Sample records for photon-counting microchannel plate

  1. The effect of microchannel plate gain depression on PAPA photon counting cameras

    NASA Astrophysics Data System (ADS)

    Sams, Bruce J., III

    1991-03-01

    PAPA (precision analog photon address) cameras are photon counting imagers which employ microchannel plates (MCPs) for image intensification. They have been used extensively in astronomical speckle imaging. The PAPA camera can produce artifacts when light incident on its MCP is highly concentrated. The effect is exacerbated by adjusting the strobe detection level too low, so that the camera accepts very small MCP pulses. The artifacts can occur even at low total count rates if the image has highly a concentrated bright spot. This paper describes how to optimize PAPA camera electronics, and describes six techniques which can avoid or minimize addressing errors.

  2. High Speed Large Format Photon Counting Microchannel Plate Imaging Sensors

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Ertley, C.; Vallerga, J.; Craven, C.; Popecki, M.; O'Mahony, A.; Minot, M.

    The development of a new class of microchannel plate technology, using atomic layer deposition (ALD) techniques applied to a borosilicate microcapillary array is enabling the implementation of larger, more stable detectors for Astronomy and remote sensing. Sealed tubes with MCPs with SuperGenII, bialkali, GaAs and GaN photocathodes have been developed to cover a wide range of optical/UV sensing applications. Formats of 18mm and 25mm circular, and 50mm (Planacon) and 20cm square have been constructed for uses from night time remote reconnaissance and biological single-molecule fluorescence lifetime imaging microscopy, to large area focal plane imagers for Astronomy, neutron detection and ring imaging Cherenkov detection. The large focal plane areas were previously unattainable, but the new developments in construction of ALD microchannel plates allow implementation of formats of 20cm or more. Continuing developments in ALD microchannel plates offer improved overall sealed tube lifetime and gain stability, and furthermore show reduced levels of radiation induced background. High time resolution astronomical and remote sensing applications can be addressed with microchannel plate based imaging, photon time tagging detector sealed tube schemes. Photon counting imaging readouts for these devices vary from cross strip (XS), cross delay line (XDL), to stripline anodes, and pad arrays depending on the intended application. The XS and XDL readouts have been implemented in formats from 22mm, and 50mm to 20cm. Both use MCP charge signals detected on two orthogonal layers of conductive fingers to encode event X-Y positions. XDL readout uses signal propagation delay to encode positions while XS readout uses charge cloud centroiding. Spatial resolution readout of XS detectors can be better than 20 microns FWHM, with good image linearity while using low gain (<10^6), allowing high local counting rates and longer overall tube lifetime. XS tubes with electronics can encode event

  3. Photon-counting detector arrays based on microchannel array plates. [for image enhancement

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1975-01-01

    The recent development of the channel electron multiplier (CEM) and its miniaturization into the microchannel array plate (MCP) offers the possibility of fully combining the advantages of the photographic and photoelectric detection systems. The MCP has an image-intensifying capability and the potential of being developed to yield signal outputs superior to those of conventional photomultipliers. In particular, the MCP has a photon-counting capability with a negligible dark-count rate. Furthermore, the MCP can operate stably and efficiently at extreme-ultraviolet and soft X-ray wavelengths in a windowless configuration or can be integrated with a photo-cathode in a sealed tube for use at ultraviolet and visible wavelengths. The operation of one- and two-dimensional photon-counting detector arrays based on the MCP at extreme-ultraviolet wavelengths is described, and the design of sealed arrays for use at ultraviolet and visible wavelengths is briefly discussed.

  4. Two-dimensional photon-counting detector arrays based on microchannel array plates

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1975-01-01

    The production of simple and rugged photon-counting detector arrays has been made possible by recent improvements in the performance of the microchannel array plate (MCP) and by the parallel development of compatible electronic readout systems. The construction of proximity-focused MCP arrays of novel design in which photometric information from (n x m) picture elements is read out with a total of (n + m) amplifier and discriminator circuits is described. Results obtained with a breadboard (32 x 32)-element array employing 64 charge-sensitive amplifiers are presented, and the application of systems of this type in spectrometers and cameras for use with ground-based telescopes and on orbiting spacecraft discussed.

  5. Development and test of photon-counting microchannel plate detector arrays for use on space telescopes

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1976-01-01

    The full sensitivity, dynamic range, and photometric stability of microchannel array plates(MCP) are incorporated into a photon-counting detection system for space operations. Components of the system include feedback-free MCP's for high gain and saturated output pulse-height distribution with a stable response; multi-anode readout arrays mounted in proximity focus with the output face of the MCP; and multi-layer ceramic headers to provide electrical interface between the anode array in a sealed detector tube and the associated electronics.

  6. Development of a single-photon-counting camera with use of a triple-stacked micro-channel plate.

    PubMed

    Yasuda, Naruomi; Suzuki, Hitoshi; Katafuchi, Tetsuro

    2016-01-01

    At the quantum-mechanical level, all substances (not merely electromagnetic waves such as light and X-rays) exhibit wave–particle duality. Whereas students of radiation science can easily understand the wave nature of electromagnetic waves, the particle (photon) nature may elude them. Therefore, to assist students in understanding the wave–particle duality of electromagnetic waves, we have developed a photon-counting camera that captures single photons in two-dimensional images. As an image intensifier, this camera has a triple-stacked micro-channel plate (MCP) with an amplification factor of 10(6). The ultra-low light of a single photon entering the camera is first converted to an electron through the photoelectric effect on the photocathode. The electron is intensified by the triple-stacked MCP and then converted to a visible light distribution, which is measured by a high-sensitivity complementary metal oxide semiconductor image sensor. Because it detects individual photons, the photon-counting camera is expected to provide students with a complete understanding of the particle nature of electromagnetic waves. Moreover, it measures ultra-weak light that cannot be detected by ordinary low-sensitivity cameras. Therefore, it is suitable for experimental research on scintillator luminescence, biophoton detection, and similar topics.

  7. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, Bedabrata; Norton, Timothy J.; Haas, J. Patrick; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest of by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  8. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, B.; Norton, T. J.; Haas, P.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution for the readout while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest or by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  9. Optimization of high count rate event counting detector with Microchannel Plates and quad Timepix readout

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Vallerga, J. V.; McPhate, J. B.; Siegmund, O. H. W.

    2015-07-01

    Many high resolution event counting devices process one event at a time and cannot register simultaneous events. In this article a frame-based readout event counting detector consisting of a pair of Microchannel Plates and a quad Timepix readout is described. More than 104 simultaneous events can be detected with a spatial resolution of 55 μm, while >103 simultaneous events can be detected with <10 μm spatial resolution when event centroiding is implemented. The fast readout electronics is capable of processing >1200 frames/sec, while the global count rate of the detector can exceed 5×108 particles/s when no timing information on every particle is required. For the first generation Timepix readout, the timing resolution is limited by the Timepix clock to 10-20 ns. Optimization of the MCP gain, rear field voltage and Timepix threshold levels are crucial for the device performance and that is the main subject of this article. These devices can be very attractive for applications where the photon/electron/ion/neutron counting with high spatial and temporal resolution is required, such as energy resolved neutron imaging, Time of Flight experiments in lidar applications, experiments on photoelectron spectroscopy and many others.

  10. Microchannel plate life testing for UV spectroscopy instruments

    NASA Astrophysics Data System (ADS)

    Darling, N. T.; Siegmund, O. H. W.; Curtis, T.; McPhate, J.; Tedesco, J.; Courtade, S.; Holsclaw, G.; Hoskins, A.; Al Dhafri, S.

    2017-08-01

    The Emirates Mars Mission (EMM) UV Spectrograph (EMUS) is a far ultraviolet (102 nm to 170 nm) imaging spectrograph for characterization of the Martian exosphere and thermosphere. Imaging is accomplished by a photon counting open-face microchannel plate (MCP) detector using a cross delay line (XDL) readout. An MCP gain stabilization ("scrub") followed by lifetime spectral line burn-in simulation has been completed on a bare MCP detector at SSL. Gain and sensitivity stability of better than 7% has been demonstrated for total dose of 2.5 × 1012 photons cm-2 (2 C · cm-2 ) at 5.5 kHz mm-2 counting rates, validating the efficacy of an initial low gain full-field scrub.

  11. Microchannel plate streak camera

    DOEpatents

    Wang, Ching L.

