Science.gov

Sample records for photon production cross

  1. Production of heralded pure single photons from imperfect sources using cross-phase-modulation

    SciTech Connect

    Konrad, Thomas; Nock, Michael; Scherer, Artur; Audretsch, Juergen

    2006-09-15

    Realistic single-photon sources do not generate single photons with certainty. Instead they produce statistical mixtures of photons in Fock states |1> and vacuum (noise). We describe how to eliminate the noise in the output of the sources by means of another noisy source or a coherent state and cross-phase-modulation (XPM). We present a scheme that announces the production of pure single photons and thus eliminates the vacuum contribution. This is done by verifying a XPM-related phase shift with a Mach-Zehnder interferometer.

  2. XCOM: Photon Cross Sections Database

    National Institute of Standards and Technology Data Gateway

    SRD 8 XCOM: Photon Cross Sections Database (Web, free access)   A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.

  3. Di-photon and photon + b/c production cross sections at Ecm = 1.96- TeV

    SciTech Connect

    Gajjar, Anant; /Liverpool U.

    2005-05-01

    Measurements of the di-photon cross section have been made in the central region and are found to be in good agreement with NLO QCD predictions. The cross section of events containing a photon and additional heavy flavor jet have also been measured, as well as the ratio of photon + b to photon + c. The statistically limited sample shows good agreement with Leading Order predictions.

  4. Measurement of the Differential Cross Section for Isolated Prompt Photon Production in pp Collisions at 7 TeV

    SciTech Connect

    Chatrchyan, S.; et al.,

    2011-09-01

    A measurement of the differential cross section for the inclusive production of isolated prompt photons in proton-proton collisions at a centre-of-mass energy of 7 TeV is presented. The data sample corresponds to an integrated luminosity of 36 inverse picobarns recorded by the CMS detector at the LHC. The measurement covers the pseudorapidity range |eta|<2.5 and the transverse energy range 25 < ET < 400 GeV, corresponding to the kinematic region 0.007 < xT < 0.114. Photon candidates are identified with two complementary methods, one based on photon conversions in the silicon tracker and the other on isolated energy deposits in the electromagnetic calorimeter. The measured cross section is presented as a function of ET in four pseudorapidity regions. The next-to-leading-order perturbative QCD calculations are consistent with the measured cross section.

  5. Measurement of the inclusive isolated prompt photon production cross section at the Tevatron using the CDF detector

    SciTech Connect

    Deluca Silberberg, Carolina

    2009-04-01

    In this thesis we present the measurement of the inclusive isolated prompt photon cross section with a total integrated luminosity of 2.5 fb-1 of data collected with the CDF Run II detector at the Fermilab Tevatron Collider. The prompt photon cross section is a classic measurement to test perturbative QCD (pQCD) with potential to provide information on the parton distribution function (PDF), and sensitive to the presence of new physics at large photon transverse momentum. Prompt photons also constitute an irreducible background for important searches such as H → γγ, or SUSY and extra-dimensions with energetic photons in the final state. The Tevatron at Fermilab (Batavia, U.S.A.) is currently the hadron collider that operates at the highest energies in the world. It collides protons and antiprotons with a center-of-mass energy of 1.96 TeV. The CDF and the D0 experiments are located in two of its four interaction regions. In Run I at the Tevatron, the direct photon production cross section was measured by both CDF and DO, and first results in Run II have been presented by the DO Collaboration based on 380 pb-1. Both Run I and Run II results show agreement with the theoretical predictions except for the low pTγ region, where the observed and predicted shapes are different. Prompt photon production has been also extensively measured at fixed-target experiments in lower pTγ ranges, showing excess of data compared to the theory, particularly at high xT. From an experimental point of view, the study of the direct photon production has several advantages compared to QCD studies using jets. Electromagnetic calorimeters have better energy resolution than hadronic calorimeters, and the systematic uncertainty on the photon absolute energy scale is smaller. Furthermore, the determination of the photon kinematics does not require the use of jet algorithms. However, the measurements using photons

  6. $H \\to \\gamma\\gamma$ search and direct photon pair production differential cross section

    SciTech Connect

    Bu, Xuebing

    2010-06-01

    context of the particular fermiophobic Higgs model. The corresponding results have reached the same sensitivity as a single LEP experiement, setting a lower limit on the fermiophobic Higgs of Mhf > 102.5 GeV (Mhf > 107.5 GeV expected). We are slightly below the combined LEP limit (Mhf > 109.7 GeV). We also provide access to the Mhf > 125 GeV region which was inaccessible at LEP. During the study, we found the major and irreducible background direct γγ (DPP) production is not well modelled by the current theoretical predictions: RESBOS, DIPHOX or PYTHIA. There is ~20% theoretical uncertainty for the predicted values. Thus, for our Higgs search, we use the side-band fitting method to estimate DPP contribution directly from the data events. Furthermore, DPP production is also a significant background in searches for new phenomena, such as new heavy resonances, extra spatial dimensions, or cascade decays of heavy new particles. Thus, precise measurements of the DPP cross sections for various kinematic variables and their theoretical understanding are extremely important for future Higgs and new phenomena searches. In this thesis, we also present a precise measurement of the DPP single differential cross sections as a function of the diphoton mass, the transverse momentum of the diphoton system, the azimuthal angle between the photons, and the polar scattering angle of the photons, as well as the double differential cross sections considering the last three kinematic variables in three diphoton mass bins, using 4.2 fb-1 data. These results are the first of their kind at D0 Run II, and in fact the double differential measurements are the first of their kind at Tevatron. The results are compared with different perturbative QCD predictions and event generators.

  7. Measurement of the Isolated Prompt Photon Production Cross Section in pp Collisions at {radical}(s)=7 TeV

    SciTech Connect

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Haensel, S.; Hartl, C.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kasieczka, G.; Kiesenhofer, W.

    2011-02-25

    The differential cross section for the inclusive production of isolated prompt photons has been measured as a function of the photon transverse energy E{sub T}{sup {gamma}} in pp collisions at {radical}(s)=7 TeV using data recorded by the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 2.9 pb{sup -1}. Photons are required to have a pseudorapidity |{eta}{sup {gamma}}|<1.45 and E{sub T}{sup {gamma}}>21 GeV, covering the kinematic region 0.006cross section is found to be in agreement with next-to-leading-order perturbative QCD calculations.

  8. Measurement of the Isolated Prompt Photon Production Cross Section in pp Collisions at sqrt(s) = 7 TeV

    SciTech Connect

    Khachatryan, Vardan; et al.

    2011-02-01

    The differential cross section for the inclusive production of isolated prompt photons has been measured as a function of the photon transverse energy E_T-gamma in pp collisions at sqrt(s)=7 TeV using data recorded by the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 2.9 inverse picobarns. Photons are required to have a pseudorapidity |eta_gamma|<1.45 and E_T-gamma > 21 GeV, covering the kinematic region 0.006 < x_T < 0.086. The measured cross section is found to be in agreement with next-to-leading-order perturbative QCD calculations.

  9. Measurements of the Differential Cross Sections for the Inclusive Production of a Photon and Heavy Flavor Jet

    SciTech Connect

    Duggan, Daniel; /Florida State U.

    2009-04-01

    This thesis presents the first measurement of the differential production cross section of a heavy flavor (bottom or charm) jet and direct photon at the Fermilab Tevatron. These measurements were performed using data recorded with the D0 detector from proton-antiproton collisions at a center of mass energy of {radical}s = 1.96 TeV. These results probe a kinematic range for the photon transverse momentum of 30 < p{sub T}{sup {gamma}} < 150 GeV and rapidity of |y{sup {gamma}}| < 1.0 and for jet transverse momentum p{sub T}{sup jet} > 15 GeV and rapidity of |y{sup jet}| < 0.8. These results are compared to next-to-leading-order theoretical calculations.

  10. Electron Photon Interaction Cross Sections

    SciTech Connect

    Cullen, D. E.

    2014-11-01

    Version 00 The Electron Photon Interaction Cross Sections, EPICS, provides the atomic data needed to perform coupled Electron-Photon transport calculations, to produce accurate macroscopic results, such as energy deposit and dose. Atomic data is provided for elements, Z = 1 to 100, over the energy range 10 eV to 100 GeV; note that nuclear data, such as photo-nuclear, and data for compounds, are not included. All data is in a simple computer independent text format that is standard and presented to a high precision that can be easily read by computer codes written in any computer language, e.g., C, C++, and FORTRAN. EPICS includes four separate data bases that are designed to be used in combination, these include, • The Evaluated Electron Data Library (EEDL), to describe the interaction of electrons with matter. • The Evaluated Photon Data Library (EPDL), to describe the interaction of photons with matter. • The Evaluated Atomic Data Library (EADL), to describe the emission of electrons and photons back to neutrality following an ionizing event, caused by either electron or photon interactions. • The Evaluated Excitation Data Library (EXDL), to describe the excitation of atoms due to photon interaction. All of these are available in the Extended ENDL format (ENDLX) in which the evaluations were originally performed. The first three are also available in the ENDF format; as yet ENDF does not include formats to handle excitation data (EXDL).

  11. Electron Photon Interaction Cross Sections

    Energy Science and Technology Software Center (ESTSC)

    2014-11-01

    Version 00 The Electron Photon Interaction Cross Sections, EPICS, provides the atomic data needed to perform coupled Electron-Photon transport calculations, to produce accurate macroscopic results, such as energy deposit and dose. Atomic data is provided for elements, Z = 1 to 100, over the energy range 10 eV to 100 GeV; note that nuclear data, such as photo-nuclear, and data for compounds, are not included. All data is in a simple computer independent text formatmore » that is standard and presented to a high precision that can be easily read by computer codes written in any computer language, e.g., C, C++, and FORTRAN. EPICS includes four separate data bases that are designed to be used in combination, these include, • The Evaluated Electron Data Library (EEDL), to describe the interaction of electrons with matter. • The Evaluated Photon Data Library (EPDL), to describe the interaction of photons with matter. • The Evaluated Atomic Data Library (EADL), to describe the emission of electrons and photons back to neutrality following an ionizing event, caused by either electron or photon interactions. • The Evaluated Excitation Data Library (EXDL), to describe the excitation of atoms due to photon interaction. All of these are available in the Extended ENDL format (ENDLX) in which the evaluations were originally performed. The first three are also available in the ENDF format; as yet ENDF does not include formats to handle excitation data (EXDL).« less

  12. Measurement of the isolated prompt photon production cross section in pp collisions at √s=7  TeV.

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hartl, C; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kiesenhofer, W; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Teischinger, F; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Benucci, L; Ceard, L; Cerny, K; De Wolf, E A; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blekman, F; Blyweert, S; D'Hondt, J; Devroede, O; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, J; Maes, M; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Hreus, T; Marage, P E; Thomas, L; Vander Velde, C; Vanlaer, P; Wickens, J; Costantini, S; Grunewald, M; Klein, B; Marinov, A; McCartin, J; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; De Favereau De Jeneret, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Ovyn, S; Pagano, D; Pin, A; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; De Jesus Damiao, D; Pol, M E; Souza, M H G; Carvalho, W; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Torres Da Silva De Araujo, F; Dias, F A; Dias, M A F; Fernandez Perez Tomei, T R; Gregores, E M; Marinho, F; Novaes, S F; Padula, Sandra S; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vankov, I; Dyulendarova, M; Hadjiiska, R; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Wang, J; Wang, J; Wang, X; Wang, Z; Xu, M; Yang, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Li, W; Mao, Y; Qian, S J; Teng, H; Zhu, B; Cabrera, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Attikis, A; Galanti, M; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Assran, Y; Mahmoud, M A; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Azzolini, V; Eerola, P; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Verrecchia, P; Baffioni, S; Beaudette, F; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Dahms, T; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Thiebaux, C; Wyslouch, B; Zabi, A; Agram, J-L; Andrea, J; Besson, A; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Mikami, Y; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Falkiewicz, A; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Xiao, H; Roinishvili, V; Anagnostou, G; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Mohr, N; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Weber, M; Wittmer, B; Ata, M; Bender, W; Erdmann, M; Frangenheim, J; Hebbeker, T; Hinzmann, A; Hoepfner, K; Hof, C; Klimkovich, T; Klingebiel, D; Kreuzer, P; Lanske, D; Magass, C; Masetti, G; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Heydhausen, D; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Rennefeld, J; Sauerland, P; Stahl, A; Thomas, M; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrenhoff, W; Behrens, U; Bergholz, M

    2011-02-25

    The differential cross section for the inclusive production of isolated prompt photons has been measured as a function of the photon transverse energy E(T)(γ) in pp collisions at √s=7  TeV using data recorded by the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 2.9  pb(-1). Photons are required to have a pseudorapidity |η(γ)|<1.45 and E(T)(γ)>21  GeV, covering the kinematic region 0.006cross section is found to be in agreement with next-to-leading-order perturbative QCD calculations. PMID:21405566

  13. Photon gluon fusion cross sections at HERA energy

    NASA Astrophysics Data System (ADS)

    Engelen, J. J.; Dejong, S. J.; Poletiek, M.; Vermaseren, J. A. M.

    1988-01-01

    Cross sections for heavy flavor production through photon gluon fusion in electron proton collisions are presented. The electron photon vertex is taken into account explicitly, and the Q sq of the exchanged photon ranges from nearly zero (almost real photon) to the kinematically allowed maximum. The QCD scale is set by the mass of the produced quarks. The formalism is also applicable to the production of light quarks as long as the invariant mass of the pair is sufficiently high, so cross sections for u anti-u, d anti-d, and s anti-s production are also given.

  14. Measurement of the production cross section for pairs of isolated photons in pp collisions at sqrt {s} = 7TeV

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hoch, M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knapitsch, A.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Trauner, C.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez; Bansal, S.; Benucci, L.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Léonard, A.; Marage, P. E.; Thomas, L.; Velde, C. Vander; Vanlaer, P.; Wickens, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Caudron, J.; Ceard, L.; De Favereau De Jeneret, J.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Grégoire, G.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Beliy, N.; Caebergs, T.; Daubie, E.; Alves, G. A.; De Jesus Damiao, D.; Pol, M. E.; Souza, M. H. G.; Júnior, W. L. Aldá; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; De Souza, S. Fonseca; Figueiredo, D. Matos; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Darmenov, N.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Karadzhinova, A.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, S.; Zhu, B.; Zou, W.; Cabrera, A.; Moreno, B. Gomez; Oliveros, A. F. Osorio; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Dzelalija, M.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Kamel, A. Ellithi; Khalil, S.; Mahmoud, M. A.; Radi, A.; Hektor, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Azzolini, V.; Eerola, P.; Fedi, G.; Voutilainen, M.; Czellar, S.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Korpela, A.; Tuuva, T.; Sillou, D.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Elgammal, S.; de Cassagnac, R. Granier; Haguenauer, M.; Miné, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Baty, C.; Beauceron, S.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Falkiewicz, A.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Viret, S.; Lomidze, D.; Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Dietz-Laursonn, E.; Erdmann, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klimkovich, T.; Klingebiel, D.; Kreuzer, P.; Lanske, D.; Lingemann, J.; Magass, C.; Merschmeyer, M.; Meyer, A.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Weber, M.; Bontenackels, M.; Cherepanov, V.; Davids, M.; Flügge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Rennefeld, J.; Sauerland, P.; Stahl, A.; Tornier, D.; Zoeller, M. H.; Martin, M. Aldaya; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Cakir, A.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Eckstein, D.; Flossdorf, A.; Flucke, G.; Geiser, A.; Hauk, J.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Olzem, J.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Cipriano, P. M. Ribeiro; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Tomaszewska, J.; Walsh, R.; Wissing, C.; Autermann, C.; Blobel, V.; Bobrovskyi, S.; Draeger, J.; Enderle, H.; Gebbert, U.; Görner, M.; Hermanns, T.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Nowak, F.; Pietsch, N.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schröder, M.; Schum, T.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Barth, C.; Berger, J.; Chwalek, T.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Katkov, I.; Komaragiri, J. R.; Kuhr, T.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Renz, M.; Röcker, S.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F.-P.; Schmanau, M.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Weiler, T.; Zeise, M.; Ziebarth, E. B.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Petrakou, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.; Aranyi, A.; Bencze, G.; Boldizsar, L.; Hajdu, C.; Hidas, P.; Horvath, D.; Kapusi, A.; Krajczar, K.; Sikler, F.; Vesztergombi, G.; Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, A. P.; Singh, J.; Singh, S. P.; Ahuja, S.; Choudhary, B. C.; Kumar, A.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, S.; Jain, S.; Khurana, R.; Sarkar, S.; Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Saha, A.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Mondal, N. K.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi, A.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Romano, F.; Selvaggi, G.; Silvestris, L.; Tupputi, S.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli; Buontempo, S.; Montoya, C. A. Carrillo; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Mazzucato, M.; Meneguzzo, A. T.; Nespolo, M.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.; Baesso, P.; Berzano, U.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.; Biasini, M.; Bilei, G. M.; Caponeri, B.; Fanò, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Santocchia, A.; Taroni, S.; Valdata, M.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Palmonari, F.; Rizzi, A.; Segneri, G.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Franci, D.; Grassi, M.; Longo, E.; Meridiani, P.; Nourbakhsh, S.; Organtini, G.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Pereira, A. Vilela; Belforte, S.; Cossutti, F.; Ricca, G. Della; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Heo, S. G.; Nam, S. K.; Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.; Kim, J. Y.; Kim, Zero J.; Song, S.; Jo, H. Y.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Seo, E.; Sim, K. S.; Choi, M.; Kang, S.; Kim, H.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Cho, Y.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Martisiute, D.; Petrov, P.; Polujanskas, M.; Sabonis, T.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; La Cruz, I. Heredia-de; Lopez-Fernandez, R.; Villalba, R. Magaña; Martínez-Ortega, J.; Sánchez-Hernández, A.; Villasenor-Cendejas, L. M.; Moreno, S. Carrillo; Valencia, F. Vazquez; Ibarguen, H. A. Salazar; Linares, E. Casimiro; Pineda, A. Morelos; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Tambe, N.; Ahmad, M.; Asghar, M. I.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Brona, G.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gokieli, R.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Musella, P.; Nayak, A.; Pela, J.; Ribeiro, P. Q.; Seixas, J.; Varela, J.; Afanasiev, S.; Belotelov, I.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Krokhotin, A.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Maestre, J. Alcaraz; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Llatas, M. Chamizo; Colino, N.; De La Cruz, B.; Peris, A. Delgado; Pardos, C. Diez; Vázquez, D. Domínguez; Bedoya, C. Fernandez; Ramos, J. P. Fernández; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Lopez, O. Gonzalez; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; Merino, G.; Pelayo, J. Puerta; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Cuevas, J.; Menendez, J. Fernandez; Folgueras, S.; Caballero, I. Gonzalez; Iglesias, L. Lloret; Garcia, J. M. Vizan; Cifuentes, J. A. Brochero; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Campderros, J. Duarte; Felcini, M.; Fernandez, M.; Gomez, G.; Sanchez, J. Gonzalez; Jorda, C.; Pardo, P. Lobelle; Virto, A. Lopez; Marco, J.; Marco, R.; Rivero, C. Martinez; Matorras, F.; Sanchez, F. J. Munoz; Gomez, J. Piedra; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sanudo, M. Sobron; Vila, I.; Cortabitarte, R. Vilar; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bernet, C.; Bialas, W.; Bloch, P.; Bocci, A.; Breuker, H.; Bunkowski, K.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Curé, B.; D'Enterria, D.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Gaddi, A.; Georgiou, G.; Gerwig, H.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Govoni, P.; Gowdy, S.; Guida, R.; Guiducci, L.; Gundacker, S.; Hansen, M.; Hartl, C.; Harvey, J.; Hegeman, J.; Hegner, B.; Hinzmann, A.; Hoffmann, H. F.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lenzi, P.; Lourenço, C.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Mavromanolakis, G.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Nguyen, M.; Orimoto, T.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Antunes, J. Rodrigues; Rolandi, G.; Rommerskirchen, T.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Spiropulu, M.; Stoye, M.; Tsirou, A.; Veres, G. I.; Vichoudis, P.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Chen, Z.; Cittolin, S.; Deisher, A.; Dissertori, G.; Dittmar, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Lecomte, P.; Lustermann, W.; del Arbol, P. Martinez Ruiz; Milenovic, P.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Sawley, M.-C.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Weng, J.; Aguilo, E.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Schmidt, A.; Snoek, H.; Verzetti, M.; Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Hos, I.; Kangal, E. E.; Karapinar, G.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.; Deliomeroglu, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Levchuk, L.; Bostock, F.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Negra, M. Della; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Tourneur, S.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Wardrope, D.; Whyntie, T.; Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Hatakeyama, K.; Liu, H.; Scarborough, T.; Henderson, C.; Avetisyan, A.; Bose, T.; Jarrin, E. Carrera; Fantasia, C.; Heister, A.; John, J. St.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Bhattacharya, S.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.; Breedon, R.; Breto, G.; De La Barca Sanchez, M. Calderon; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Pellett, D.; Robles, J.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Andreev, V.; Arisaka, K.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sfiligoi, I.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Mullin, S. D.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.; West, C.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Timciuc, V.; Traczyk, P.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.; Akgun, B.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Jun, S. Y.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.; Agostino, L.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Kaufman, G. Nicolas; Patterson, J. R.; Puigh, D.; Ryd, A.; Salvati, E.; Shi, X.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Biselli, A.; Cirino, G.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cooper, W.; Eartly, D. P.; Elvira, V. D.; Esen, S.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jensen, H.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Pivarski, J.; Pordes, R.; Prokofyev, O.; Schwarz, T.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Goldberg, S.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Mitselmakher, G.; Muniz, L.; Myeonghun, P.; Remington, R.; Rinkevicius, A.; Schmitt, M.; Scurlock, B.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Wang, D.; Yelton, J.; Zakaria, M.; Gaultney, V.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Sekmen, S.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kunde, G. J.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Silvestre, C.; Strom, D.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Lae, C. K.; McCliment, E.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Kenny, R. P., Iii; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Zhukova, V.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Wright, D.; Baden, A.; Boutemeur, M.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Mignerey, A. C.; Peterman, A.; Rossato, K.; Rumerio, P.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.; Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Harris, P.; Kim, Y.; Klute, M.; Lee, Y.-J.; Li, W.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Xie, S.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Cooper, S. I.; Cushman, P.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.; Turkewitz, J.; Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.; Avdeeva, E.; Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Jindal, P.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.; Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.; Wan, Z.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Kubik, A.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Antonelli, L.; Berry, D.; Brinkerhoff, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Ziegler, J.; Bylsma, B.; Durkin, L. S.; Hill, C.; Killewald, P.; Kotov, K.; Ling, T. Y.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hunt, A.; Laird, E.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatserklyaniy, A.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Borrello, L.; Bortoletto, D.; De Mattia, M.; Everett, A.; Gutay, L.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Boulahouache, C.; Cuplov, V.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Garcia-Bellido, A.; Goldenzweig, P.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Sakumoto, W.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Atramentov, O.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Richards, A.; Rose, K.; Salur, S.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Bardak, C.; Damgov, J.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Mane, P.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.; Yazgan, E.; Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Gurrola, A.; Issah, M.; Johns, W.; Johnston, C.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Conetti, S.; Cox, B.; Francis, B.; Goadhouse, S.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Yohay, R.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Mattson, M.; Milstène, C.; Sakharov, A.; Anderson, M.; Bachtis, M.; Belknap, D.; Bellinger, J. N.; Bernardini, J.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Efron, J.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.

    2012-01-01

    The integrated and differential cross sections for the production of pairs of isolated photons is measured in proton-proton collisions at a centre-of-mass energy of 7 TeV with the CMS detector at the LHC. A data sample corresponding to an integrated luminosity of 36 pb-1 is analysed. A next-to-leading-order perturbative QCD calculation is compared to the measurements. A discrepancy is observed for regions of the phase space where the two photons have an azimuthal angle difference Δ \\varphi lesssim 2.8 rad.

  15. Measurement of the Production Cross Section for Pairs of Isolated Photons in pp collisions at sqrt(s) = 7 TeV

    SciTech Connect

    Chatrchyan, S.; et al.,

    2012-01-01

    The integrated and differential cross sections for the production of pairs of isolated photons is measured in proton-proton collisions at a centre-of-mass energy of 7 TeV with the CMS detector at the LHC. A data sample corresponding to an integrated luminosity of 36 inverse picobarns is analysed. A next-to-leading-order perturbative QCD calculation is compared to the measurements. A discrepancy is observed for regions of the phase space where the two photons have an azimuthal angle difference, $\\Delta(\\phi)$, less than approximately 2.8.

  16. X-ray production cross sections at incident photon energies across the M{sub i} (i=1-5) edges of {sub 90}Th

    SciTech Connect

    Kaur, Rajnish; Shehla,; Kumar, Anil; Puri, Sanjiv

    2015-08-28

    The X-ray production cross sections for the M{sub k} (k= ξ, δ, α, β, ζ, γ, m{sub 1}, m{sub 2}) groups of X-rays have been evaluated at incident photon energies across the M{sub i} (i =1-5) edges of {sub 90}Th using the relativistic Hartree-Fock-Slater model based photoionisation cross sections and recently reported values of the M-shell X-ray emission rates, fluorescence and Coster Kronig yields. Further, the energies of the prominent (M{sub i}-S{sub j}) (S{sub j}=N{sub j}, O{sub j} and i =1-3, j =1-7) resonant Raman scattered (RRS) peaks at different incident photon energies have also been evaluated using the neutral-atom electron binding energies (E{sub sj}) based on the relaxed orbital relativistic Hartree-Fock-Slater model.

  17. Measurement of the photon plus b-jet production differential cross section in $p\\bar{p}$ collisions at $\\sqrt{s}$ =1.96 TeV

    SciTech Connect

    Abazov, V. M.; Abbott, B; Acharya, B S; Adams, M; Adams, T; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Aoki, M; Askew, A; Atkins, S; Augsten, K; Avila, C; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bartosik, N; Bassler, U; Bazterra, V; Bean, A; Begalli, M; Bellantoni, L; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besancon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatia, S; Bhatnagar, V; Blazeay, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brandt, O; Brock, R; Brooijmans, G; Bross, A; Brown, D; Brown, J; Bu, X B; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Buszello, C P; Camacho-Perez, E; Casey, B C. K.; Castilla-Valdez, H; Caughron, S; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapon, E; Chen, G; Chevalier-Thery, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M -C; Croc, A; Cutts, D; Das, A; Davies, G; de Jong, S J; De La Cruz-Burelo, E; Deliot, F; Demina, R; Denisov, D; Denisov, S P; Desai, S; Deterre, C; DeVaughan, K; Diehl, H T; Diesburg, M; Ding, P F; Dominguez, A; Dubey, A; Dudko, L V; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Feng, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Garcia-Bellido, A; Garcia-Gonzalez, J A; Garcia-Guerra, G A; Gavrilov, V; Gay, R; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Ginther, G; Golovanov, G; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Gris, Ph; Grivaz, J -F; Grohsjean, A; Gruenendahl, S; Gruenewald, M W; Guillemin, T; Gutierrez, G; Gutierrez, P; Haas, A; Hagopian, S; Haley, J; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Howley, I; Hubacek, Z; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Ito, A S; Jabeen, S; Jaffre, M; Jayasinghe, A; Jesik, R; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jonsson, R; Joshi, J; Jung, A W; Juste, A; Kaadze, K; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kiselevich, I; Kohli, J M; Kozelov, A V; Kraus, J; Kulikov, S; Kumar, A; Kupco, A; Kurca, T; Kuzmin, V A; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lellouch, J; Li, H; Li, L; Li, Q Z; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, H; Liu, Y; Lobodenko, A; Lokajicek, M; de Sa, R Lopes; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K. A.; Madar, R; Magana-Villalba, R; Malik, S; Malyshev, V L; Maravin, Y; Martinez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; et al.

    2012-07-24

    We present measurements of the differential cross section dσ/dργτ for the inclusive production of a photon in association with a b -quark jet for photons with rapidities |yγ| < 1.0 and 30 < ργτ < 300 GeV , as well as for photons with 1.5 <|yγ| < 2.5 and 30 < ργτ < 200 GeV, where ργτ is the photon transverse momentum. The b -quark jets are required to have pT > 15 GeV and rapidity |yjet| < 1.5. The results are based on data corresponding to an integrated luminosity of 8.7 fb-1, recorded with the D0 detector at the Fermilab Tevatron $p\\bar{p}$ Collider at $\\sqrt{s}$ =1.96 TeV. The measured cross sections are compared with next-to-leading order perturbative QCD calculations using different sets of parton distribution functions as well as to predictions based on the kT-factorization QCD approach, and those from the SHERPA and PYTHIA Monte Carlo event generators.

  18. Measurement of the production cross section of an isolated photon associated with jets in proton-proton collisions at s=7TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allbrooke, B. M. M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anisenkov, A.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beale, S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, S.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertella, C.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borri, M.; Borroni, S.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Buat, Q.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Caminada, L. M.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Colas, J.; Colijn, A. P.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cuthbert, C.; Cwetanski, P.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Silva, P. V. M.; Da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P. E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lotto, B.; de Mora, L.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dean, S.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Delemontex, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Friedrich, F.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Golling, T.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenshaw, T.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Hall, D.; Haller, J.; Hamacher, K.; Hamal, P.; Hamer, M.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hawkins, D.; Hayakawa, T.; Hayashi, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huettmann, A.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jansen, H.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Jovicevic, J.; Jovin, T.; Ju, X.; Jung, C. A.; Jungst, R. M.; Juranek, V.; Jussel, P.; Juste Rozas, A.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, L. E.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kraus, J. K.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Leltchouk, M.; Lemmer, B.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manhaes de Andrade Filho, L.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martin-Haugh, S.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; McGlone, H.; Mchedlidze, G.; McLaren, R. A.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morin, J.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Mueller, T.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Nanava, G.; Napier, A.; Narayan, R.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen Thi Hong, V.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakes, L. B.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olcese, M.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Paleari, C. P.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Paredes Hernandez, D.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penning, B.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, A.; Peshekhonov, V. D.; Peters, K.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Plamondon, M.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, J.; Price, L. E.; Price, M. J.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przybycien, M.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Pueschel, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Radloff, P.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rave, T. C.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romano, M.; Romanov, V. M.; Romeo, G.; Romero Adam, E.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, A.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosenthal, O.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultens, M. J.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Scott, W. G.; Searcy, J.; Sedov, G.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Selbach, K. E.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Smakhtin, V.; Smart, B. H.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soni, N.; Sopko, V.; Sopko, B.; Sosebee, M.; Soualah, R.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Styles, N. A.; Soh, D. A.; Su, D.; Subramania, HS.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teinturier, M.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timoshenko, S.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vanadia, M.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendland, D.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wong, W. C.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wraight, K.; Wright, C.; Wright, M.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zeman, M.; Zemla, A.; Zendler, C.; Zenin, O.; Ženiš, T.; Zinonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2012-05-01

    A measurement of the cross section for the production of an isolated photon in association with jets in proton-proton collisions at a center-of-mass energy s=7TeV is presented. Photons are reconstructed in the pseudorapidity range |ηγ|<1.37 and with a transverse energy ETγ>25GeV. Jets are reconstructed in the rapidity range |yjet|<4.4 and with a transverse momentum pTjet>20GeV. The differential cross section dσ/dETγ is measured, as a function of the photon transverse energy, for three different rapidity ranges of the leading-pT jet: |yjet|<1.2, 1.2≤|yjet|<2.8 and 2.8≤|yjet|<4.4. For each rapidity configuration the same-sign (ηγyjet≥0) and opposite-sign (ηγyjet<0) cases are studied separately. The results are based on an integrated luminosity of 37pb-1, collected with the ATLAS detector at the LHC. Next-to-leading order perturbative QCD calculations are found to be in fair agreement with the data, except for ETγ≲45GeV, where the theoretical predictions overestimate the measured cross sections.

  19. Measurement of differential cross sections for the production of a pair of isolated photons in pp collisions at √s=7TeV

    SciTech Connect

    Chatrchyan, Serguei

    2014-11-12

    A measurement of differential cross sections for the production of a pair of isolated photons in proton–proton collisions at √s=7TeV is presented. The data sample corresponds to an integrated luminosity of 5.0fb-1 collected with the CMS detector. A data-driven isolation template method is used to extract the prompt diphoton yield. The measured cross section for two isolated photons, with transverse energy above 40 and 25GeV respectively, in the pseudorapidity range |η|<2.5, |η|ϵ[1.44,1.57] and with an angular separation ΔR>0.45, is 17.2±0.2(stat)±1.9(syst)±0.4(lumi) \\,pb. Differential cross sections are measured as a function of the diphoton invariant mass, the diphoton transverse momentum, the azimuthal angle difference between the two photons, and the cosine of the polar angle in the Collins–Soper reference frame of the diphoton system. The results are compared to theoretical predictions at leading, next-to-leading, and next-to-next-to-leading order in quantum chromodynamics.

  20. Measurement of differential cross sections for the production of a pair of isolated photons in pp collisions at √s=7TeV

    DOE PAGESBeta

    Chatrchyan, Serguei

    2014-11-12

    A measurement of differential cross sections for the production of a pair of isolated photons in proton–proton collisions at √s=7TeV is presented. The data sample corresponds to an integrated luminosity of 5.0fb-1 collected with the CMS detector. A data-driven isolation template method is used to extract the prompt diphoton yield. The measured cross section for two isolated photons, with transverse energy above 40 and 25GeV respectively, in the pseudorapidity range |η|<2.5, |η|ϵ[1.44,1.57] and with an angular separation ΔR>0.45, is 17.2±0.2(stat)±1.9(syst)±0.4(lumi) \\,pb. Differential cross sections are measured as a function of the diphoton invariant mass, the diphoton transverse momentum, the azimuthalmore » angle difference between the two photons, and the cosine of the polar angle in the Collins–Soper reference frame of the diphoton system. The results are compared to theoretical predictions at leading, next-to-leading, and next-to-next-to-leading order in quantum chromodynamics.« less

  1. ATLAS measurements of isolated photon cross-sections

    NASA Astrophysics Data System (ADS)

    Fanti, Marcello; Atlas Collaboration

    2012-09-01

    This document presents measurements of the cross-sections for the inclusive production of isolated prompt photons and di-photon events in proton-proton collisions at a centre-of-mass energy √s = 7 TeV, performed by the ATLAS experiment at the LHC. Photon candidates are identified by combining information from the calorimeters and from the inner tracker. Residual background in the selected sample is estimated from data based on the observed distribution of the transverse isolation energy in a narrow cone around the photon candidate. The results are compared to predictions from next-to-leading order perturbative QCD calculations.

  2. Two-photon production of ω pairs

    NASA Astrophysics Data System (ADS)

    Albrecht, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Mankel, R.; Nau, A.; Nowak, S.; Reßing, D.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Hast, C.; Kapitza, H.; Kolanoski, H.; Kosche, A.; Lange, A.; Lindner, A.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Wegener, D.; Eckstein, P.; Frankl, C.; Graf, J.; Schmidtler, M.; Schramm, M.; Schubert, K. R.; Schwierz, R.; Waldi, R.; Reim, K.; Wegener, H.; Eckmann, R.; Kuipers, H.; Mai, O.; Mundt, R.; Oest, T.; Reiner, R.; Schmidt-Parzefall, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Knöpfle, K. T.; Spengler, J.; Krieger, P.; Macfarlane, D. B.; Prentice, J. D.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Schneider, M.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Živko, T.; Balagura, V.; Barsuk, S.; Belyaev, I.; Chistov, R.; Danilov, M.; Eiges, V.; Gershtein, L.; Gershtein, Yu.; Golutvin, A.; Igonkina, O.; Korolko, I.; Kostina, G.; Litvintsev, D.; Pakhlov, P.; Semenov, S.; Snizhko, A.; Tichomirov, I.; Zaitsev, Yu.; Argus Collaboration

    1996-02-01

    A maximum likelihood analysis of ARGUS data on two-photon production of π+π+π0π0π-π- is presented. A small fraction of events is due to the production of omega pairs. The γγ → ωω cross section has its maximum value close to threshold.

  3. Theoretical X-ray production cross sections at incident photon energies across L{sub i} (i=1-3) absorption edges of Br

    SciTech Connect

    Puri, Sanjiv

    2015-08-28

    The X-ray production (XRP) cross sections, σ{sub Lk} (k = l, η, α, β{sub 6}, β{sub 1}, β{sub 3}, β{sub 4}, β{sub 9,10}, γ{sub 1,5}, γ{sub 2,3}) have been evaluated at incident photon energies across the L{sub i}(i=1-3) absorption edge energies of {sub 35}Br using theoretical data sets of different physical parameters, namely, the L{sub i}(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, in order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies.

  4. Chargino production and decay in photon-photon collisions

    NASA Astrophysics Data System (ADS)

    Mayer, T.; Blöchinger, C.; Franke, F.; Fraas, H.

    2003-03-01

    We discuss the pair production of charginos in collisions of polarized photons, γγ rightarrow tilde{χ}_i^+ tilde{χ}_i^- (i = 1,2), and the subsequent leptonic decay of the lighter chargino tilde{χ}_1^+ rightarrow tilde{χ}_1^0 e^+ ν_e including the complete spin correlations. Analytical formulae are given for the polarization and the spin-spin correlations of the charginos. Since the production is a pure QED process the decay dynamics can be studied separately. For high energy photons from Compton backscattering of polarized laser pulses off polarized electron beams numerical results are presented for the cross section, the angular distribution and the forward-backward asymmetry of the decay positron. Finally we study the dependence on the gaugino mass parameter M1 and on the sneutrino mass for a gaugino-like MSSM scenario.

  5. Inclusive D*-meson production in two-photon collisions at LEP

    NASA Astrophysics Data System (ADS)

    Sokolov, A. A.

    2002-06-01

    The inclusive production of D*+ is measured by DELPHI in photon-photon collisions at LEP-II energies. The measured cross sections are compatible with the QCD calculations having the contributions from the resolved processes sensitive to the gluon density in photon. The total cross section of the charm quark production in two-photon collisions at LEP-II energies is estimated.

  6. rho/sup 0/. omega. production in photon photon interactions

    SciTech Connect

    Derby, K.A.

    1987-08-01

    The subject of this dissertation is the production of the rho/sup 0/..omega.. final state in photon photon interactions. The production of the rho/sup 0/..omega.. final state has been of interest primarily because of its similarity to the related process ..gamma gamma.. ..-->.. rho/sup 0/rho/sup 0/. The cross section for rho/sup 0/rho/sup 0/ production demonstrates a peaking near threshold, the mechanism of which has been the subject of considerable speculation. The data sample used for the analysis was obtained using the TPC detector facility at the PEP e/sup +/e/sup -/ storage ring, and corresponds to an integrated e/sup +/e/sup -/ luminosity of 64 pb/sup -1/ at 29 GeV center of mass energy. Our estimate of the rho/sup 0/..omega.. cross section is compared to the predictions of several models which have been used to account for the observed rho/sup 0/rho/sup 0/ cross section. The experimental results are consistent with the predictions of a threshold enhancement model, as well as those of a four quark (qq anti q anti q) resonance model. However, they disagree with the predictions of a t-channel factorization approach.

