Science.gov

Sample records for photon energy reconstruction

  1. Spectral X-Ray CT Image Reconstruction with a Combination of Energy-Integrating and Photon-Counting Detectors.

    PubMed

    Yang, Qingsong; Cong, Wenxiang; Xi, Yan; Wang, Ge

    2016-01-01

    The purpose of this paper is to develop an algorithm for hybrid spectral computed tomography (CT) which combines energy-integrating and photon-counting detectors. While the energy-integrating scan is global, the photon-counting scan can have a local field of view (FOV). The algorithm synthesizes both spectral data and energy-integrating data. Low rank and sparsity prior is used for spectral CT reconstruction. An initial estimation is obtained from the projection data based on physical principles of x-ray interaction with the matter, which provides a more accurate Taylor expansion than previous work and can guarantee the convergence of the algorithm. Numerical simulation with clinical CT images are performed. The proposed algorithm produces very good spectral features outside the FOV when no K-edge material exists. Exterior reconstruction of K-edge material can be partially achieved. PMID:27171153

  2. Spectral X-Ray CT Image Reconstruction with a Combination of Energy-Integrating and Photon-Counting Detectors

    PubMed Central

    Yang, Qingsong; Cong, Wenxiang; Xi, Yan; Wang, Ge

    2016-01-01

    The purpose of this paper is to develop an algorithm for hybrid spectral computed tomography (CT) which combines energy-integrating and photon-counting detectors. While the energy-integrating scan is global, the photon-counting scan can have a local field of view (FOV). The algorithm synthesizes both spectral data and energy-integrating data. Low rank and sparsity prior is used for spectral CT reconstruction. An initial estimation is obtained from the projection data based on physical principles of x-ray interaction with the matter, which provides a more accurate Taylor expansion than previous work and can guarantee the convergence of the algorithm. Numerical simulation with clinical CT images are performed. The proposed algorithm produces very good spectral features outside the FOV when no K-edge material exists. Exterior reconstruction of K-edge material can be partially achieved. PMID:27171153

  3. Spectral reconstruction of high energy photon beams for kernel based dose calculations.

    PubMed

    Hinson, William H; Bourland, J Daniel

    2002-08-01

    A kernel-based dose computation method with finite-size pencil beams (FSPBs) requires knowledge of the photon spectrum. Published methods of indirect spectral measurements using transmission measurements through beam attenuators use mathematical fits with a large number of parameters and constraints. In this study, we examine a simple strategy for fitting transmission data that models important physical characteristics of photon beams produced in clinical linear accelerators. The shape of an unattenuated bremsstrahlung spectrum is known, varying linearly from a maximum at zero energy to a value of zero at a maximum energy. This unattenuated spectrum is altered primarily by absorption of low energy photons by the flattening filter, causing the true spectrum to roll off to zero at low photon energies. A fitting equation models this behavior and has these advantages over previous methods: (1) the equation describes the shape of a bremsstrahlung spectrum based on physical expectations; and (2) only three fit parameters are required with a single constraint. Results for 4 MV and 6 MV accelerators for central axis and off-axis beams show good agreement with the maximum, average and modal energies for known spectra. Previously published models, representations of beam fluence (energy fluence, dN/dE), experimental methods, and the fitting process are discussed. PMID:12201426

  4. Physics at high energy photon photon colliders

    SciTech Connect

    Chanowitz, M.S.

    1994-06-01

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking.

  5. High energy photon-photon collisions

    SciTech Connect

    Brodsky, S.J.; Zerwas, P.M.

    1994-07-01

    The collisions of high energy photons produced at a electron-positron collider provide a comprehensive laboratory for testing QCD, electroweak interactions and extensions of the standard model. The luminosity and energy of the colliding photons produced by back-scattering laser beams is expected to be comparable to that of the primary e{sup +}e{sup {minus}} collisions. In this overview, we shall focus on tests of electroweak theory in photon-photon annihilation, particularly {gamma}{gamma} {yields} W{sup +}W{sup {minus}}, {gamma}{gamma} {yields} Higgs bosons, and higher-order loop processes, such as {gamma}{gamma} {yields} {gamma}{gamma}, Z{gamma} and ZZ. Since each photon can be resolved into a W{sup +}W{sup minus} pair, high energy photon-photon collisions can also provide a remarkably background-free laboratory for studying WW collisions and annihilation. We also review high energy {gamma}{gamma} tests of quantum chromodynamics, such as the scaling of the photon structure function, t{bar t} production, mini-jet processes, and diffractive reactions.

  6. Prospects for in vivo estimation of photon linear attenuation coefficients using postprocessing dual-energy CT imaging on a commercial scanner: Comparison of analytic and polyenergetic statistical reconstruction algorithms

    SciTech Connect

    Evans, Joshua D. Yu, Yaduo; Williamson, Jeffrey F.; Whiting, Bruce R.; O’Sullivan, Joseph A.; Politte, David G.; Klahr, Paul H.

    2013-12-15

    Purpose: Accurate patient-specific photon cross-section information is needed to support more accurate model-based dose calculation for low energy photon-emitting modalities in medicine such as brachytherapy and kilovoltage x-ray imaging procedures. A postprocessing dual-energy CT (pDECT) technique for noninvasivein vivo estimation of photon linear attenuation coefficients has been experimentally implemented on a commercial CT scanner and its accuracy assessed in idealized phantom geometries. Methods: Eight test materials of known composition and density were used to compare pDECT-estimated linear attenuation coefficients to NIST reference values over an energy range from 10 keV to 1 MeV. As statistical image reconstruction (SIR) has been shown to reconstruct images with less random and systematic error than conventional filtered backprojection (FBP), the pDECT technique was implemented with both an in-house polyenergetic SIR algorithm, alternating minimization (AM), as well as a conventional FBP reconstruction algorithm. Improvement from increased spectral separation was also investigated by filtering the high-energy beam with an additional 0.5 mm of tin. The law of propagated uncertainty was employed to assess the sensitivity of the pDECT process to errors in reconstructed images. Results: Mean pDECT-estimated linear attenuation coefficients for the eight test materials agreed within 1% of NIST reference values for energies from 1 MeV down to 30 keV, with mean errors rising to between 3% and 6% at 10 keV, indicating that the method is unbiased when measurement and calibration phantom geometries are matched. Reconstruction with FBP and AM algorithms conferred similar mean pDECT accuracy. However, single-voxel pDECT estimates reconstructed on a 1 × 1 × 3 mm{sup 3} grid are shown to be highly sensitive to reconstructed image uncertainty; in some cases pDECT attenuation coefficient estimates exhibited standard deviations on the order of 20% around the mean

  7. Prospects for in vivo estimation of photon linear attenuation coefficients using postprocessing dual-energy CT imaging on a commercial scanner: Comparison of analytic and polyenergetic statistical reconstruction algorithms

    PubMed Central

    Evans, Joshua D.; Whiting, Bruce R.; O’Sullivan, Joseph A.; Politte, David G.; Klahr, Paul H.; Yu, Yaduo; Williamson, Jeffrey F.

    2013-01-01

    Purpose: Accurate patient-specific photon cross-section information is needed to support more accurate model-based dose calculation for low energy photon-emitting modalities in medicine such as brachytherapy and kilovoltage x-ray imaging procedures. A postprocessing dual-energy CT (pDECT) technique for noninvasive in vivo estimation of photon linear attenuation coefficients has been experimentally implemented on a commercial CT scanner and its accuracy assessed in idealized phantom geometries. Methods: Eight test materials of known composition and density were used to compare pDECT-estimated linear attenuation coefficients to NIST reference values over an energy range from 10 keV to 1 MeV. As statistical image reconstruction (SIR) has been shown to reconstruct images with less random and systematic error than conventional filtered backprojection (FBP), the pDECT technique was implemented with both an in-house polyenergetic SIR algorithm, alternating minimization (AM), as well as a conventional FBP reconstruction algorithm. Improvement from increased spectral separation was also investigated by filtering the high-energy beam with an additional 0.5 mm of tin. The law of propagated uncertainty was employed to assess the sensitivity of the pDECT process to errors in reconstructed images. Results: Mean pDECT-estimated linear attenuation coefficients for the eight test materials agreed within 1% of NIST reference values for energies from 1 MeV down to 30 keV, with mean errors rising to between 3% and 6% at 10 keV, indicating that the method is unbiased when measurement and calibration phantom geometries are matched. Reconstruction with FBP and AM algorithms conferred similar mean pDECT accuracy. However, single-voxel pDECT estimates reconstructed on a 1 × 1 × 3 mm3 grid are shown to be highly sensitive to reconstructed image uncertainty; in some cases pDECT attenuation coefficient estimates exhibited standard deviations on the order of 20% around the mean

  8. Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at √s = 8 TeV

    SciTech Connect

    Khachatryan, Vardan

    2015-08-10

    A description is provided of the performance of the CMS detector for photon reconstruction and identification in proton-proton collisions at a centre-of-mass energy of 8 TeV at the CERN LHC. Details are given on the reconstruction of photons from energy deposits in the electromagnetic calorimeter (ECAL) and the extraction of photon energy estimates. Furthermore, the reconstruction of electron tracks from photons that convert to electrons in the CMS tracker is also described, as is the optimization of the photon energy reconstruction and its accurate modelling in simulation, in the analysis of the Higgs boson decay into two photons. In the barrel section of the ECAL, an energy resolution of about 1% is achieved for unconverted or late-converting photons from H → γγ decays. Furthermore, different photon identification methods are discussed and their corresponding selection efficiencies in data are compared with those found in simulated events.

  9. Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at √s = 8 TeV

    DOE PAGESBeta

    Khachatryan, Vardan

    2015-08-10

    A description is provided of the performance of the CMS detector for photon reconstruction and identification in proton-proton collisions at a centre-of-mass energy of 8 TeV at the CERN LHC. Details are given on the reconstruction of photons from energy deposits in the electromagnetic calorimeter (ECAL) and the extraction of photon energy estimates. Furthermore, the reconstruction of electron tracks from photons that convert to electrons in the CMS tracker is also described, as is the optimization of the photon energy reconstruction and its accurate modelling in simulation, in the analysis of the Higgs boson decay into two photons. In themore » barrel section of the ECAL, an energy resolution of about 1% is achieved for unconverted or late-converting photons from H → γγ decays. Furthermore, different photon identification methods are discussed and their corresponding selection efficiencies in data are compared with those found in simulated events.« less

  10. Analysis of the Reconstructibility and Noise Properties of Scattered Photons in Tc-99m SPECT

    PubMed Central

    Kadrmas, Dan J; Frey, Eric C; Tsui, Benjamin M W

    2009-01-01

    Since scattered photons carry degraded spatial information, scatter is typically considered a source of contamination in SPECT. However, with the advent of scatter modeling methods and reconstruction-based scatter compensation (RBSC), it may be possible to utilize scattered data in a productive manner. In this work we analyze the reconstructibility of scattered photon projection data and investigate the potential for using scattered photons to reduce the noise levels of SPECT images. We have simulated projection data for an elliptical phantom containing three cold rods in a uniform background of Tc-99m activity. A variety of photopeak and scatter energy windows were formed, as well as corresponding RBSC transfer matrices. Each statistically weighted matrix was decomposed using SVD and analyzed in terms of reconstructibility and noise properties. Results indicate that scattered photons contain sufficient information to reconstruct the source activity, but the scatter-only matrices are very poorly conditioned. We have also evaluated several methods of utilizing scattered events via RBSC, and compared them with other, idealized methods of handling scatter. It was found that scattered photons can be used productively when photopeak and non-photopeak data are separated through the use of multiple energy windows. The RBSC methods outperformed ideal scatter subtraction, but fell short of methods which assume perfect discrimination between scattered and primary events. The knowledge gained by this study may help guide future research and lead to better approaches to handling scatter in SPECT. PMID:9434303

  11. Reconstruction of photon-number distribution using low-performance photon counters

    SciTech Connect

    Zambra, Guido; Paris, Matteo G. A.

    2006-12-15

    The output of a photodetector consists of a current pulse whose charge has the statistical distribution of the actual photon numbers convolved with a Bernoulli distribution. Photodetectors are characterized by a nonunit quantum efficiency, i.e., not all the photons lead to a charge, and by a finite resolution, i.e., a different number of detected photons leads to a discriminable values of the charge only up to a maximum value. We present a detailed comparison, based on Monte Carlo simulated experiments and real data, among the performances of detectors with different upper limits of counting capability. In our scheme the inversion of Bernoulli convolution is performed by maximum-likelihood methods assisted by measurements taken at different quantum efficiencies. We show that detectors that are only able to discriminate between zero, one and more than one detected photons are generally enough to provide a reliable reconstruction of the photon number distribution for single-peaked distributions, while detectors with higher resolution limits do not lead to further improvements. In addition, we demonstrate that, for semiclassical states, even on/off detectors are enough to provide a good reconstruction. Finally, we show that a reliable reconstruction of multipeaked distributions requires either higher quantum efficiency or higher resolution.

  12. Spectral reconstruction by scatter analysis for a linear accelerator photon beam.

    PubMed

    Jalbout, Wassim T; Spyrou, Nicholas M

    2006-05-01

    Pre-existing methods for photon beam spectral reconstruction are briefly reviewed. An alternative reconstruction method by scatter analysis for linear accelerators is introduced. The method consists in irradiating a small plastic phantom at standard 100 cm SSD and inferring primary beam energy spectral information based on the measurement with a standard Farmer chamber of scatter around the phantom at several specific scatter angles: a scatter curve is measured which is indicative of the primary spectrum at hand. A Monte Carlo code is used to simulate the scatter measurement set-up and predict the relative magnitude of scatter measurements for mono-energetic primary beams. Based on mono-energetic primary scatter data, measured scatter curves are analysed and the spectrum unfolded as the sum of mono-energetic individual energy bins using the Schiff bremsstrahlung model. The method is applied to an Elekta/SL18 6 MV photon beam. The reconstructed spectrum matches the Monte Carlo calculated spectrum for the same beam within 6.2% (average error when spectra are compared bin by bin). Depth dose values calculated for the reconstructed spectrum agree with physically measured depth dose data to within 1%. Scatter analysis is preliminarily shown to have potential as a practical spectral reconstruction method requiring few measurements under standard 100 cm SSD and feasible in any radiotherapy department using a phantom and a Farmer chamber. PMID:16625037

  13. Direct reconstruction of dark energy.

    PubMed

    Clarkson, Chris; Zunckel, Caroline

    2010-05-28

    An important issue in cosmology is reconstructing the effective dark energy equation of state directly from observations. With so few physically motivated models, future dark energy studies cannot only be based on constraining a dark energy parameter space. We present a new nonparametric method which can accurately reconstruct a wide variety of dark energy behavior with no prior assumptions about it. It is simple, quick and relatively accurate, and involves no expensive explorations of parameter space. The technique uses principal component analysis and a combination of information criteria to identify real features in the data, and tailors the fitting functions to pick up trends and smooth over noise. We find that we can constrain a large variety of w(z) models to within 10%-20% at redshifts z≲1 using just SNAP-quality data. PMID:20867085

  14. Reconstruction of photon number conditioned states using phase randomized homodyne measurements

    NASA Astrophysics Data System (ADS)

    Chrzanowski, H. M.; Assad, S. M.; Bernu, J.; Hage, B.; Lund, A. P.; Ralph, T. C.; Lam, P. K.; Symul, T.

    2013-05-01

    We experimentally demonstrate the reconstruction of a photon number conditioned state without using a photon number discriminating detector. By using only phase randomized homodyne measurements, we reconstruct up to the three photon subtracted squeezed vacuum state. The reconstructed Wigner functions of these states show regions of pronounced negativity, signifying the non-classical nature of the reconstructed states. The techniques presented allow for complete characterization of the role of a conditional measurement on an ensemble of states, and might prove useful in systems where photon counting still proves technically challenging.

  15. Massive photon and dark energy

    NASA Astrophysics Data System (ADS)

    Kouwn, Seyen; Oh, Phillial; Park, Chan-Gyung

    2016-04-01

    We investigate the cosmology of massive electrodynamics and explore the possibility whether the massive photon could provide an explanation of dark energy. The action is given by the scalar-vector-tensor theory of gravity, which is obtained by nonminimal coupling of the massive Stueckelberg QED with gravity; its cosmological consequences are studied by paying particular attention to the role of photon mass. We find that the theory allows for cosmological evolution where the radiation- and matter-dominated epochs are followed by a long period of virtually constant dark energy that closely mimics a Λ CDM model. We also find that the main source of the current acceleration is provided by the nonvanishing photon mass governed by the relation Λ ˜m2 . A detailed numerical analysis shows that the nonvanishing photon mass on the order of ˜1 0-34 eV is consistent with current observations. This magnitude is far less than the most stringent limit on the photon mass available so far, which is on the order of m ≤1 0-27 eV .

  16. Reconstructing and deconstructing dark energy

    SciTech Connect

    Linder, Eric V.

    2004-06-07

    The acceleration of the expansion of the universe, ascribed to a dark energy, is one of the most intriguing discoveries in science. In addition to precise, systematics controlled data, clear, robust interpretation of the observations is required to reveal the nature of dark energy. Even for the simplest question: is the data consistent with the cosmological constant? there are important subtleties in the reconstruction of the dark energy properties. We discuss the roles of analysis both in terms of the Hubble expansion rate or dark energy density {rho}DE(z) and in terms of the dark energy equation of state w(z), arguing that each has its carefully defined place. Fitting the density is best for learning about the density, but using it to probe the equation of state can lead to instability and bias.

  17. Precision timing measurements for high energy photons

    SciTech Connect

    Anderson, Dustin; Apreysan, Artur; Bornheim, Adi; Duarte, Javier; Newman, Harvey; Pena, Cristian; Ronzhin, Anatoly; Spiropulu, Maria; Trevor, Jason; Xie, Si; Zhu, Ren-Yuan

    2014-11-21

    Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.7×1.7×1.7 cm3 lutetium–yttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.5±2.1 ps for an incoming beam energy of 32 GeV. In a second measurement, using a 2.5×2.5×20 cm3 LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 59±11 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 54±5 ps for an incoming beam energy of 32 GeV.

  18. Precision timing measurements for high energy photons

    NASA Astrophysics Data System (ADS)

    Anderson, Dustin; Apreysan, Artur; Bornheim, Adi; Duarte, Javier; Newman, Harvey; Pena, Cristian; Ronzhin, Anatoly; Spiropulu, Maria; Trevor, Jason; Xie, Si; Zhu, Ren-Yuan

    2015-07-01

    Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.7×1.7×1.7 cm3 lutetium-yttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.5±2.1 ps for an incoming beam energy of 32 GeV. In a second measurement, using a 2.5×2.5×20 cm3 LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 59±11 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 54±5 ps for an incoming beam energy of 32 GeV.

  19. Polarimeter for high energy photons

    NASA Astrophysics Data System (ADS)

    Wojtsekhowski, Bogdan; Vlahovic, Branislav; Tedeschi, David; Danagulian, Samuel; Litvienko, Vladimir; Pinayev, Igor

    1999-11-01

    The physics program at TJNAF includes fundamental experiments with polarized photon beam in few GeV energy range. Development of the Polarimeter for use in Hall B experiments is the subject of present abstract. We have proposed to take advantage of the recent progress in silicon micro strip detectors for measurement of the geometry and angle correlation in electron positron pair production from an amorphous converter. A detailed analysis of the setup including MC simulation shows an experimental asymmetry σ_allel/σ_⊥ ~ 1.7 in a wide range of the photon energies. This asymmetry value is confirmed by our experimental results obtained using 100 percent polarized 40 MeV γ rays at Duke FEL.

  20. Photon energy tunability of advanced photon source undulators

    SciTech Connect

    Viccaro, P.J.; Shenoy, G.K.

    1987-08-01

    At a fixed storage ring energy, the energy of the harmonics of an undulator can be shifted or ''tuned'' by changing the magnet gap of the device. The possible photon energy interval spanned in this way depends on the undulator period, minimum closed gap, minimum acceptable photon intensity and storage ring energy. The minimum magnet gap depends directly on the stay clear particle beam aperture required for storage ring operation. The tunability of undulators planned for the Advanced Photon Source with first harmonic photon energies in the range of 5 to 20 keV are discussed. The results of an analysis used to optimize the APS ring energy is presented and tunability contours and intensity parameters are presented for two typical classes of devices.

  1. Bayesian reconstruction of photon interaction sequences for high-resolution PET detectors

    PubMed Central

    Pratx, Guillem

    2013-01-01

    Realizing the full potential of high-resolution positron emission tomography (PET) systems involves accurately positioning events in which the annihilation photon deposits all its energy across multiple detector elements. Reconstructing the complete sequence of interactions of each photon provides a reliable way to select the earliest interaction because it ensures that all the interactions are consistent with one another. Bayesian estimation forms a natural framework to maximize the consistency of the sequence with the measurements while taking into account the physics of γ-ray transport. An inherently statistical method, it accounts for the uncertainty in the measured energy and position of each interaction. An algorithm based on maximum a posteriori (MAP) was evaluated for computer simulations. For a high-resolution PET system based on cadmium zinc telluride detectors, 93.8% of the recorded coincidences involved at least one photon multiple-interactions event (PMIE). The MAP estimate of the first interaction was accurate for 85.2% of the single photons. This represents a two-fold reduction in the number of mispositioned events compared to minimum pair distance, a simpler yet efficient positioning method. The point-spread function of the system presented lower tails and higher peak value when MAP was used. This translated into improved image quality, which we quantified by studying contrast and spatial resolution gains. PMID:19652293

  2. The low-energy photon tagger NEPTUN

    NASA Astrophysics Data System (ADS)

    Savran, D.; Lindenberg, K.; Glorius, J.; Löher, B.; Müller, S.; Pietralla, N.; Schnorrenberger, L.; Simon, V.; Sonnabend, K.; Wälzlein, C.; Elvers, M.; Endres, J.; Hasper, J.; Zilges, A.

    2010-02-01

    A new photon tagging spectrometer was built at the superconducting Darmstadt electron linear accelerator (S-DALINAC). The system is designed for tagging photons in an energy range from 6 to 20 MeV with the emphasis on best possible energy resolution and intensity. The absolute energy resolution of photons at 10 MeV is expected to be about 20 keV. With scintillating fibres as focal-plane detectors a maximum rate of tagged photons of 104 keV -1s -1 will be achieved. Detailed design studies including Monte Carlo simulations are presented, as well as results for the measured tagged photon energy profile of the system realized so far. This photon-tagging facility will allow to determine the photon absorption cross-sections as a function of excitation energy and to study the decay patterns of nuclear photo-excitations in great detail.

  3. Photon Science for Renewable Energy

    SciTech Connect

    Hussain, Zahid; Tamura, Lori; Padmore, Howard; Schoenlein, Bob; Bailey, Sue

    2010-03-31

    Our current fossil-fuel-based system is causing potentially catastrophic changes to our planet. The quest for renewable, nonpolluting sources of energy requires us to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. Light-source facilities - the synchrotrons of today and the next-generation light sources of tomorrow - are the scientific tools of choice for exploring the electronic and atomic structure of matter. As such, these photon-science facilities are uniquely positioned to jump-start a global revolution in renewable and carbonneutral energy technologies. In these pages, we outline and illustrate through examples from our nation's light sources possible scientific directions for addressing these profound yet urgent challenges.

  4. A Pair Polarimeter for High Energy Photons

    NASA Astrophysics Data System (ADS)

    Tedeschi, David; Wojtsekhowski, B.; Khandaker, M.; Klein, F.; Feldman, G.; O'Rielly, G. V.; Vlahovic, B.

    2000-10-01

    The physics program at the Thomas Jefferson National Accelerator Facility includes fundamental experiments with polarized photon beams in the GeV energy range. To measure the degree of photon polarization, a photon polarimeter based on the detection of e^+e^- pairs has been developed for use in Hall B experiments. Recent progress in silicon micro-strip detectors allows for the measurement of the angle correlation in electron-positron pair production by high energy photons incident on an amorphous converter. Theoretical calculations of the pair production process show an asymmetry σ_allel/σ_⊥ ~ 1.7 in a wide range of photon energies. Experimental results obtained from 40 MeV photons at the Duke-FEL and 300 MeV photons from the Brookhaven-LEGS facility using prototype polarimeters will be presented.

  5. Quantitative simulation and density reconstruction in high-energy X-ray radiograph

    NASA Astrophysics Data System (ADS)

    Tang, Li; Xu, Haibo

    2014-03-01

    Numerical radiograph using Monte Carlo method is used to study fidelity of density reconstruction in high-energy X-ray radiography. A density reconstruction method for a polyenergetic X-ray source and an object composed of different materials is proposed. The method includes energy spectrum, angular spectrum and spot size of photon source. And it includes mass absorption coefficients explicitly in density reconstruction as well. A constrained conjugate gradient algorithm and variation regularization are applied to determine material edges and density reconstruction of a French test object. It shows that the method is valid for density reconstruction and energy spectrum of imaging photons is important in obtaining accurate material densities in high-energy X-ray radiograph.

  6. A Pair Polarimeter for High Energy Photons

    NASA Astrophysics Data System (ADS)

    Tedeschi, David; Wojtsekhowski, B.; Abbott, D.; Vlahovic, B.; Hotta, T.; Kohri, H.; Matsumura, T.; Mibe, T.; Nakano, T.; Yurita, T.; Zegers, R.; Khandaker, M.; Feldman, G.; O'Rielly, G. V.; Wood, M.; Asai, G.; Rudge, A.; Weilhammer, P.

    2001-10-01

    The physics program at the Thomas Jefferson National Accelerator Facility includes fundamental experiments with polarized photon beams in the GeV energy range. To measure the degree of photon polarization, a photon polarimeter based on the detection of e^+e^- pairs has been developed for use in Hall B and was recently tested at the LEPS facility at SPring-8 in Japan. The use of silicon micro-strip detectors allows for the first time the measurement of the angle correlation in electron-positron pair production by high energy photons incident on an amorphous converter. Theoretical calculations of the pair production process show an asymmetry σ_allel/σ_⊥ ~ 1.7 in a wide range of photon energies. Experimental results from the measurement of the pair asymmetry using 2 GeV photons from the SPring-8 facility will be presented.

  7. Photon-number discrimination without a photon counter and its application to reconstructing non-Gaussian states

    NASA Astrophysics Data System (ADS)

    Chrzanowski, H. M.; Bernu, J.; Sparkes, B. M.; Hage, B.; Lund, A. P.; Ralph, T. C.; Lam, P. K.; Symul, T.

    2011-11-01

    The nonlinearity of a conditional photon-counting measurement can be used to “de-Gaussify” a Gaussian state of light. Here we present and experimentally demonstrate a technique for photon-number resolution using only homodyne detection. We then apply this technique to inform a conditional measurement, unambiguously reconstructing the statistics of the non-Gaussian one- and two-photon-subtracted squeezed vacuum states. Although our photon-number measurement relies on ensemble averages and cannot be used to prepare non-Gaussian states of light, its high efficiency, photon-number-resolving capabilities, and compatibility with the telecommunications band make it suitable for quantum-information tasks relying on the outcomes of mean values.

  8. Photon-number discrimination without a photon counter and its application to reconstructing non-Gaussian states

    SciTech Connect

    Chrzanowski, H. M.; Bernu, J.; Sparkes, B. M.; Hage, B.; Lam, P. K.; Symul, T.; Lund, A. P.; Ralph, T. C.

    2011-11-15

    The nonlinearity of a conditional photon-counting measurement can be used to ''de-Gaussify'' a Gaussian state of light. Here we present and experimentally demonstrate a technique for photon-number resolution using only homodyne detection. We then apply this technique to inform a conditional measurement, unambiguously reconstructing the statistics of the non-Gaussian one- and two-photon-subtracted squeezed vacuum states. Although our photon-number measurement relies on ensemble averages and cannot be used to prepare non-Gaussian states of light, its high efficiency, photon-number-resolving capabilities, and compatibility with the telecommunications band make it suitable for quantum-information tasks relying on the outcomes of mean values.

  9. Measuring the photon energy scale through test beam data

    NASA Astrophysics Data System (ADS)

    Loureiro, Karina Flavia

    This dissertation aims at measuring the photon energy scale combining specialized Monte Carlo simulation with data taken during the combined ATLAS test beam in 2004. This work explains the steps taken to arrive at the photon energy scale, starting from the knowledge acquired for electrons. The chapters are structured as follows: Chapters 1 and 2 briefly introduce this work and the motivation behind it. Chapter 3 gives an overview of the LHC experiment and the ATLAS detector as a whole. Chapters 4 and 5 address in detail the ATLAS electromagnetic calorimeter and signal reconstruction at the cell level. Chapter 6 concentrates on the setup for the combined test beam with emphasis on the photon run. Chapter 7 details the event selection strategy used for the photon run analysis. Chapter 8 describes the generation and tuning of the special Monte Carlo for the photon run. Chapter 9 focuses on the highly specialized Monte Carlo studies that employed special calibration objects known as calibration hits. Chapter 10 details the methodology behind the measurement of the photon scale and evaluates it in terms of the electromagnetic calorimeter resolution. Chapters 11 and 12 present a summary of the results and the conclusions, respectively.

  10. Continuous Energy MC Neutron/Photon

    Energy Science and Technology Software Center (ESTSC)

    1991-10-10

    VIM solves the three-dimensional steady-state multiplication eigenvalue or fixed source neutron or photon (VIM3.0) transport problem using continuous energy-dependent nuclear data. It was designed for the analysis of fast critical experiments. In VIM3.0, the photon interactions i.e., pair production, coherent and incoherent scattering, and photoelectric events, and photon heating are tallied by group, region, and isotope.

  11. Photonic crystal: energy-related applications

    SciTech Connect

    Ye, Zhuo; Park, Joong-Mok; Constant, Kristen; Kim, Tae-Geun; Ho, Kai-Ming

    2012-06-08

    We review recent work on photonic-crystal fabrication using soft-lithography techniques. We consider applications of the resulting structures in energy-related areas such as lighting and solar-energy harvesting. In general, our aim is to introduce the reader to the concepts of photonic crystals, describe their history, development, and fabrication techniques and discuss a selection of energy-related applications.

  12. Photon induced L3 vacancy alignment at tuned photon energies

    NASA Astrophysics Data System (ADS)

    Bansal, Himani; Kaur, Gurpreet; Tiwari, Manoj K.; Mittal, Raj

    2016-04-01

    Photon induced L3 X-ray measurements for Lα/Lℓ cross-section ratios in elements, 66 ⩽ Z ⩽ 83, at tuned photon energies on synchrotron Beamline-16 at Indus-2, India have been used to study the effect of Coster-Kronig (CK) transitions and photon energies on alignment of L3 vacancies. Certainty and reliability of the measurements were checked from comparison of measured Lα and Lℓ fluorescence cross-sections at E1 excitation with available theoretical/empirical/experimental values that required additional measurements for source, geometry and efficiency factor S0GɛLα/ℓ in the used set-up. Fall/rise trend of the ratios with energy for different Z's was found to resemble the off/on-set pattern of CK transitions as pointed out by Bambynek et al. and Campbell. Evaluated alignment parameter A2 values are very much within the limits, 0.05 energy for Dy, W, Pt, Hg and Bi resembles our previously reported theoretical patterns that lends mutual support for both current measurements and earlier theoretical results.

  13. High-Energy QCD Asymptotics of Photon--Photon Collisions

    SciTech Connect

    Brodsky, Stanley J.

    2002-07-26

    The high-energy behavior of the total cross section for highly virtual photons, as predicted by the BFKL equation at next-to-leading order (NLO) in QCD, is discussed. The NLO BFKL predictions, improved by the BLM optimal scale setting, are in good agreement with recent OPAL and L3 data at CERN LEP2. NLO BFKL predictions for future linear colliders are presented.

  14. Energy transduction in surface photonic crystals

    NASA Astrophysics Data System (ADS)

    Yang, Fuchyi

    2011-12-01

    This dissertation is a detailed investigation of the fabrication, design, characterization, and understanding of physical principles of energy transduction in surface photonic crystals which are engineered for various applications. One-dimensional photonic crystals are engineered as optically tunable reflectance filters for lambda = 632.8 nm wavelength light by incorporating azobenzene liquid crystal dye molecules into the photonic crystal structure. Optical energy is transduced to accomplish mechanical work by exciting the dye molecules into different physical configurations, leading to changes in the optical properties of the dye molecules, namely their refractive index. This mechanism is used to tune the reflection resonance of the photonic crystal filter. The spectral and temporal optical tuning response of the photonic crystal filter due to excitation light at lambda = 532 nm is characterized. Modulation of the transmitted and reflected lambda = 632.8 nm light is achieved at microsecond time response. Two-dimensional photonic crystals are also investigated as reflectance filters for lambda = 532 nm wavelength light. Both optically tunable and static reflectance filters are studied. Again, azobenzene liquid crystal molecules are incorporated into the photonic crystal to achieve optical tuning of the reflectance wavelength. In this case, the lambda = 532 nm wavelength light is used for self-modulation. That is, the light serves both to optically tune the photonic crystal filter as well as to modulate its own reflection efficiency through the photonic crystal filter. Moreover, stacking of multiple photonic crystals into a single filter is studied for both static and optically tunable photonic crystal filters. It is shown that this approach improves the performance of the photonic crystal reflectance filter by increasing its optical density and its angular tolerance at the reflection wavelength of lambda = 532 nm. Additionally, surface photonic crystals are

  15. Singular value decomposition for photon-processing nuclear imaging systems and applications for reconstruction and computing null functions.