    1989-01-01

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 KeV x-rays.

  12. Preliminary results with microchannel array plates employing curved microchannels to inhibit ion feedback. [for photon counters

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1977-01-01

    Up to now, microchannel array plates (MCPs) have been constructed with microchannels having a straight geometry and hence have been prone to ion-feedback instabilities at high operating potentials and high ambient pressures. This paper describes the performances of MCPs with curved (J and C configuration) microchannels to inhibit ion feedback. Plates with curved microchannels have demonstrated performances comparable to those of conventional channel electron multipliers with saturated output pulse-height distributions and modal gain values in excess of 10 to the 6th electrons/pulse.

  13. Comparative lifetesting results for microchannel plates in windowless EUV photon detectors

    NASA Technical Reports Server (NTRS)

    Malina, R. F.; Coburn, K. R.

    1984-01-01

    Microchannel plates (MCPs) from seven manufacturers were subjected to a series of tests to determine their suitability for the Extreme Ultraviolet Explorer satellite. Comparative data are presented for sixteen MCP tandem pairs with channel length to diameter ratios (l/d) ranging from 40:1 to 60:1 and for two saturable (curved channel) MCPs with l/d's of 80:1. Results for MCPs with funnelled channel throats are also discussed. Properties of the MCPs which were monitored include: background count rate, output charge pulse height distribution (PHD), modal gain, PHD full width half maximum (FWHM), and extreme ultraviolet (EUV) photon quantum efficiency. Five detectors were chosen for further lifetime testing consisting of a mild bake to 100 C, and charge extraction to 0.01 coulombs, repeated high voltage cycling and reexposure to one atmosphere conditions. The results of these tests and their implications for the flight detectors are discussed. Erratic events in the detector background were recorded, probably due to field emission from high voltage surfaces or the absorption of water vapor into the electrode following exposure to air. The steps taken to control the detector background are discussed.

  14. Sensitive far uv spectrograph with a multispectral element microchannel plate detector for rocket-borne astronomy.

    PubMed

    Weiser, H; Vitz, R C; Moos, H W; Weinstein, A

    1976-12-01

    An evacuated high transmission prism spectrograph using a microchannel plate detection system with resistive strip readout was flown behind a precision pointing telescope on a sounding rocket. The construction, preparation, flight performance, and calibration stability of the system are discussed. Despite the adverse environmental conditions associated with sounding rocket flights, the microchannel detector system performed well. Far uv spectra (1160-1750 A) of stellar and planetary objects were obtained; spectral features with fluxes as low as 0.06 photons cm(-2) sec(-1) were detectable. This was achieved by operating the plates at lower than normal gains, using sensitive pulse counting electronics with both upper and lower limit discriminators, and maintaining the spectrograph and detector at a pressure of ~10(-6) Torr until reaching altitude.

  15. Development efforts to improve curved-channel microchannel plates

    NASA Technical Reports Server (NTRS)

    Corbett, M. B.; Feller, W. B.; Laprade, B. N.; Cochran, R.; Bybee, R.; Danks, A.; Joseph, C.

    1993-01-01

    Curved-channel microchannel plate (C-plate) improvements resulting from an ongoing NASA STIS microchannel plate (MCP) development program are described. Performance limitations of previous C-plates led to a development program in support of the STIS MAMA UV photon counter, a second generation instrument on the Hubble Space Telescope. C-plate gain, quantum detection efficiency, dark noise, and imaging distortion, which are influenced by channel curvature non-uniformities, have all been improved through use of a new centrifuge fabrication technique. This technique will be described, along with efforts to improve older, more conventional shearing methods. Process optimization methods used to attain targeted C-plate performance goals will be briefly characterized. Newly developed diagnostic measurement techniques to study image distortion, gain uniformity, input bias angle, channel curvature, and ion feedback, will be described. Performance characteristics and initial test results of the improved C-plates will be reported. Future work and applications will also be discussed.

  16. Microchannel plate cross-talk mitigation for spatial autocorrelation measurements

    NASA Astrophysics Data System (ADS)

    Lipka, Michał; Parniak, Michał; Wasilewski, Wojciech

    2018-05-01

    Microchannel plates (MCP) are the basis for many spatially resolved single-particle detectors such as ICCD or I-sCMOS cameras employing image intensifiers (II), MCPs with delay-line anodes for the detection of cold gas particles or Cherenkov radiation detectors. However, the spatial characterization provided by an MCP is severely limited by cross-talk between its microchannels, rendering MCP and II ill-suited for autocorrelation measurements. Here, we present a cross-talk subtraction method experimentally exemplified for an I-sCMOS based measurement of pseudo-thermal light second-order intensity autocorrelation function at the single-photon level. The method merely requires a dark counts measurement for calibration. A reference cross-correlation measurement certifies the cross-talk subtraction. While remaining universal for MCP applications, the presented cross-talk subtraction, in particular, simplifies quantum optical setups. With the possibility of autocorrelation measurements, the signal needs no longer to be divided into two camera regions for a cross-correlation measurement, reducing the experimental setup complexity and increasing at least twofold the simultaneously employable camera sensor region.

  17. Photon-counting image sensors for the ultraviolet

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.

    1985-01-01

    An investigation on specific performance details of photon counting, ultraviolet image sensors having 2-dimensional formats is reviewed. In one study, controlled experiments were performed which compare the quantum efficiencies, in pulse counting mode, of CsI photocathodes deposited on: (1) the front surface of a microchannel plate (MCP), (2) a solid surface in front of an MCP, and (3) an intensified CCD image sensor (ICCD) where a CCD is directly bombarded by accelerated photoelectrons. Tests indicated that the detection efficiency of the CsI-coated MCP at 1026 A is lower by a factor of 2.5 than that of the MCP with a separate, opaque CsI photocathode, and the detection efficiency ratio increases substantially at longer wavelengths (ratio is 5 at 1216 A and 20 at 1608 A).

  18. Multi-anode microchannel arrays

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1977-01-01

    A development program is currently being undertaken to produce photon-counting detector arrays which are suitable for use in both ground-based and space-borne instruments and which utilize the full sensitivity, dynamic range and photometric stability of the microchannel array plate (MCP). The construction of the detector arrays and the status of the development program are described.

  19. Imaging characteristics of the Extreme Ultraviolet Explorer microchannel plate detectors

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Kaplan, G. C.; Siegmund, O. H. W.; Lampton, M.; Malina, R. F.

    1989-01-01

    The Extreme Ultraviolet Explorer (EUVE) satellite will conduct an all-sky survey over the wavelength range from 70 A to 760 A using four grazing-incidence telescopes and seven microchannel-plate (MCP) detectors. The imaging photon-counting MCP detectors have active areas of 19.6 cm2. Photon arrival position is determined using a wedge-and-strip anode and associated pulse-encoding electronics. The imaging characteristics of the EUVE flight detectors are presented including image distortion, flat-field response, and spatial differential nonlinearity. Also included is a detailed discussion of image distortions due to the detector mechanical assembly, the wedge-and-strip anode, and the electronics. Model predictions of these distortions are compared to preflight calibration images which show distortions less than 1.3 percent rms of the detector diameter of 50 mm before correction. The plans for correcting these residual detector image distortions to less than 0.1 percent rms are also presented.

  20. Picosecond timing resolution detection of ggr-photons utilizing microchannel-plate detectors: experimental tests of quantum nonlocality and photon localization

    NASA Astrophysics Data System (ADS)

    Irby, Victor D.

    2004-09-01

    The concept and subsequent experimental verification of the proportionality between pulse amplitude and detector transit time for microchannel-plate detectors is presented. This discovery has led to considerable improvement in the overall timing resolution for detection of high-energy ggr-photons. Utilizing a 22Na positron source, a full width half maximum (FWHM) timing resolution of 138 ps has been achieved. This FWHM includes detector transit-time spread for both chevron-stack-type detectors, timing spread due to uncertainties in annihilation location, all electronic uncertainty and any remaining quantum mechanical uncertainty. The first measurement of the minimum quantum uncertainty in the time interval between detection of the two annihilation photons is reported. The experimental results give strong evidence against instantaneous spatial localization of ggr-photons due to measurement-induced nonlocal quantum wavefunction collapse. The experimental results are also the first that imply momentum is conserved only after the quantum uncertainty in time has elapsed (Yukawa H 1935 Proc. Phys. Math. Soc. Japan 17 48).