  7. Neutral Rho Omega Production in Photon Photon Interactions.

    NASA Astrophysics Data System (ADS)

    Derby, Kevin Arthur

    1987-09-01

    The subject of this dissertation is the production of the rho^0omega final state in photon photon interactions. The production of the rho^0omega final state has been of interest primarily because of its similarity to the related process gammagamma to rho^0rho ^0. The cross section for rho ^0rho^0 production demonstrates a peaking near threshold, the mechanism of which has been the subject of considerable speculation. The data sample used for the analysis was obtained using the TPC detector facility at the PEP e^+e^- storage ring and corresponds to an integrated e ^+e^- luminosity of 64 pb ^{-1} at 29 GeV center of mass energy. Our estimate of the rho^0 omega cross section is compared to the predictions of several models which have been used to account for the observed rho^0rho^0 cross section. The experimental results are consistent with the predictions of a threshold enhancement model as well as those of a four quark (qqqq) resonance model. However, they disagree with the predictions of a t-channel factorization approach.

  8. Charmonium production in photon-photon collisions

    NASA Astrophysics Data System (ADS)

    Aihara, H.; Alston-Garnjost, M.; Avery, R. E.; Barbaro-Galtieri, A.; Barker, A. R.; Barnett, B. A.; Bauer, D. A.; Bay, A.; Bengtsson, H.-U.; Bobbink, G. J.; Buchanan, C. D.; Buijs, A.; Caldwell, D. O.; Chao, H.-Y.; Chun, S.-B.; Clark, A. R.; Cowan, G. D.; Crane, D. A.; Dahl, O. I.; Daoudi, M.; Derby, K. A.; Eastman, J. J.; Eberhard, P. H.; Edberg, T. K.; Eisner, A. M.; Enomoto, R.; Erné, F. C.; Fairfield, K. H.; Hauptman, J. M.; Hofmann, W.; Hylen, J.; Kamae, T.; Kaye, H. S.; Kenney, R. W.; Khacheryan, S.; Kofler, R. R.; Langeveld, W. G.; Layter, J. G.; Lin, W. T.; Linde, F. L.; Loken, S. C.; Lu, A.; Lynch, G. R.; Madaras, R. J.; Magnuson, B. D.; Masek, G. E.; Mathis, L. G.; Matthews, J. A.; Maxfield, S. J.; Miller, E. S.; Moses, W.; Nygren, D. R.; Oddone, P. J.; Paar, H. P.; Park, S. K.; Pellett, D. E.; Pripstein, M.; Ronan, M. T.; Ross, R. R.; Rouse, F. R.; Schwitkis, K. A.; Sens, J. C.; Shapiro, G.; Shen, B. C.; Slater, W. E.; Smith, J. R.; Steinman, J. S.; Stephens, R. W.; Stevenson, M. L.; Stork, D. H.; Strauss, M. G.; Sullivan, M. K.; Takahashi, T.; Toutounchi, S.; van Tyen, R.; Vandalen, G. J.; Vernon, W.; Wagner, W.; Wang, E. M.; Wang, Y.-X.; Wenzel, W. A.; Wolf, Z. R.; Yamamoto, H.; Yellin, S. J.; Zeitlin, C.

    1988-06-01

    We have searched for the two-photon production of the ηc, χ0, and χ2 charmonium states at the SLAC e+e- collider PEP in the channels γγ-->K+/-K0Sπ-/+, γγ-->K+K-π+π-, γγ-->π+π-π+π-, and γγ-->K+K-K+K-. We identify four ηc candidates in the K+K-K+K- channel on a negligible background; the one φφ event among them implies a 95%-confidence-level lower limit for Γγγ(ηc) of 1.7 keV. In the other channels we find no evidence for any of the three states. We establish 95%-C.L. upper limits Γγγ(ηc)<15.5 keV, Γγγ(χ0)<17.0 keV, and Γγγ(χ2)<4.2 keV. From all channels combined, we obtain the value Γγγ(ηc)<6.4+/-5.03.4 keV.

  9. Charmonium production in photon-photon collisions

    SciTech Connect

    Aihara, H.; Alston-Garnjost, M.; Avery, R.E.; Barbaro-Galtieri, A.; Barker, A.R.; Barnett, B.A.; Bauer, D.A.; Bengtsson, H.U.; Bobbink, G.J.; Bolognese, T.S.; Bross, A.D.; Buchanan, C.D.; Buijs, A.; Caldwell, D.O.; Chao, H.Y.; Chun, S.B.; Clark, A.R.; Cowan, G.D.; Crane, D.A.; Dahl, O.I.; Daoudi, M.; Derby, K.A.; Eastman, J.J.; Eberhard, P.H.; Edberg, T.K.; Eisner, A.M.; Enomoto, R.; Erne, F.C.; Fujii, T.; Gary, J.W.; Gorn, W.; Hauptman, J.M.; Hofmann, W.; Hylen, J.; Kamae, T.; Kaye, H.S.; Kees, K.H.; Kenney, R.W.; Winston, K.; Kofler, R.R.; Lander, R.L.; Langeveld, W.G.J.; Layter, J.G.; Lin, W.T.; Linde, F.L.; Loken, S.C.; Lu, A.; Lu, X.Q.; Lynch, G.R.; Madaras, R.J.; Maeshima, K.; Magnuson, B.D.; Masek, G.E.; Mathis, L.G.; Matthews, J.A.J.; Maxfield, S.J.; Miller, E.S.; Moses, W.; McNeil, R.R.; Nygren, D.R.; Oddone, P.R.; Paar, H.P.; Park, S.K.; Pellett, D.E.; Pripstein, M.; Ronan, M.T.; Ross, R.R.; Rouse, F.R.; Schwitkis, K.A.; Sens, J.C.; Shapiro, G.; Shen, B.C.; Slater, W.E.; Smit

    1987-01-01

    We have searched for the two-photon production of the /eta//sub c/, /chi//sub 0/ and /chi//sub 2/ charmonium states at the e/sup +/e/sup -/ collider PEP in the channels /gamma//gamma/ /yields/ K/sup +-/K/sub S//sup 0//pi//sup -+/, /gamma//gamma/ /yields/ K/sup +/K/sup -//pi//sup +//pi//sup -/, /gamma//gamma/ /yields/ /pi//sup +//pi//sup -//pi//sup +//pi//sup -/ and /gamma//gamma/ /yields/ K/sup +/K/sup -/K/sup +/K/sup -/. We identify four /eta//sub c/ candidates in the K/sup +/K/sup -/K/sup +/K/sup -/ channel, on a negligible background; this leads to a preliminary 95% C.L. lower limit for /Gamma//sub /gamma//gamma//(/eta//sup c/) of 1.6 keV. In the other channels we find no evidence for any of the three states and establish preliminary 95% C.L. upper limits /Gamma//sub /gamma//gamma//(/eta//sub c/) < 15 keV, /Gamma//sub /gamma//gamma//(/chi//sub 0/)< 14 keV and /Gamma//sub /gamma//gamma//(/chi//sub 2/) < 4.0 keV. Combining the results on the /eta//sub c/ from all channels we obtain the value /Gamma//sub /gamma//gamma//(/eta//sub c/) = 4.5/sub -3.6///sup -5.5 keV. 18 refs., 3 figs., 1 tab.

  10. Measurement of the triple-differential cross section for photon + jets production in proton-proton collisions at = 7 TeV

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Kalogeropoulos, A.; Keaveney, J.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Favart, L.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Perniè, L.; Reis, T.; Seva, T.; Thomas, L.; Velde, C. Vander; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Dildick, S.; Garcia, G.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Selvaggi, M.; Garcia, J. M. Vizan; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Junior, M. Correa Martins; Martins, T.; Pol, M. E.; Souza, M. H. G.; Júnior, W. L. Aldá; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; De Souza, S. Fonseca; Malbouisson, H.; Malek, M.; Figueiredo, D. Matos; Mundim, L.; Nogima, H.; Da Silva, W. L. Prado; Santoro, A.; Sznajder, A.; Manganote, E. J. Tonelli; Pereira, A. Vilela; Bernardes, C. A.; Dias, F. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Lagana, C.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Montoya, C. A. Carrillo; Sierra, L. F. Chaparro; Gomez, J. P.; Moreno, B. Gomez; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Abdelalim, A. A.; Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; de Cassagnac, R. Granier; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Martin, M. Aldaya; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Grebenyuk, A.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Horton, D.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lipka, K.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Walsh, R.; Wissing, C.; Blobel, V.; Enderle, H.; Erfle, J.; Garutti, E.; Gebbert, U.; Görner, M.; Gosselink, M.; Haller, J.; Heine, K.; Höing, R. S.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Marchesini, I.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Troendle, D.; Usai, E.; Vanelderen, L.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hartmann, F.; Hauth, T.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Kornmayer, A.; Pardo, P. Lobelle; Martschei, D.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Röcker, S.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Ntomari, E.; Topsis-giotis, I.; Gouskos, L.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Saxena, P.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Singh, A. P.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.; Grunewald, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli; Buontempo, S.; Cavallo, N.; De Cosa, A.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Biasotto, M.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Zanetti, A.; Chang, S.; Kim, T. Y.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Son, D. C.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Grigelionis, I.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martínez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.; Moreno, S. Carrillo; Valencia, F. Vazquez; Ibarguen, H. A. Salazar; Linares, E. Casimiro; Pineda, A. Morelos; Reyes-Santos, M. A.; Krofcheck, D.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.; Almeida, N.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Nguyen, F.; Antunes, J. Rodrigues; Seixas, J.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Maestre, J. Alcaraz; Battilana, C.; Calvo, E.; Cerrada, M.; Llatas, M. Chamizo; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Lopez, O. Gonzalez; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; Merino, G.; De Martino, E. Navarro; Pelayo, J. Puerta; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Menendez, J. Fernandez; Folgueras, S.; Caballero, I. Gonzalez; Iglesias, L. Lloret; Gomez, J. Piedra; Cifuentes, J. A. Brochero; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Cortabitarte, R. Vilar; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Colafranceschi, S.; d'Enterria, D.; Dabrowski, A.; David, A.; De Roeck, A.; De Visscher, S.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Hartl, C.; Hinzmann, A.; Innocente, V.; Janot, P.; Karavakis, E.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lee, Y.-J.; Lourenço, C.; Magini, N.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Plagge, M.; Quertenmont, L.; Racz, A.; Reece, W.; Rolandi, G.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Stoye, M.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Meister, D.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Amsler, C.; Chiochia, V.; Favaro, C.; Rikova, M. Ivova; Kilminster, B.; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Snoek, H.; Taroni, S.; Tupputi, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.; Asavapibhop, B.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Bahtiyar, H.; Barlas, E.; Cankocak, K.; Günaydin, Y. O.; Vardarlı, F. I.; Yücel, M.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Meng, Z.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; ShepherdThemistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; John, J. St.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Tripathi, M.; Wilbur, S.; Yohay, R.; Andreev, V.; Cline, D.; Cousins, R.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Takasugi, E.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Shrinivas, A.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Villalba, R. Magaña; Mccoll, N.; Pavlunin, V.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Kcira, D.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gutsche, O.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kunori, S.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Ratnikova, N.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Lacroix, F.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Griffiths, S.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Ogul, H.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Giurgiu, G.; Gritsan, A. V.; Hu, G.; Maksimovic, P.; Martin, C.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wood, J. S.; Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Kim, Y.; Klute, M.; Lai, Y. S.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Velicanu, D.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Cremaldi, L. M.; Kroeger, R.; Oliveros, S.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Suarez, R. Gonzalez; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.; Dolen, J.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Wan, Z.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Winer, B. L.; Wolfe, H.; Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez; Alagoz, E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Jung, K.; Koybasi, O.; Kress, M.; Leonardo, N.; Pegna, D. Lopes; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Cerizza, G.; Hollingsworth, M.; Rose, K.; Spanier, S.; Yang, Z. C.; York, A.; Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sakharov, A.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Loveless, R.; Mohapatra, A.; Mozer, M. U.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.

    2014-06-01

    A measurement of the triple-differential cross section, , in photon + jets final states using a data sample from proton-proton collisions at = 7 TeV is presented. This sample corresponds to an integrated luminosity of 2.14 fb-1 collected by the CMS detector at the LHC. Photons and jets are reconstructed within a pseudorapidity range of | η| < 2.5, and are required to have transverse momenta in the range 40 < < 300 GeV and > 30 GeV, respectively. The measurements are compared to theoretical predictions from the sherpa leading-order QCD Monte Carlo event generator and the next-to-leading-order perturbative QCD calculation from jetphox. The predictions are found to be consistent with the data over most of the examined kinematic region. [Figure not available: see fulltext.

  11. Longitudinal Double Spin Asymmetry and Cross Section for Direct Photon Production Measured at Mid-rapidity in Polarized {radical}(s) = 200 GeV pp Collisions at PHENIX

    SciTech Connect

    Bennett, Robert

    2009-08-04

    Direct photon production in pp collisions at RHIC is one of the important channels PHENIX will employ to determine the polarized gluon distribution {delta}G. The direct photon A{sub LL} is linear in {delta}G, therefore sensitive to its sign and magnitude. To establish the applicability of perturbative Quantum Chromodynamics (pQCD) to this process, we present a comparison of the direct photon unpolarized cross section, with next-to-leading order pQCD calculations. We then evaluate the double helicity spin asymmetries, A{sub LL}, from these data and compare with theoretical models. We present results and the current status the analysis of 2005 and 2006 data sets.

  12. Vector-vector production in photon-photon interactions

    NASA Astrophysics Data System (ADS)

    Ronan, Micheal T.

    1989-04-01

    Measurements of exclusive untagged ρ0ρ0,ρφ,K*K¯*, and ρω production and tagged ρ0ρ0 production in photon-photon interactions by the TPC/Two-Gamma experiment are reviewed. Comparisons to the results of other experiments and to models of vector-vector production are made. Fits to the data following a four quark model prescription for vector meson pair production are also presented.

  13. Comparison of photon-photon and photon-magnetic field pair production rates. [in neutron stars

    NASA Technical Reports Server (NTRS)

    Burns, M. L.; Harding, A. K.

    1983-01-01

    Neutron stars were proposed as the site of gamma-ray burst activity and the copious supply of MeV photons admits the possibility of electron-positron pair production. If the neutron star magnetic field is sufficiently intense (10 to the 12th power G), both photon-photon (2 gamma) and photon-magnetic field (gamma) pair production should be important mechanisms. Rates for the two processes were calculated using a Maxwellian distribution for the photons. The ratio of 1 gamma to 2 gamma pair production rates was obtained as a function of photon temperature and magnetic field strength.

  14. Comparison of Photon-photon and Photon-magnetic Field Pair Production Rates

    NASA Technical Reports Server (NTRS)

    Burns, M. L.; Harding, A. K.

    1983-01-01

    Neutron stars were proposed as the site of gamma-ray burst activity and the copious supply of MeV photons admits the possibility of electron-positron pair production. If the neutron star magnetic field is sufficiently intense ( 10 to the 12th power G), both photon-photon (2 gamma) and photon-magnetic field ( gamma) pair production should be important mechanisms. Rates for the two processes were calculated using a Maxwellian distribution for the photons. The ratio of 1 gamma to 2 gamma pair production rates was obtained as a function of photon temperature and magnetic field strength.

  15. Intelligent optical networking with photonic cross connections

    NASA Astrophysics Data System (ADS)

    Ceuppens, L.; Jerphagnon, Olivier L.; Lang, Jonathan; Banerjee, Ayan; Blumenthal, Daniel J.

    2002-09-01

    Optical amplification and dense wavelength division multiplexing (DWDM) have fundamentally changed optical transport networks. Now that these technologies are widely adopted, the bottleneck has moved from the outside line plant to nodal central offices, where electrical switching equipment has not kept pace. While OEO technology was (and still is) necessary for grooming and traffic aggregation, the transport network has dramatically changed, requiring a dramatic rethinking of how networks need to be designed and operated. While todays transport networks carry remarkable amounts of bandwidth, their optical layer is fundamentally static and provides for only simple point-to-point transport. Efficiently managing the growing number of wavelengths can only be achieved through a new breed of networking element. Photonic switching systems (PSS) can efficiently execute these functions because they are bit rate, wavelength, and protocol transparent. With their all-optical switch cores and interfaces, PSS can switch optical signals at various levels of granularity wavelength, sub band, and composite DWDM fiber levels. Though cross-connect systems with electrical switch cores are available, they perform these functions at very high capital costs and operational inefficiencies. This paper examines enabling technologies for deployment of intelligent optical transport networks (OTN), and takes a practical perspective on survivability architecture migration and implementation issues.

  16. Measurement of the triple-differential cross section for photon+jets production in proton-proton collisions at √s = 7 TeV

    SciTech Connect

    Chatrchyan, Serguei

    2013-06-03

    A measurement of the triple-differential cross section, $ {{{{{\\mathrm{d}}^3}\\sigma }} \\left/ {{\\left( {\\mathrm{d}\\mathrm{p}_T^{\\gamma}\\mathrm{d}{\\eta^{\\gamma }}\\mathrm{d}{\\eta^{\\mathrm{jet}}}} \\right)}} \\right.} $ , in photon + jets final states using a data sample from proton-proton collisions at $ \\sqrt{s} $ = 7 TeV is presented. This sample corresponds to an integrated luminosity of 2.14 fb$^{-1}$ collected by the CMS detector at the LHC. Photons and jets are reconstructed within a pseudorapidity range of |η| < 2.5, and are required to have transverse momenta in the range 40 < $ p_{\\mathrm{T}}^{\\mathrm{jet}} $ < 300 GeV and $ p_{\\mathrm{T}}^{\\mathrm{jet}} $ > 30 GeV, respectively. The measurements are compared to theoretical predictions from the sherpa leading-order QCD Monte Carlo event generator and the next-to-leading-order perturbative QCD calculation from jetphox. Lastly, the predictions are found to be consistent with the data over most of the examined kinematic region.

  17. Measurement of the triple-differential cross section for photon+jets production in proton-proton collisions at √s = 7 TeV

    DOE PAGESBeta

    Chatrchyan, Serguei

    2013-06-03

    A measurement of the triple-differential cross section,more » $$ {{{{{\\mathrm{d}}^3}\\sigma }} \\left/ {{\\left( {\\mathrm{d}\\mathrm{p}_T^{\\gamma}\\mathrm{d}{\\eta^{\\gamma }}\\mathrm{d}{\\eta^{\\mathrm{jet}}}} \\right)}} \\right.} $$ , in photon + jets final states using a data sample from proton-proton collisions at $$ \\sqrt{s} $$ = 7 TeV is presented. This sample corresponds to an integrated luminosity of 2.14 fb$$^{-1}$$ collected by the CMS detector at the LHC. Photons and jets are reconstructed within a pseudorapidity range of |η| < 2.5, and are required to have transverse momenta in the range 40 < $$ p_{\\mathrm{T}}^{\\mathrm{jet}} $$ < 300 GeV and $$ p_{\\mathrm{T}}^{\\mathrm{jet}} $$ > 30 GeV, respectively. The measurements are compared to theoretical predictions from the sherpa leading-order QCD Monte Carlo event generator and the next-to-leading-order perturbative QCD calculation from jetphox. Lastly, the predictions are found to be consistent with the data over most of the examined kinematic region.« less

  18. Jet production and high p/sub T/ phenomena in photon-photon reactions

    SciTech Connect

    Wermes, N.

    1983-05-01

    The status of experimental investigations of high p/sub T/ phenomena and jet production in photon-photon collisions is reviewed. Taking the challenging questions on hard scattering processes in ..gamma gamma.. reactions as a guide, the experimental approach to these questions is summarized. Results from the PETRA experiments CELLO, JADE, PLUTO, and TASSO are presented including preliminary results on the Q/sup 2/-dependence of jet cross sections. Experimental limitations and background problems are discussed. 36 references.

  19. Vector-vector production in photon-photon interactions

    SciTech Connect

    Ronan, M.T.

    1988-12-09

    Measurements of exclusive untagged /rho//sup 0//rho//sup 0/, /rho//phi/, K/sup *//bar K//sup */, and /rho/..omega.. production and tagged /rho//sup 0//rho//sup 0/ production in photon-photon interactions by the TPC/Two-Gamma experiment are reviewed. Comparisons to the results of other experiments and to models of vector-vector production are made. Fits to the data following a four quark model prescription for vector meson pair production are also presented. 10 refs., 9 figs.

  20. Vector-vector production in photon-photon interactions

    SciTech Connect

    Ronan, M. T.

    1989-04-25

    Measurements of exclusive untagged /rho//sup 0//rho0/,/rho//phi/,/ital K//sup *//ital K/bar /*/, and /rho/..omega.. production and tagged /rho//sup 0//rho0/ production in photon-photon interactions by the TPC/Two-Gamma experiment are reviewed. Comparisons to the results of other experiments and to models of vector-vector production are made. Fits to the data following a four quark model prescription for vector meson pair production are also presented.

  1. Large conditional single-photon cross-phase modulation.

    PubMed

    Beck, Kristin M; Hosseini, Mahdi; Duan, Yiheng; Vuletić, Vladan

    2016-08-30

    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of [Formula: see text] (and up to [Formula: see text] by postselection on photons that remain in the system longer than average) between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. By upgrading to a state-of-the-art cavity, our system can reach a coherent phase shift of π at low loss, enabling deterministic and universal photonic quantum logic. PMID:27519798

  2. Observation of top-quark pair production in association with a photon and measurement of the t t ¯ γ production cross section in p p collisions at √{s }=7 TeV using the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; Abouzeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Almond, J.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batley, J. R.; Battaglia, M.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernat, P.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boddy, C. R.; Boehler, M.; Boek, T. T.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brennan, A. J.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bundock, A. C.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charfeddine, D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Chouridou, S.; Chow, B. K. B.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirkovic, P.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuciuc, C.-M.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Daniells, A. C.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Nooij, L.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobos, D.; Doglioni, C.; Doherty, T.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Dwuznik, M.; Dyndal, M.; Ebke, J.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernandez Perez, S.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gandrajula, R. P.; Gao, J.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Grebenyuk, O. G.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Groth-Jensen, J.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, P. F.; Hartjes, F.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmes, T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis, N.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keil, M.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; La Rosa, A.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Le, B. T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leone, R.; Leone, S.; Leonhardt, K.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Lester, C. M.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, B. A.; Long, J. D.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lowe, A. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, T.; Maeno Kataoka, M.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marques, C. N.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moraes, A.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Narayan, R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'Grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Ohshima, T.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Przysiezniak, H.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Qureshi, A.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Ridel, M.; Rieck, P.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodrigues, L.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romero Adam, E.; Rompotis, N.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sacerdoti, S.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sauvage, G.; Sauvan, E.; Savard, P.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spearman, W. R.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Staerz, S.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urbaniec, D.; Urquijo, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Will, J. Z.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wright, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yanush, S.; Yao, L.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi Della Porta, G.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zurzolo, G.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration

    2015-04-01

    A search is performed for top-quark pairs (t t ¯) produced together with a photon (γ ) with transverse energy greater than 20 GeV using a sample of t t ¯ candidate events in final states with jets, missing transverse momentum, and one isolated electron or muon. The data set used corresponds to an integrated luminosity of 4.59 fb-1 of proton-proton collisions at a center-of-mass energy of 7 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. In total, 140 and 222 t t ¯γ candidate events are observed in the electron and muon channels, to be compared to the expectation of 79 ±26 and 120 ±39 non-t t ¯γ background events, respectively. The production of t t ¯γ events is observed with a significance of 5.3 standard deviations away from the null hypothesis. The t t ¯γ production cross section times the branching ratio (BR) of the single-lepton decay channel is measured in a fiducial kinematic region within the ATLAS acceptance. The measured value is σtt ¯ γ fid×BR =63 ±8 (stat)-13+17(syst)±1 (lumi) fb per lepton flavor, in good agreement with the leading-order theoretical calculation normalized to the next-to-leading-order theoretical prediction of 48 ±10 fb .

  3. Neutralino pair production at the photon-photon collider for the τ˜-coannihilation scenario

    NASA Astrophysics Data System (ADS)

    Sonmez, Nasuf

    2016-03-01

    Supersymmetry (SUSY) is a theory which gives an explanation for the strong and electroweak interactions from the grand unification scale down to the weak scale. The search for supersymmetric particles still continues at full speed at the LHC without success. The main task at the ILC is complementing the LHC result and also search for new physics. In this study, the neutralino pair production via photon-photon collision is studied for the t˜-coannihilation scenario in the context of MSSM at the ILC. In the calculation, all the possible one loop diagrams are taken into account for the photon-photon interaction. We present the production cross section and distribution of various observables for the lightest and next-to-lightest neutralino pairs for benchmark models which are specifically presented in the light of LHC8 data analysis, employing these benchmark models for neutralino pair production could show the potential of the ILC concerning the dark matter searches in supersymmetry.

  4. Energy dependence of photon-induced Kα and Kβ x-ray production cross-sections for some elements with 42≤Z≤68 in the energy range 38-80 keV

    NASA Astrophysics Data System (ADS)

    Seven, Sabriye; Erdoğan, Hasan

    2015-12-01

    The energy dependence of photon-induced Kα and Kβ x-ray production cross-sections for Mo, Ru, Pd, In, Sb, Cs, La, Pr, Sm, Tb and Er elements has been studied in the energy range of 38-80 keV with secondary excitation method. K x-ray intensities were measured using Energy Dispersive X-Ray Fluorescence (EDXRF) Spectrometry. The measurements have been made by observing the x-ray emissions, with the help of HPGe detector coupled with a multichannel analyzer. The areas of the Kα and Kβ spectral peaks, as well as the net peak areas, have been determined by a fitting process. The measured Kα and Kβ x-ray production cross-sections have been compared with calculated theoretical values in this energy regime. The results have been plotted versus excitation energy. The present experimental Kα and Kβ x-ray production cross-section values for all the elements were in general agreement with the theoretical values calculated using photoionization cross-sections, fluorescence yields and fractional rates based on Hartree-Slater potentials.

  5. Large conditional single-photon cross-phase modulation

    NASA Astrophysics Data System (ADS)

    Beck, Kristin; Hosseini, Mahdi; Duan, Yiheng; Vuletic, Vladan

    2016-05-01

    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of up to π / 3 between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. With a moderate improvement in cavity finesse, our system can reach a coherent phase shift of p at low loss, enabling deterministic and universal photonic quantum logic. Preprint: arXiv:1512.02166 [quant-ph

  6. Measurement of the production cross section of an isolated photon associated with jets in proton-proton collisions at root s=7 TeV with the ATLAS detector

    SciTech Connect

    Aad G.; Abbott, B; Abdallah, J; Abdelalim, AA; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; AbouZeid, OS; Abramowicz, H; Abreu, H; Acerbi, E; Acharya, BS; Adamczyk, L; Adams, DL; Addy, TN; Adelman, J; Aderholz, M; Adomeit, S; Adragna, P; Adye, T; Aefsky

    2012-05-23

    A measurement of the cross section for the production of an isolated photon in association with jets in proton-proton collisions at a center-of-mass energy {radical}s = 7 TeV is presented. Photons are reconstructed in the pseudorapidity range |{eta}{sup y}| < 1.37 and with a transverse energy E{sub T}{sup y} > 25 GeV. Jets are reconstructed in the rapidity range |y{sup jet}| < 4.4 and with a transverse momentum p{sub T}{sup jet} > 20 GeV. The differential cross section d{sigma}/dE{sub T}{sup y} is measured, as a function of the photon transverse energy, for three different rapidity ranges of the leading-p{sub T} jet: |y{sup jet}| < 1.2, 1.2 {le} |y{sup jet}| < 2.8 and 2.8 {le} |y{sup jet}| < 4.4. For each rapidity configuration the same-sign ({eta}{sup y} y{sup jet} {ge} 0) and opposite-sign ({eta}{sup y} y{sup jet} < 0) cases are studied separately. The results are based on an integrated luminosity of 37 pb{sup -1}, collected with the ATLAS detector at the LHC. Next-to-leading order perturbative QCD calculations are found to be in fair agreement with the data, except for E{sub T}{sup y} {approx}< 45 GeV, where the theoretical predictions overestimate the measured cross sections.

  7. Observation of jet production by real photons

    NASA Astrophysics Data System (ADS)

    Adams, D.; Ahmad, S.; Akchurin, N.; Birmingham, P.; Breuer, H.; Chang, C. C.; Cihangir, S.; Corcoran, M. D.; Davis, W. L.; Gustafson, H. R.; Holmgren, H.; Kasper, P.; Kruk, J.; Lincoln, D.; Longo, M. J.; Marraffino, J.; McPherson, J.; Miettinen, H. E.; Morrow, G.; Mutchler, G. S.; Naples, D.; Onel, Y.; Skeens, J.; Thomas, G. P.; Traynor, M. M.; Waters, J. W.; Webster, M. S.; Xu, J. P.; Zhu, Q.

    1994-04-01

    Interactions of high energy photons on a hyrogen target have been studied using a large acceptance segmented calorimeter. The event topology clearly shows the production of dijet final states as predicted by perturbative QCD. The energy flow in the photon (forward) direction is compared both to Monte Carlo expectations and to that produced in πp interactions.

  8. Heavy flavor production from photons and hadrons

    SciTech Connect

    Heusch, C.A.

    1982-01-01

    The present state of the production and observation of hadrons containing heavy quarks or antiquarks as valence constituents, in reactions initiated by real and (space-like) virtual photon or by hadron beams is discussed. Heavy flavor production in e/sup +/e/sup -/ annihilation, which is well covered in a number of recent review papers is not discussed, and similarly, neutrino production is omitted due to the different (flavor-changing) mechanisms that are involved in those reactions. Heavy flavors from spacelike photons, heavy flavors from real photons, and heavy flavors from hadron-hadron collisions are discussed. (WHK)

  9. Breakdown of the cross-Kerr scheme for photon counting.

    PubMed

    Fan, Bixuan; Kockum, Anton F; Combes, Joshua; Johansson, Göran; Hoi, Io-chun; Wilson, C M; Delsing, Per; Milburn, G J; Stace, Thomas M

    2013-02-01

    We show, in the context of single-photon detection, that an atomic three-level model for a transmon in a transmission line does not support the predictions of the nonlinear polarizability model known as the cross-Kerr effect. We show that the induced displacement of a probe in the presence or absence of a single photon in the signal field, cannot be resolved above the quantum noise in the probe. This strongly suggests that cross-Kerr media are not suitable for photon counting or related single-photon applications. Our results are presented in the context of a transmon in a one-dimensional microwave waveguide, but the conclusions also apply to optical systems. PMID:23414018

  10. The production of a diphoton resonance via photon-photon fusion

    NASA Astrophysics Data System (ADS)

    Harland-Lang, L. A.; Khoze, V. A.; Ryskin, M. G.

    2016-03-01

    Motivated by the recent LHC observation of an excess of diphoton events around an invariant mass of 750 GeV, we discuss the possibility that this is due to the decay of a new scalar or pseudoscalar resonance dominantly produced via photon-photon fusion. We present a precise calculation of the corresponding photon-photon luminosity in the inclusive and exclusive scenarios, and demonstrate that the theoretical uncertainties associated with these are small. In the inclusive channel, we show how simple cuts on the final state may help to isolate the photon-photon induced cross section from any gluon-gluon or vector boson fusion induced contribution. In the exclusive case, that is where both protons remain intact after the collision, we present a precise cross section evaluation and show how this mode is sensitive to the parity of the object, as well as potential CP-violating effects. We also comment on the case of heavy-ion collisions and consider the production of new heavy colourless fermions, which may couple to such a resonance.

  11. Production of four-prong final states in photon-photon collisions

    NASA Astrophysics Data System (ADS)

    Aihara, H.; Alston-Garnjost, M.; Avery, R. E.; Barbaro-Galtieri, A.; Barker, A. R.; Barnes, A. V.; Barnett, B. A.; Bauer, D. A.; Bengtsson, H.-U.; Bintinger, D. L.; Bobbink, G. J.; Bolognese, T. S.; Bross, A. D.; Buchanan, C. D.; Buijs, A.; Caldwell, D. O.; Clark, A. R.; Cowan, G. D.; Crane, D. A.; Dahl, O. I.; Derby, K. A.; Eastman, J. J.; Eberhard, P. H.; Edberg, T. K.; Eisner, A. M.; Enomoto, R.; Erné, F. C.; Fujii, T.; Gary, J. W.; Gorn, W.; Hauptman, J. M.; Hofmann, W.; Huth, J. E.; Hylen, J.; Kamae, T.; Kaye, H. S.; Kees, K. H.; Kenney, R. W.; Kerth, L. T.; Ko, Winston; Koda, R. I.; Kofler, R. R.; Kwong, K. K.; Lander, R. L.; Langeveld, W. G.; Layter, J. G.; Linde, F. L.; Lindsey, C. S.; Loken, S. C.; Lu, A.; Lu, X.-Q.; Lynch, G. R.; Madaras, R. J.; Maeshima, K.; Magnuson, B. D.; Marx, J. N.; Masek, G. E.; Mathis, L. G.; Matthews, J. A.; Maxfield, S. J.; Melnikoff, S. O.; Miller, E. S.; Moses, W.; McNeil, R. R.; Nemethy, P.; Nygren, D. R.; Oddone, P. J.; Paar, H. P.; Park, D. A.; Park, S. K.; Pellett, D. E.; Pripstein, M.; Ronan, M. T.; Ross, R. R.; Rouse, F. R.; Schwitkis, K. A.; Sens, J. C.; Shapiro, G.; Shapiro, M. D.; Shen, B. C.; Slater, W. E.; Smith, J. R.; Steinman, J. S.; Stevenson, M. L.; Stork, D. H.; Strauss, M. G.; Sullivan, M. K.; Takahashi, T.; Thompson, J. R.; Toge, N.; Toutounchi, S.; van Tyen, R.; van Uitert, B.; Vandalen, G. J.; van Daalen Wetters, R. F.; Vernon, W.; Wagner, W.; Wang, E. M.; Wang, Y. X.; Wayne, M. R.; Wenzel, W. A.; White, J. T.; Williams, M. C.; Wolf, Z. R.; Wolf, Z. R.; Yamamoto, H.; Yellin, S. J.; Zeitlin, C.; Zhangj, W.-M.

    1988-01-01

    Results are presented on the exclusive production of four-prong final states in photon-photon collisions from the TPC/Two-Gamma detector at the SLAC e+e- storage ring PEP. Measurement of dE/dx and momentum in the time-projection chamber (TPC) provides identification of the final states 2π+2π-, K+K-π+π-, and 2K+2K-. For two quasireal incident photons, both the 2π+2π- and K+K-π+π- cross sections show a steep rise from threshold to a peak value, followed by a decrease at higher mass. Cross sections for the production of the final states ρ0ρ0, ρ0π+π-, and φπ+π- are presented, together with upper limits for φρ0, φφ, and K*0K¯ *0. The ρ0ρ0 contribution dominates the four-pion cross section at low masses, but falls to nearly zero above 2 GeV. Such behavior is inconsistent with expectations from vector dominance but can be accommodated by four-quark resonance models or by t-channel factorization. Angular distributions for the part of the data dominated by ρ0ρ0 final states are consistent with the production of JP=2+ or 0+ resonances but also with isotropic (nonresonant) production. When one of the virtual photons has mass (m2γ=-Q2≠0), the four-pion cross section is still dominated by ρ0ρ0 at low final-state masses Wγγ and by 2π+2π- at higher mass. Further, the dependence of the cross section on Q2 becomes increasingly flat as Wγγ increases.

  12. Resonance production in two-photon interactions

    SciTech Connect

    Roe, N.A.

    1989-02-01

    Resonance production in two-photon interactions is studied using data collected with the ASP detector at the PEP e/sup +/e/sup /minus// storage ring located at the Stanford Linear Accelerator Center. The ASP detector is a non-magnetic lead-glass calorimeter constructed from 632 lead-glass bars. It covers 94% of 4..pi.. in solid angle, extending to within 20/degree/ of the beamline. Lead-scintillator calorimeters extend the coverage to within 21 mr of the beamline on both sides. Energy resolution of ..sqrt..E/10%, where E is the energy is GeV, is achieved for electrons and photons in the lead-glass calorimeter, and particle trajectories are reconstructed with high efficiency. A total luminosity of 108 pb/sup /minus/1/ was collected with the ASP detector at a center-of-mass energy of 29 GeV. The observed process is e/sup +/e/sup /minus// ..-->.. e/sup +/e/sup /minus//..gamma..*..gamma..* ..-->.. e/sup +/e/sup /minus//X, is a pseudoscalar resonance (J/sup PC/ = 0/sup /minus/+/) and ..gamma..* is a virtual (mass /ne/ 0) photon. The outgoing electrons scatter down the beampipe and are not detected. The observed resonances are the /eta/ and /eta/' mesons, with masses of 549 and 958 MeV, respectively. They are detected in the ..gamma gamma.. decay mode; a total of 2380 +- 49 /eta/ ..-->.. ..gamma gamma.. and 568 +- 26 /eta/' ..-->.. ..gamma gamma.. events are observed. From the number of events, the detection efficiency, and the calculated production cross sections the radiative widths, GAMMA/sub ..gamma gamma../, of the /eta/ and /eta/' were measured and found to be: GAMMA/sub ..gamma gamma../(/eta/) = .481 +- .010 +- .047keV and GAMMA/sub ..gamma gamma../(/eta/') = 4.71 +- .22 +- .70keV. These results are in good agreement with the world average values. 67 refs., 42 figs., 20 tabs.

  13. Magnetic two-photon scattering and two-photon emission - Cross sections and redistribution functions

    NASA Technical Reports Server (NTRS)

    Alexander, S. G.; Meszaros, P.

    1991-01-01

    The magnetic two-photon scattering cross section is discussed within the framework of QED, and the corresponding scattering redistribution function for this process and its inverse, as well as the scattering source function are calculated explicitly. In a similar way, the magnetic two-photon emission process which follows the radiative excitation of Landau levels above ground is calculated. The two-photon scattering and two-photon emission are of the same order as the single-photon magnetic scattering. All three of these processes, and in optically thick cases also their inverses, are included in radiative transport calculations modeling accreting pulsars and gamma-ray bursters. These processes play a prominent role in determining the relative strength of the first two cyclotron harmonics, and their effects extend also to the higher harmonics.

  14. Breakdown of conventional factorization for isolated photon cross sections

    SciTech Connect

    Berger, E.L.; Guo, Xiaofeng; Qiu, Jianwei

    1996-10-01

    Using {ital e{sup +}e{sup -} {r_arrow} {gamma} + X} as an example, we show that the conventional factorization theorem of perturbative QCD breaks down for isolated photon cross sections in a specific part of phase space. Implications are discussed.