    PubMed

    Jha, Abhinav K; Barrett, Harrison H; Frey, Eric C; Clarkson, Eric; Caucci, Luca; Kupinski, Matthew A

    2015-09-21

    Recent advances in technology are enabling a new class of nuclear imaging systems consisting of detectors that use real-time maximum-likelihood (ML) methods to estimate the interaction position, deposited energy, and other attributes of each photon-interaction event and store these attributes in a list format. This class of systems, which we refer to as photon-processing (PP) nuclear imaging systems, can be described by a fundamentally different mathematical imaging operator that allows processing of the continuous-valued photon attributes on a per-photon basis. Unlike conventional photon-counting (PC) systems that bin the data into images, PP systems do not have any binning-related information loss. Mathematically, while PC systems have an infinite-dimensional null space due to dimensionality considerations, PP systems do not necessarily suffer from this issue. Therefore, PP systems have the potential to provide improved performance in comparison to PC systems. To study these advantages, we propose a framework to perform the singular-value decomposition (SVD) of the PP imaging operator. We use this framework to perform the SVD of operators that describe a general two-dimensional (2D) planar linear shift-invariant (LSIV) PP system and a hypothetical continuously rotating 2D single-photon emission computed tomography (SPECT) PP system. We then discuss two applications of the SVD framework. The first application is to decompose the object being imaged by the PP imaging system into measurement and null components. We compare these components to the measurement and null components obtained with PC systems. In the process, we also present a procedure to compute the null functions for a PC system. The second application is designing analytical reconstruction algorithms for PP systems. The proposed analytical approach exploits the fact that PP systems acquire data in a continuous domain to estimate a continuous object function. The approach is parallelizable and

  16. Singular value decomposition for photon-processing nuclear imaging systems and applications for reconstruction and computing null functions

    NASA Astrophysics Data System (ADS)

    Jha, Abhinav K.; Barrett, Harrison H.; Frey, Eric C.; Clarkson, Eric; Caucci, Luca; Kupinski, Matthew A.

    2015-09-01

    Recent advances in technology are enabling a new class of nuclear imaging systems consisting of detectors that use real-time maximum-likelihood (ML) methods to estimate the interaction position, deposited energy, and other attributes of each photon-interaction event and store these attributes in a list format. This class of systems, which we refer to as photon-processing (PP) nuclear imaging systems, can be described by a fundamentally different mathematical imaging operator that allows processing of the continuous-valued photon attributes on a per-photon basis. Unlike conventional photon-counting (PC) systems that bin the data into images, PP systems do not have any binning-related information loss. Mathematically, while PC systems have an infinite-dimensional null space due to dimensionality considerations, PP systems do not necessarily suffer from this issue. Therefore, PP systems have the potential to provide improved performance in comparison to PC systems. To study these advantages, we propose a framework to perform the singular-value decomposition (SVD) of the PP imaging operator. We use this framework to perform the SVD of operators that describe a general two-dimensional (2D) planar linear shift-invariant (LSIV) PP system and a hypothetical continuously rotating 2D single-photon emission computed tomography (SPECT) PP system. We then discuss two applications of the SVD framework. The first application is to decompose the object being imaged by the PP imaging system into measurement and null components. We compare these components to the measurement and null components obtained with PC systems. In the process, we also present a procedure to compute the null functions for a PC system. The second application is designing analytical reconstruction algorithms for PP systems. The proposed analytical approach exploits the fact that PP systems acquire data in a continuous domain to estimate a continuous object function. The approach is parallelizable and

  17. Detector for high-energy photon backscatter

    NASA Astrophysics Data System (ADS)

    Silver, Michael D.; Erker, Joseph W.; Duncan, Michael Z.; Hartford, Thomas J.; Sivers, E. A.; Hopkinson, James F.

    1993-12-01

    High energy photon backscatter uses pair production to probe deep beneath surfaces with single side accessibility or to image thick, radiographically opaque objects. At the higher photon energies needed to penetrate thick and/or highly attenuating objects, Compton backscatter becomes strongly forward peaked with relatively little backscatter flux. Furthermore, the downward energy shift of the backscattered photon makes it more susceptible to attenuation on its outbound path. Above 1.022 MeV, pair production is possible; at about 10 MeV, pari production crosses over Compton scatter as the dominant x-ray interaction mechanism. The backscattered photons can be hard x rays from the bremsstrahlung of the electrons and positrons or 0.511 MeV photons from the annihilation of the positron. Monte Carlo computer simulations of such a backscatter system were done to characterize the output signals and to optimize a high energy detector design. This paper touches on the physics of high energy backscatter imaging and describes at some length the detector design for tomographic and radiographic imaging.

  18. Reduction of Metal Artifact in Single Photon-Counting Computed Tomography by Spectral-Driven Iterative Reconstruction Technique

    PubMed Central

    Nasirudin, Radin A.; Mei, Kai; Panchev, Petar; Fehringer, Andreas; Pfeiffer, Franz; Rummeny, Ernst J.; Fiebich, Martin; Noël, Peter B.

    2015-01-01

    Purpose The exciting prospect of Spectral CT (SCT) using photon-counting detectors (PCD) will lead to new techniques in computed tomography (CT) that take advantage of the additional spectral information provided. We introduce a method to reduce metal artifact in X-ray tomography by incorporating knowledge obtained from SCT into a statistical iterative reconstruction scheme. We call our method Spectral-driven Iterative Reconstruction (SPIR). Method The proposed algorithm consists of two main components: material decomposition and penalized maximum likelihood iterative reconstruction. In this study, the spectral data acquisitions with an energy-resolving PCD were simulated using a Monte-Carlo simulator based on EGSnrc C++ class library. A jaw phantom with a dental implant made of gold was used as an object in this study. A total of three dental implant shapes were simulated separately to test the influence of prior knowledge on the overall performance of the algorithm. The generated projection data was first decomposed into three basis functions: photoelectric absorption, Compton scattering and attenuation of gold. A pseudo-monochromatic sinogram was calculated and used as input in the reconstruction, while the spatial information of the gold implant was used as a prior. The results from the algorithm were assessed and benchmarked with state-of-the-art reconstruction methods. Results Decomposition results illustrate that gold implant of any shape can be distinguished from other components of the phantom. Additionally, the result from the penalized maximum likelihood iterative reconstruction shows that artifacts are significantly reduced in SPIR reconstructed slices in comparison to other known techniques, while at the same time details around the implant are preserved. Quantitatively, the SPIR algorithm best reflects the true attenuation value in comparison to other algorithms. Conclusion It is demonstrated that the combination of the additional information from

  19. High-energy war wounds: flap reconstruction.

    PubMed

    Stanec, Z; Skrbić, S; Dzepina, I; Hulina, D; Ivrlac, R; Unusić, J; Montani, D; Prpić, I

    1993-08-01

    In this article, we emphasize that knowledge of terminal ballistics is essential for understanding the pathophysiology of war wounds. We present our own experiences in treatment of high-energy war wounds in 75 patients treated in the Institute of Plastic and Reconstructive Surgery, Department of Surgery, Clinical Hospital Center in Zagreb. Patients were divided into three groups with regard to the time of definite reconstruction, using local or free microvascular flaps. About 12% of patients underwent flap reconstruction in the acute phase, associated with low complication rate and the shortest hospital stay. Group II was comprised by 18% of the patients and, considering the number of complications, presented the most unfavorable time for reconstruction. Flap reconstruction in the chronic phase resulted in a substantial prolongation of the hospital stay in 82% of patients. Therefore, we advocate proper primary treatment of wounds aimed at early flap closure. This type of management results in a significantly shorter hospitalization and leads to more effective rehabilitation and recovery of patients. PMID:8215140

  20. Nonparametric dark energy reconstruction from supernova data.

    PubMed

    Holsclaw, Tracy; Alam, Ujjaini; Sansó, Bruno; Lee, Herbert; Heitmann, Katrin; Habib, Salman; Higdon, David

    2010-12-10

    Understanding the origin of the accelerated expansion of the Universe poses one of the greatest challenges in physics today. Lacking a compelling fundamental theory to test, observational efforts are targeted at a better characterization of the underlying cause. If a new form of mass-energy, dark energy, is driving the acceleration, the redshift evolution of the equation of state parameter w(z) will hold essential clues as to its origin. To best exploit data from observations it is necessary to develop a robust and accurate reconstruction approach, with controlled errors, for w(z). We introduce a new, nonparametric method for solving the associated statistical inverse problem based on Gaussian process modeling and Markov chain Monte Carlo sampling. Applying this method to recent supernova measurements, we reconstruct the continuous history of w out to redshift z=1.5. PMID:21231517

  1. Reconstructing the Gamma-Ray Photon Optical Depth of the Universe To Z Approx. 4 from Multiwavelength Galaxy Survey Data

    NASA Technical Reports Server (NTRS)

    Helgason, Kari; Kashlinsky, Alexander

    2012-01-01

    Reconstructing the Gamma-Ray Photon Optical Depth of the Universe To Z Approx. 4fFrom Multiwavelength Galaxy Survey Data We reconstruct the gamma-ray opacity of the universe out to z approx. < 3–4 using an extensive library of 342 observed galaxy luminosity function (LF) surveys extending to high redshifts .We cover the whole range from UV to mid-IR (0.15–25 micron ) providing for the first time a robust empirical calculation of the gamma gamma optical depth out to several TeV. Here, we use the same database as Helgason et al. where the extragalactic background light was reconstructed from LFs out to 4.5 micron and was shown to recover observed galaxy counts to high accuracy. We extend our earlier library Of LFs to 25micron such that it covers the energy range of pair production with gamma -rays (1) in the entire Fermi/LAT energy range, and (2) at higher TeV energies probed by ground-based Cherenkov telescopes. In the absence of significant contributions to the cosmic diffuse background from unknown populations, such as the putative Population III era sources, the universe appears to be largely transparent to gamma-rays at all Fermi/LAT energies out to z approx.. 2 whereas it becomes opaque to TeV photons already at z approx. < 0.2 and reaching tau approx 10 at z = 1. Comparing with the currently available Fermi/LAT gamma-ray burst and blazar data shows that there is room for significant emissions originating in the first stars era.

  2. Reconstruction of time-correlated single-photon counting range profiles of moving objects

    NASA Astrophysics Data System (ADS)

    Jonsson, Per; Hedborg, Julia; Henriksson, Markus; Sjöqvist, Lars

    2015-10-01

    Time-correlated single-photon counting (TCSPC) is a laser radar technique that can provide range profiling with subcentimetre range resolution. The method relies on accurate time measurements between a laser pulse sync signal and the registration of a single-photon detection of photons reflected from an object. The measurement is performed multiple times and a histogram of arrival times is computed to gain information about surfaces at different distances within the field of view of the laser radar. TCSPC is a statistic method that requires an integration time and therefore the range profile of a non-stationary object (target) will be corrupted. However, by dividing the measurement into time intervals much shorter than the total acquisition time and cross correlating the histogram from each time interval it is possible calculate how the target has moved relative to the first time interval. The distance as a function of time was fitted to a polynomic function. This result was used to calculate a distance correction of every single detection event and the equivalent stationary histogram was reconstructed. Series of measurements on the objects with constant or non-linear velocities up to 0.5 m/s were performed and compared with stationary measurements. The results show that it is possible to reconstruct range profiles of moving objects with this technique. Reconstruction of the signal requires no prior information of the original range profile and the instantaneous and average velocities of the object can be calculated.

  3. An artificial neural net and error backpropagation to reconstruct single photon emission computerized tomography data.

    PubMed

    Knoll, P; Mirzaei, S; Müllner, A; Leitha, T; Koriska, K; Köhn, H; Neumann, M

    1999-02-01

    At present, algorithms used in nuclear medicine to reconstruct single photon emission computerized tomography (SPECT) data are usually based on one of two principles: filtered backprojection and iterative methods. In this paper a different algorithm, applying an artificial neural network (multilayer perception) and error backpropagation as training method are used to reconstruct transaxial slices from SPECT data. The algorithm was implemented on an Elscint XPERT workstation (i486, 50 MHz), used as a routine digital image processing tool in our departments. Reconstruction time for a 64 x 64 matrix is approximately 45 s/transaxial slice. The algorithm has been validated by a mathematical model and tested on heart and Jaszczak phantoms. Phantom studies and very first clinical results ((111)In octreotide SPECT, 99mTc MDP bone SPECT) show in comparison with filtered backprojection an enhancement in image quality. PMID:10076982

  4. Cherenkov detectors for spatial imaging applications using discrete-energy photons

    NASA Astrophysics Data System (ADS)

    Rose, Paul B.; Erickson, Anna S.

    2016-08-01

    Cherenkov detectors can offer a significant advantage in spatial imaging applications when excellent timing response, low noise and cross talk, large area coverage, and the ability to operate in magnetic fields are required. We show that an array of Cherenkov detectors with crude energy resolution coupled with monochromatic photons resulting from a low-energy nuclear reaction can be used to produce a sharp image of material while providing large and inexpensive detector coverage. The analysis of the detector response to relative transmission of photons with various energies allows for reconstruction of material's effective atomic number further aiding in high-Z material identification.

  5. Reconstructing high-dimensional two-photon entangled states via compressive sensing

    PubMed Central

    Tonolini, Francesco; Chan, Susan; Agnew, Megan; Lindsay, Alan; Leach, Jonathan

    2014-01-01

    Accurately establishing the state of large-scale quantum systems is an important tool in quantum information science; however, the large number of unknown parameters hinders the rapid characterisation of such states, and reconstruction procedures can become prohibitively time-consuming. Compressive sensing, a procedure for solving inverse problems by incorporating prior knowledge about the form of the solution, provides an attractive alternative to the problem of high-dimensional quantum state characterisation. Using a modified version of compressive sensing that incorporates the principles of singular value thresholding, we reconstruct the density matrix of a high-dimensional two-photon entangled system. The dimension of each photon is equal to d = 17, corresponding to a system of 83521 unknown real parameters. Accurate reconstruction is achieved with approximately 2500 measurements, only 3% of the total number of unknown parameters in the state. The algorithm we develop is fast, computationally inexpensive, and applicable to a wide range of quantum states, thus demonstrating compressive sensing as an effective technique for measuring the state of large-scale quantum systems. PMID:25306850

  6. Energy calibration of a multilayer photon detector

    SciTech Connect

    Johnson, R.A.

    1983-01-01

    The job of energy calibration was broken into three parts: gain normalization of all equivalent elements; determination of the functions for conversion of pulse height to energy; and gain stabilization. It is found that calorimeter experiments are no better than their calibration systems - calibration errors will be the major source of error at high energies. Redundance is found to be necessary - the system should be designed such that every element could be replaced during the life of the experiment. It is found to be important to have enough data taken during calibration runs and during the experiment to be able to sort out where the calibration problems were after the experiment is over. Each layer was normalized independently with electrons, and then the pulse height to energy conversion was determined with photons. The primary method of gain stabilization used the light flasher system. (LEW)

  7. Multicenter evaluation of single-photon emission computed tomography quantification with third-party reconstruction software.

    PubMed

    Kangasmaa, Tuija S; Constable, Chris; Hippeläinen, Eero; Sohlberg, Antti O

    2016-09-01

    Reliable and reproducible quantification is essential in many clinical situations. Previously, single-photon emission computed tomography (SPECT) has not been considered a quantitative imaging modality, but recent advances in reconstruction algorithm development have made SPECT quantitative. In this study, we investigate the reproducibility of SPECT quantification with phantoms in a multicenter setting using novel third-party reconstruction software. A total of five hospitals and eight scanners (three GE scanners and five Siemens scanners) participated in the study. A Jaszczak phantom without inserts was used to calculate counts to activity concentration conversion factors. The quantitative accuracy was tested using the NEMA-IEC phantom with six spherical inserts (diameters from 10 to 37 mm) filled to an 8 : 1 insert-background concentration ratio. Phantom studies were reconstructed at one central location using HERMES HybridRecon applying corrections for attenuation, collimator-detector response, and scatter. Spherical volumes of interest with the same diameter as the inserts were drawn on the images and recovery coefficients for the spheres were calculated. The coefficient of variation (CoV) of the NEMA-IEC phantom recovery coefficients ranged from ∼19 to 5% depending on the insert diameter so that the lowest CoV was obtained with the largest spheres. The intersite CoV was almost equal to intrasite CoV. In conclusion, quantitative SPECT is reproducible in a multicenter setting with third-party reconstruction software. PMID:27128824

  8. Multiscale vision model for event detection and reconstruction in two-photon imaging data.

    PubMed

    Brazhe, Alexey; Mathiesen, Claus; Lind, Barbara; Rubin, Andrey; Lauritzen, Martin

    2014-07-01

    Reliable detection of calcium waves in multiphoton imaging data is challenging because of the low signal-to-noise ratio and because of the unpredictability of the time and location of these spontaneous events. This paper describes our approach to calcium wave detection and reconstruction based on a modified multiscale vision model, an object detection framework based on the thresholding of wavelet coefficients and hierarchical trees of significant coefficients followed by nonlinear iterative partial object reconstruction, for the analysis of two-photon calcium imaging data. The framework is discussed in the context of detection and reconstruction of intercellular glial calcium waves. We extend the framework by a different decomposition algorithm and iterative reconstruction of the detected objects. Comparison with several popular state-of-the-art image denoising methods shows that performance of the multiscale vision model is similar in the denoising, but provides a better segmenation of the image into meaningful objects, whereas other methods need to be combined with dedicated thresholding and segmentation utilities. PMID:26157968

  9. Investigation of energy weighting using an energy discriminating photon counting detector for breast CT

    SciTech Connect

    Kalluri, Kesava S.; Mahd, Mufeed; Glick, Stephen J.

    2013-08-15

    Purpose: Breast CT is an emerging imaging technique that can portray the breast in 3D and improve visualization of important diagnostic features. Early clinical studies have suggested that breast CT has sufficient spatial and contrast resolution for accurate detection of masses and microcalcifications in the breast, reducing structural overlap that is often a limiting factor in reading mammographic images. For a number of reasons, image quality in breast CT may be improved by use of an energy resolving photon counting detector. In this study, the authors investigate the improvements in image quality obtained when using energy weighting with an energy resolving photon counting detector as compared to that with a conventional energy integrating detector.Methods: Using computer simulation, realistic CT images of multiple breast phantoms were generated. The simulation modeled a prototype breast CT system using an amorphous silicon (a-Si), CsI based energy integrating detector with different x-ray spectra, and a hypothetical, ideal CZT based photon counting detector with capability of energy discrimination. Three biological signals of interest were modeled as spherical lesions and inserted into breast phantoms; hydroxyapatite (HA) to represent microcalcification, infiltrating ductal carcinoma (IDC), and iodine enhanced infiltrating ductal carcinoma (IIDC). Signal-to-noise ratio (SNR) of these three lesions was measured from the CT reconstructions. In addition, a psychophysical study was conducted to evaluate observer performance in detecting microcalcifications embedded into a realistic anthropomorphic breast phantom.Results: In the energy range tested, improvements in SNR with a photon counting detector using energy weighting was higher (than the energy integrating detector method) by 30%–63% and 4%–34%, for HA and IDC lesions and 12%–30% (with Al filtration) and 32%–38% (with Ce filtration) for the IIDC lesion, respectively. The average area under the receiver

  10. Investigation of energy weighting using an energy discriminating photon counting detector for breast CT

    PubMed Central

    Kalluri, Kesava S.; Mahd, Mufeed; Glick, Stephen J.

    2013-01-01

    Purpose: Breast CT is an emerging imaging technique that can portray the breast in 3D and improve visualization of important diagnostic features. Early clinical studies have suggested that breast CT has sufficient spatial and contrast resolution for accurate detection of masses and microcalcifications in the breast, reducing structural overlap that is often a limiting factor in reading mammographic images. For a number of reasons, image quality in breast CT may be improved by use of an energy resolving photon counting detector. In this study, the authors investigate the improvements in image quality obtained when using energy weighting with an energy resolving photon counting detector as compared to that with a conventional energy integrating detector. Methods: Using computer simulation, realistic CT images of multiple breast phantoms were generated. The simulation modeled a prototype breast CT system using an amorphous silicon (a-Si), CsI based energy integrating detector with different x-ray spectra, and a hypothetical, ideal CZT based photon counting detector with capability of energy discrimination. Three biological signals of interest were modeled as spherical lesions and inserted into breast phantoms; hydroxyapatite (HA) to represent microcalcification, infiltrating ductal carcinoma (IDC), and iodine enhanced infiltrating ductal carcinoma (IIDC). Signal-to-noise ratio (SNR) of these three lesions was measured from the CT reconstructions. In addition, a psychophysical study was conducted to evaluate observer performance in detecting microcalcifications embedded into a realistic anthropomorphic breast phantom. Results: In the energy range tested, improvements in SNR with a photon counting detector using energy weighting was higher (than the energy integrating detector method) by 30%–63% and 4%–34%, for HA and IDC lesions and 12%–30% (with Al filtration) and 32%–38% (with Ce filtration) for the IIDC lesion, respectively. The average area under the

  11. Signature-based search for delayed photons in exclusive photon plus missing transverse energy events from pp¯ collisions with s=1.96TeV

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Ciocci, M. A.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; De Barbaro, P.; Demortier, L.; Deninno, M.; d'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Eusebi, R.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucà, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, P.; Martínez, M.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; Stancari, M.; Denis, R. St.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Wester, W. C., III; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2013-08-01

    We present the first signature-based search for delayed photons using an exclusive photon plus missing transverse energy final state. Events are reconstructed in a data sample from the CDF II detector corresponding to 6.3fb-1 of integrated luminosity from s=1.96TeV proton-antiproton collisions. Candidate events are selected if they contain a photon with an arrival time in the detector larger than expected from a promptly produced photon. The mean number of events from standard model sources predicted by the data-driven background model based on the photon timing distribution is 286±24. A total of 322 events are observed. A p value of 12% is obtained, showing consistency of the data with standard model predictions.

  12. Compensation for displacement of the focal point in cone beam single photon emission computed tomography reconstruction.

    PubMed

    Cao, Z; Qian, L

    1997-04-01

    This study examined the effects of focal point displacement on image quality in cone beam single photon emission computed tomography (SPECT). A new image reconstruction algorithm that accounts for the focal point shift was derived and three shift geometries were investigated. The geometries included a lateral shift with a fixed focal length but off-center focusing, a linear axial shift with a variable focal length that depends linearly on the distance between a bin of the detector and the center of the detector, and a random axial shift with a randomly varying focal length. Computer simulation was conducted to evaluate the shift effects with a phantom that was composed of 118 small spherical sources. The results demonstrated that the lateral shift of the focal point was more critical to image quality than was the axial shift. With a 0.64 cm (1 pixel) lateral shift, noticeable artifacts was observed, while an axial shift resulted in minimal changes in image quality until it reached 8 cm (12.5 pixels). The derived reconstruction algorithm eliminated most of the artifacts caused by a fixed lateral shift or a linear axial shift of the focal point, but failed to do so for a random axial shift since the linear distribution assumed in image reconstruction did not match the random shift occurred in acquisition of the data. PMID:9291002

  13. Trilateration-based reconstruction of ortho-positronium decays into three photons with the J-PET detector

    NASA Astrophysics Data System (ADS)

    Gajos, A.; Kamińska, D.; Czerwiński, E.; Alfs, D.; Bednarski, T.; Białas, P.; Głowacz, B.; Gorgol, M.; Jasińska, B.; Kapłon, Ł.; Korcyl, G.; Kowalski, P.; Kozik, T.; Krzemień, W.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Pałka, M.; Pawlik-Niedźwiecka, M.; Raczyński, L.; Rudy, Z.; Rundel, O.; Sharma, N. G.; Silarski, M.; Słomski, A.; Strzelecki, A.; Wieczorek, A.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.; Moskal, P.

    2016-05-01

    This work reports on a new reconstruction algorithm allowing us to reconstruct the decays of ortho-positronium atoms into three photons using the places and times of photons recorded in the detector. The method is based on trilateration and allows for a simultaneous reconstruction of both location and time of the decay. Results of resolution tests of the new reconstruction in the J-PET detector based on Monte Carlo simulations are presented, which yield a spatial resolution at the level of 2 cm (FWHM) for X and Y and at the level of 1 cm (FWHM) for Z available with the present resolution of J-PET after application of a kinematic fit. Prospects of employment of this method for studying angular correlations of photons in decays of polarized ortho-positronia for the needs of tests of CP and CPT discrete symmetries are also discussed. The new reconstruction method allows for discrimination of background from random three-photon coincidences as well as for application of a novel method for determination of the linear polarization of ortho-positronium atoms, which is also introduced in this work.

  14. A comparison of manual neuronal reconstruction from biocytin histology or 2-photon imaging: morphometry and computer modeling

    PubMed Central

    Blackman, Arne V.; Grabuschnig, Stefan; Legenstein, Robert; Sjöström, P. Jesper

    2014-01-01

    Accurate 3D reconstruction of neurons is vital for applications linking anatomy and physiology. Reconstructions are typically created using Neurolucida after biocytin histology (BH). An alternative inexpensive and fast method is to use freeware such as Neuromantic to reconstruct from fluorescence imaging (FI) stacks acquired using 2-photon laser-scanning microscopy during physiological recording. We compare these two methods with respect to morphometry, cell classification, and multicompartmental modeling in the NEURON simulation environment. Quantitative morphological analysis of the same cells reconstructed using both methods reveals that whilst biocytin reconstructions facilitate tracing of more distal collaterals, both methods are comparable in representing the overall morphology: automated clustering of reconstructions from both methods successfully separates neocortical basket cells from pyramidal cells but not BH from FI reconstructions. BH reconstructions suffer more from tissue shrinkage and compression artifacts than FI reconstructions do. FI reconstructions, on the other hand, consistently have larger process diameters. Consequently, significant differences in NEURON modeling of excitatory post-synaptic potential (EPSP) forward propagation are seen between the two methods, with FI reconstructions exhibiting smaller depolarizations. Simulated action potential backpropagation (bAP), however, is indistinguishable between reconstructions obtained with the two methods. In our hands, BH reconstructions are necessary for NEURON modeling and detailed morphological tracing, and thus remain state of the art, although they are more labor intensive, more expensive, and suffer from a higher failure rate due to the occasional poor outcome of histological processing. However, for a subset of anatomical applications such as cell type identification, FI reconstructions are superior, because of indistinguishable classification performance with greater ease of use

  15. Dual-energy iterative reconstruction for material characterisation

    NASA Astrophysics Data System (ADS)

    Recur, B.; Paziresh, M.; Myers, G.; Kingston, A.; Latham, S.; Sheppard, A.

    2014-09-01

    In this paper, we develop a dual-energy ordered subsets convex method for transmission tomography based on material matching with a material dictionary. This reconstruction includes a constrained update forcing material characteristics of reconstructed atomic number (Z) and density (p) volumes to follow a distribution according to the material database provided. We also propose a probabilistic classification technique in order to manage this material distribution. The overall process produces a chemically segmented volume data and outperforms sequential labelling computed after tomographic reconstruction.

  16. Particle and Photon Detection: Counting and Energy Measurement.

    PubMed

    Janesick, James; Tower, John

    2016-01-01

    Fundamental limits for photon counting and photon energy measurement are reviewed for CCD and CMOS imagers. The challenges to extend photon counting into the visible/nIR wavelengths and achieve energy measurement in the UV with specific read noise requirements are discussed. Pixel flicker and random telegraph noise sources are highlighted along with various methods used in reducing their contribution on the sensor's read noise floor. Practical requirements for quantum efficiency, charge collection efficiency, and charge transfer efficiency that interfere with photon counting performance are discussed. Lastly we will review current efforts in reducing flicker noise head-on, in hopes to drive read noise substantially below 1 carrier rms. PMID:27187398

  17. Polychromatic Iterative Statistical Material Image Reconstruction for Photon-Counting Computed Tomography

    PubMed Central

    Weidinger, Thomas; Buzug, Thorsten M.; Flohr, Thomas; Kappler, Steffen; Stierstorfer, Karl

    2016-01-01

    This work proposes a dedicated statistical algorithm to perform a direct reconstruction of material-decomposed images from data acquired with photon-counting detectors (PCDs) in computed tomography. It is based on local approximations (surrogates) of the negative logarithmic Poisson probability function. Exploiting the convexity of this function allows for parallel updates of all image pixels. Parallel updates can compensate for the rather slow convergence that is intrinsic to statistical algorithms. We investigate the accuracy of the algorithm for ideal photon-counting detectors. Complementarily, we apply the algorithm to simulation data of a realistic PCD with its spectral resolution limited by K-escape, charge sharing, and pulse-pileup. For data from both an ideal and realistic PCD, the proposed algorithm is able to correct beam-hardening artifacts and quantitatively determine the material fractions of the chosen basis materials. Via regularization we were able to achieve a reduction of image noise for the realistic PCD that is up to 90% lower compared to material images form a linear, image-based material decomposition using FBP images. Additionally, we find a dependence of the algorithms convergence speed on the threshold selection within the PCD. PMID:27195003

  18. Polychromatic Iterative Statistical Material Image Reconstruction for Photon-Counting Computed Tomography.

    PubMed

    Weidinger, Thomas; Buzug, Thorsten M; Flohr, Thomas; Kappler, Steffen; Stierstorfer, Karl

    2016-01-01

    This work proposes a dedicated statistical algorithm to perform a direct reconstruction of material-decomposed images from data acquired with photon-counting detectors (PCDs) in computed tomography. It is based on local approximations (surrogates) of the negative logarithmic Poisson probability function. Exploiting the convexity of this function allows for parallel updates of all image pixels. Parallel updates can compensate for the rather slow convergence that is intrinsic to statistical algorithms. We investigate the accuracy of the algorithm for ideal photon-counting detectors. Complementarily, we apply the algorithm to simulation data of a realistic PCD with its spectral resolution limited by K-escape, charge sharing, and pulse-pileup. For data from both an ideal and realistic PCD, the proposed algorithm is able to correct beam-hardening artifacts and quantitatively determine the material fractions of the chosen basis materials. Via regularization we were able to achieve a reduction of image noise for the realistic PCD that is up to 90% lower compared to material images form a linear, image-based material decomposition using FBP images. Additionally, we find a dependence of the algorithms convergence speed on the threshold selection within the PCD. PMID:27195003

  19. Measurement of inclusive isolated prompt photon production at center of mass energy = 7 TeV with the ATLAS

    NASA Astrophysics Data System (ADS)

    Hance, Michael

    Prompt photons at hadron colliders are useful probes of perturbative quantum chromodynamics (pQCD), and are also found in signatures of new physics. A precise measurement of prompt photon production is both a useful test of theoretical models as well as an important step towards understanding final states that contain energetic photons. This thesis presents a measurement of the inclusive isolated prompt photon production cross section in proton-proton collisions at a center-of-mass energy of s = 7 TeV. The data are collected with the ATLAS detector at the Large Hadron Collider, and correspond to 35 pb-1 of integrated luminosity. The measurement is made in four photon pseudorapidity (etagamma) regions: 0 ≤ |etagamma| < 0.6; 0.6 ≤ |etagamma| < 1.37; 1.52 ≤ |eta gamma| < 1.81; and 1.81 ≤ |etagamma| < 2.37; and covers photon transverse energies ( EgT ) in the range 15 GeV ≤ EgT < 400 GeV. Photon candidates are reconstructed and identified through the use of the ATLAS calorimeter and tracking systems. The residual background, primarily from neutral meson decays, is estimated using in-situ techniques based on observed distributions of the total transverse energy in a narrow cone around the photon candidate. The measurements are compared to predictions from next-to-leading order pQCD calculations, with good agreement for photon transverse energies greater than 25 GeV.

  20. Energy response improvement for photon dosimetry using pulse analysis

    NASA Astrophysics Data System (ADS)

    Zaki, Dizaji H.

    2016-02-01

    During the last few years, active personal dosimeters have been developed and have replaced passive personal dosimeters in some external monitoring systems, frequently using silicon diode detectors. Incident photons interact with the constituents of the diode detector and produce electrons. These photon-induced electrons deposit energy in the detector's sensitive region and contribute to the response of diode detectors. To achieve an appropriate photon dosimetry response, the detectors are usually covered by a metallic layer with an optimum thickness. The metallic cover acts as an energy compensating shield. In this paper, a software process is performed for energy compensation. Selective data sampling based on pulse height is used to determine the photon dose equivalent. This method is applied to improve the energy response in photon dosimetry. The detector design is optimized for the response function and determination of the photon dose equivalent. Photon personal dose equivalent is determined in the energy range of 0.3-6 MeV. The error values of the calculated data for this wide energy range and measured data for 133Ba, 137Cs, 60Co and 241Am-Be sources respectively are up to 20% and 15%. Fairly good agreement is seen between simulation and dose values obtained from our process and specifications from several photon sources.

  1. Formation of ions by high-energy photons

    SciTech Connect

    Drukarev, E. G.; Mikhailov, A. I.; Mikhailov, I. A.; Rakhimov, Kh. Yu.; Scheid, W.

    2007-03-15

    We calculate the electron energy spectrum of ionization by a high-energy photon, accompanied by creation of an e{sup -}e{sup +} pair. The total cross section of the process is also obtained. The asymptotics of the cross section does not depend on the photon energy. At the photon energies exceeding a certain value {omega}{sub 0} this appears to be the dominant mechanism of formation of the ions. The dependence of {omega}{sub 0} on the value of nuclear charge is obtained. Our results are consistent with experimental data.

  2. Thermophotovoltaic energy conversion using photonic bandgap selective emitters

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2003-06-24

    A method for thermophotovoltaic generation of electricity comprises heating a metallic photonic crystal to provide selective emission of radiation that is matched to the peak spectral response of a photovoltaic cell that converts the radiation to electricity. The use of a refractory metal, such as tungsten, for the photonic crystal enables high temperature operation for high radiant flux and high dielectric contrast for a full 3D photonic bandgap, preferable for efficient thermophotovoltaic energy conversion.