  1. Optimizing the position resolution of a Z-stack microchannel plate resistive anode detector for low intensity signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiggins, B. B.; Richardson, E.; Siwal, D.

    A method for achieving good position resolution of low-intensity electron signals using a microchannel plate resistive anode detector is demonstrated. Electron events at a rate of 7 counts s{sup −1} are detected using a Z-stack microchannel plate. The dependence of position resolution on both the distance and the potential difference between the microchannel plate and resistive anode is investigated. Using standard commercial electronics, a measured position resolution of 170 μm (FWHM) is obtained, which corresponds to an intrinsic resolution of 157 μm (FWHM)

  2. High event rate ROICs (HEROICs) for astronomical UV photon counting detectors

    NASA Astrophysics Data System (ADS)

    Harwit, Alex; France, Kevin; Argabright, Vic; Franka, Steve; Freymiller, Ed; Ebbets, Dennis

    2014-07-01

    The next generation of astronomical photocathode / microchannel plate based UV photon counting detectors will overcome existing count rate limitations by replacing the anode arrays and external cabled electronics with anode arrays integrated into imaging Read Out Integrated Circuits (ROICs). We have fabricated a High Event Rate ROIC (HEROIC) consisting of a 32 by 32 array of 55 μm square pixels on a 60 μm pitch. The pixel sensitivity (threshold) has been designed to be globally programmable between 1 × 103 and 1 × 106 electrons. To achieve the sensitivity of 1 × 103 electrons, parasitic capacitances had to be minimized and this was achieved by fabricating the ROIC in a 65 nm CMOS process. The ROIC has been designed to support pixel counts up to 4096 events per integration period at rates up to 1 MHz per pixel. Integration time periods can be controlled via an external signal with a time resolution of less than 1 microsecond enabling temporally resolved imaging and spectroscopy of astronomical sources. An electrical injection port is provided to verify functionality and performance of each ROIC prior to vacuum integration with a photocathode and microchannel plate amplifier. Test results on the first ROICs using the electrical injection port demonstrate sensitivities between 3 × 103 and 4 × 105 electrons are achieved. A number of fixes are identified for a re-spin of this ROIC.

  3. Photon-Counting H33D Detector for Biological Fluorescence Imaging

    PubMed Central

    Michalet, X.; Siegmund, O.H.W.; Vallerga, J.V.; Jelinsky, P.; Millaud, J.E.; Weiss, S.

    2010-01-01

    We have developed a photon-counting High-temporal and High-spatial resolution, High-throughput 3-Dimensional detector (H33D) for biological imaging of fluorescent samples. The design is based on a 25 mm diameter S20 photocathode followed by a 3-microchannel plate stack, and a cross delay line anode. We describe the bench performance of the H33D detector, as well as preliminary imaging results obtained with fluorescent beads, quantum dots and live cells and discuss applications of future generation detectors for single-molecule imaging and high-throughput study of biomolecular interactions. PMID:20151021

  4. A System for Photon-Counting Spectrophotometry of Prompt Optical Emission from Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Vestrand, W. T.; Albright, K.; Casperson, D.; Fenimore, E.; Ho, C.; Priedhorsky, W.; White, R.; Wren, J.

    2003-04-01

    With the launch of HETE-2 and the coming launch of the Swift satellite, there will be many new opportunities to study the physics of the prompt optical emission with robotic ground-based telescopes. Time-resolved spectrophotometry of the rapidly varying optical emission is likely to be a rich area for discovery. We describe a program to apply state-of-the-art photon-counting imaging technology to the study of prompt optical emission from gamma-ray bursts. The Remote Ultra-Low Light Imaging (RULLI) project at Los Alamos National Laboratory has developed an imaging sensor which employs stacked microchannel plates and a crossed delay line readout with 200 picosecond photon timing to measure the time of arrival and positions for individual optical photons. RULLI detectors, when coupled with a transmission grating having 300 grooves/mm, can make photon-counting spectroscopic observations with spectral resolution that is an order of magnitude greater and temporal resolution three orders of magnitude greater than the most capable photon-counting imaging detectors that have been used for optical astronomy.

  5. Large Area and High Efficiency Photon Counting Imaging Detectors with High Time and Spatial Resolution for Night Time Sensing and Astronomy

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Vallerga, J.; Tremsin, A.; McPhate, J.; Frisch, H.; Elam, J.; Mane, A.; Wagner, R.; Varner, G.

    2012-09-01

    The development of large area photon counting, imaging, timing detectors with high performance has significance for applications in astronomy (such as our sensor on the SAAO SALT 10m telescope), night time remote reconnaissance, airborne/space situational awareness, and high-speed adaptive optics. Sealed tube configurations for optical/IR sensing also have applications in detection of Cherenkov light (RICH), biological single-molecule fluorescence lifetime imaging microscopy and neutron imaging applications. In open faced configurations these devices are important for UV and particle detection in space astrophysics, mass spectroscopy and many time-of flight applications. Currently available devices are limited to sizes of about 5 cm and use either conventional microchannel plates, or dynode multipliers for amplification, coupled coarse pad array readouts. Extension of these schemes to devices as large as 20 cm with high spatial resolution presents significant problems and potentially considerable cost. A collaboration (Large Area Picosecond Photon Detector) of the U. Chicago, Argonne National Laboratory, U.C. Berkeley, U. Hawaii and a number of other institutions has developed novel technologies to realize 20 cm format detectors in open face or sealed tube configurations. One critical component of this development is novel microchannel plates employing borosilicate micro-capillary arrays. The microchannel plates are based on a novel concept where the substrate is constructed from a borosilicate micro-capillary array that is made to function as a microchannel plate by deposition of resistive and secondary emissive layers using atomic layer deposition. The process is relatively inexpensive compared with conventional microchannel plates and allows very large microchannel plates to be produced with pore sizes as small as 10 microns. These provide many performance characteristics typical of conventional microchannel plates, but have been made in sizes up to 20 cm, have

  6. Microchannel plate detector technology potential for LUVOIR and HabEx

    NASA Astrophysics Data System (ADS)

    Siegmund, O. H. W.; Ertley, C.; Vallerga, J. V.; Schindhelm, E. R.; Harwit, A.; Fleming, B. T.; France, K. C.; Green, J. C.; McCandliss, S. R.; Harris, W. M.

    2017-08-01

    Microchannel plate (MCP) detectors have been the detector of choice for ultraviolet (UV) instruments onboard many NASA missions. These detectors have many advantages, including high spatial resolution (<20 μm), photon counting, radiation hardness, large formats (up to 20 cm), and ability for curved focal plane matching. Novel borosilicate glass MCPs with atomic layer deposition combine extremely low backgrounds, high strength, and tunable secondary electron yield. GaN and combinations of bialkali/alkali halide photocathodes show promise for broadband, higher quantum efficiency. Cross-strip anodes combined with compact ASIC readout electronics enable high spatial resolution over large formats with high dynamic range. The technology readiness levels of these technologies are each being advanced through research grants for laboratory testing and rocket flights. Combining these capabilities would be ideal for UV instruments onboard the Large UV/Optical/IR Surveyor (LUVOIR) and the Habitable Exoplanet Imaging Mission (HABEX) concepts currently under study for NASA's Astrophysics Decadal Survey.

  7. All-digital full waveform recording photon counting flash lidar

    NASA Astrophysics Data System (ADS)

    Grund, Christian J.; Harwit, Alex

    2010-08-01

    Current generation analog and photon counting flash lidar approaches suffer from limitation in waveform depth, dynamic range, sensitivity, false alarm rates, optical acceptance angle (f/#), optical and electronic cross talk, and pixel density. To address these issues Ball Aerospace is developing a new approach to flash lidar that employs direct coupling of a photocathode and microchannel plate front end to a high-speed, pipelined, all-digital Read Out Integrated Circuit (ROIC) to achieve photon-counting temporal waveform capture in each pixel on each laser return pulse. A unique characteristic is the absence of performance-limiting analog or mixed signal components. When implemented in 65nm CMOS technology, the Ball Intensified Imaging Photon Counting (I2PC) flash lidar FPA technology can record up to 300 photon arrivals in each pixel with 100 ps resolution on each photon return, with up to 6000 range bins in each pixel. The architecture supports near 100% fill factor and fast optical system designs (f/#<1), and array sizes to 3000×3000 pixels. Compared to existing technologies, >60 dB ultimate dynamic range improvement, and >104 reductions in false alarm rates are anticipated, while achieving single photon range precision better than 1cm. I2PC significantly extends long-range and low-power hard target imaging capabilities useful for autonomous hazard avoidance (ALHAT), navigation, imaging vibrometry, and inspection applications, and enables scannerless 3D imaging for distributed target applications such as range-resolved atmospheric remote sensing, vegetation canopies, and camouflage penetration from terrestrial, airborne, GEO, and LEO platforms. We discuss the I2PC architecture, development status, anticipated performance advantages, and limitations.