  15. Measurement of the D*+/- cross section in two-photon processes

    NASA Astrophysics Data System (ADS)

    Enomoto, R.; Iwasaki, M.; Muramatsu, K.; Hayashii, H.; Miyamoto, A.; Itoh, R.; Abe, K.; Abe, T.; Adachi, I.; Aoki, M.; Awa, S.; Belusevic, R.; Emi, K.; Fujii, H.; Fujii, K.; Fujii, T.; Fujimoto, J.; Fujita, K.; Fujiwara, N.; Howell, B.; Iida, N.; Ikeda, H.; Iwasaki, H.; Kajikawa, R.; Kato, S.; Kawabata, S.; Kichimi, H.; Kobayashi, M.; Koltick, D.; Levine, I.; Miyabayashi, K.; Nagai, K.; Nagira, T.; Nakano, E.; Nakabayashi, K.; Nitoh, O.; Noguchi, S.; Ochiai, F.; Ohnishi, Y.; Okuno, H.; Okusawa, T.; Shimozawa, K.; Shinohara, T.; Sugiyama, A.; Sugiyama, N.; Suzuki, S.; Takahashi, K.; Takahashi, T.; Takemoto, M.; Tanimori, T.; Tauchi, T.; Teramae, F.; Teramoto, Y.; Toomi, N.; Toyama, T.; Tsukamoto, T.; Uno, S.; Watanabe, Y.; Yamaguchi, A.; Yamamoto, A.; Yamauchi, M.

    1994-08-01

    We have measured the inclusive D*+/- production cross secton in a two-photon collision at the KEK e+e- collider TRISTAN. The mean √s of the collider was 57.16 GeV and the integrated luminosity was 150 pb-1. The differential cross section [dσ(D*+/-)/dPT] was obtained in the PT range between 1.6 and 6.6 GeV and compared with theoretical predictions, such as those involving direct and resolved photon processes.

  16. Partial cross sections of helium satellites at medium photon energies

    SciTech Connect

    Wehlitz, R.; Sellin, I.A.; Hemmers, O.

    1997-04-01

    Still of current interest is the important role of single ionization with excitation compared to single ionization alone. The coupling between the electrons and the incoming photon is a single-particle operator. Thus, an excitation in addition to an ionization, leading to a so-called satellite line in a photoelectron spectrum, is entirely due to electron-electron interaction and probes the electron correlation in the ground and final state. Therefore the authors have undertaken the study of the intensity of helium satellites He{sup +}nl (n = 2 - 6) relative to the main photoline (n = 1) as a function of photon energy at photon energies well above threshold up to 900 eV. From these results they could calculate the partial cross-sections of the helium satellites. In order to test the consistency of their satellite-to-1s ratios with published double-to-single photoionization ratios, the authors calculated the double-to-single photoionization ratio from their measured ratios using the theoretical energy-distribution curves of Chang and Poe and Le Rouzo and Dal Cappello which proved to be valid for photon energies below 120 eV. These calculated double-to-single ionization ratios agree fairly well with recent ion measurements. In the lower photon energy range the authors ratios agree better with the ratios of Doerner et al. while for higher photon energies the agreement is better with the values of Levin et al.

  17. Isolated prompt photon production at CDF

    SciTech Connect

    Maas, P.A. )

    1992-11-01

    This note describes measurements of isolated prompt photon production at [radical]s = 1.8 TeV using the CDF experiment. The measurements are compared to recent NLO QCD calculations, including recently obtained parton distribution functions. Qualitatively, the QCD calculation with the new parton distribution functions agrees better with the data than the previous parton distribution functions.

  18. Meson production in two-photon interactions at LHC energies

    SciTech Connect

    Da Silva, D. T.; Goncalves, V. P.; Sauter, W. K.

    2013-03-25

    The LHC opens a new kinematical regime at high energy, where several questions related to the description of the high-energy regime of the Quantum Chromodynamics (QCD) remain without satisfactory answers. Some open questions are the search for non-q-bar q resonances, the determination of the spectrum of q-bar q states and the identification of states with anomalous {gamma}{gamma} couplings. A possible way to study these problems is the study of meson production in two-photon interactions. In this contribution we calculate the meson production in two-photon interactions at LHC energies considering proton - proton collisions and estimate the total cross section for the production of the mesons {pi}, a, f, {eta} and {chi}.

  19. Neutral Higgs boson pair production in photon-photon annihilation in the two Higgs doublet model

    SciTech Connect

    Arhrib, Abdesslam; Benbrik, Rachid; Chen, C.-H.; Santos, Rui

    2009-07-01

    We study double Higgs production in photon-photon collisions as a probe of the new dynamics of Higgs interactions in the framework of two Higgs doublet models. We analyze neutral Higgs bosons production and decay in the fusion processes, {gamma}{gamma}{yields}S{sub i}S{sub j}, S{sub i}=h{sup 0}, H{sup 0}, A{sup 0}, and show that both h{sup 0}h{sup 0} and A{sup 0}A{sup 0} production can be enhanced by threshold effects in the region E{sub {gamma}}{sub {gamma}}{approx_equal}2m{sub H{+-}}. Resonant effects due to the heavy Higgs H{sup 0} can also play a role in the cross section enhancement when it is allowed to decay to two light CP-even h{sup 0} or to two light CP-odd A{sup 0} scalars. We have scanned the allowed parameter space of the two Higgs doublet model and found a vast region of the parameter space where the cross section is 2 orders of magnitude above the standard model cross section. We further show that the standard model experimental analysis can be used to discover or to constrain the two Higgs doublet model parameter space.

  20. Cross two photon absorption in a silicon photonic crystal waveguide fiber taper coupler with a physical junction

    SciTech Connect

    Sarkissian, Raymond O'Brien, John

    2015-01-21

    Cross two photon absorption in silicon is characterized using a tapered fiber photonic crystal silicon waveguide coupler. There is a physical junction between the tapered fiber and the waveguide constituting a stand-alone device. This device is used to obtain the spectrum for cross two photon absorption coefficient per unit volume of interaction between photons of nondegenerate energy. The corresponding Kerr coefficient per unit volume of interaction is also experimentally extracted. The thermal resistance of the device is also experimentally determined and the response time of the device is estimated for on-chip all-optical signal processing and data transfer between optical signals of different photon energies.

  1. Dicyanostilbene-derived two-photon fluorescence dyes with large two-photon absorption cross sections

    NASA Astrophysics Data System (ADS)

    Huang, Chibao; Lin, Changhua; Ren, Anxiang; Yang, Nianfa

    2011-12-01

    Four dicyanostilbene-derived two-photon fluorescence (TPF) dyes were synthesized as the model compounds to systematically study the effect of the dicyano and the terminal substituent on the two-photon absorption (TPA). These four compounds ( DSO, DCY, DTO and DPH) exhibit very large two-photon absorption cross sections ( δ). DCY (A- π-A) with the terminal cyano group has especially high fluorescence quantum yield (0.71) and relatively large δ (1480 GM), while DPH (D- π-A) with the substitutedamino group at its terminus possesses the largest δ (2800 GM) and the longest emission wavelength (620 nm). The idealest terminal substituent should not be the alkoxy group but the substitutedamino group. This class of dicyanostilbene dyes possess small molecule size, large δ (830-2800 GM), long-wavelength emission (459-620 nm) and large Stokes shift (80-206 nm), and are ideal chromophores for TPF labels and probes.

  2. Diphoton and photon + b/c cross sections at CDF II

    SciTech Connect

    Bocci, A.; /Rockefeller U.

    2004-12-01

    A measurement of the rate of prompt diphoton production in p{bar p} collisions at {radical}s = 1.96 TeV using the CDF detector is presented. The results are compared to a NLO calculation. they also measured the {gamma} + b and {gamma} + c cross sections comparing the results with PYTHIA LO predictions. The background from non-prompt sources is estimated using a statistical method based on differences in electromagnetic showers initiated by photons and by the background.

  3. Strong optical activity from twisted-cross photonic metamaterials.

    PubMed

    Decker, M; Ruther, M; Kriegler, C E; Zhou, J; Soukoulis, C M; Linden, S; Wegener, M

    2009-08-15

    Following a recent theoretical suggestion and microwave experiments, we fabricate photonic metamaterials composed of pairs of twisted gold crosses using two successive electron-beam-lithography steps and intermediate planarization via a spin-on dielectric. The resulting two effective resonances of the coupled system lie in the 1-2 microm wavelength regime and exhibit pronounced circular dichroism, while the circular polarization conversion is very small. In between the two resonances, we find a fairly broad spectral regime with strong optical activity, i.e., with a pure rotation of incident linear polarization. The measured optical transmittance spectra agree well with theory. PMID:19684829

  4. Meson production in photon and neutrino experiments

    SciTech Connect

    Shimony, J.S.

    1988-01-01

    The reaction {gamma}p {yields} {rho}{sup 0}{sub fast}p{pi}{sup +}{pi}{sup {minus}} has been studied with the linearly polarized 20 GeV monochromatic photon beam at the SLAC Hybrid Facility, to test the prediction of s channel helicity conservation in inelastic diffraction for t{prime} < 0.4 (GeV/c){sup 2}. In a sample of 1934 events from this reaction, the {rho}{sup 0} decay angular distributions and spin density matrix elements are consistent with s channel helicity conservation. The {pi}{sup +}{pi}{sup {minus}} mass shape displays the same skewing as seen in the reaction {gamma}p {yields} p{pi}{sup +}{pi}{sup {minus}}, and the p{pi}{sup +}{pi}{sup {minus}} mass distribution compares well and scale according to the vector dominance model with that produced in {pi}{sup {plus minus}}p {yields} p{pi}{sup +}{pi}{sup {minus}}. Coherent production of the a{sub 1} meson has been observed through the reaction {nu}Fr {yields} {mu}{sup {minus}}a{sub 1}{sup +}Fr in the Tohoku 1m freon bubble chamber hybrid system. The bubble chamber was exposed to the Fermilab wideband neutrino beam, generated by 800 GeV protons at the Tevatron. The observed rate from the final charged current sample of 1792 events was 1.1 {plus minus} 0.47%, and the a{sub 1} - W coupling is calculated to be f{sup 2}{sub a}/f{sup 2}{sub {rho}} = 5.2 {plus minus} 2.2. A comparison of the cross section and the kinematical parameters with the theoretical predictions of the vector dominance model, gives reasonable agreement with the data. A Monte-Carlo study was performed to check the possibility of detecting the radiative decay of the D*{sub s} in our bubble chamber. Using the most favorable predicted rate through the {phi} branching ratio, it was determined that three times our data sample would be needed for a one {sigma} effect above background.

  5. Undulator-Based Production of Polarized Photons

    SciTech Connect

    Professor Kirk McDonald

    2008-05-29

    "Project Title: Undulator-Based Production of Polarized Photons" DOE Contract Number: FG02-04ER41355 Principal Investigator: Prof. Kirk McDonald Period of Performance: 09/10/2004 thru 08/31/2006 This award was to fund Princeton's activity on SLAC experiment E166, "Undulator-Based Production of Polarized Positrons" which was performed at SLAC during June and September 2005. Princeton U. fabricated a magnetic spectrometer for this experiment, and participated in the commissioning, operation, and analysis of the experiment, for which Prof. McDonald was a co-spokesperson. The experiment demonstrated that an intense positron beam with 80% longitudinal polarization could be generated by conversion of MeVenergy circularly polarized photons in a thin target, which photons were generated by passage of high-energy electrons through a helical undulator. This technique has since been adopted as the baseline for the polarized positron source of the proposed International Linear Collider. Results of the experiment have been published in Physical Review Letters, vol 100, p 210801 (2008) [see attached .pdf file], and a longer paper is in preparation.

  6. Electroweak radiative corrections to triple photon production at the ILC

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Li, Wei-Hua; Duan, Peng-Fei; Song, Mao; Li, Gang

    2016-07-01

    In this paper, we present the precision predictions for three photon production in the standard model (SM) at the ILC including the full next-to-leading (NLO) electroweak (EW) corrections, high order initial state radiation (h.o.ISR) contributions and beamstrahlung effects. We present the LO and the NLO EW + h.o.ISR + beamstrahlung corrected total cross sections for various colliding energy when √{ s} ≥ 200 GeV and the kinematic distributions of final photons with √{ s} = 500 GeV at ILC, and find that the NLO EW corrections, the h.o.ISR contributions and the beamstrahlung effects are important in exploring the process e+e- → γγγ.

  7. Exclusive e+e-, di-photon and di-jet production at the Tevatron

    SciTech Connect

    Terashi, Koji; /Rockefeller U.

    2007-05-01

    Results from studies on exclusive production of electron-position pair, di-photon, and dijet production at CDF in proton-antiproton collisions at the Fermilab Tevatron are presented. THe first observation and cross section measurements of exclusive e{sup +}e{sup -} and di-jet production in hadron-hadron collisions are emphasized.

  8. Single-Photon-Resolved Cross-Kerr Interaction for Autonomous Stabilization of Photon-Number States.

    PubMed

    Holland, E T; Vlastakis, B; Heeres, R W; Reagor, M J; Vool, U; Leghtas, Z; Frunzio, L; Kirchmair, G; Devoret, M H; Mirrahimi, M; Schoelkopf, R J

    2015-10-30

    Quantum states can be stabilized in the presence of intrinsic and environmental losses by either applying an active feedback condition on an ancillary system or through reservoir engineering. Reservoir engineering maintains a desired quantum state through a combination of drives and designed entropy evacuation. We propose and implement a quantum-reservoir engineering protocol that stabilizes Fock states in a microwave cavity. This protocol is realized with a circuit quantum electrodynamics platform where a Josephson junction provides direct, nonlinear coupling between two superconducting waveguide cavities. The nonlinear coupling results in a single-photon-resolved cross-Kerr effect between the two cavities enabling a photon-number-dependent coupling to a lossy environment. The quantum state of the microwave cavity is discussed in terms of a net polarization and is analyzed by a measurement of its steady state Wigner function. PMID:26565448

  9. Photon and hadron production of heavy flavors

    SciTech Connect

    DeJongh, F.

    1993-11-01

    Recent experiments have obtained large clean samples of charmed and bottom hadrons, and have measured both single-quark inclusive cross-sections and quark-antiquark correlations. Predictions for these production properties are available from next-to-leading order QCD. We review recent results from fixed target hadroproduction of charm and bottom, fixed target photoproduction of charm, and production of bottom at proton-antiproton colliders.

  10. Transitional behavior between self-Kerr and cross-Kerr effects by two photons

    SciTech Connect

    Koshino, Kazuki

    2007-06-15

    The transitional behavior of the two-photon Kerr effect between the self-Kerr and cross-Kerr cases is investigated. To this end, we have developed a semiclassical method for evaluating the two-photon Kerr effect that is applicable to any two-photon input state. It is revealed that the maximum Kerr effect is obtained when the second photon is input with a delay time that corresponds to the absorption time of the first photon by the optical material.

  11. Stopping powers and cross sections due to two-photon processes in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Cheung, Wang K.; Norbury, John W.

    1994-01-01

    The effects of electromagnetic-production processes due to two-photon exchange in nucleus-nucleus collisions are discussed. Feynman diagrams for two-photon exchange are evaluated using quantum electrodynamics. The total cross section and stopping power for projectile and target nuclei of identical charge are found to be significant for heavy nuclei above a few GeV per nucleon-incident energy.

  12. Semiclassical evaluation of the two-photon cross-Kerr effect

    SciTech Connect

    Koshino, Kazuki

    2006-11-15

    When two distinguishable photons are simultaneously input into a nonlinear system, the output photons undergo nonlinear optical effects of the cross-Kerr type. Theoretical quantification of this two-photon cross-Kerr effect requires, in principle, a fully quantum-mechanical analysis involving heavy computation. In this paper, we propose a method for evaluating the two-photon cross-Kerr effect using a semiclassical optical response theory. The semiclassical method enables precise evaluation of the cross-Kerr effect with greatly reduced computation. The validity of the method is confirmed using a model nonlinear system.

  13. Exclusive production of pp¯π+π- in photon-photon collisions

    NASA Astrophysics Data System (ADS)

    Aihara, H.; Alston-Garnjost, M.; Avery, R.E.; Barbaro-Galtieri, A.; Barker, A.R.; Barnett, B.A.; Bauer, D.A.; Bay, A.; Bobbink, G.J.; Buchanan, C.D.; Buijs, A.; Caldwell, D.O.; Chao, H.-Y.; Chun, S.-B.; Clark, A.R.; Cowan, G.D.; Crane, D.A.; Dahl, O.I.; Daoudi, M.; Derby, K.A.; Eastman, J.J.; Eberhard, P.H.; Edberg, T.K.; Eisner, A.M.; Erne, F.C.; Fairfield, K.H.; Hauptman, J.M.; Hofmann, W.; Hylen, J.; Kamae, T.; Kaye, H.S.; Kenney, R.W.; Khacheryan, S.; Kofler, R.R.; Langeveld, W.G.J.; Layter, J.G.; Lin, W.T.; Linde, F.L.; Loken, S.C.; Lynch, G.R.; Madaras, R.J.; Magnuson, B.D.; Masek, G.E.; Mathis, L.G.; Matthews, J.A.J.; Maxfield, S.J.; Miller, E.S.; Moses, W.; Nygren, D.R.; Oddone, P.J.; Paar, H.P.; Park, S.K.; Pellett, D.E.; Pripstein, M.; Ronan, M.T.; Ross, R.R.; Rouse, F.R.; Schwitkis, K.A.; Sens, J.C.; Shapiro, G.; Shen, B.C.; Smith, J.R.; Steinmen, J.S.; Stephens, R.W.; Stevenson, M.L.; Stork, D.H.; Strauss, M.G.; Sullivan, M.K.; Takahashi, T.; Toutouchi, S.; van Tyen, R.; Vernon, W.; Wagner, W.; Wang, E.M.; Wang, Y.-X.; Wenzel, W.A.; Wolf, Z.R.; Yamamoto, H.; Yellin, S.J.; Zeitlin, C.

    1989-11-01

    We report a measurement of the e+e--->e+e-pp¯π+π- process with the TPC/Two-Gamma facility at the PEP e+e- storage ring at SLAC. Forty-five pp¯π+π- events were identified in data corresponding to an integrated e+e- luminosity of 142 pb-1. The cross section for γγ-->pp¯π+π- is given both as a function of the γγ center-of-mass energy Wγγ, with Wγγ between 2.5 and 5.5 GeV, and as a function of the invariant mass squared q2 of one of the photons, with -q2<7 GeV2. This cross section falls much less rapidly with Wγγ than does the cross section for a similar process, γγ-->pp¯. No Δ0Δ¯ 0 production is observed, and only a small fraction of the events at low Wγγ is consistent with γγ-->Δ++Δ¯ --, Δ++p¯π-, or Δ¯ --π+. In an expanded search through the same data, four events compatible with either ΛΛ¯ (Λ-->pπ-) or Σ0Λ¯ (Σ0-->Λγ) production were found.

  14. The Pair Beam Production Spectrum from Photon-Photon Annihilation in Cosmic Voids

    NASA Astrophysics Data System (ADS)

    Schlickeiser, R.; Elyiv, A.; Ibscher, D.; Miniati, F.

    2012-10-01

    Highly beamed relativistic e ±-pair energy distributions result in double photon collisions of the beamed gamma rays from TeV blazars at cosmological distances with the isotropically distributed extragalactic background light (EBL) in the intergalactic medium. The typical energies k 0 ~= 10-7 in units of mec 2 of the EBL are more than 10 orders of magnitude smaller than the observed gamma-ray energies k 1 >= 107. Using the limit k 0 Lt k 1, we demonstrate that the angular distribution of the generated pairs in the lab frame is highly beamed in the direction of the initial gamma-ray photons. For the astrophysically important case of power-law distributions of the emitted gamma-ray beam up to the maximum energy M interacting with Wien-type N(k 0)vpropkq 0exp (- k 0/Θ) soft photon distributions with total number density N 0, we calculate analytical approximations for the electron production spectrum. For distant objects with luminosity distances dL Gt r 0 = (σ T N 0)-1 = 0.49N -1 0 Mpc (with Thomson cross section σ T ), the implied large values of the optical depth τ0 = dL /r 0 indicate that the electron production spectra differ at energies inside and outside the interval [(Θln τ0)-1, τ0/Θ], given the maximum gamma-ray energy M Gt Θ-1. In the case M Gt Θ-1, the production spectrum is strongly peaked near E ~= Θ-1, being exponentially reduced at small energies and decreasing with the steep power law vpropE -1 - p up to the maximum energy E = M - (1/2).

  15. Two-photon dilepton production in proton-proton collisions: Two alternative approaches

    NASA Astrophysics Data System (ADS)

    Łuszczak, Marta; Schäfer, Wolfgang; Szczurek, Antoni

    2016-04-01

    We investigate different methods to incorporate the effect of photons in hard processes. We compare the two different approaches used for calculating cross sections for the two-photon p p →l+l-X process. In one of the approaches the photon is treated as a collinear parton in the proton. In the second approach the recently proposed kT factorization method is used. We discuss how results of the collinear parton model depend on the initial condition for the QCD evolution and discuss an approximate treatment where the photon is excluded from the combined QCD-QED evolution. We demonstrate that it is not necessary to put the photon into the evolution equation as is often done, but it is sufficient to use a simplified approach in which the photon couples to quarks and antiquarks, which by themselves undergo DGLAP evolution equations. We discuss the sensitivity of the results to the choice of structure function parametrization and experimental cuts in the kT factorization approach. We explicitly display regions of x and Q2 (arguments of structure functions) relevant for different experiments. We compare the results of our calculations with recent experimental data for dilepton production and find that in most cases the contribution of the photon-photon mechanism is rather small. We discuss how to enhance the photon-photon contribution. We also compare our results to those of recent measurements of exclusive and semiexclusive e+e- pair production with certain experimental data by the CMS Collaboration.

  16. Integrated cross sections for excitation of nuclear isomers by inelastic photon scattering at giant resonance

    NASA Astrophysics Data System (ADS)

    Sáfár, József; Lakosi, László

    2014-02-01

    In the view of the evidences arising from our experimental and theoretical studies, the long-standing picture of a two-humped excitation function for photoexcitation of isomers cannot be confirmed. Whereas the first maximum (at the photoneutron threshold) of the cross section of nuclear photon scattering can be attributed to inelastic (compound) scattering, the second large peak at about giant dipole resonance is mostly due to the elastic (direct) process. A second large peak or increase reported to appear in isomer production has been shown to be practically vanishing. On realizing such a situation, calculated estimates have been given for saturated integral cross section values for isomer activation, based on photoabsorption cross sections taken from the usual Lorentzian parametrization up to the photoneutron threshold. Results compare reasonably well to available experimental data acquired by gamma-ray spectrometry in a large set of stable nuclides having long-lived isomeric states.

  17. Pion and kaon pair production in photon-photon collisions

    NASA Astrophysics Data System (ADS)

    Aihara, H.; Alston-Garnjost, M.; Avery, R. E.; Barbaro-Galtieri, A.; Barker, A. R.; Barnes, A. V.; Barnett, B. A.; Bauer, D. A.; Bengtsson, H.-U.; Bintinger, D. L.; Blumenfeld, B. J.; Bobbink, G. J.; Bross, A. D.; Buchanan, C. D.; Buijs, A.; Cain, M. P.; Caldwell, D. O.; Chamberlain, O.; Chien, C.-Y.; Clark, A. R.; Cowan, G. D.; Crane, D. A.; Dahl, O. I.; Derby, K. A.; Eastman, J. J.; Eberhard, P. H.; Eisner, A. M.; Enomoto, R.; Erné, F. C.; Fujii, T.; Gabioud, B.; Gary, J. W.; Gorn, W.; Hauptman, J. M.; Hofmann, W.; Huth, J. E.; Hylen, J.; Joshi, U. P.; Kamae, T.; Kaye, H. S.; Kees, K. H.; Kenney, R. W.; Kerth, L. T.; Ko, Winston; Koda, R. I.; Kofler, R. R.; Kwong, K. K.; Lander, R. L.; Langeveld, W. G.; Layter, J. G.; Linde, F. L.; Lindsey, C. S.; Loken, S. C.; Lu, A.; Lu, X.-Q.; Lynch, G. R.; Madaras, R. J.; Maeshima, K.; Magnuson, B. D.; Marx, J. N.; Maruyama, K.; Masek, G. E.; Mathis, L. G.; Matthews, J. A.; Maxfield, S. J.; Melnikoff, S. O.; Miller, E. S.; Moses, W.; McNeil, R. R.; Nemethy, P.; Nygren, D. R.; Oddone, P. J.; Paar, H. P.; Park, D. A.; Pellett, D. E.; Pripstein, M.; Ronan, M. T.; Ross, R. R.; Rouse, F. R.; Sauerwein, R. R.; Schwitkis, K. A.; Sens, J. C.; Shapiro, G.; Shapiro, M. D.; Shen, B. C.; Slater, W. E.; Smith, J. R.; Steinman, J. S.; Stevenson, M. L.; Stork, D. H.; Strauss, M. G.; Sullivan, M. K.; Takahashi, T.; Thompson, J. R.; Toge, N.; van Tyen, R.; van Uitert, B.; Vandalen, G. J.; van Daalen Wetters, R. F.; Vernon, W.; Wagner, W.; Wang, E. M.; Wang, Y. X.; Wayne, M. R.; Wenzel, W. A.; White, J. T.; Williams, M. C.; Wolf, Z. R.; Yamamoto, H.; Yamauchi, M.; Yellin, S. J.; Zeitlin, C.; Zhang, W.-M.

    1986-07-01

    We report measurements of the two-photon processes e+e--->e+e-π+π- and e+e--->e+e-K+K-, at an e+e- center-of-mass energy of 29 GeV. In the π+π- data a high-statistics analysis of the f(1270) results in a γγ width Γ(γγ-->f)=3.2+/-0.4 keV. The π+π- continuum below the f mass is well described by a QED Born approximation, whereas above the f mass it is consistent with a QCD-model calculation if a large contribution from the f is assumed. For the K+K- data we find agreement of high-mass continuum with the QCD prediction; limits on f'(1520) and theta(1720) formation are presented.

  18. Two-photon induced collagen cross-linking in bioartificial cardiac tissue

    NASA Astrophysics Data System (ADS)

    Kuetemeyer, Kai; Kensah, George; Heidrich, Marko; Meyer, Heiko; Martin, Ulrich; Gruh, Ina; Heisterkamp, Alexander

    2011-08-01

    Cardiac tissue engineering is a promising strategy for regenerative therapies to overcome the shortage of donor organs for transplantation. Besides contractile function, the stiffness of tissue engineered constructs is crucial to generate transplantable tissue surrogates with sufficient mechanical stability to withstand the high pressure present in the heart. Although several collagen cross-linking techniques have proven to be efficient in stabilizing biomaterials, they cannot be applied to cardiac tissue engineering, as cell death occurs in the treated area. Here, we present a novel method using femtosecond (fs) laser pulses to increase the stiffness of collagen-based tissue constructs without impairing cell viability. Raster scanning of the fs laser beam over riboflavin-treated tissue induced collagen cross-linking by two-photon photosensitized singlet oxygen production. One day post-irradiation, stress-strain measurements revealed increased tissue stiffness by around 40% being dependent on the fibroblast content in the tissue. At the same time, cells remained viable and fully functional as demonstrated by fluorescence imaging of cardiomyocyte mitochondrial activity and preservation of active contraction force. Our results indicate that two-photon induced collagen cross-linking has great potential for studying and improving artificially engineered tissue for regenerative therapies.

  19. Review and history of photon cross section calculations.

    PubMed

    Hubbell, J H

    2006-07-01

    Photon (x-ray, gamma-ray, bremsstrahlung) mass attenuation coefficients, mu/rho, are among the most widely used physical parameters employed in medical diagnostic and therapy computations, as well as in diverse applications in other fields such as nuclear power plant shielding, health physics and industrial irradiation and monitoring, and in x-ray crystallography. This review traces the evolution of this data base from its empirical beginnings totally derived from measurements beginning in 1907 by Barkla and Sadler and continuing up through the 1935 Allen compilation (published virtually unchanged in all editions up through 1971-1972 of the Chemical Rubber Handbook), to the 1949 semi-empirical compilation of Victoreen, as our theoretical understanding of the constituent Compton scattering, photoabsorption and pair production interactions of photons with atoms became more quantitative. The 1950s saw the advent of completely theoretical (guided by available measured data) systematic compilations such as in the works of Davisson and Evans, and by White-Grodstein under the direction of Fano, using mostly theory developed in the 1930s (pre-World War II) by Sauter, Bethe, Heitler and others. Post-World War II new theoretical activity, and the introduction of the electronic automatic computer, led to the more extensive and more accurate compilations in the 1960s and 1970s by Storm and Israel, and by Berger and Hubbell. Today's mu/rho compilations by Cullen et al, by Seltzer, Berger and Hubbell, and by others, collectively spanning the ten decades of photon energy from 10 eV to 100 GeV, for all elements Z= 1 to 100, draw heavily on the 1970s shell-by-shell photoabsorption computations of Scofield, the 1960s coherent and incoherent scattering computations of Cromer et al, and the 1980 computations of electron-positron pair and triplet computations of Hubbell, Gimm and Øverbø, these names being representative of the vast legions of other researchers whose work fed into

  20. REVIEW: Review and history of photon cross section calculations

    NASA Astrophysics Data System (ADS)

    Hubbell, J. H.

    2006-07-01

    Photon (x-ray, gamma-ray, bremsstrahlung) mass attenuation coefficients, μ/ρ, are among the most widely used physical parameters employed in medical diagnostic and therapy computations, as well as in diverse applications in other fields such as nuclear power plant shielding, health physics and industrial irradiation and monitoring, and in x-ray crystallography. This review traces the evolution of this data base from its empirical beginnings totally derived from measurements beginning in 1907 by Barkla and Sadler and continuing up through the 1935 Allen compilation (published virtually unchanged in all editions up through 1971-1972 of the Chemical Rubber Handbook), to the 1949 semi-empirical compilation of Victoreen, as our theoretical understanding of the constituent Compton scattering, photoabsorption and pair production interactions of photons with atoms became more quantitative. The 1950s saw the advent of completely theoretical (guided by available measured data) systematic compilations such as in the works of Davisson and Evans, and by White-Grodstein under the direction of Fano, using mostly theory developed in the 1930s (pre-World War II) by Sauter, Bethe, Heitler and others. Post-World War II new theoretical activity, and the introduction of the electronic automatic computer, led to the more extensive and more accurate compilations in the 1960s and 1970s by Storm and Israel, and by Berger and Hubbell. Today's μ/ρ compilations by Cullen et al, by Seltzer, Berger and Hubbell, and by others, collectively spanning the ten decades of photon energy from 10 eV to 100 GeV, for all elements Z= 1 to 100, draw heavily on the 1970s shell-by-shell photoabsorption computations of Scofield, the 1960s coherent and incoherent scattering computations of Cromer et al, and the 1980 computations of electron-positron pair and triplet computations of Hubbell, Gimm and Øverbø, these names being representative of the vast legions of other researchers whose work fed into these

  1. Measurement of the D ∗± cross section in two photon collisions at LEP

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; Casper, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Ariztizabal, F.; Chmeissani, M.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Sanchez, F.; Teubert, F.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Engelhardt, A.; Forty, R. W.; Frank, M.; Girone, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Janot, P.; Jost, B.; Knobloch, J.; Lehraus, I.; Maggi, M.; Markou, C.; Martin, E. B.; Mato, P.; Meinhard, H.; Minten, A.; Miquel, R.; Oest, T.; Palazzi, P.; Pater, J. R.; Perrodo, P.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Barres, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Passalacqua, L.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Pepe-Altarelli, M.; Dorris, S. J.; Halley, A. W.; Ten Have, I.; Knowles, I. G.; Lynch, J. G.; Morton, W. T.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Braun, O.; Geweniger, C.; Graefe, G.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Colling, D. J.; Dornan, P. J.; Konstantinidis, N.; Moneta, L.; Moutoussi, A.; Nash, J.; San Martin, G.; Sedgbeer, J. K.; Stacey, A. M.; Dissertori, G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Raab, J.; Renk, B.; Sander, H.-G.; Wanke, R.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Thulasidas, M.; Nicod, D.; Payre, P.; Rousseau, D.; Talby, M.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Dietl, H.; Dydak, F.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Settles, R.; Seywerd, H.; Stierlin, U.; Denis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Courault, F.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Musolino, G.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Abbaneo, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Blair, G. A.; Bryant, L. M.; Gao, Y.; Green, M. G.; Johnson, D. L.; Medcalf, T.; Mir, Ll. M.; Strong, J. A.; Bertin, V.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Maley, P.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Trabelsi, A.; Vallage, B.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Beddall, A.; Booth, C. N.; Boswell, R.; Cartwright, S.; Combley, F.; Dawson, I.; Koksal, A.; Letho, M.; Newton, W. M.; Rankin, C.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Feigl, E.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Bosisio, L.; Della Marina, R.; Ganis, G.; Giannini, G.; Gobbo, B.; Pitis, L.; Ragusa, F.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1995-02-01

    The inclusive production of D ∗± mesons in photon-photon collisions has been measured by the Aleph experiment at LEP with a beam energy of 45 GeV. The D ∗+ are detected in their decay to D 0π+ with the D 0 observed in three separate decay modes: (1) K -π+, (2) K -π+π0 and (3) K -π+π-π+, and analagously for the D ∗- modes. A total of 33 events was observed from an integrated luminosity of 73 pb -1 which corresponds to a cross section for Σ( e +e - → e +e -D ∗±X ) of 155 ± 33 ± 21 pb. This result is compatible with both the direct production γγ → c overlinec in the Born approximation and with a more complete calculation which includes both radiative QCD corrections and contributions in which one of the photons is first resolved into its quark and gluon constituents. The shapes of distributions for events containing a D ∗+ are found to be better described by the latter.

  2. Two-photon production of leptons at hadron colliders in semielastic and elastic cases

    NASA Astrophysics Data System (ADS)

    Manko, A. Yu.; Shulyakovsky, R. G.

    2016-03-01

    The mechanism of two-photon dilepton production is studied in the equivalent-photon (Weizsäcker-Williams) approximation. This approximation is shown to describe well experimental data from hadron accelerators. The respective total and differential cross sections were obtained for the LHC and for the Tevatron collider at various energies of colliding hadrons. The differential cross sections were studied versus the dilepton invariant mass, transverse momentum, and emission angle in the reference frame comoving with the center of mass of colliding hadrons. The cases of semielastic and inelastic collisions were examined.

  3. Pion and kaon pair production in photon-photon collisions

    SciTech Connect

    Aihara, H.; Alston-Garnjost, M.; Avery, R.E.; Barbaro-Galtieri, A.; Barker, A.R.; Barnes, A.V.; Barnett, B.A.; Bauer, D.A.; Bengtsson, H.; Bintinger, D.L.; Blumenfeld, B.J.; Bobbink, G.J.; Bross, A.D.; Buchanan, C.D.; Buijs, A.; Cain, M.P.; Caldwell, D.O.; Chamberlain, O.; Chien, C.; Clark, A.R.; Cowan, G.D.; Crane, D.A.; Dahl, O.I.; Derby, K.A.; Eastman, J.J.; Eberhard, P.H.; Eisner, A.M.; Enomoto, R.; Erne-acute-accent, F.C.; Fujii, T.; Gabioud, B.; Gary, J.W.; Gorn, W.; Hauptman, J.M.; Hofmann, W.; Huth, J.E.; Hylen, J.; Joshi, U.P.; Kamae, T.; Kaye, H.S.; Kees, K.H.; Kenney, R.W.; Kerth, L.T.; Ko, W.; Koda, R.I.; Kofler, R.R.; Kwong, K.K.; Lander, R.L.; Langeveld, W.G.J.; Layter, J.G.; Linde, F.L.; Lindsey, C.S.; Loken, S.C.; Lu, A.; Lu, X.; Lynch, G.R.; Madaras, R.J.; Maeshima, K.; Magnuson, B.D.; Marx, J.N.; Maruyama, K.; Masek, G.E.; Mathis, L.G.; Matthews, J.A.J.; Maxfield, S.J.; Melnikoff, S.O.; Miller, E.S.; Moses, W.; McNeil, R.R.; Nemethy, P.; Nygren, D.R.; Oddone, P.J.; Pa

    1986-07-28

    We report measurements of the two-photon processes e-italic/sup +/e/sup -/..-->..e/sup +/e/sup -/..pi../sup +/..pi../sup -/ and e-italic/sup +/e/sup -/..-->..e/sup +/e/sup -/K/sup +/K/sup -/, at an e-italic/sup +/e/sup -/ center-of-mass energy of 29 GeV. In the ..pi../sup +/..pi../sup -/ data a high-statistics analysis of the f-italic(1270) results in a ..gamma gamma.. width GAMMA(..gamma gamma -->..f-italic) = 3.2 +- 0.4 keV. The ..pi../sup +/..pi../sup -/ continuum below the f-italic mass is well described by a QED Born approximation, whereas above the f-italic mass it is consistent with a QCD-model calculation if a large contribution from the f-italic is assumed. For the K-italic/sup +/K/sup -/ data we find agreement of high-mass continuum with the QCD prediction; limits on f-italic'(1520) and t-italich-italice-italict-italica-italic(1720) formation are presented.

  4. Nonlinear Propagation of Crossing Electromagnetic Waves in Vacuum due to Photon-Photon Scattering

    SciTech Connect

    Tommasini, Daniele; Michinel, Humberto; Ferrando, Albert; Seco, Marcos

    2008-10-15

    We review the theory for photon-photon scattering in vacuum, and some of the proposals for its experimental search, including the results of our recent works on the subject. We then describe a very simple and sensitive proposal of an experiment and discuss how it can be used at the present (HERCULES) and the future (ELI) ultrahigh power laser facilities either to find the first evidence of photon-photon scattering in vacuum, or to significantly improve the current experimental limits.

  5. Electron-positron pair production by ultrarelativistic electrons in a soft photon field

    NASA Technical Reports Server (NTRS)

    Mastichiadis, A.; Marscher, A. P.; Brecher, K.

    1986-01-01

    The fully differential cross section for photon-electron pair production is integrated numerically over phase space. Results are obtained for the astrophysically interesting case in which the interaction between an ultrarelativistic electron and a soft photon results in electron-positron pair production. The positron spectrum is a function of the energies of both the photon and the electron, as well as the angle of interaction. It is found that the energy at which the positron distribution peaks is inversely proportional to the photon energy and independent of the electron energy. The positron spectrum is integrated once more over initial electron energies for a power-law energy distribution of primary electrons. The same procedure is repeated for the recoil particle; it is shown that the peak of the recoil energy distribution depends linearly on the energy of the primary electron. Finally, semianalytical expressions are obtained for the energy losses of the primary electrons.

  6. J/{psi} plus prompt-photon associated production in two-photon collisions at next-to-leading order

    SciTech Connect

    Klasen, Michael; Kniehl, Bernd A.; Mihaila, Luminita N.; Steinhauser, Matthias

    2005-01-01

    We calculate the cross section of J/{psi} plus prompt-photon inclusive production in {gamma}{gamma} collisions at next-to-leading order within the factorization formalism of nonrelativistic quantum chromodynamics (NRQCD) focusing on direct photoproduction. Apart from direct J/{psi} production, we also include the feed-down from directly produced {chi}{sub cJ} and {psi}{sup '} mesons. We discuss the analytical calculation, in particular the treatment of the various types of singularities and the NRQCD operator renormalization, in some detail. We present theoretical predictions for the future e{sup +}e{sup -} linear collider TESLA, taking into account both brems- and beamstrahlung.