  3. Energy reconstruction in the long-baseline neutrino experiment.

    PubMed

    Mosel, U; Lalakulich, O; Gallmeister, K

    2014-04-18

    The Long-Baseline Neutrino Experiment aims at measuring fundamental physical parameters to high precision and exploring physics beyond the standard model. Nuclear targets introduce complications towards that aim. We investigate the uncertainties in the energy reconstruction, based on quasielastic scattering relations, due to nuclear effects. The reconstructed event distributions as a function of energy tend to be smeared out and shifted by several 100 MeV in their oscillatory structure if standard event selection is used. We show that a more restrictive experimental event selection offers the possibility to reach the accuracy needed for a determination of the mass ordering and the CP-violating phase. Quasielastic-based energy reconstruction could thus be a viable alternative to the calorimetric reconstruction also at higher energies. PMID:24785030

  4. Measurement of the B→Xsγ branching fraction and photon energy spectrum using the recoil method

    NASA Astrophysics Data System (ADS)

    Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.; Tico, J. Garra; Grauges, E.; Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G. S.; Battaglia, M.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Jacobsen, R. G.; Kadyk, J. A.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Pegna, D. Lopes; Lynch, G.; Orimoto, T. J.; Osipenkov, I. L.; Ronan, M. T.; Tackmann, K.; Tanabe, T.; Wenzel, W. A.; Del Amo Sanchez, P.; Hawkes, C. M.; Soni, N.; Watson, A. T.; Koch, H.; Schroeder, T.; Walker, D.; Asgeirsson, D. J.; Cuhadar-Donszelmann, T.; Fulsom, B. G.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Barrett, M.; Khan, A.; Saleem, M.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Bondioli, M.; Curry, S.; Eschrich, I.; Kirkby, D.; Lankford, A. J.; Lund, P.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Abachi, S.; Buchanan, C.; Gary, J. W.; Liu, F.; Long, O.; Shen, B. C.; Vitug, G. M.; Zhang, L.; Paar, H. P.; Rahatlou, S.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Cunha, A.; Dahmes, B.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; Beck, T. W.; Eisner, A. M.; Flacco, C. J.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Schalk, T.; Schumm, B. A.; Seiden, A.; Wilson, M. G.; Winstrom, L. O.; Chen, E.; Cheng, C. H.; Echenard, B.; Fang, F.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Andreassen, R.; Mancinelli, G.; Meadows, B. T.; Mishra, K.; Sokoloff, M. D.; Blanc, F.; Bloom, P. C.; Ford, W. T.; Hirschauer, J. F.; Kreisel, A.; Nagel, M.; Nauenberg, U.; Olivas, A.; Smith, J. G.; Ulmer, K. A.; Wagner, S. R.; Zhang, J.; Ayad, R.; Gabareen, A. M.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Altenburg, D. D.; Feltresi, E.; Hauke, A.; Jasper, H.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Klose, V.; Kobel, M. J.; Lacker, H. M.; Mader, W. F.; Nogowski, R.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Sundermann, J. E.; Volk, A.; Bernard, D.; Bonneaud, G. R.; Latour, E.; Lombardo, V.; Thiebaux, Ch.; Verderi, M.; Clark, P. J.; Gradl, W.; Muheim, F.; Playfer, S.; Robertson, A. I.; Watson, J. E.; Xie, Y.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Buzzo, A.; Contri, R.; Lo Vetere, M.; Macri, M. M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.; Chaisanguanthum, K. S.; Morii, M.; Wu, J.; Dubitzky, R. S.; Marks, J.; Schenk, S.; Uwer, U.; Bard, D. J.; Dauncey, P. D.; Nash, J. A.; Vazquez, W. Panduro; Tibbetts, M.; Behera, P. K.; Chai, X.; Charles, M. J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Dong, L.; Eyges, V.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Lae, C. K.; Denig, A. G.; Fritsch, M.; Schott, G.; Arnaud, N.; Béquilleux, J.; D'Orazio, A.; Davier, M.; Grosdidier, G.; Höcker, A.; Lepeltier, V.; Le Diberder, F.; Lutz, A. M.; Pruvot, S.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, W. F.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Burke, J. P.; Chavez, C. A.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Schofield, K. C.; Touramanis, C.; Bevan, A. J.; George, K. A.; di Lodovico, F.; Sacco, R.; Cowan, G.; Flaecher, H. U.; Hopkins, D. A.; Paramesvaran, S.; Salvatore, F.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Barlow, N. R.; Barlow, R. J.; Chia, Y. M.; Edgar, C. L.; Lafferty, G. D.; West, T. J.; Yi, J. I.; Anderson, J.; Chen, C.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Hertzbach, S. S.; Li, X.; Moore, T. B.; Salvati, E.; Saremi, S.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Koeneke, K.; Sciolla, G.; Spitznagel, M.; Taylor, F.; Yamamoto, R. K.; Zhao, M.; McLachlin, S. E.; Patel, P. M.; Robertson, S. H.; Lazzaro, A.; Palombo, F.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Brunet, S.; Côté, D.; Simard, M.; Taras, P.; Viaud, F. B.; Nicholson, H.; de Nardo, G.; Fabozzi, F.; Lista, L.; Monorchio, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Benelli, G.; Corwin, L. A.; Honscheid, K.; Kagan, H.; Kass, R.; Morris, J. P.; Rahimi, A. M.; Regensburger, J. J.; Sekula, S. J.; Wong, Q. K.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Lu, M.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Pompili, A.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Ben-Haim, E.; Briand, H.; Calderini, G.; Chauveau, J.; David, P.; Del Buono, L.; de La Vaissière, Ch.; Hamon, O.; Leruste, Ph.; Malclès, J.; Ocariz, J.; Perez, A.; Prendki, J.; Gladney, L.; Biasini, M.; Covarelli, R.; Manoni, E.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Mazur, M. A.; Morganti, M.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Biesiada, J.; Lau, Y. P.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Baracchini, E.; Bellini, F.; Cavoto, G.; Del Re, D.; di Marco, E.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Jackson, P. D.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Polci, F.; Renga, F.; Voena, C.; Ebert, M.; Hartmann, T.; Schröder, H.; Waldi, R.; Adye, T.; Castelli, G.; Franek, B.; Olaiya, E. O.; Roethel, W.; Wilson, F. F.; Emery, S.; Escalier, M.; Gaidot, A.; Ganzhur, S. F.; de Monchenault, G. Hamel; Kozanecki, W.; Vasseur, G.; Yèche, Ch.; Zito, M.; Chen, X. R.; Liu, H.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Allen, M. T.; Aston, D.; Bartoldus, R.; Bechtle, P.; Claus, R.; Coleman, J. P.; Convery, M. R.; Dingfelder, J. C.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kaminski, J.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Marsiske, H.; Messner, R.; Muller, D. R.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perazzo, A.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Suzuki, K.; Swain, S. K.; Thompson, J. M.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Yi, K.; Young, C. C.; Ziegler, V.; Burchat, P. R.; Edwards, A. J.; Majewski, S. A.; Miyashita, T. S.; Petersen, B. A.; Wilden, L.; Ahmed, S.; Alam, M. S.; Bula, R.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.; Spanier, S. M.; Wogsland, B. J.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Izen, J. M.; Lou, X. C.; Ye, S.; Bianchi, F.; Gallo, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Bosisio, L.; Cartaro, C.; Cossutti, F.; Della Ricca, G.; Lanceri, L.; Vitale, L.; Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Bhuyan, B.; Hamano, K.; Kowalewski, R.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Harrison, P. F.; Ilic, J.; Latham, T. E.; Mohanty, G. B.; Band, H. R.; Chen, X.; Dasu, S.; Flood, K. T.; Hollar, J. J.; Kutter, P. E.; Pan, Y.; Pierini, M.; Prepost, R.; Wu, S. L.; Neal, H.

    2008-03-01

    We present a measurement of the branching fraction and photon-energy spectrum for the decay B→Xsγ using data from the BABAR experiment. The data sample corresponds to an integrated luminosity of 210fb-1, from which approximately 680 000 B Bmacr events are tagged by a fully reconstructed hadronic decay of one of the B mesons. In the decay of the second B meson, an isolated high-energy photon is identified. We measure B(B→Xsγ)=(3.66±0.85stat±0.60syst)×10-4 for photon energies Eγ above 1.9 GeV in the B rest frame. From the measured spectrum we calculate the first and second moments for different minimum photon energies, which are used to extract the heavy-quark parameters mb and μπ2. In addition, measurements of the direct CP asymmetry and isospin asymmetry are presented.

  5. Few-view single photon emission computed tomography (SPECT) reconstruction based on a blurred piecewise constant object model

    NASA Astrophysics Data System (ADS)

    Wolf, Paul A.; Jørgensen, Jakob S.; Schmidt, Taly G.; Sidky, Emil Y.

    2013-08-01

    A sparsity-exploiting algorithm intended for few-view single photon emission computed tomography (SPECT) reconstruction is proposed and characterized. The algorithm models the object as piecewise constant subject to a blurring operation. To validate that the algorithm closely approximates the true object in the noiseless case, projection data were generated from an object assuming this model and using the system matrix. Monte Carlo simulations were performed to provide more realistic data of a phantom with varying smoothness across the field of view and a cardiac phantom. Reconstructions were performed across a sweep of two primary design parameters. The results demonstrate that the algorithm recovers the object in a noiseless simulation case. While the algorithm assumes a specific blurring model, the results suggest that the algorithm may provide high reconstruction accuracy even when the object does not match the assumed blurring model. Generally, increased values of the blurring parameter and total variation weighting parameters reduced streaking artifacts, while decreasing spatial resolution. The proposed algorithm demonstrated higher correlation with respect to the true phantom compared to maximum-likelihood expectation maximization (MLEM) reconstructions. Images reconstructed with the proposed algorithm demonstrated reduced streaking artifacts when reconstructing from few views compared to MLEM. The proposed algorithm introduced patchy artifacts in some reconstructed images, depending on the noise level and the selected algorithm parameters. Overall, the results demonstrate preliminary feasibility of a sparsity-exploiting reconstruction algorithm which may be beneficial for few-view SPECT.

  6. Few-view single photon emission computed tomography (SPECT) reconstruction based on a blurred piecewise constant object model

    PubMed Central

    Wolf, Paul A; Jørgensen, Jakob S; Schmidt, Taly G; Sidky, Emil Y

    2013-01-01

    A sparsity-exploiting algorithm intended for few-view Single Photon Emission Computed Tomography (SPECT) reconstruction is proposed and characterized. The algorithm models the object as piecewise constant subject to a blurring operation. To validate that the algorithm closely approximates the true object in the noiseless case, projection data were generated from an object assuming this model and using the system matrix. Monte Carlo simulations were performed to provide more realistic data of a phantom with varying smoothness across the field of view and a cardiac phantom. Reconstructions were performed across a sweep of two primary design parameters. The results demonstrate that the algorithm recovers the object in a noiseless simulation case. While the algorithm assumes a specific blurring model, the results suggest that the algorithm may provide high reconstruction accuracy even when the object does not match the assumed blurring model. Generally, increased values of the blurring parameter and Total Variation (TV) weighting parameters reduced streaking artifacts, while decreasing spatial resolution. The proposed algorithm demonstrated higher correlation with respect to the true phantom compared to Maximum Likelihood Expectation Maximization (MLEM) reconstructions. Images reconstructed with the proposed algorithm demonstrated reduced streaking artifacts when reconstructing from few views compared to MLEM. The proposed algorithm introduced patchy artifacts in some reconstructed images, depending on the noise level and the selected algorithm parameters. Overall, the results demonstrate preliminary feasibility of a sparsity-exploiting reconstruction algorithm which may be beneficial for few-view SPECT. PMID:23892823

  7. Direct photon production in high-energy nuclear collisions

    NASA Astrophysics Data System (ADS)

    Peitzmann, T.

    2016-01-01

    Direct photons have always been considered a promising probe for the very early phases of high-energy nuclear collisions. Prompt photons reveal information about the initial state and its possible modifications in nuclei. In this context they should be one of the best probes for effects of gluon saturation. Thermal photons emitted from the produced matter in nuclear collisions carry information on the temperature of the very early phase. In particular a simultaneous measurement of yield and elliptic flow of thermal photons can put strong constraints on the early time dynamics of the system. I review the status of results on direct photon measurements at RHIC and LHC and their interpretation. Prompt photons at high pT are consistent with expectations from NLO pQCD in pp and show no strong nuclear modifications in A-A collisions. Recent analysis at RHIC has shown very intriguing results for lower pT, with high thermal photon yield and strong elliptic flow of direct photons, which are not fully understood theoretically. Also the ALICE experiment at the LHC has measured a high yield of thermal photons. Furthermore I discuss prospects for future measurements of forward direct photons at the LHC.

  8. Photon Upconversion Through Tb(3+) -Mediated Interfacial Energy Transfer.

    PubMed

    Zhou, Bo; Yang, Weifeng; Han, Sanyang; Sun, Qiang; Liu, Xiaogang

    2015-10-28

    A strategy of interfacial energy transfer upconversion is demonstrated through the use of a terbium (Tb(3+) ) dopant as energy donor or energy migrator in core-shell-structured nanocrystals. This mechanistic investigation presents a new pathway for photon upconversion, and, more importantly, contributes to the better control of energy transfer at the nanometer length scale. PMID:26378771

  9. Experimental observation of planet formation using low energy photon-photon collision

    NASA Astrophysics Data System (ADS)

    Zhang, Meggie

    2014-03-01

    Our current theory believes that planets were formed from aggregation of galactic gas. Our work in 2011 suggested there could be an alternative explanation on planet formation based on a reinterpretation of quantum physics, which suggested that planet formed at early stage through aggregation, then it grows through a different process other than aggregation. Using low energy photon-photon collision we have successfully observed this process. This result also cast doubt on the Big Bang theory.

  10. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector

    NASA Astrophysics Data System (ADS)

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2014-09-01

    Dual-energy computed tomography (CT) techniques have been used to decompose materials and characterize tissues according to their physical and chemical compositions. However, these techniques are hampered by the limitations of conventional x-ray detectors operated in charge integrating mode. Energy-resolved photon-counting detectors provide spectral information from polychromatic x-rays using multiple energy thresholds. These detectors allow simultaneous acquisition of data in different energy ranges without spectral overlap, resulting in more efficient material decomposition and quantification for dual-energy CT. In this study, a pre-reconstruction dual-energy CT technique based on volume conservation was proposed for three-material decomposition. The technique was combined with iterative reconstruction algorithms by using a ray-driven projector in order to improve the quality of decomposition images and reduce radiation dose. A spectral CT system equipped with a CZT-based photon-counting detector was used to implement the proposed dual-energy CT technique. We obtained dual-energy images of calibration and three-material phantoms consisting of low atomic number materials from the optimal energy bins determined by Monte Carlo simulations. The material decomposition process was accomplished by both the proposed and post-reconstruction dual-energy CT techniques. Linear regression and normalized root-mean-square error (NRMSE) analyses were performed to evaluate the quantitative accuracy of decomposition images. The calibration accuracy of the proposed dual-energy CT technique was higher than that of the post-reconstruction dual-energy CT technique, with fitted slopes of 0.97-1.01 and NRMSEs of 0.20-4.50% for all basis materials. In the three-material phantom study, the proposed dual-energy CT technique decreased the NRMSEs of measured volume fractions by factors of 0.17-0.28 compared to the post-reconstruction dual-energy CT technique. It was concluded that the

  11. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector.

    PubMed

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2014-09-21

    Dual-energy computed tomography (CT) techniques have been used to decompose materials and characterize tissues according to their physical and chemical compositions. However, these techniques are hampered by the limitations of conventional x-ray detectors operated in charge integrating mode. Energy-resolved photon-counting detectors provide spectral information from polychromatic x-rays using multiple energy thresholds. These detectors allow simultaneous acquisition of data in different energy ranges without spectral overlap, resulting in more efficient material decomposition and quantification for dual-energy CT. In this study, a pre-reconstruction dual-energy CT technique based on volume conservation was proposed for three-material decomposition. The technique was combined with iterative reconstruction algorithms by using a ray-driven projector in order to improve the quality of decomposition images and reduce radiation dose. A spectral CT system equipped with a CZT-based photon-counting detector was used to implement the proposed dual-energy CT technique. We obtained dual-energy images of calibration and three-material phantoms consisting of low atomic number materials from the optimal energy bins determined by Monte Carlo simulations. The material decomposition process was accomplished by both the proposed and post-reconstruction dual-energy CT techniques. Linear regression and normalized root-mean-square error (NRMSE) analyses were performed to evaluate the quantitative accuracy of decomposition images. The calibration accuracy of the proposed dual-energy CT technique was higher than that of the post-reconstruction dual-energy CT technique, with fitted slopes of 0.97-1.01 and NRMSEs of 0.20-4.50% for all basis materials. In the three-material phantom study, the proposed dual-energy CT technique decreased the NRMSEs of measured volume fractions by factors of 0.17-0.28 compared to the post-reconstruction dual-energy CT technique. It was concluded that the

  12. Performances of JEM-EUSO: energy and X max reconstruction

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    The Extreme Universe Space Observatory (EUSO) on-board the Japanese Experimental Module (JEM) of the International Space Station aims at the detection of ultra high energy cosmic rays from space. The mission consists of a UV telescope which will detect the fluorescence light emitted by cosmic ray showers in the atmosphere. The mission, currently developed by a large international collaboration, is designed to be launched within this decade. In this article, we present the reconstruction of the energy of the observed events and we also address the X max reconstruction. After discussing the algorithms developed for the energy and X max reconstruction, we present several estimates of the energy resolution, as a function of the incident angle, and energy of the event. Similarly, estimates of the X max resolution for various conditions are presented.

  13. Expected spectrum of high-energy photons from ball lightning

    NASA Astrophysics Data System (ADS)

    Shmatov, M. L.

    2006-04-01

    Two methods for identifying the flux of high-energy photons as emitted by ball lightning are proposed. It is assumed that ball lightning has a core consisting of oscillating clouds of electrons and totally ionized ions. A search for tooth enamel changes due to the influence of high-energy photons from ball lightning to reveal the influence of such photons on human beings is also proposed. This diagnostic measure should be taken if after observation of ball lightning symptoms similar to those of radiation sickness arise or ball lightning causes heavy burns.

  14. Partial cross sections of helium satellites at medium photon energies

    SciTech Connect

    Wehlitz, R.; Sellin, I.A.; Hemmers, O.

    1997-04-01

    Still of current interest is the important role of single ionization with excitation compared to single ionization alone. The coupling between the electrons and the incoming photon is a single-particle operator. Thus, an excitation in addition to an ionization, leading to a so-called satellite line in a photoelectron spectrum, is entirely due to electron-electron interaction and probes the electron correlation in the ground and final state. Therefore the authors have undertaken the study of the intensity of helium satellites He{sup +}nl (n = 2 - 6) relative to the main photoline (n = 1) as a function of photon energy at photon energies well above threshold up to 900 eV. From these results they could calculate the partial cross-sections of the helium satellites. In order to test the consistency of their satellite-to-1s ratios with published double-to-single photoionization ratios, the authors calculated the double-to-single photoionization ratio from their measured ratios using the theoretical energy-distribution curves of Chang and Poe and Le Rouzo and Dal Cappello which proved to be valid for photon energies below 120 eV. These calculated double-to-single ionization ratios agree fairly well with recent ion measurements. In the lower photon energy range the authors ratios agree better with the ratios of Doerner et al. while for higher photon energies the agreement is better with the values of Levin et al.

  15. Ultra high energy photons and neutrinos with JEM-EUSO

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    Ultra high energy photons and neutrinos are carriers of very important astrophysical information. They may be produced at the sites of cosmic ray acceleration or during the propagation of the cosmic rays in the intergalactic medium. In contrast to charged cosmic rays, photon and neutrino arrival directions point to the production site because they are not deflected by the magnetic fields of the Galaxy or the intergalactic medium. In this work we study the characteristics of the longitudinal development of showers initiated by photons and neutrinos at the highest energies. These studies are relevant for development of techniques for neutrino and photon identification by the JEM-EUSO telescope. In particular, we study the possibility of observing the multi-peak structure of very deep horizontal neutrino showers with JEM-EUSO. We also discuss the possibility to determine the flavor content of the incident neutrino flux by taking advantage of the different characteristics of the longitudinal profiles generated by different type of neutrinos. This is of grate importance for the study of the fundamental properties of neutrinos at the highest energies. Regarding photons, we discuss the detectability of the cosmogenic component by JEM-EUSO and also estimate the expected upper limits on the photon fraction which can be obtained from the future JEM-EUSO data for the case in which there are no photons in the samples.

  16. Energy Reconstruction for Events Detected in TES X-ray Detectors

    NASA Astrophysics Data System (ADS)

    Ceballos, M. T.; Cardiel, N.; Cobo, B.

    2015-09-01

    The processing of the X-ray events detected by a TES (Transition Edge Sensor) device (such as the one that will be proposed in the ESA AO call for instruments for the Athena mission (Nandra et al. 2013) as a high spectral resolution instrument, X-IFU (Barret et al. 2013)), is a several step procedure that starts with the detection of the current pulses in a noisy signal and ends up with their energy reconstruction. For this last stage, an energy calibration process is required to convert the pseudo energies measured in the detector to the real energies of the incoming photons, accounting for possible nonlinearity effects in the detector. We present the details of the energy calibration algorithm we implemented as the last part of the Event Processing software that we are developing for the X-IFU instrument, that permits the calculation of the calibration constants in an analytical way.

  17. A novel three-dimensional image reconstruction method for near-field coded aperture single photon emission computerized tomography

    PubMed Central

    Mu, Zhiping; Hong, Baoming; Li, Shimin; Liu, Yi-Hwa

    2009-01-01

    Coded aperture imaging for two-dimensional (2D) planar objects has been investigated extensively in the past, whereas little success has been achieved in imaging 3D objects using this technique. In this article, the authors present a novel method of 3D single photon emission computerized tomography (SPECT) reconstruction for near-field coded aperture imaging. Multiangular coded aperture projections are acquired and a stack of 2D images is reconstructed separately from each of the projections. Secondary projections are subsequently generated from the reconstructed image stacks based on the geometry of parallel-hole collimation and the variable magnification of near-field coded aperture imaging. Sinograms of cross-sectional slices of 3D objects are assembled from the secondary projections, and the ordered subset expectation and maximization algorithm is employed to reconstruct the cross-sectional image slices from the sinograms. Experiments were conducted using a customized capillary tube phantom and a micro hot rod phantom. Imaged at approximately 50 cm from the detector, hot rods in the phantom with diameters as small as 2.4 mm could be discerned in the reconstructed SPECT images. These results have demonstrated the feasibility of the authors’ 3D coded aperture image reconstruction algorithm for SPECT, representing an important step in their effort to develop a high sensitivity and high resolution SPECT imaging system. PMID:19544769

  18. Reconstruction of radiating sound fields using minimum energy method.

    PubMed

    Bader, Rolf

    2010-01-01

    A method for reconstructing a pressure field at the surface of a radiating body or source is presented using recording data of a microphone array. The radiation is assumed to consist of many spherical radiators, as microphone positions are present in the array. These monopoles are weighted using a parameter alpha, which broadens or narrows the overall radiation directivity as an effective and highly intuitive parameter of the radiation characteristics. A radiation matrix is built out of these weighted monopole radiators, and for different assumed values of alpha, a linear equation solver reconstructs the pressure field at the body's surface. It appears that from these many arbitrary reconstructions, the correct one minimizes the reconstruction energy. The method is tested, localizing the radiation points of a Balinese suling flute, reconstructing complex radiation from a duff frame drum, and determining the radiation directivity for the first seven modes of an Usbek tambourine. Stability in terms of measurement noise is demonstrated for the plain method, and additional highly effective algorithm is added for a noise level up to 0 dB. The stability of alpha in terms of minimal reconstruction energy is shown over the whole range of possible values for alpha. Additionally, the treatment of unwanted room reflections is discussed, still leading to satisfactory results in many cases. PMID:20058977

  19. Radrue method for reconstruction of external photon doses for Chernobyl liquidators in epidemiological studies.

    PubMed

    Kryuchkov, Victor; Chumak, Vadim; Maceika, Evaldas; Anspaugh, Lynn R; Cardis, Elisabeth; Bakhanova, Elena; Golovanov, Ivan; Drozdovitch, Vladimir; Luckyanov, Nickolas; Kesminiene, Ausrele; Voillequé, Paul; Bouville, André

    2009-10-01

    Between 1986 and 1990, several hundred thousand workers, called "liquidators" or "clean-up workers," took part in decontamination and recovery activities within the 30-km zone around the Chernobyl nuclear power plant in Ukraine, where a major accident occurred in April 1986. The Chernobyl liquidators were mainly exposed to external ionizing radiation levels that depended primarily on their work locations and the time after the accident when the work was performed. Because individual doses were often monitored inadequately or were not monitored at all for the majority of liquidators, a new method of photon (i.e., gamma and x rays) dose assessment, called "RADRUE" (Realistic Analytical Dose Reconstruction with Uncertainty Estimation), was developed to obtain unbiased and reasonably accurate estimates for use in three epidemiologic studies of hematological malignancies and thyroid cancer among liquidators. The RADRUE program implements a time-and-motion dose-reconstruction method that is flexible and conceptually easy to understand. It includes a large exposure rate database and interpolation and extrapolation techniques to calculate exposure rates at places where liquidators lived and worked within approximately 70 km of the destroyed reactor. The RADRUE technique relies on data collected from subjects' interviews conducted by trained interviewers, and on expert dosimetrists to interpret the information and provide supplementary information, when necessary, based upon their own Chernobyl experience. The RADRUE technique was used to estimate doses from external irradiation, as well as uncertainties, to the bone marrow for 929 subjects and to the thyroid gland for 530 subjects enrolled in epidemiologic studies. Individual bone marrow dose estimates were found to range from less than one muGy to 3,300 mGy, with an arithmetic mean of 71 mGy. Individual thyroid dose estimates were lower and ranged from 20 muGy to 507 mGy, with an arithmetic mean of 29 mGy. The

  20. RADRUE METHOD FOR RECONSTRUCTION OF EXTERNAL PHOTON DOSES TO CHERNOBYL LIQUIDATORS IN EPIDEMIOLOGICAL STUDIES

    PubMed Central

    Kryuchkov, Victor; Chumak, Vadim; Maceika, Evaldas; Anspaugh, Lynn R.; Cardis, Elisabeth; Bakhanova, Elena; Golovanov, Ivan; Drozdovitch, Vladimir; Luckyanov, Nickolas; Kesminiene, Ausrele; Voillequé, Paul; Bouville, André

    2010-01-01

    Between 1986 and 1990, several hundred thousand workers, called “liquidators” or “clean-up workers”, took part in decontamination and recovery activities within the 30-km zone around the Chernobyl nuclear power plant in Ukraine, where a major accident occurred in April 1986. The Chernobyl liquidators were mainly exposed to external ionizing radiation levels that depended primarily on their work locations and the time after the accident when the work was performed. Because individual doses were often monitored inadequately or were not monitored at all for the majority of liquidators, a new method of photon (i.e. gamma and x-rays) dose assessment, called “RADRUE” (Realistic Analytical Dose Reconstruction with Uncertainty Estimation) was developed to obtain unbiased and reasonably accurate estimates for use in three epidemiologic studies of hematological malignancies and thyroid cancer among liquidators. The RADRUE program implements a time-and-motion dose reconstruction method that is flexible and conceptually easy to understand. It includes a large exposure rate database and interpolation and extrapolation techniques to calculate exposure rates at places where liquidators lived and worked within ~70 km of the destroyed reactor. The RADRUE technique relies on data collected from subjects’ interviews conducted by trained interviewers, and on expert dosimetrists to interpret the information and provide supplementary information, when necessary, based upon their own Chernobyl experience. The RADRUE technique was used to estimate doses from external irradiation, as well as uncertainties, to the bone-marrow for 929 subjects and to the thyroid gland for 530 subjects enrolled in epidemiologic studies. Individual bone-marrow dose estimates were found to range from less than one μGy to 3,300 mGy, with an arithmetic mean of 71 mGy. Individual thyroid dose estimates were lower and ranged from 20 μGy to 507 mGy, with an arithmetic mean of 29 mGy. The

  1. Particle and Photon Detection: Counting and Energy Measurement

    PubMed Central

    Janesick, James; Tower, John

    2016-01-01

    Fundamental limits for photon counting and photon energy measurement are reviewed for CCD and CMOS imagers. The challenges to extend photon counting into the visible/nIR wavelengths and achieve energy measurement in the UV with specific read noise requirements are discussed. Pixel flicker and random telegraph noise sources are highlighted along with various methods used in reducing their contribution on the sensor’s read noise floor. Practical requirements for quantum efficiency, charge collection efficiency, and charge transfer efficiency that interfere with photon counting performance are discussed. Lastly we will review current efforts in reducing flicker noise head-on, in hopes to drive read noise substantially below 1 carrier rms. PMID:27187398

  2. Unified dispersive approach to real and virtual photon-photon scattering at low energy

    NASA Astrophysics Data System (ADS)

    Moussallam, B.

    2013-09-01

    Previous representations of pion-pair production amplitudes by two real photons at low energy, which combine dispersion theoretical constraints with elastic unitarity, chiral symmetry and soft-photon constraints are generalised to the case where one photon is virtual. The constructed amplitudes display explicitly the dependence on the ππ phase-shifts, on pion form factors and on pion polarisabilities. They apply both for space-like and time-like virtualities despite the apparent overlap of the left- and right-hand cuts, by implementing a definition of resonance exchange amplitudes complying with analyticity and consistent limiting prescriptions for the energy variables. Applications are made to the pion generalised polarisabilies, to vector-meson radiative decays, and to the σγ electromagnetic form factor. Finally, an evaluation of the contribution of γππ states in the hadronic vacuum polarisation to the muon g-2 is given, which should be less model dependent than previous estimates.

  3. Experimental search for solar hidden photons in the eV energy range using kinetic mixing with photons

    SciTech Connect

    Mizumoto, T.; Ohta, R.; Horie, T.; Suzuki, J.; Minowa, M.; Inoue, Y. E-mail: comic@icepp.s.u-tokyo.ac.jp E-mail: jsuzuki@icepp.s.u-tokyo.ac.jp E-mail: minowa@phys.s.u-tokyo.ac.jp

    2013-07-01

    We have searched for solar hidden photons in the eV energy range using a dedicated hidden photon detector. The detector consisted of a parabolic mirror with a diameter of 500 mm and a focal length of 1007 mm installed in a vacuum chamber, and a photomultiplier tube at its focal point. The detector was attached to the Tokyo axion helioscope, Sumico which has a mechanism to track the sun. From the result of the measurement, we found no evidence for the existence of hidden photons and set a limit on the photon-hidden photon mixing parameter χ depending on the hidden photon mass m{sub γ'}.

  4. An accurate method for energy spectrum reconstruction of Linac beams based on EPID measurements of scatter radiation

    NASA Astrophysics Data System (ADS)

    Juste, B.; Miró, R.; Verdú, G.; Santos, A.

    2014-06-01

    This work presents a methodology to reconstruct a Linac high energy photon spectrum beam. The method is based on EPID scatter images generated when the incident photon beam impinges onto a plastic block. The distribution of scatter radiation produced by this scattering object placed on the external EPID surface and centered at the beam field size was measured. The scatter distribution was also simulated for a series of monoenergetic identical geometry photon beams. Monte Carlo simulations were used to predict the scattered photons for monoenergetic photon beams at 92 different locations, with 0.5 cm increments and at 8.5 cm from the centre of the scattering material. Measurements were performed with the same geometry using a 6 MeV photon beam produced by the linear accelerator. A system of linear equations was generated to combine the polyenergetic EPID measurements with the monoenergetic simulation results. Regularization techniques were applied to solve the system for the incident photon spectrum. A linear matrix system, A×S=E, was developed to describe the scattering interactions and their relationship to the primary spectrum (S). A is the monoenergetic scatter matrix determined from the Monte Carlo simulations, S is the incident photon spectrum, and E represents the scatter distribution characterized by EPID measurement. Direct matrix inversion methods produce results that are not physically consistent due to errors inherent in the system, therefore Tikhonov regularization methods were applied to address the effects of these errors and to solve the system for obtaining a consistent bremsstrahlung spectrum.

  5. Dual concentric crystal low energy photon detector

    DOEpatents

    Guilmette, R.A.

    A photon detector for biological samples includes a block of NaI(T1) having a hole containing a thin walled cylinder of CsI(T1). At least three photo multiplier tubes are evenly spaced around the parameter of the block. Biological samples are placed within the hole, and emissions which are sensed by at least two of the photo multipliers from only the NaI(T1) detector are counted.

