noise, and overall system performance. We evaluate the ability of this instrument to quantitatively determine sample mineralogy, including bulk mineral abundances. This capability is greatly enhanced. Whereas the number of mineral components observed from existing emission spectrometers is high (often >5 to 10 depending on the number of accessory and alteration phases present), the number of mineral components at any microscopic measurement spot is low (typically <2 to 3). Since this style of instrument is based on a long heritage of thermal infrared emission spectrometers sent to orbit (the thermal emission spectrometer), sent to planetary surfaces [the mini-thermal emission spectrometers (mini-TES)], and evaluated in laboratory environments (e.g., the Arizona State University emission spectrometer laboratory), direct comparisons to existing data are uniquely possible with this style of instrument. The ability to obtain bulk mineralogy and atmospheric data, much in the same manner as the mini-TESs, is of significant additional value and maintains the long history of atmospheric monitoring for Mars

  4. Using spontaneous photon emission to image lipid oxidation patterns in plant tissues.

    PubMed

    Birtic, Simona; Ksas, Brigitte; Genty, Bernard; Mueller, Martin J; Triantaphylidès, Christian; Havaux, Michel

    2011-09-01

    Plants, like almost all living organisms, spontaneously emit photons of visible light. We used a highly sensitive, low-noise cooled charge coupled device camera to image spontaneous photon emission (autoluminescence) of plants. Oxidative stress and wounding induced a long-lasting enhancement of plant autoluminescence, the origin of which is investigated here. This long-lived phenomenon can be distinguished from the short-lived chlorophyll luminescence resulting from charge recombinations within the photosystems by pre-adapting the plant to darkness for about 2 h. Lipids in solvent were found to emit a persistent luminescence after oxidation in vitro, which exhibited the same time and temperature dependence as plant autoluminescence. Other biological molecules, such as DNA or proteins, either did not produce measurable light upon oxidation or they did produce a chemiluminescence that decayed rapidly, which excludes their significant contribution to the in vivo light emission signal. Selective manipulation of the lipid oxidation levels in Arabidopsis mutants affected in lipid hydroperoxide metabolism revealed a causal link between leaf autoluminescence and lipid oxidation. Addition of chlorophyll to oxidized lipids enhanced light emission. Both oxidized lipids and plants predominantly emit light at wavelengths higher than 600 nm; the emission spectrum of plant autoluminescence was shifted towards even higher wavelengths, a phenomenon ascribable to chlorophyll molecules acting as luminescence enhancers in vivo. Taken together, the presented results show that spontaneous photon emission imaged in plants mainly emanates from oxidized lipids. Imaging of this signal thus provides a simple and sensitive non-invasive method to selectively visualize and map patterns of lipid oxidation in plants. PMID:21595761

  5. Comparison of HORACE and PHOTOS Algorithms for Multi-Photon Emission in the Context of the W Boson Mass Measurement

    DOE PAGESBeta

    Kotwal, Ashutosh V.; Jayatilaka, Bodhitha

    2016-01-01

    W boson mass measurement is sensitive to QED radiative corrections due to virtual photon loops and real photon emission. The largest shift in the measured mass, which depends on the transverse momentum spectrum of the charged lepton from the boson decay, is caused by the emission of real photons from the final-state lepton. There are a number of calculations and codes available to model the final-state photon emission. We perform a detailed study, comparing the results from HORACE and PHOTOS implementations of the final-state multiphoton emission in the context of a direct measurement ofW boson mass at Tevatron. Mass fitsmore » are performed using a simulation of the CDF II detector.« less

  6. Comparison of HORACE and PHOTOS Algorithms for Multi-Photon Emission in the Context of the W Boson Mass Measurement

    SciTech Connect

    Kotwal, Ashutosh V.; Jayatilaka, Bodhitha

    2016-01-01

    W boson mass measurement is sensitive to QED radiative corrections due to virtual photon loops and real photon emission. The largest shift in the measured mass, which depends on the transverse momentum spectrum of the charged lepton from the boson decay, is caused by the emission of real photons from the final-state lepton. There are a number of calculations and codes available to model the final-state photon emission. We perform a detailed study, comparing the results from HORACE and PHOTOS implementations of the final-state multiphoton emission in the context of a direct measurement ofW boson mass at Tevatron. Mass fits are performed using a simulation of the CDF II detector.

  7. Anisotropic emission and photon-recycling in strain-balanced quantum well solar cells

    SciTech Connect

    Cabrera, C. I.; Enciso, A.; Contreras-Solorio, D. A.; Hernandez, L.; Connolly, J. P.