  7. J/ψ plus prompt-photon associated production in two-photon collisions at next-to-leading order

    NASA Astrophysics Data System (ADS)

    Klasen, Michael; Kniehl, Bernd A.; Mihaila, Luminiţa N.; Steinhauser, Matthias

    2005-01-01

    We calculate the cross section of J/ψ plus prompt-photon inclusive production in γγ collisions at next-to-leading order within the factorization formalism of nonrelativistic quantum chromodynamics (NRQCD) focusing on direct photoproduction. Apart from direct J/ψ production, we also include the feed-down from directly produced χcJ and ψ' mesons. We discuss the analytical calculation, in particular the treatment of the various types of singularities and the NRQCD operator renormalization, in some detail. We present theoretical predictions for the future e+e- linear collider TESLA, taking into account both brems- and beamstrahlung.

  8. THE PAIR BEAM PRODUCTION SPECTRUM FROM PHOTON-PHOTON ANNIHILATION IN COSMIC VOIDS

    SciTech Connect

    Schlickeiser, R.; Ibscher, D.; Elyiv, A.; Miniati, F. E-mail: ibscher@tp4.rub.de E-mail: fm@phys.ethz.ch

    2012-10-20

    Highly beamed relativistic e {sup {+-}}-pair energy distributions result in double photon collisions of the beamed gamma rays from TeV blazars at cosmological distances with the isotropically distributed extragalactic background light (EBL) in the intergalactic medium. The typical energies k {sub 0} {approx_equal} 10{sup -7} in units of m{sub e}c {sup 2} of the EBL are more than 10 orders of magnitude smaller than the observed gamma-ray energies k {sub 1} {>=} 10{sup 7}. Using the limit k {sub 0} << k {sub 1}, we demonstrate that the angular distribution of the generated pairs in the lab frame is highly beamed in the direction of the initial gamma-ray photons. For the astrophysically important case of power-law distributions of the emitted gamma-ray beam up to the maximum energy M interacting with Wien-type N(k {sub 0}){proportional_to}k{sup q} {sub 0}exp (- k {sub 0}/{Theta}) soft photon distributions with total number density N {sub 0}, we calculate analytical approximations for the electron production spectrum. For distant objects with luminosity distances d{sub L} >> r {sub 0} = ({sigma} {sub T} N {sub 0}){sup -1} = 0.49N {sup -1} {sub 0} Mpc (with Thomson cross section {sigma} {sub T}), the implied large values of the optical depth {tau}{sub 0} = d{sub L} /r {sub 0} indicate that the electron production spectra differ at energies inside and outside the interval [({Theta}ln {tau}{sub 0}){sup -1}, {tau}{sub 0}/{Theta}], given the maximum gamma-ray energy M >> {Theta}{sup -1}. In the case M >> {Theta}{sup -1}, the production spectrum is strongly peaked near E {approx_equal} {Theta}{sup -1}, being exponentially reduced at small energies and decreasing with the steep power law {proportional_to}E {sup -1-p} up to the maximum energy E = M - (1/2).

  9. The two-photon excitation cross section of 6MAP, a fluorescent adenine analogue.

    PubMed

    Stanley, Robert J; Hou, Zhanjia; Yang, Aiping; Hawkins, Mary E

    2005-03-01

    6MAP is a fluorescent analogue of adenine that undergoes Watson-Crick base pairing and base stacking in double-stranded DNA. The one-photon absorption spectrum of 6MAP is characterized by a maximum around 330 nm with moderate quantum yield fluorescence centered at about 420 nm. To take advantage of this probe for confocal and single-molecule microscopy, it would be advantageous to be able to excite the analogue via two photons. We report the first determination of the two-photon excitation cross section and spectrum for 6MAP from 614 to 700 nm. The power dependence of the fluorescence indicates that emission results from the absorption of two photons. The one-photon and two-photon emission line shapes are identical within experimental error. A study of the concentration dependence of the fluorescence yield for one-photon excitation shows no measurable quenching up to about 5 microM. The maximum in the two-photon excitation spectrum gives a two-photon cross section, delta(TPE), of 3.4 +/- 0.1 Goeppert-Mayer (G.M.) at 659 nm, which correlates well with the one-photon absorption maximum. This compares quite favorably with cross sections of various naturally fluorescent biological molecules such as flavins and nicotiamide. In addition, we have also obtained the two-photon-induced fluorescence emission spectrum of quinine sulfate. It is approximately the same as that for one-photon excitation, suggesting that two-photon excitation of quinine sulfate may be used for calibration purposes. PMID:16851408

  10. Universal Parametrization of Thermal Photon Production in Hadronic Matter

    NASA Astrophysics Data System (ADS)

    Heffernan, Matthew; Hohler, Paul; Rapp, Ralf

    2014-09-01

    As the production of photons and dileptons from high-energy collisions is able to provide information on the high temperature and high density phases of nuclear matter, an improved and universal parametrization of the rather involved microscopic calculations is key to honing the theory behind this production. We focus on photon emission rates from hadronic many-body calculations of the in-medium rho spectral function, which includes the effects of baryons and antibaryons. Across a range of temperatures from 0.1 to 0.18 GeV and baryon chemical potentials from 0 to 0.4 GeV, a parametrization of thermal photon rates for energies from 0.2 to 5 GeV is numerically determined through the use of nested fitting methods. This provides a fully functional description of thermal photon production largely within an unprecedented 20% of the calculated values from the spectral function, a significant reduction in error from available parametrizations. The contribution of photons and dileptons from pion-pion bremsstrahlung is evaluated for the importance of its contribution. The functional form, coupled with the comparison to the bremsstrahlung production of thermal photons, will provide a baseline for guiding future studies. As the production of photons and dileptons from high-energy collisions is able to provide information on the high temperature and high density phases of nuclear matter, an improved and universal parametrization of the rather involved microscopic calculations is key to honing the theory behind this production. We focus on photon emission rates from hadronic many-body calculations of the in-medium rho spectral function, which includes the effects of baryons and antibaryons. Across a range of temperatures from 0.1 to 0.18 GeV and baryon chemical potentials from 0 to 0.4 GeV, a parametrization of thermal photon rates for energies from 0.2 to 5 GeV is numerically determined through the use of nested fitting methods. This provides a fully functional description of

  11. Prompt photon production in p-p collisions

    SciTech Connect

    Cleymans, J.; Quack, E.; Redlich, K.

    1995-07-01

    A systematic study of the inclusive photon cross-section in p-p collisions is presented. The dependence of the {gamma} rates on the renormalization and factorization scales is discussed. A comparison is made with experimental data for centre-of-mass energies ranging from 23 GeV to 1.8 TeV. Predictions of the cross-sections are given for two different sets of structure functions for RHIC and LHC energies.

  12. Coherent destruction of tunneling in two-level system driven across avoided crossing via photon statistics.

    PubMed

    Miao, Qiang; Zheng, Yujun

    2016-01-01

    In this paper, the nature of the multi-order resonance and coherent destruction of tunneling (CDT) for two-level system driven cross avoided crossing is investigated by employing the emitted photons 〈N〉 and the Mandel's Q parameter based on the photon counting statistics. An asymmetric feature of CDT is shown in the spectrum of Mandel's Q parameter. Also, the CDT can be employed to suppress the spontaneous decay and prolong waiting time noticeably. The photon emission pattern is of monotonicity in strong relaxation, and homogeneity in pure dephasing regime, respectively. PMID:27353375

  13. Coherent destruction of tunneling in two-level system driven across avoided crossing via photon statistics

    PubMed Central

    Miao, Qiang; Zheng, Yujun

    2016-01-01

    In this paper, the nature of the multi-order resonance and coherent destruction of tunneling (CDT) for two-level system driven cross avoided crossing is investigated by employing the emitted photons 〈N〉 and the Mandel’s Q parameter based on the photon counting statistics. An asymmetric feature of CDT is shown in the spectrum of Mandel’s Q parameter. Also, the CDT can be employed to suppress the spontaneous decay and prolong waiting time noticeably. The photon emission pattern is of monotonicity in strong relaxation, and homogeneity in pure dephasing regime, respectively. PMID:27353375

  14. Optical cross-talk effect in a semiconductor photon-counting detector array

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Hamal, Karel; Kral, Lukas; Blazej, Josef

    2005-09-01

    Solid state single photon detectors are getting more and more attention in various areas of applied physics: optical sensors, communication, quantum key distribution, optical ranging and Lidar, time resolved spectroscopy, opaque media imaging and ballistic photon identification. Avalanche photodiodes specifically designed for single photon counting semiconductor avalanche structures have been developed on the basis of various materials: Si, Ge, GaP, GaAsP and InGaAs/InGaAsP at the Czech Technical University in Prague during the last 20 years. They have been tailored for numerous applications. Recently, there is a strong demand for the photon counting detector in a form of an array; even small arrays 10x1 or 3x3 are of great importance for users. Although the photon counting array can be manufactured, there exists a serious limitation for its performance: the optical cross-talk between individual detecting cells. This cross-talk is caused by the optical emission of the avalanche photon counting structure which accompanies the photon detection process. We have studied in detail the optical emission of the avalanche photon counting structure in the silicon shallow junction type photodiode. The timing properties, radiation pattern and spectral distribution of the emitted light have been measured for various detection structures and their different operating conditions. The ultimate limit for the cross-talk has been determined and the methods for its limitation have been proposed.

  15. Off-equilibrium photon production during the chiral phase transition

    SciTech Connect

    Michler, Frank; Hees, Hendrik van; Dietrich, Dennis D.; Leupold, Stefan; Greiner, Carsten

    2013-09-15

    In the early stage of ultrarelativistic heavy-ion collisions chiral symmetry is restored temporarily. During this so-called chiral phase transition, the quark masses change from their constituent to their bare values. This mass shift leads to the spontaneous non-perturbative creation of quark–antiquark pairs, which effectively contributes to the formation of the quark–gluon plasma. We investigate the photon production induced by this creation process. We provide an approach that eliminates possible unphysical contributions from the vacuum polarization and renders the resulting photon spectra integrable in the ultraviolet domain. The off-equilibrium photon numbers are of quadratic order in the perturbative coupling constants while a thermal production is only of quartic order. Quantitatively, we find, however, that for the most physical mass-shift scenarios and for photon momenta larger than 1 GeV the off-equilibrium processes contribute less photons than the thermal processes. -- Highlights: •We investigate first-order photon emission arising from the chiral mass shift. •We provide an ansatz eliminating possible unphysical vacuum contributions. •Our ansatz leads to photon spectra being integrable in the ultraviolet domain.

  16. Anisotropy of photon production: initial eccentricity or magnetic field.

    PubMed

    Bzdak, Adam; Skokov, Vladimir

    2013-05-10

    Recent measurements of the azimuthal anisotropy of direct photons in heavy-ion collisions at the energies of Relativistic Heavy Ion Collider show that it is of the same order as the hadronic one. This finding appears to contradict the expected dominance of photon production from a quark-gluon plasma at an early stage of a heavy-ion collision. A possible explanation of the strong azimuthal anisotropy of the photons, given recently, is based on the presence of a large magnetic field in the early phase of a collision. In this Letter, we propose a method to experimentally measure the degree to which a magnetic field in heavy-ion collisions is responsible for the observed anisotropy of photon production. The experimental test proposed in this Letter may potentially change our understanding of the nonequilibrium stage and possible thermalization in heavy-ion collisions. PMID:23705700

  17. Measurement of prompt photon production in hadronic Z decays

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Gaitan, V.; Garrido, Ll.; Pacheco, A.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Lou, J.; Qiao, C.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhao, W.; Atwood, W. B.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Bossi, F.; Boudreau, J.; Burnett, T. H.; Drevermann, H.; Forty, R. W.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lançon, E.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Mattison, T.; Meinhard, H.; Menary, S.; Meyer, T.; Minten, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Roth, A.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschak, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; Bencheikh, A. M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Pietrzyk, B.; Proriol, J.; Prulhière, F.; Stimpfl, G.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rosowsky, A.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Campana, P.; Capon, G.; Cerutti, F.; Chiarelli, V.; D'Ettorrepiazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Altoon, B.; Boyle, O.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Turnball, R. M.; Brandl, B.; Braun, O.; Geiges, R.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Patton, S. J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wolf, B.; Aubert, J.-J.; Benchouk, C.; Bernard, V.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Papalexiou, S.; Payre, P.; Qian, Z.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Cowan, G.; Dehning, B.; Dietl, H.; Dydak, F.; Fernandez-Bosman, M.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlein, U.; Stiegler, U.; Denis, R. St.; Takashima, T.; Thomas, J.; Wolf, G.; Bertin, V.; Boucrot, J.; Callot, O.; Chen, X.; Cordier, A.; Davier, M.; Grivas, J.-F.; Heusse, Ph.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Zomer, F.; Abbaneo, D.; Amendolia, S. R.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bradaschia, C.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lemaire, M. C.; Locci, E.; Loucatos, S.; Monnier, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Like, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Reeves, P.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Grupen, C.; Mirabito, L.; Rivera, F.; Schäfer, U.; Ganis, G.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Whitney, M. H.; Wu, Sau Lan; Wu, X.; Zobernig, G.

    1993-03-01

    The production of isolated photons in hadronic Z decays is measured with the ALEPH detector at LEP using a sample of 450 000 hadronic events. The corrected rate is given for several values of the minimum invariant mass squared cut between the photon and the jets. This measurement of final state radiation from the quarks is compared with the predictions of parton shower models JETSET, ARIADNE and HERWIG as well as with the predictions of QCD matrix element calculations.

  18. Measurement of inclusive charm production in two-photon collisions at LEP

    NASA Astrophysics Data System (ADS)

    Stone, Alan L., Jr.

    The cross section of inclusive charm production in two- photon collisions s(e+e--->e +e- ccX) is measured at the Large Electron Positron (LEP) collider at the European Center for Nuclear and Particle Physics (CERN). The data was obtained with the L3 detector at the center-of-mass energy of 91 GeV (LEP1) and for the first time at the center-of-mass energies from 130-183 GeV (LEP2). Charmed hadrons are identified by electrons and muons from semileptonic decays. The measured cross section agrees with next-to-leading order (NLO) QCD calculations. The direct process gg-->cc is found to be insufficient to describe the data. The measured cross section values and event distributions require contributions from resolved processes, which are sensitive to the gluon density in the photon.

  19. Double vector meson production in photon-hadron interactions at hadronic colliders

    NASA Astrophysics Data System (ADS)

    Gonçalves, V. P.; Moreira, B. D.; Navarra, F. S.

    2016-07-01

    In this paper we analyze the double vector meson production in photon-hadron (γ h) interactions at pp / pA / AA collisions and present predictions for the ρ ρ , J/Ψ J/Ψ , and ρ J/Ψ production considering the double scattering mechanism. We estimate the total cross sections and rapidity distributions at LHC energies and compare our results with the predictions for the double vector meson production in γ γ interactions at hadronic colliders. We present predictions for the different rapidity ranges probed by the ALICE, ATLAS, CMS, and LHCb Collaborations. Our results demonstrate that the ρ ρ and J/Ψ J/Ψ production in PbPb collisions is dominated by the double-scattering mechanism, while the two-photon mechanism dominates in pp collisions. Moreover, our results indicate that the analysis of the ρ J/Ψ production at LHC can be useful to constrain the double-scattering mechanism.

  20. Evaluation of photon production data from neutron-induced reactions

    SciTech Connect

    Fu, C.Y.

    1980-01-01

    The evaluation methods and procedures used for generating the photon production data in the current Evaluated Nuclear Data File (ENDF/B, Version V) are reviewed. There are 42 materials in the General Purpose File of ENDF/B-V that contain data for prompt photon production. Almost all evaluations had substantial experimental data bases, but fewer than half of them employed any of the following evaluation methods. Only a few used theoretical techniques that are sophisticated enough to ensure internal consistency with other particle production data. Comments are made on four evaluation methods: the empirical formalism of Howerton et al., the Troubetzkoy model, the multiparticle Hauser-Feshbach/precompound model, and the Yost method. Critiques are also made on three procedures used for conserving photon energies in neutron capture reactions. The presence of photon production data in the file is useful for studying energy balance, since photon production generally accounts for a large portion of the reaction energy output. Problems found in energy balance checks are discussed. 9 figures, 1 table.

  1. Improved calculation of total cross section for pair production by relativistic heavy ions

    NASA Technical Reports Server (NTRS)

    Eby, P. B.

    1989-01-01

    A calculation of the total cross section for direct electron-positron pair production by heavy ions is described. It combines the use of the Weizsaecker-Williams method for low-energy transfers and existing calculations for high-energy transfers. Higher-order corrections to the total cross section are calculated based on the Weizsaecher-Williams method and existing results for pair production by photons.

  2. Measurement of Two-Photon Absorption Cross Section of Metal Ions by a Mass Sedimentation Approach

    PubMed Central

    Ma, Zhuo-Chen; Chen, Qi-Dai; Han, Bing; Liu, Xue-Qing; Song, Jun-Feng; Sun, Hong-Bo

    2015-01-01

    The photo-reduction of metal ions in solution induced by femtosecond laser is an important and novel method for fabricating three-dimensional metal microstructures. However, the nonlinear absorption cross section of metal ions remains unknown because its measurement is difficult. In the present study, a method based on Two-Photon Excited Sedimentation (TPES) is proposed to measure the two-photon absorption cross section (TPACS) of metal ions in solution. The power-squared dependence of the amount of sediment on the excitation intensity was confirmed, revealing that 800 nm femtosecond laser induced reduction of metal ions was a two photon absorption process. We believe that the proposed method may be applied to measure the TPACS of several metal ions, thereby opening a new avenue towards future analysis of two-photon absorption materials. PMID:26657990

  3. Measurement of Two-Photon Absorption Cross Section of Metal Ions by a Mass Sedimentation Approach.

    PubMed

    Ma, Zhuo-Chen; Chen, Qi-Dai; Han, Bing; Liu, Xue-Qing; Song, Jun-Feng; Sun, Hong-Bo

    2015-01-01

    The photo-reduction of metal ions in solution induced by femtosecond laser is an important and novel method for fabricating three-dimensional metal microstructures. However, the nonlinear absorption cross section of metal ions remains unknown because its measurement is difficult. In the present study, a method based on Two-Photon Excited Sedimentation (TPES) is proposed to measure the two-photon absorption cross section (TPACS) of metal ions in solution. The power-squared dependence of the amount of sediment on the excitation intensity was confirmed, revealing that 800 nm femtosecond laser induced reduction of metal ions was a two photon absorption process. We believe that the proposed method may be applied to measure the TPACS of several metal ions, thereby opening a new avenue towards future analysis of two-photon absorption materials. PMID:26657990

  4. Asking for an extra photon in Higgs production at the LHC and beyond

    NASA Astrophysics Data System (ADS)

    Gabrielli, Emidio; Mele, Barbara; Piccinini, Fulvio; Pittau, Roberto

    2016-07-01

    We study the inclusive production of a Higgs boson in association with a high- p T photon at the LHC, detailing the leading-order features of the main processes contributing to the Hγ final state. Requiring an extra hard photon in Higgs production upsets the cross-section hierarchy for the dominant channels. The Hγ inclusive production comes mainly from photons radiated in vector-boson fusion (VBF), which accounts for about 2/3 of the total rate, for p T γ, j > 30 GeV, at leading order. On the other hand, radiating a high- p T photon in the main top-loop Higgs channel implies an extra parton in the final state, which suppresses the production rate by a further α S power. As a result, the Hγ production via top loops at the LHC has rates comparable with the ones arising from either the Htoverline{t} production or the HW ( Z)γ associated production. Then, in order of decreasing cross section, comes the single-top-plus-Higgs channel, followed in turn by the heavy-flavor fusion processes boverline{b}to Hγ and coverline{c}to Hγ . The Hγ production via electroweak loops has just a minor role. At larger c.m. energies, the Htoverline{t}γ channel surpasses the total contribution of top-loop processes. In particular, requiring p T γ, j > 30 GeV at √{S}˜eq 100 TeV, Htoverline{t}γ accounts for about 1 /4 of the inclusive Hγ production at leading order, about half of the total being due to VBF production.

  5. Photon scattering cross sections of H2 and He measured with synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Ice, G. E.

    1977-01-01

    Total (elastic + inelastic) differential photon scattering cross sections have been measured for H2 gas and He, using an X-ray beam. Absolute measured cross sections agree with theory within the probable errors. Relative cross sections (normalized to theory at large S) agree to better than one percent with theoretical values calculated from wave functions that include the effect of electron-electron Coulomb correlation, but the data deviate significantly from theoretical independent-particle (e.g., Hartree-Fock) results. The ratios of measured absolute He cross sections to those of H2, at any given S, also agree to better than one percent with theoretical He-to-H2 cross-section ratios computed from correlated wave functions. It appears that photon scattering constitutes a very promising tool for probing electron correlation in light atoms and molecules.

  6. Total cross section for photon absorption by two protons in [sup 3]He

    SciTech Connect

    Emura, T.; Endo, S.; Huber, G.M.; Itoh, H.; Kato, S.; Koike, M.; Konno, O.; Lasiuk, B.; Lolos, G.J.; Maeda, K.; Maki, T.; Maruyama, K.; Miyamoto, H.; Naridomi, R.; Niki, K.; Ogata, T.; Rangacharyulu, C.; Sasaki, A.; Suda, T.; Sumi, Y.; Wada, Y.; Yamazaki, H. Department of Physics, Hiroshima University, Higashi-Hiroshima 724 Department of Physics, University of Regina, Regina, SK, S4S0A2 Department of Physics, Saga University, Saga 840 Institute for Nuclear Study, University of Tokyo, Tanashi, Tokyo 188 Laboratory of Nuclear Science, Tohoku University, Sendai 982 Department of Physics, University of Saskatchewan, Saskatoon, SK, S7N0W0 Department of Physics, Tohoku University, Sendai 980 University of Occupational and Environmental Health, Kitakyushi 807 College of General Education, Akita University, Akita, 010

    1994-07-18

    The [sup 3]He([gamma],[ital pp])[ital n] reaction was investigated in the photon energy range 200--500 MeV using the spectrometer TAGX, which has a solid angle for protons of [pi] sr. Two types of photon absorption, one by two protons and the other by three nucleons, were observed by looking at the undetected neutron momentum distributions. The total cross section for photon absorption by two protons shows that this process is consistent with the [ital E]2 transition.

  7. Recent PHENIX results on hard probes and direct photon production

    NASA Astrophysics Data System (ADS)

    Riabov, V.; PHENIX Collaboration

    2016-02-01

    A hot and dense matter called strongly interacting quark-gluon plasma (sQGP) is created in heavy ion collisions at RHIC energies. Detailed study of the properties of this new state of matter is a driving force of recent research at RHIC. In these proceedings we present most recent PHENIX results for system size and energy dependence of hadron and jet production at high transverse momentum in heavy ion collisions at RHIC. We also report latest results for direct photon production including soft direct photon yields and anisotropic flow.

  8. Diagnosing cross talk faults in dilated omega photonic network

    NASA Astrophysics Data System (ADS)

    Hwang, I.-Shyan; Lee, San-Nan; Jan, Doon-Ze

    1998-06-01

    Photonic switching, is an essential synergetic approach in optical networks, providing virtually unlimited communication bandwidth and transparency to the data rate and encoding, has been developed to provide high bandwidth and avoid the repeated optical-to-electrical (O/E) and electrical-to-optical (E/O) signal conversions. The 2 X 2 directional coupler is a common switching element used in photonic switching networks. Due to the imperfect coupling energy in one path through the another path, crosstalk occurs. A faulty switch is defined as a switch that produces crosstalk beyond the acceptable level. A blocking network, say Dilated Omega Networks (DON), are discussed. One of the characteristics of DON is that the input signal and crosstalk signal will not pass through the same output switch. It relaxes the designs of diagnosing fault algorithm compared to that of Dilated Benes Networks, especially for the reduction of test needed, saving time and effort for the cases, such as single-path-multiple-faults, multiple-path- multiple-faults and crosstalk symmetry. Detail proofs and more examples will be addressed in this paper.

  9. Bidirectional transfer of quantum information for unknown photons via cross-Kerr nonlinearity and photon-number-resolving measurement

    NASA Astrophysics Data System (ADS)

    Jino, Heo; Chang-Ho, Hong; Dong-Hoon, Lee; Hyung-Jin, Yang

    2016-02-01

    We propose an arbitrary controlled-unitary (CU) gate and a bidirectional transfer scheme of quantum information (BTQI) for unknown photons. The proposed CU gate utilizes quantum non-demolition photon-number-resolving measurement based on the weak cross-Kerr nonlinearities (XKNLs) and two quantum bus beams; the proposed CU gate consists of consecutive operations of a controlled-path gate and a gathering-path gate. It is almost deterministic and is feasible with current technology when a strong amplitude of the coherent state and weak XKNLs are employed. Compared with the existing optical multi-qubit or controlled gates, which utilize XKNLs and homodyne detectors, the proposed CU gate can increase experimental realization feasibility and enhance robustness against decoherence. According to the CU gate, we present a BTQI scheme in which the two unknown states of photons between two parties (Alice and Bob) are mutually swapped by transferring only a single photon. Consequently, by using the proposed CU gate, it is possible to experimentally implement the BTQI scheme with a certain probability of success.

  10. Multiple photon production in double parton scattering at the LHC

    NASA Astrophysics Data System (ADS)

    Palota da Silva, R.; Brenner Mariotto, C.; Goncalves, V. P.

    2016-04-01

    The high density of gluons in the initial state of hadronic collisions at LHC implies that the probability of multiple parton interactions within one proton-proton collision increases. In particular, the probability of having two or more hard interactions in a collision is not significantly suppressed with respect to the single interaction probability. In this contribution we study for the first time the production of prompt photons in double parton scattering processes. In particular, we estimate the rapidity distribution for the double Compton process, which leads to two photons plus two jets in the final state. Besides, we study the production of three and four photons in the final state, which are backgrounds to physics beyond the Standard Model.

  11. Nonclassical photon pair production in a voltage-biased Josephson junction.

    PubMed

    Leppäkangas, Juha; Johansson, Göran; Marthaler, Michael; Fogelström, Mikael

    2013-06-28

    We investigate electromagnetic radiation emitted by a small voltage-biased Josephson junction connected to a superconducting transmission line. At frequencies below the well-known emission peak at the Josephson frequency (2eV/h), extra radiation is triggered by quantum fluctuations in the transmission line. For weak tunneling couplings and typical Ohmic transmission lines, the corresponding photon-flux spectrum is symmetric around half the Josephson frequency, indicating that the photons are predominately created in pairs. By establishing an input-output formalism for the microwave field in the transmission line, we give further evidence for this nonclassical photon pair production, demonstrating that it violates the classical Cauchy-Schwarz inequality for two-mode flux cross correlations. In connection to recent experiments, we also consider a stepped transmission line, where resonances increase the signal-to-noise ratio. PMID:23848913

  12. Two-photon excitation cross-section in light and intermediate atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1980-01-01

    The method of explicit summation over the intermediate states is used along with LS coupling to derive an expression for two-photon absorption cross section in light and intermediate atoms in terms of integrals over radial wave functions. Two selection rules, one exact and one approximate, are also derived. In evaluating the radial integrals, for low-lying levels, the Hartree-Fock wave functions, and for high-lying levels, hydrogenic wave functions obtained by the quantum defect method are used. A relationship between the cross section and the oscillator strengths is derived. Cross sections due to selected transitions in nitrogen, oxygen, and chlorine are given. The expression for the cross section is useful in calculating the two-photon absorption in light and intermediate atoms.

  13. Measurement of the inclusive isolated prompt photon cross-section in pp collisions at root s=7 TeV using 35 pb(-1) of ATLAS data

    SciTech Connect

    Aad, G.; Abbott, B; Abdallah, J; Abdelalim, AA; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abramowicz, H; Abreu, H; Acerbi, E; Acharya, BS; Adams, DL; Addy, TN; Adelman, J; Aderholz, M; Adomeit, S; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, JA

    2011-12-06

    A measurement of the differential cross-section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy {radical}s = 7 TeV is presented. The measurement covers the pseudorapidity ranges |{eta}| < 1.37 and 1.52 {le} |{eta}| < 2.37 in the transverse energy range 45 {le} E{sub T} < 400 GeV. The results are based on an integrated luminosity of 35 pb{sup -1}, collected with the ATLAS detector at the LHC. The yields of the signal photons are measured using a data-driven technique, based on the observed distribution of the hadronic energy in a narrow cone around the photon candidate and the photon selection criteria. The results are compared with next-to-leading order perturbative QCD calculations and found to be in good agreement over four orders of magnitude in cross-section.

  14. Quantum teleportation of a generic two-photon state with weak cross-Kerr nonlinearities

    NASA Astrophysics Data System (ADS)

    Wang, Meiyu; Yan, Fengli

    2016-05-01

    We present a scheme for teleporting a generic two-photon polarization state by using two EPR states as quantum channel based on weak cross-Kerr nonlinearities. As the core component of the present framework, the quantum nondemolition detector based on the weak cross-Kerr nonlinearity acts as an EPR entangler as well as the Bell-state analyzer. This makes the teleportation protocol be achieved near deterministically and be feasible in the current experimental technology.

  15. Quantum teleportation of a generic two-photon state with weak cross-Kerr nonlinearities

    NASA Astrophysics Data System (ADS)

    Wang, Meiyu; Yan, Fengli

    2016-08-01

    We present a scheme for teleporting a generic two-photon polarization state by using two EPR states as quantum channel based on weak cross-Kerr nonlinearities. As the core component of the present framework, the quantum nondemolition detector based on the weak cross-Kerr nonlinearity acts as an EPR entangler as well as the Bell-state analyzer. This makes the teleportation protocol be achieved near deterministically and be feasible in the current experimental technology.

  16. Measurement of inclusive isolated prompt photon production at center of mass energy = 7 TeV with the ATLAS

    NASA Astrophysics Data System (ADS)

    Hance, Michael

    Prompt photons at hadron colliders are useful probes of perturbative quantum chromodynamics (pQCD), and are also found in signatures of new physics. A precise measurement of prompt photon production is both a useful test of theoretical models as well as an important step towards understanding final states that contain energetic photons. This thesis presents a measurement of the inclusive isolated prompt photon production cross section in proton-proton collisions at a center-of-mass energy of s = 7 TeV. The data are collected with the ATLAS detector at the Large Hadron Collider, and correspond to 35 pb-1 of integrated luminosity. The measurement is made in four photon pseudorapidity (etagamma) regions: 0 ≤ |etagamma| < 0.6; 0.6 ≤ |etagamma| < 1.37; 1.52 ≤ |eta gamma| < 1.81; and 1.81 ≤ |etagamma| < 2.37; and covers photon transverse energies ( EgT ) in the range 15 GeV ≤ EgT < 400 GeV. Photon candidates are reconstructed and identified through the use of the ATLAS calorimeter and tracking systems. The residual background, primarily from neutral meson decays, is estimated using in-situ techniques based on observed distributions of the total transverse energy in a narrow cone around the photon candidate. The measurements are compared to predictions from next-to-leading order pQCD calculations, with good agreement for photon transverse energies greater than 25 GeV.

  17. Photon-exposure-dependent photon-stimulated desorption for obtaining photolysis cross section of molecules adsorbed on surface by monochromatic soft x-ray photons.

    PubMed

    Chou, L-C; Jang, C-Y; Wu, Y-H; Tsai, W-C; Wang, S-K; Chen, J; Chang, S-C; Liu, C-C; Shai, Y; Wen, C-R

    2008-12-01

    Photon-exposure-dependent positive- and negative-ion photon-stimulated desorption (PSD) was proposed to study the photoreactions and obtain the photolysis cross sections of molecules adsorbed on a single-crystal surface by monochromatic soft x-ray photons with energy near the core level of adsorbate. The changes in the F(+) and F(-) PSD ion yields were measured from CF(3)Cl molecules adsorbed on Si(111)-7x7 at 30 K (CF(3)Cl dose=0.3x10(15) molecules/cm(2), approximately 0.75 monolayer) during irradiation of monochromatic soft x-ray photons near the F(1s) edge. The PSD ion yield data show the following characteristics: (a) The dissociation of adsorbed CF(3)Cl molecules is due to a combination of direct photodissociation via excitation of F(1s) core level and substrate-mediated dissociation [dissociative attachment and dipolar dissociation induced by the photoelectrons emitting from the silicon substrate]. (b) the F(+) ion desorption is associated with the bond breaking of the surface CF(3)Cl, CF(2)Cl, CFCl, and SiF species. (c) the F(-) yield is mainly due to DA and DD of the adsorbed CF(3)Cl molecules. (d) The surface SiF is formed by reaction of the surface Si atom with the neutral fluorine atom, F(+), or F(-) ion produced by scission of C-F bond of CF(3)Cl, CF(2)Cl, or CFCl species. A kinetic model was proposed for the explanation of the photolysis of this submonolayer CF(3)Cl-covered surface. Based on this model and the variation rates of the F(+)F(-) signals during fixed-energy monochromatic photon bombardment at 690.2 and 692.6 eV [near the F(1s) edge], the photolysis cross section was deduced as a function of energy. PMID:19063541

  18. Heavy Meson Production at a Low-Energy Photon Collider

    SciTech Connect

    Asztalos, S

    2004-04-15

    A low-energy {gamma}{gamma} collider has been discussed in the context of a testbed for a {gamma}{gamma} interaction region at the Next Linear Collider(NLC). We consider the production of heavy mesons at such a testbed using Compton-backscattered photons and demonstrate that their production rivals or exceeds those by BELLE, BABAR or LEP where they are produced indirectly via virtual {gamma}{gamma} luminosities.

  19. Measurement of direct photon production in p+p collisions at sqrt[s] = 200 GeV.

    PubMed

    Adler, S S; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Al-Jamel, A; Alexander, J; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Averbeck, R; Awes, T C; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bjorndal, M T; Boissevain, J G; Borel, H; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Chand, P; Chang, W C; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choudhury, R K; Chujo, T; Cianciolo, V; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csanád, M; Csörgo, T; Cussonneau, J P; d'Enterria, D; Das, K; David, G; Deák, F; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Devismes, A; Dietzsch, O; Drachenberg, J L; Drapier, O; Drees, A; Durum, A; Dutta, D; Dzhordzhadze, V; Efremenko, Y V; En'yo, H; Espagnon, B; Esumi, S; Fields, D E; Finck, C; Fleuret, F; Fokin, S L; Fox, B D; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fukao, Y; Fung, S-Y; Gadrat, S; Germain, M; Glenn, A; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Perdekamp, M Grosse; Gustafsson, H-A; Hachiya, T; Haggerty, J S; Hamagaki, H; Hansen, A G; Hartouni, E P; Harvey, M; Hasuko, K; Hayano, R; He, X; Heffner, M; Hemmick, T K; Heuser, J M; Hidas, P; Hiejima, H; Hill, J C; Hobbs, R; Holzmann, W; Homma, K; Hong, B; Hoover, A; Horaguchi, T; Ichihara, T; Ikonnikov, V V; Imai, K; Inaba, M; Inuzuka, M; Isenhower, D; Isenhower, L; Ishihara, M; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kaneta, M; Kang, J H; Katou, K; Kawabata, T; Kazantsev, A V; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D J; Kim, E; Kim, G-B; Kim, H J; Kinney, E; Kiss, A; Kistenev, E; Kiyomichi, A; Klein-Boesing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Kohara, R; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kuberg, C H; Kunde, G J; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lajoie, J G; Le Bornec, Y; Lebedev, A; Leckey, S; Lee, D M; Leitch, M J; Leite, M A L; Li, X H; Lim, H; Litvinenko, A; Liu, M X; Maguire, C F; Makdisi, Y I; Malakhov, A; Manko, V I; Mao, Y; Martinez, G; Masui, H; Matathias, F; Matsumoto, T; McCain, M C; McGaughey, P L; Miake, Y; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mukhopadhyay, D; Muniruzzaman, M; Nagamiya, S; Nagle, J L; Nakamura, T; Newby, J; Nyanin, A S; Nystrand, J; O'brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, H; Okada, K; Oskarsson, A; Otterlund, I; Oyama, K; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Penev, V; Peng, J-C; Pereira, H; Peresedov, V; Pierson, A; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qualls, J M; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rykov, V L; Ryu, S S; Saito, N; Sakaguchi, T; Sakai, S; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Semenov, V; Seto, R; Shea, T K; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Sickles, A; Silva, C L; Silvermyr, D; Sim, K S; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Sullivan, J P; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Thomas, T L; Togawa, M; Tojo, J; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Tydesjö, H; Tyurin, N; Uam, T J; Velkovska, J; Velkovsky, M; Veszprémi, V; Vinogradov, A A; Volkov, M A; Vznuzdaev, E; Wang, X R; Watanabe, Y; White, S N; Willis, N; Wohn, F K; Woody, C L; Xie, W; Yanovich, A; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zhou, S; Zimányi, J; Zolin, L; Zong, X; Van Hecke, H W

    2007-01-01

    Cross sections for midrapidity production of direct photons in p+p collisions at the Relativistic Heavy Ion Collider (RHIC) are reported for transverse momenta of 3 < pT < 16 GeV/c. Next-to-leading order perturbative QCD (pQCD) describes the data well for pT >5 GeV/c, where the uncertainties of the measurement and theory are comparable. We also report on the effect of requiring the photons to be isolated from parton jet energy. The observed fraction of isolated photons is well described by pQCD for pT >7 GeV/c. PMID:17358469

  20. Study of χc2 production in photon-photon collisions

    NASA Astrophysics Data System (ADS)

    Bauer, D. A.; Belcinski, R.; Berg, R. C.; Bingham, H. H.; Buchanan, C. D.; Caldwell, D. O.; Chun, S.-B.; Clark, A. R.; Dahl, O. I.; Daoudi, M.; Eastman, J. J.; Eisner, A. M.; Fairfield, K. H.; Godfrey, G.; Greenbaum, G. S.; Hauptman, J. M.; Hofmann, W.; Holtzapple, R. L.; Khacheryan, S.; Knöpfle, K. T.; Kofler, R. R.; Lambert, D. J.; Layter, J. G.; Lin, W. T.; Loken, S. C.; Lu, A.; Lynch, G. R.; Lys, J. E.; Madaras, R. J.; Marsiske, H.; Masek, G. E.; Miller, E. S.; Nicol, N. A.; Nygren, D. R.; Oyang, Y.-T.; Paar, H. P.; Palounek, A. P. T.; Pellet, D. E.; Ronan, M. T.; Ross, R. R.; Shapiro, G.; Shen, B. C.; Stephens, R. W.; Stevenson, M. L.; Strauss, M. G.; Sullivan, M. K.; Vernon, W.; Wang, E. M.; Wang, Y. X.; Wenzel, W. A.; Yamamoto, H.; Yellin, S. J.; Yost, G. P.; Zapalac, G.; Zeitlin, C.

    1993-03-01

    Two-photon production of the charmonium state χc has been studied by the TPC/Two-Gamma experiment at the SLAC e+e- collider PEP. We observe evidence of the χc2 state in the channel γγ-->χc2, χc2-->γJ/ψ, J/ψ-->l+l- and obtain a value of Γγγ(χc2)=3.4+/-1.7+/-0.9 keV. This is the first observation of the two-photon production of a χc state. Comparison is made with previous experimental results and QCD predictions for Γγγ(χc2).