  6. Low-energy photons in high-energy photon fields--Monte Carlo generated spectra and a new descriptive parameter.

    PubMed

    Chofor, Ndimofor; Harder, Dietrich; Willborn, Kay; Rühmann, Antje; Poppe, Björn

    2011-09-01

    The varying low-energy contribution to the photon spectra at points within and around radiotherapy photon fields is associated with variations in the responses of non-water equivalent dosimeters and in the water-to-material dose conversion factors for tissues such as the red bone marrow. In addition, the presence of low-energy photons in the photon spectrum enhances the RBE in general and in particular for the induction of second malignancies. The present study discusses the general rules valid for the low-energy spectral component of radiotherapeutic photon beams at points within and in the periphery of the treatment field, taking as an example the Siemens Primus linear accelerator at 6 MV and 15 MV. The photon spectra at these points and their typical variations due to the target system, attenuation, single and multiple Compton scattering, are described by the Monte Carlo method, using the code BEAMnrc/EGSnrc. A survey of the role of low energy photons in the spectra within and around radiotherapy fields is presented. In addition to the spectra, some data compression has proven useful to support the overview of the behaviour of the low-energy component. A characteristic indicator of the presence of low-energy photons is the dose fraction attributable to photons with energies not exceeding 200 keV, termed P(D)(200 keV). Its values are calculated for different depths and lateral positions within a water phantom. For a pencil beam of 6 or 15 MV primary photons in water, the radial distribution of P(D)(200 keV) is bellshaped, with a wide-ranging exponential tail of half value 6 to 7 cm. The P(D)(200 keV) value obtained on the central axis of a photon field shows an approximately proportional increase with field size. Out-of-field P(D)(200 keV) values are up to an order of magnitude higher than on the central axis for the same irradiation depth. The 2D pattern of P(D)(200 keV) for a radiotherapy field visualizes the regions, e.g. at the field margin, where changes of

  7. Photon-photon collisions

    SciTech Connect

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of ..cap alpha../sub s/ and ..lambda../sup ms/ from the ..gamma..*..gamma.. ..-->.. ..pi../sup 0/ form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from ..gamma gamma.. ..-->.. H anti H, reconstruction of sigma/sub ..gamma gamma../ from exclusive channels at low W/sub ..gamma gamma../, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z/sup 0/ and W/sup + -/ beams from e ..-->.. eZ/sup 0/ and e ..-->.. nu W will become important. 44 references.

  8. Radiative energy transfer in disordered photonic crystals.

    PubMed

    Erementchouk, M V; Deych, L I; Noh, H; Cao, H; Lisyansky, A A

    2009-04-29

    The difficulty of description of the radiative transfer in disordered photonic crystals arises from the necessity to consider on an equal footing the wave scattering by periodic modulations of the dielectric function and by its random inhomogeneities. We resolve this difficulty by approaching this problem from the standpoint of the general multiple scattering theory in media with an arbitrary regular profile of the dielectric function. We use the general asymptotic solution of the Bethe-Salpeter equation in order to show that for a sufficiently weak disorder the diffusion limit in disordered photonic crystals is presented by incoherent superpositions of the modes of the ideal structure with weights inversely proportional to the respective group velocities. The radiative transfer and the diffusion equations are derived as a relaxation of long scale deviations from this limiting distribution. In particular, it is shown that in general the diffusion is anisotropic unless the crystal has sufficiently rich symmetry, say, the square lattice in 2D or the cubic lattice in 3D. In this case, the diffusion is isotropic and only in this case can the effect of the disorder be characterized by a single mean free path depending on frequency. PMID:21825416

  9. High-energy photon interrogation for nonproliferation applications

    NASA Astrophysics Data System (ADS)

    Jones, J. L.; Blackburn, B. W.; Watson, S. M.; Norman, D. R.; Hunt, A. W.

    2007-08-01

    There is an immediate need for technologies that can successfully address homeland security challenges related to the inspection of commercial rail, air and maritime-cargo container inspections for nuclear and radiological devices. The pulsed photonuclear assessment (PPA) technology, developed through collaboration between Idaho National Laboratory (INL), Los Alamos National Laboratory (LANL) and the Idaho Accelerator Center (IAC) has demonstrated the ability to detect shielded/unshielded nuclear material primarily through the analysis of delayed neutrons and gamma-rays produced via photonuclear reactions. Because of current food irradiation limitations, however, most active photon (i.e. bremsstrahlung) interrogation studies have been performed with electron beam energies at or below 10 MeV. While this energy limit currently applies to cargo inspections, the World Health Organization has indicated that higher energy electron beam operations could be considered for future operations. Clinical applications using photon energies well in excess of 10 MeV are already well established. Notwithstanding the current limitation of 10 MeV, there is a definite advantage in using higher photon energies for cargo inspections. At higher energies, several phenomena contribute to increased sensitivity in regards to detecting shielded nuclear material. Two of the most important are: (1) increased ability for source photons to penetrate shielding; and (2) enhanced signature production via increased (γ,n) and (γ,f) cross-sections in materials such as 235U and 239Pu directly leading to faster inspection throughput. Experimental assessments have been conducted for various electron beam energies from 8 to 25 MeV. Increases of up to three orders of magnitude in delayed signatures have been measured over these energy ranges. Through the continued investigation into PPA-based inspection applications using photon energies greater than 10 MeV, higher detection sensitivities with potentially

  10. Reconstructing Folding Energy Landscapes by Single-Molecule Force Spectroscopy

    PubMed Central

    Woodside, Michael T.; Block, Steven M.

    2015-01-01

    Folding may be described conceptually in terms of trajectories over a landscape of free energies corresponding to different molecular configurations. In practice, energy landscapes can be difficult to measure. Single-molecule force spectroscopy (SMFS), whereby structural changes are monitored in molecules subjected to controlled forces, has emerged as a powerful tool for probing energy landscapes. We summarize methods for reconstructing landscapes from force spectroscopy measurements under both equilibrium and nonequilibrium conditions. Other complementary, but technically less demanding, methods provide a model-dependent characterization of key features of the landscape. Once reconstructed, energy landscapes can be used to study critical folding parameters, such as the characteristic transition times required for structural changes and the effective diffusion coefficient setting the timescale for motions over the landscape. We also discuss issues that complicate measurement and interpretation, including the possibility of multiple states or pathways and the effects of projecting multiple dimensions onto a single coordinate. PMID:24895850

  11. Free energy reconstruction from steered dynamics without post-processing

    SciTech Connect

    Athenes, Manuel; Marinica, Mihai-Cosmin

    2010-09-20

    Various methods achieving importance sampling in ensembles of nonequilibrium trajectories enable one to estimate free energy differences and, by maximum-likelihood post-processing, to reconstruct free energy landscapes. Here, based on Bayes theorem, we propose a more direct method in which a posterior likelihood function is used both to construct the steered dynamics and to infer the contribution to equilibrium of all the sampled states. The method is implemented with two steering schedules. First, using non-autonomous steering, we calculate the migration barrier of the vacancy in Fe-{alpha}. Second, using an autonomous scheduling related to metadynamics and equivalent to temperature-accelerated molecular dynamics, we accurately reconstruct the two-dimensional free energy landscape of the 38-atom Lennard-Jones cluster as a function of an orientational bond-order parameter and energy, down to the solid-solid structural transition temperature of the cluster and without maximum-likelihood post-processing.

  12. Energy Modulated Photon Radiotherapy: A Monte Carlo Feasibility Study.

    PubMed

    Zhang, Ying; Feng, Yuanming; Ming, Xin; Deng, Jun

    2016-01-01

    A novel treatment modality termed energy modulated photon radiotherapy (EMXRT) was investigated. The first step of EMXRT was to determine beam energy for each gantry angle/anatomy configuration from a pool of photon energy beams (2 to 10 MV) with a newly developed energy selector. An inverse planning system using gradient search algorithm was then employed to optimize photon beam intensity of various beam energies based on presimulated Monte Carlo pencil beam dose distributions in patient anatomy. Finally, 3D dose distributions in six patients of different tumor sites were simulated with Monte Carlo method and compared between EMXRT plans and clinical IMRT plans. Compared to current IMRT technique, the proposed EMXRT method could offer a better paradigm for the radiotherapy of lung cancers and pediatric brain tumors in terms of normal tissue sparing and integral dose. For prostate, head and neck, spine, and thyroid lesions, the EMXRT plans were generally comparable to the IMRT plans. Our feasibility study indicated that lower energy (<6 MV) photon beams could be considered in modern radiotherapy treatment planning to achieve a more personalized care for individual patient with dosimetric gains. PMID:26977413

  13. Energy Modulated Photon Radiotherapy: A Monte Carlo Feasibility Study

    PubMed Central

    Zhang, Ying; Feng, Yuanming; Ming, Xin

    2016-01-01

    A novel treatment modality termed energy modulated photon radiotherapy (EMXRT) was investigated. The first step of EMXRT was to determine beam energy for each gantry angle/anatomy configuration from a pool of photon energy beams (2 to 10 MV) with a newly developed energy selector. An inverse planning system using gradient search algorithm was then employed to optimize photon beam intensity of various beam energies based on presimulated Monte Carlo pencil beam dose distributions in patient anatomy. Finally, 3D dose distributions in six patients of different tumor sites were simulated with Monte Carlo method and compared between EMXRT plans and clinical IMRT plans. Compared to current IMRT technique, the proposed EMXRT method could offer a better paradigm for the radiotherapy of lung cancers and pediatric brain tumors in terms of normal tissue sparing and integral dose. For prostate, head and neck, spine, and thyroid lesions, the EMXRT plans were generally comparable to the IMRT plans. Our feasibility study indicated that lower energy (<6 MV) photon beams could be considered in modern radiotherapy treatment planning to achieve a more personalized care for individual patient with dosimetric gains. PMID:26977413

  14. Dual-energy X-ray photon counting using an LSO-MPPC spectrometer and an energy-selecting device

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Oda, Yasuyuki; Yamaguchi, Satoshi; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Watanabe, Manabu; Kusachi, Shinya

    2015-08-01

    Dual-energy photon counting was performed using an energy-selecting device (ESD) and a detector, consisting of a Lu2(SiO4)O [LSO)] crystal and a multipixel photon counter (MPPC). The ESD is used to determine a low-energychannel range for CT and consists of two comparators and a microcomputer (MC). The two threshold channels in proportion to energies are determined using low and high-energy comparators, respectively. The MC in the ESD produces a single logical pulse when only a logical pulse from the low-energy comparator is input to the MC. To determine the high-energy-channel range for CT, logical pulses from the high-energy comparator are input to the MC outside the ESD. Logical pulses from the two MCs are input to frequency-voltage converters (FVCs) to convert count rates into voltages. The output voltages from the two FVCs are sent to a personal computer through an analog-digital converter to reconstruct tomograms. Dual-energy computed tomography was accomplished at a tube voltage of 70 kV and a maximum count rate of 14.3 kilocounts per second, and two-different-energy tomograms were obtained simultaneously.

  15. Eta photoproduction on the proton for photon energies from 0.75 to 1.95 GeV.

    PubMed

    Dugger, M; Ritchie, B G; Ball, J; Pasyuk, E; Adams, G; Anciant, E; Anghinolfi, M; Asavapibhop, B; Audit, G; Auger, T; Avakian, H; Bagdasaryan, H; Barrow, S; Battaglieri, M; Beard, K; Bektasoglu, M; Bellis, M; Berman, B L; Bianchi, N; Biselli, A S; Boiarinov, S; Bouchigny, S; Bradford, R; Branford, D; Briscoe, W J; Brooks, W K; Burkert, V D; Calarco, J R; Capitani, G P; Carman, D S; Carnahan, B; Cetina, C; Clark, R; Cole, P L; Coleman, A; Connelly, J; Cords, D; Corvisiero, P; Crabb, D; Crannell, H; Cummings, J P; DeSanctis, E; DeVita, R; Degtyarenko, P V; Denizli, H; Dennis, L; Dharmawardane, K V; Dhuga, K S; Djalali, C; Dodge, G E; Doughty, D; Dragovitsch, P; Dytman, S; Eckhause, M; Egiyan, H; Egiyan, K S; Elouadrhiri, L; Farhi, L; Fatemi, R; Feldman, G; Feuerbach, R J; Ficenec, J; Forest, T A; Frolov, V; Funsten, H; Gaff, S J; Gai, M; Gavalian, G; Gilad, S; Gilfoyle, G P; Giovanetti, K L; Girard, P; Gordon, C I O; Griffioen, K; Guidal, M; Guillo, M; Guo, L; Gyurjyan, V; Hadjidakis, C; Hancock, D; Hardie, J; Heddle, D; Heimberg, P; Hersman, F W; Hicks, K; Hicks, R S; Holtrop, M; Hyde-Wright, C E; Ito, M M; Jenkins, D; Joo, K; Kelley, J H; Kellie, J D; Khandaker, M; Kim, W; Klein, A; Klein, F J; Klusman, M; Kossov, M; Koubarovski, V; Kramer, L H; Kuang, Y; Kuhn, S E; Kuhn, J; Lachniet, J; Laget, J M; Lawrence, D; Li, Ji; Livingston, K; Longhi, A; Lucas, M; Lukashin, K; Major, W; Manak, J J; Marchand, C; McAleer, S; McCarthy, J; McNabb, J W C; Mecking, B A; Mehrabyan, S; Mestayer, M D; Meyer, C A; Mikhailov, K; Minehart, R; Mirazita, M; Miskimen, R; Morand, L; Morrow, S A; Mozer, M U; Muccifora, V; Mueller, J; Murphy, L Y; Mutchler, G S; Napolitano, J; Nasseripour, R; Nelson, S O; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niyazov, R A; Nozar, M; O'Brien, J T; O'Rielly, G V; Opper, A K; Park, K; Peterson, G; Philips, S A; Pivnyuk, N; Pocanić, D; Pogorelko, O; Polli, E; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Qin, L M; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ronchetti, F; Rossi, P; Rowntree, D; Rubin, P D; Sabatié, F; Sabourov, K; Salgado, C; Santoro, J P; Sanzone-Arenhovel, M; Sapunenko, V; Schumacher, R A; Serov, V S; Shafi, A; Sharabian, Y G; Shaw, J; Skabelin, A V; Smith, E S; Smith, T; Smith, L C; Sober, D I; Spraker, M; Stavinsky, A; Stepanyan, S; Stoler, P; Strakovsky, I I; Strauch, S; Taiuti, M; Taylor, S; Tedeschi, D J; Thoma, U; Thompson, R; Todor, L; Ungaro, M; Vineyard, M F; Vlassov, A V; Wang, K; Weinstein, L B; Weller, H; Weygand, D P; Whisnant, C S; Witkowski, M; Wolin, E; Wood, M H; Yegneswaran, A; Yun, J; Zhang, B; Zhao, J; Zhou, Z

    2002-11-25

    Differential cross sections for gammap-->etap have been measured with tagged real photons for incident photon energies from 0.75 to 1.95 GeV. Mesons were identified by missing mass reconstruction using kinematical information for protons scattered in the production process. The data provide the first extensive angular distribution measurements for the process above W=1.75 GeV. Comparison with preliminary results from a constituent quark model support the suggestion that a third S11 resonance with mass approximately 1.8 GeV couples to the etaN channel. PMID:12485062

  16. HAWC Energy Reconstruction via Neural Network

    NASA Astrophysics Data System (ADS)

    Marinelli, Samuel; HAWC Collaboration

    2016-03-01

    The High-Altitude Water-Cherenkov (HAWC) γ-ray observatory is located at 4100 m above sea level on the Sierra Negra mountain in the state of Puebla, Mexico. Its 300 water-filled tanks are instrumented with PMTs that detect Cherenkov light produced by charged particles in atmospheric air showers induced by TeV γ-rays. The detector became fully operational in March of 2015. With a 2-sr field of view and duty cycle exceeding 90%, HAWC is a survey instrument sensitive to diverse γ-ray sources, including supernova remnants, pulsar wind nebulae, active galactic nuclei, and others. Particle-acceleration mechanisms at these sources can be inferred by studying their energy spectra, particularly at high energies. We have developed a technique for estimating primary- γ-ray energies using an artificial neural network (ANN). Input variables to the ANN are selected to characterize shower multiplicity in the detector, the fraction of the shower contained in the detector, and atmospheric attenuation of the shower. Monte Carlo simulations show that the new estimator has superior performance to the current estimator used in HAWC publications. This work was supported by the National Science Foundation.

  17. Determining photon energy absorption parameters for different soil samples

    PubMed Central

    Kucuk, Nil; Tumsavas, Zeynal; Cakir, Merve

    2013-01-01

    The mass attenuation coefficients (μs) for five different soil samples were measured at 661.6, 1173.2 and 1332.5 keV photon energies. The soil samples were separately irradiated with 137Cs and 60Co (370 kBq) radioactive point gamma sources. The measurements were made by performing transmission experiments with a 2″ × 2″ NaI(Tl) scintillation detector, which had an energy resolution of 7% at 0.662 MeV for the gamma-rays from the decay of 137Cs. The effective atomic numbers (Zeff) and the effective electron densities (Neff) were determined experimentally and theoretically using the obtained μs values for the soil samples. Furthermore, the Zeff and Neff values of the soil samples were computed for the total photon interaction cross-sections using theoretical data over a wide energy region ranging from 1 keV to 15 MeV. The experimental values of the soils were found to be in good agreement with the theoretical values. Sandy loam and sandy clay loam soils demonstrated poor photon energy absorption characteristics. However, clay loam and clay soils had good photon energy absorption characteristics. PMID:23179375

  18. Determining photon energy absorption parameters for different soil samples.

    PubMed

    Kucuk, Nil; Tumsavas, Zeynal; Cakir, Merve

    2013-05-01

    The mass attenuation coefficients (μs) for five different soil samples were measured at 661.6, 1173.2 and 1332.5 keV photon energies. The soil samples were separately irradiated with (137)Cs and (60)Co (370 kBq) radioactive point gamma sources. The measurements were made by performing transmission experiments with a 2″ × 2″ NaI(Tl) scintillation detector, which had an energy resolution of 7% at 0.662 MeV for the gamma-rays from the decay of (137)Cs. The effective atomic numbers (Zeff) and the effective electron densities (Neff) were determined experimentally and theoretically using the obtained μs values for the soil samples. Furthermore, the Zeff and Neff values of the soil samples were computed for the total photon interaction cross-sections using theoretical data over a wide energy region ranging from 1 keV to 15 MeV. The experimental values of the soils were found to be in good agreement with the theoretical values. Sandy loam and sandy clay loam soils demonstrated poor photon energy absorption characteristics. However, clay loam and clay soils had good photon energy absorption characteristics. PMID:23179375

  19. Three-dimensional maximum-likelihood reconstruction for an electronically collimated single-photon-emission imaging system.

    PubMed

    Hebert, T; Leahy, R; Singh, M

    1990-07-01

    A three-dimensional maximum-likelihood reconstruction method is presented for a prototype electronically collimated single-photon-emission system. The electronically collimated system uses a gamma camera fronted by an array of germanium detectors to detect gamma-ray emissions from a distributed radioisotope source. In this paper we demonstrate that optimal iterative three-dimensional reconstruction approaches can be feasibly applied to emission imaging systems that have highly complex spatial sampling patterns and that generate extremely large numbers of data values. A probabilistic factorization of the system matrix that reduces the computation by several orders of magnitude is derived. We demonstrate a dramatic increase in the convergence speed of the expectation maximization algorithm by sequentially iterating over particular subsets of the data. This result is also applicable to other emission imaging systems. PMID:2370591

  20. Material separation in x-ray CT with energy resolved photon-counting detectors

    SciTech Connect

    Wang Xiaolan; Meier, Dirk; Taguchi, Katsuyuki; Wagenaar, Douglas J.; Patt, Bradley E.; Frey, Eric C.

    2011-03-15

    Purpose: The objective of the study was to demonstrate that, in x-ray computed tomography (CT), more than two types of materials can be effectively separated with the use of an energy resolved photon-counting detector and classification methodology. Specifically, this applies to the case when contrast agents that contain K-absorption edges in the energy range of interest are present in the object. This separation is enabled via the use of recently developed energy resolved photon-counting detectors with multiple thresholds, which allow simultaneous measurements of the x-ray attenuation at multiple energies. Methods: To demonstrate this capability, we performed simulations and physical experiments using a six-threshold energy resolved photon-counting detector. We imaged mouse-sized cylindrical phantoms filled with several soft-tissue-like and bone-like materials and with iodine-based and gadolinium-based contrast agents. The linear attenuation coefficients were reconstructed for each material in each energy window and were visualized as scatter plots between pairs of energy windows. For comparison, a dual-kVp CT was also simulated using the same phantom materials. In this case, the linear attenuation coefficients at the lower kVp were plotted against those at the higher kVp. Results: In both the simulations and the physical experiments, the contrast agents were easily separable from other soft-tissue-like and bone-like materials, thanks to the availability of the attenuation coefficient measurements at more than two energies provided by the energy resolved photon-counting detector. In the simulations, the amount of separation was observed to be proportional to the concentration of the contrast agents; however, this was not observed in the physical experiments due to limitations of the real detector system. We used the angle between pairs of attenuation coefficient vectors in either the 5-D space (for non-contrast-agent materials using energy resolved photon

  1. Photon and dilepton production in high energy heavy ion collisions

    DOE PAGESBeta

    Sakaguchi, Takao

    2015-05-07

    The recent results on direct photons and dileptons in high energy heavy ion collisions, obtained particularly at RHIC and LHC are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the physics learned from the results.

  2. Method to calibrate the absolute energy scale of air showers with ultrahigh energy photons.

    PubMed

    Homola, Piotr; Risse, Markus

    2014-04-18

    Calibrating the absolute energy scale of air showers initiated by ultrahigh energy (UHE) cosmic rays is an important experimental issue. Currently, the corresponding systematic uncertainty amounts to 14%-21% using the fluorescence technique. Here, we describe a new, independent method which can be applied if ultrahigh energy photons are observed. While such photon-initiated showers have not yet been identified, the capabilities of present and future cosmic-ray detectors may allow their discovery. The method makes use of the geomagnetic conversion of UHE photons (preshower effect), which significantly affects the subsequent longitudinal shower development. The conversion probability depends on photon energy and can be calculated accurately by QED. The comparison of the observed fraction of converted photon events to the expected one allows the determination of the absolute energy scale of the observed photon air showers and, thus, an energy calibration of the air shower experiment. We provide details of the method and estimate the accuracy that can be reached as a function of the number of observed photon showers. Already a very small number of UHE photons may help to test and fix the absolute energy scale. PMID:24785024

  3. RECONSTRUCTING THE HISTORY OF ENERGY CONDITION VIOLATION FROM OBSERVATIONAL DATA

    SciTech Connect

    Wu Chaojian; Ma Cong; Zhang Tongjie

    2012-07-10

    We study the likelihood of energy condition violations in the history of the universe. Our method is based on a set of functions that characterize energy condition violation. Friedmann-Lemaitre-Robertson-Walker cosmological models are built around these 'indication functions'. By computing the Fisher matrix of model parameters using Type Ia supernova and Hubble parameter data, we extract the principal modes of these functions' redshift evolution. These modes allow us to obtain general reconstructions of energy condition violation history independent of the dark energy model. We find that the data suggest a history of strong energy condition violation, but the null and dominant energy conditions are likely to be fulfilled. Implications for dark energy models are discussed.

  4. Scoping studies - photon and low energy neutron interrogation

    SciTech Connect

    Becker, G.; Harker, Y.; Jones, J.; Harmon, F.

    1997-11-01

    High energy photon interrogation of waste containers, with the aim of producing photo nuclear reactions, in specific materials, holds the potential of good penetration and rapid analysis. Compact high energy ({le} 10 MeV) photon sources in the form of electron linacs producing bremstrahlung radiation are readily available. Work with the Varitron variable energy accelerator at ISU will be described. Advantages and limitations of the technique will be discussed. Using positive ion induced neutron producing reactions, it is possible to generate neutrons in a specific energy range. By this means, variable penetration and specific reactions can be excited in the assayed material. Examples using the {sup 3}H(p,n) and {sup 7}Li(p,n) reactions as neutron sources will be discussed. 4 refs., 7 figs.

  5. Analysis of some lunar soil and rocks samples in terms of photon interaction and photon energy absorption

    NASA Astrophysics Data System (ADS)

    El-Khayatt, A. M.; Al-Rajhi, M. A.

    2015-04-01

    Understanding the space radiation environment is critical to future manned lunar missions, and this includes photons. In this paper, the attenuation properties of gamma rays in 20 lunar soil and rocks, found at landing site during the Apollo 17, are investigated. Effective atomic numbers Zeff for photon interaction and photon energy absorption for a wide range of photon energies are determined. The results indicate that within the wide compositional range of the Apollo 17 samples, three categories, each one have broadly similar attenuation properties. As well as the results showed that the Zeff has been successfully characterize and correlate the different soil samples with mixing of prevalent local rocks.

  6. Determination of energy distribution for photon and neutron microdosimetry

    NASA Astrophysics Data System (ADS)

    Todo, A. S.

    This work was undertaken to provide basic physical data for use in both microdosimetry and dosimetry of high energy photons and also in the neutron radiation field. Described is the formalism to determine the initial electron energy spectra in water irradiated by photons with energies up to 1 GeV. Calculations were performed with a Monte Carlo computer code, PHOEL-3, which is also described. The code treats explicitly the production of electron-positron pairs, Compton scattering, photoelectric absorption, and the emission of Auger electrons following the occurrence of K-shell vacancies in oxygen. The tables give directly the information needed to specify the absolute single-collision kerma in water, which approximates tissue, at each photon energy. Results for continuous photon energy spectra can be obtained by using linear interpolation with the tables. The conditions under which first-collision kerma approximate absorbed dose are discussed. A formula is given for estimating bremsstrahlung energy loss, one of the principal differences between kerma and absorbed dose in practical cases. A study has been carried out, on the use of cylindrical, energy-proportional pulse-height detector for determining microdosimetric quantities, as neutron fractional dose spectra, D (L), in the function of linear energy transfer (LET). In the present study the Hurst detector was used; this device satisfies the requirement of the Bragg-Gray principle. A Monte Carlo Method was developed to obtain the D(L) spectrum from a measured pulse-height spectrum H(h), and the knowledge of the distribution of recoil-particle track lenght, P(T) in the sensitive volume of the detector. These developed programs to find P(T) and D(L) are presented. The distribution of D(L) in LET were obtained using a known distribution of P(T) and the measured H(h) spectrum fromthe Cf-2 52 neutron source. All the results are discussed and the conclusions are presented.

  7. Energy loss by resonance line photons in an absorbing medium

    NASA Technical Reports Server (NTRS)

    Hummer, D. G.; Kunasz, P. B.

    1980-01-01

    The mean path length of photons undergoing repeated scatterings in media of large optical thickness is calculated from accurate numerical solutions of the transfer equation including the effect of frequency redistribution characteristic of combined Doppler and natural broadening. Energy loss by continuous absorption processes, such as ionization or dust absorption, is discussed, and asymptotic scaling laws for the energy loss, the mean path length, and the mean number of scatterings are inferred from the numerical data.

  8. Photon backscattering tissue characterization by energy dispersive spectroscopy evaluations.

    PubMed

    Tartari, A; Casnati, E; Fernandez, J E; Felsteiner, J; Baraldi, C

    1994-02-01

    Techniques for in vivo tissue characterization based on scattered photons have usually been confined to evaluating coherent and Compton peaks. However, information can also be obtained from the energy analysis of the Compton scattered distribution. This paper looks at the extension of a technique validated by the authors for characterizing tissues composed of low-atomic-number elements. To this end, an EDXRS (energy dispersive x-ray spectrometry) computer simulation procedure was performed and applied to test the validity of a figure of merit able to characterize binary compounds. This figure of merit is based on the photon fluence values in a restricted energy interval of the measured distribution of incoherently scattered photons. After careful experimental tests with 59.54 keV incident photons at scattering angles down to 60degrees, the simulation procedure was applied to quasi-monochromatic and polychromatic high-radiance sources. The results show that the characterization by the figure of merit, which operates satisfactorily with monochromatic sources, is unsatisfactory in the latter cases, which seem to favour a different parameter for compound characterization. PMID:15552121

  9. Photon-number statistics of twin beams: Self-consistent measurement, reconstruction, and properties

    SciTech Connect

    Peřina, Jan Jr.; Haderka, Ondřej; Michálek, Václav

    2014-12-04

    A method for the determination of photon-number statistics of twin beams using the joint signal-idler photocount statistics obtained by an iCCD camera is described. It also provides absolute quantum detection efficiency of the camera. Using the measured photocount statistics, quasi-distributions of integrated intensities are obtained. They attain negative values occurring in characteristic strips an a consequence of pairing of photons in twin beams.

  10. Meson production in two-photon interactions at LHC energies

    SciTech Connect

    Da Silva, D. T.; Goncalves, V. P.; Sauter, W. K.

    2013-03-25

    The LHC opens a new kinematical regime at high energy, where several questions related to the description of the high-energy regime of the Quantum Chromodynamics (QCD) remain without satisfactory answers. Some open questions are the search for non-q-bar q resonances, the determination of the spectrum of q-bar q states and the identification of states with anomalous {gamma}{gamma} couplings. A possible way to study these problems is the study of meson production in two-photon interactions. In this contribution we calculate the meson production in two-photon interactions at LHC energies considering proton - proton collisions and estimate the total cross section for the production of the mesons {pi}, a, f, {eta} and {chi}.

  11. Reconstruction of dark energy and expansion dynamics using Gaussian processes

    SciTech Connect

    Seikel, Marina; Clarkson, Chris; Smith, Mathew E-mail: chris.clarkson@uct.ac.za

    2012-06-01

    An important issue in cosmology is reconstructing the effective dark energy equation of state directly from observations. With few physically motivated models, future dark energy studies cannot only be based on constraining a dark energy parameter space, as the errors found depend strongly on the parametrisation considered. We present a new non-parametric approach to reconstructing the history of the expansion rate and dark energy using Gaussian Processes, which is a fully Bayesian approach for smoothing data. We present a pedagogical introduction to Gaussian Processes, and discuss how it can be used to robustly differentiate data in a suitable way. Using this method we show that the Dark Energy Survey - Supernova Survey (DES) can accurately recover a slowly evolving equation of state to σ{sub w} = ±0.05 (95% CL) at z = 0 and ±0.25 at z = 0.7, with a minimum error of ±0.025 at the sweet-spot at z ∼ 0.16, provided the other parameters of the model are known. Errors on the expansion history are an order of magnitude smaller, yet make no assumptions about dark energy whatsoever. A code for calculating functions and their first three derivatives using Gaussian processes has been developed and is available for download.

  12. Accelerated median root prior reconstruction for pinhole single-photon emission tomography (SPET).

    PubMed

    Sohlberg, Antti; Ruotsalainen, Ulla; Watabe, Hiroshi; Iida, Hidehiro; Kuikka, Jyrki T

    2003-07-01

    Pinhole collimation can be used to improve spatial resolution in SPET. However, the resolution improvement is achieved at the cost of reduced sensitivity, which leads to projection images with poor statistics. Images reconstructed from these projections using the maximum likelihood expectation maximization (ML-EM) algorithms, which have been used to reduce the artefacts generated by the filtered backprojection (FBP) based reconstruction, suffer from noise/bias trade-off: noise contaminates the images at high iteration numbers, whereas early abortion of the algorithm produces images that are excessively smooth and biased towards the initial estimate of the algorithm. To limit the noise accumulation we propose the use of the pinhole median root prior (PH-MRP) reconstruction algorithm. MRP is a Bayesian reconstruction method that has already been used in PET imaging and shown to possess good noise reduction and edge preservation properties. In this study the PH-MRP algorithm was accelerated with the ordered subsets (OS) procedure and compared to the FBP, OS-EM and conventional Bayesian reconstruction methods in terms of noise reduction, quantitative accuracy, edge preservation and visual quality. The results showed that the accelerated PH-MRP algorithm was very robust. It provided visually pleasing images with lower noise level than the FBP or OS-EM and with smaller bias and sharper edges than the conventional Bayesian methods. PMID:12884928

  13. Accelerated median root prior reconstruction for pinhole single-photon emission tomography (SPET)

    NASA Astrophysics Data System (ADS)

    Sohlberg, Antti; Ruotsalainen, Ulla; Watabe, Hiroshi; Iida, Hidehiro; Kuikka, Jyrki T.

    2003-07-01

    Pinhole collimation can be used to improve spatial resolution in SPET. However, the resolution improvement is achieved at the cost of reduced sensitivity, which leads to projection images with poor statistics. Images reconstructed from these projections using the maximum likelihood expectation maximization (ML-EM) algorithms, which have been used to reduce the artefacts generated by the filtered backprojection (FBP) based reconstruction, suffer from noise/bias trade-off: noise contaminates the images at high iteration numbers, whereas early abortion of the algorithm produces images that are excessively smooth and biased towards the initial estimate of the algorithm. To limit the noise accumulation we propose the use of the pinhole median root prior (PH-MRP) reconstruction algorithm. MRP is a Bayesian reconstruction method that has already been used in PET imaging and shown to possess good noise reduction and edge preservation properties. In this study the PH-MRP algorithm was accelerated with the ordered subsets (OS) procedure and compared to the FBP, OS-EM and conventional Bayesian reconstruction methods in terms of noise reduction, quantitative accuracy, edge preservation and visual quality. The results showed that the accelerated PH-MRP algorithm was very robust. It provided visually pleasing images with lower noise level than the FBP or OS-EM and with smaller bias and sharper edges than the conventional Bayesian methods.