  8. Low noise and conductively cooled microchannel plates

    NASA Technical Reports Server (NTRS)

    Feller, W. B.

    1990-01-01

    Microchannel plate (MCP) dynamic range has recently been enhanced for both very low and very high input flux conditions. Improvements in MCP manufacturing technology reported earlier have led to MCPs with substantially reduced radioisotope levels, giving dramatically lower internal background-counting rates. An update is given on the Galileo low noise MCP. Also, new results in increasing the MCP linear counting range for high input flux densities are presented. By bonding the active face of a very low resistance MCP (less than 1 megaohm) to a substrate providing a conductive path for heat transport, the bias current limit (hence, MCP output count rate limit) can be increased up to two orders of magnitude. Normal pulse-counting MCP operation was observed at bias currents of several mA when a curved-channel MCP (80:1) was bonded to a ceramic multianode substrate; the MCP temperature rise above ambient was less than 40 C.

  9. Microchannel Plate Imaging Detectors for the Ultraviolet

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Gummin, M. A.; Stock, J.; Marsh, D.

    1992-01-01

    There has been significant progress over the last few years in the development of technologies for microchannel plate imaging detectors in the Ultraviolet (UV). Areas where significant developments have occurred include enhancements of quantum detection efficiency through improved photocathodes, advances in microchannel plate performance characteristics, and development of high performance image readout techniques. The current developments in these areas are summarized, with their applications in astrophysical instrumentation.

  10. Microchannel plate EUV detectors for the Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Malina, R. F.; Coburn, K.; Werthimer, D.

    1984-01-01

    The design and operating characteristics of the prototype imaging microchannel plate (MCP) detector for the Extreme Ultraviolet Explorer (EUVE) Satellite are discussed. It is shown that this detector has achieved high position resolution performance (greater than 512 x 512 pixels) and has low (less than one percent) image distortion. In addition, the channel plate scheme used has tight pulse height distributions (less than 40 percent FWHM) for UV radiation and displays low (less than 0.2 cnt/sq cm-s) dark background counting rates. Work that has been done on EUV filters in relation to the envisaged filter and photocathode complement is also described.

  11. Microchannel plate for high-efficiency field emission display

    NASA Astrophysics Data System (ADS)

    Yi, Whikun; Jin, Sunghwan; Jeong, Taewon; Lee, Jeonghee; Yu, SeGi; Choi, Yongsoo; Kim, J. M.

    2000-09-01

    The efficiency of a field emission display was improved significantly with a newly developed microchannel plate. The key features of this unit and its fabrication are summarized as follows: (a) bulk alumina is used as a substrate material, (b) channel location is defined by a programed-hole puncher, and (c) thin film deposition is conducted by electroless plating followed by a sol-gel process. With the microchannel plate between the cathode and the anode of a field emission display, the brightness of luminescent light increases three- to fourfold by electron multiplication through an array of pores in the device. In addition, the fabricated microchannel plate prevents spreading of electrons emitted from the cathode tips, thus improving both display resolution and picture quality.

  12. High sensitivity microchannel plate detectors for space extreme ultraviolet missions.

    PubMed

    Yoshioka, K; Homma, T; Murakami, G; Yoshikawa, I

    2012-08-01

    Microchannel plate (MCP) detectors have been widely used as two-dimensional photon counting devices on numerous space EUV (extreme ultraviolet) missions. Although there are other choices for EUV photon detectors, the characteristic features of MCP detectors such as their light weight, low dark current, and high spatial resolution make them more desirable for space applications than any other detector. In addition, it is known that the photocathode can be tailored to increase the quantum detection efficiency (QDE) especially for longer UV wavelengths (100-150 nm). There are many types of photocathode materials available, typically alkali halides. In this study, we report on the EUV (50-150 nm) QDE evaluations for MCPs that were coated with Au, MgF(2), CsI, and KBr. We confirmed that CsI and KBr show 2-100 times higher QDEs than the bare photocathode MCPs, while Au and MgF(2) show reduced QDEs. In addition, the optimal geometrical parameters for the CsI deposition were also studied experimentally. The best CsI thickness was found to be 150 nm, and it should be deposited on the inner wall of the channels only where the EUV photons initially impinge. We will also discuss the techniques and procedures for reducing the degradation of the photocathode while it is being prepared on the ground before being deployed in space, as adopted by JAXA's EXCEED mission which will be launched in 2013.

  13. A space- and time-resolved single photon counting detector for fluorescence microscopy and spectroscopy

    PubMed Central

    Michalet, X.; Siegmund, O.H.W.; Vallerga, J.V.; Jelinsky, P.; Millaud, J.E.; Weiss, S.

    2017-01-01

    We have recently developed a wide-field photon-counting detector having high-temporal and high-spatial resolutions and capable of high-throughput (the H33D detector). Its design is based on a 25 mm diameter multi-alkali photocathode producing one photo electron per detected photon, which are then multiplied up to 107 times by a 3-microchannel plate stack. The resulting electron cloud is proximity focused on a cross delay line anode, which allows determining the incident photon position with high accuracy. The imaging and fluorescence lifetime measurement performances of the H33D detector installed on a standard epifluorescence microscope will be presented. We compare them to those of standard single-molecule detectors such as single-photon avalanche photodiode (SPAD) or electron-multiplying camera using model samples (fluorescent beads, quantum dots and live cells). Finally, we discuss the design and applications of future generation of H33D detectors for single-molecule imaging and high-throughput study of biomolecular interactions. PMID:29479130

  14. The energy spectrum of a microchannel multiplier with two microchannel plates in the chevron assembly

    NASA Astrophysics Data System (ADS)

    Kosulya, A. V.; Verbitskii, V. G.

    2017-11-01

    A mathematical model of the response of a microchannel multiplier based on two microchannel plates in the chevron assembly has been considered. Analytical expressions relating the parameters of input and output signals have been obtained. The geometry of the chevron unit has been determined, and it has been optimized.

  15. Tracking rare-isotope beams with microchannel plates

    DOE PAGES

    Rogers, A. M.; Sanetullaev, A.; Lynch, W. G.; ...

    2015-06-06

    A system of two microchannel-plate detectors has been successfully implemented for tracking projectile-fragmentation beams. The detectors provide interaction positions, angles, and arrival Limes of ions at the reaction target. Furthermore, the current design is an adaptation of an assembly used for low-energy beams (~1.4 MeV/nucleon). In order to improve resolution in tracking high-energy heavy-ion beams, the magnetic field strength between the secondary-electron accelerating foil and the microchannel plate had to be increased substantially. Results from an experiment using a 37-MeV/nucleon 56Ni beam show that the tracking system can achieve sub-nanosecond timing resolution and a position resolution of ~1 mm formore » beam intensities up to 5 x 10 5 pps.« less

  16. Tracking rare-isotope beams with microchannel plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, A. M.; Sanetullaev, A.; Lynch, W. G.

    A system of two microchannel-plate detectors has been successfully implemented for tracking projectile-fragmentation beams. The detectors provide interaction positions, angles, and arrival Limes of ions at the reaction target. Furthermore, the current design is an adaptation of an assembly used for low-energy beams (~1.4 MeV/nucleon). In order to improve resolution in tracking high-energy heavy-ion beams, the magnetic field strength between the secondary-electron accelerating foil and the microchannel plate had to be increased substantially. Results from an experiment using a 37-MeV/nucleon 56Ni beam show that the tracking system can achieve sub-nanosecond timing resolution and a position resolution of ~1 mm formore » beam intensities up to 5 x 10 5 pps.« less

  17. Application of atomic layer deposited microchannel plates to imaging photodetectors with high time resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegmund, O. H. W.; McPhate, J. B.; Tremsin, A. S.