  1. Effects of self- and cross-phase modulation on photon purity for four-wave-mixing photon pair sources

    NASA Astrophysics Data System (ADS)

    Bell, Bryn; McMillan, Alex; McCutcheon, Will; Rarity, John

    2015-11-01

    We consider the effect of self-phase modulation and cross-phase modulation on the joint spectral amplitude of photon pairs generated by spontaneous four-wave mixing. In particular, the purity of a heralded photon from a pair is considered in the context of schemes that aim to maximize the purity and minimize correlation in the joint spectral amplitude using birefringent phase matching and short pump pulses. We find that nonlinear phase-modulation effects will be detrimental and will limit the quantum interference visibility that can be achieved at a given generation rate. An approximate expression for the joint spectral amplitude with phase modulation is found by considering the group velocity walk-off between each photon and the pump but neglecting the group-velocity dispersion at each wavelength. The group-velocity dispersion can also be included with a numerical calculation, and it is shown that it has only a small effect on the purity for the realistic parameters considered.

  2. Absolute Absorption Cross Sections from Photon Recoil in a Matter-Wave Interferometer

    NASA Astrophysics Data System (ADS)

    Eibenberger, Sandra; Cheng, Xiaxi; Cotter, J. P.; Arndt, Markus

    2014-06-01

    We measure the absolute absorption cross section of molecules using a matter-wave interferometer. A nanostructured density distribution is imprinted onto a dilute molecular beam through quantum interference. As the beam crosses the light field of a probe laser some molecules will absorb a single photon. These absorption events impart a momentum recoil which shifts the position of the molecule relative to the unperturbed beam. Averaging over the shifted and unshifted components within the beam leads to a reduction of the fringe visibility, enabling the absolute absorption cross section to be extracted with high accuracy. This technique is independent of the molecular density, it is minimally invasive and successfully eliminates many problems related to photon cycling, state mixing, photobleaching, photoinduced heating, fragmentation, and ionization. It can therefore be extended to a wide variety of neutral molecules, clusters, and nanoparticles.

  3. Coherent Two Photon Production in Superconductor-Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Baireuther, Paul; Vekhter, Ilya; Schmalian, Jörg

    2012-02-01

    Connecting a thin (direct band gap) p-n junction to a superconductor allows Cooper pairs to tunnel into the junction. This leads to an enhancement of the luminescence at the junction via Cooper pair based radiative recombination[1,2], an effect that has recently been observed experimentally[3]. Due to the proximity-induced Cooper pairs in the junction, anomalous photon production related to coherent two photon processes becomes allowed. Using a simple model for direct band gap luminescence we study a superconductor-p-n-superconductor heterostructure where the two photon state depends on the relative phase between the two superconductors. We investigate to what extend the production rate of entangled photons is controlled by the phase difference between the attached superconductors. [1] E. Hanamura, Phys. Stat. Sol. (b) 234, 166 (2002). [2] Y. Asano, I. Suemune, H. Takayanagi, and E. Hanamura, Phys. Rev. Lett. 103, 187001 (2009). [3] I. Suemune, T. Akazaki, K. Tanaka, M. Jo, K. Uesugi, M. Endo1, H. Kumano, E. Hanamura, H. Takayanagi, M. Yamanishi and H. Kan, Jpn. Journ. of Appl. Phys. 45, 9264 (2006).

  4. Higgs boson pair production in new physics models at hadron, lepton, and photon colliders

    NASA Astrophysics Data System (ADS)

    Asakawa, Eri; Harada, Daisuke; Kanemura, Shinya; Okada, Yasuhiro; Tsumura, Koji

    2010-12-01

    We study Higgs boson pair production processes at future hadron and lepton colliders including the photon collision option in several new physics models; i.e., the two-Higgs-doublet model, the scalar leptoquark model, the sequential fourth generation fermion model and the vectorlike quark model. Cross sections for these processes can deviate significantly from the standard model predictions due to the one-loop correction to the triple Higgs boson coupling constant. For the one-loop induced processes such as gg→hh and γγ→hh, where h is the (lightest) Higgs boson and g and γ respectively represent a gluon and a photon, the cross sections can also be affected by new physics particles via additional one-loop diagrams. In the two-Higgs-doublet model and scalar leptoquark models, cross sections of e+e-→hhZ and γγ→hh can be enhanced due to the nondecoupling effect in the one-loop corrections to the triple Higgs boson coupling constant. In the sequential fourth generation fermion model, the cross section for gg→hh becomes very large because of the loop effect of the fermions. In the vectorlike quark model, effects are small because the theory has decoupling property. Measurements of the Higgs boson pair production processes can be useful to explore new physics through the determination of the Higgs potential.

  5. Higgs boson pair production in new physics models at hadron, lepton, and photon colliders

    SciTech Connect

    Asakawa, Eri; Harada, Daisuke; Okada, Yasuhiro; Kanemura, Shinya; Tsumura, Koji

    2010-12-01

    We study Higgs boson pair production processes at future hadron and lepton colliders including the photon collision option in several new physics models; i.e., the two-Higgs-doublet model, the scalar leptoquark model, the sequential fourth generation fermion model and the vectorlike quark model. Cross sections for these processes can deviate significantly from the standard model predictions due to the one-loop correction to the triple Higgs boson coupling constant. For the one-loop induced processes such as gg{yields}hh and {gamma}{gamma}{yields}hh, where h is the (lightest) Higgs boson and g and {gamma} respectively represent a gluon and a photon, the cross sections can also be affected by new physics particles via additional one-loop diagrams. In the two-Higgs-doublet model and scalar leptoquark models, cross sections of e{sup +}e{sup -}{yields}hhZ and {gamma}{gamma}{yields}hh can be enhanced due to the nondecoupling effect in the one-loop corrections to the triple Higgs boson coupling constant. In the sequential fourth generation fermion model, the cross section for gg{yields}hh becomes very large because of the loop effect of the fermions. In the vectorlike quark model, effects are small because the theory has decoupling property. Measurements of the Higgs boson pair production processes can be useful to explore new physics through the determination of the Higgs potential.

  6. Exceptionally large two- and three-photon absorption cross-sections by OPV organometalation.

    PubMed

    Gao, Beibei; Mazur, Leszek M; Morshedi, Mahbod; Barlow, Adam; Wang, Huan; Quintana, Cristóbal; Zhang, Chi; Samoc, Marek; Cifuentes, Marie P; Humphrey, Mark G

    2016-07-01

    Oligo(p-phenylenevinylene)s (OPVs) containing up to 8 PV units and end-functionalized by ruthenium alkynyl groups have been prepared and their nonlinear absorption properties assessed using the Z-scan technique and employing low repetition rate femtosecond pulses. Exceptionally large two-photon absorption (ca. 12 500 GM at 725 nm) and three-photon absorption cross sections (ca. 1.6 × 10(-76) cm(6) s(2) at 1100 nm) are found for the 8PV-containing example, highlighting the potential of an "organometalation" approach to NLO-efficient organic materials. PMID:27297290

  7. D0 results on diphoton direct production and double parton interactions in photon + 3 jet events

    SciTech Connect

    Sawyer, Lee; /Louisiana Tech. U.

    2010-01-01

    We report the measurement of differential diphoton direct production cross sections and a study of photon + 3-jet events with double parton (DP) interactions, based on data taken with the D0 experiment at the Fermilab Tevatron proton-antiproton collider. We measure single differential cross sections as a function of the diphoton mass, the transverse momentum of the diphoton system, the azimuthal angle between the photons, and the polar scattering angle of the photons. In addition, we measure double differential cross sections considering the last three kinematic variables in three diphoton mass bins. The results are compared with different perturbative QCD predictions and event generators. We have used a sample of photon + 3-jet events collected by the D0 experiment with an integrated luminosity of about 1 fb{sup -1} to determine the fraction of events with double parton scattering (f{sub DP}) in a single p{bar p} collision at {radical}s = 1.96 TeV. The DP fraction and effective cross section ({sigma}{sub eff}), a process-independent scale parameter related to the parton density inside the nucleon, are measured in three intervals of the second (ordered in p{sub T}) jet transverse momentum p{sub T}{sup jet2} within the range 15 < p{sub T}{sup jet} < 30 GeV. In this range, f{sub DP} varies between 0.23 < f{sub DP} < 0.47, while {sigma}{sub eff} has the average value {sigma}{sub eff}{sup ave} = 16.4 {+-} 0.3(stat) {+-} 2.3(syst) mb.

  8. One-sided imaging of large, dense objects using the 511 keV photons from induced pair production

    SciTech Connect

    Tavora, L.M.; Gilboy, W.B.; Morton, E.J.; Morgado, R.E.; Estep, R.J.; Rawool-Sullivan, M.

    1998-03-01

    The use of annihilation photons from photon-induced electron-positron pair production as a means of inspecting objects when only one side is accessible is described. The Z2 dependence of the pair production cross section and the high penetration of 511 keV photons suggest that this method should be capable of localizing high Z materials in lower Z matrices. The experimental results for the dependence of the back streaming photon yield on Z indicate that dynamic ranges of the order of 20 may be obtained for materials with 4 < Z < 82. Results for point to point images obtained in line scans of representative geometries are also shown. Simulation studies based on the EGS4 Monte Carlo code were also performed and their results show an agreement with experimental data of the order of 5%.

  9. Consistent simulation of direct-photon production in hadron collisions including associated two-jet production

    NASA Astrophysics Data System (ADS)

    Odaka, Shigeru; Kurihara, Yoshimasa

    2016-05-01

    We have developed an event generator for direct-photon production in hadron collisions, including associated 2-jet production in the framework of the GR@PPA event generator. The event generator consistently combines γ + 2-jet production processes with the lowest-order γ + jet and photon-radiation (fragmentation) processes from quantum chromodynamics (QCD) 2-jet production using a subtraction method. The generated events can be fed to general-purpose event generators to facilitate the addition of hadronization and decay simulations. Using the obtained event information, we can simulate photon isolation and hadron-jet reconstruction at the particle (hadron) level. The simulation reasonably reproduces measurement data obtained at the large hadron collider (LHC) concerning not only the inclusive photon spectrum, but also the correlation between the photon and jet. The simulation implies that the contribution of the γ + 2-jet is very large, especially in low photon-pT ( ≲ 50 GeV) regions. Discrepancies observed at low pT, although marginal, may indicate the necessity for the consideration of further higher-order processes. Unambiguous particle-level definition of the photon-isolation condition for the signal events is desired to be given explicitly in future measurements.

  10. Direct Photon Production and Gluon Polarization Measurements in Proton-Proton Collisions at PHENIX

    NASA Astrophysics Data System (ADS)

    Feege, Nils; Phenix Collaboration

    2015-10-01

    Direct photons probe the hard scattering process in proton-proton collisions. The channel that dominates their production in these collisions is ``the inverse QCD Compton effect,'' g + q --> γ + q . Calculating this process requires no photon fragmentation function, which facilitates comparisons between theories and experiments. In polarized p+p collisions, direct photons help determine the proton spin structure. At leading order, the longitudinal double-spin asymmetry ALL is directly proportional to the product of quark and gluon polarizations. The polarized quark distributions are known from polarized lepton-proton scattering experiments. Using them together with ALL measurements allows to access both the magnitude and sign of the polarized gluon distribution. The PHENIX experiment has collected data from polarized p+p collisions at RHIC at center of mass energies of 200 GeV and 500 GeV. This talk presents the status of direct photon cross section measurements and ALL measurements at midrapidity (| η | < 0 . 35) using these data.

  11. Production of χc2 mesons in photon-photon collisions at LEP

    NASA Astrophysics Data System (ADS)

    OPAL Collaboration; Ackerstaff, K.; Alexander, G.; Allison, J.; Altekamp, N.; Anderson, K. J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S. F.; Axen, D.; Azuelos, G.; Ball, A. H.; Barberio, E.; Barillari, T.; Barlow, R. J.; Bartoldus, R.; Batley, J. R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, K. W.; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bird, S. D.; Blobel, V.; Bloodworth, I. J.; Bobinski, M.; Bock, P.; Böhme, J.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brown, R. M.; Burckhart, H. J.; Burgard, C.; Bürgin, R.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrisman, D.; Ciocca, C.; Clarke, P. E. L.; Clay, E.; Cohen, I.; Conboy, J. E.; Cooke, O. C.; Couyoumtzelis, C.; Coxe, R. L.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Davis, R.; de Jong, S.; del Pozo, L. A.; de Roeck, A.; Desch, K.; Dienes, B.; Dixit, M. S.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I. P.; Eatough, D.; Estabrooks, P. G.; Etzion, E.; Evans, H. G.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A. A.; Fiedler, F.; Fierro, M.; Fleck, I.; Folman, R.; Fürtjes, A.; Futyan, D. I.; Gagnon, P.; Gary, J. W.; Gascon, J.; Gascon-Shotkin, S. M.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W. R.; Gingrich, D. M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwé, M.; Hanson, G. G.; Hansroul, M.; Hapke, M.; Harder, K.; Hargrove, C. K.; Hartmann, C.; Hauschild, M.; Hawkes, C. M.; Hawkings, R.; Hemingway, R. J.; Herndon, M.; Herten, G.; Heuer, R. D.; Hildreth, M. D.; Hill, J. C.; Hillier, S. J.; Hobson, P. R.; Hocker, A.; Homer, R. J.; Honma, A. K.; Horváth, D.; Hossain, K. R.; Howard, R.; Hüntemeyer, P.; Igo-Kemenes, P.; Imrie, D. C.; Ishii, K.; Jacob, F. R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C. R.; Jovanovic, P.; Junk, T. R.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P. I.; Keeler, R. K.; Kellogg, R. G.; Kennedy, B. W.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D. S.; Kokott, T. P.; Kolrep, M.; Komamiya, S.; Kowalewski, R. V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kyberd, P.; Lafferty, G. D.; Lanske, D.; Lauber, J.; Lautenschlager, S. R.; Lawson, I.; Layter, J. G.; Lazic, D.; Lee, A. M.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A. W.; Lloyd, S. L.; Loebinger, F. K.; Long, G. D.; Losty, M. J.; Ludwig, J.; Liu, D.; Macchiolo, A.; MacPherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Martin, A. J.; Martin, J. P.; Martinez, G.; Mashimo, T.; Mättig, P.; McDonald, W. J.; McKenna, J.; McKigney, E. A.; McMahon, T. J.; McPherson, R. A.; Meijers, F.; Menke, S.; Merritt, F. S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D. J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H. A.; Nellen, B.; Nisius, R.; O'Neale, S. W.; Oakham, F. G.; Odorici, F.; Ogren, H. O.; Oreglia, M. J.; Orito, S.; Pálinkás, J.; Pásztor, G.; Pater, J. R.; Patrick, G. N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J. E.; Pinfold, J.; Plane, D. E.; Poffenberger, P.; Poli, B.; Polok, J.; Przybycień , M.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S. A.; Rodning, N.; Roney, J. M.; Roscoe, K.; Rossi, A. M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D. R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W. M.; Sarkisyan, E. K. G.; Sbarra, C.; Schaile, A. D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schieck, J.; Schmitt, B.; Schmitt, S.; Schöning, A.; Schröder, M.; Schumacher, M.; Schwick, C.; Scott, W. G.; Seuster, R.; Shears, T. G.; Shen, B. C.; Shepherd-Themistocleous, C. H.; Sherwood, P.; Siroli, G. P.; Sittler, A.; Skuja, A.; Smith, A. M.; Snow, G. A.; Sobie, R.; Söldner-Rembold, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, D.; Ströhmer, R.; Surrow, B.; Talbot, S. D.; Tanaka, S.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomson, M. A.; von Törne, E.; Torrence, E.; Towers, S.; Trigger, I.; Trócsányi, Z.; Tsur, E.; Turcot, A. S.; Turner-Watson, M. F.; van Kooten, R.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wäckerle, F.; Wagner, A.; Ward, C. P.; Ward, D. R.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Wells, P. S.; Wermes, N.; White, J. S.; Wilson, G. W.; Wilson, J. A.; Wyatt, T. R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1998-10-01

    We present an observation at LEP of the production of χc2 mesons in the collisions of two quasi-real photons using the OPAL detector. The χc2 mesons are reconstructed in the decay channel χc2-->J/ψ γ-->l+ l- γ (with l = e,μ) using all data taken at e+e- centre-of-mass energies of 91 and 183 GeV, corresponding to integrated luminosities of 167 and 55 pb-1 respectively. The two-photon width of the χc2 is determined to be Γ(χc2-->γγ)=1.76+/-0.47+/- 0.37+/-0.15 keV, where the first error is statistical, the second is systematic and the third comes from branching ratio uncertainties.

  12. Born-approximation and radiative corrections to pair production in photon-photon collisions

    NASA Technical Reports Server (NTRS)

    Gould, Robert J.

    1989-01-01

    Aspects of pair production in photon-photon collisions, which can be of great importance in a variety of astrophysical settings, are examined. In particular, the correction associated with the use of Coulomb rather than plane-wave functions to describe the outgoing e(+) e(-) is evaluated. This is important only in the energy domain near threshold where e(+) e(-) are nonrelativistic, and the effect is evaluated. Because of the extreme simplicity of the nonrelativistic Born limit, the corresponding derivation is briefly outlined using noncovariant perturbation theory. The relative magnitude of the Born correction is comparable to radiative-correction effects. These effects can be evaluated easily in the nonrelativistic limit, and an approximate calculation is outlined.

  13. An analysis of MCNP cross-sections and tally methods for low-energy photon emitters

    NASA Astrophysics Data System (ADS)

    DeMarco, John J.; Wallace, Robert E.; Boedeker, Kirsten

    2002-04-01

    Monte Carlo calculations are frequently used to analyse a variety of radiological science applications using low-energy (10-1000 keV) photon sources. This study seeks to create a low-energy benchmark for the MCNP Monte Carlo code by simulating the absolute dose rate in water and the air-kerma rate for monoenergetic point sources with energies between 10 keV and 1 MeV. The analysis compares four cross-section datasets as well as the tally method for collision kerma versus absorbed dose. The total photon attenuation coefficient cross-section for low atomic number elements has changed significantly as cross-section data have changed between 1967 and 1989. Differences of up to 10% are observed in the photoelectric cross-section for water at 30 keV between the standard MCNP cross-section dataset (DLC-200) and the most recent XCOM/NIST tabulation. At 30 keV, the absolute dose rate in water at 1.0 cm from the source increases by 7.8% after replacing the DLC-200 photoelectric cross-sections for water with those from the XCOM/NIST tabulation. The differences in the absolute dose rate are analysed when calculated with either the MCNP absorbed dose tally or the collision kerma tally. Significant differences between the collision kerma tally and the absorbed dose tally can occur when using the DLC-200 attenuation coefficients in conjunction with a modern tabulation of mass energy-absorption coefficients.

  14. Ratio of isolated photon cross sections in pp macro collisions at square root of s = 630 and 1800 GeV.

    PubMed

    Abazov, V M; Abbott, B; Abdesselam, A; Abolins, M; Abramov, V; Acharya, B S; Adams, D L; Adams, M; Ahmed, S N; Alexeev, G D; Alton, A; Alves, G A; Amos, N; Anderson, E W; Arnoud, Y; Avila, C; Baarmand, M M; Babintsev, V V; Babukhadia, L; Bacon, T C; Baden, A; Baldin, B; Balm, P W; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Beaudette, F; Begel, M; Belyaev, A; Beri, S B; Bernardi, G; Bertram, I; Besson, A; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Bhattacharjee, M; Blazey, G; Blekman, F; Blessing, S; Boehnlein, A; Bojko, N I; Borcherding, F; Bos, K; Bose, T; Brandt, A; Breedon, R; Briskin, G; Brock, R; Brooijmans, G; Bross, A; Buchholz, D; Buehler, M; Buescher, V; Burtovoi, V S; Butler, J M; Canelli, F; Carvalho, W; Casey, D; Casilum, Z; Castilla-Valdez, H; Chakraborty, D; Chan, K M; Chekulaev, S V; Cho, D K; Choi, S; Chopra, S; Christenson, J H; Chung, M; Claes, D; Clark, A R; Cochran, J; Coney, L; Connolly, B; Cooper, W E; Coppage, D; Crépé-Renaudin, S; Cummings, M A; Cutts, D; Davis, G A; Davis, K; De, K; de Jong, S J; Del Signore, K; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doulas, S; Ducros, Y; Dudko, L V; Duensing, S; Duflot, L; Dugad, S R; Duperrin, A; Dyshkant, A; Edmunds, D; Ellison, J; Elvira, V D; Engelmann, R; Eno, S; Eppley, G; Ermolov, P; Eroshin, O V; Estrada, J; Evans, H; Evdokimov, V N; Fahland, T; Feher, S; Fein, D; Ferbel, T; Filthaut, F; Fisk, H E; Fisyak, Y; Flattum, E; Fleuret, F; Fortner, M; Fox, H; Frame, K C; Fu, S; Fuess, S; Gallas, E; Galyaev, A N; Gao, M; Gavrilov, V; Genik, R J; Genser, K; Gerber, C E; Gershtein, Y; Gilmartin, R; Ginther, G; Gómez, B; Gómez, G; Goncharov, P I; González Solís, J L; Gordon, H; Goss, L T; Gounder, K; Goussiou, A; Graf, N; Graham, G; Grannis, P D; Green, J A; Greenlee, H; Greenwood, Z D; Grinstein, S; Groer, L; Grünendahl, S; Gupta, A; Gurzhiev, S N; Gutierrez, G; Gutierrez, P; Hadley, N J; Haggerty, H; Hagopian, S; Hagopian, V; Hall, R E; Hanlet, P; Hansen, S; Hauptman, J M; Hays, C; Hebert, C; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Heuring, T; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Huang, Y; Illingworth, R; Ito, A S; Jaffré, M; Jain, S; Jesik, R; Johns, K; Johnson, M; Jonckheere, A; Jöstlein, H; Juste, A; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Karmanov, D; Karmgard, D; Kehoe, R; Khanov, A; Kharchilava, A; Kim, S K; Klima, B; Knuteson, B; Ko, W; Kohli, J M; Kostritskiy, A V; Kotcher, J; Kothari, B; Kotwal, A V; Kozelov, A V; Kozlovsky, E A; Krane, J; Krishnaswamy, M R; Krivkova, P; Krzywdzinski, S; Kubantsev, M; Kuleshov, S; Kulik, Y; Kunori, S; Kupco, A; Kuznetsov, V E; Landsberg, G; Lee, W M; Leflat, A; Leggett, C; Lehner, F; Li, J; Li, Q Z; Li, X; Lima, J G; Lincoln, D; Linn, S L; Linnemann, J; Lipton, R; Lucotte, A; Lueking, L; Lundstedt, C; Luo, C; Maciel, A K; Madaras, R J; Malyshev, V L; Manankov, V; Mao, H S; Marshall, T; Martin, M I; Mauritz, K M; May, B; Mayorov, A A; McCarthy, R; McMahon, T; Melanson, H L; Merkin, M; Merritt, K W; Miao, C; Miettinen, H; Mihalcea, D; Mishra, C S; Mokhov, N; Mondal, N K; Montgomery, H E; Moore, R W; Mostafa, M; da Motta, H; Nagy, E; Nang, F; Narain, M; Narasimham, V S; Naumann, N A; Neal, H A; Negret, J P; Negroni, S; Nunnemann, T; O'Neil, D; Oguri, V; Olivier, B; Oshima, N; Padley, P; Pan, L J; Papageorgiou, K; Para, A; Parashar, N; Partridge, R; Parua, N; Paterno, M; Patwa, A; Pawlik, B; Perkins, J; Peters, O; Pétroff, P; Piegaia, R; Pope, B G; Popkov, E; Prosper, H B; Protopopescu, S; Przybycien, M B; Qian, J; Raja, R; Rajagopalan, S; Ramberg, E; Rapidis, P A; Reay, N W; Reucroft, S; Ridel, M; Rijssenbeek, M; Rizatdinova, F; Rockwell, T; Roco, M; Royon, C; Rubinov, P; Ruchti, R; Rutherfoord, J; Sabirov, B M; Sajot, G; Santoro, A; Sawyer, L; Schamberger, R D; Schellman, H; Schwartzman, A; Sen, N; Shabalina, E; Shivpuri, R K; Shpakov, D; Shupe, M; Sidwell, R A; Simak, V; Singh, H; Singh, J B; Sirotenko, V; Slattery, P; Smith, E; Smith, R P; Snihur, R; Snow, G R; Snow, J; Snyder, S; Solomon, J; Song, Y; Sorín, V; Sosebee, M; Sotnikova, N; Soustruznik, K; Souza, M; Stanton, N R; Steinbrück, G; Stephens, R W; Stichelbaut, F; Stoker, D; Stolin, V; Stone, A; Stoyanova, D A; Strang, M A; Strauss, M; Strovink, M; Stutte, L; Sznajder, A; Talby, M; Taylor, W; Tentindo-Repond, S; Tripathi, S M; Trippe, T G; Turcot, A S; Tuts, P M; Vaniev, V; Van Kooten, R; Varelas, N; Vertogradov, L S; Villeneuve-Seguier, F; Volkov, A A; Vorobiev, A P; Wahl, H D; Wang, H; Wang, Z M; Warchol, J; Watts, G; Wayne, M; Weerts, H; White, A; White, J T; Whiteson, D; Wightman, J A; Wijngaarden, D A; Willis, S; Wimpenny, S J; Womersley, J; Wood, D R; Xu, Q; Yamada, R; Yamin, P; Yasuda, T; Yatsunenko, Y A; Yip, K; Youssef, S; Yu, J; Yu, Z; Zanabria, M; Zhang, X; Zheng, H; Zhou, B; Zhou, Z; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G; Zylberstejn, A

    2001-12-17

    The inclusive cross section for production of isolated photons has been measured in pp macro collisions at square root of s = 630 GeV with the D0 detector at the Fermilab Tevatron Collider. The photons span a transverse energy (E(T)) range from 7-49 GeV and have pseudorapidity absolute value of eta < 2.5. This measurement is combined with the previous D0 result at square root of s = 1800 GeV to form a ratio of the cross sections. Comparison of next-to-leading-order QCD with the measured cross section at 630 GeV and the ratio of cross sections show satisfactory agreement in most of the E(T) range. PMID:11736564

  15. Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers.

    PubMed

    Nazirizadeh, Yousef; Bog, Uwe; Sekula, Sylwia; Mappes, Timo; Lemmer, Uli; Gerken, Martina

    2010-08-30

    There is a strong need for low-cost biosensors to enable rapid, on-site analysis of biological, biomedical, or chemical substances. We propose a platform for label-free optical biosensors based on applying the analyte onto a surface-functionalized photonic crystal slab and performing a transmission measurement with two crossed polarization filters. This dark-field approach allows for efficient background suppression as only the photonic crystal guided-mode resonances interacting with the functionalized surface experience significant polarization rotation. We present a compact biosensor demonstrator using a low-cost light emitting diode and a simple photodiode capable of detecting the binding kinetics of a 2.5 nM solution of the protein streptavidin on a biotin-functionalized photonic crystal surface. PMID:20940807

  16. Photon-exposure-dependent photon-stimulated desorption for obtaining photolysis cross section of molecules adsorbed on surface by monochromatic soft x-ray photons

    SciTech Connect

    Chou, L.-C.; Jang, C.-Y.; Wu, Y.-H.; Tsai, W.-C.; Wang, S.-K.; Chen, J.; Chang, S.-C.; Liu, C.-C.; Shai, Y.; Wen, C.-R.

    2008-12-07

    Photon-exposure-dependent positive- and negative-ion photon-stimulated desorption (PSD) was proposed to study the photoreactions and obtain the photolysis cross sections of molecules adsorbed on a single-crystal surface by monochromatic soft x-ray photons with energy near the core level of adsorbate. The changes in the F{sup +} and F{sup -} PSD ion yields were measured from CF{sub 3}Cl molecules adsorbed on Si(111)-7x7 at 30 K (CF{sub 3}Cl dose=0.3x10{sup 15} molecules/cm{sup 2}, {approx}0.75 monolayer) during irradiation of monochromatic soft x-ray photons near the F(1s) edge. The PSD ion yield data show the following characteristics: (a) The dissociation of adsorbed CF{sub 3}Cl molecules is due to a combination of direct photodissociation via excitation of F(1s) core level and substrate-mediated dissociation [dissociative attachment and dipolar dissociation induced by the photoelectrons emitting from the silicon substrate]. (b) the F{sup +} ion desorption is associated with the bond breaking of the surface CF{sub 3}Cl, CF{sub 2}Cl, CFCl, and SiF species. (c) the F{sup -} yield is mainly due to DA and DD of the adsorbed CF{sub 3}Cl molecules. (d) The surface SiF is formed by reaction of the surface Si atom with the neutral fluorine atom, F{sup +}, or F{sup -} ion produced by scission of C-F bond of CF{sub 3}Cl, CF{sub 2}Cl, or CFCl species. A kinetic model was proposed for the explanation of the photolysis of this submonolayer CF{sub 3}Cl-covered surface. Based on this model and the variation rates of the F{sup +}/F{sup -} signals during fixed-energy monochromatic photon bombardment at 690.2 and 692.6 eV[near the F(1s) edge], the photolysis cross section was deduced as a function of energy.

  17. One-photon double ionization of helium: A heuristic formula for the cross section

    NASA Astrophysics Data System (ADS)

    Førre, Morten

    2012-01-01

    Without a formal derivation, we propose a formula for the total and single-differential cross sections in the problem of one-photon double ionization of an atom. The formula is benchmarked against accurate experimental data for the total cross section of helium. Furthermore, a direct comparison with ab initio calculations for the double ionization of Li+ suggests that the framework is valid for the entire helium isoelectronic sequence. To this end, we introduce a formula for the double ionization of lithium as well as for the triple ionization of lithium and beryllium.

  18. Triple Differential Cross sections and Nuclear Recoil in Two-Photon Double Ionization of Helium

    SciTech Connect

    Horner, Daniel A.; McCurdy, C. William; Rescigno, Thomas N

    2008-04-29

    Triple differential cross sections (TDCS) for two-photon double ionization of helium are calculated using the method of exterior complex scaling both above and below the threshold for sequential ionization (54.4 eV). It is found that sequential ionization produces characteristic behavior in the TDCS that identifies that process when it is in competition with nonsequential ionization. Moreover we see the signature in the TDCS and nuclear recoil cross sections of"virtual sequential ionization" below the threshold for the sequential process.

  19. Au photofission cross section by quasimonochromatic photons in the intermediate energy region

    SciTech Connect

    Lucherini, V.; Guaraldo, C.; De Sanctis, E.; Sandri, P.L.; Polli, E.; Reolon, A.R.; Iljinov, A.S.; Lo Nigro, S.; Aiello, S.; Bellini, V.; and others

    1989-03-01

    The photofission cross section of Au was determined in the energy range 100--300 MeV by means of a quasimonochromatic photon beam. The nuclear fissility P/sub f/ was calculated using the recently measured total photoabsorption cross sections. The nuclear excitation energy E/sup */, charge and mass of compound nucleus were obtained by means of an intranuclear cascade Monte Carlo calculation. The fissility values determined for Au, Bi, and U were compared with the predictions of the cascade-evaporation model and remarkably fitted by the calculation.

  20. Microfabrication of Photo-Cross-Linked Hyaluronan Hydrogels by Single- and Two-Photon Tyramine Oxidation.

    PubMed

    Loebel, Claudia; Broguiere, Nicolas; Alini, Mauro; Zenobi-Wong, Marcy; Eglin, David

    2015-09-14

    Photo-cross-linking of tyramine-substituted hyaluronan (HA-Tyr) hydrogels is demonstrated for the first time. HA-Tyr hydrogels are fabricated via a rapid photosensitized process using visible light illumination. Nontoxic conditions offer photoencapsulation of human mesenchymal stromal cells (hMSCs) with high viability. Macroscopic gels can be formed in less than 10 s, and one- and two-photon photopatterning enable 2D and 3D microfabrication. Different degrees of cross-linking induce different swelling/shrinking, allowing for light-induced microactuation. These new tools are complementary to the previously reported horseradish peroxidase/hydrogen peroxide cross-linking and allow sequential cross-linking of HA-Tyr matrices. PMID:26222128

  1. Deterministic reshaping of single-photon spectra using cross-phase modulation.

    PubMed

    Matsuda, Nobuyuki

    2016-03-01

    The frequency conversion of light has proved to be a crucial technology for communication, spectroscopy, imaging, and signal processing. In the quantum regime, it also offers great potential for realizing quantum networks incorporating disparate physical systems and quantum-enhanced information processing over a large computational space. The frequency conversion of quantum light, such as single photons, has been extensively investigated for the last two decades using all-optical frequency mixing, with the ultimate goal of realizing lossless and noiseless conversion. I demonstrate another route to this target using frequency conversion induced by cross-phase modulation in a dispersion-managed photonic crystal fiber. Owing to the deterministic and all-optical nature of the process, the lossless and low-noise spectral reshaping of a single-photon wave packet in the telecommunication band has been readily achieved with a modulation bandwidth as large as 0.4 THz. I further demonstrate that the scheme is applicable to manipulations of a nonclassical frequency correlation, wave packet interference, and entanglement between two photons. This approach presents a new coherent frequency interface for photons for quantum information processing. PMID:27051862

  2. Deterministic reshaping of single-photon spectra using cross-phase modulation

    PubMed Central

    Matsuda, Nobuyuki

    2016-01-01

    The frequency conversion of light has proved to be a crucial technology for communication, spectroscopy, imaging, and signal processing. In the quantum regime, it also offers great potential for realizing quantum networks incorporating disparate physical systems and quantum-enhanced information processing over a large computational space. The frequency conversion of quantum light, such as single photons, has been extensively investigated for the last two decades using all-optical frequency mixing, with the ultimate goal of realizing lossless and noiseless conversion. I demonstrate another route to this target using frequency conversion induced by cross-phase modulation in a dispersion-managed photonic crystal fiber. Owing to the deterministic and all-optical nature of the process, the lossless and low-noise spectral reshaping of a single-photon wave packet in the telecommunication band has been readily achieved with a modulation bandwidth as large as 0.4 THz. I further demonstrate that the scheme is applicable to manipulations of a nonclassical frequency correlation, wave packet interference, and entanglement between two photons. This approach presents a new coherent frequency interface for photons for quantum information processing. PMID:27051862

  3. On two-parameter models of photon cross sections: Application to dual-energy CT imaging

    SciTech Connect

    Williamson, Jeffrey F.; Li Sicong; Devic, Slobodan; Whiting, Bruce R.; Lerma, Fritz A.

    2006-11-15

    The goal of this study is to evaluate the theoretically achievable accuracy in estimating photon cross sections at low energies (20-1000 keV) from idealized dual-energy x-ray computed tomography (CT) images. Cross-section estimation from dual-energy measurements requires a model that can accurately represent photon cross sections of any biological material as a function of energy by specifying only two characteristic parameters of the underlying material, e.g., effective atomic number and density. This paper evaluates the accuracy of two commonly used two-parameter cross-section models for postprocessing idealized measurements derived from dual-energy CT images. The parametric fit model (PFM) accounts for electron-binding effects and photoelectric absorption by power functions in atomic number and energy and scattering by the Klein-Nishina cross section. The basis-vector model (BVM) assumes that attenuation coefficients of any biological substance can be approximated by a linear combination of mass attenuation coefficients of two dissimilar basis substances. Both PFM and BVM were fit to a modern cross-section library for a range of elements and mixtures representative of naturally occurring biological materials (Z=2-20). The PFM model, in conjunction with the effective atomic number approximation, yields estimated the total linear cross-section estimates with mean absolute and maximum error ranges of 0.6%-2.2% and 1%-6%, respectively. The corresponding error ranges for BVM estimates were 0.02%-0.15% and 0.1%-0.5%. However, for photoelectric absorption frequency, the PFM absolute mean and maximum errors were 10.8%-22.4% and 29%-50%, compared with corresponding BVM errors of 0.4%-11.3% and 0.5%-17.0%, respectively. Both models were found to exhibit similar sensitivities to image-intensity measurement uncertainties. Of the two models, BVM is the most promising approach for realizing dual-energy CT cross-section measurement.

  4. Production and testing of the VITAMIN-B6 fine-group and the BUGLE-93 broad-group neutron/photon cross-section libraries derived from ENDF/B-VI nuclear data

    SciTech Connect

    Ingersoll, D.T.; White, J.E.; Wright, R.Q.; Hunter, H.T.; Slater, C.O.; Greene, N.M.; MacFarlane, R.E.

    1993-11-01

    A new multigroup cross-section library based on ENDF/B-VI data has been produced and tested for light water reactor shielding and reactor pressure vessel dosimetry applications. The broad-group library is designated BUGLE-93. The processing methodology is consistent with ANSI/ANS 6.1.2, since the ENDF data were first processed into a fine-group, ``pseudo problem-independent`` format and then collapsed into the final broad-group format. The fine-group library is designated VITAMIN-B6. An extensive integral data testing effort was also performed. In general, results using the new data show significant improvements relative to earlier ENDF data.

  5. Production and Testing of the VITAMIN-B6 Fine Group and the BUGLE-93 Broad-Group Neutron/Photon Cross-Section Libraries Derived from ENDF/B-VI Nuclear Data

    SciTech Connect

    White, J.E.

    2001-04-19

    A revised multigroup cross-section library based on Release 3 of ENDF/B-VI data has been produced and tested for light-water-reactor shielding and reactor pressure vessel dosimetry applications. This new broad-group library, which is designated BUGLE-96, represents an improvement over the BUGLE-93 data library released in February 1994 and replaces the data package for BUGLE-93 in the Radiation Safety Information Computational Center (formerly RSIC). The processing methodology is the same as that used for producing BUGLE-93 and is consistent with ANSI/ANS 6.1.2. The ENDF data were first processed into a fine-group, pseudo-problem-independent format and then collapsed into the final broad-group format. The fine-group library, which is designated VITAMIN-B6, contains 120 nuclides. The BUGLE-96 47-neutron-group/20-gamma-ray-group library contains the same 120 nuclides processed as infinitely dilute and collapsed using a weighting spectrum typical of a concrete shield. Additionally, nuclides processed with resonance self-shielding and weighted using spectra specific to BWR and PWR material compositions and reactor models are available. As an added feature of BUGLE-96, cross-section sets having upscatter data for four thermal neutron groups are included. The upscattering data should improve the application of BUGLE-96 to the calculation of more accurate thermal fluences, although more computer time will be required. Several new dosimetry response functions and kerma factors for all 120 nuclides are also included in the library. The incorporation of feedback from users has resulted in a data library that addresses a wider spectrum of user needs.

  6. A phenomenological study of photon production in low energy neutrino nucleon scattering

    SciTech Connect

    Jenkins, James P; Goldman, Terry J

    2009-01-01

    Low energy photon production is an important background to many current and future precision neutrino experiments. We present a phenomenological study of t-channel radiative corrections to neutral current neutrino nucleus scattering. After introducing the relevant processes and phenomenological coupling constants, we will explore the derived energy and angular distributions as well as total cross-section predictions along with their estimated uncertainties. This is supplemented throughout with comments on possible experimental signatures and implications. We conclude with a general discussion of the analysis in the context of complimentary methodologies. This is based on a talk presented at the DPF 2009 meeting in Detroit MI.