  14. Muon energy reconstruction in the Antarctic muon and neutrino detector array (AMANDA)

    NASA Astrophysics Data System (ADS)

    Miocinovic, Predrag

    AMANDA is an optical Cerenkov detector designed for observation of high-energy neutrinos (E ≳ 100 GeV) and is located deep inside the South Polar ice cap. The neutrinos that undergo charged-current interaction in or near the detector can be observed by the telltale Cerenkov light generated by the resulting lepton and its secondaries. The presence of insoluble particulates in the ice increases the light scattering, which in turn increases the light containment inside the detector. This enhances the light collection efficiency, allowing for a calorimetry-like measurement of energy deposited by the neutrino-induced leptons. In this work, I developed a probabilistic method for measuring the energy of non-contained muons detected by AMANDA-B10 (1997 configuration). The knowledge of muon energy opens a large window of discovery since it helps to determine whether the parent neutrino has a terrestrial or extraterrestrial origin. The method is based on finding the muon energy that will most likely produce the observed detector response. The energy likelihood is generated by combining the average light-emission profiles of muons with different energies and the models of light distribution in ice and detector response to light. Event reconstruction results in an energy resolution of ˜0.35 in log(E/GeV) over the 1 TeV--1 PeV range. Below 1 TeV, the light produced is insufficient to reliably determine the muon energy, while above 1 PeV, the AMANDA-B10 response to energy saturates, due to the finite detector size and limitations in its hardware. Stochastic variations in muon energy loss and photon propagation are the dominant sources that limit the reconstructed energy resolution. I showed that in such case, a Bayesian unfolding technique improves the reconstruction of the underlying muon energy spectrum. The unfolding also corrects for known systematic effects such as saturation, directional reconstruction bias, data "cleaning", and others. My analysis of 1997 data shows

  15. Nonparametric reconstruction of the dark energy equation of state

    SciTech Connect

    Heitmann, Katrin; Holsclaw, Tracy; Alam, Ujjaini; Habib, Salman; Higdon, David; Sanso, Bruno; Lee, Herbie

    2009-01-01

    The major aim of ongoing and upcoming cosmological surveys is to unravel the nature of dark energy. In the absence of a compelling theory to test, a natural approach is to first attempt to characterize the nature of dark energy in detail, the hope being that this will lead to clues about the underlying fundamental theory. A major target in this characterization is the determination of the dynamical properties of the dark energy equation of state w. The discovery of a time variation in w(z) could then lead to insights about the dynamical origin of dark energy. This approach requires a robust and bias-free method for reconstructing w(z) from data, which does not rely on restrictive expansion schemes or assumed functional forms for w(z). We present a new non parametric reconstruction method for the dark energy equation of state based on Gaussian Process models. This method reliably captures nontrivial behavior of w(z) and provides controlled error bounds. We demollstrate the power of the method on different sets of simulated supernova data. The GP model approach is very easily extended to include diverse cosmological probes.

  16. Practical energy response estimation of photon counting detectors for spectral X-ray imaging

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Goo; Lee, Jongha; Sung, Younghun; Lee, SeongDeok

    2010-04-01

    Spectral X-ray imaging is a promising technique to drastically improve the diagnostic quality of radiography and computed tomography (CT), since it enables material decomposition and/or identification based on the energy dependency of material-specific X-ray attenuation. Unlike the charge-integration based X-ray detectors, photon counting X-ray detectors (PCXDs) can discriminate the energies of incident X-ray photons and thereby multi-energy images can be obtained in single exposure. However, the measured data are not accurate since the spectra of incident X-rays are distorted according to the energy response function (ERF) of a PCXD. Thus ERF should be properly estimated in advance for accurate spectral imaging. This paper presents a simple method for ERF estimation based on a polychromatic X-ray source that is widely used for medical imaging. The method consists of three steps: source spectra measurement, detector spectra reconstruction, and ERF inverse estimation. Real spectra of an X-ray tube are first measured at all kVs by using an X-ray spectrometer. The corresponding detector spectra are obtained by threshold scans. The ERF is then estimated by solving the inverse problem. Simulations are conducted to demonstrate the concept of the proposed method.

  17. Fast IMRT with narrow high energy scanned photon beams

    SciTech Connect

    Andreassen, Bjoern; Straaring t, Sara Janek; Holmberg, Rickard; Naefstadius, Peder; Brahme, Anders

    2011-08-15

    Purpose: Since the first publications on intensity modulated radiation therapy (IMRT) in the early 1980s almost all efforts have been focused on fairly time consuming dynamic or segmental multileaf collimation. With narrow fast scanned photon beams, the flexibility and accuracy in beam shaping increases, not least in combination with fast penumbra trimming multileaf collimators. Previously, experiments have been performed with full range targets, generating a broad bremsstrahlung beam, in combination with multileaf collimators or material compensators. In the present publication, the first measurements with fast narrow high energy (50 MV) scanned photon beams are presented indicating an interesting performance increase even though some of the hardware used were suboptimal. Methods: Inverse therapy planning was used to calculate optimal scanning patterns to generate dose distributions with interesting properties for fast IMRT. To fully utilize the dose distributional advantages with scanned beams, it is necessary to use narrow high energy beams from a thin bremsstrahlung target and a powerful purging magnet capable of deflecting the transmitted electron beam away from the generated photons onto a dedicated electron collector. During the present measurements the scanning system, purging magnet, and electron collimator in the treatment head of the MM50 racetrack accelerator was used with 3-6 mm thick bremsstrahlung targets of beryllium. The dose distributions were measured with diodes in water and with EDR2 film in PMMA. Monte Carlo simulations with geant4 were used to study the influence of the electrons transmitted through the target on the photon pencil beam kernel. Results: The full width at half-maximum (FWHM) of the scanned photon beam was 34 mm measured at isocenter, below 9.5 cm of water, 1 m from the 3 mm Be bremsstrahlung target. To generate a homogeneous dose distribution in a 10 x 10 cm{sup 2} field, the authors used a spot matrix of 100 equal intensity

  18. High energy photon emission from wakefields

    NASA Astrophysics Data System (ADS)

    Farinella, D. M.; Lau, C. K.; Zhang, X. M.; Koga, J. K.; Taimourzadeh, S.; Hwang, Y.; Abazajian, K.; Canac, N.; Ebisuzaki, T.; Taborek, P.; Tajima, T.

    2016-07-01

    Experimental evidence has accumulated to indicate that wakefield acceleration (WFA) accompanies intense and sometimes coherent emission of radiation such as from betatron radiation. The investigation of this issue has additional impetus nowadays because we are learning (1) there is an additional acceleration process of the ponderomotive acceleration; (2) WFA may become relevant in much higher density regimes; (3) WFA has been proposed as the mechanism for extreme high energy cosmic ray acceleration and gamma ray bursts for active galactic nuclei. These require us to closely examine the radiative mechanisms in WFA anew. We report studies of radiation from wakefield (self-injected betatron) and ponderomotive (laser field) mechanisms in scalings of the frequency and intensity of the driver, as well as the plasma density.

  19. Reconstructing the dark energy equation of state with varying couplings

    SciTech Connect

    Avelino, P. P.; Martins, C. J. A. P.; Nunes, N. J.; Olive, K. A.

    2006-10-15

    We revisit the idea of using varying couplings to probe the nature of dark energy, in particular, by reconstructing its equation of state. We show that for the class of models studied this method can be far superior to the standard methods (using type Ia supernovae or weak lensing). We also show that the simultaneous use of measurements of the fine-structure constant {alpha} and the electron-to-proton mass ratio {mu} allows a direct probe of grand unification scenarios. We present forecasts for the sensitivity of this method, both for the near future and for the next generation of spectrographs--for the latter we focus on the planned CODEX instrument for ESO's Extremely Large Telescope (formerly known as OWL). A high-accuracy reconstruction of the equation of state may be possible all the way up to redshift z{approx}4.

  20. Response of plastic scintillators to low-energy photons

    NASA Astrophysics Data System (ADS)

    Peralta, Luis; Rêgo, Florbela

    2014-08-01

    Diagnostic radiology typically uses x-ray beams between 25 and 150 kVp. Plastic scintillation detectors (PSDs) are potentially successful candidates as field dosimeters but careful selection of the scintillator is crucial. It has been demonstrated that they can suffer from energy dependence in the low-energy region, an undesirable dosimeter characteristic. This dependence is partially due to the nonlinear light yield of the scintillator to the low-energy electrons set in motion by the photon beam. In this work, PSDs made of PMMA, PVT or polystyrene were studied for the x-ray beam range 25 to 100 kVp. For each kVp data has been acquired for additional aluminium filtrations of 0.5, 1.0, 2.0 and 4.0 mm. Absolute dose in the point of measurement was obtained with an ionization chamber calibrated to dose in water. From the collected data, detector sensitivities were obtained as function of the beam kVp and additional filtration. Using Monte Carlo simulations relative scintillator sensitivities were computed. For some of the scintillators these sensitivities show strong energy-dependence for beam average energy below 35 keV for each additional filtration but fair constancy above. One of the scintillators (BC-404) has smaller energy-dependence at low photon average energy and could be considered a candidate for applications (like mammography) where beam energy has small span.

  1. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing

    PubMed Central

    Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C.; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-01-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs. PMID:27032688

  2. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing.

    PubMed

    Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-01-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs. PMID:27032688

  3. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing

    NASA Astrophysics Data System (ADS)

    Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C.; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-04-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs.

  4. Limits on low energy photon-photon scattering from an experiment on magnetic vacuum birefringence

    SciTech Connect

    Bregant, M.; Cantatore, G.; Della Valle, F.; Lozza, V.; Milotti, E.; Raiteri, G.; Zavattini, E.; Carusotto, S.; Polacco, E.; Cimino, R.; Di Domenico, G.; Zavattini, G.; Gastaldi, U.; Ruoso, G.; Karuza, M.

    2008-08-01

    Experimental bounds on induced vacuum magnetic birefringence can be used to improve present photon-photon scattering limits in the electronvolt energy range. Measurements with the Polarizzazione del Vuoto con Laser apparatus [E. Zavattini et al., Phys. Rev. D 77, 032006 (2008)] at both {lambda}=1064 and 532 nm lead to bounds on the parameter A{sub e}, describing nonlinear effects in QED, of A{sub e}{sup (1064)}<6.6x10{sup -21} T{sup -2}-1064 nm and A{sub e}{sup (532)}<6.3x10{sup -21} T{sup -2}-532 nm, respectively, at 95% confidence level, compared to the predicted value of A{sub e}=1.32x10{sup -24} T{sup -2}. The total photon-photon scattering cross section may also be expressed in terms of A{sub e}, setting bounds for unpolarized light of {sigma}{sub {gamma}}{sub {gamma}}{sup (1064)}<4.6x10{sup -62} m{sup 2} and {sigma}{sub {gamma}}{sub {gamma}}{sup (532)}<2.7x10{sup -60} m{sup 2}. Compared to the expected QED scattering cross section these results are a factor of {approx_equal}2x10{sup 7} higher and represent an improvement of a factor about 500 on previous bounds based on ellipticity measurements and of a factor of about 10{sup 10} on bounds based on direct stimulated scattering measurements.

  5. Heavy Meson Production at a Low-Energy Photon Collider

    SciTech Connect

    Asztalos, S

    2004-04-15

    A low-energy {gamma}{gamma} collider has been discussed in the context of a testbed for a {gamma}{gamma} interaction region at the Next Linear Collider(NLC). We consider the production of heavy mesons at such a testbed using Compton-backscattered photons and demonstrate that their production rivals or exceeds those by BELLE, BABAR or LEP where they are produced indirectly via virtual {gamma}{gamma} luminosities.

  6. Photonic Band Gap resonators for high energy accelerators

    SciTech Connect

    Schultz, S.; Smith, D.R.; Kroll, N. |

    1993-12-31

    We have proposed that a new type of microwave resonator, based on Photonic Band Gap (PBG) structures, may be particularly useful for high energy accelerators. We provide an explanation of the PBG concept and present data which illustrate some of the special properties associated with such structures. Further evaluation of the utility of PBG resonators requires laboratory testing of model structures at cryogenic temperatures, and at high fields. We provide a brief discussion of our test program, which is currently in progress.

  7. Extra Dimensions in Photon or Jet plus Missing Transverse Energy

    SciTech Connect

    Cardaci, Marco

    2010-02-10

    Recent studies of the CMS collaboration are presented on the sensitivity to searches for large (ADD) extra dimensions in channels with missing transverse energy (MET), i.e. the channels jets plus MET and photon plus MET. These studies are based on detailed detector simulation, including all Standard Model backgrounds. Particular emphasis is given to possible early discoveries, i.e. with 100 pb{sup -1} or less. Projected 95% CL exclusion limits as function of luminosity are presented as well.

  8. Extra Dimensions in Photon or Jet plus Missing Transverse Energy

    NASA Astrophysics Data System (ADS)

    Cardaci, Marco

    2010-02-01

    Recent studies of the CMS collaboration are presented on the sensitivity to searches for large (ADD) extra dimensions in channels with missing transverse energy (MET), i.e. the channels jets plus MET and photon plus MET. These studies are based on detailed detector simulation, including all Standard Model backgrounds. Particular emphasis is given to possible early discoveries, i.e. with 100 pb-1 or less. Projected 95% CL exclusion limits as function of luminosity are presented as well.

  9. Cadmium zinc telluride detector for low photon energy applications

    NASA Astrophysics Data System (ADS)

    Shin, Kyung-Wook; Wang, Kai; Reznic, Alla; Karim, Karim S.

    2010-04-01

    Cadmium Zinc Telluride (CdZnTe or CZT) is a polycrystalline radiation detector that has been investigated over the years for a variety of applications including Constellation X-ray space mission [1] and direct-conversion medical imaging such as digital mammography [2]. Due to its high conversion gain and low electron-hole pair creation energy (~4.43 eV) [3], it has found use in high end, photon counting medical imaging applications including positron emission tomography (PET), computed tomography (CT) and single photon emission computed tomography (SPECT). However, its potential in low photon energy applications has not been fully explored. In this work, we explore the capacity of the CZT material to count low photon energies (6 keV - 20 keV). These energies are of direct relevance to applications in gamma ray breast brachytheraphy and mammography, X-ray protein crystallography, X-ray mammography and mammography tomosynthesis. We also present a design that integrates the CZT direct conversion detector with an inhouse fabricated amorphous silicon (a-Si:H) thin film transistor (TFT) passive pixel sensor (PPS) array. A CZT photoconductor (2 cm x 2 cm size, 5-mm-thick) prepared by the traveling heat method (THM) from RedlenTM is characterized. The current-voltage characteristics reveal a resistivity of 3.3 x 1011 Ω•cm and a steady state dark current in the range of nA. Photocurrent transients under different biases and illumination pulses are studied to investigate photogeneration and the charge trapping process. It is found that charge trapping plays a more significant role in transient behavior at low biases and low frequency.

  10. TOPICAL REVIEW: RBE of low energy electrons and photons

    NASA Astrophysics Data System (ADS)

    Nikjoo, Hooshang; Lindborg, Lennart

    2010-05-01

    Relative biological effectiveness (RBE) compares the severity of damage induced by a radiation under test at a dose D relative to the reference radiation Dx for the same biological endpoint. RBE is an important parameter in estimation of risk from exposure to ionizing radiation (IR). The present work provides a review of the recently published data and the knowledge of the RBE of low energy electrons and photons. The review presents RBE values derived from experimental data and model calculations including cell inactivation, chromosome aberration, cell transformation, micronuclei formation and induction of double-strand breaks. Biophysical models, including physical features of radiation track, and microdosimetry parameters are presented, analysed and compared with experimental data. The biological effects of low energy electrons and photons are of particular interest in radiation biology as these are strongly absorbed in micrometer and sub-micrometer layers of tissue. RBE values not only depend on the electron and photon energies but also on the irradiation condition, cell type and experimental conditions.

  11. Improving the neutron-to-photon discrimination capability of detectors used for neutron dosimetry in high energy photon beam radiotherapy.

    PubMed

    Irazola, L; Terrón, J A; Bedogni, R; Pola, A; Lorenzoli, M; Sánchez-Nieto, B; Gómez, F; Sánchez-Doblado, F

    2016-09-01

    The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios. PMID:27337649

  12. On the low-energy limit of one-loop photon-graviton amplitudes

    NASA Astrophysics Data System (ADS)

    Bastianelli, F.; Corradini, O.; Dávila, J. M.; Schubert, C.

    2012-09-01

    We present first results of a systematic study of the structure of the low-energy limit of the one-loop photon-graviton amplitudes induced by massive scalars and spinors. Our main objective is the search of KLT-type relations where effectively two photons merge into a graviton. We find such a relation at the graviton-photon-photon level. We also derive the diffeomorphism Ward identity for the 1PI one-graviton-N-photon amplitudes.

  13. Energy efficient acquisition and reconstruction of EEG signals.

    PubMed

    Singh, W; Shukla, A; Deb, S; Majumdar, A

    2014-01-01

    In Wireless Body Area Networks (WBAN) the energy consumption is dominated by sensing and communication. Previous Compressed Sensing (CS) based solutions to EEG tele-monitoring over WBAN's could only reduce the communication cost. In this work, we propose a matrix completion based formulation that can also reduce the energy consumption for sensing. We test our method with state-of-the-art CS based techniques and find that the reconstruction accuracy from our method is significantly better and that too at considerably less energy consumption. Our method is also tested for post-reconstruction signal classification where it outperforms previous CS based techniques. At the heart of the system is an Analog to Information Converter (AIC) implemented in 65nm CMOS technology. The pseudorandom clock generator enables random under-sampling and subsequent conversion by the 12-bit Successive Approximation Register Analog to Digital Converter (SAR ADC). AIC achieves a sample rate of 0.5 KS/s, an ENOB 9.54 bits, and consumes 108 nW from 1 V power supply. PMID:25570198

  14. Monochromatic X-ray photon counting using an energy-selecting device and its application to iodine imaging

    NASA Astrophysics Data System (ADS)

    Oda, Yasuyuki; Sato, Eiichi; Yamaguchi, Satoshi; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Watanabe, Manabu; Kusachi, Shinya

    2015-08-01

    Quasi-monochromatic photon counting was performed using a cadmium telluride detector and an energy-selecting device, consisting of two comparators and a microcomputer (MC). The two threshold energies are determined using low and high-energy comparators, respectively. The MC produces a single logical pulse when only a logical pulse from a low-energy comparator is input to the MC. Next, the MC never produces the pulse when two pulses from low and high-energy comparators are input to the MC, simultaneously. The logical pulses from the MC are input to a frequency-voltage converter (FVC) to convert count rates into voltages; the rate is proportional to the voltage. The output voltage from the FVC is sent to a personal computer through an analog-digital converter to reconstruct tomograms. The X-ray projection curves for tomography are obtained by repeated linear scans and rotations of the object at a tube voltage of 70 kV and a current of 12 μA. Iodine (I) K-edge CT was performed using contrast media and X-ray photons with a count rate of 2.2 kilocounts per second and energies ranging from 34 to 50 keV, since these photons with energies beyond I-K-edge energy 33.2 keV are absorbed effectively by I atoms.

  15. Reconstruction of the dark matter-vacuum energy interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yuting; Zhao, Gong-Bo; Wands, David; Pogosian, Levon; Crittenden, Robert G.

    2015-11-01

    An interaction between the vacuum energy and dark matter is an intriguing possibility which may offer a way of solving the cosmological constant problem. Adopting a general prescription for momentum exchange between the two dark components, we reconstruct α (a ), the temporal evolution of the coupling strength between dark matter and vacuum energy, in a nonparametric Bayesian approach using combined observational data sets from the cosmic microwave background, supernovae and large scale structure. An evolving interaction between the vacuum energy and dark matter removes some of the tensions between different data sets. However, it is not preferred over Λ CDM in the Bayesian sense, as improvement in the fit is not sufficient to compensate for the increase in the volume of the parameter space.

  16. LDRD project 151362 : low energy electron-photon transport.

    SciTech Connect

    Kensek, Ronald Patrick; Hjalmarson, Harold Paul; Magyar, Rudolph J.; Bondi, Robert James; Crawford, Martin James

    2013-09-01

    At sufficiently high energies, the wavelengths of electrons and photons are short enough to only interact with one atom at time, leading to the popular %E2%80%9Cindependent-atom approximation%E2%80%9D. We attempted to incorporate atomic structure in the generation of cross sections (which embody the modeled physics) to improve transport at lower energies. We document our successes and failures. This was a three-year LDRD project. The core team consisted of a radiation-transport expert, a solid-state physicist, and two DFT experts.

  17. High-energy diffraction microscopy at the advanced photon source

    SciTech Connect

    Lienert, U.; Li, S.; Hefferan, C.; Lind, J.; Suter, R.; Bernier, J.; Barton, N.; Brandes, M.; Mills, M.; Miller, M.; Jakobsen, B.; Pantleon, W.

    2012-02-28

    The status of the High Energy Diffraction Microscopy (HEDM) program at the 1-ID beam line of the Advanced Photon Source is reported. HEDM applies high energy synchrotron radiation for the grain and sub-grain scale structural and mechanical characterization of polycrystalline bulk materials in situ during thermomechanical loading. Case studies demonstrate the mapping of grain boundary topology, the evaluation of stress tensors of individual grains during tensile deformation and comparison to a finite element modeling simulation, and the characterization of evolving dislocation structure. Complementary information is obtained by post mortem electron microscopy on the same sample volume previously investigated by HEDM.

  18. Is there a low energy enhancement in the photon strength function in molybdenum?

    SciTech Connect

    Sheets, S A

    2008-01-30

    Recent claims of a low energy enhancement in the photon strength function of {sup 96}Mo are investigated. Using the DANCE detector the gamma-ray spectra following resonance neutron capture was measured. The spectrum fitting method was used to indirectly extract a photon strength function from the gamma-ray spectra. No strong low energy enhancement in the photon strength function was found.

  19. Photon strength and the low-energy enhancement

    SciTech Connect

    Wiedeking, M.; Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Hatarik, R.; Lesher, S. R.; Scielzo, N. D.; Krtička, M.; Allmond, J. M.; Basunia, M. S.; Fallon, P.; Firestone, R. B.; Lake, P. T.; Lee, I-Y.; Paschalis, S.; Petri, M.; Phair, L.; Goldblum, B. L.

    2014-08-14

    Several measurements in medium mass nuclei have reported a low-energy enhancement in the photon strength function. Although, much effort has been invested in unraveling the mysteries of this effect, its physical origin is still not conclusively understood. Here, a completely model-independent experimental approach to investigate the existence of this enhancement is presented. The experiment was designed to study statistical feeding from the quasi-continuum (below the neutron separation energy) to individual low-lying discrete levels in {sup 95}Mo produced in the (d, p) reaction. A key aspect to successfully study gamma decay from the region of high-level density is the detection and extraction of correlated particle-gamma-gamma events which was accomplished using an array of Clover HPGe detectors and large area annular silicon detectors. The entrance channel excitation energy into the residual nucleus produced in the reaction was inferred from the detected proton energies in the silicon detectors. Gating on gamma-transitions originating from low-lying discrete levels specifies the state fed by statistical gamma-rays. Any particle-gamma-gamma event in combination with specific energy sum requirements ensures a clean and unambiguous determination of the initial and final state of the observed gamma rays. With these requirements the statistical feeding to individual discrete levels is extracted on an event-by-event basis. The results are presented and compared to {sup 95}Mo photon strength function data measured at the University of Oslo.

  20. Photon strength and the low-energy enhancement

    NASA Astrophysics Data System (ADS)

    Wiedeking, M.; Bernstein, L. A.; Krtička, M.; Bleuel, D. L.; Allmond, J. M.; Basunia, M. S.; Burke, J. T.; Fallon, P.; Firestone, R. B.; Goldblum, B. L.; Hatarik, R.; Lake, P. T.; Lee, I.-Y.; Lesher, S. R.; Paschalis, S.; Petri, M.; Phair, L.; Scielzo, N. D.

    2014-08-01

    Several measurements in medium mass nuclei have reported a low-energy enhancement in the photon strength function. Although, much effort has been invested in unraveling the mysteries of this effect, its physical origin is still not conclusively understood. Here, a completely model-independent experimental approach to investigate the existence of this enhancement is presented. The experiment was designed to study statistical feeding from the quasi-continuum (below the neutron separation energy) to individual low-lying discrete levels in 95Mo produced in the (d, p) reaction. A key aspect to successfully study gamma decay from the region of high-level density is the detection and extraction of correlated particle-gamma-gamma events which was accomplished using an array of Clover HPGe detectors and large area annular silicon detectors. The entrance channel excitation energy into the residual nucleus produced in the reaction was inferred from the detected proton energies in the silicon detectors. Gating on gamma-transitions originating from low-lying discrete levels specifies the state fed by statistical gamma-rays. Any particle-gamma-gamma event in combination with specific energy sum requirements ensures a clean and unambiguous determination of the initial and final state of the observed gamma rays. With these requirements the statistical feeding to individual discrete levels is extracted on an event-by-event basis. The results are presented and compared to 95Mo photon strength function data measured at the University of Oslo.

  1. Measurement of the B to Xs gammaBranching Fraction and Photon Energy Spectrum usingthe Recoil Method

    SciTech Connect

    Aubert, B.

    2007-12-04

    We present a measurement of the branching fraction and photon energy spectrum for the decay B {yields} X{sub s}{gamma} using data from the BABAR experiment. The data sample corresponds to an integrated luminosity of 210 fb{sup -1}, from which approximately 680,000 B{bar B} events are tagged by a fully reconstructed hadronic decay of one of the B mesons. In the decay of the second B meson, an isolated high-energy photon is identified. We measure {Beta}(B {yields} X{sub s}{gamma}) = (3.66 {+-} 0.85{sub stat} {+-} 0.60{sub syst}) x 10{sup -4} for photon energies E{sub {gamma}} above 1.9 GeV in the B rest frame. From the measured spectrum we calculate the first and second moments for different minimum photon energies, which are used to extract the heavy-quark parameters m{sub b} and {mu}{sub {pi}}{sup 2}. In addition, measurements of the direct CP asymmetry and isospin asymmetry are presented.

  2. Electron and Photon Identification in the D0 Experiment

    SciTech Connect

    Abazov, Victor Mukhamedovich; et al.

    2014-06-21

    The electron and photon reconstruction and identification algorithms used by the D0 Collaboration at the Fermilab Tevatron collider are described. The determination of the electron energy scale and resolution is presented. Studies of the performance of the electron and photon reconstruction and identification are summarized.

  3. Two-photon double ionization of helium in the region of photon energies 42-50 eV

    SciTech Connect

    Ivanov, I. A.; Kheifets, A. S.

    2007-03-15

    We report the total integrated cross section (TICS) of two-photon double ionization of helium in the photon energy range from 42 to 50 eV. Our computational procedure relies on a numerical solution of the time-dependent Schroedinger equation on a square-integrable basis and subsequent projection of this solution on a set of final field-free states describing correlation in the two-electron continuum. Our results suggest that the TICS grows monotonically as a function of photon energy in the region of 42-50 eV, possibly reaching a maximum in the vicinity of 50 eV. We also present fully resolved triple-differential cross sections for selected photon energies.

  4. Two-photon double ionization of helium in the region of photon energies 42-50eV

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Kheifets, A. S.

    2007-03-01

    We report the total integrated cross section (TICS) of two-photon double ionization of helium in the photon energy range from 42to50eV . Our computational procedure relies on a numerical solution of the time-dependent Schrödinger equation on a square-integrable basis and subsequent projection of this solution on a set of final field-free states describing correlation in the two-electron continuum. Our results suggest that the TICS grows monotonically as a function of photon energy in the region of 42-50eV , possibly reaching a maximum in the vicinity of 50eV . We also present fully resolved triple-differential cross sections for selected photon energies.

  5. Reconstruction of the dark energy equation of state

    SciTech Connect

    Vázquez, J. Alberto; Bridges, M.; Lasenby, A.N.; Hobson, M.P. E-mail: mb435@mrao.cam.ac.uk E-mail: a.n.lasenby@mrao.cam.ac.uk

    2012-09-01

    One of the main challenges of modern cosmology is to investigate the nature of dark energy in our Universe. The properties of such a component are normally summarised as a perfect fluid with a (potentially) time-dependent equation-of-state parameter w(z). We investigate the evolution of this parameter with redshift by performing a Bayesian analysis of current cosmological observations. We model the temporal evolution as piecewise linear in redshift between 'nodes', whose w-values and redshifts are allowed to vary. The optimal number of nodes is chosen by the Bayesian evidence. In this way, we can both determine the complexity supported by current data and locate any features present in w(z). We compare this node-based reconstruction with some previously well-studied parameterisations: the Chevallier-Polarski-Linder (CPL), the Jassal-Bagla-Padmanabhan (JBP) and the Felice-Nesseris-Tsujikawa (FNT). By comparing the Bayesian evidence for all of these models we find an indication towards possible time-dependence in the dark energy equation-of-state. It is also worth noting that the CPL and JBP models are strongly disfavoured, whilst the FNT is just significantly disfavoured, when compared to a simple cosmological constant w = −1. We find that our node-based reconstruction model is slightly disfavoured with respect to the ΛCDM model.

  6. Energy dispersive photon counting detectors for breast imaging

    NASA Astrophysics Data System (ADS)

    Barber, William C.; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasidharan; Nygard, Einar; Iwanczyk, Jan S.

    2013-09-01

    We report on our efforts toward the development of silicon (Si) strip detectors for energy-resolved clinical breast imaging. Typically, x-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a- Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting silicon Si strip detectors. Mammography requires high flux from the x-ray generator, therefore, in order to achieve energy resolved single photon counting, a high output count rate (OCR) for the detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions. We present our methods and results from the optimization of prototype detectors based on Si strip structures. We describe the detector optimization and the development of ASIC readout electronics that provide the required spatial resolution, low noise, high count rate capabilities and minimal power consumption.

  7. Reconstructing f(R, t) Gravity from Holographic Dark Energy

    NASA Astrophysics Data System (ADS)

    Houndjo, M. J. S.; Piattella, Oliver F.

    2012-03-01

    We consider cosmological scenarios based on f(R, T) theories of gravity (R is the Ricci scalar and T is the trace of the energy-momentum tensor) and numerically reconstruct the function f(R, T) which is able to reproduce the same expansion history generated, in the standard General Relativity theory, by dark matter and holographic dark energy. We consider two special f(R, T) models: in the first instance, we investigate the modification R + 2f(T), i.e. the usual Einstein-Hilbert term plus a f(T) correction. In the second instance, we consider a f(R) + λT theory, i.e. a T correction to the renown f(R) theory of gravity.

  8. Triplet-triplet annihilation photon-upconversion: towards solar energy applications.

    PubMed

    Gray, Victor; Dzebo, Damir; Abrahamsson, Maria; Albinsson, Bo; Moth-Poulsen, Kasper

    2014-06-14

    Solar power production and solar energy storage are important research areas for development of technologies that can facilitate a transition to a future society independent of fossil fuel based energy sources. Devices for direct conversion of solar photons suffer from poor efficiencies due to spectrum losses, which are caused by energy mismatch between the optical absorption of the devices and the broadband irradiation provided by the sun. In this context, photon-upconversion technologies are becoming increasingly interesting since they might offer an efficient way of converting low energy solar energy photons into higher energy photons, ideal for solar power production and solar energy storage. This perspective discusses recent progress in triplet-triplet annihilation (TTA) photon-upconversion systems and devices for solar energy applications. Furthermore, challenges with evaluation of the efficiency of TTA-photon-upconversion systems are discussed and a general approach for evaluation and comparison of existing systems is suggested. PMID:24733519

  9. Photon Strength and the Low-Energy Enhancement

    SciTech Connect

    Wiedeking, M; Bernstein, L A; Krticka, M; Bleuel, D L; Allmond, J M; Basunia, M S; Burke, J T; Fallon, P; Firestone, R B; Goldblum, B L; Hatarik, R; Lake, P T; Lee, I Y; Lesher, S R; Paschalis, S; Petri, M; Phair, L; Scielzo, N D

    2012-02-22

    The ability of atomic nuclei to emit and absorb photons with energy E{sub {gamma}} is known as the photon strength function f(E{sub {gamma}}). It has direct relevance to astrophysical element formation via neutron capture processes due to its central role in nuclear reactions. Studies of f(E{sub {gamma}}) have benefited from a wealth of data collected in neutron capture and direct reactions but also from newly commissioned inelastic photon scattering facilities. The majority of these experimental methods, however, rely on the use of models because measured {gamma}-ray spectra are simultaneously sensitive to both the nuclear level density and f(E{sub {gamma}}). As excitation energy increases towards the particle separation energies, the level density increases rapidly, creating the quasi-continuum. Nuclear properties in this excitation energy region are best characterized using statistical quantities, such as f(E{sub {gamma}}). A point of contention in studies of the quasi-continuum has been an unexpected and unexplained increase in f(E{sub {gamma}}) at low {gamma}-ray energies (i.e. below E{sub {gamma}} {approx}3 MeV) in a subset of light-to-medium mass nuclei. Ideally, a new model-independent experimental technique is required to address questions regarding the existence and origin of this low-energy enhancement in f(E{sub {gamma}}). Here such a model-independent approach is presented for determining the shape of f(E{sub {gamma}}) over a wide range of energies. The method involves the use of coupled high-resolution particle and {gamma}-ray spectroscopy to determine the emission of {gamma} rays from the quasi-continuum in a nucleus with defined excitation energy to individual discrete levels of known spins and parities. This method shares characteristics of two neutron capture-based techniques: the Average Resonance Capture (ARC) and the Two-Step Cascade analysis (TSC). The power of the new technique lies in the additional ability to positively identify primary

  10. Silicon photonics for compact, energy-efficient interconnects [Invited

    NASA Astrophysics Data System (ADS)

    Barwicz, T.; Byun, H.; Gan, F.; Holzwarth, C. W.; Popovic, M. A.; Rakich, P. T.; Watts, M. R.; Ippen, E. P.; Kã¤Rtner, F. X.; Smith, H. I.; Orcutt, J. S.; Ram, R. J.; Stojanovic, V.; Olubuyide, O. O.; Hoyt, J. L.; Spector, S.; Geis, M.; Grein, M.; Lyszczarz, T.; Yoon, J. U.