    Novel microchannel plates have been constructed using borosilicate glass micro-capillary array substrates with 20 mu m and 10 mu m pores and coated with resistive, and secondary electron emissive, layers by atomic layer deposition. Microchannel plates in 33 mm, 50 mm and 20 cm square formats have been made and tested. Although their amplification, imaging, and timing properties are comparable to standard glass microchannel plates, the background rates and lifetime characteristics are considerably improved. Sealed tube detectors based on the Planacon tube, and a 25 mm cross delay line readout tube with a GaN(Mg) opaque photocathode deposited on borosilicate microchannelmore » plates have been fabricated. Considerable progress has also been made with 20 cm microchannel plates for a 20 cm format sealed tube sensor with strip-line readout that is being developed for Cherenkov light detection.« less

  18. Performance of Small Pore Microchannel Plates

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Gummin, M. A.; Ravinett, T.; Jelinsky, S. R.; Edgar, M.

    1995-01-01

    Small pore size microchannel plates (MCP's) are needed to satisfy the requirements for future high resolution small and large format detectors for astronomy. MCP's with pore sizes in the range 5 micron to 8 micron are now being manufactured, but they are of limited availability and are of small size. We have obtained sets of Galileo 8 micron and 6.5 micron MCP's, and Philips 6 micron and 7 micron pore MCP's, and compared them to our larger pore MCP Z stacks. We have tested back to back MCP stacks of four of these MCP's and achieved gains greater than 2 x 1O(exp 7) with pulse height distributions of less than 40% FWHM, and background rates of less than 0.3 events sec(exp -1) cm(exp -2). Local counting rates up to approx. 100 events/pore/sec have been attained with little drop of the MCP gain. The bare MCP quantum efficiencies are somewhat lower than those expected, however. Flat field images are characterized by an absence of MCP fixed pattern noise.

  19. High Throughput, High Yield Fabrication of High Quantum Efficiency Back-Illuminated Photon Counting, Far UV, UV, and Visible Detector Arrays

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh; Hoenk, M. E.; Carver, A. G.; Jones, T. J.; Greer, F.; Hamden, E.; Goodsall, T.

    2013-01-01

    In this paper we discuss the high throughput end-to-end post fabrication processing of high performance delta-doped and superlattice-doped silicon imagers for UV, visible, and NIR applications. As an example, we present our results on far ultraviolet and ultraviolet quantum efficiency (QE) in a photon counting, detector array. We have improved the QE by nearly an order of magnitude over microchannel plates (MCPs) that are the state-of-the-art UV detectors for many NASA space missions as well as defense applications. These achievements are made possible by precision interface band engineering of Molecular Beam Epitaxy (MBE) and Atomic Layer Deposition (ALD).

  20. A high-throughput, multi-channel photon-counting detector with picosecond timing

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Fraser, G. W.; Miller, G. M.; Ashton, T. J. R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.

    2009-06-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.

  1. Recent developments with microchannel-plate PMTs

    NASA Astrophysics Data System (ADS)

    Lehmann, A.; Böhm, M.; Britting, A.; Eyrich, W.; Pfaffinger, M.; Uhlig, F.; Belias, A.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Lehmann, D.; Nerling, F.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Düren, M.; Etzelmüller, E.; Föhl, K.; Hayrapetyan, A.; Kröck, B.; Merle, O.; Rieke, J.; Schmidt, M.; Wasem, T.; Cowie, E.; Keri, T.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Schlimme, S.; Sfienti, C.; Thiel, M.

    2017-12-01

    Microchannel-plate (MCP) PMTs are the favored photon sensors for the DIRC detectors of the PANDA experiment at FAIR. Until recently the main drawback of MCP-PMTs were serious aging effects which led to a limited lifetime due to a rapidly decreasing quantum efficiency (QE) of the photo cathode (PC) as the integrated anode charge (IAC) increased. In the latest models of PHOTONIS and Hamamatsu an innovative atomic layer deposition (ALD) technique is applied to overcome these limitations. During the last five years comprehensive aging tests with ALD coated MCP-PMTs were performed and the results were compared to tubes treated with other techniques. The QE in dependence of the IAC was measured as a function of the wavelength and the position across the PC. For the best performing tubes the lifetime improvement in comparison to the older MCP-PMTs is a factor of > 50 based on an IAC of meanwhile > 10 C /cm2 . In addition, the performance results of a new 2-in. ALD coated MCP-PMT prototype from Hamamatsu with a very high position resolution (128×6 anode pixels) is presented and the first conclusions from investigations concerning the PC aging mechanism will be discussed.

  2. Pilot Production of Large Area Microchannel Plates and Picosecond Photodetectors

    NASA Astrophysics Data System (ADS)

    Minot, M.; Adams, B.; Abiles, M.; Bond, J.; Craven, C.; Cremer, T.; Foley, M.; Lyashenko, A.; Popecki, M.; Stochaj, M.; Worstell, W.; Elam, J.; Mane, A.; Siegmund, O.; Ertley, C.

    2016-09-01

    Pilot production performance is reported for large area atomic layer deposition (ALD) coated microchannel plates (ALD-GCA-MCPs) and for Large Area Picosecond Photodetectors (LAPPD™) which incorporate them. "Hollowcore" glass capillary array (GCA) substrates are coated with ALD resistive and emissive layers to form the ALDGCA- MCPs, an approach that facilitates independent selection of glass substrates that are mechanically stronger and that have lower levels of radioactive alkali elements compared to conventional MCP lead glass, reducing background noise[1,2,3,4]. ALD-GCA-MCPs have competitive gain ( 104 each or 107 for a chevron pair ), enhanced lifetime and gain stability (7 C cm-2 of charge extraction), reduced background levels (0.028 events cm-2 sec-1) and low gamma-ray detection efficiency. They can be fabricated in large area (20cm X 20 cm) planar and curved formats suitable for use in high radiation environment applications, including astronomy, space instrumentation, and remote night time sensing. The LAPPD™ photodetector incorporates these ALD-GCA-MCPs in an all-glass hermetic package with top and bottom plates and sidewalls made of borosilicate float glass. Signals are generated by a bi-alkali Na2KSb photocathode, amplified with a stacked chevron pair of ALD-GCA-MCPs. Signals are collected on RF strip-line anodes integrated into to the bottom plates which exit the detector via pin-free hermetic seals under the side walls [5]. Tests show that LAPPDTMs have electron gains greater than 107, submillimeter spatial resolution for large (multiphoton) pulses and several mm for single photons, time resolution less than 50 picoseconds for single photons, predicted resolution less than 5 picoseconds for large pulses, high stability versus charge extraction[6], and good uniformity for applications including astrophysics, neutron detection, high energy physics Cherenkov light detection, and quantum-optical photon-correlation experiments.

  3. Modeling of a microchannel plate working in pulsed mode

    NASA Astrophysics Data System (ADS)

    Secroun, Aurelia; Mens, Alain; Segre, Jacques; Assous, Franck; Piault, Emmanuel; Rebuffie, Jean-Claude

    1997-05-01

    MicroChannel Plates (MCPs) are used in high speed cinematography systems such as MCP framing cameras and streak camera readouts. In order to know the dynamic range or the signal to noise ratio that are available in these devices, a good knowledge of the performances of the MCP is essential. The point of interest of our simulation is the working mode of the microchannel plate--that is light pulsed mode--, in which the signal level is relatively high and its duration can be shorter than the time needed to replenish the wall of the channel, when other papers mainly studied night vision applications with weak continuous and nearly single electron input signal. Also our method allows the simulation of saturation phenomena due to the large number of electrons involved, whereas the discrete models previously used for simulating pulsed mode might not be properly adapted. Here are presented the choices made in modeling the microchannel, more specifically as for the physics laws, the secondary emission parameters and the 3D- geometry. In a last part first results are shown.