  7. Vector meson and associated strangeness production using a linearly polarized photon beam at Jefferson Lab

    SciTech Connect

    Philip L. Cole

    2004-09-01

    The set of experiments forming the g8a run took place in the summer of 2001 in Hall B of Jefferson Lab. The g8a run was the commissioning experiment for the linearly-polarized photon beam at CLAS. The aim of these experiments is to improve the understanding of the underlying symmetry of the quark degrees of freedom in the nucleon, the nature of the parity exchange between the incident photon and the target nucleon, and the mechanism of associated strangeness production in electromagnetic reactions. A beam of tagged and collimated linearly polarized photons (energy range 1.8-2.2 GeV) in conjunction with the large solid angle coverage of CLAS make possible the extraction of the differential cross-sections and polarization observables for the photoproduction of vector mesons and kaons. The reaction channels are under investigation to search for possibly missing nucleon resonances. An overview of the experiment and preliminary results on the measurement of the photon asymmetries of the aforementioned reactions will be presented in this paper.

  8. Inclusive J/psi production in two-photon collisions at LEP II with the DELPHI detector

    NASA Astrophysics Data System (ADS)

    Chapkine, Mikhail

    2002-06-01

    Inclusive J/psi production in photon-photon collisions has been observed by the DELPHI collaboration at LEP II beam energies. A clean signal from the reaction gamma][gamma [right arrow] J/psi + X is seen. Number of observed events, N(J/psi [right arrow] mu]+[mu-) = 36 plus-or-minus 7 for the integrated luminosity 617 pb-1, yielding a cross section of sigma](J/[psi [right arrow] mu]+[mu-) = 25.2 plus-or-minus 10.2 pb. Based on a study of the event shapes of different types of gamma][gamma processes in the PYTHIA program, we conclude that (74plus-or-minus22)% of the observed J/psi events are due to the 'resolved' photons, the dominant contribution of which is evidently a single color-octet gluon within the photon.

  9. 30-Group Neutron, 12-Group Photon Cross Sections from ENDF/B-V in MATSX Format.

    Energy Science and Technology Software Center (ESTSC)

    1985-12-30

    Version: 00 The library was prepared with a fusion + fission + l/E + thermal Maxwellian weight function and has proved useful for many high energy calculations, including criticals such as GODIVA. It works reasonably well for many shielding problems where resonance selfshielding is not too important. The energy group structures for MATXSSA are listed in Table 1, the materials with neutron scattering data in Table 2, those with photon production data in Table 3,more » and those with photon scattering data In Table 4.« less

  10. 30-Group Neutron, 12-Group Photon Cross Sections from ENDF/B-IV in MATXS Format.

    Energy Science and Technology Software Center (ESTSC)

    1985-12-30

    Version: 00 The library was prepared with a fusion + fission + l/E + thermal Maxwellian weight function and has proved useful for many high energy calculations, including criticals such as GODIVA. It works reasonably well for many shielding problems where resonance selfshielding is not too important. The energy group structures for MATXSl are listed in Table 1, the materials with neutron scattering data in Table 2, those with photon production data in Table 3,more » and those with photon scattering data in Table 4.« less

  11. An investigation of polarization cross-coupling in air-core photonic bandgap fibers

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobin; Song, Ningfang; Zhang, Zhihao; Zhang, Zuchen; Jin, Jing; Zhang, Chunxi

    2016-05-01

    Polarization cross-coupling is one of the most important problems in air-core photonic bandgap fibers (PBF). In this research, polarization cross-coupling is investigated for PBFs of different lengths. The analyzing and simulation results show that the orientation of the birefringent axes induced by residual core ellipticity fluctuates with an average period of ~2.5 cm and random angles uniformly distributed over approximately [-7.5°, 7.5°]. The birefringent orientation in PBF varies much more frequently and strongly than that in any conventional fiber because of the difference in drawing process, and this is the most important factor causing the strong polarization cross-coupling in PBFs.

  12. Coherent photon scattering cross sections for helium near the delta resonance

    NASA Astrophysics Data System (ADS)

    Delli Carpini, D.; Booth, E. C.; Miller, J. P.; Igarashi, R.; Bergstrom, J.; Caplan, H.; Doss, M.; Hallin, E.; Rangacharyulu, C.; Skopik, D.; Lucas, M. A.; Nathan, A. M.; Wells, D. P.

    1991-04-01

    The angular distributions for coherent photon scattering from 4He were measured at average laboratory bremsstrahlung energies of 187, 235, and 280 MeV. The experiment was performed at the Saskatchewan Accelerator Laboratory using the new high duty factor electron beam. The scattered photons were observed with a high-resolution NaI(Tl) total absorption scintillation detector. These measurements are intended to investigate modification of the Δ properties inside the nuclear medium and the treatment of nonresonant contributions to the scattering cross sections. The results are compared to theoretical calculations in the isobar-hole model. Clear deviations from the theory are evident at all energies, especially at 187 MeV.

  13. Mega three-photon absorption cross-section enhancement in pseudoisocyanine J-aggregates.

    PubMed

    Cohanoschi, Ion; Barbot, Amel; Belfield, Kevin D; Yao, Sheng; Hernandez, Florencio E

    2005-12-15

    Herein we report an extraordinary three-photon absorption cross-section (sigma'3) enhancement in J-aggregates supramolecular systems. The much higher value of sigma'3 in PIC J-aggregate (2.5 x 10(-71) cm6 s2 ph(-2)) compared to typical values obtained in organic molecules (10(-80) cm6 s2 ph(-2)) is attributed to the strong molecular transition dipole moment coupling in the supramolecular assembly. Three-photon absorption of PIC J-aggregates and monomer aqueous solutions were measured using the well known open aperture Z-scan technique pumping with a 25 ps pulse laser-OPG system at 1720 nm. This novel result opens new expectations for applications of supramolecular systems in bioimaging and medicine. PMID:16392906

  14. Evidence of concentration dependence of the two-photon absorption cross section: Determining the "true" cross section value

    NASA Astrophysics Data System (ADS)

    Ajami, Aliasghar; Gruber, Peter; Tromayer, Maximilian; Husinsky, Wolfgang; Stampfl, Jürgen; Liska, Robert; Ovsianikov, Aleksandr

    2015-09-01

    The two-photon absorption (2PA) phenomenon is the basis of many unique applications involving suitable chromophores as photoinitiators. Ideally the 2PA cross section should, therefore, be a unique parameter, allowing quantification and comparing 2PA capabilities of different substances. In this report, the most straightforward and widespread method, the Z-scan technique, was used for determining the 2PA cross-section values of three different synthesized photoinitiators and one laser dye as a standard. It is demonstrated that the experimentally obtained values strongly depend on the molar concentration of a measured solution. A tenfold decrease in substance concentration can lead to the doubling of the 2PA cross-section. A similar concentration dependence was confirmed for all three investigated substances. Among the crucial implications of this observed behavior is the questionable possibility to compare the 2PA characteristics of different compounds based on the values reported in the literature. An example of another important consequence of this effect extends i.e. to the calculation of the dose necessary for killing the tumor cells in 2PA-based photodynamic therapy applications. The possible factors responsible for this contra-intuitive behavior are discussed and investigated. Finally, a reliable measurement protocol for comprehensive characterization of 2PA capability of different substances is proposed. Herewith an attempt to establish a standard method, which takes into account the concentration dependence, is made. This method provides means for faultless comparison of different compounds.

  15. Deterministic distribution of four-photon Dicke state over an arbitrary collective-noise channel with cross-Kerr nonlinearity.

    PubMed

    Wang, Mei-Yu; Yan, Feng-Li; Gao, Ting

    2016-01-01

    We present two deterministic quantum entanglement distribution protocols for a four-photon Dicke polarization entangled state resorting to the frequency and spatial degrees of freedom, which are immune to an arbitrary collective-noise channel. Both of the protocols adopt the X homodyne measurement based on the cross-Kerr nonlinearity to complete the task of the single-photon detection with nearly unit probability in principle. After the four receivers share the photons, they add some local unitary operations to obtain a standard four-photon Dicke polarization entangled state. PMID:27412489

  16. Deterministic distribution of four-photon Dicke state over an arbitrary collective-noise channel with cross-Kerr nonlinearity

    PubMed Central

    Wang, Mei-Yu; Yan, Feng-Li; Gao, Ting

    2016-01-01

    We present two deterministic quantum entanglement distribution protocols for a four-photon Dicke polarization entangled state resorting to the frequency and spatial degrees of freedom, which are immune to an arbitrary collective-noise channel. Both of the protocols adopt the X homodyne measurement based on the cross-Kerr nonlinearity to complete the task of the single-photon detection with nearly unit probability in principle. After the four receivers share the photons, they add some local unitary operations to obtain a standard four-photon Dicke polarization entangled state. PMID:27412489

  17. Deterministic distribution of four-photon Dicke state over an arbitrary collective-noise channel with cross-Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Wang, Mei-Yu; Yan, Feng-Li; Gao, Ting

    2016-07-01

    We present two deterministic quantum entanglement distribution protocols for a four-photon Dicke polarization entangled state resorting to the frequency and spatial degrees of freedom, which are immune to an arbitrary collective-noise channel. Both of the protocols adopt the X homodyne measurement based on the cross-Kerr nonlinearity to complete the task of the single-photon detection with nearly unit probability in principle. After the four receivers share the photons, they add some local unitary operations to obtain a standard four-photon Dicke polarization entangled state.

  18. Exclusive vector meson production with a leading neutron in photon-hadron interactions at hadronic colliders

    NASA Astrophysics Data System (ADS)

    Gonçalves, V. P.; Moreira, B. D.; Navarra, F. S.; Spiering, D.

    2016-07-01

    In this paper, we study leading neutron production in photon-hadron interactions that take place in p p and p A collisions at large impact parameters. Using a model that describes the recent leading neutron data at HERA, we consider exclusive vector meson production in association with a leading neutron in p p /p A collisions at RHIC and LHC energies. The total cross sections and rapidity distributions of ρ , ϕ , and J /Ψ produced together with a leading neutron are computed. Our results indicate that the study of these processes is feasible and that it can be used to improve the understanding of leading neutron processes and of exclusive vector meson production.

  19. Heavy quark production in photon-Pomeron interactions at high energies

    SciTech Connect

    Machado, M. M.; Goncalves, V. P.

    2013-03-25

    The diffractive heavy quark cross sections are estimated considering photon-Pomeron interactions in hadron - hadron at RHIC, Tevatron, and CERN LHC energies. We assume the validity of the hard diffractive factorization and calculate the charm and bottom total cross sections and rapidity distributions using the diffractive parton distribution functions of the Pomeron obtained by the H1 Collaboration at DESY-HERA. Such processes are sensitive to the gluon content of the Pomeron at high energies and are a good place to constrain the behavior of this distribution. We also compare our predictions with those obtained using the dipole model, and verify that these processes are a good test of the different mechanisms for heavy quarks diffractive production at hadron colliders.

  20. Enhancement of two photon absorption properties and intersystem crossing by charge transfer in pentaaryl boron-dipyrromethene (BODIPY) derivatives.

    PubMed

    Küçüköz, B; Sevinç, G; Yildiz, E; Karatay, A; Zhong, F; Yılmaz, H; Tutel, Y; Hayvalı, M; Zhao, J; Yaglioglu, H G

    2016-05-11

    Novel BODIPY derivatives containing N,N-diphenylamine, 4-methoxyphenyl, 2,4-dimethoxyphenyl, triphenylamine, and 1-pyrene moieties were designed and synthesized for the first time by employing the palladium-catalyzed Suzuki-Miyaura coupling on pentaaryl boron dipyrromethene compounds. The effect of various moieties and charge transfer on linear and nonlinear optical absorption was investigated. It was found that moieties with strong electron donor properties and long conjugation lengths increase charge transfer and enhance intersystem crossing in the investigated compounds. Besides, the investigated compounds showed strong two photon absorption properties at near infrared wavelengths (800 nm and 900 nm), which is required for two photon photodynamic therapy. Two photon absorption cross section values were found to be 83, 454, 331, 472 and 413 GM for , , , and compounds at 800 nm wavelength, respectively. The highest two-photon absorption cross-section value was obtained for the compound containing a triphenylamine moiety due to its more efficient charge transfer characteristics. Strong two-photon absorption properties in the near infrared region, efficient intersystem crossing and heavy atom free nature of the investigated compounds make them good candidates for two photon photodynamic therapy applications. We believe that this work will be one of the leading studies for two-photon photodynamic therapy applications of pentaaryl BODIPY derivatives. PMID:27138347

  1. Determination of the Relative Two-photon Absorption Cross-section Between Xenon and Hydrogen

    NASA Astrophysics Data System (ADS)

    Elliott, Drew; Scime, Earl; McCarren, Dustin; Vandervort, Robert; Soderholm, Mark

    2014-10-01

    Two-photon Absorption Laser Induced Fluorescence (TALIF) is a non-perturbative method for measuring the density and temperature of neutral hydrogen in a fusion plasma. Calibration of a TALIF system, for absolute density measurements, requires a measurement of a known density of particles under controlled conditions. Since hydrogen is diatomic, hydrogen TALIF system calibration requires measurements of target cold monatomic gas with a two-photon transition from the ground state and fluorescence decay at accessible energies. Here we present single-sided TALIF (angular momentum change of 2) measurements of a new transition in xenon with absorption and emission wavelengths nearly identical to those of the hydrogen TALIF sequence (the n = 3 to n = 2 emission in hydrogen is at 656.27 nm whereas it is at 655.99 nm in xenon). The xenon calibration approach provides the first opportunity for absolute calibration of Doppler-free (angular momentum change of 0) hydrogen TALIF. We first measure the relative TALIF absorption cross section between xenon and krypton and then use the known cross section ratio between the krypton and hydrogen transitions to calculate the relative xenon-hydrogen cross section. Single isotope xenon samples are used to remove the confounding factors of isotopic and hyperfine splitting.

  2. Optical model methods of predicting nuclide production cross sections from heavy ion fragmentation

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Ramsey, C. R.; Tripathi, R. K.; Cucinotta, F. A.; Norbury, J. W.; Wilson, J. W. (Principal Investigator)

    1999-01-01

    Quantum mechanical optical potential methods for calculating inclusive isotope and element production cross sections from the fragmenting of heavy nuclei by intermediate- and high-energy protons and heavy ions are presented based upon a modified abrasion-ablation-FSI (frictional spectator interaction) collision model. The abrasion stage is treated as a quantum mechanical knockout process that leaves the residual prefragment in an excited state. Prefragment excitation energies are estimated using a combined liquid drop and FSI method. In ablation the prefragment deexcites by particle and photon emission to produce the final fragment. Contributions from electromagnetic dissociation to single nucleon removal cross sections are incorporated using a Weiszacker-Williams theory that includes electric dipole and electric quadrupole interactions. Estimates of elemental and isotopic production cross sections are in good agreement with published cross section measurements for a variety of projectile-target-beam energy combinations.

  3. Two-photon double ionization of the H2 molecule: Cross sections and amplitude analysis

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Kheifets, A. S.

    2013-02-01

    We perform time-dependent calculations of triply differential cross sections (TDCS) of two-photon double-electron ionization of the aligned H2 molecule. Our TDCS results for equal energy sharing between photoelectrons agree quite well with a recent time-dependent calculation by Guan [X. Guan, K. Bartschat, and B. I. Schneider, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.77.043421 77, 043421 (2008)] who employed a slightly different numerical technique. We supplement these studies by calculating TDCS at an unequal energy sharing and by generating symmetrized ionization amplitudes.

  4. Quantum computation based on photonic systems with two degrees of freedom assisted by the weak cross-Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong

    2016-07-01

    Most of previous quantum computations only take use of one degree of freedom (DoF) of photons. An experimental system may possess various DoFs simultaneously. In this paper, with the weak cross-Kerr nonlinearity, we investigate the parallel quantum computation dependent on photonic systems with two DoFs. We construct nearly deterministic controlled-not (CNOT) gates operating on the polarization spatial DoFs of the two-photon or one-photon system. These CNOT gates show that two photonic DoFs can be encoded as independent qubits without auxiliary DoF in theory. Only the coherent states are required. Thus one half of quantum simulation resources may be saved in quantum applications if more complicated circuits are involved. Hence, one may trade off the implementation complexity and simulation resources by using different photonic systems. These CNOT gates are also used to complete various applications including the quantum teleportation and quantum superdense coding.

  5. Estimate of massive-dimuon production via a Drell-Yan-type process in two-photon collisions

    SciTech Connect

    Sajjad Zahir, M.

    1981-11-01

    This paper presents a theoretical analysis and numerical estimate of the production of massive ..mu../sup +/..mu../sup -/+hadrons in ..gamma gamma.. collision. Although, from the theoretical point of view, the process might have some interesting possibilities, the numerical estimates show that the cross section is too small to be measured with nearly on-shell high-energy photons from either doubly tagged or untagged electrons considering the luminosity of the new generation of machines.

  6. Measurement of the inclusive isolated prompt photon cross section in pp collisions at s=7TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Ackers, M.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, J.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andari, N.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arms, K. E.; Armstrong, S. R.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Belhorma, B.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biscarat, C.; Bischof, R.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Boaretto, C.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocci, A.; Bock, R.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bona, M.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Booth, P.; Booth, J. R. A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Braccini, S.; Bracinik, J.; Braem, A.; Brambilla, E.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Bright-Thomas, P. G.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.

    2011-03-01

    A measurement of the cross section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy s=7TeV is presented. The measurement covers the pseudorapidity ranges |ηγ|<1.37 and 1.52≤|ηγ|<1.81 in the transverse energy range 15≤ETγ<100GeV. The results are based on an integrated luminosity of 880nb-1, collected with the ATLAS detector at the Large Hadron Collider. Photon candidates are identified by combining information from the calorimeters and from the inner tracker. Residual background in the selected sample is estimated from data based on the observed distribution of the transverse isolation energy in a narrow cone around the photon candidate. The results are compared to predictions from next-to-leading-order perturbative QCD calculations.

  7. Measurement of the inclusive isolated prompt photon cross section in pp collisions at √s=7 TeV with the ATLAS detector

    DOE PAGESBeta

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; et al

    2011-03-18

    A measurement of the cross section for the inclusive production of isolated prompt photons in pp collisions at a center-of-mass energy √s=7 TeV is presented. The measurement covers the pseudorapidity ranges |ηγ|<1.37 and 1.52≤|ηγ|<1.81 in the transverse energy range 15≤EγT<100 GeV. The results are based on an integrated luminosity of 880 nb-1, collected with the ATLAS detector at the Large Hadron Collider. Photon candidates are identified by combining information from the calorimeters and from the inner tracker. Residual background in the selected sample is estimated from data based on the observed distribution of the transverse isolation energy in a narrowmore » cone around the photon candidate. The results are compared to predictions from next-to-leading-order perturbative QCD calculations.« less

  8. Tunable coherence-free microwave photonic bandpass filter based on double cross gain modulation technique.

    PubMed

    Chan, Erwin H W

    2012-10-01

    A tunable, coherence-free, high-resolution microwave photonic bandpass filter, which is compatible to be inserted in a conventional fiber optic link, is presented. It is based on using two cross gain modulation based wavelength converters in a recursive loop. The double cross gain modulation technique solves the semiconductor optical amplifier facet reflection problem in the conventional recursive structure; hence the new microwave photonic signal processor has no coherent interference and no phase-induced intensity noise. It allows arbitrary narrow-linewidth telecommunication-type lasers to be used while enabling stable filter operation to be realized. The filter passband frequency can be tuned by using a wavelength tunable laser and a wavelength dependent time delay component. Experimental results demonstrate robust high-resolution bandpass filter operation with narrow-linewidth sources, no phase-induced intensity noise and a high signal-to-noise ratio performance. Tunable coherence-free operation of the high-resolution bandpass filter is also demonstrated. PMID:23188262

  9. Two-photon absorption cross section measurement in the gamma band system of nitric oxide

    SciTech Connect

    Burris, J.F. Jr.

    1982-01-01

    A dye laser with a single longitudinal mode and very stable spatial mode structure has been constructed. With this laser system a four-wave mixing experiment was done in the gamma bands of nitric oxide using two photon resonance. Another four-wave mixing experiment was done in nitrogen using coherent anti-Stokes Raman scattering (CARS) and the two signals ratioed. Using accurately known values of the Raman scattering cross section, the third order susceptibility in NO was determined without needing to know the spatial and temporal properties of the dye lasers. From this susceptibility, the two photon absorption cross section was calculated with the explicit dependence of sigma/sup (2)/ upon X/sup (3)/ shown. For the R/sub 22/ + S/sub 12/(J'' = 9 1/2) (A/sup 2/..sigma..+(v' = 0) -- X/sup 2/..pi..(v'' = 0)) line, sigma/sup (2)/ = (1.0 +/- 0.6) x 10/sup -38/cm/sup 4/g(2/sub 1/-Vertical Barsub f/ is the normalized lineshape. Branching ratios for the A/sup 2/..sigma..+(v' = n) ..-->.. X/sup 2/..omega..(v'' = n)(n = o,...9) transitions of NO were also measured, Franck-Condon factors calculated and the lifetime of the A state determined.

  10. Exclusive production of K+K-π+π- in photon-photon collisions

    NASA Astrophysics Data System (ADS)

    Aihara, H.; Alston-Garnjost, M.; Armitage, J. C.; Bakken, J. A.; Barbaro-Galtieri, A.; Barker, A. R.; Barnes, A. V.; Barnett, B. A.; Bengtsson, H.-U.; Bintinger, D. L.; Blumenfeld, B. J.; Bobbink, G. J.; Bross, A. D.; Buchanan, C. D.; Buijs, A.; Cain, M. P.; Caldwell, D. O.; Chamberlain, O.; Chien, C.-Y.; Clark, A. R.; Cordier, A.; Dahl, O. I.; Day, C. T.; Derby, K. A.; van Driel, M. A.; Eberhard, P. H.; Eisner, A. M.; Erné, F. C.; Fancher, D. L.; Fujii, H.; Fujii, T.; Gabioud, B.; Gary, J. W.; Gorn, W.; Hadley, N. J.; Hauptman, J. M.; Hofmann, W.; Huth, J. E.; Hylen, J.; Joshi, U. P.; Kamae, T.; Kaye, H. S.; Kees, K. H.; Kenney, R. W.; Kerth, L. T.; Ko, Winston; Koda, R. I.; Kofler, R. R.; Kwong, K. K.; Lander, R. L.; Langeveld, W. G.; Layter, J. G.; Linde, F. L.; Lindsey, C. S.; Loken, S. C.; Lu, A.; Lu, X.-Q.; Lynch, G. R.; Madansky, L.; Madaras, R. J.; Maeshima, K.; Magnuson, B. D.; Marx, J. N.; Maruyama, K.; Masek, G. E.; Matthews, J. A.; Melnikoff, S. O.; Miller, E. S.; Moses, W.

    1985-06-01

    We report a measurement of the reaction γγ-->K+K-π+π- in both tagged and untagged events at PEP. The cross section rises with invariant γγ mass to about 15 nb at 2 GeV and falls slowly at higher masses. We find clear evidence for the processes γγ-->φπ+π- and γγ-->K*0(892)Kπ. Upper limits (95% C.L.) of 1.5 and 5.7 nb in the mass range from 1.7 to 3.7 GeV are obtained for φρ0 and K*0K¯*0 production, respectively.

  11. Nuclear Recoil Cross Sections from Time-dependent Studies of Two-Photon Double Ionization of Helium

    SciTech Connect

    Horner, Daniel A.; Rescigno, Thomas N.; McCurdy, C. William

    2009-12-21

    We examine the sensitivity of nuclear recoil cross sections produced by two-photon double ionization of helium to the underlying triple differential cross sections (TDCS) used in their computation. We show that this sensitivity is greatest in the energy region just below the threshold for sequential double ionization. Accurate TDCS, extracted from non-perturbative solutions of the time-dependent Schroedinger equation, are used here in new computations of the nuclear recoil cross section.

  12. Study of π0 pair production in single-tag two-photon collisions

    NASA Astrophysics Data System (ADS)

    Masuda, M.; Uehara, S.; Watanabe, Y.; Nakazawa, H.; Abdesselam, A.; Adachi, I.; Aihara, H.; Al Said, S.; Asner, D. M.; Atmacan, H.; Aulchenko, V.; Aushev, T.; Babu, V.; Badhrees, I.; Bakich, A. M.; Barberio, E.; Behera, P.; Bhuyan, B.; Biswal, J.; Bobrov, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Chobanova, V.; Choi, S.-K.; Choi, Y.; Cinabro, D.; Dalseno, J.; Danilov, M.; Dash, N.; Dingfelder, J.; Doležal, Z.; Drásal, Z.; Dutta, D.; Eidelman, S.; Epifanov, D.; Farhat, H.; Fast, J. E.; Ferber, T.; Fulsom, B. G.; Gaur, V.; Gabyshev, N.; Garmash, A.; Gillard, R.; Giordano, F.; Glattauer, R.; Goh, Y. M.; Goldenzweig, P.; Golob, B.; Haba, J.; Hayasaka, K.; Hayashii, H.; He, X. H.; Hou, W.-S.; Iijima, T.; Inami, K.; Ishikawa, A.; Itoh, R.; Iwasaki, Y.; Jaegle, I.; Joffe, D.; Joo, K. K.; Julius, T.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kim, D. Y.; Kim, J. B.; Kim, J. H.; Kim, K. T.; Kim, M. J.; Kim, S. H.; Kim, Y. J.; Ko, B. R.; Korpar, S.; Križan, P.; Krokovny, P.; Kumita, T.; Kuzmin, A.; Kwon, Y.-J.; Lange, J. S.; Lee, D. H.; Lee, I. S.; Li, C.; Li, L.; Li, Y.; Libby, J.; Liventsev, D.; Lukin, P.; Matvienko, D.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Mohanty, G. B.; Mohanty, S.; Moll, A.; Moon, H. K.; Mori, T.; Mussa, R.; Nakano, E.; Nakao, M.; Nanut, T.; Natkaniec, Z.; Nayak, M.; Nisar, N. K.; Nishida, S.; Ogawa, S.; Pakhlov, P.; Pakhlova, G.; Pal, B.; Park, C. W.; Park, H.; Pedlar, T. K.; Pestotnik, R.; Petrič, M.; Piilonen, L. E.; Rauch, J.; Ribežl, E.; Ritter, M.; Rostomyan, A.; Sandilya, S.; Santelj, L.; Sanuki, T.; Sato, Y.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Seino, Y.; Senyo, K.; Seon, O.; Sevior, M. E.; Shebalin, V.; Shen, C. P.; Shibata, T.-A.; Shiu, J.-G.; Shwartz, B.; Simon, F.; Sohn, Y.-S.; Sokolov, A.; Solovieva, E.; Starič, M.; Sumihama, M.; Sumiyoshi, T.; Tamponi, U.; Tanida, K.; Teramoto, Y.; Uglov, T.; Unno, Y.; Uno, S.; Van Hulse, C.; Vanhoefer, P.; Varner, G.; Vinokurova, A.; Vorobyev, V.; Vossen, A.; Wagner, M. N.; Wang, C. H.; Wang, M.-Z.; Wang, P.; Williams, K. M.; Won, E.; Yamaoka, J.; Yamashita, Y.; Yashchenko, S.; Ye, H.; Yusa, Y.; Zhang, C. C.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.; Belle Collaboration

    2016-02-01

    We report a measurement of the differential cross section of π0 pair production in single-tag two-photon collisions, γ*γ →π0π0, in e+e- scattering. The cross section is measured for Q2 up to 30 GeV2, where Q2 is the negative of the invariant mass squared of the tagged photon, in the kinematic range 0.5 GeV

  13. Anomalous photon-gauge boson coupling contribution to the exclusive vector boson pair production from two photon exchange in pp collisions at 13 TeV

    SciTech Connect

    Martins, D. E.; Vilela Pereira, A.; Sá Borges, J.; Rebello Teles, P.

    2015-04-10

    We study the W and Z pair production from two-photon exchange in proton-proton collisions at the LHC in order to evaluate the contributions of anomalous photon-gauge boson couplings, that simulates new particles and couplings predicted in many Standard Model (SM) extensions. The experimental results of W{sup +} W{sup −} exclusive production (pp → pW{sup +}W{sup −} p) at 7 TeV from the CMS collaboration [1] updates the experimental limits on anomalous couplings obtained at the Large Electron-Positron Collider (LEP). This motivates our present analysis hopefully anticipating the expected results using the Precision Proton Spectrometer (PPS) to be installed as part of CMS. In this work, we consider the W{sup +}W{sup −} exclusive production to present the p{sub T} distribution of the lepton pair corresponding to the SM signal with p{sub T} (e, μ) > 10 GeV. Next, we consider the photon-gauge boson anomalous couplings by calculating, from the FPMC and MadGraph event generators, the process γγ → W{sup +}W{sup −} from a model with gauge boson quartic couplings, by considering a 1 TeV scale for new physical effects. We present our results for an integrated luminosity of 5 fb{sup −1} at center-of-mass energy of 7 TeV and for an integrated luminosity of 100 fb{sup −1} at 13 TeV. We present our preliminary results for Z pair exclusive production from two-photon exchange with anomalous couplings, where the ZZγγ quartic coupling is absent in the SM. We calculate the total cross section for the exclusive process and present the four lepton invariant mass distribution. Finally we present an outlook for the present analysis.

  14. Further Results on the Production of Neutral Mesons by Photons

    DOE R&D Accomplishments Database

    Panofsky, W. K. H.; Steinberger, J.; Steller, J.

    1951-10-01

    Further measurements have been made on the photoproduction of neutral mesons using the gamma-gamma coincidence technique. New data have been obtained on the gamma-gamma correlation curves in beryllium. The angular distribution of the photo mesons in Be has been determined and found to be strongly peaked forward. The dependence on the atomic number A of production has been found to obey an A{sup 2/3} law. Some data obtained for production in hydrogen show that the pi-zero and pi-plus production cross sections are comparable and that the pi-zero excitation curve starts more slowly from threshold than does the pi-plus photo excitation curve.

  15. Direct photon production in high-energy nuclear collisions

    NASA Astrophysics Data System (ADS)

    Peitzmann, T.

    2016-01-01

    Direct photons have always been considered a promising probe for the very early phases of high-energy nuclear collisions. Prompt photons reveal information about the initial state and its possible modifications in nuclei. In this context they should be one of the best probes for effects of gluon saturation. Thermal photons emitted from the produced matter in nuclear collisions carry information on the temperature of the very early phase. In particular a simultaneous measurement of yield and elliptic flow of thermal photons can put strong constraints on the early time dynamics of the system. I review the status of results on direct photon measurements at RHIC and LHC and their interpretation. Prompt photons at high pT are consistent with expectations from NLO pQCD in pp and show no strong nuclear modifications in A-A collisions. Recent analysis at RHIC has shown very intriguing results for lower pT, with high thermal photon yield and strong elliptic flow of direct photons, which are not fully understood theoretically. Also the ALICE experiment at the LHC has measured a high yield of thermal photons. Furthermore I discuss prospects for future measurements of forward direct photons at the LHC.

  16. Multi-photon production in e+e- collisions at sqrt(s)=183 GeV

    NASA Astrophysics Data System (ADS)

    OPAL Collaboration; Ackerstaff, K.; Alexander, G.; Allison, J.; Altekamp, N.; Anderson, K. J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S. F.; Axen, D.; Azuelos, G.; Ball, A. H.; Barberio, E.; Barlow, R. J.; Bartoldus, R.; Batley, J. R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, K. W.; Bella, G.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bird, S. D.; Blobel, V.; Bloodworth, I. J.; Bobinski, M.; Bock, P.; Böhme, J.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brown, R. M.; Burckhart, H. J.; Burgard, C.; Bürgin, R.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrisman, D.; Ciocca, C.; Clarke, P. E. L.; Clay, E.; Cohen, I.; Conboy, J. E.; Cooke, O. C.; Couyoumtzelis, C.; Coxe, R. L.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Davis, R.; de Jong, S.; del Pozo, L. A.; de Roeck, A.; Desch, K.; Dienes, B.; Dixit, M. S.; Doucet, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I. P.; Eatough, D.; Estabrooks, P. G.; Etzion, E.; Evans, H. G.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A. A.; Fiedler, F.; Fierro, M.; Fischer, H. M.; Fleck, I.; Folman, R.; Fürtjes, A.; Futyan, D. I.; Gagnon, P.; Gary, J. W.; Gascon, J.; Gascon-Shotkin, S. M.; Geich-Gimbel, C.; Geralis, T.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W. R.; Gingrich, D. M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwé, M.; Hanson, G. G.; Hansroul, M.; Hapke, M.; Hargrove, C. K.; Hartmann, C.; Hauschild, M.; Hawkes, C. M.; Hawkings, R.; Hemingway, R. J.; Herndon, M.; Herten, G.; Heuer, R. D.; Hildreth, M. D.; Hill, J. C.; Hillier, S. J.; Hobson, P. R.; Hocker, A.; Homer, R. J.; Honma, A. K.; Horváth, D.; Hossain, K. R.; Howard, R.; Hüntemeyer, P.; Igo-Kemenes, P.; Imrie, D. C.; Ishii, K.; Jacob, F. R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Joly, A.; Jones, C. R.; Jovanovic, P.; Junk, T. R.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P. I.; Keeler, R. K.; Kellogg, R. G.; Kennedy, B. W.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D. S.; Kokott, T. P.; Kolrep, M.; Komamiya, S.; Kowalewski, R. V.; Kress, T.; Krieger, P.; von Krogh, J.; Kyberd, P.; Lafferty, G. D.; Lanske, D.; Lauber, J.; Lautenschlager, S. R.; Lawson, I.; Layter, J. G.; Lazic, D.; Lee, A. M.; Lefebvre, E.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A. W.; Lloyd, S. L.; Loebinger, F. K.; Long, G. D.; Losty, M. J.; Ludwig, J.; Liu, D.; Macchiolo, A.; MacPherson, A.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Martin, A. J.; Martin, J. P.; Martinez, G.; Mashimo, T.; Mättig, P.; McDonald, W. J.; McKenna, J.; McKigney, E. A.; McMahon, T. J.; McPherson, R. A.; Meijers, F.; Menke, S.; Merritt, F. S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D. J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H. A.; Nellen, B.; Nisius, R.; O'Neale, S. W.; Oakham, F. G.; Odorici, F.; Ogren, H. O.; Oreglia, M. J.; Orito, S.; Pálinkás, J.; Pásztor, G.; Pater, J. R.; Patrick, G. N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J. E.; Pinfold, J.; Plane, D. E.; Poffenberger, P.; Poli, B.; Polok, J.; Przybycień , M.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S. A.; Rodning, N.; Roney, J. M.; Roscoe, K.; Rossi, A. M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D. R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W. M.; Sarkisyan, E. K. G.; Sbarra, C.; Schaile, A. D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schieck, J.; Schmitt, B.; Schmitt, S.; Schöning, A.; Schorner, T.; Schröder, M.; Schumacher, M.; Schwick, C.; Scott, W. G.; Seuster, R.; Shears, T. G.; Shen, B. C.; Shepherd-Themistocleous, C. H.; Sherwood, P.; Siroli, G. P.; Sittler, A.; Skuja, A.; Smith, A. M.; Snow, G. A.; Sobie, R.; Söldner-Rembold, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, D.; Ströhmer, R.; Tafirout, R.; Talbot, S. D.; Tanaka, S.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomson, M. A.; von Törne, E.; Torrence, E.; Towers, S.; Trigger, I.; Trócsányi, Z.; Tsur, E.; Turcot, A. S.; Turner-Watson, M. F.; van Kooten, R.; Vannerem, P.; Verzocchi, M.; Vikas, P.; Voss, H.; Wäckerle, F.; Wagner, A.; Ward, C. P.; Ward, D. R.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Wells, P. S.; Wermes, N.; White, J. S.; Wilson, G. W.; Wilson, J. A.; Wyatt, T. R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1998-10-01

    The process e+e--->γγ(γ) is studied using data recorded with the OPAL detector at LEP. The data sample corresponds to a total integrated luminosity of 56.2 pb-1 taken at a centre-of-mass energy of 183 GeV. The measured cross-section agrees well with the expectation from QED. A fit to the angular distribution is used to obtain improved limits at 95% CL on the QED cut-off parameters: Λ+> 233 GeV and Λ-> 265 GeV as well as a mass limit for an excited electron, Me*> 227 GeV assuming equal e*eγ and eeγ couplings. No evidence for resonance production is found in the invariant mass spectrum of photon pairs. Limits are obtained for the cross-section times branching ratio for a resonance decaying into two photons.

  17. Production of photons in relativistic heavy-ion collisions

    DOE PAGESBeta

    Jean -Francois Paquet; Denicol, Gabriel S.; Shen, Chun; Luzum, Matthew; Schenke, Bjorn; Jeon, Sangyong; Gale, Charles

    2016-04-18

    In this work it is shown that the use of a hydrodynamical model of heavy-ion collisions which incorporates recent developments, together with updated photon emission rates, greatly improves agreement with both ALICE and PHENIX measurements of direct photons, supporting the idea that thermal photons are the dominant source of direct photon momentum anisotropy. The event-by-event hydrodynamical model uses the impact parameter dependent Glasma model (IP-Glasma) initial states and includes, for the first time, both shear and bulk viscosities, along with second-order couplings between the two viscosities. Furthermore, the effect of both shear and bulk viscosities on the photon rates ismore » studied, and those transport coefficients are shown to have measurable consequences on the photon momentum anisotropy.« less

  18. Production of photons in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Paquet, Jean-François; Shen, Chun; Denicol, Gabriel S.; Luzum, Matthew; Schenke, Björn; Jeon, Sangyong; Gale, Charles

    2016-04-01

    In this work it is shown that the use of a hydrodynamical model of heavy-ion collisions which incorporates recent developments, together with updated photon emission rates, greatly improves agreement with both ALICE and PHENIX measurements of direct photons, supporting the idea that thermal photons are the dominant source of direct photon momentum anisotropy. The event-by-event hydrodynamical model uses the impact parameter dependent Glasma model (IP-Glasma) initial states and includes, for the first time, both shear and bulk viscosities, along with second-order couplings between the two viscosities. The effect of both shear and bulk viscosities on the photon rates is studied, and those transport coefficients are shown to have measurable consequences on the photon momentum anisotropy.