    2007-01-01

    The goal of the research program that we describe is to break the emerging performance wall in microprocessor development arising from limited bandwidth and density of on-chip interconnects and chip-to-chip (processor-to-memory) electrical interfaces. Complementary metal-oxide semiconductor compatible photonic devices provide an infrastructure for deployment of a range of integrated photonic networks, which will replace state-of-the-art electrical interconnects, providing significant gains at the system level. Scaling of wavelength-division-multiplexing (WDM) architectures using high-index-contrast (HIC) waveguides offers one path to realizing the energy efficiency and density requirements of high data rate links. HIC microring-resonator filters are well suited to support add-drop nodes in dense WDM photonic networks with high aggregate data rates because they support high Q's and, due to their traveling-wave character, naturally support physically separated input and drop ports. A novel reconfigurable, 'hitless' switch is presented that does not perturb the express channels either before, during, or after reconfiguration. In addition, multigigahertz operation of low-power, Mach-Zehnder silicon modulators as well as germanium-on-silicon photodiodes are presented.

  11. Modeling of High-Energy Photon Bursts From Lightning Leader

    NASA Astrophysics Data System (ADS)

    Celestin, S. J.; Xu, W.; Pasko, V. P.

    2015-12-01

    Terrestrial gamma-ray flashes (TGFs) are bursts of high-energy photons originating from the Earth's atmosphere in association with thunderstorm activity [e.g., Briggs et al., JGR, 118, 3805, 2013]. Additionally, X-ray bursts observed from the ground have been discovered to be produced by negative cloud-to-ground (-CG) lightning leaders in association with stepping processes [Dwyer et al., GRL, 32, L01803, 2005]. Using numerical modeling, it has been shown that the production of thermal runaway electrons by stepping lightning leaders and their further acceleration could explain the TGF spectrum for intracloud (IC) lightning potentials above ~100 MV [Xu et al., GRL, 39, L08801, 2012] and X-ray burst spectrum for -CG lightning potentials of ~5 MV [Xu et al., GRL, 41, 7406, 2014]. In this work, we address the physical processes leading to X-ray bursts from -CG discharges and TGFs produced by IC discharges in a unified fashion. We show how the leader-produced photon spectrum becomes harder with increasing lightning leader potential and how it progressively converges to typical photon spectrum associated with relativistic runaway electron avalanches (RREAs) in large-scale ambient electric fields for potentials greater than ~150 MV. We also demonstrate that the photon fluence in a burst is a very sharp function of the potential. This implies that only lightning leaders forming the strongest potentials can lead to the production of observable TGFs from space. We specifically study the effects of source altitudes on the results and the production of the required high potentials in lightning leaders in realistic thunderstorm charge configurations.

  12. SU-E-I-99: Estimation of Effective Charge Distribution by Dual-Energy CT Reconstruction

    SciTech Connect

    Sakata, D; Kida, S; Nakano, M; Masutani, Y; Nakagawa, K; Haga, A

    2014-06-01

    Purpose: Computed Tomography (CT) is a method to produce slice image of specific volume from the scanned x-ray projection images. The contrast of CT image is correlated with the attenuation coefficients of the x-ray in the object. The attenuation coefficient is strongly dependent on the x-ray energy and the effective charge of the material. The purpose of this presentation is to show the effective charge distribution predicted by CT images reconstructed with kilovoltage(kV) and megavoltage(MV) x-ray energy. Methods: The attenuation coefficients of x-ray can be characterized by cross section of photoionization and Compton scattering for the specific xray energy. In particular, the photoionization cross section is strongly correlated with the effective charge of the object. Hence we can calculate effective charge by solving the coupled equation between the attenuation coefficient and the theoretical cross section. For this study, we use the megavoltage (MV) and kilovoltage (kV) x-rays of Elekta Synergy as the dual source x-ray, and CT image of the Phantom Laboratory CatPhan is reconstructed by the filtered back projection (FBP) and iterative algorithm for cone-beam CT (CBCT). Results: We report attenuation coefficients of each component of the CatPhan specified by each x-ray source. Also the effective charge distribution is evaluated by the MV and kV dual x-ray sources. The predicted effective charges are comparable with the nominal ones. Conclusion: We developed the MV and kV dual-source CBCT reconstruction to yield the effective charge distribution. For more accuracy, it is critical to remove an effect of the scattering photon in the CBCT reconstruction algorithm. The finding will be fine reference of the effective charge of tissue and lead to the more realistic absorbed-dose calculation. This work was partly supported by the JSPS Core-to-Core Program(No. 23003), and this work was partly supported by JSPS KAKENHI 24234567.

  13. Muon Energy Reconstruction Through the Multiple Scattering Method in the NO$\\mathrm{\

    SciTech Connect

    Psihas Olmedo, Silvia Fernanda

    2015-01-01

    Neutrino energy measurements are a crucial component in the experimental study of neutrino oscillations. These measurements are done through the reconstruction of neutrino interactions and energy measurements of their products. This thesis presents the development of a technique to reconstruct the energy of muons from neutrino interactions in the NO$\\mathrm{\

  14. Muon Energy Reconstruction Through the Multiple Scattering Method in the NO$\\mathrm{\

    SciTech Connect

    Psihas Olmedo, Silvia Fernanda

    2013-06-01

    Neutrino energy measurements are a crucial component in the experimental study of neutrino oscillations. These measurements are done through the reconstruction of neutrino interactions and energy measurements of their products. This thesis presents the development of a technique to reconstruct the energy of muons from neutrino interactions in the NO$\\mathrm{\

  15. Reconstructing the history of dark energy using maximum entropy

    NASA Astrophysics Data System (ADS)

    Zunckel, Caroline; Trotta, Roberto

    2007-09-01

    We present a Bayesian technique based on a maximum-entropy method to reconstruct the dark energy equation of state (EOS) w(z) in a non-parametric way. This Maximum Entropy (MaxEnt) technique allows to incorporate relevant prior information while adjusting the degree of smoothing of the reconstruction in response to the structure present in the data. After demonstrating the method on synthetic data, we apply it to current cosmological data, separately analysing Type Ia supernova measurement from the HST/GOODS programme and the first-year Supernovae Legacy Survey (SNLS), complemented by cosmic microwave background and baryonic acoustic oscillation data. We find that the SNLS data are compatible with w(z) = -1 at all redshifts 0 <= z <~ 1100, with error bars of the order of 20 per cent for the most-constraining choice of priors. The HST/GOODS data exhibit a slight (about 1σ significance) preference for w > -1 at z ~ 0.5 and a drift towards w > -1 at larger redshifts which, however, is not robust with respect to changes in our prior specifications. We employ both a constant EOS prior model and a slowly varying w(z) and find that our conclusions are only mildly dependent on this choice at high redshifts. Our method highlights the danger of employing parametric fits for the unknown EOS, that can potentially miss or underestimate real structure in the data.

  16. Full Three-Dimensonal Reconstruction of the Dyadic Green Tensor from Electron Energy Loss Spectroscopy of Plasmonic Nanoparticles

    PubMed Central

    2015-01-01

    Electron energy loss spectroscopy (EELS) has emerged as a powerful tool for the investigation of plasmonic nanoparticles, but the interpretation of EELS results in terms of optical quantities, such as the photonic local density of states, remains challenging. Recent work has demonstrated that, under restrictive assumptions, including the applicability of the quasistatic approximation and a plasmonic response governed by a single mode, one can rephrase EELS as a tomography scheme for the reconstruction of plasmonic eigenmodes. In this paper we lift these restrictions by formulating EELS as an inverse problem and show that the complete dyadic Green tensor can be reconstructed for plasmonic particles of arbitrary shape. The key steps underlying our approach are a generic singular value decomposition of the dyadic Green tensor and a compressed sensing optimization for the determination of the expansion coefficients. We demonstrate the applicability of our scheme for prototypical nanorod, bowtie, and cube geometries. PMID:26523284

  17. Search for ultra high energy primary photons at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Colalillo, Roberta

    2016-07-01

    The Pierre Auger Observatory, located in Argentina, provides an unprecedented integrated aperture in the search for primary photons with energy above 1017 eV over a large portion of the southern sky. Such photons can be detected in principle via the air showers they initiate at such energies, using the complement of Auger Observatory detectors. We discuss the results obtained in diffuse and directional searches for primary photons in the EeV energy range.

  18. A Monte Carlo simulation study of the effect of energy windows in computed tomography images based on an energy-resolved photon counting detector

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Wan; Choi, Yu-Na; Cho, Hyo-Min; Lee, Young-Jin; Ryu, Hyun-Ju; Kim, Hee-Joung

    2012-08-01

    The energy-resolved photon counting detector provides the spectral information that can be used to generate images. The novel imaging methods, including the K-edge imaging, projection-based energy weighting imaging and image-based energy weighting imaging, are based on the energy-resolved photon counting detector and can be realized by using various energy windows or energy bins. The location and width of the energy windows or energy bins are important because these techniques generate an image using the spectral information defined by the energy windows or energy bins. In this study, the reconstructed images acquired with K-edge imaging, projection-based energy weighting imaging and image-based energy weighting imaging were simulated using the Monte Carlo simulation. The effect of energy windows or energy bins was investigated with respect to the contrast, coefficient-of-variation (COV) and contrast-to-noise ratio (CNR). The three images were compared with respect to the CNR. We modeled the x-ray computed tomography system based on the CdTe energy-resolved photon counting detector and polymethylmethacrylate phantom, which have iodine, gadolinium and blood. To acquire K-edge images, the lower energy thresholds were fixed at K-edge absorption energy of iodine and gadolinium and the energy window widths were increased from 1 to 25 bins. The energy weighting factors optimized for iodine, gadolinium and blood were calculated from 5, 10, 15, 19 and 33 energy bins. We assigned the calculated energy weighting factors to the images acquired at each energy bin. In K-edge images, the contrast and COV decreased, when the energy window width was increased. The CNR increased as a function of the energy window width and decreased above the specific energy window width. When the number of energy bins was increased from 5 to 15, the contrast increased in the projection-based energy weighting images. There is a little difference in the contrast, when the number of energy bin is

  19. Ultrahigh energy photons, electrons, and neutrinos, the microwave background, and the universal cosmic-ray hypothesis

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1972-01-01

    The production of ultrahigh energy photons, electrons and neutrinos as the decay products of pions produced in photomeson interactions between cosmic ray nucleons and the blackbody microwave background is discussed in terms of the resultant energy spectra of these particles. Simple asymptotic formulas are given for calculating the ultrahigh energy photon spectrum predicted for the universal cosmic ray hypothesis and the resulting spectra are compared with those obtained previously by numerical means using a different propagation equation for the photons. Approximate analytic solutions for the photon spectra are given in terms of simple power-law energy functions and slowly varying logarithmic functions.

  20. Two-photon double ionization of helium: Evolution of the joint angular distribution with photon energy and two-electron energy sharing

    SciTech Connect

    Zhang Zheng; Peng Liangyou; Xu Minghui; Gong Qihuang; Starace, Anthony F.; Morishita, Toru

    2011-10-15

    Ab initio calculations of two-photon double ionization of helium with photon energies varying from the nonsequential regime to well above the double-ionization threshold are presented. A systematic study of the joint angular distributions of the two ionized electrons at different energy sharing shows that the role of electron correlations is imprinted in the joint angular distribution. In particular, a rather general pattern is identified in the nonsequential regime that is independent of photon energy, pulse length, and energy sharing between the two electrons. Interestingly, the same distribution pattern is found for the equal-energy-sharing case, even when the photon energy is well above the double-ionization threshold. In the case of an extremely uneven energy sharing, the distribution pattern changes drastically as the photon energy is increased. In particular, when the photon energy is greater than the second-ionization threshold, the dominant emission mode of the two electrons switches gradually from ''back to back'' to ''side by side.'' Finally, the joint angular distribution is found to provide clear evidence of the role of electron correlations in the initial state.

  1. Solar energy conversion with photon-enhanced thermionic emission

    NASA Astrophysics Data System (ADS)

    Kribus, Abraham; Segev, Gideon

    2016-07-01

    Photon-enhanced thermionic emission (PETE) converts sunlight to electricity with the combined photonic and thermal excitation of charge carriers in a semiconductor, leading to electron emission over a vacuum gap. Theoretical analyses predict conversion efficiency that can match, or even exceed, the efficiency of traditional solar thermal and photovoltaic converters. Several materials have been examined as candidates for radiation absorbers and electron emitters, with no conclusion yet on the best set of materials to achieve high efficiency. Analyses have shown the complexity of the energy conversion and transport processes, and the significance of several loss mechanisms, requiring careful control of material properties and optimization of the device structure. Here we survey current research on PETE modeling, materials, and device configurations, outline the advances made, and stress the open issues and future research needed. Based on the substantial progress already made in this young topic, and the potential of high conversion efficiency based on theoretical performance limits, continued research in this direction is very promising and may yield a competitive technology for solar electricity generation.

  2. Energy Reconstruction with the Sweeper Magnet Focal Plane Detector

    NASA Astrophysics Data System (ADS)

    Hitt, George; Thoennessen, Michael; Frank, Nathan; Cooper, Matt; Vander Molen, A. M.; Nett, Brian

    2002-10-01

    The Sweeper Magnet Focal Plane Detector project is a collaboration of the National High Magnetic Field Laboratory (NHMFL) at Florida State University and the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The NHMFL will construct the Sweeper Magnet, a large C-type magnet necessary for the bending of rigid nuclear beams. The NSCL will build the Focal Plane Detectors consisting of two Cathode Readout Drift Detectors (CRDCs) for taking precise position measurements and an Ion Chamber with plastic scintillators for taking ΔE and E_tot measurements. During beam experiments, the Sweeper Magnet will bend the charged fragments for detection in the Focal Plane Detector. As fragments pass through, each CRDC will measure a position where fragments impinge. This will allow experimenters to calculate a fragment's trajectory and determine where it will strike the large stopping scintillator for the E_tot measurements. In order to obtain accurate energies of the fragments, the position sensitivity of the large scintillator must be mapped. By finding a functional relationship between the position of the impinging particles and the attenuation of the light emitted by the scintillator, one can use the known position information from the CRDCs to reconstruct the energy of fragments. The position sensitivity of the large plastic scintillator as measured with a collimated, pulsed blue diode will be presented.

  3. Mesoscale Science with High Energy X-ray Diffraction Microscopy at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Suter, Robert

    2014-03-01

    Spatially resolved diffraction of monochromatic high energy (> 50 keV) x-rays is used to map microstructural quantities inside of bulk polycrystalline materials. The non-destructive nature of High Energy Diffraction Microscopy (HEDM) measurements allows tracking of responses as samples undergo thermo-mechanical or other treatments. Volumes of the order of a cubic millimeter are probed with micron scale spatial resolution. Data sets allow direct comparisons to computational models of responses that frequently involve long-ranged, multi-grain interactions; such direct comparisons have only become possible with the development of HEDM and other high energy x-ray methods. Near-field measurements map the crystallographic orientation field within and between grains using a computational reconstruction method that simulates the experimental geometry and matches orientations in micron sized volume elements to experimental data containing projected grain images in large numbers of Bragg peaks. Far-field measurements yield elastic strain tensors through indexing schemes that sort observed diffraction peaks into sets associated with individual crystals and detect small radial motions in large numbers of such peaks. Combined measurements, facilitated by a new end station hutch at Advanced Photon Source beamline 1-ID, are mutually beneficial and result in accelerated data reduction. Further, absorption tomography yields density contrast that locates secondary phases, void clusters, and cracks, and tracks sample shape during deformation. A collaboration led by the Air Force Research Laboratory and including the Advanced Photon Source, Lawrence Livermore National Laboratory, Carnegie Mellon University, Petra-III, and Cornell University and CHESS is developing software and hardware for combined measurements. Examples of these capabilities include tracking of grain boundary migrations during thermal annealing, tensile deformation of zirconium, and combined measurements of nickel

  4. Effective Atomic Numbers of Lanthanides with Gamma Radiation for Photon Energy Absorption

    NASA Astrophysics Data System (ADS)

    Shantappa, Anil; Hanagodimath, S. M.

    Effective atomic numbers for photon energy absorption, ZPEA,eff have been calculated for photon from 1 keV to 20 MeV for selected oxides of lanthanides, such as Lanthanum oxide, Cerium oxide, Samarium oxide, Europium oxide, Dysprosium oxide, Thulium oxide, Ytterbium oxide. The ZPEA,eff values then compared with ZPI,eff for photon interaction. The ZPEA,eff values have been found to change with energy and composition of selected lanthanides. Oxides of lanthanides are considered as better shielding materials to the exposure of gamma radiation. The values of effective atomic number for photon energy absorption help in the calculation of absorbed dose.

  5. Is there a low-energy enhancement in the photon strength function in molybdenum?

    SciTech Connect

    Sheets, S. A.

    2008-04-17

    Recent claims of a low-energy enhancement in the photon strength function of {sup 96}Mo are investigated. Using the DANCE detector the gamma-ray spectra following resonance neutron capture was measured. The spectrum fitting method was used to indirectly extract a photon strength function from the gamma-ray spectra. No strong low energy enhancement in the photon strength function was found.

  6. Resonant photonuclear isotope detection using medium-energy photon beam

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu; Shima, Tatsushi

    2012-02-01

    Resonant photonuclear isotope detection (RPID) is a nondestructive detection/assay of nuclear isotopes by measuring γ rays following photonuclear reaction products. Medium-energy wideband photons of Eγ=12-16MeV are used for the photonuclear (γ,n) reactions and γ rays characteristic of the reaction products are measured by means of high-sensitivity Ge detectors. Impurities of stable and radioactive isotopes of the orders of μgr—ngr and ppm—ppb are investigated. RPID is used to study nuclear isotopes of astronuclear and particle physics interests and those of geological and historical interests. It is used to identify radioactive isotopes of fission products as well.

  7. Search for ultra-high energy photons using Telescope Array surface detector

    SciTech Connect

    Rubtsov, G. I.; Troitsky, S. V.; Ivanov, D.; Stokes, B. T.; Thomson, G. B.

    2011-09-22

    We search for ultra-high energy photons by analyzing geometrical properties of shower fronts of events registered by the Telescope Array surface detector. By making use of an event-by-event statistical method, we derive an upper limit on the absolute flux of primary photons with energies above 10{sup 19} eV.

  8. Upper limit on the photon fraction in highest-energy cosmic rays from AGASA data.

    PubMed

    Risse, M; Homola, P; Engel, R; Góra, D; Heck, D; Pekala, J; Wilczyńska, B; Wilczyński, H

    2005-10-21

    A new method to derive an upper limit on photon primaries from small data sets of air showers is developed which accounts for shower properties varying with the primary energy and arrival direction. Applying this method to the highest-energy showers recorded by the AGASA experiment, an upper limit on the photon fraction of 51% (67%) at a confidence level of 90% (95%) for primary energies above 1.25 x 10(20) eV is set. This new limit on the photon fraction above the Greisen-Zatsepin-Kuzmin cutoff energy constrains the -burst model of the origin of highest-energy cosmic rays. PMID:16383814

  9. Fables of reconstruction: controlling bias in the dark energy equation of state

    SciTech Connect

    Crittenden, Robert G.; Zhao, Gong-Bo; Samushia, Lado; Pogosian, Levon; Zhang, Xinmin E-mail: gong-bo.zhao@port.ac.uk E-mail: lado.samushia@port.ac.uk

    2012-02-01

    We develop an efficient, non-parametric Bayesian method for reconstructing the time evolution of the dark energy equation of state w(z) from observational data. Of particular importance is the choice of prior, which must be chosen carefully to minimise variance and bias in the reconstruction. Using a principal component analysis, we show how a correlated prior can be used to create a smooth reconstruction and also avoid bias in the mean behaviour of w(z). We test our method using Wiener reconstructions based on Fisher matrix projections, and also against more realistic MCMC analyses of simulated data sets for Planck and a future space-based dark energy mission. While the accuracy of our reconstruction depends on the smoothness of the assumed w(z), the relative error for typical dark energy models is ∼<10% out to redshift z = 1.5.

  10. Photon gluon fusion cross sections at HERA energy

    NASA Astrophysics Data System (ADS)

    Engelen, J. J.; Dejong, S. J.; Poletiek, M.; Vermaseren, J. A. M.

    1988-01-01

    Cross sections for heavy flavor production through photon gluon fusion in electron proton collisions are presented. The electron photon vertex is taken into account explicitly, and the Q sq of the exchanged photon ranges from nearly zero (almost real photon) to the kinematically allowed maximum. The QCD scale is set by the mass of the produced quarks. The formalism is also applicable to the production of light quarks as long as the invariant mass of the pair is sufficiently high, so cross sections for u anti-u, d anti-d, and s anti-s production are also given.

  11. Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources

    PubMed Central

    Ghorbani, Mahdi; Davenport, David

    2016-01-01

    Abstract Aim The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Background Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. Materials and methods MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Results Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Conclusions Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems. PMID:27247558

  12. Derivation of photon energy spectra from transmission measurements using large fields

    NASA Astrophysics Data System (ADS)

    Nes, Elena

    Modern treatment planning systems based on Monte Carlo technique require, in order to calculate the dose, knowledge of the photon spectra produced by medical linear accelerators. The accuracy of the dose determination will increase when the spectra are better known. In the present work the 6 MV photon spectrum of a Varian 2100C linear accelerator was determined from attenuation measurements performed in large fields. The iterative algorithm written in MathematicaRTM used as input data Monte Carlo-predetermined pencil beam monoenergetic scatter kernels for various water phantom thicknesses, open beam fluences and beam fluences measured in air with phantoms of different thicknesses placed in the beam. The experimental data was measured using an ionization chamber and two types of film, GAFCHROMICRTMEBT film and KODAK EDR2 film. The iteration started with a flat spectrum used to calculate the polyenergetic kernels for each water thickness. The spectrum-dependent scatter for different thicknesses of water was calculated convolving the corresponding polyenergetic kernel with the signal obtained with the water phantom removed from the beam. For each thickness of water, transmissions on the central axis were given by the ratios of central axis primary fluences to the open beam fluence. The reconstructed energy spectrum was determined from the transmission values using the simulated annealing technique. Simulated annealing was preferred because it reaches the true global minimum better than other optimization techniques. The spectrum determined at the end of the simulated annealing loop was compared to the input spectrum of the general algorithm. If they matched within acceptable errors this was the final primary spectrum. If not, the spectrum was fed as input for a new iteration. Monte Carlo monoenergetic scatter kernels were derived for six water thicknesses. The amplitude of the monoenergetic scatter kernels increases with energy and water phantom thickness. For thin

  13. Impact of the matter density uncertainty on the dark energy reconstruction

    SciTech Connect

    Avelino, P. P.

    2009-04-15

    In this paper we study the impact of the fractional matter density uncertainty in the reconstruction of the equation of state of dark energy. We consider both standard reconstruction methods, based on the dynamical effect that dark energy has on the expansion of the Universe, as well as nonstandard methods, in which the evolution of the dark energy equation of state with redshift is inferred through the variation of fundamental couplings such as the fine-structure constant, {alpha}, or the proton-to-electron mass ratio, {mu}. We show that the negative impact of the matter density uncertainty in the dark energy reconstruction using varying couplings may be very small compared to standard reconstruction methods. We also briefly discuss other fundamental questions which need to be answered before varying couplings can be successfully used to probe the nature of the dark energy.

  14. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    SciTech Connect

    Razali, Azhani Mohd Abdullah, Jaafar

    2015-04-29

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.

  15. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    NASA Astrophysics Data System (ADS)

    Razali, Azhani Mohd; Abdullah, Jaafar

    2015-04-01

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.

  16. High-energy photon-hadron scattering in holographic QCD

    SciTech Connect

    Nishio, Ryoichi; Watari, Taizan

    2011-10-01

    This article provides an in-depth look at hadron high-energy scattering by using gravity dual descriptions of strongly coupled gauge theories. Just like deeply inelastic scattering (DIS) and deeply virtual Compton scattering (DVCS) serve as clean experimental probes into nonperturbative internal structure of hadrons, elastic scattering amplitude of a hadron and a (virtual) photon in gravity dual can be exploited as a theoretical probe. Since the scattering amplitude at sufficiently high energy (small Bjorken x) is dominated by parton contributions (=Pomeron contributions) even in strong coupling regime, there is a chance to learn a lesson for generalized parton distribution (GPD) by using gravity dual models. We begin with refining derivation of the Brower-Polchinski-Strassler-Tan (BPST) Pomeron kernel in gravity dual, paying particular attention to the role played by the complex spin variable j. The BPST Pomeron on warped spacetime consists of a Kaluza-Klein tower of 4D Pomerons with nonlinear trajectories, and we clarify the relation between Pomeron couplings and the Pomeron form factor. We emphasize that the saddle-point value j* of the scattering amplitude in the complex j-plane representation is a very important concept in understanding qualitative behavior of the scattering amplitude. The total Pomeron contribution to the scattering is decomposed into the saddle-point contribution and at most a finite number of pole contributions, and when the pole contributions are absent (which we call saddle-point phase), kinematical variable (q,x,t)-dependence of ln(1/q) evolution and ln(1/x) evolution parameters {gamma}{sub eff} and {lambda}{sub eff} in DIS and t-slope parameter B of DVCS in HERA experiment are all reproduced qualitatively in gravity dual. All of these observations shed a new light on modeling of GPD. Straightforward application of those results to other hadron high-energy scattering is also discussed.

  17. Photon-tagged heavy meson production in high energy nuclear collisions

    SciTech Connect

    Kang, Z.B.; Vitev, I.

    2011-07-26

    We study the photon-triggered light and heavy meson production in both p+p and A+A collisions. We find that a parton energy loss approach that successfully describes inclusive hadron attenuation in nucleus-nucleus reactions at RHIC can simultaneously describe well the experimentally determined photon-triggered light hadron fragmentation functions. Using the same framework, we generalize our formalism to study photon-triggered heavy meson production. We find that the nuclear modification of photon-tagged heavy meson fragmentation functions in A+A collision is very different from that of the photon-tagged light hadron case. While photon-triggered light hadron fragmentation functions in A+A collisions are suppressed relative to p+p, photon-triggered heavy meson fragmentation functions can be either enhanced or suppressed, depending on the specific kinematic region. The anticipated smaller energy loss for b-quarks manifests itself as a flatter photon-triggered B-meson fragmentation function compared to that for the D-meson case. We make detailed predictions for both RHIC and LHC energies. We conclude that a comprehensive comparative study of both photon-tagged light and heavy meson production can provide new insights in the details of the jet quenching mechanism.

  18. 2D mapping of the MV photon fluence and 3D dose reconstruction in real time for quality assurance during radiotherapy treatment

    NASA Astrophysics Data System (ADS)

    Alrowaili, Z. A.; Lerch, M. L. F.; Carolan, M.; Fuduli, I.; Porumb, C.; Petasecca, M.; Metcalfe, P.; Rosenfeld, A. B.

    2015-09-01

    Summary: the photon irradiation response of a 2D solid state transmission detector array mounted in a linac block tray is used to reconstruct the projected 2D dose map in a homogenous phantom along rays that diverge from the X-ray source and pass through each of the 121 detector elements. A unique diode response-to-dose scaling factor, applied to all detectors, is utilised in the reconstruction to demonstrate that real time QA during radiotherapy treatment is feasible. Purpose: to quantitatively demonstrate reconstruction of the real time radiation dose from the irradiation response of the 11×11 silicon Magic Plate (MP) detector array operated in Transmission Mode (MPTM). Methods and Materials: in transmission mode the MP is positioned in the block tray of a linac so that the central detector of the array lies on the central axis of the radiation beam. This central detector is used to determine the conversion factor from measured irradiation response to reconstructed dose at any point on the central axis within a homogenous solid water phantom. The same unique conversion factor is used for all MP detector elements lying within the irradiation field. Using the two sets of data, the 2D or 3D dose map is able to be reconstructed in the homogenous phantom. The technique we have developed is illustrated here for different depths and irradiation field sizes, (5 × 5 cm2 to 40 × 40 cm2) as well as a highly non uniform irradiation field. Results: we find that the MPTM response is proportional to the projected 2D dose map measured at a specific phantom depth, the "sweet depth". A single factor, for several irradiation field sizes and depths, is derived to reconstruct the dose in the phantom along rays projected from the photon source through each MPTM detector element. We demonstrate that for all field sizes using the above method, the 2D reconstructed and measured doses agree to within ± 2.48% (2 standard deviation) for all in-field MP detector elements. Conclusions: a

  19. Energy reconstruction of high energy muon and neutrino events in KM3NeT

    NASA Astrophysics Data System (ADS)

    Drakopoulou, Evangelia; Markou, Christos; Tzamariudaki, Ekaterini; Pikounis, Konstantinos

    2016-04-01

    KM3NeT will be a European deep-sea infrastructure of neutrino telescopes covering a volume of several cubic kilometers in the Mediterranean Sea aiming to search for high energy neutrinos from galactic and extragalactic sources. This analysis focuses on muons coming from neutrino charged-current interactions. In large water Cherenkov detectors the reconstructed muon is used to approximate the neutrino direction and energy, thus providing information on the astrophysical neutrino source. Muon energy estimation is also critical for the differentiation of neutrinos originating from astrophysical sources from neutrinos generated in the atmosphere which constitute the detector background. We describe a method to determine the muon and neutrino energy employing a Neural Network. An energy resolution of approximately 0.27 has been achieved for muons at the TeV range.

  20. Reconstructing the interaction between dark energy and dark matter using Gaussian processes

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Guo, Zong-Kuan; Cai, Rong-Gen

    2015-06-01

    We present a nonparametric approach to reconstruct the interaction between dark energy and dark matter directly from SNIa Union 2.1 data using Gaussian processes, which is a fully Bayesian approach for smoothing data. In this method, once the equation of state (w ) of dark energy is specified, the interaction can be reconstructed as a function of redshift. For the decaying vacuum energy case with w =-1 , the reconstructed interaction is consistent with the standard Λ CDM model, namely, there is no evidence for the interaction. This also holds for the constant w cases from -0.9 to -1.1 and for the Chevallier-Polarski-Linder (CPL) parametrization case. If the equation of state deviates obviously from -1 , the reconstructed interaction exists at 95% confidence level. This shows the degeneracy between the interaction and the equation of state of dark energy when they get constraints from the observational data.

  1. Photon-energy dependence of single-photon simultaneous core ionization and core excitation in CO2

    NASA Astrophysics Data System (ADS)

    Carniato, S.; Selles, P.; Lablanquie, P.; Palaudoux, J.; Andric, L.; Nakano, M.; Hikosaka, Y.; Ito, K.; Marchenko, T.; Travnikova, O.; Goldsztejn, G.; Journel, L.; Guillemin, R.; Céolin, D.; Simon, M.; Piancastelli, M. N.; Penent, F.

    2016-07-01

    We have studied the K-2V process corresponding to simultaneous K -shell ionization and K -shell excitation in the C O2 molecule. We define these K-2V states as super shake-up, at variance with the "conventional" K-1v-1V shake-up states. While the nature and evolution with photon energy of the conventional shake-up satellites has been the object of many studies, no such data on a large photon-energy range were previously reported on super shake-up. The C O2 molecule is a textbook example because it exhibits two well-isolated K-2V resonances (with V being 2 πu* and 5 σg* ) with different symmetries resulting from shake-up processes of different origin populated in comparable proportions. The variation of the excitation cross section of these two resonances with photon energy is reported, using two different experimental approaches, which sheds light on the excitation mechanisms. Furthermore, double-core-hole spectroscopy is shown to be able to integrate and even expand information provided by conventional single-core-hole X-ray Photoelectron Spectroscopy (XPS) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) techniques, revealing, for instance, g -g dipole forbidden transitions which are only excited in NEXAFS spectra through vibronic coupling.

  2. Search for new physics with long-lived particles decaying to photons and missing energy in pp collisions at sqrt{s}=7 TeV

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Garcia, J. M. Vizan; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Martins, M. Correa; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; De Souza, S. Fonseca; Figueiredo, D. Matos; Mundim, L.; Nogima, H.; Oguri, V.; Da Silva, W. L. Prado; Santoro, A.; Jorge, L. Soares; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Oliveros, A. F. Osorio; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; de Cassagnac, R. Granier; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Magass, C.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Weber, M.; Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Martin, M. Aldaya; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Pardos, C. Diez; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.; Autermann, C.; Blobel, V.; Draeger, J.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Hermanns, T.; Höing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Nowak, F.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Katkov, I.; Komaragiri, J. R.; Pardo, P. Lobelle; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Scheurer, A.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Ganguly, S.; Guchait, M.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli; Buontempo, S.; Montoya, C. A. Carrillo; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Checchia, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Nespolo, M.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Costa, M.; De Remigis, P.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Pereira, A. Vilela; Belforte, S.; Candelise, V.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Heo, S. G.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Cho, Y.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; La Cruz, I. Heredia-de; Lopez-Fernandez, R.; Villalba, R. Magaña; Martínez-Ortega, J.; Sánchez-Hernández, A.; Villasenor-Cendejas, L. M.; Moreno, S. Carrillo; Valencia, F. Vazquez; Ibarguen, H. A. Salazar; Linares, E. Casimiro; Pineda, A. Morelos; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Ansari, M. H.; Asghar, M. I.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gokieli, R.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.; Belotelov, I.; Bunin, P.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Cifuentes, J. A. Brochero; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Govoni, P.; Gowdy, S.; Guida, R.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y.-J.; Lenzi, P.; Lourenço, C.; Magini, N.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orimoto, T.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rodrigues Antunes, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.; Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Singh, A. P.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Cankocak, K.; Levchuk, L.; Bostock, F.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; RadburnSmith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Hatakeyama, K.; Liu, H.; Scarborough, T.; Charaf, O.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; John, J. St.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.; Breedon, R.; Breto, G.; De La Barca Sanchez, M. Calderon; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Pellett, D.; Ricci-tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.; Akgun, B.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Lopez, E. Luiggi; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kilminster, B.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Strom, D.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Kenny, R. P., Iii; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Zhukova, V.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Wright, D.; Baden, A.; Boutemeur, M.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.; Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Kim, Y.; Klute, M.; Krajczar, K.; Li, W.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Avdeeva, E.; Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.; Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Kubik, A.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Antonelli, L.; Berry, D.; Brinkerhoff, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Bylsma, B.; Durkin, L. S.; Hill, C.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.; Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Safdi, B.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Acosta, J. G.; Brownson, E.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatserklyaniy, A.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Roh, Y.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Johnston, C.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Yohay, R.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sakharov, A.; Anderson, M.; Belknap, D.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.