  4. Microchannel Plates for the UVCS and SUMER Instruments on the SOHO Satellite

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Gummin, M. A.; Sasseen, T.; Jelinsky, P.; Gaines, G. A.; Hull, J.; Stock, J. M.; Edgar, M.; Welsh, B.; Jelinsky, S.; hide

    1995-01-01

    The microchannel plates for the detectors in the SUMER (Solar Ultraviolet Measurements of Emitted Radiation) and UVCS (Ultraviolet Coronograph Spectrometer) instruments aboard the Solar Orbiting Heliospheric Observatory (SOHO) mission to be launched in late 1995 are described. A low resistance Z stack of microchannel plates (MCP's) is employed in a detector format of 27 mm x 10 mm using a multilayer cross delay line anode (XDL) with 1024 x 360 digitized pixels. The MCP stacks provide gains of greater than 2 x 10(exp 7) with good pulse height distributions (as low as 25% FWHM) under uniform flood illumination. Background rates of approx. 0.6 event cm(exp -2) sec(exp -1) are obtained for this configuration. Local counting rates up to about 800 events/pixel/sec have been achieved with little drop of the MCP gain. MCP preconditioning results are discussed, showing that some MCP stacks fail to have gain decreases when subjected to a high flux UV scrub. Also, although the bare MCP quantum efficiencies are close to those expected (10%), we found that the long wavelength response of KBr photocathodes could be substantially enhanced by the MCP scrubbing process. Flat field images are characterized by a low level of MCP fixed pattern noise and are stable. Preliminary calibration results for the instruments are shown.

  5. Development of microchannel plates in advanced wind-tunnel instrumentation

    NASA Technical Reports Server (NTRS)

    Feller, W. Bruce

    1990-01-01

    Microchannel plate (MCP) electron multiplier dynamic range has been increased 3 to 4 orders of magnitude at ambient temperatures, through enhanced input count rate capability and reduced background or 'dark' noise. The previous upper limit of roughly 10(exp 7) - 10(exp 8) cm(exp -2)s(exp -1) at ambient has been extended to levels approach 10(exp 10) cm(exp -2)s(exp -1) under continuous dc operation. The lower limit, previously set by an irreducible background component (approximately 0.6 cm(exp -2)s(exp -1)), has been lowered to the cosmic ray limit of .01 cm(exp -2)s(exp -1). The high end improvement was achieved by conductively cooling a very low resistance MCP by bonding it to a heat sink, while maintaining pulse-counting operation with multianode readouts. The low-end improvement was achieved by removing all radioisotopes from the MCP matrix glass. The detectors will benefit optical and mass spectrometry, flow visualization, plasma diagnostics, magnetometry, and other high signal flux applications. Very low MCP background noise will benefit X-ray and UV astronomy, medical imaging, trace isotope mass spectrometry, and other applications where the signal flux is often extremely low.

  6. Effect of nano-scale morphology on micro-channel wall surface and electrical characterization in lead silicate glass micro-channel plate

    NASA Astrophysics Data System (ADS)

    Cai, Hua; Li, Fangjun; Xu, Yanglei; Bo, Tiezhu; Zhou, Dongzhan; Lian, Jiao; Li, Qing; Cao, Zhenbo; Xu, Tao; Wang, Caili; Liu, Hui; Li, Guoen; Jia, Jinsheng

    2017-10-01

    Micro-channel plate (MCP) is a two dimensional arrays of microscopic channel charge particle multiplier. Silicate composition and hydrogen reduction are keys to determine surface morphology of micro-channel wall in MCP. In this paper, lead silicate glass micro-channel plates in two different cesium contents (0at%, 0.5at%) and two different hydrogen reduction temperatures (400°C,450°C) were present. The nano-scale morphology, elements content and chemical states of microporous wall surface treated under different alkaline compositions and reduction conditions was investigated by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), respectively. Meanwhile, the electrical characterizations of MCP, including the bulk resistance, electron gain and the density of dark current, were measured in a Vacuum Photoelectron Imaging Test Facility (VPIT).The results indicated that the granular phase occurred on the surface of microporous wall and diffuses in bulk glass is an aggregate of Pb atom derived from the reduction of Pb2+. In micro-channel plate, the electron gain and bulk resistance were mainly correlated to particle size and distribution, the density of dark current (DDC) went up with the increasing root-mean-square roughness (RMS) on the microporous wall surface. Adding cesiums improved the size of Pb atomic aggregation, lowered the relative concentration of [Pb] reduced from Pb2+ and decreased the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a less dark current. Increasing hydrogen reduction temperature also improved the size of Pb atomic aggregation, but enhanced the relative concentration of [Pb] and enlarged the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a larger dark current. The reasons for the difference of electrical characteristics were discussed.

  7. High resolution, two-dimensional imaging, microchannel plate detector for use on a sounding rocket experiment

    NASA Technical Reports Server (NTRS)

    Bush, Brett C.; Cotton, Daniel M.; Siegmund, Oswald H.; Chakrabarti, Supriya; Harris, Walter; Clarke, John

    1991-01-01

    We discuss a high resolution microchannel plate (MCP) imaging detector to be used in measurements of Doppler-shifted hydrogen Lyman-alpha line emission from Jupiter and the interplanetary medium. The detector is housed in a vacuum-tight stainless steel cylinder (to provide shielding from magnetic fields) with a MgF2 window. Operating at nominal voltage, the four plate configuration provides a gain of 1.2 x 10 exp 7 electrons per incident photon. The wedge-and-strip anode has two-dimensional imaging capabilities, with a resolution of 40 microns FWHM over a one centimeter diameter area. The detector has a high quantum efficiency while retaining a low background rate. A KBr photocathode is used to enhance the quantum efficiency of the bare MCPs to a value of 35 percent at Lyman-alpha.

  8. Batch production of microchannel plate photo-multipliers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frisch, Henry J.; Wetstein, Matthew; Elagin, Andrey

    In-situ methods for the batch fabrication of flat-panel micro-channel plate (MCP) photomultiplier tube (PMT) detectors (MCP-PMTs), without transporting either the window or the detector assembly inside a vacuum vessel are provided. The method allows for the synthesis of a reflection-mode photocathode on the entrance to the pores of a first MCP or the synthesis of a transmission-mode photocathode on the vacuum side of a photodetector entrance window.

  9. Microchannel plate special nuclear materials sensor

    NASA Astrophysics Data System (ADS)

    Feller, W. B.; White, P. L.; White, P. B.; Siegmund, O. H. W.; Martin, A. P.; Vallerga, J. V.

    2011-10-01

    Nova Scientific Inc., is developing for the Domestic Nuclear Detection Office (DNDO SBIR #HSHQDC-08-C-00190), a solid-state, high-efficiency neutron detection alternative to 3He gas tubes, using neutron-sensitive microchannel plates (MCPs) containing 10B and/or Gd. This work directly supports DNDO development of technologies designed to detect and interdict nuclear weapons or illicit nuclear materials. Neutron-sensitized MCPs have been shown theoretically and more recently experimentally, to be capable of thermal neutron detection efficiencies equivalent to 3He gas tubes. Although typical solid-state neutron detectors typically have an intrinsic gamma sensitivity orders of magnitude higher than that of 3He gas detectors, we dramatically reduce gamma sensitivity by combining a novel electronic coincidence rejection scheme, employing a separate but enveloping gamma scintillator. This has already resulted in a measured gamma rejection ratio equal to a small 3He tube, without in principle sacrificing neutron detection efficiency. Ongoing improvements to the MCP performance as well as the coincidence counting geometry will be described. Repeated testing and validation with a 252Cf source has been underway throughout the Phase II SBIR program, with ongoing comparisons to a small commercial 3He gas tube. Finally, further component improvements and efforts toward integration maturity are underway, with the goal of establishing functional prototypes for SNM field testing.

  10. Effects of 1-MeV gamma radiation on a multi-anode microchannel array detector tube

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1979-01-01

    A multianode microchannel array (MAMA) detector tube without a photocathode was exposed to a total dose of 1,000,000 rads of 1-MeV gamma radiation from a Co-60 source. The high-voltage characteristic of the microchannel array plate, average dark count, gain, and resolution of pulse height distribution characteristics showed no degradation after this total dose. In fact, the degassing of the microchannels induced by the high radiation flux had the effect of cleaning up the array plate and improving its characteristics.