  19. Measurement of differential cross sections and Cx and Cz for gamma photon-proton going to kaon-lambda baryon and gamma photon-proton going to kaon-sigma baryon using CLAS at Jefferson Lab

    SciTech Connect

    Robert Bradford

    2005-05-11

    This work presents several observables for the reactions γ pK+Λ and γ pK+Σ°. In addition to measuring differential cross sections, we have made first measurements of the double polarization observables Cx and Cz. Cx and C z characterize the transfer of polarization from the incident photon to the produced hyperons. Data were obtained at Jefferson Lab using a circularly polarized photon beam at endpoint energies of 2.4, 2.9, and 3.1 GeV. Events were detected with the CLAS spectrometer. In the Λ channel, the cross sections support the recent observation of new resonant structure at W = 1900 MeV. Studies of the invariant cross section, dsdd show scaling behavior suggesting that the production mechanism becomes t-channel dominated near threshold at forward kaon angles. The double polarization observables show that the recoiling Λ is almost maximally polarized along the direction of the incident photon from mid to forward kaon angles. While Σo differential cross sections are of the same magnitude as the Λ differential cross sections, there is evidence of different physics dominating the production mechanism. The Σ° invariant cross sections do not show the same t-scaling behavior present in the Λ results. The double polarization observables indicate that the Σ° is not polarized as strongly as the Λ. They also fail to identify one preferred polarization axis. Complete interpretation of these results will rely on model calculations. Currently available isobar models obtain varying degrees of success while attempting to predict the double polarization observables. While the models are in better agreement with the

  20. Complete Analysis of Four-Photon χ-Type Entangled State via Cross-Kerr Nonlinearity

    NASA Astrophysics Data System (ADS)

    Zeng, Zhi; Li, Xi-Han; Wang, Chun; Wang, Li-Li; Liu, Zhen-Zhen; Wei, Hua

    2015-09-01

    We propose an efficient method to construct an optical four-photon |χ> state analyzer via the cross-Kerr nonlinearity combined with linear optical elements. In this protocol, two four-qubit parity-check gates and two controlled phase gates are employed. We show that all the 16 orthogonal four-qubit |χ> states can be completely discriminated with our apparatus. The scheme is feasible and realizable with current technology. It may have useful potential applications in quantum information processing which based on |χ> state. Supported by the National Natural Science Foundation of China under Grant No. 11004258, and Fundamental Research Funds for the Central Universities Project under Grant No. CQDXWL-2012-014, the Natural Science Foundation Project of CQ CSTC 2011jjA90017

  1. Cross-phase-modulation-instability band gap in a birefringence-engineered photonic-crystal fiber

    NASA Astrophysics Data System (ADS)

    Kibler, B.; Amrani, F.; Morin, P.; Kudlinski, A.

    2016-01-01

    We report the cancellation of the cross-phase-modulation-instability (XPMI) gain over a large spectral window (which we term the XPMI band gap) in a highly birefringent photonic-crystal fiber with zero group birefringence. The XPMI ceases to occur when single-frequency pumping of orthogonally polarized modes takes place in such a spectral band gap whose frequency bandwidth depends on the pump power itself. The suppression of XPMI sidebands is confirmed experimentally when Raman scattering remains negligible. At high powers the Raman Stokes wave, generated by the pump, implies novel dual-frequency pump configurations with large group-velocity mismatch, thus leading to another type of Raman-induced XPMI sidebands. The experimental results are in good agreement with analytical phase-matching calculations and numerical simulations.

  2. Molecular differential cross sections for low angle photon scattering in tissues

    NASA Astrophysics Data System (ADS)

    Tartari, Agostino

    1999-08-01

    Measurements of molecular cross sections of coherently scattered photons were obtained by means of powder diffraction data analysis in the interval χ=0-6.4 nm -1 ( χ=sin( θ/2)/ λ; where θ is the scattering angle and λ the incident wavelength in units of nm). Accurate correction procedures were applied to the raw diffraction data. Data for fat and PMMA (polymethyl methacrylate)—reported in a previous analysis (Tartari A, Casnati E, Bonifazzi C, Baraldi C, 1997b. Phys. Med. Biol. 42, 2551-2560.—were found to agree quite well when compared to the results obtained with different quality of beams and analysis techniques. Investigation on bony tissue is presented for the first time, and a simple model has been carried out in order to segment the mineral and non-mineral components. Finally, a basic set of curves for the linear differential scattering coefficient is proposed in order to simulate photons scattering by tissue in terms of linear combination of such curves.

  3. Differential cross section of γn→K+Σ- on bound neutrons with incident photons from 1.1 to 3.6 GeV

    NASA Astrophysics Data System (ADS)

    Pereira, S. Anefalos; Mirazita, M.; Rossi, P.; De Sanctis, E.; Niculescu, G.; Niculescu, I.; Stepanyan, S.; Adhikari, K. P.; Aghasyan, M.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Berman, B. L.; Biselli, A. S.; Bookwalter, C.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Careccia, S. L.; Carman, D. S.; Cole, P. L.; Collins, P.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; Deur, A.; Dey, B.; Dhamija, S.; Dickson, R.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; El Alaoui, A.; Eugenio, P.; Fegan, S.; Forest, T. A.; Gabrielyan, M. Y.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hakobyan, H.; Hanretty, C.; Hassall, N.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jawalkar, S. S.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Kuznetsov, V.; Livingston, K.; Mayer, M.; McCracken, M. E.; McKinnon, B.; Meyer, C. A.; Mikhailov, K.; Mineeva, T.; Mokeev, V.; Moreno, B.; Moriya, K.; Morrison, B.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Niccolai, S.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Park, S.; Pasyuk, E.; Perrin, Y.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Sabatié, F.; Saini, M. S.; Salamanca, J.; Salgado, C.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Tedeschi, D. J.; Tkachenko, S.; Vernarsky, B.; Vineyard, M. F.; Voutier, E.; Watts, D. P.; Weygand, D. P.; Wood, M. H.; Zana, L.; Zhang, J.; Zhao, B.; CLAS Collaboration

    2010-05-01

    Differential cross sections of the reaction γd→KΣ(p) have been measured with the CLAS detector at Jefferson Lab using incident photons with energies between 1.1 and 3.6 GeV. This is the first complete set of strangeness photoproduction data on the neutron covering a broad angular range. At energies close to threshold and up to Eγ∼1.8 GeV, the shape of the angular distribution is suggestive of the presence of s-channel production mechanisms. For Eγ>1.8 GeV, a clear forward peak appears and becomes more prominent as the photon energy increases, suggesting contributions from t-channel production mechanisms. These data can be used to constrain future analysis of this reaction.

  4. Differential cross section of γn→K+Σ- on bound neutrons with incident photons from 1.1 to 3.6 GeV

    DOE PAGESBeta

    Pereira, S. Anefalos; Mirazita, M.; Rossi, P.; De Sanctis, E.; Niculescu, G.; Niculescu, I.; Stepanyan, S.; Adhikari, K. P.; Aghasyan, M.; Anghinolfi, M.; et al

    2010-05-01

    Differential cross sections of the reaction γd → K+Σ–(p) have been measured with the CLAS detector at Jefferson Lab using incident photons with energies between 1.1 and 3.6 GeV. This is the first complete set of strangeness photoproduction data on the neutron covering a broad angular range. At energies close to threshold and up to Eγ ~ 1.8 GeV, the shape of the angular distribution is suggestive of the presence of s -channel production mechanisms. For Eγ > 1.8 GeV, a clear forward peak appears and becomes more prominent as the photon energy increases, suggesting contributions from t-channel production mechanisms.more » Furthermore, these data can be used to constrain future analysis of this reaction.« less

  5. High Transverse Momentum Direct Photon Production at Fermilab Fixed-Target Energies

    SciTech Connect

    Apanasevich, Leonard

    2005-05-01

    This thesis describes a study of the production of high transverse momentum direct photons and {pi}{sup 0} mesons by proton beams at 530 and 800 GeV/c and {pi}{sup -} beams at 515 GeV/c incident on beryllium, copper, and liquid hydrogen targets. The data were collected by Fermilab experiment E706 during the 1990 and 1991-92 fixed target runs. The apparatus included a large, finely segmented lead and liquid argon electromagnetic calorimeter and a charged particle spectrometer featuring silicon strip detectors in the target region and proportional wire chambers and drift tubes downstream of a large aperture analysis magnet. The inclusive cross sections are presented as functions of transverse momentum and rapidity. The measurements are compared with next-to-leading order perturbative QCD calculations and to results from previous experiments.

  6. Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide.

    PubMed

    Baba, Toshihiko; Kawaaski, Takashi; Sasaki, Hirokazu; Adachi, Jun; Mori, Daisuke

    2008-06-01

    This paper reports two advances in a slow light device consisting of chirped photonic crystal slab coupled waveguide on SOI substrate. One is concerning the delay-bandwidth product, indicating the buffering capacity of the device. We experimentally evaluated a record high value of 57 (a 40 ps delay and a 1.4 THz bandwidth). We also observed ~1 ps wide optical pulse transmission in the cross-correlation measurement. Regarding the pulse as a signal and considering the broadening of the pulse width due to the imperfect dispersion compensation in the device, storage of more than 12 signal bits was confirmed. The other is a wide-range tuning of the pulse delay. We propose a technique for externally controlling the chirping to permit variable delay. We demonstrate tuning of the pulse delay up to 23 ps, corresponding to a ~7 mm extension of the free space length. PMID:18545637

  7. First measurement of Z/γ* production in compton scattering of quasi-real photons

    NASA Astrophysics Data System (ADS)

    OPAL Collaboration; Abbiendi, G.; Ackerstaff, K.; Alexander, G.; Allison, J.; Altekamp, N.; Anderson, K. J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S. F.; Axen, D.; Azuelos, G.; Ball, A. H.; Barberio, E.; Barlow, R. J.; Bartoldus, R.; Batley, J. R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, K. W.; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bird, S. D.; Blobel, V.; Bloodworth, I. J.; Bobinski, M.; Bock, P.; Böhme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, R. M.; Burckhart, H. J.; Burgard, C.; Bürgin, R.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrisman, D.; Ciocca, C.; Clarke, P. E. L.; Clay, E.; Cohen, I.; Conboy, J. E.; Cooke, O. C.; Couyoumtzelis, C.; Coxe, R. L.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Davis, R.; de Jong, S.; del Pozo, L. A.; de Roeck, A.; Desch, K.; Dienes, B.; Dixit, M. S.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I. P.; Eatough, D.; Estabrooks, P. G.; Etzion, E.; Evans, H. G.; Fabbri, F.; Fanti, M.; Faust, A. A.; Fiedler, F.; Fierro, M.; Fleck, I.; Folman, R.; Fürtjes, A.; Futyan, D. I.; Gagnon, P.; Gary, J. W.; Gascon, J.; Gascon-Shotkin, S. M.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W. R.; Gingrich, D. M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwé, M.; Hanson, G. G.; Hansroul, M.; Hapke, M.; Harder, K.; Hargrove, C. K.; Hartmann, C.; Hauschild, M.; Hawkes, C. M.; Hawkings, R.; Hemingway, R. J.; Herndon, M.; Herten, G.; Heuer, R. D.; Hildreth, M. D.; Hill, J. C.; Hillier, S. J.; Hobson, P. R.; Hocker, A.; Homer, R. J.; Honma, A. K.; Horváth, D.; Hossain, K. R.; Howard, R.; Hüntemeyer, P.; Igo-Kemenes, P.; Imrie, D. C.; Ishii, K.; Jacob, F. R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C. R.; Jovanovic, P.; Junk, T. R.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P. I.; Keeler, R. K.; Kellogg, R. G.; Kennedy, B. W.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D. S.; Kokott, T. P.; Kolrep, M.; Komamiya, S.; Kowalewski, R. V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kyberd, P.; Lafferty, G. D.; Lanske, D.; Lauber, J.; Lautenschlager, S. R.; Lawson, I.; Layter, J. G.; Lazic, D.; Lee, A. M.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A. W.; Lloyd, S. L.; Loebinger, F. K.; Long, G. D.; Losty, M. J.; Ludwig, J.; Liu, D.; Macchiolo, A.; MacPherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Martin, A. J.; Martin, J. P.; Martinez, G.; Mashimo, T.; Mättig, P.; McDonald, W. J.; McKenna, J.; McKigney, E. A.; McMahon, T. J.; McPherson, R. A.; Meijers, F.; Menke, S.; Merritt, F. S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D. J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H. A.; Nellen, B.; Nisius, R.; O'Neale, S. W.; Oakham, F. G.; Odorici, F.; Ogren, H. O.; Oreglia, M. J.; Orito, S.; Pálinkás, J.; Pásztor, G.; Pater, J. R.; Patrick, G. N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J. E.; Pinfold, J.; Plane, D. E.; Poffenberger, P.; Polok, J.; Przybycień , M.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S. A.; Rodning, N.; Roney, J. M.; Roscoe, K.; Rossi, A. M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D. R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W. M.; Sarkisyan, E. K. G.; Sbarra, C.; Schaile, A. D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schieck, J.; Schmitt, B.; Schmitt, S.; Schöning, A.; Schröder, M.; Schumacher, M.; Schwick, C.; Scott, W. G.; Seiler, T.; Seuster, R.; Shears, T. G.; Shen, B. C.; Shepherd-Themistocleous, C. H.; Sherwood, P.; Siroli, G. P.; Sittler, A.; Skuja, A.; Smith, A. M.; Snow, G. A.; Sobie, R.; Söldner-Rembold, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, D.; Ströhmer, R.; Surrow, B.; Talbot, S. D.; Tanaka, S.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomson, M. A.; von Törne, E.; Torrence, E.; Towers, S.; Trigger, I.; Trócsányi, Z.; Tsur, E.; Turcot, A. S.; Turner-Watson, M. F.; van Kooten, R.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wäckerle, F.; Wagner, A.; Ward, C. P.; Ward, D. R.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Wells, P. S.; Wermes, N.; White, J. S.; Wilson, G. W.; Wilson, J. A.; Wyatt, T. R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1998-10-01

    We report the first observation of Z/γ* production in Compton scattering of quasi-real photons. This is a subprocess of the reaction e+e--->e+e- Z/γ*, where one of the final state electrons is undetected. Approximately 55 pb-1 of data collected in the year 1997 at an e+e- centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been analysed. The Z/γ* from Compton scattering has been detected in the hadronic decay channel. Within well defined kinematic bounds, we measure the product of cross-section and Z/γ* branching ratio to hadrons to be (0.9+/-0.3+/-0.1) pb for events with a hadronic mass larger than 60 GeV, dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60 GeV, dominated by (e)eγ* production, this product is found to be (4.1+/-1.6+/-0.6) pb. Our results agree with the predictions of two Monte Carlo event generators, grc4f and PYTHIA.

  8. Next-to-leading order QCD predictions for graviton and photon associated production in the large extra dimensions model at the LHC

    SciTech Connect

    Gao Xiangdong; Li Chongsheng; Gao Jun; Wang Jian; Oakes, Robert J.

    2010-02-01

    We present the calculations of the complete next-to-leading order (NLO) QCD corrections to the inclusive total cross sections for the Kaluza-Klein (KK) graviton and photon associated production process pp{yields}{gamma}G{sub KK}+X in the large extra dimensions model at the LHC. We show that the NLO QCD corrections in general enhance the total cross sections and reduce the dependence of the total cross sections on the factorization and renormalization scales. When jet veto is considered, the NLO corrections reduce the total cross sections. We also calculate some important differential cross sections for this process at NLO: the missing transverse momentum distribution, the transverse momentum distribution, and the pseudorapidity distribution of photon.

  9. Photon production from gluon-mediated quark-anti-quark annihilation at confinement

    NASA Astrophysics Data System (ADS)

    Campbell, Sarah

    2015-07-01

    Heavy ion collisions at the BNL Relativistic Heavy Ion Collider produce direct photons at low transverse momentum pT from 1-3 GeV /c , in excess of the p +p spectra scaled by the nuclear overlap factor TA A. These low-pT photons have a large azimuthal anisotropy v2. Theoretical models, including hydrodynamic models, struggle to quantitatively reproduce the large low-pT direct photon excess and v2 in a self-consistent manner. This paper presents a description of the low-pT photon flow as the result of increased photon production from soft-gluon-mediated q -q ¯ interactions as the system becomes color neutral. This production mechanism will generate photons that follow constituent quark number, nq, scaling of v2 with an nq value of 2 for direct photons. χ2 comparisons of the published PHENIX direct photon and identified particle v2 measurements finds that nq scaling applied to the direct photon v2 data prefers the value nq=1.8 and agrees with nq=2 within errors in most cases. The 0-20% and 20-40% Au+Au direct photon data are compared to a coalescence-like Monte Carlo simulation that calculates the direct photon v2 while describing the shape of the direct photon pT spectra in a consistent manner. The simulation, while systematically low compared to the data, is in agreement with the Au+Au measurement at pT less than 3 GeV /c in both centrality bins. Furthermore, this production mechanism predicts that higher order flow harmonics vn in direct photons will follow the modified nq-scaling laws seen in identified hadron vn with an nq value of 2.

  10. Determination of single photon ionization cross sections for quantitative analysis of complex organic mixtures.

    PubMed

    Adam, Thomas; Zimmermann, Ralf

    2007-11-01

    Soft single photon ionization (SPI)-time-of-flight mass spectrometry (TOFMS) is well suited for fast and comprehensive analysis of complex organic gas mixtures, which has been demonstrated in various applications. This work describes a calibration scheme for SPI, which enables quantification of a large number of compounds by only calibrating one compound of choice, in this case benzene. Photoionization cross sections of 22 substances were determined and related to the yield of benzene. These substances included six alkanes (pentane, hexane, heptane, octane, nonane, decane), three alkenes (propene, butane, pentene), two alkynes (propyne, butyne), two dienes (butadiene, isoprene), five monoaromatic species (benzene, toluene, xylene, styrene, monochlorobenzene) and NO. The cross sections of organic compounds differ by about one order of magnitude but the photoionization properties of compounds belonging to one compound class are rather similar. Therefore, the scheme can also be used for an approximate quantification of compound classes. This is demonstrated by a fast characterization and pattern recognition of two gasoline samples with different origins (Germany and South Africa) and a diesel sample (Germany). The on-line capability of the technique and the scheme is demonstrated by quantitatively monitoring and comparing the cold engine start of four vehicles: a gasoline passenger car, a diesel van, a motorbike and a two-stroke scooter. PMID:17874081

  11. Complete nondestructive analysis of two-photon six-qubit hyperentangled Bell states assisted by cross-Kerr nonlinearity.

    PubMed

    Liu, Qian; Wang, Guan-Yu; Ai, Qing; Zhang, Mei; Deng, Fu-Guo

    2016-01-01

    Hyperentanglement, the entanglement in several degrees of freedom (DOFs) of a quantum system, has attracted much attention as it can be used to increase both the channel capacity of quantum communication and its security largely. Here, we present the first scheme to completely distinguish the hyperentangled Bell states of two-photon systems in three DOFs with the help of cross-Kerr nonlinearity without destruction, including two longitudinal momentum DOFs and the polarization DOF. We use cross-Kerr nonlinearity to construct quantum nondemolition detectors which can be used to make a parity-check measurement and analyze Bell states of two-photon systems in different DOFs. Our complete scheme for two-photon six-qubit hyperentangled Bell-state analysis may be useful for the practical applications in quantum information, especially in long-distance high-capacity quantum communication. PMID:26912172

  12. Complete nondestructive analysis of two-photon six-qubit hyperentangled Bell states assisted by cross-Kerr nonlinearity

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Wang, Guan-Yu; Ai, Qing; Zhang, Mei; Deng, Fu-Guo

    2016-02-01

    Hyperentanglement, the entanglement in several degrees of freedom (DOFs) of a quantum system, has attracted much attention as it can be used to increase both the channel capacity of quantum communication and its security largely. Here, we present the first scheme to completely distinguish the hyperentangled Bell states of two-photon systems in three DOFs with the help of cross-Kerr nonlinearity without destruction, including two longitudinal momentum DOFs and the polarization DOF. We use cross-Kerr nonlinearity to construct quantum nondemolition detectors which can be used to make a parity-check measurement and analyze Bell states of two-photon systems in different DOFs. Our complete scheme for two-photon six-qubit hyperentangled Bell-state analysis may be useful for the practical applications in quantum information, especially in long-distance high-capacity quantum communication.

  13. Complete nondestructive analysis of two-photon six-qubit hyperentangled Bell states assisted by cross-Kerr nonlinearity

    PubMed Central

    Liu, Qian; Wang, Guan-Yu; Ai, Qing; Zhang, Mei; Deng, Fu-Guo

    2016-01-01

    Hyperentanglement, the entanglement in several degrees of freedom (DOFs) of a quantum system, has attracted much attention as it can be used to increase both the channel capacity of quantum communication and its security largely. Here, we present the first scheme to completely distinguish the hyperentangled Bell states of two-photon systems in three DOFs with the help of cross-Kerr nonlinearity without destruction, including two longitudinal momentum DOFs and the polarization DOF. We use cross-Kerr nonlinearity to construct quantum nondemolition detectors which can be used to make a parity-check measurement and analyze Bell states of two-photon systems in different DOFs. Our complete scheme for two-photon six-qubit hyperentangled Bell-state analysis may be useful for the practical applications in quantum information, especially in long-distance high-capacity quantum communication. PMID:26912172

  14. Photon production from the scattering of axions out of a solenoidal magnetic field

    SciTech Connect

    Guendelman, Eduardo I.; Shilon, Idan; Cantatore, Giovanni; Zioutas, Konstantin E-mail: silon@bgu.ac.il E-mail: Konstantin.Zioutas@cern.ch

    2010-06-01

    We calculate the total cross section for the production of photons from the scattering of axions by a strong inhomogeneous magnetic field in the form of a 2D δ-function, a cylindrical step function and a 2D Gaussian distribution, which can be approximately produced by a solenoidal current. The theoretical result is used to estimate the axion-photon conversion probability which could be expected in a reasonable experimental situation. Comparison between the 2D conversion probabilities for QCD inspired axions and those derived by applying the celebrated 1D calculation of the (inverse) coherent Primakoff effect is made using an averaging prescription procedure of the 1D case. We also consider scattering at a resonance E{sub axion} ∼ m{sub axion}, which corresponds to the scattering from a δ-function and gives the most enhanced results. Finally, we analyze the results of this work in the astrophysical extension to suggest a way in which they may be directed to a solution to some basic solar physics problems and, in particular, the coronal heating problem.

  15. Photon-tagged heavy meson production in high energy nuclear collisions

    SciTech Connect

    Kang, Z.B.; Vitev, I.

    2011-07-26

    We study the photon-triggered light and heavy meson production in both p+p and A+A collisions. We find that a parton energy loss approach that successfully describes inclusive hadron attenuation in nucleus-nucleus reactions at RHIC can simultaneously describe well the experimentally determined photon-triggered light hadron fragmentation functions. Using the same framework, we generalize our formalism to study photon-triggered heavy meson production. We find that the nuclear modification of photon-tagged heavy meson fragmentation functions in A+A collision is very different from that of the photon-tagged light hadron case. While photon-triggered light hadron fragmentation functions in A+A collisions are suppressed relative to p+p, photon-triggered heavy meson fragmentation functions can be either enhanced or suppressed, depending on the specific kinematic region. The anticipated smaller energy loss for b-quarks manifests itself as a flatter photon-triggered B-meson fragmentation function compared to that for the D-meson case. We make detailed predictions for both RHIC and LHC energies. We conclude that a comprehensive comparative study of both photon-tagged light and heavy meson production can provide new insights in the details of the jet quenching mechanism.

  16. Top Quark Pair Production Cross Section at the Tevatron

    SciTech Connect

    Peters, Reinhild Yvonne

    2015-09-25

    The top quark, discovered in 1995 by the CDF and D0 collaborations at the Tevatron proton antiproton collider at Fermilab, has undergone intense studies in the last 20 years. Currently, CDF and D0 converge on their measurements of top-antitop quark production cross sections using the full Tevatron data sample. In these proceedings, the latest results on inclusive and differential measurements of top-antitop quark production cross sections at the Tevatron are reported.

  17. Direct photon production in d+Au collisions at sNN=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Adler, S. S.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Al-Bataineh, H.; Al-Jamel, A.; Alexander, J.; Angerami, A.; Aoki, K.; Apadula, N.; Aphecetche, L.; Aramaki, Y.; Armendariz, R.; Aronson, S. H.; Asai, J.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Baldisseri, A.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Bauer, F.; Baumann, C.; Bazilevsky, A.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bhom, J. H.; Bickley, A. A.; Bjorndal, M. T.; Blau, D. S.; Boissevain, J. G.; Bok, J. S.; Borel, H.; Boyle, K.; Brooks, M. L.; Brown, D. S.; Bruner, N.; Bucher, D.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Burward-Hoy, J. M.; Butsyk, S.; Camacho, C. M.; Camard, X.; Campbell, S.; Caringi, A.; Chand, P.; Chang, B. S.; Chang, W. C.; Charvet, J.-L.; Chen, C.-H.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Churyn, A.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cobigo, Y.; Cole, B. A.; Comets, M. P.; Conesa del Valle, Z.; Connors, M.; Constantin, P.; Csanád, M.; Csörgő, T.; Cussonneau, J. P.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; David, G.; Dayananda, M. K.; Deák, F.; Delagrange, H.; Denisov, A.; d'Enterria, D.; Deshpande, A.; Desmond, E. J.; Devismes, A.; Dharmawardane, K. V.; Dietzsch, O.; Dion, A.; Donadelli, M.; Drachenberg, J. L.; Drapier, O.; Drees, A.; Drees, K. A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dutta, D.; Dzhordzhadze, V.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Espagnon, B.; Esumi, S.; Eyser, K. O.; Fadem, B.; Fields, D. E.; Finck, C.; Finger, M.; Finger, M., Jr.; Fleuret, F.; Fokin, S. L.; Fox, B. D.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fung, S.-Y.; Fusayasu, T.; Gadrat, S.; Garishvili, I.; Germain, M.; Glenn, A.; Gong, H.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gunji, T.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Hanks, J.; Hansen, A. G.; Hartouni, E. P.; Haruna, K.; Harvey, M.; Haslum, E.; Hasuko, K.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Heuser, J. M.; Hidas, P.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Holzmann, W.; Homma, K.; Hong, B.; Hoover, A.; Horaguchi, T.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Ikonnikov, V. V.; Imai, K.; Imrek, J.; Inaba, M.; Inuzuka, M.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Ivanischev, D.; Iwanaga, Y.; Jacak, B. V.; Jia, J.; Jiang, X.; Jin, J.; Jinnouchi, O.; Johnson, B. M.; Johnson, S. C.; Jones, T.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kaneta, M.; Kang, J. H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Katou, K.; Kawabata, T.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kelly, S.; Kempel, T.; Khachaturov, B.; Khanzadeev, A.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, E. J.; Kim, G.-B.; Kim, H. J.; Kim, S. H.; Kim, Y.-J.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kiyomichi, A.; Klay, J.; Klein-Boesing, C.; Kleinjan, D.; Kobayashi, H.; Kochenda, L.; Kochetkov, V.; Kohara, R.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Kroon, P. J.; Kuberg, C. H.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Layton, D.; Lebedev, A.; Le Bornec, Y.; Leckey, S.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Lenzi, B.; Li, X.; Li, X. H.; Lichtenwalner, P.; Liebing, P.; Lim, H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Malakhov, A.; Malik, M. D.; Manko, V. I.; Mannel, E.; Mao, Y.; Martinez, G.; Mašek, L.; Masui, H.; Matathias, F.; Matsumoto, T.; McCain, M. C.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; Means, N.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mishra, G. C.; Mishra, M.; Mitchell, J. T.; Mohanty, A. K.; Moon, H. J.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moss, J. M.; Moukhanova, T. V.; Mukhopadhyay, D.; Muniruzzaman, M.; Murakami, T.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Nouicer, R.; Nyanin, A. S.; Nystrand, J.; Oakley, C.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Ohnishi, H.; Ojha, I. D.; Oka, M.; Okada, K.; Onuki, Y.; Oskarsson, A.; Otterlund, I.; Ouchida, M.; Oyama, K.; Ozawa, K.; Pak, R.; Pal, D.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J.; Park, S. K.; Park, W. J.; Pate, S. F.; Pei, H.; Penev, V.; Peng, J.-C.; Pereira, H.; Peresedov, V.; Peressounko, D. Yu.; Petti, R.; Pierson, A.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Qualls, J. M.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reuter, M.; Reygers, K.; Riabov, V.; Riabov, Y.; Richardson, E.; Roach, D.; Roche, G.; Rolnick, S. D.; Romana, A.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rukoyatkin, P.; Ružička, P.; Rykov, V. L.; Ryu, S. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakashita, K.; Samsonov, V.; Sanfratello, L.; Sano, S.; Santo, R.; Sato, H. D.; Sato, S.; Sato, T.; Sawada, S.; Schutz, Y.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, A. Yu.; Semenov, V.; Seto, R.; Sharma, D.; Shea, T. K.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Staley, F.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Suire, C.; Sukhanov, A.; Sullivan, J. P.; Sziklai, J.; Takagi, S.; Takagui, E. M.; Taketani, A.; Tanabe, R.; Tanaka, K. H.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Themann, H.; Thomas, D.; Thomas, T. L.; Togawa, M.; Toia, A.; Tojo, J.; Tomášek, L.; Tomita, Y.; Torii, H.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Tydesjö, H.; Tyurin, N.; Uam, T. J.; Vale, C.; Valle, H.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Velkovsky, M.; Vértesi, R.; Veszprémi, V.; Vinogradov, A. A.; Virius, M.; Volkov, M. A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Wei, F.; Wei, R.; Wessels, J.; White, S. N.; Willis, N.; Winter, D.; Wohn, F. K.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xie, W.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zhang, C.; Zhou, S.; Zimányi, J.; Zolin, L.; Zong, X.

    2013-05-01

    Direct photons have been measured in sNN=200 GeV d+Au collisions at midrapidity. A wide pT range is covered by measurements of nearly real virtual photons (1photons (5photons in d+Au collisions over the scaled p+p cross section is consistent with unity. Theoretical calculations assuming standard cold-nuclear-matter effects describe the data well for the entire pT range. This indicates that the large enhancement of direct photons observed in Au+Au collisions for 1.0

  18. Heavy-Quark Associated Production with One Hard Photon at Hadron Colliders

    SciTech Connect

    Hartanto, Heribertus Bayu

    2013-01-01

    We present the calculation of heavy-quark associated production with a hard photon at hadron colliders, namely $pp(p\\bar p) → Q\\bar Q +X$γ (for $Q=t,b$), at Next-to-Leading Order (NLO) in Quantum Chromodynamics (QCD). We study the impact of NLO QCD corrections on the total cross section and several differential distributions at both the Tevatron and the Large Hadron Collider (LHC). For $t\\bar t$γ production we observe a sizeable reduction of the renormalization and factorization scale dependence when the NLO QCD corrections are included, while for $b\\bar b$γ production a considerable scale dependence still persists at NLO in QCD. This is consistent with what emerges in similar processes involving $b$ quarks and vector bosons and we explain its origin in detail. For $b\\bar b$γ production we study both the case in which at least one $b$ jet and the case in which at least two $b$ jets are observed. We perform the $b\\bar b$γ calculation using the Four Flavor Number Scheme (4FNS) and compare the case where at least one $b$ jet is observed with the corresponding results from the Five Flavor Number Scheme (5FNS) calculation. Finally we compare our results for $p\\bar p →+b+X$γ with the Tevatron data.

  19. Heavy-quark associated production with one hard photon at hadron colliders

    NASA Astrophysics Data System (ADS)

    Hartanto, Heribertus Bayu

    We present the calculation of heavy-quark associated production with a hard photon at hadron colliders, namely pp( pp) → QQgamma + X (for Q = t, b), at Next-to-Leading Order (NLO) in Quantum Chromodynamics (QCD). We study the impact of NLO QCD corrections on the total cross section and several differential distributions at both the Tevatron and the Large Hadron Collider (LHC). For ttgamma production we observe a sizeable reduction of the renormalization and factorization scale dependence when the NLO QCD corrections are included, while for bbgamma production a considerable scale dependence still persists at NLO in QCD. This is consistent with what emerges in similar processes involving b quarks and vector bosons and we explain its origin in detail. For bbgamma production we study both the case in which at least one b jet and the case in which at least two b jets are observed. We perform the bbgamma calculation using the Four Flavor Number Scheme (4FNS) and compare the case where at least one b jet is observed with the corresponding results from the Five Flavor Number Scheme (5FNS) calculation. Finally we compare our results for p p → gamma + b + X with Tevatron data.

  20. Photon annd pion production in heavy ion collisions

    SciTech Connect

    Blann, M.

    1989-05-01

    In this paper we describe different formulations for treating the nucleon-nucleon transport physics. These will all be semi-classical treatments; however considerable work has been done considering the relationship between quantal and semi-classical formulations. We discuss additional input specific to calculation of pion and photon yields, and present comparisons between calculated and experimental results, mostly for high energy photons. Conclusions and suggestions for future work are presented in the last section. 65 refs., 7 figs.

  1. The Lyman-continuum photon production efficiency in the high-redshift Universe

    NASA Astrophysics Data System (ADS)

    Wilkins, Stephen M.; Feng, Yu; Di-Matteo, Tiziana; Croft, Rupert; Stanway, Elizabeth R.; Bouwens, Rychard J.; Thomas, Peter

    2016-05-01

    The Lyman-continuum photon production efficiency (ξion) is a critical ingredient for inferring the number of photons available to reionize the intergalactic medium. To estimate the theoretical production efficiency in the high-redshift Universe we couple the BlueTides cosmological hydrodynamical simulation with a range of stellar population synthesis models. We find Lyman-continuum photon production efficiencies of log10(ξion/erg-1 Hz) ≈ 25.1-25.5 depending on the choice of stellar population synthesis model. These results are broadly consistent with recent observational constraints at high-redshift though favour a model incorporating the effects of binary evolution.

  2. Parallel and simultaneous spatial mode conversion using photorefractive crystal for photonic cross-connect

    NASA Astrophysics Data System (ADS)

    Zhao, Yanfeng; Okamoto, Atsushi; Maeda, Tomohiro; Hirasaki, Yuki; Tomita, Akihisa; Bunsen, Masatoshi

    2015-01-01

    In this paper, we present a novel technology for photonic cross-connect (PXC) in spatial mode domain for the realization of advanced and flexible optical transmission of spatial modes. The PXC is a kind of all -optical devices to switch highspeed optical signals for mode-division multiplexing (MDM) network and it is able to perform signal labeling in the spatial mode domain similar to current photonic switching in the wavelength domain. In addition, parallel and simultaneous mode conversion can be realized using multiplex holograms in a photorefractive crystal (PRC). In our experiment, during the recording process, a rewritable hologram is recorded in the PRC (LiNbO3) through the interference between the signal beam with certain input mode and the reference beam with the phase distribution of the desired output mode. Signal beams are generated by computer generated hologram (CGH) using a spatial light modulator (SLM) instead of an optical fiber emergent beam, and reference beams are generated by phase only modulation using another SLM. Subsequently, during the converting process, the input signal beam is converted into the desired output mode through the holographic diffract ion in the crystal and free-space propagation by an optical lens. By using phase code multiplexing method, parallel mode conversions can be realized. We performed an experiment on parallel mode conversions of several different conversion pairs. Signal beams and reference beams intersected in the PRC with an angle of 18.43 degree. The intensity distributions of converted modes were observed by CCD camera set on the Fourier plane. We confirmed that the two modes inter-conversion of LP11 with LP21 was successfully implemented.

  3. Two-photon excitation cross section in light and intermediate atoms in frozen-core LS-coupling approximation

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1980-01-01

    Using the method of explicit summation over the intermediate states two-photon absorption cross sections in light and intermediate atoms based on the simplistic frozen-core approximation and LS coupling have been formulated. Formulas for the cross section in terms of integrals over radial wave functions are given. Two selection rules, one exact and one approximate, valid within the stated approximations are derived. The formulas are applied to two-photon absorptions in nitrogen, oxygen, and chlorine. In evaluating the radial integrals, for low-lying levels, the Hartree-Fock wave functions, and for high-lying levels, hydrogenic wave functions obtained by the quantum-defect method have been used. A relationship between the cross section and the oscillator strengths is derived.

  4. Brominated 7-hydroxycoumarin-4-ylmethyls: Photolabile protecting groups with biologically useful cross-sections for two photon photolysis

    PubMed Central

    Furuta, Toshiaki; Wang, Samuel S.-H.; Dantzker, Jami L.; Dore, Timothy M.; Bybee, Wendy J.; Callaway, Edward M.; Denk, Winfried; Tsien, Roger Y.

    1999-01-01

    Photochemical release (uncaging) of bioactive messengers with three-dimensional spatial resolution in light-scattering media would be greatly facilitated if the photolysis could be powered by pairs of IR photons rather than the customary single UV photons. The quadratic dependence on light intensity would confine the photolysis to the focus point of the laser, and the longer wavelengths would be much less affected by scattering. However, previous caged messengers have had very small cross sections for two-photon excitation in the IR region. We now show that brominated 7-hydroxycoumarin-4-ylmethyl esters and carbamates efficiently release carboxylates and amines on photolysis, with one- and two-photon cross sections up to one or two orders of magnitude better than previously available. These advantages are demonstrated on neurons in brain slices from rat cortex and hippocampus excited by glutamate uncaged from N-(6-bromo-7-hydroxycoumarin-4-ylmethoxycarbonyl)-l-glutamate (Bhc-glu). Conventional UV photolysis of Bhc-glu requires less than one-fifth the intensities needed by one of the best previous caged glutamates, γ-(α-carboxy-2-nitrobenzyl)-l-glutamate (CNB-glu). Two-photon photolysis with raster-scanned femtosecond IR pulses gives the first three-dimensionally resolved maps of the glutamate sensitivity of neurons in intact slices. Bhc-glu and analogs should allow more efficient and three-dimensionally localized uncaging and photocleavage, not only in cell biology and neurobiology but also in many technological applications. PMID:9990000

  5. Measurement of the inclusive isolated prompt photon cross section in pp collisions at √{s}=8 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; Gongadze, A.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kentaro, K.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2016-08-01

    A measurement of the cross section for the inclusive production of isolated prompt photons in proton-proton collisions at a centre-of-mass energy of √{s}=8 TeV is presented. The measurement covers the pseudorapidity ranges | η γ | < 1 .37 and 1 .56 ≤ | η γ | < 2 .37 in the transverse energy range 25 < E T γ < 1500 GeV. The results are based on an integrated luminosity of 20.2 fb-1, recorded by the ATLAS detector at the LHC. Photon candidates are identified by combining information from the calorimeters and the inner tracker. The background is subtracted using a data-driven technique, based on the observed calorimeter shower-shape variables and the deposition of hadronic energy in a narrow cone around the photon candidate. The measured cross sections are compared with leading-order and next-to-leading order perturbative QCD calculations and are found to be in a good agreement over ten orders of magnitude. [Figure not available: see fulltext.

  6. Quantum computation based on photonic systems with two degrees of freedom assisted by the weak cross-Kerr nonlinearity

    PubMed Central

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong

    2016-01-01

    Most of previous quantum computations only take use of one degree of freedom (DoF) of photons. An experimental system may possess various DoFs simultaneously. In this paper, with the weak cross-Kerr nonlinearity, we investigate the parallel quantum computation dependent on photonic systems with two DoFs. We construct nearly deterministic controlled-not (CNOT) gates operating on the polarization spatial DoFs of the two-photon or one-photon system. These CNOT gates show that two photonic DoFs can be encoded as independent qubits without auxiliary DoF in theory. Only the coherent states are required. Thus one half of quantum simulation resources may be saved in quantum applications if more complicated circuits are involved. Hence, one may trade off the implementation complexity and simulation resources by using different photonic systems. These CNOT gates are also used to complete various applications including the quantum teleportation and quantum superdense coding. PMID:27424767

  7. Quantum computation based on photonic systems with two degrees of freedom assisted by the weak cross-Kerr nonlinearity.