    2012-11-01

    A search is performed for long-lived neutral particles decaying into a photon and invisible particles. An example of such a signature is the decay of the lightest neutralino with nonzero lifetime into a gravitino and a photon in gauge-mediated supersymmetry, with the neutralino as the next-to-lightest supersymmetric particle and the gravitino as the lightest. The search uses events containing photons, missing transverse energy, and jets. The impact parameter of the photon relative to the beam-beam collision point can be reconstructed using converted photons. The method is sensitive to lifetimes of the order of 0.1 to 1 ns. The data sample corresponds to an integrated luminosity of 2.23 fb-1 in pp collisions at sqrt{s}=7 TeV, recorded in the first part of 2011 by the CMS experiment at the LHC. Cross-section limits are presented on pair production for such particles, each of which decays into a photon and invisible particles. The observed 95% confidence level limits vary between 0.11 and 0.21 pb, depending on the neutral particle lifetime.[Figure not available: see fulltext.

  3. Secondary bremsstrahlung and the energy-conservation aspects of kerma in photon-irradiated media

    NASA Astrophysics Data System (ADS)

    Kumar, Sudhir; Nahum, Alan E.

    2016-02-01

    Kerma, collision kerma and absorbed dose in media irradiated by megavoltage photons are analysed with respect to energy conservation. The user-code DOSRZnrc was employed to compute absorbed dose D, kerma K and a special form of kerma, K ncpt, obtained by setting the charged-particle transport energy cut-off very high, thereby preventing the generation of ‘secondary bremsstrahlung’ along the charged-particle paths. The user-code FLURZnrc was employed to compute photon fluence, differential in energy, from which collision kerma, K col and K were derived. The ratios K/D, K ncpt/D and K col/D have thereby been determined over a very large volumes of water, aluminium and copper irradiated by broad, parallel beams of 0.1 to 25 MeV monoenergetic photons, and 6, 10 and 15 MV ‘clinical’ radiotherapy qualities. Concerning depth-dependence, the ‘area under the kerma, K, curve’ exceeded that under the dose curve, demonstrating that kerma does not conserve energy when computed over a large volume. This is due to the ‘double counting’ of the energy of the secondary bremsstrahlung photons, this energy being (implicitly) included in the kerma ‘liberated’ in the irradiated medium, at the same time as this secondary bremsstrahlung is included in the photon fluence which gives rise to kerma elsewhere in the medium. For 25 MeV photons this ‘violation’ amounts to 8.6%, 14.2% and 25.5% in large volumes of water, aluminium and copper respectively but only 0.6% for a ‘clinical’ 6 MV beam in water. By contrast, K col/D and K ncpt/D, also computed over very large phantoms of the same three media, for the same beam qualities, are equal to unity within (very low) statistical uncertainties, demonstrating that collision kerma and the special type of kerma, K ncpt, do conserve energy over a large volume. A comparison of photon fluence spectra for the 25 MeV beam at a depth of  ≈51 g cm-2 for both very high and very low charged-particle transport cut

  4. Ring energy selection and extra long straight sections for the Advanced Photon Source

    SciTech Connect

    Not Available

    1987-04-01

    Recommended criteria are given for the performance of Advanced Photon Source (APS), taking into consideration undulator tunability criteria and their relationship to the storage ring energy and undulator gap, length of straight sections.

  5. Reconstruction of the energy spectrum of electrons accelerated in the April 15, 2002 solar flare based on IRIS X-ray spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Motorina, G. G.; Kudryavtsev, I. V.; Lazutkov, V. P.; Savchenko, M. I.; Skorodumov, D. V.; Charikov, Yu. E.

    2016-04-01

    We reconstruct the energy distribution of electrons accelerated in the April 15, 2002 solar flare on the basis of the data from the IRIS X-ray spectrometer onboard the CORONAS-F satellite. We obtain the solution to the integral equations describing the transformation of the spectrum of X-ray photons during the recording and reconstruction of the spectrum of accelerated electrons in the bremsstrahlung source using the random search method and the Tikhonov regularization method. In this event, we detected a singularity in the electron spectrum associated with the existence of a local minimum in the energy range 40-60 keV, which cannot be detected by a direct method.

  6. A review on photoneutrons characteristics in radiation therapy with high-energy photon beams

    PubMed Central

    Naseri, Alireza; Mesbahi, Asghar

    2010-01-01

    In radiation therapy with high-energy photon beams (E > 10 MeV) neutrons are generated mainly in linacs head thorough (γ,n) interactions of photons with nuclei of high atomic number materials that constitute the linac head and the beam collimation system. These neutrons affect the shielding requirements in radiation therapy rooms and also increase the out-of-field radiation dose of patients undergoing radiation therapy with high-energy photon beams. In the current review, the authors describe the factors influencing the neutron production for different medical linacs based on the performed measurements and Monte Carlo studies in the literature. PMID:24376940

  7. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  8. Single photon energy dispersive x-ray diffraction

    SciTech Connect

    Higginbotham, Andrew; Patel, Shamim; Ciricosta, Orlando; Suggit, Matthew J.; Wark, Justin S.; Hawreliak, James A.; Collins, Gilbert W.; Coppari, Federica; Eggert, Jon H.; Tang, Henry

    2014-03-15

    With the pressure range accessible to laser driven compression experiments on solid material rising rapidly, new challenges in the diagnosis of samples in harsh laser environments are emerging. When driving to TPa pressures (conditions highly relevant to planetary interiors), traditional x-ray diffraction techniques are plagued by increased sources of background and noise, as well as a potential reduction in signal. In this paper we present a new diffraction diagnostic designed to record x-ray diffraction in low signal-to-noise environments. By utilising single photon counting techniques we demonstrate the ability to record diffraction patterns on nanosecond timescales, and subsequently separate, photon-by-photon, signal from background. In doing this, we mitigate many of the issues surrounding the use of high intensity lasers to drive samples to extremes of pressure, allowing for structural information to be obtained in a regime which is currently largely unexplored.

  9. Reconstruction of food conditions for Northeast Atlantic bivalve species based on Dynamic Energy Budgets

    NASA Astrophysics Data System (ADS)

    Freitas, Vânia; Cardoso, Joana F. M. F.; Santos, Sílvia; Campos, Joana; Drent, Jan; Saraiva, Sofia; Witte, Johannes IJ.; Kooijman, Sebastiaan A. L. M.; Van der Veer, Henk W.

    2009-08-01

    Required assimilated energy to support observed growth was reconstructed for four common bivalve species ( Mya arenaria, Cerastoderma edule, Mytilus edulis and Macoma balthica) from various Northeast Atlantic coastal areas, along the species distributional range. The approach applied was based on the Dynamic Energy Budget (DEB) theory whereby observed growth patterns in the field, in combination with prevailing temperatures, were used to reconstruct the average food intake experienced in the field scaled to the maximum possible. For all species, results suggest food limitation over the range of locations. In general, reconstructed food intake indicated better conditions for C. edule compared to the other species, while M. edulis presented the lowest food conditions in all the areas. Despite the indications for a latitudinal trend in primary production, no clear pattern or relationship between reconstructed food conditions and latitude was observed suggesting that any trend may be overruled by local conditions.

  10. Comparison of the calorimetric and kinematic methods of neutrino energy reconstruction in disappearance experiments

    SciTech Connect

    Ankowski, Artur M.; Benhar, Omar; Coloma, Pilar; Huber, Patrick; Jen, Chun -Min; Mariani, Camillo; Meloni, Davide; Vagnoni, Erica

    2015-10-22

    To be able to achieve their physics goals, future neutrino-oscillation experiments will need to reconstruct the neutrino energy with very high accuracy. In this work, we analyze how the energy reconstruction may be affected by realistic detection capabilities, such as energy resolutions, efficiencies, and thresholds. This allows us to estimate how well the detector performance needs to be determined a priori in order to avoid a sizable bias in the measurement of the relevant oscillation parameters. We compare the kinematic and calorimetric methods of energy reconstruction in the context of two νμ → νμ disappearance experiments operating in different energy regimes. For the calorimetric reconstruction method, we find that the detector performance has to be estimated with an O(10%) accuracy to avoid a significant bias in the extracted oscillation parameters. Thus, in the case of kinematic energy reconstruction, we observe that the results exhibit less sensitivity to an overestimation of the detector capabilities.

  11. Energy transfer from Rhodamine-B to Oxazine-170 in the presence of photonic stop band

    NASA Astrophysics Data System (ADS)

    Kedia, Sunita; Sinha, Sucharita

    2015-03-01

    Photonic crystals can effectively suppress spontaneous emission of embedded emitter in the direction were photonic stop band overlaps emission band of emitter. This property of PhC has been successfully exploited to enhance energy transfer from a donor Rhodamine-B dye to an acceptor Oxazine-170 dye by inhibiting the fluorescence emission of donor in a controlled manner. Self-assembled PhC were synthesized using RhB dye doped polystyrene microspheres subsequently infiltrated with O-170 dye molecules dissolved in ethanol. An angle dependent enhancement of emission intensity of acceptor via energy transfer in photonic crystal environment was observed. These results were compared with observations made on a dye mixture solution of the same two dyes. Restricted number of available modes in photonic crystal inhibited de-excitation of donor thereby enabling efficient transfer of energy from excited donor to acceptor dye molecules.

  12. High energy photon and particle luminosity from active nuclei

    NASA Technical Reports Server (NTRS)

    Eilek, J. A.; Caroff, L. J.; Noerdlinger, P. D.; Dove, M. E.

    1986-01-01

    This paper describes a numerical calculation which follows the evolution of an initial photon and particle spectrum in an expanding, relativistic wind or jet, describes in particular the quasi-equilibrium distribution found for initial optical depths above 100 or so, and points out that this calculation may be relevant for the situation in luminous, compact nuclear sources.

  13. Comparison of the calorimetric and kinematic methods of neutrino energy reconstruction in disappearance experiments

    DOE PAGESBeta

    Ankowski, Artur M.; Benhar, Omar; Coloma, Pilar; Huber, Patrick; Jen, Chun -Min; Mariani, Camillo; Meloni, Davide; Vagnoni, Erica

    2015-10-22

    To be able to achieve their physics goals, future neutrino-oscillation experiments will need to reconstruct the neutrino energy with very high accuracy. In this work, we analyze how the energy reconstruction may be affected by realistic detection capabilities, such as energy resolutions, efficiencies, and thresholds. This allows us to estimate how well the detector performance needs to be determined a priori in order to avoid a sizable bias in the measurement of the relevant oscillation parameters. We compare the kinematic and calorimetric methods of energy reconstruction in the context of two νμ → νμ disappearance experiments operating in different energymore » regimes. For the calorimetric reconstruction method, we find that the detector performance has to be estimated with an O(10%) accuracy to avoid a significant bias in the extracted oscillation parameters. Thus, in the case of kinematic energy reconstruction, we observe that the results exhibit less sensitivity to an overestimation of the detector capabilities.« less

  14. Measurements of high energy photons in Z-pinch experiments on primary test stand.

    PubMed

    Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-08-01

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 10(10) cm(-2) (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region. PMID:26329192

  15. Measurements of high energy photons in Z-pinch experiments on primary test stand

    NASA Astrophysics Data System (ADS)

    Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-08-01

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 1010 cm-2 (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.

  16. Measurements of high energy photons in Z-pinch experiments on primary test stand

    SciTech Connect

    Si, Fenni Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin

    2015-08-15

    High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 10{sup 10} cm{sup −2} (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.

  17. Low energy photon mimic of the tritium beta decay energy spectrum

    NASA Astrophysics Data System (ADS)

    Malabre-O'Sullivan, Neville

    Tritium is a radioactive hydrogen isotope that is typically produced via neutron interaction with heavy water (D2O), producing tritiated water (DTO). As a result of this, tritium accounts for roughly a third of all occupational exposures at a CANDU type nuclear power plant. This identifies a need to study the biological effects associated with tritium (and low energy electrons in general). However, there are complications regarding the dosimetry of tritium, as well as difficulties in handling and using tritium for the purposes of biophysics experiments. To avoid these difficulties, an experiment has been proposed using photons to mimic the beta decay energy spectrum of tritium. This would allow simulation of the radiation properties of tritium, so that a surrogate photon source can be used for biophysics experiments. Through experimental and computational means, this work has explored the use of characteristic x-rays of various materials to modify the output spectrum of an x-ray source, such that it mimics the tritium beta decay spectrum. Additionally, the resultant primary electron spectrum generated in water from an x-ray source was simulated. The results from this research have indicated that the use of characteristic x-rays is not a viable method for simulating a tritium source. Also, the primary electron spectrum generated in water shows some promise for simulating tritium exposure, however further work must be done to investigate the slowing down electron spectrum. Keywords: Tritium, MCNP, low energy electrons, biophysics, characteristic x-rays.

  18. Low energy positrons as probes of reconstructed semiconductor surfaces.

    NASA Astrophysics Data System (ADS)

    Fazleev, Nail G.; Weiss, Alex H.

    2007-03-01

    Positron probes of semiconductor surfaces that play a fundamental role in modern science and technology are capable to non-destructively provide information that is both unique to the probe and complimentary to that extracted using other more standard techniques. We discuss recent progress in studies of the reconstructed Si(100), Si(111), Ge(100), and Ge(111) surfaces, clean and exposed to hydrogen and oxygen, using a surface characterization technique, Positron-Annihilation-Induced Auger-Electron Spectroscopy (PAES). Experimental PAES results are analyzed by performing first-principles calculations of positron surface states and annihilation probabilities of surface-trapped positrons with relevant core electrons for the reconstructed surfaces, taking into account discrete lattice effects, the electronic reorganization due to bonding, and charge redistribution effects at the surface. Effects of the hydrogen and oxygen adsorption on semiconductor surfaces on localization of positron surface state wave functions and annihilation characteristics are also analyzed. Theoretical calculations confirm that PAES intensities, which are proportional to annihilation probabilities of the surface trapped positrons that results in a core hole, are sensitive to the crystal face, surface structure and elemental content of the semiconductors.

  19. A high-resolution photon-counting breast CT system with tensor-framelet based iterative image reconstruction for radiation dose reduction.

    PubMed

    Ding, Huanjun; Gao, Hao; Zhao, Bo; Cho, Hyo-Min; Molloi, Sabee

    2014-10-21

    Both computer simulations and experimental phantom studies were carried out to investigate the radiation dose reduction with tensor framelet based iterative image reconstruction (TFIR) for a dedicated high-resolution spectral breast computed tomography (CT) based on a silicon strip photon-counting detector. The simulation was performed with a 10 cm-diameter water phantom including three contrast materials (polyethylene, 8 mg ml(-1) iodine and B-100 bone-equivalent plastic). In the experimental study, the data were acquired with a 1.3 cm-diameter polymethylmethacrylate (PMMA) phantom containing iodine in three concentrations (8, 16 and 32 mg ml(-1)) at various radiation doses (1.2, 2.4 and 3.6 mGy) and then CT images were reconstructed using the filtered-back-projection (FBP) technique and the TFIR technique, respectively. The image quality between these two techniques was evaluated by the quantitative analysis on contrast-to-noise ratio (CNR) and spatial resolution that was evaluated using the task-based modulation transfer function (MTF). Both the simulation and experimental results indicated that the task-based MTF obtained from TFIR reconstruction with one-third of the radiation dose was comparable to that from the FBP reconstruction for low contrast target. For high contrast target, the TFIR was substantially superior to the FBP reconstruction in terms of spatial resolution. In addition, TFIR was able to achieve a factor of 1.6-1.8 increase in CNR, depending on the target contrast level. This study demonstrates that the TFIR can reduce the required radiation dose by a factor of two-thirds for a CT image reconstruction compared to the FBP technique. It achieves much better CNR and spatial resolution for high contrast target in addition to retaining similar spatial resolution for low contrast target. This TFIR technique has been implemented with a graphic processing unit system and it takes approximately 10 s to reconstruct a single-slice CT image

  20. A high-resolution photon-counting breast CT system with tensor-framelet based iterative image reconstruction for radiation dose reduction

    NASA Astrophysics Data System (ADS)

    Ding, Huanjun; Gao, Hao; Zhao, Bo; Cho, Hyo-Min; Molloi, Sabee

    2014-10-01

    Both computer simulations and experimental phantom studies were carried out to investigate the radiation dose reduction with tensor framelet based iterative image reconstruction (TFIR) for a dedicated high-resolution spectral breast computed tomography (CT) based on a silicon strip photon-counting detector. The simulation was performed with a 10 cm-diameter water phantom including three contrast materials (polyethylene, 8 mg ml-1 iodine and B-100 bone-equivalent plastic). In the experimental study, the data were acquired with a 1.3 cm-diameter polymethylmethacrylate (PMMA) phantom containing iodine in three concentrations (8, 16 and 32 mg ml-1) at various radiation doses (1.2, 2.4 and 3.6 mGy) and then CT images were reconstructed using the filtered-back-projection (FBP) technique and the TFIR technique, respectively. The image quality between these two techniques was evaluated by the quantitative analysis on contrast-to-noise ratio (CNR) and spatial resolution that was evaluated using the task-based modulation transfer function (MTF). Both the simulation and experimental results indicated that the task-based MTF obtained from TFIR reconstruction with one-third of the radiation dose was comparable to that from the FBP reconstruction for low contrast target. For high contrast target, the TFIR was substantially superior to the FBP reconstruction in terms of spatial resolution. In addition, TFIR was able to achieve a factor of 1.6-1.8 increase in CNR, depending on the target contrast level. This study demonstrates that the TFIR can reduce the required radiation dose by a factor of two-thirds for a CT image reconstruction compared to the FBP technique. It achieves much better CNR and spatial resolution for high contrast target in addition to retaining similar spatial resolution for low contrast target. This TFIR technique has been implemented with a graphic processing unit system and it takes approximately 10 s to reconstruct a single-slice CT image

  1. Two-photon fusion in high-energy electron-nucleus scattering

    SciTech Connect

    Faeldt, Goeran

    2011-04-15

    Experimental studies of meson production through two-photon fusion in inelastic electron-nucleus scattering are now under way. A high-energy photon radiated by the incident electron is fused with a soft photon radiated by the nucleus to create the meson. The process takes place in the small-angle Coulomb region of nuclear scattering. We expound the theory for this production process as well as its interference with coherent-radiative-meson production. In particular, we investigate the distortion of the electron wave function due to multiple-Coulomb scattering.

  2. Reconstruction of f(R) Gravity with Ordinary and Entropy-Corrected (m, n)-Type Holographic Dark Energy Model

    NASA Astrophysics Data System (ADS)

    Prabir, Rudra

    2016-07-01

    In this assignment we will present a reconstruction scheme between f(R) gravity with ordinary and entropy corrected (m,n)-type holographic dark energy. The correspondence is established and expressions for the reconstructed f(R) models are determined. To study the evolution of the reconstructed models plots are generated. The stability of the calculated models are also investigated using the squared speed of sound in the background of the reconstructed gravities.

  3. The role of x-ray Swank factor in energy-resolving photon-counting imaging

    SciTech Connect

    Tanguay, Jesse; Kim, Ho Kyung; Cunningham, Ian. A.

    2010-12-15

    Purpose: Energy-resolved x-ray imaging has the potential to improve contrast-to-noise ratio by measuring the energy of each interacting photon and applying optimal weighting factors. The success of energy-resolving photon-counting (EPC) detectors relies on the ability of an x-ray detector to accurately measure the energy of each interacting photon. However, the escape of characteristic emissions and Compton scatter degrades spectral information. This article makes the theoretical connection between accuracy and imprecision in energy measurements with the x-ray Swank factor for a-Se, Si, CdZnTe, and HgI{sub 2}-based detectors. Methods: For a detector that implements adaptive binning to sum all elements in which x-ray energy is deposited for a single interaction, energy imprecision is shown to depend on the Swank factor for a large element with x rays incident at the center. The response function for each converter material is determined using Monte Carlo methods and used to determine energy accuracy, Swank factor, and relative energy imprecision in photon-energy measurements. Results: For each material, at energies below the respective K edges, accuracy is close to unity and imprecision is only a few percent. Above the K-edge energies, characteristic emission results in a drop in accuracy and precision that depends on escape probability. In Si, and to some extent a-Se, Compton-scatter escape also degrades energy precision with increasing energy. The influence of converter thickness on energy accuracy and imprecision is modest for low-Z materials but becomes important when using high-Z materials at energies greater than the K-edge energies. Conclusions: Accuracy and precision in energy measurements by EPC detectors are determined largely by the energy-dependent x-ray Swank factor. Modest decreases in the Swank factor (5%-15%) result in large increases in relative imprecision (30%-40%).

  4. Automatic Quenching of High Energy gamma-ray Sources by Synchrotron Photons

    SciTech Connect

    Stawarz, Lukasz; Kirk, John; /Heidelberg, Max Planck Inst.

    2007-02-02

    Here we investigate evolution of a magnetized system, in which continuously produced high energy emission undergoes annihilation on a soft photon field, such that the synchrotron radiation of the created electron-positron pairs increases number density of the soft photons. This situation is important in high energy astrophysics, because, for an extremely wide range of magnetic field strengths (nano to mega Gauss), it involves {gamma}-ray photons with energies between 0.3GeV and 30TeV. We derive and analyze the conditions for which the system is unstable to runaway production of soft photons and ultrarelativistic electrons, and for which it can reach a steady state with an optical depth to photon-photon annihilation larger than unity, as well those for which efficient pair loading of the emitting volume takes place. We also discuss the application of our analysis to a realistic situation involving astrophysical sources of a broad-band {gamma}-ray emission and briefly consider the particular case of sources close to active supermassive black holes.

  5. LIMITS TO THE FRACTION OF HIGH-ENERGY PHOTON EMITTING GAMMA-RAY BURSTS

    SciTech Connect

    Akerlof, Carl W.; Zheng, WeiKang

    2013-02-20

    After almost four years of operation, the two instruments on board the Fermi Gamma-ray Space Telescope have shown that the number of gamma-ray bursts (GRBs) with high-energy photon emission above 100 MeV cannot exceed roughly 9% of the total number of all such events, at least at the present detection limits. In a recent paper, we found that GRBs with photons detected in the Large Area Telescope have a surprisingly broad distribution with respect to the observed event photon number. Extrapolation of our empirical fit to numbers of photons below our previous detection limit suggests that the overall rate of such low flux events could be estimated by standard image co-adding techniques. In this case, we have taken advantage of the excellent angular resolution of the Swift mission to provide accurate reference points for 79 GRB events which have eluded any previous correlations with high-energy photons. We find a small but significant signal in the co-added field. Guided by the extrapolated power-law fit previously obtained for the number distribution of GRBs with higher fluxes, the data suggest that only a small fraction of GRBs are sources of high-energy photons.

  6. Electron escape depth variation in thin SiO2 films measured with variable photon energy

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Grunthaner, F. J.; Pianetta, P.; Johansson, L. I.; Lindau, I.

    1984-01-01

    A double crystal monochromator at the Stanford Synchrotron Radiation Laboratory is used to study the Si/SiO2 interface, using photon energies of hv = 1950-3700 eV. This photon energy range allows interfaces to be observed through oxide layers 50 A thick or more. Variations in electron escape depth and/or oxide density as a function of distance from the interface are observed over the entire kinetic energy range (100-3600 eV). These differences are attributed to a strained oxide layer near the interface.

  7. Reconstruction and stability of f( R, T) gravity with Ricci and modified Ricci dark energy

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Zubair, M.

    2014-01-01

    We take the Ricci and modified Ricci dark energy models to establish a connection with f( R, T) gravity, where R is the scalar curvature and T is the trace of the energy-momentum tensor. The function f( R, T) is reconstructed by considering this theory as an effective description of these models. We consider a specific model which permits the standard continuity equation in this modified theory. It is found that f( R, T) functions can reproduce expansion history of the considered models which is in accordance with the present observational data. We also explore the Dolgov-Kawasaki stability condition for the reconstructed f( R, T) functions.

  8. Cosmological effects of scalar-photon couplings: dark energy and varying-α Models

    SciTech Connect

    Avgoustidis, A.; Martins, C.J.A.P.; Monteiro, A.M.R.V.L.; Vielzeuf, P.E.; Luzzi, G. E-mail: Carlos.Martins@astro.up.pt E-mail: up110370652@alunos.fc.up.pt

    2014-06-01

    We study cosmological models involving scalar fields coupled to radiation and discuss their effect on the redshift evolution of the cosmic microwave background temperature, focusing on links with varying fundamental constants and dynamical dark energy. We quantify how allowing for the coupling of scalar fields to photons, and its important effect on luminosity distances, weakens current and future constraints on cosmological parameters. In particular, for evolving dark energy models, joint constraints on the dark energy equation of state combining BAO radial distance and SN luminosity distance determinations, will be strongly dominated by BAO. Thus, to fully exploit future SN data one must also independently constrain photon number non-conservation arising from the possible coupling of SN photons to the dark energy scalar field. We discuss how observational determinations of the background temperature at different redshifts can, in combination with distance measures data, set tight constraints on interactions between scalar fields and photons, thus breaking this degeneracy. We also discuss prospects for future improvements, particularly in the context of Euclid and the E-ELT and show that Euclid can, even on its own, provide useful dark energy constraints while allowing for photon number non-conservation.

  9. Energy-based dosimetry of low-energy, photon-emitting brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Malin, Martha J.

    Model-based dose calculation algorithms (MBDCAs) for low-energy, photon-emitting brachytherapy sources have advanced to the point where the algorithms may be used in clinical practice. Before these algorithms can be used, a methodology must be established to verify the accuracy of the source models used by the algorithms. Additionally, the source strength metric for these algorithms must be established. This work explored the feasibility of verifying the source models used by MBDCAs by measuring the differential photon fluence emitted from the encapsulation of the source. The measured fluence could be compared to that modeled by the algorithm to validate the source model. This work examined how the differential photon fluence varied with position and angle of emission from the source, and the resolution that these measurements would require for dose computations to be accurate to within 1.5%. Both the spatial and angular resolution requirements were determined. The techniques used to determine the resolution required for measurements of the differential photon fluence were applied to determine why dose-rate constants determined using a spectroscopic technique disagreed with those computed using Monte Carlo techniques. The discrepancy between the two techniques had been previously published, but the cause of the discrepancy was not known. This work determined the impact that some of the assumptions used by the spectroscopic technique had on the accuracy of the calculation. The assumption of isotropic emission was found to cause the largest discrepancy in the spectroscopic dose-rate constant. Finally, this work improved the instrumentation used to measure the rate at which energy leaves the encapsulation of a brachytherapy source. This quantity is called emitted power (EP), and is presented as a possible source strength metric for MBDCAs. A calorimeter that measured EP was designed and built. The theoretical framework that the calorimeter relied upon to measure EP

  10. The nonresonant two-photon zero kinetic energy photoelectron spectrum from the electronic ground state of H2S

    NASA Astrophysics Data System (ADS)

    Fischer, Ingo; Lochschmidt, Andreas; Strobel, Andreas; Niedner-Schatteburg, Gereon; Mueller-Dethlefs, Klaus; Bondybey, Vladimir E.

    1993-03-01

    Zero kinetic energy photoelectron spectra from the electronic ground state of hydrogen sulfide are obtained via nonresonant two-photon ionization with complete rotational resolution in the ion. The two-photon spectra are compared with those recently obtained via one-photon VUV photoionization. The spectra show a close similarity, but type a transitions in the two-photon spectra are twice as intense.

  11. Energy response calibration of photon-counting detectors using X-ray fluorescence: a feasibility study

    PubMed Central

    Cho, H-M; Ding, H; Ziemer, BP; Molloi, S

    2014-01-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using X-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for X-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm2 in detection area. The angular dependence of X-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded X-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of X-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of X-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic X-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the X-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory. PMID:25369288

  12. The role of high energy photons and particles in accretion flows in active nuclei

    NASA Technical Reports Server (NTRS)

    Eilek, Jean A.

    1988-01-01

    The creation of high energy pairs and photons in the conversion of gravitational to thermal energy is a process common to most accretion models for active galactic nuclei. These are two observational methods designed to explore this process: direct observations of the hot photons, through hard X-ray and gamma-ray data, and indirect observations of the energetic pairs, through their polarized, nonthermal low frequency radiation. However, interpretation of these observations in terms of the conditions in the inner accretion flow requires understanding of the various processes which modify the pair and photon distributions within the hot, dense core. These processes include opacity effects within the pair/photon plasma, Compton losses on external photons, further acceleration of the pairs and further radiation by the pairs, and the dynamic interaction of the pair/photon plasma with the surrounding gas. Current observational and theoretical work is reviewed and new directions are considered in a search for constraints on or tests of accretion models of active nuclei.

  13. Improving solar cell efficiencies by down-conversion of high-energy photons

    NASA Astrophysics Data System (ADS)

    Trupke, T.; Green, M. A.; Wurfel, P.

    2002-08-01

    One of the major loss mechanisms leading to low energy conversion efficiencies of solar cells is the thermalization of charge carriers generated by the absorption of high-energy photons. These losses can largely be reduced in a solar cell if more than one electron-hole pair can be generated per incident photon. A method to realize multiple electron-hole pair generation per incident photon is proposed in this article. Incident photons with energies larger than twice the band gap of the solar cell are absorbed by a luminescence converter, which transforms them into two or more lower energy photons. The theoretical efficiency limit of this system for nonconcentrated sunlight is determined as a function of the solar cell's band gap using detailed balance calculations. It is shown that a maximum conversion efficiency of 39.63% can be achieved for a 6000 K blackbody spectrum and for a luminescence converter with one intermediate level. This is a substantial improvement over the limiting efficiency of 30.9%, which a solar cell exposed directly to nonconcentrated radiation may have under the same assumption of radiative recombination only.

  14. Calculation of the characteristics of clinical high-energy photon beams with EGS5-MPI

    NASA Astrophysics Data System (ADS)

    Shimizu, M.; Morishita, Y.; Kato, M.; Kurosawa, T.; Tanaka, T.; Takata, N.; Saito, N.

    2014-03-01

    A graphite calorimeter has been developed as a Japanese primary standard of absorbed dose to water in the high-energy photon beams from a clinical linac. To obtain conversion factors for the graphite calorimeter, the beam characteristics of the high-energy photon beams from the clinical linac at National Metrology Institute of Japan were calculated with the EGS5 Monte Carlo simulation code. To run the EGS5 code on High Performance Computing machines that have more than 1000 CPU cores, we developed the EGS5 parallelisation package "EGS5-MPI" by implementing a message-passing interface. We calculated the photon energy spectra, which are in good agreement with those previously calculated by D. Sheikh-Bagheri and D. W. O. Rogers (Med. Phys. 29 3). We also estimated the percentage-depth-dose distributions of photon beams from the linac using the calculated photon energy spectra. These calculated percentage-depth-dose distributions were compared with our measured distributions and were found they are in good agreement as well. We will calculate conversion factors for the graphite calorimeter using our results.

  15. Inclusive photon production at forward rapidities in pp collisions at LHC energies with the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Sudipan De for the ALICE collaboration

    2016-04-01

    Measurements of multiplicity and pseudorapidity distributions of particles produced in pp collisions are important for the study of particle production mechanisms and to obtain baseline distributions to be compared with those from heavy-ion collisions. The inclusive photon measurements (dominated by π0 decays) are complementary to the charged particle measurements. The present work focuses on the forward rapidity region with comparisons to different models such as PYTHIA and PHOJET. We report the measurements of multiplicity and pseudorapidity distributions of inclusive photons using the ALICE Photon Multiplicity Detector (PMD) at forward rapidities (2.3 < η < 3.9) in pp collisions at = 0.9, 2.76 and 7 TeV. It is observed that the photon multiplicity distributions are well described by negative binomial distributions (NBD). Multiplicity distributions are studied in terms of KNO variables for each energy. It is shown that the increase in the average photon multiplicity as a function of beam energy is compatible with both a logarithmic and power law dependence. The results are compared to different model predictions. These models reproduce experimental results at lower energy while they are not accurate at higher energies.

  16. Photonic simulation of topological superconductor edge state and zero-energy mode at a vortex

    PubMed Central

    Tan, Wei; Chen, Liang; Ji, Xia; Lin, Hai-Qing

    2014-01-01

    Photonic simulations of quantum Hall edge states and topological insulators have inspired considerable interest in recent years. Interestingly, there are theoretical predictions for another type of topological states in topological superconductors, but debates over their experimental observations still remain. Here we investigate the photonic analogue of the px + ipy model of topological superconductor. Two essential characteristics of topological superconductor, particle-hole symmetry and px + ipy pairing potentials, are well emulated in photonic systems. Its topological features are presented by chiral edge state and zero-energy mode at a vortex. This work may fertilize the study of photonic topological states, and open up the possibility for emulating wave behaviors in superconductors. PMID:25488408

  17. Effective atomic numbers for low-energy total photon interactions in human tissues.

    PubMed

    Yang, N C; Leichner, P K; Hawkins, W G

    1987-01-01

    A new method is introduced in which the total photon interaction cross sections per electron of human tissues are used to define effective atomic numbers for blood, bone, brain, fat, heart, kidney, liver, lung, muscle, ovary, pancreas, spleen, and water. These effective atomic numbers are equal within 4% from 10 to 200 keV in each soft tissue, whereas for bones of different chemical compositions the variation ranges from 2.86% to 5.03%. This effective atomic number definition is less energy dependent than a previous definition based on the total photon interaction cross section per atom averaged over all elements in the tissue, from which the computed effective atomic numbers varied by as much as 50% (in bone) as a function of photon energy over the energy range from 10 to 200 keV. PMID:3683305

  18. Simulating three-dimensional nonthermal high-energy photon emission in colliding-wind binaries

    SciTech Connect

    Reitberger, K.; Kissmann, R.; Reimer, A.; Reimer, O.