  11. Development of fast-timing microchannel plate photomultiplier

    NASA Astrophysics Data System (ADS)

    Xie, Junqi

    2017-09-01

    Planar microchannel plate photomultipliers (MCP-PMTs) with bialkali photocathodes are able to achieve single photon detection with excellent time (picosecond) and spatial (millimeter) resolution. They have recently drawn great interests in experiments requiring time of flight (TOF) measurement and/or Cherenkov imaging. The Argonne MCP-PMT detector group has recently designed and fabricated 6 cm × 6 cm MCP-PMTs. Atomic layer deposition (ALD) method is used to grow resistive and secondary emission layers to functionalize the glass capillary array. Initial characterization indicates that these MCP-PMTs exhibits a transit-time spread of 57 psec at single photoelectron detection mode and of 27 psec at multi photoelectron mode ( 100 photoelectrons). The MCP-PMTs were also tested at Fermilab test beam facility for its particle detection performance and rate capability, showing high rate capability up to 75 kHz/cm2 , higher than the requirement for future electron-ion collider (EIC) experiment. A recent magnetic field test at ANL g-2 magnetic facility shows that the gain of MCP-PMT does not degrade until 0.75 Tesla, comparable to the current commercially available MCP-PMTs. Further improvement of its magnetic field performance is currently under developing by reducing the MCP pore size and spacing between inside components. The progress on the MCP-PMT development at ANL will be presented and discussed in the presentation.

  12. Charge coupled devices vs. microchannel plates in the extreme and far ultraviolet - A comparison based on the latest laboratory measurements

    NASA Technical Reports Server (NTRS)

    Vallerga, J.; Lampton, M.

    1988-01-01

    While microchannel plates (MCPs) have been established as imaging photon counters in the EUV and FUV for some years, CCDs are associated with low light level sensing at visible and near-IR wavelengths. Attention is presently given to recent proposals for CCDs' use as EUV and FUV detectors with quantum efficiencies sometimes exceeding those of MCPs; quantum resolution, format size, dynamic range, and long-term stability are also used as bases of comparison, for the cases of both space-based astronomical and spectroscopic applications.

  13. Performance of low resistance microchannel plate stacks

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Stock, J.

    1991-01-01

    Results are presented from an evaluation of three sets of low resistance microchannel plate (MCP) stacks; the tests encompassed gain, pulse-height distribution, background rate, event rate capacity as a function of illuminated area, and performance changes due to high temperature bakeout and high flux UV scrub. The MCPs are found to heat up, requiring from minutes to hours to reach stabilization. The event rate is strongly dependent on the size of the area being illuminated, with larger areas experiencing a gain drop onset at lower rates than smaller areas.

  14. Absolute ion detection efficiencies of microchannel plates and funnel microchannel plates for multi-coincidence detection

    NASA Astrophysics Data System (ADS)

    Fehre, K.; Trojanowskaja, D.; Gatzke, J.; Kunitski, M.; Trinter, F.; Zeller, S.; Schmidt, L. Ph. H.; Stohner, J.; Berger, R.; Czasch, A.; Jagutzki, O.; Jahnke, T.; Dörner, R.; Schöffler, M. S.

    2018-04-01

    Modern momentum imaging techniques allow for the investigation of complex molecules in the gas phase by detection of several fragment ions in coincidence. For these studies, it is of great importance that the single-particle detection efficiency ɛ is as high as possible, as the overall efficiency scales with ɛn, i.e., the power of the number of detected particles. Here we present measured absolute detection efficiencies for protons of several micro-channel plates (MCPs), including efficiency enhanced "funnel MCPs." Furthermore, the relative detection efficiency for two-, three-, four-, and five-body fragmentation of CHBrClF has been examined. The "funnel" MCPs exhibit an efficiency of approximately 90%, gaining a factor of 24 (as compared to "normal" MCPs) in the case of a five-fold ion coincidence detection.

  15. Advanced Photon Counting Imaging Detectors with 100ps Timing for Astronomical and Space Sensing Applications

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Vallerga, J.; Welsh, B.; Rabin, M.; Bloch, J.

    In recent years EAG has implemented a variety of high-resolution, large format, photon-counting MCP detectors in space instrumentation for satellite FUSE, GALEX, IMAGE, SOHO, HST-COS, rocket, and shuttle payloads. Our scheme of choice has been delay line readouts encoding photon event position centroids, by determination of the difference in arrival time of the event charge at the two ends of a distributed resistive-capacitive (RC) delay line. Our most commonly used delay line configuration is the cross delay line (XDL). In its simplest form the delay-line encoding electronics consists of a fast amplifier for each end of the delay line, followed by time-to-digital converters (TDC's). We have achieved resolutions of < 25 μm in tests over 65 mm x 65 mm (3k x3k resolution elements) with excellent linearity. Using high speed TDC's, we have been able to encode event positions for random photon rates of ~1 MHz, while time tagging events using the MCP output signal to better than 100 ps. The unique ability to record photon X,Y,T high fidelity information has advantages over "frame driven" recording devices for some important applications. For example we have built open face and sealed tube cross delay line detectors used for biological fluorescence lifetime imaging, observation of flare stars, orbital satellites and space debris with the GALEX satellite, and time resolved imaging of the Crab Pulsar with a telescope as small as 1m. Although microchannel plate delay line detectors meet many of the imaging and timing demands of various applications, they have limitations. The relatively high gain (107) reduces lifetime and local counting rate, and the fixed delay (10's of ns) makes multiple simultaneous event recording problematic. To overcome these limitations we have begun development of cross strip readout anodes for microchannel plate detectors. The cross strip (XS) anode is a coarse (~0.5 mm) multi-layer metal and ceramic pattern of crossed fingers on an alumina

  16. A new approach to large area microchannel plate manufacture

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Methods of manufacture of twisted single elements as the base for producing microchannel plates (MCP) are discussed. Initial evaluations validated the off-axis channel concept and no technological roadblocks were identified which would prevent fabrication of high gain, high spatial resolution, large format MCP's using this technique. The first MP's have operated at stable gains of 3 million with pulse height resolution superior to results obtained by standard chevron MCP's.

  17. Designing a chevron unit for a microelectronic position-sensitive detector with two microchannel plates

    NASA Astrophysics Data System (ADS)

    Kosulya, A. V.; Verbitskii, V. G.

    2017-09-01

    The dependence of the transverse section of an electron beam on the distance between plates and on the accelerating potential difference is determined for a chevron unit of a microelectronic position-sensitive detector (MPSD) with two microchannel plates. The geometry of the MPSD chevron unit is designed and optimized.

  18. Novel fabrication method of microchannel plates

    NASA Astrophysics Data System (ADS)

    Yi, Whikun; Jeong, Taewon; Jin, Sunghwan; Yu, SeGi; Lee, Jeonghee; Kim, J. M.

    2000-11-01

    We have developed a novel microchannel plate (MCP) by introducing new materials and process technologies. The key features of our MCP are summarized as follows: (i) bulk alumina as a substrate, (ii) the channel location defined by a programmed-hole puncher, (iii) thin film deposition by electroless plating and/or sol-gel process, and (iv) an easy fabrication process suitable for mass production and a large-sized MCP. The characteristics of the resulting MCP have been evaluated with a high input current source such as a continuous electron beam from an electron gun and Spindt-type field emitters to obtain information on electron multiplication. In the case of a 0.28 μA incident beam, the output current enhances ˜170 times, which is equal to 1% of the total bias current of the MCP at a given bias voltage of 2600 V. When we insert a MCP between the cathode and the anode of a field emission display panel, the brightness of luminescent light increases 3-4 times by multiplying the emitted electrons through pore arrays of a MCP.

  19. System and method for optically locating microchannel positions

    DOEpatents

    Brewer, Laurence R.; Kimbrough, Joseph; Balch, Joseph; Davidson, J. Courtney

    2001-01-01

    A system and method is disclosed for optically locating a microchannel position. A laser source generates a primary laser beam which is directed at a microchannel plate. The microchannel plates include microchannels at various locations. A back-reflectance beam detector receives a back-reflected beam from the plate. The back-reflected beam is generated when the primary beam reflects off of the plate. A photodiode circuit generates a trigger signal when the back-reflected beam exceeds a predetermined threshold, indicating a presence of the microchannel. The method of the present invention includes the steps of generating a primary beam, directing the primary beam to a plate containing a microchannel, receiving from the plate a back-reflected beam generated in response to the primary beam, and generating a trigger signal when the back-reflected beam exceeds a predetermined threshold which corresponds to a presence of the microchannel.

  20. Oscillatory electroosmotic flow in a parallel-plate microchannel under asymmetric zeta potentials

    NASA Astrophysics Data System (ADS)

    Peralta, M.; Arcos, J.; Méndez, F.; Bautista, O.