    PubMed

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong

    2016-01-01

    Most of previous quantum computations only take use of one degree of freedom (DoF) of photons. An experimental system may possess various DoFs simultaneously. In this paper, with the weak cross-Kerr nonlinearity, we investigate the parallel quantum computation dependent on photonic systems with two DoFs. We construct nearly deterministic controlled-not (CNOT) gates operating on the polarization spatial DoFs of the two-photon or one-photon system. These CNOT gates show that two photonic DoFs can be encoded as independent qubits without auxiliary DoF in theory. Only the coherent states are required. Thus one half of quantum simulation resources may be saved in quantum applications if more complicated circuits are involved. Hence, one may trade off the implementation complexity and simulation resources by using different photonic systems. These CNOT gates are also used to complete various applications including the quantum teleportation and quantum superdense coding. PMID:27424767

  8. A cascade of e ‑ e + pair production by a photon with subsequent annihilation to a single photon in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Diachenko, M. M.; Novak, O. P.; Kholodov, R. I.

    2016-06-01

    The process of electron–positron pair production by a photon with subsequent annihilation to a single photon in a strong magnetic field has been studied. The general amplitude has been calculated and the process rates have been found in a low Landau levels approximation (resonant and nonresonant cases). The comparison of resonant and nonresonant cases shows a significant excess of the resonant rate. The polarization of the final photon in a strong magnetic field has also been found. It has been shown that polarizations of the initial and final photons are independent except for the case of normal linear polarization of the initial photon.

  9. Phase-noise limitations on single-photon cross-phase modulation with differing group velocities

    NASA Astrophysics Data System (ADS)

    Dove, Justin; Chudzicki, Christopher; Shapiro, Jeffrey H.

    2014-12-01

    A framework is established for evaluating cphase gates that use single-photon cross-phase modulation (XPM) originating from the Kerr nonlinearity. Prior work [J. H. Shapiro, Phys. Rev. A 73, 062305 (2006), 10.1103/PhysRevA.73.062305], which assumed that the control and target pulses propagated at the same group velocity, showed that the causality-induced phase noise required by a noninstantaneous XPM response function precluded the possibility of high-fidelity π -radian conditional phase shifts. The framework presented herein incorporates the more realistic case of group-velocity disparity between the control and target pulses, as employed in existing XPM-based fiber-optical switches. Nevertheless, the causality-induced phase noise identified by Shapiro [J. H. Shapiro, Phys. Rev. A 73, 062305 (2006), 10.1103/PhysRevA.73.062305] still rules out high-fidelity π -radian conditional phase shifts. This is shown to be so for both a reasonable theoretical model for the XPM response function and for the experimentally measured XPM response function of silica-core fiber.

  10. Effects of the plasma profiles on photon and pair production in ultrahigh intensity laser solid interaction

    SciTech Connect

    Tian, Y. X.; Jin, X. L. Yan, W. Z.; Li, J. Q.; Li, B.; Yu, J. Q.

    2015-12-15

    The model of photon and pair production in strong field quantum electrodynamics is implemented into our 1D3V particle-in-cell code with Monte Carlo algorithm. Using this code, the evolution of the particles in ultrahigh intensity laser (∼10{sup 23} W/cm{sup 2}) interaction with aluminum foil target is observed. Four different initial plasma profiles are considered in the simulations. The effects of initial plasma profiles on photon and pair production, energy spectra, and energy evolution are analyzed. The results imply that one can set an optimal initial plasma profile to obtain the desired photon distributions.

  11. Photon and dilepton production in high energy heavy ion collisions

    DOE PAGESBeta

    Sakaguchi, Takao

    2015-05-07

    The recent results on direct photons and dileptons in high energy heavy ion collisions, obtained particularly at RHIC and LHC are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the physics learned from the results.

  12. Measurements of partial cross sections and photoelectron angular distributions for the photodetachment of Fe- and Cu- at visible photon wavelengths

    NASA Astrophysics Data System (ADS)

    Covington, A. M.; Duvvuri, Srividya S.; Emmons, E. D.; Kraus, R. G.; Williams, W. W.; Thompson, J. S.; Calabrese, D.; Carpenter, D. L.; Collier, R. D.; Kvale, T. J.; Davis, V. T.

    2007-02-01

    Photodetachment cross sections and the angular distributions of photoelectrons produced by the single-photon detachment of the transition metal negative ions Fe- and Cu- have been measured at four discrete photon wavelengths ranging from 457.9 to 647.1nm (2.71-1.92eV) using a crossed-beams laser photodetachment electron spectrometry (LPES) apparatus. Photodetachment cross sections were determined by comparing the photoelectron yields from the photodetachment of Fe- to those of Cu- and C- , which have known absolute photodetachment cross sections. Using the measured photodetachment cross sections, radiative electron attachment cross sections were calculated using the principle of detailed balance. Angular distributions were determined by measurements of laboratory frame, angle-, and energy-resolved photoelectrons as a function of the angle between the linear laser polarization vector and the momentum vector of the collected photoelectrons. Values of the asymmetry parameter have been determined by nonlinear least-squares fits to these angular distributions. The measured asymmetry parameters are compared to predictions of photodetachment models including Cooper and Zare’s dipole approximation theory [J. Cooper and R. N. Zare, J. Chem. Phys. 48, 942 (1968)], and the angular momentum transfer theory developed by Fano and Dill [Phys. Rev. A 6, 185 (1972)].

  13. Perturbative QCD analysis of pion and kaon form factors and pair production in photon-photon collisions using a frozen coupling constant

    SciTech Connect

    Ji Chuengryong ); Amiri, F. )

    1990-12-01

    Within the framework of leading-order perturbative QCD and using a frozen coupling constant, we calculate the pion and kaon form factors and the cross section of pion and kaon pair production in two-photon collisions. We use the same frozen coupling constant as taken in the nucleon Dirac-form-factor analysis and find that the results for the {pi} and {ital K} form factors, the reactions {gamma}{gamma}{r arrow}{pi}{sup +}{pi}{sup {minus}},{ital K}{sup +}{ital K}{sup {minus}}, and the proton Dirac form factor are in fair agreement with the available experimental data. The cutoff value of the frozen coupling constant used in our analysis is consistent with the theoretical estimation presented by Cornwall.

  14. Modified TAROT for cross-selling personal financial products

    NASA Astrophysics Data System (ADS)

    Tee, Ya-Mei; LEE, Lai-Soon; LEE, Chew-Ging; SEOW, Hsin-Vonn

    2014-09-01

    The Top Application characteristics Remainder Offer characteristics Tree (TAROT) was first introduced in 2007. This is a modified Classification and Regression Trees (CART) used to help decide which question(s) to ask potential applicants to customise an offer of a personal financial product so that it would have a high probability of take up. In this piece of work the authors are presenting, they have further modified the TAROT to cross TAROT, using its properties and modeling steps to deal with the issue of cross-selling. Since the bank already has ready customers, it would be ideal to cross-sell the financial products seeing that one can ask one (or more) further question(s) based on the initial offer to identify and customise another financial product to offer.

  15. Tevatron direct photon results.

    SciTech Connect

    Kuhlmann, S.

    1999-09-21

    Tevatron direct photon results since DIS98 are reviewed. Two new CDF measurements are discussed, the Run Ib inclusive photon cross section and the photon + Muon cross section. Comparisons with the latest NLO QCD calculations are presented.

  16. Two-color interference effect involving three-photon atomic excitation and four-wave mixing in crossed laser beams

    SciTech Connect

    Peet, V.

    2007-09-15

    Through multiphoton ionization measurements, the polarization effects in destructive quantum interference under three-photon resonant excitation have been studied. Recent observations [V. Peet, Phys. Rev. A 74, 033406 (2006)] have indicated that contrary to the well-known pattern of a total suppression of resonance excitation, the destructive interference becomes incomplete if three-photon transition is driven by crossed beams with orthogonal polarization planes. These observations have been tested for a more general case of two-color excitation and very similar polarization-dependent anomalies in the interference character have been registered. It has been shown that the destructive interference is modified and the resonance excitation does occur if two crossed laser beams have opposite circular polarizations. The pressure-induced evolution of the uncanceled ionization peaks has the ratio of blue shift to width close to 0.5 exactly as it is known for resonance ionization peaks registered under excitation by counterpropagating laser beams.

  17. Cooperative enhancement versus additivity of two-photon-absorption cross sections in linear and branched squaraine superchromophores.

    PubMed

    Ceymann, Harald; Rosspeintner, Arnulf; Schreck, Maximilian H; Mützel, Carina; Stoy, Andreas; Vauthey, Eric; Lambert, Christoph

    2016-06-28

    The linear and nonlinear optical properties of a series of oligomeric squaraine dyes were investigated by one-photon absorption spectroscopy (1PA) and two-photon absorption (2PA) induced fluorescence spectroscopy. The superchromophores are based on two indolenine squaraine dyes with transoid (SQA) and cisoid configuration (SQB). Using these monomers, linear dimers and trimers as well as star-shaped trimers and hexamers with benzene or triphenylamine cores were synthesised and investigated. The red-shifted and intensified 1PA spectra of all superchromophores could well be explained by exciton coupling theory. In the linear chromophore arrangements we also found superradiance of fluorescence but not in the branched systems. Furthermore, the 2PA showed enhanced cross sections for the linear oligomers but only additivity for the branched systems. This emphasizes that the enhancement of the 2PA cross section in the linear arrangements is probably caused by orbital interactions of higher excited configurations. PMID:27264847

  18. Power-efficient production of photon pairs in a tapered chalcogenide microwire

    SciTech Connect

    Meyer-Scott, Evan Dot, Audrey; Ahmad, Raja; Li, Lizhu; Rochette, Martin; Jennewein, Thomas

    2015-02-23

    Using tapered fibers of As{sub 2}Se{sub 3} chalcogenide glass, we produce photon pairs at telecommunication wavelengths with low pump powers. We found maximum coincidences-to-accidentals ratios of 2.13 ± 0.07 for degenerate pumping with 3.2 μW average power, and 1.33 ± 0.03 for non-degenerate pumping with 1.0 μW and 1.5 μW average power of the two pumps. Our results show that the ultrahigh nonlinearity in these microwires could allow single-photon pumping to produce photon pairs, enabling the production of large entangled states, heralding of single photons after lossy transmission, and photonic quantum information processing with nonlinear optics.

  19. Code System for Producing Pointwise and Multigroup Neutron and Photon Cross Sections from ENDF/B Data.

    Energy Science and Technology Software Center (ESTSC)

    1996-12-19

    Version 03 The NJOY nuclear data processing system is a comprehensive computer code system for producing pointwise and multigroup cross sections and related quantities from ENDF/B evaluated nuclear data in the ENDF format, including the latest US library, ENDF/B-VI. The NJOY code works with neutrons, photons, and charged particles and produces libraries for a wide variety of particle transport and reactor analysis codes.

  20. Neutron-photon multigroup cross sections for neutron energies less than or equal to400 MeV. Revision 1

    SciTech Connect

    Alsmiller, R.G. Jr.; Barnes, J.M.; Drischler, J.D.

    1986-01-01

    For a variety of applications, e.g., accelerator shielding design, neutrons in radiotherapy, radiation damage studies, etc., it is necessary to carry out transport calculations involving medium-energy (greater than or equal to20 MeV) neutrons. A previous paper described neutron-photon multigroup cross sections in the ANISN format for neutrons from thermal to 400 MeV. In the present paper the cross-section data presented previously have been revised to make them agree with available experimental data. 7 refs., 1 fig.

  1. Vectorial laws of refraction and reflection using the cross product and dot product.

    PubMed

    Tkaczyk, Eric R

    2012-03-01

    We demonstrate that published vectorial laws of reflection and refraction of light based solely on the cross product do not, in general, uniquely determine the direction of the reflected and refracted waves without additional information. This is because the cross product does not have a unique inverse operation, which is explained in this Letter in linear algebra terms. However, a vector is in fact uniquely determined if both the cross product (vector product) and dot product (scalar product) with a known vector are specified, which can be written as a single equation with a left-invertible matrix. It is thus possible to amend the vectorial laws of reflection and refraction to incorporate both the cross and dot products for a complete specification with unique solution. This enables highly efficient, unambiguous computation of reflected and refracted wave vectors from the incident wave and surface normal. PMID:22378456

  2. Photon + jets at D0

    SciTech Connect

    Sonnenschein, Lars; /RWTH Aachen U.

    2009-06-01

    Photon plus jet production has been studied by the D0 experiment in Run II of the Fermilab Tevatron Collider at a centre of mass energy of {radical}s = 1.96 TeV. Measurements of the inclusive photon, inclusive photon plus jet, photon plus heavy flavour jet cross sections and double parton interactions in photon plus three jet events are presented. They are based on integrated luminosities between 0.4 fb{sup -1} and 1.0 fb{sup -1}. The results are compared to perturbative QCD calculations in various approximations.

  3. CT14QED parton distribution functions from isolated photon production in deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Schmidt, Carl; Pumplin, Jon; Stump, Daniel; Yuan, C.-P.

    2016-06-01

    We describe the implementation of quantum electrodynamic (QED) evolution at leading order (LO) along with quantum chromodynamic (QCD) evolution at next-to-leading order (NLO) in the CTEQ-TEA global analysis package. The inelastic contribution to the photon parton distribution function (PDF) is described by a two-parameter ansatz, coming from radiation off the valence quarks, and based on the CT14 NLO PDFs. Setting the two parameters to be equal allows us to completely specify the inelastic photon PDF in terms of the inelastic momentum fraction carried by the photon, p0γ, at the initial scale Q0=1.295 GeV . We obtain constraints on the photon PDF by comparing with ZEUS data [S. Chekanov et al. (ZEUS Collaboration), Phys. Lett. B 687, 16 (2010)] on the production of isolated photons in deep inelastic scattering, e p →e γ +X . For this comparison we present a new perturbative calculation of the process that consistently combines the photon-initiated contribution with the quark-initiated contribution. Comparison with the data allows us to put a constraint at the 90% confidence level of p0γ≲0.14 % for the inelastic photon PDF at the initial scale of Q0=1.295 GeV in the one-parameter radiative ansatz. The resulting inelastic CT14QED PDFs will be made available to the public. In addition, we also provide CT14QEDinc PDFs, in which the inclusive photon PDF at the scale Q0 is defined by the sum of the inelastic photon PDF and the elastic photon distribution obtained from the equivalent photon approximation.

  4. Measurement of the inclusive isolated prompt photon cross section in $p\\bar{p}$ collisions at $\\sqrt{s}=$1.96~TeV, using the full CDF data sample

    SciTech Connect

    Luca, Alessandra

    2016-01-01

    The measurement of the cross section for the inclusive production of isolated prompt photons in proton-antiproton collisions at $\\sqrt{s}$=1.96~TeV is presented. The data set corresponds to an integrated luminosity of 9.5~fb$^{-1}$, collected with the Collider Detector at Fermilab in Run~II. The measurement is performed as a function of the photon transverse energy ($E_T^{\\gamma}$) covering the range of 30~GeV$< E_T^{\\gamma} <$500~GeV in the pseudorapidity region $|\\eta^{\\gamma}|<$1.0. To reduce the background coming from the decays of $\\pi^0$'s, $\\eta$'s and other hadrons, photons are required to be isolated in the calorimeter. The output distributions of an Artificial Neural Network are exploited to estimate the remaining contamination from jets faking isolated photons. Results are compared to leading-order and next-to-leading-order perturbative QCD calculations.

  5. Top quark pair production cross section at the Tevatron

    SciTech Connect

    Cortiana, Giorgio; /INFN, Padua /Padua U.

    2008-04-01

    Top quark pair production cross section has been measured at the Tevatron by CDF and D0 collaborations using different channels and methods, in order to test standard model predictions, and to search for new physics hints affecting the t{bar t} production mechanism or decay. Measurements are carried out with an integrated luminosity of 1.0 to 2.0 fb{sup -1}, and are found to be consistent with standard model expectations.

  6. Enhancing Photon Utilization Efficiency for Astaxanthin Production from Haematococcus lacustris Using a Split-Column Photobioreactor.

    PubMed

    Kim, Z-Hun; Park, Hanwool; Lee, Ho-Sang; Lee, Choul-Gyun

    2016-07-28

    A split-column photobioreactor (SC-PBR), consisting of two bubble columns with different sizes, was developed to enhance the photon utilization efficiency in an astaxanthin production process from Haematococcus lacustris. Among the two columns, only the smaller column of SC-PBR was illuminated. Astaxanthin productivities and photon efficiencies of the SC-PBRs were compared with a standard bubble-column PBR (BC-PBR). Astaxanthin productivity of SC-PBR was improved by 28%, and the photon utilization efficiencies were 28-366% higher than the original BC-PBR. The results clearly show that the effective light regime of SC-PBR could enhance the production of astaxanthin. PMID:27056475

  7. Search for anomalous production of photonic events with missing energy in e+e- collisions at √ {s} = 130-172 GeV

    NASA Astrophysics Data System (ADS)

    OPAL Collaboration; Ackerstaff, K.; et al.

    Photonic events with large missing energy have been observed in e+e- collisions at centre-of-mass energies of 130, 136, 161 and 172 GeV using the OPAL detector at LEP. Results are presented based on search topologies designed to select events with a single photon and missing transverse energy or events with a pair of acoplanar photons. In both search topologies, cross-section measurements are performed within the kinematic acceptance of the selection. These results are compared with the expectations from the Standard Model processes e+e--> ν /lineν γ (γ ) (single-photon) and e+e--> ν /lineν γ γ (γ ) (acoplanar-photons). No evidence is observed for new physics contributions to these final states. Upper limits on σ (e+e- -> XY)ot BR(X-> Yγ ) and σ (e+e- -> XX)ot BR2(X-> Yγ ) are derived for the case of stable and invisible Y. These limits apply to single and pair production of excited neutrinos ( X= ν *, Y= ν ), to neutralino production ( X=~ i02, Y=~ i01), and to supersymmetric models in which X= ~ i01 and Y= is a light gravitino. For the latter scenario, the results of the acoplanar-photons search are used to provide mode l-dependent lower limits on the mass of the lightest neutralino.

  8. Study of photon emission by electron capture during solar nuclei acceleration. 3: Photon production evaluations

    NASA Technical Reports Server (NTRS)

    Gallegos, A.; Perez-Peraza, J.; Alvarez, M.

    1985-01-01

    Lower limits of photon fluxes were evaluated from electron capture during acceleration in solar flares, because the arbitrary q sub c asterisk assumed in this work evolves very slow with velocity, probably much more slowly than the physical actual situation: in fact, more emission is expected toward the IR region. Nevertheless the authors claim to show that the factibility of sounding acceleration processes, charge evolution processes and physical parameters of the source itself, by the observational analysis of this kind of emissions. For instance, it would be interesting to search observationally, for the predicted flux and energy drift of F sub e ions interacting with the atomic 0 and F sub e of the source matter, or, even more feasible for the X-ray lines at 4.2 keV and 2.624 + 0.003 KeV from Fe and S ions in ionized Fe at T = 10 to the 7th power K respectively, the 418 + or - 2 eV and 20 + or - 4 eV lines of Fe and S in ionized Fe at 5 x 10 to the 6th power K, which are predicted from Fermi acceleration.

  9. Direct photon production of d+A and A+A collisions at RHIC

    SciTech Connect

    Zhang, Benwei; Vitev, Ivan

    2008-01-01

    Direct photon productions in minimum bias d+Cu and d+Au and central Cu+Cu and Au+Au at center of mass energies {radical}s = 62.4 GeV and 200GeV at RHIC are investigated systematically by taking into account jet quenching effect, medium-induced photon bremsstrahlung and jet-photon conversion in the hot QGP as well as known cold nuclear matter effects such as the isospin effect, the Cronin effect, shadowing effect, EMC effect and cold nuclear matter energy loss. It is shown that at high p{sub T} the nuclear modification factor for direct photon R{sub AA}(p{sub T}) is suppressed and dominated by cold nuclear matter effects, and there is no large enhancement due to medium-induced photon bremsstrahlung and jet-photon conversion in the hot QGP. Comparison of numerical simulations with experimental data rules out large Cronin enhancement and incoherent photon emission in medium, though large error bars in currently experimental data can not provide tight constraints on other nuclear matter effects.

  10. Cross-talk characterization of dense single-photon avalanche diode arrays in CMOS 150-nm technology

    NASA Astrophysics Data System (ADS)

    Xu, Hesong; Pancheri, Lucio; C. Braga, Leo H.; Betta, Gian-Franco Dalla; Stoppa, David

    2016-06-01

    Cross-talk characterization results of high-fill-factor single-photon avalanche diode (SPAD) arrays in CMOS 150-nm technology are reported and discussed. Three different SPAD structures were designed with two different sizes (15.6 and 25.6 μm pitch) and three guard ring widths (0.6, 1.1, and 1.6 μm). Each SPAD was implemented in an array, composed of 25 (5×5) devices, which can be separately activated. Measurement results show that the average cross-talk probability is well below 1% for the shallow-junction SPAD structure with 15.6 μm pitch and 39.9% fill factor, and 1.45% for the structure with 25.6 μm pitch and 60.6% fill factor. An increase of cross-talk probability with the excess bias voltage is observed.

  11. Measurement of cell surface protein dynamics by two-photon image correlation spectroscopy and image cross-correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Wiseman, Paul W.; Squier, Jeffrey A.

    2002-04-01

    Advances in laser-scanning microscopy and the advent of confocal microscopy permitted the development of image correlation spectroscopy (ICS). ICS is an imaging analog of fluorescence correlation spectroscopy (FCS) optimized for measuring the aggregation state of fluorescently labeled macromolecules on the surface of biological cells. The ICS method entails spatial autocorrelation analysis of fluorescence fluctuations within an image sampled from an area of the sample as well as temporal autocorrelation analysis of fluorescence fluctuations through a time series of images. Together, the spatial/temporal autocorrelation analysis enables measurement of fluorophore concentration, aggregation state and transport properties. ICS was first implemented on a confocal laser-scanning microscope (CLSM) using single photon excitation. More recently we have extended the method for two-photon ICS as well as image cross-correlation spectroscopy (ICCS). ICCS allows measurement of co-localization of non-identical molecules labeled with fluorophores of different emission wavelengths. We present a variety of applications of the ICS and ICCS methods in cellular systems. We will discuss the measurement of the transport and clustering properties of membrane receptors by single photon ICS and two-photon ICCS. As well, we will describe how spatial ICS may be used to quantify the distribution of fluorescently labeled dendritic spines in neurons.

  12. Search for Double Higgs Production in the Final State with Two Photons and Two Bottom Quarks at the CMS Detector

    NASA Astrophysics Data System (ADS)

    Hebda, Philip Robert

    A search for the production of Higgs pairs in the decay channel with two photons and two bottom quarks is reported for both resonant and nonresonant cases. The data corresponds to an integrated luminosity of 19.7 /fb of proton-proton collisions at a center-of-mass energy of 8 TeV collected by the CMS detector at the CERN Large Hardron Collider. The candidate events are selected by requiring two photons and two jets and are classified according to the number of jets tagged as coming from the hadronization of a bottom quark. The search for resonance production of two Higgs bosons through a new particle as hypothesized in extensions to the Standard Model involving a Radion or KK-graviton from models with warped extra dimensions or involving a heavy Higgs from models with supersymmetry, is performed on the resonant mass range from 260 GeV to 1100 GeV. The search for Standard Model nonresonant production of two Higgs bosons is performed; in addition a theoretical framework is explored for the analysis of anomalous values of the couplings tt¯H, HHH, and tt¯HH. The observations are consistent with background expectations. Upper limits at the 95% confidence level are extracted on the production cross section of resonant and SM nonresonant production. In particular, the Radion with a vacuum expectation of 1 TeV is observed (expected) to be excluded with masses below 0.97 TeV (0.88 TeV), while the analysis is not sensitive to the Radion with a vacuum expectation of 3 TeV. The nonresonant double Higgs cross section is observed (expected) to be excluded at 1.91 fb (1.59 fb) or 72.9 (60.7) times the NNLO Standard Model value.

  13. Exclusive photon-photon production of muon pairs in proton-proton collisions at sqrt(s) = 7 TeV

    SciTech Connect

    Chatrchyan, Serguei; Khachatryan, Vardan; Sirunyan, Albert M.; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; /Yerevan Phys. Inst. /Vienna, OAW /Minsk, High Energy Phys. Ctr. /Antwerp U., WISINF /Vrije U., Brussels /Brussels U. /Gent U. /Louvain U. /UMH, Mons /Rio de Janeiro, CBPF /Rio de Janeiro State U.

    2011-11-01

    A measurement of the exclusive two-photon production of muon pairs in proton-proton collisions at {radical}s = 7 TeV, pp {yields} p{mu}{sup +}{mu}{sup -}p, is reported using data corresponding to an integrated luminosity of 40 pb{sup -1}. For muon pairs with invariant mass greater than 11.5 GeV, transverse momentum p{sub T}({mu}) > 4 GeV and pseudorapidity |{eta}({mu})| < 2.1, a fit to the dimuon p{sub T}({mu}{sup +}{mu}{sup -}) distribution results in a measured cross section of {sigma}(p {yields} p{mu}{sup +}{mu}{sup -}) = 3.38{sub -0.55}{sup +0.58}(stat.) {+-} 0.16(syst.) {+-} 0.14(lumi.) pb, consistent with the theoretical prediction evaluated with the event generator LPAIR. The ratio to the predicted cross section is 0.83{sub -0.13}{sup +0.14}(stat.) {+-} 0.04(syst.) {+-} 0.03(lumi.). The characteristic distributions of the muon pairs produced via {gamma}{gamma} fusion, such as the muon acoplanarity, the muon pair invariant mass and transverse momentum agree with those from the theory.

  14. Can neutrino-induced photon production explain the low energy excess in MiniBooNE?

    NASA Astrophysics Data System (ADS)

    Zhang, Xilin; Serot, Brian D.

    2013-02-01

    This report summarizes our study of Neutral Current (NC)-induced photon production in MiniBooNE, as motivated by the low energy excess in this experiment [A.A. Aquilar-Arevalo et al., MiniBooNE Collaboration, Phys. Rev. Lett. 98 (2007) 231801; A.A. Aquilar-Arevalo et al., MiniBooNE Collaboration, Phys. Rev. Lett. 103 (2009) 111801]. It was proposed that NC photon production with two anomalous photon-Z boson-vector meson couplings might explain the excess. However, our computed event numbers in both neutrino and antineutrino runs are consistent with the previous MiniBooNE estimate that is based on their pion production measurement. Various nuclear effects discussed in our previous works, including nucleon Fermi motion, Pauli blocking, and the Δ resonance broadening in the nucleus, are taken into account. Uncertainty due to the two anomalous terms and nuclear effects are studied in a conservative way.

  15. A double bond-conjugated dimethylnitrobenzene-type photolabile nitric oxide donor with improved two-photon cross section.

    PubMed

    Ieda, Naoya; Hishikawa, Kazuhiro; Eto, Kei; Kitamura, Kai; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Fukuhara, Kiyoshi; Miyata, Naoki; Furuta, Toshiaki; Nabekura, Junichi; Nakagawa, Hidehiko

    2015-08-15

    Photocontrollable NO donors enable precise spatiotemporal release of NO under physiological conditions. We designed and synthesized a novel dimethylnitrobenzene-type NO donor, Flu-DNB-DB, which contains a carbon-carbon double bond in place of the amide bond of previously reported Flu-DNB. Flu-DNB-DB releases NO in response to one-photon activation in the blue wavelength region, and shows a greatly increased two-photon cross-section (δu) at 720 nm (Flu-DNB: 0.12 GM, Flu-DNB-DB: 0.98 GM). We show that Flu-DNB-DB enables precisely controlled intracellular release of NO in response to 950 nm pulse laser irradiation for as little as 1s. This near-infrared-light-controllable NO source should be a valuable tool for studies on the biological roles of NO. PMID:26073004

  16. Exclusive production of proton-antiproton pairs in two-photon collisions

    NASA Astrophysics Data System (ADS)

    Aihara, H.; Alston-Garnjost, N. M.; Avery, A. R.; Barbaro-Galtieri, A. A.; Barker, A. A.; Barnett, A. B.; Bauer, J. D.; Bengtsson, G. H.; Bintinger, D. D.; Bobbink, F. G.; Bolognese, H. T.; Bross, A. A.; Buchanan, A. C.; Buijs, D. A.; Cain, M. M.; Caldwell, B. D.; Clark, G. A.; Cowan, A. G.; Crane, A. D.; Dahl, J. O.; Derby, A. K.; Eastman, A. J.; Eberhard, A. P.; Edberg, A. T.; Eisner, A. A.; Enomoto, C. R.; Erné, N. F.; Fujii, M. T.; Gary, N. J.; Gorn, A. W.; Hauptman, E. J.; Hofmann, I. W.; Huth, A. J.; Hylen, A. J.; Kamae, J. T.; Kaye, N. H.; Kees, A. K.; Kenney, F. R.; Kerth, A. L.; Ko, A. Winston; Koda, B. R.; Kofler, D. R.; Kwong, K. K.; Lander, E. R.; Langeveld, B. W.; Layter, E. J.; Linde, E. F.; Lindsey, M. C.; Loken, E. S.; Lu, A. A.; Lu, G. X.-Q.; Lynch, J. G.; Madaras, A. R.; Maeshima, A. K.; Magnuson, B. B.; Marx, C. J.; Masek, A. G.; Mathis, F. L.; Matthews, A. J.; Maxfield, J. S.; Melnikoff, K. S.; Miller, E. E.; Moses, F. W.; McNeil, A. R.; Nemethy, B. P.; Nygren, L. D.; Oddone, A. P.; Paar, A. H.; Park, M. D.; Park, D. S.; Pellett, I. D.; Pripstein, B. M.; Ronan, A. M.; Ross, A. R.; Rouse, A. F.; Schwitkis, A. K.; Sens, G. J.; Shapiro, M. G.; Shapiro, A. M.; Shen, A. B.; Slater, E. W.; Smith, D. J.; Steinman, B. J.; Stevenson, D. M.; Stork, A. D.; Strauss, D. M.; Sullivan, D. M.; Takahashi, C. T.; Thompson, N. J.; Toge, F. N.; Toutounchi, N. S.; van Tyen, K. R.; van Uitert, A. B.; Vandalen, M. G.; van Daalen Wetters, E. R.; Vernon, D. W.; Wagner, F. W.; Wang, B. E.; Wang, A. Y.; Wayne, G. M.; Wenzel, D. W.; White, A. J.; Williams, F. M.; Wolf, B. Z.; Yamamoto, A. H.; Yellin, A. S.; Zeitlin, G. C.; Zhangj, W.-M.

    1987-12-01

    We report cross sections for the process γγ-->pp¯ at center-of-mass energies W from 2.0 to 2.8 GeV. These results have been extracted from measurements of e+e--->e+e-pp¯ at an overall center-of-mass energy of 29 GeV, using the TPC/Two-Gamma facility at the SLAC storage ring PEP. Cross sections for the untagged mode [both photons nearly real] are shown to lie well above QCD predictions. Results are also presented for the single-tagged mode [one photon in the range 0.16

  17. Recent results on D decays and lepton, photon, (and hadron) production of charm

    SciTech Connect

    Nash, T.

    1983-09-01

    After a brief introduction to the experiments with results included in this review, we will discuss, in turn, production of psi and psi', production of open charm in lepton and photon beams, D decays, and give a brief token mention of recent hadroproduction results. Emphasis will be on results reported since the Paris conference (August, 1982), but we will try to include all results since the last Lepton Photon Conference at Bonn (August, 1981) as well as earlier results when necessary for comparison. 42 references.

  18. Prompt photon production in double-Pomeron-exchange events at the LHC

    NASA Astrophysics Data System (ADS)

    Kohara, A. K.; Marquet, C.

    2016-06-01

    Within the resolved Pomeron model of hard diffractive scattering, we compute prompt photon production in double-Pomeron-exchange events in proton-proton collisions. Using specific kinematical constraints chosen according to the acceptances of the forward proton detectors of experiments at the Large Hadron Collider, we provide estimates for inclusive and isolated photon production. This is done using the JetPhox program. We find that next-to-leading order corrections to the hard process are important and must be included in order to correctly constrain the quark and gluon content of the Pomeron from such processes at the LHC.

  19. Top Quark Production Cross Section at the Tevatron

    SciTech Connect

    Shabalina, E.; /Chicago U.

    2006-05-01

    An overview of the preliminary results of the top quark pair production cross section measurements at a center-of-mass energy of 1.96 TeV carried out by the CDF and D0 collaborations is presented. The data samples used for the analyses are collected in the current Tevatron run and correspond to an integrated luminosity from 360 pb{sup -1} up to 760 pb{sup -1}.

  20. Gluon versus photon production of a 750 GeV diphoton resonance

    NASA Astrophysics Data System (ADS)

    Csáki, Csaba; Hubisz, Jay; Lombardo, Salvator; Terning, John

    2016-05-01

    The production mechanism of a 750 GeV diphoton resonance, either via gluon or photon fusion, can be probed by studying kinematic observables in the diphoton events. We perform a detector study of the two production modes of a hypothetical scalar or tensor diphoton resonance in order to characterize the features of the two scenarios. The nature of the resonance production can be determined from the jet multiplicity, the jet and diphoton rapidities, the rate of central pseudorapidity gaps, or the possible detection of forward protons from elastic photoproduction for events in the signal region. Kinematic distributions for both signals and expected irreducible diphoton background events are provided for comparison along with a study of observables useful for distinguishing the two scenarios at an integrated luminosity of 20 fb-1 . We find that decay photons from a 750 GeV scalar resonance have a preference for acceptance in the central detector barrel, while background events are more likely to give accepted photons in the detector end caps. This disfavors the interpretation of the large number of excess events found by the Run-2 CMS diphoton search with one photon detected in the end cap as a wide spin-0 resonance signal. However, one expects more end cap photons in the case of spin-2 resonance.

  1. Photon-photon collisions

    SciTech Connect

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e..gamma.. scattering. Considerable work has now been accumulated on resonance production by ..gamma gamma.. collisions. Preliminary high statistics studies of the photon structure function F/sub 2//sup ..gamma../(x,Q/sup 2/) are given and comments are made on the problems that remain to be solved.

  2. Positron production in crossed beams of bare uranium nuclei

    SciTech Connect

    Mueller, U.; de Reus, T.; Reinhardt, J.; Mueller, B.; Greiner, W.; Soff, G.

    1988-03-01

    Positron creation in crossed-beam collisions of high-energy, fully stripped heavy ions is investigated within the coupled-channel formalism. In comparison with fixed-target collisions of highly stripped heavy-ion projectiles positron production probabilities are enhanced by more than one order of magnitude. The increase results from the possibility to excite electrons from the negative energy continuum into all bound states. The positron spectrum is shifted towards higher energies because of the absence of electron screening. Rutherford scattering as well as nuclear collisions with time delay are investigated. We also discuss the filling of empty bound states by electrons from pair-production processes.

  3. Elastic Photon Differential Cross-Sections for Helium Near the Delta Resonance.

    NASA Astrophysics Data System (ADS)

    Delli Carpini, Domenico

    A complete angular distribution of coherent photon scattering off ^4He was measured at average laboratory bremsstrahlung energies of 187 MeV, 235 MeV and 282 MeV. The experiment was performed at the Saskatchewan Accelerator Laboratory using their new high duty factor electron beam. The scattered photons were observed with a high resolution NaI(Tl) total absorption scintillation detector. The energy resolution was sufficient to exclude photons from pi^0 decay and inelastic Compton scattering. These measurements test the Delta-hole formalism for this reaction and investigate modification of the Delta properties in a nuclear environment. The results are compared to theoretical calculations in the isobar-hole model. Clear deviations from the theory are evident for all the energies, especially at 187 MeV.

  4. Search for two-photon production of f{sub J}(2220)/{xi}(2230) at CLEO

    SciTech Connect

    Galik, Richard S.

    1997-05-20

    We use the CLEO detector at the Cornell e{sup +}e{sup -} storage ring, CESR, to search for the two-photon production of the glueball candidate f{sub J}(2220) in its decay to K{sub s}K{sub s}. We present a restrictive upper limit on the product of the two-photon partial width and the K{sub s}K{sub s} branching fraction, {gamma}{sub {gamma}}{sub {gamma}}{center_dot}B{sub K{sub s}}{sub K{sub s}} for this narrow resonance. We use this limit to calculate a lower limit on the stickiness, which is a measure of the two-gluon coupling relative to the two-photon coupling. This limit on stickiness indicates that the f{sub J}(2220) has substantial glueball content.

  5. Photon cross-correlations emitted by a Josephson junction in two microwave cavities

    NASA Astrophysics Data System (ADS)

    Trif, Mircea; Simon, Pascal

    2015-07-01

    We study a voltage-biased Josephson junction coupled to two resonators of incommensurate frequencies. Using a density matrix approach to analyze the cavity fields and an input-output description to analyze the emitted photonic fluxes and their correlation functions, we have shown, both for infinite- and finite-bandwidth detectors, that the emitted radiation is nonclassical in the sense that the correlators violate Cauchy-Schwarz inequalities. We have also studied the time dependence of the photonic correlations and showed that their linewidth becomes narrower with the increase of the emission rate approaching from below the threshold limit.

  6. Stopping powers and cross sections due to two-photon processes in relativistic nucleus-nucleus collision

    NASA Technical Reports Server (NTRS)

    Cheung, Wang K.; Norbury, John W.

    1992-01-01

    The radiation dose received from high energy galactic cosmic rays (GCR) is a limiting factor in the design of long duration space flights and the building of lunar and martian habitats. It is of vital importance to have an accurate understanding of the interactions of GCR in order to assess the radiation environment that the astronauts will be exposed to. Although previous studies have concentrated on the strong interaction process in GCR, there are also very large effects due to electromagnetic (EM) interactions. In this report we describe our first efforts at understanding these EM production processes due to two-photon collisions. More specifically, we shall consider particle production processes in relativistic heavy ion collisions (RHICs) through two-photon exchange.

  7. Photon-photon collisions

    SciTech Connect

    Brodsky, S.J.

    1988-07-01

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  8. A 32-channel photon counting module with embedded auto/cross-correlators for real-time parallel fluorescence correlation spectroscopy

    SciTech Connect

    Gong, S.; Labanca, I.; Rech, I.; Ghioni, M.

    2014-10-15

    Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments. However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds.

  9. Photoexcitation mechanisms and photofission cross section for Bi by 100--300 MeV quasi-monochromatic photons

    SciTech Connect

    Guaraldo, C.; Lucherini, V.; De Sanctis, E.; Levi Sandri, P.; Polli, E.; Reolon, A.R.; Lo Nigro, S.; Aiello, S.; Bellini, V.; Emma, V.; and others

    1987-09-01

    The photofission cross section of natural Bi was measured in the energy range 100--300 MeV by means of a quasi-monochromatic photon beam. The nuclear fissility P/sub f/ was calculated using the recently measured total photoabsorption cross sections. A discussion on the dependence of fissility from the excitation energy E/sub x/ shows that a linear dependence of lnP/sub f/ vs E/sub x//sup -1/2/ can hardly be assumed over all the considered energy range. The analysis of the data confirms this consideration and shows an evident saturation effect at high excitation energy. As a consequence, in disagreement with recent interpretations, inferring that the modified quasi-deuteron model is the only efficient mechanism in inducing fission of Bi is less compelling, and also the pion photoproduction excitation mechanism plays a role.

  10. A 32-channel photon counting module with embedded auto/cross-correlators for real-time parallel fluorescence correlation spectroscopy

    PubMed Central

    Gong, S.; Labanca, I.; Rech, I.; Ghioni, M.

    2014-01-01

    Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments. However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds. PMID:25362365