    2014-04-28

    Strain-balanced quantum well solar cells (SB-QWSCs) extend the photon absorption edge beyond that of bulk GaAs by incorporation of quantum wells in the i-region of a p–i–n device. Anisotropy arises from a splitting of the valence band due to compressive strain in the quantum wells, suppressing a transition which contributes to emission from the edge of the quantum wells. We have studied both the emission light polarized in the plane perpendicular (TM) to the quantum well which couples exclusively to the light hole transition and the emission polarized in the plane of the quantum wells (TE) which couples mainly to the heavy hole transition. It was found that the spontaneous emission rates TM and TE increase when the quantum wells are deeper. The addition of a distributed Bragg reflector can substantially increase the photocurrent while decreasing the radiative recombination current. We have examined the impact of the photon recycling effect on SB-QWSC performance. We have optimized SB-QWSC design to achieve single junction efficiencies above 30%.

  8. Simulation Study of Single Photon Emission Computed Tomography for Industrial Applications

    NASA Astrophysics Data System (ADS)

    Roy, Tushar; Sarkar, P. S.; Sinha, Amar

    2008-09-01

    SPECT (Single Photon Emission Computed Tomography) provides for an invaluable non-invasive technique for the characterization and activity distribution of the gamma-emitting source. For many applications of radioisotopes for medical and industrial application, not only the positional information of the distribution of radioisotopes is needed but also its strength. The well-established X-ray radiography or transmission tomography techniques do not yield sufficient quantitative information about these objects. Emission tomography is one of the important methods for such characterization. Application of parallel beam, fan beam and 3D cone beam emission tomography methods have been discussed in this paper. Simulation studies to test these algorithms have been carried out to validate the technique.

  9. Electron microscopic study of soot particulate matter emissions from aircraft turbine engines.

    PubMed

    Liati, Anthi; Brem, Benjamin T; Durdina, Lukas; Vögtli, Melanie; Dasilva, Yadira Arroyo Rojas; Eggenschwiler, Panayotis Dimopoulos; Wang, Jing

    2014-09-16

    The microscopic characteristics of soot particulate matter (PM) in gas turbine exhaust are critical for an accurate assessment of the potential impacts of the aviation industry on the environment and human health. The morphology and internal structure of soot particles emitted from a CFM 56-7B26/3 turbofan engine were analyzed in an electron microscopic study, down to the nanoscale, for ∼ 100%, ∼ 65%, and ∼ 7% static engine thrust as a proxy for takeoff, cruising, and taxiing, respectively. Sampling was performed directly on transmission electron microscopy (TEM) grids with a state-of-the-art sampling system designed for nonvolatile particulate matter. The electron microscopy results reveal that ∼ 100% thrust produces the highest amount of soot, the highest soot particle volume, and the largest and most crystalline primary soot particles with the lowest oxidative reactivity. The opposite is the case for soot produced during taxiing, where primary soot particles are smallest and most reactive and the soot amount and volume are lowest. The microscopic characteristics of cruising condition soot resemble the ones of the ∼ 100% thrust conditions, but they are more moderate. Real time online measurements of number and mass concentration show also a clear correlation with engine thrust level, comparable with the TEM study. The results of the present work, in particular the small size of primary soot particles present in the exhaust (modes of 24, 20, and 13 nm in diameter for ∼ 100%, ∼ 65% and ∼ 7% engine thrust, respectively) could be a concern for human health and the environment and merit further study. This work further emphasizes the significance of the detailed morphological characteristics of soot for assessing environmental impacts. PMID:25180674

  10. On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors.

    PubMed

    Reithmaier, G; Lichtmannecker, S; Reichert, T; Hasch, P; Müller, K; Bichler, M; Gross, R; Finley, J J

    2013-01-01

    We report the routing of quantum light emitted by self-assembled InGaAs quantum dots (QDs) into the optical modes of a GaAs ridge waveguide and its efficient detection on-chip via evanescent coupling to NbN superconducting nanowire single photon detectors (SSPDs). The waveguide coupled SSPDs primarily detect QD luminescence, with scattered photons from the excitation laser onto the proximal detector being negligible by comparison. The SSPD detection efficiency from the evanescently coupled waveguide modes is shown to be two orders of magnitude larger when compared with operation under normal incidence illumination, due to the much longer optical interaction length. Furthermore, in-situ time resolved measurements performed using the integrated detector show an average QD spontaneous emission lifetime of 0.95 ns, measured with a timing jitter of only 72 ps. The performance metrics of the SSPD integrated directly onto GaAs nano-photonic hardware confirms the strong potential for on-chip few-photon quantum optics using such semiconductor-superconductor hybrid systems. PMID:23712624