    2014-07-01

    Massive stars in binary systems have long been regarded as potential sources of high-energy γ rays. The emission is principally thought to arise in the region where the stellar winds collide and accelerate relativistic particles which subsequently emit γ rays. On the basis of a three-dimensional distribution function of high-energy particles in the wind collision region—as obtained by a numerical hydrodynamics and particle transport model—we present the computation of the three-dimensional nonthermal photon emission for a given line of sight. Anisotropic inverse Compton emission is modeled using the target radiation field of both stars. Photons from relativistic bremsstrahlung and neutral pion decay are computed on the basis of local wind plasma densities. We also consider photon-photon opacity effects due to the dense radiation fields of the stars. Results are shown for different stellar separations of a given binary system comprising of a B star and a Wolf-Rayet star. The influence of orbital orientation with respect to the line of sight is also studied by using different orbital viewing angles. For the chosen electron-proton injection ratio of 10{sup –2}, we present the ensuing photon emission in terms of two-dimensional projections maps, spectral energy distributions, and integrated photon flux values in various energy bands. Here, we find a transition from hadron-dominated to lepton-dominated high-energy emission with increasing stellar separations. In addition, we confirm findings from previous analytic modeling that the spectral energy distribution varies significantly with orbital orientation.

  19. MicroCT with energy-resolved photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Wang, X.; Meier, D.; Mikkelsen, S.; Maehlum, G. E.; Wagenaar, D. J.; Tsui, B. M. W.; Patt, B. E.; Frey, E. C.

    2011-05-01

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with K-absorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences.

  20. MicroCT with energy-resolved photon-counting detectors.

    PubMed

    Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, B M W; Patt, B E; Frey, E C

    2011-05-01

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with K-absorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences. PMID:21464527

  1. Electromagnetic Shower Reconstruction for theSilicon Detector

    SciTech Connect

    Meyer, N.

    2005-12-08

    This report presents a two-pass reconstruction algorithm for electromagnetic showers, based on studies with simulated photons in the highly segmented Silicon Tungsten calorimeter of the Silicon Detector concept for the International Linear Collider. It is shown that the initial reconstruction and identification of the dense shower cores allows shower separation down to 3 cm distance between two photons on the calorimeter surface. First results are shown for the subsequent collection of unassociated hits around the shower cores necessary to reconstruct complete energy deposits by individual particles.

  2. Double electron ionization in Compton scattering of high energy photons by helium atoms

    SciTech Connect

    Amusia, M.Y.; Mikhailov, A.I.

    1995-08-01

    The cross section for double-electron ionization of two-electron atoms and ions in Compton scattering of high energy photons is calculated. It is demonstrated that its dependence on the incoming photon frequency is the same as that for single-electron ionization. The ratio of {open_quotes}double-to-single{close_quotes} ionization in Compton scattering was found to be energy independent and almost identical with the corresponding value for photoionization. For the He atom it is 1.68%. This surprising result deserves experimental verification.

  3. No Photon Left Behind: Advanced Optics at ARPA-E for Buildings and Solar Energy

    NASA Astrophysics Data System (ADS)

    Branz, Howard M.

    2015-04-01

    Key technology challenges in building efficiency and solar energy utilization require transformational optics, plasmonics and photonics technologies. We describe advanced optical technologies funded by the Advanced Research Projects Agency - Energy. Buildings technologies include a passive daytime photonic cooler, infra-red computer vision mapping for energy audit, and dual-band electrochromic windows based on plasmonic absorption. Solar technologies include novel hybrid energy converters that combine high-efficiency photovoltaics with concentrating solar thermal collection and storage. Because the marginal cost of thermal energy storage is low, these systems enable generation of inexpensive and dispatchable solar energy that can be deployed when the sun doesn't shine. The solar technologies under development include nanoparticle plasmonic spectrum splitting, Rugate filter interference structures and photovoltaic cells that can operate efficiently at over 400° C.

  4. Helping Students Reconstruct Conceptions of Thermodynamics: Energy and Heat

    ERIC Educational Resources Information Center

    Krummel, Russell; Sunal, Dennis W.; Sunal, Cynthia Szymanski

    2007-01-01

    Thermodynamics, specifically energy and heat, is a major concept in the foundations of physics and physical science. To determine a strategy to teach thermodynamics meaningfully, the authors conducted classroom action research using interviews to determine secondary physics students' current conceptions of thermodynamics. On the basis of the…

  5. Tunable narrow-photon-energy x-ray source using a silicon single crystal

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Inoue, Takashi; Ogawa, Akira; Izumisawa, Mitsuru; Shozushima, Masanori; Takahashi, Kiyomi; Sato, Shigehiro; Ichimaru, Toshio; Takayama, Kazuyoshi

    2007-09-01

    A preliminary experiment for producing narrow-photon-energy cone-beam x-rays using a silicon single crystal is described. In order to produce low-photon-energy x-rays, a 100-µm-focus x-ray generator in conjunction with a (111) plane silicon crystal is employed. The x-ray beams from the source are confined by an x-y diaphragm, and monochromatic cone beams are formed by the crystal and three lead plates. The x-ray generator consists of a main controller and a unit with a high-voltage circuit and a 100-µm-focus x-ray tube. In this experiment, the maximum tube voltage and current were 35 kV and 0.50 mA, respectively, and the x-ray intensity of the microfocus generator was 343 μGy/s at 1.0 m from the source with a tube voltage of 30 kV and a current of 0.50 mA. The effective photon energy is determined by Bragg's angle, and the photon-energy width is regulated by the angle delta. Using this generator in conjunction with a computed radiography system, quasi-monochromatic radiography was performed using a cone beam with an effective energy of approximately 15.5 keV.

  6. Tunable narrow-photon-energy X-ray generator utilizing a tungsten-target tube

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Sugiyama, Hiroshi; Ando, Masami; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Inoue, Takashi; Ogawa, Akira; Takayama, Kazuyoshi; Onagawa, Jun; Ido, Hideaki

    2006-11-01

    A preliminary experiment for producing narrow-photon-energy cone-beam X-rays using a silicon single crystal is described. In order to produce low-photon-energy X-rays, a 100-μm-focus X-ray generator in conjunction with a (1 1 1) plane silicon crystal is employed. The X-ray generator consists of a main controller and a unit with a high-voltage circuit and a microfocus X-ray tube. The maximum tube voltage and current were 35 kV and 0.50 mA, respectively, and the X-ray intensity of the microfocus generator was 48.3 μGy/s at 1.0 m from the source with a tube voltage of 30 kV and a current of 0.50 mA. The effective photon energy is determined by Bragg's angle, and the photon-energy width is regulated by the angle delta. Using this generator in conjunction with a computed radiography system, quasi-monochromatic radiography was performed using a cone beam with an effective energy of approximately 17 keV.

  7. Low energy photon attenuation measurements of hydrophilic materials for tissue equivalent phantoms.

    PubMed

    Farquharson, M J; Spyrou, N M; al-Bahri, J; Highgate, D J

    1995-08-01

    The object of the study was to measure the linear attenuation coefficients of hydrophilic materials with the aim of investigating their suitability as tissue equivalent materials. Hydrophilic materials are used in the ophthalmic industry for the manufacture of soft contact lenses. Hydrophilic materials have the trade name "Biogel" and are commonly known as hydrogels. Two types of hydrophilic material were tested, ED4C (72% water uptake by weight) and EDIS (60% water uptake by weight). The measurements were obtained using gamma-ray photons of energy 59.5 keV, and x-ray photons of energies 44.23 and 17.44 keV. Measurements were made for material types ED4C and EDIS in both the dry and fully hydrated state. Measurements were also made on powdered samples of ED4C at different hydration levels using a photon energy of 17.44 keV and powdered samples of EDIS at different hydration levels using a photon energy of 59.5 keV. The precision of the measurements was approx. 1%. It was found that material ED4C has linear attenuation coefficients that closely match those of the calculated values for soft tissue across the range of energies used. PMID:7633393

  8. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    NASA Astrophysics Data System (ADS)

    Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.

    2016-02-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.

  9. Recent emergence of photon upconversion based on triplet energy migration in molecular assemblies.

    PubMed

    Yanai, Nobuhiro; Kimizuka, Nobuo

    2016-04-01

    An emerging field of triplet energy migration-based photon upconversion (TEM-UC) is reviewed. Highly efficient photon upconversion has been realized in a wide range of chromophore assemblies, such as non-solvent liquids, ionic liquids, amorphous solids, gels, supramolecular assemblies, molecular crystals, and metal-organic frameworks (MOFs). The control over their assembly structures allows for unexpected air-stability and maximum upconversion quantum yield at weak solar irradiance that has never been achieved by the conventional molecular diffusion-based mechanism. The introduction of the "self-assembly" concept offers a new perspective in photon upconversion research and triplet exciton science, which show promise for numerous applications ranging from solar energy conversion to chemical biology. PMID:26947379

  10. Perspetives of study the direct photon production process at FAIR energy

    NASA Astrophysics Data System (ADS)

    Skachkova, A. N.; Skachkov, N. B.

    2015-11-01

    The modeling of high energy photons production in collisions of antiproton beam having E beam = 15 GeV with the proton target pp→ γ + {ptX} is done using the event sample simulated by PYTHIA6 generator. Such energy is high enough to consider this collision as a relativistic one and being caused by parton-parton scattering. The distribution of the set of kinematic variables and cuts which can be useful for getting the information about proton structure in the available kinematic region is obtained. The contributions of fake photons which can appear from the hadron decays as well as of the background caused by the minimum bias events and other QCD processes are estimated. The set of cuts which can be useful for separation of signal events containing the direct photons from background events is proposed.

  11. Energy calibration of energy-resolved photon-counting pixel detectors using laboratory polychromatic x-ray beams

    NASA Astrophysics Data System (ADS)

    Youn, Hanbean; Han, Jong Chul; Kam, Soohwa; Yun, Seungman; Kim, Ho Kyung

    2014-10-01

    Recently, photon-counting detectors capable of resolving incident x-ray photon energies have been considered for use in spectral x-ray imaging applications. For reliable use of energy-resolved photon-counting detectors (ERPCDs), energy calibration is an essential procedure prior to their use because variations in responses from each pixel of the ERPCD for incident photons, even at the same energy, are inevitable. Energy calibration can be performed using a variety of methods. In all of these methods, the photon spectra with well-defined peak energies are recorded. Every pixel should be calibrated on its own. In this study, we suggest the use of a conventional polychromatic x-ray source (that is typically used in laboratories) for energy calibration. The energy calibration procedure mainly includes the determination of the peak energies in the spectra, flood-field irradiation, determination of peak channels, and determination of calibration curves (i.e., the slopes and intercepts of linear polynomials). We applied a calibration algorithm to a CdTe ERPCD comprised of 128×128 pixels with a pitch of 0.35 mm using highly attenuated polychromatic x-ray beams to reduce the pulse pile-up effect, and to obtain a narrow-shaped spectrum due to beam hardening. The averaged relative error in calibration curves obtained from 16,384 pixels was about 0.56% for 59.6 keV photons from an Americium radioisotope. This pixel-by-pixel energy calibration enhanced the signal- and contrast-to-noise ratios in images, respectively, by a factor of ~5 and 3 due to improvement in image homogeneity, compared to those obtained without energy calibration. One secondary finding of this study was that the x-ray photon spectra obtained using a common algorithm for computing x-ray spectra reasonably described the peaks in the measured spectra, which implies easier peak detection without the direct measurement of spectra using a separate spectrometer. The proposed method will be a useful alternative to

  12. Electron, photons, and molecules: Storing energy from light

    SciTech Connect

    Miller, J.R.

    1996-09-01

    Molecular charge separation has important potential for photochemical energy storage. Its efficiency can be enhanced by principals which maximize the rates of the electron transfer steps which separate charge and minimize those which recombine high-energy charge pairs to lose stored energy. Dramatic scientific progress in understanding these principals has occurred since the founding of DOE and its predecessor agency ERDA. While additional knowledge in needed in broad areas of molecular electron transfer, some key areas of knowledge hold particular promise for the possibility of moving this area from science toward technology capable of contributing to the nation`s energy economy.

  13. Reconstruction of the interaction term between dark matter and dark energy using SNe Ia

    SciTech Connect

    Solano, Freddy Cueva; Nucamendi, Ulises E-mail: ulises@ifm.umich.mx

    2012-04-01

    We apply a parametric reconstruction method to a homogeneous, isotropic and spatially flat Friedmann-Robertson-Walker (FRW) cosmological model filled of a fluid of dark energy (DE) with constant equation of state (EOS) parameter interacting with dark matter (DM)\\@. The reconstruction method is based on expansions of the general interaction term and the relevant cosmological variables in terms of Chebyshev polynomials which form a complete set orthonormal functions. This interaction term describes an exchange of energy flow between the DE and DM within dark sector. To show how the method works we do the reconstruction of the interaction function expanding it in terms of only the first six Chebyshev polynomials and obtain the best estimation for the coefficients of the expansion assuming three models: (a) a DE equation of the state parameter w = −1 (an interacting cosmological Λ), (b) a DE equation of the state parameter w = constant with a dark matter density parameter fixed, (c) a DE equation of the state parameter w = constant with a free constant dark matter density parameter to be estimated, and using the Union2 SNe Ia data set from ''The Supernova Cosmology Project'' (SCP) composed by 557 type Ia supernovae. In both cases, the preliminary reconstruction shows that in the best scenario there exist the possibility of a crossing of the noninteracting line Q = 0 in the recent past within the 1σ and 2σ errors from positive values at early times to negative values at late times. This means that, in this reconstruction, there is an energy transfer from DE to DM at early times and an energy transfer from DM to DE at late times. We conclude that this fact is an indication of the possible existence of a crossing behavior in a general interaction coupling between dark components.

  14. Characterization of a hybrid energy-resolving photon-counting detector

    NASA Astrophysics Data System (ADS)

    Zang, A.; Pelzer, G.; Anton, G.; Ballabriga Sune, R.; Bisello, F.; Campbell, M.; Fauler, A.; Fiederle, M.; Llopart Cudie, X.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W. S.; Michel, T.

    2014-03-01

    Photon-counting detectors in medical x-ray imaging provide a higher dose efficiency than integrating detectors. Even further possibilities for imaging applications arise, if the energy of each photon counted is measured, as for example K-edge-imaging or optimizing image quality by applying energy weighting factors. In this contribution, we show results of the characterization of the Dosepix detector. This hybrid photon- counting pixel detector allows energy resolved measurements with a novel concept of energy binning included in the pixel electronics. Based on ideas of the Medipix detector family, it provides three different modes of operation: An integration mode, a photon-counting mode, and an energy-binning mode. In energy-binning mode, it is possible to set 16 energy thresholds in each pixel individually to derive a binned energy spectrum in every pixel in one acquisition. The hybrid setup allows using different sensor materials. For the measurements 300 μm Si and 1 mm CdTe were used. The detector matrix consists of 16 x 16 square pixels for CdTe (16 x 12 for Si) with a pixel pitch of 220 μm. The Dosepix was originally intended for applications in the field of radiation measurement. Therefore it is not optimized towards medical imaging. The detector concept itself still promises potential as an imaging detector. We present spectra measured in one single pixel as well as in the whole pixel matrix in energy-binning mode with a conventional x-ray tube. In addition, results concerning the count rate linearity for the different sensor materials are shown as well as measurements regarding energy resolution.

  15. Photon emission from translational energy in atomic collisions: A dynamic Casimir-Polder effect

    SciTech Connect

    Westlund, Per-Olof; Wennerstroem, H.

    2005-06-15

    It is demonstrated, using a Liouville formalism, that the relative motion of two atoms can result in the emission of photons and conversely that photons can be absorbed to excite the relative translational motion. The mechanism responsible for the energy transfer between the radiation field and the translational motion of the atoms is a dynamic version of the long-range Casimir-Polder interaction between two fixed atoms. The phenomenon is analogous to the dynamic Casimir effect discussed for moving macro- (or meso)scopic objects and we term it the dynamic Casimir-Polder effect. The absorption or emission is a two-photon process and we find that the transition probability is proportional to the spectral density of a correlation function involving the relative translational motion of two atoms. An energy transfer only occurs for photons with energies smaller than or of the same magnitude as the thermal energy. The effect provides a microscopic mechanism for establishing thermal equilibrium between the radiation field and a gas. A sufficiently large volume of gas would be perceived as a black-body radiator. Applications of the dynamic Casimir-Polder effect might be found in the microscopic description of the cosmic low-temperature black-body radiation.

  16. Historical review of lung counting efficiencies for low energy photon emitters

    DOE PAGESBeta

    Jeffers, Karen L.; Hickman, David P.

    2014-03-01

    This publication reviews the measured efficiency and variability over time of a high purity planar germanium in vivo lung count system for multiple photon energies using increasingly thick overlays with the Lawrence Livermore Torso Phantom. Furthermore, the measured variations in efficiency are compared with the current requirement for in vivo bioassay performance as defined by the American National Standards Institute Standard.

  17. Reconstructing Folding Energy Landscape Profiles from Nonequilibrium Pulling Curves with an Inverse Weierstrass Integral Transform

    NASA Astrophysics Data System (ADS)

    Engel, Megan C.; Ritchie, Dustin B.; Foster, Daniel A. N.; Beach, Kevin S. D.; Woodside, Michael T.

    2014-12-01

    The energy landscapes that drive structure formation in biopolymers are difficult to measure. Here we validate experimentally a novel method to reconstruct landscape profiles from single-molecule pulling curves using an inverse Weierstrass transform (IWT) of the Jarzysnki free-energy integral. The method was applied to unfolding measurements of a DNA hairpin, replicating the results found by the more-established weighted histogram (WHAM) and inverse Boltzmann methods. Applying both WHAM and IWT methods to reconstruct the folding landscape for a RNA pseudoknot having a stiff energy barrier, we found that landscape features with sharper curvature than the force probe stiffness could not be recovered with the IWT method. The IWT method is thus best for analyzing data from stiff force probes such as atomic force microscopes.

  18. Reconstructing folding energy landscapes from splitting probability analysis of single-molecule trajectories

    PubMed Central

    Manuel, Ajay P.; Lambert, John; Woodside, Michael T.

    2015-01-01

    Structural self-assembly in biopolymers, such as proteins and nucleic acids, involves a diffusive search for the minimum-energy state in a conformational free-energy landscape. The likelihood of folding proceeding to completion, as a function of the reaction coordinate used to monitor the transition, can be described by the splitting probability, pfold(x). Pfold encodes information about the underlying energy landscape, and it is often used to judge the quality of the reaction coordinate. Here, we show how pfold can be used to reconstruct energy landscapes from single-molecule folding trajectories, using force spectroscopy measurements of single DNA hairpins. Calculating pfold(x) directly from trajectories of the molecular extension measured for hairpins fluctuating in equilibrium between folded and unfolded states, we inverted the result expected from diffusion over a 1D energy landscape to obtain the implied landscape profile. The results agreed well with the landscapes reconstructed by established methods, but, remarkably, without the need to deconvolve instrumental effects on the landscape, such as tether compliance. The same approach was also applied to hairpins with multistate folding pathways. The relative insensitivity of the method to the instrumental compliance was confirmed by simulations of folding measured with different tether stiffnesses. This work confirms that the molecular extension is a good reaction coordinate for these measurements, and validates a powerful yet simple method for reconstructing landscapes from single-molecule trajectories. PMID:26039984

  19. Response of lithium formate EPR dosimeters at photon energies relevant to the dosimetry of brachytherapy

    SciTech Connect

    Adolfsson, Emelie; Alm Carlsson, Gudrun; Grindborg, Jan-Erik; Gustafsson, Haakan; Lund, Eva; Carlsson Tedgren, Aasa

    2010-09-15

    Purpose: To investigate experimentally the energy dependence of the detector response of lithium formate EPR dosimeters for photon energies below 1 MeV relative to that at {sup 60}Co energies. High energy photon beams are used in calibrating dosimeters for use in brachytherapy since the absorbed dose to water can be determined with high accuracy in such beams using calibrated ion chambers and standard dosimetry protocols. In addition to any differences in mass-energy absorption properties between water and detector, variations in radiation yield (detector response) with radiation quality, caused by differences in the density of ionization in the energy imparted (LET), may exist. Knowledge of an eventual deviation in detector response with photon energy is important for attaining high accuracy in measured brachytherapy dose distributions. Methods: Lithium formate EPR dosimeters were irradiated to known levels of air kerma in 25-250 kV x-ray beams and in {sup 137}Cs and {sup 60}Co beams at the Swedish Secondary Standards Dosimetry Laboratory. Conversions from air kerma free in air into values of mean absorbed dose to the detectors were made using EGSnrc MC simulations and x-ray energy spectra measured or calculated for the actual beams. The signals from the detectors were measured using EPR spectrometry. Detector response (the EPR signal per mean absorbed dose to the detector) relative to that for {sup 60}Co was determined for each beam quality. Results: Significant decreases in the relative response ranging from 5% to 6% were seen for x-ray beams at tube voltages {<=}180 kV. No significant reduction in the relative response was seen for {sup 137}Cs and 250 kV x rays. Conclusions: When calibrated in {sup 60}Co or MV photon beams, corrections for the photon energy dependence of detector response are needed to achieve the highest accuracy when using lithium formate EPR dosimeters for measuring absorbed doses around brachytherapy sources emitting photons in the energy

  20. Development of a Source of Quasi-Monochromatic MeV Energy Photons

    SciTech Connect

    Umstadter, Donald; Banerjee, Sudeep; Ramanathan, Vidya; Powers, Nathan; Cunningham, Nathaniel; Chandler-Smith, Nate

    2009-03-10

    We report current progress on a project to develop an all-optically-driven x-ray photon source. A laser pulse with 40-50 TW of peak power is focused on a supersonic helium nozzle to drive a relativistic plasma wave. Electron beams with energies of 320 MeV (+/-28 MeV) are accelerated by means of laser wakefield acceleration. Remarkably, the acceleration region is only 3 mm in length. This accelerator is currently being employed to demonstrate the generation of MeV-energy x-ray by means of all-optical Thomson scattering. By this mechanism, a lower power, laser pulse (from the same laser system) is focused onto the above laser-driven electron beam, 1-eV energy photons are Doppler-shifted in energy to >1 MeV.

  1. Variation of photon interaction parameters with energy for some Cu-Pb alloys

    SciTech Connect

    Singh, Tejbir Kaur, Sarpreet; Kaur, Parminder; Kaur, Harvinder; Singh, Parjit S.

    2015-08-28

    Various photon interaction parameters (mass attenuation coefficients, effective atomic numbers and effective electron numbers) have been computed for different compositions of Cu-Pb alloys in the wide energy regime of 1 keV to 100 GeV. The mass attenuation coefficients have been computed using mixture rule with the help of WinXCom (mass attenuation coefficient database for elements). The variation of mass attenuation coefficients, effective atomic numbers and electron density has been analysed and discussed in terms of dominance of different photon interaction processes viz. Compton scattering, photoelectric effect and pair production.

  2. Variation of photon interaction parameters with energy for some Cu-Pb alloys

    NASA Astrophysics Data System (ADS)

    Singh, Tejbir; Kaur, Sarpreet; Kaur, Parminder; Kaur, Harvinder; Singh, Parjit S.

    2015-08-01

    Various photon interaction parameters (mass attenuation coefficients, effective atomic numbers and effective electron numbers) have been computed for different compositions of Cu-Pb alloys in the wide energy regime of 1 keV to 100 GeV. The mass attenuation coefficients have been computed using mixture rule with the help of WinXCom (mass attenuation coefficient database for elements). The variation of mass attenuation coefficients, effective atomic numbers and electron density has been analysed and discussed in terms of dominance of different photon interaction processes viz. Compton scattering, photoelectric effect and pair production.

  3. Bio-Inspired Photon Absorption and Energy Transfer for Next Generation Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Magsi, Komal

    Nature's solar energy harvesting system, photosynthesis, serves as a model for photon absorption, spectra broadening, and energy transfer. Photosynthesis harvests light far differently than photovoltaic cells. These differences offer both engineering opportunity and scientific challenges since not all of the natural photon absorption mechanisms have been understood. In return, solar cells can be a very sensitive probe for the absorption characteristics of molecules capable of transferring charge to a conductive interface. The objective of this scientific work is the advancement of next generation photovoltaics through the development and application of natural photo-energy transfer processes. Two scientific methods were used in the development and application of enhancing photon absorption and transfer. First, a detailed analysis of photovoltaic front surface fluorescent spectral modification and light scattering by hetero-structure was conducted. Phosphor based spectral down-conversion is a well-known laser technology. The theoretical calculations presented here indicate that parasitic losses and light scattering within the spectral range are large enough to offset any expected gains. The second approach for enhancing photon absorption is based on bio-inspired mechanisms. Key to the utilization of these natural processes is the development of a detailed scientific understanding and the application of these processes to cost effective systems and devices. In this work both aspects are investigated. Dye type solar cells were prepared and tested as a function of Chlorophyll (or Sodium-Copper Chlorophyllin) and accessory dyes. Forster has shown that the fluorescence ratio of Chlorophyll is modified and broadened by separate photon absorption (sensitized absorption) through interaction with nearby accessory pigments. This work used the dye type solar cell as a diagnostic tool by which to investigate photon absorption and photon energy transfer. These experiments shed

  4. SU-E-T-221: Investigation of Lower Energy (< 6 MV) Photon Beams for Cancer Radiotherapy

    SciTech Connect

    Zhang, Y; Ming, X; Feng, Y; Zhou, L; Ahmad, M; Deng, J; Nguyen, K; Griffin, M

    2014-06-01

    Purpose: To study the potential applications of the lower energy (< 6MV) photon beams in the radiotherapeutic management of pediatric cancer and lung cancer patients. Methods: Photon beams of 2, 3, 4, 5 and 6MV were first simulated with EGS4/BEAM and then used for Monte-Carlo dose calculations. For four pediatric patients with abdominal and brain lesions, six 3D-conformal radiotherapy (3DCRT) plans were generated using single photon energy (2 to 6MV) or mixed energies (3 and 6MV). Furthermore, a virtual machine of 3 and 6MV was commissioned in a treatment planning system (TPS) based on Monte-Carlo simulated data. Three IMRT plans of a lung cancer patient were generated on this virtual machine. All plans were normalized to D95% of target dose for 6MV plan and then compared in terms of integral dose and OAR sparing. Results: For the four pediatric patients, the integral dose for the 2, 3, 4 and 5MV plans increased by 9%, 5%, 3.5%, 1.7%, respectively as compared to 6MV. Almost all OARs in the 2MV plan received more than 10% more doses than 6MV. Mixed energy 3DCRT plans were of the same quality as 6MV plans. For the lung IMRT plans, both the 3MV plan and the mixed beam plan showed better OAR sparing in comparison to 6MV plan. Specifically, the maximum and mean doses to the spinal cord in the mixed energy plan were lower by 21% and 16%, respectively. Conclusion: Single lower energy photon beam was found to be inferior to 6MV in the radiotherapy of pediatric patients and lung cancer patients when the integral doses and the doses to the OARs were considered. However, mixed energy plans combining low with high energy beams showed significant OAR sparing while maintaining the same PTV coverage. Investigation with more patient data is ongoing for further confirmation.

  5. Anisotropy of low energy direct photons in relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Koide, T.; Kodama, T.

    2016-09-01

    Using the Wigner function approach for electromagnetic radiation fields, we investigate the behavior of low energy photons radiated by the deceleration processes of two colliding nuclei in relativistic heavy ion collisions. The angular distribution reveals information of the initial geometric configurations, which is reflected in the anisotropic parameter v 2, with an increasing v 2 as energy decreases. This behavior is qualitatively different to the v 2 from the hadrons produced in the collisions.

  6. Characterizing invisible electroweak particles through single-photon processes at high energy e+e- colliders

    NASA Astrophysics Data System (ADS)

    Choi, Seong Youl; Han, Tao; Kalinowski, Jan; Rolbiecki, Krzysztof; Wang, Xing

    2015-11-01

    We explore the scenarios where the only accessible new states at the electroweak scale consist of a pair of color-singlet electroweak particles, the masses of which are degenerate at the tree level and split only by electroweak symmetry breaking at the loop level. For the sake of illustration, we consider a supersymmetric model and study the following three representative cases with the lower-lying states as (a) two spin-1 /2 Higgsino SU(2 ) L doublets, (b) a spin-1 /2 wino SU(2 ) L triplet and (c) a spin-0 left-handed slepton SU(2 ) L doublet. Due to the mass degeneracy, those lower-lying electroweak states are difficult to observe at the LHC and rather challenging to detect at the e+e- collider as well. We exploit the pair production in association with a hard photon radiation in high energy e+e- collisions. If kinematically accessible, such single-photon processes at e+e- colliders with polarized beams enable us to characterize each scenario by measuring the energy of the associated hard photon and to determine the spin of the nearly invisible particles unambiguously through the threshold behavior in the photon energy distribution.

  7. Photon energy upconversion through thermal radiation with the power efficiency reaching 16%.

    PubMed

    Wang, Junxin; Ming, Tian; Jin, Zhao; Wang, Jianfang; Sun, Ling-Dong; Yan, Chun-Hua

    2014-01-01

    The efficiency of many solar energy conversion technologies is limited by their poor response to low-energy solar photons. One way for overcoming this limitation is to develop materials and methods that can efficiently convert low-energy photons into high-energy ones. Here we show that thermal radiation is an attractive route for photon energy upconversion, with efficiencies higher than those of state-of-the-art energy transfer upconversion under continuous wave laser excitation. A maximal power upconversion efficiency of 16% is achieved on Yb(3+)-doped ZrO2. By examining various oxide samples doped with lanthanide or transition metal ions, we draw guidelines that materials with high melting points, low thermal conductivities and strong absorption to infrared light deliver high upconversion efficiencies. The feasibility of our upconversion approach is further demonstrated under concentrated sunlight excitation and continuous wave 976-nm laser excitation, where the upconverted white light is absorbed by Si solar cells to generate electricity and drive optical and electrical devices. PMID:25430519

  8. Physical origin of the high energy optical response of three dimensional photonic crystals.

    PubMed

    Dorado, Luis A; Depine, Ricardo A; Lozano, Gabriel; Míguez, Hernán

    2007-12-24

    The physical origin of the optical response observed in three-dimensional photonic crystals when the photon wavelength is equal or lower than the lattice parameter still remains unsatisfactorily explained and is the subject of an intense and interesting debate. Herein we demonstrate for the first time that all optical spectra features in this high energy region of photonic crystals arise from electromagnetic resonances within the ordered array, modified by the interplay between these resonances with the opening of diffraction channels, the presence of imperfections and finite size effects. All these four phenomena are taken into account in our theoretical approach to the problem, which allows us to provide a full description of the observed optical response based on fundamental phenomena as well as to attain fair fittings of experimental results. PMID:19551072

  9. Can neutrino-induced photon production explain the low energy excess in MiniBooNE?

    NASA Astrophysics Data System (ADS)

    Zhang, Xilin; Serot, Brian D.

    2013-02-01

    This report summarizes our study of Neutral Current (NC)-induced photon production in MiniBooNE, as motivated by the low energy excess in this experiment [A.A. Aquilar-Arevalo et al., MiniBooNE Collaboration, Phys. Rev. Lett. 98 (2007) 231801; A.A. Aquilar-Arevalo et al., MiniBooNE Collaboration, Phys. Rev. Lett. 103 (2009) 111801]. It was proposed that NC photon production with two anomalous photon-Z boson-vector meson couplings might explain the excess. However, our computed event numbers in both neutrino and antineutrino runs are consistent with the previous MiniBooNE estimate that is based on their pion production measurement. Various nuclear effects discussed in our previous works, including nucleon Fermi motion, Pauli blocking, and the Δ resonance broadening in the nucleus, are taken into account. Uncertainty due to the two anomalous terms and nuclear effects are studied in a conservative way.

  10. The neutron component of two high-energy photon reference fields.

    PubMed

    Röttger, S; Schäler, K; Behrens, R; Nolte, R; Wissmann, F

    2007-01-01

    The 4.4 MeV photon reference field described in ISO 4037 is produced by the (12)C(p,p')(12)C (E(x) = 4.4389 MeV) reaction using a thick elemental carbon target and a proton beam with an energy of 5.7 MeV. The relative abundance of the isotope (13)C in elemental carbon is 1.10%. Therefore, the 4.4 MeV photon field is contaminated by neutrons produced by the (13)C(p,n) (13)N reaction (Q = -3.003 MeV). The ambient dose equivalent H*(10) produced by these neutrons is of the same order of magnitude as the ambient dose equivalent produced by the 4.4 MeV photons. For the calibration of dosemeters, especially those also sensitive to neutrons, the spectral fluence distribution of these neutrons has to be known in detail. On the other hand, a mixed photon/neutron field is very useful for the calibration of tissue-equivalent proportional counters (TEPC), if this field combines a high-linear energy transfer (LET) component produced by low-energy neutrons and a low-LET component resulting from photons with about the same ambient dose equivalent and energies up to 7 MeV. Such a mixed field was produced at the PTB accelerator facility using a thin CaF(2) + (nat)C target and a 5.7 MeV proton beam. PMID:17675300