    2017-06-01

    In this work, we conduct a theoretical analysis of the start-up of an oscillatory electroosmotic flow (EOF) in a parallel-plate microchannel under asymmetric zeta potentials. It is found that the transient evolution of the flow field is controlled by the parameters {R}ω , {R}\\zeta , and \\bar{κ }, which represent the dimensionless frequency, the ratio of the zeta potentials of the microchannel walls, and the electrokinetic parameter, which is defined as the ratio of the microchannel height to the Debye length. The analysis is performed for both low and high zeta potentials; in the former case, an analytical solution is derived, whereas in the latter, a numerical solution is obtained. These solutions provide the fundamental characteristics of the oscillatory EOFs for which, with suitable adjustment of the zeta potential and the dimensionless frequency, the velocity profiles of the fluid flow exhibit symmetric or asymmetric shapes.

  1. Achieving high spatial resolution using a microchannel plate detector with an economic and scalable approach

    NASA Astrophysics Data System (ADS)

    Wiggins, B. B.; deSouza, Z. O.; Vadas, J.; Alexander, A.; Hudan, S.; deSouza, R. T.

    2017-11-01

    A second generation position-sensitive microchannel plate detector using the induced signal approach has been realized. This detector is presently capable of measuring the incident position of electrons, photons, or ions. To assess the spatial resolution, the masked detector was illuminated by electrons. The initial, measured spatial resolution of 276 μm FWHM was improved by requiring a minimum signal amplitude on the anode and by employing digital signal processing techniques. The resulting measured spatial resolution of 119 μm FWHM corresponds to an intrinsic resolution of 98 μm FWHM when the effect of the finite slit width is de-convoluted. This measurement is a substantial improvement from the last reported spatial resolution of 466 μm FWHM using the induced signal approach. To understand the factors that limit the measured resolution, the performance of the detector is simulated.

  2. Microchannel plate detector and methods for their fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elam, Jeffrey W.; Mane, Anil U.; Peng, Qing

    A multi-component tunable resistive coating and methods of depositing the coating on the surfaces of a microchannel plate (MCP) detector. The resistive coating composed of a plurality of alternating layers of a metal oxide resistive component layer and a conductive component layer composed of at least one of a metal, a metal nitride and a metal sulfide. The coating may further include an emissive layer configured to produce a secondary electron emission in response to a particle interacting with the MCP and a neutron-absorbing layer configured to respond to a neutron interacting with the MCP.

  3. Multiple-Event, Single-Photon Counting Imaging Sensor

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Cunningham, Thomas J.; Sun, Chao; Wang, Kang L.

    2011-01-01

    The single-photon counting imaging sensor is typically an array of silicon Geiger-mode avalanche photodiodes that are monolithically integrated with CMOS (complementary metal oxide semiconductor) readout, signal processing, and addressing circuits located in each pixel and the peripheral area of the chip. The major problem is its single-event method for photon count number registration. A single-event single-photon counting imaging array only allows registration of up to one photon count in each of its pixels during a frame time, i.e., the interval between two successive pixel reset operations. Since the frame time can t be too short, this will lead to very low dynamic range and make the sensor merely useful for very low flux environments. The second problem of the prior technique is a limited fill factor resulting from consumption of chip area by the monolithically integrated CMOS readout in pixels. The resulting low photon collection efficiency will substantially ruin any benefit gained from the very sensitive single-photon counting detection. The single-photon counting imaging sensor developed in this work has a novel multiple-event architecture, which allows each of its pixels to register as more than one million (or more) photon-counting events during a frame time. Because of a consequently boosted dynamic range, the imaging array of the invention is capable of performing single-photon counting under ultra-low light through high-flux environments. On the other hand, since the multiple-event architecture is implemented in a hybrid structure, back-illumination and close-to-unity fill factor can be realized, and maximized quantum efficiency can also be achieved in the detector array.

  4. Cross strip anode readouts for microchannel plate detectors: developing flight qualified prototypes

    NASA Astrophysics Data System (ADS)

    Vallerga, John; Cooney, M.; Raffanti, R.; Varner, G.; Siegmund, O.; McPhate, J. B.; Tremsin, A.

    2014-01-01

    Photon counting microchannel plate (MCP) imagers have been the detector of choice for most UV astronomical missions over the last two decades (eg. EUVE, FUSE, COS on Hubble etc.). Over this duration, improvements in the MCP laboratory readout technology have resulted in better spatial resolution (x10), temporal resolution (x 1000) and output event rate (x100), all the while operating at lower gain (x 10) resulting in lower high voltage requirements and longer MCP lifetimes. One such technology is the parallel cross strip (PXS) readout. The PXS anode is a set of orthogonal conducting strips (80 x 80), typically spaced at a 635 micron pitch onto which charge clouds from MCP amplified events land. Each strip has its own charge sensitive amplifier that is sampled continuously by a dedicated analog to digital (ADC) converter at 50MHz. All of the 160 ADC digital output lines are fed into a field programmable gate array (FGPA) which can detect charge events landing on the strips, measure the peak amplitudes of those charge events and calculate their spatial centroid along with their time of arrival (X,Y,T). Laboratory versions of these electronics have demonstrated < 20 microns FWHM spatial resolution, count rates on the order of 2 MHz, and temporal resolution of ~ 1ns. In 2012 the our group at U.C. Berkeley, along with our partners at the U. Hawaii, received a Strategic Astrophysics Technology grant to raise the TRL of the PXS detector from 4 to 6 by replacing most of the 19" rack mounted, high powered electronics with application specific integrated circuits (ASICs) which will lower the power, mass and volume requirements of the PXS detector. We were also tasked to design and fabricate a "standard" 50mm square active area MCP detector incorporating these electronics that can be environmentally qualified for flight (temperature, vacuum, vibration). This detector design could then be modified for individual flight opportunities with a higher level of confidence than

  5. Photon Counting - One More Time

    NASA Astrophysics Data System (ADS)

    Stanton, Richard H.

    2012-05-01

    Photon counting has been around for more than 60 years, and has been available to amateurs for most of that time. In most cases single photons are detected using photomultiplier tubes, "old technology" that became available after the Second World War. But over the last couple of decades the perfection of CCD devices has given amateurs the ability to perform accurate photometry with modest telescopes. Is there any reason to still count photons? This paper discusses some of the strengths of current photon counting technology, particularly relating to the search for fast optical transients. Technology advances in counters and photomultiplier modules are briefly mentioned. Illustrative data are presented including FFT analysis of bright star photometry and a technique for finding optical pulses in a large file of noisy data. This latter technique is shown to enable the discovery of a possible optical flare on the polar variable AM Her.

  6. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, Joseph W.; Carrano, Anthony V.; Davidson, James C.; Koo, Jackson C.

    1998-01-01

    A hybrid slab-microchannel gel electrophoresis system. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate.

  7. Photon-Counting Kinetic Inductance Detectors for the Origins Space Telescope

    NASA Astrophysics Data System (ADS)

    Noroozian, Omid

    responds to incident photons with a change in its resonance frequency and dissipation. This detector response is intrinsically frequency multiplexed, and consequently KIDs at different resonance frequencies can be read out using standard digital radio techniques, which enables multiplexing of 10,000s of detectors. In our photon-counting KID design we employ a small-volume (and thin) superconducting Al inductor to enhance the per-photon responsivity, and large parallel-plate NbTiN capacitors on single-crystal silicon-on-insulator (SOI) substrates to eliminate frequency noise. We have developed a comprehensive design demonstrating that photon-counting sensitivity is possible in a small-volume Al KID. In addition, we have already demonstrated ultra-high quality factors in resonators made of very thin ( 10 nm) Al films with long electron lifetimes. These are the critical material parameters for reaching photon-counting sensitivity levels. In our proposed work plan our objective is to implement these high quality films into our optically-coupled small-volume KID design and demonstrate photon-counting sensitivity. The successful development of our photon-counting technology will significantly increase the sensitivity of the OST mission, making it more scientifically competitive than one based on power detectors. Photon-counting at the background limit provides a x4 increase in observation speed over that of background-limited power detection, since there is no need to measure and subtract a zero point. Photon-counting detectors will enable an instrument on the OST to observe the fine structure lines of galaxies which are currently only observable at redshifts of z 1, out to redshifts of z=6, probing the early stages of galaxy, star and planet formation. Our photon-counting detectors will also enable entirely new science, including the mapping of the composition and evolution of water and other key volatiles in planet-forming materials around large samples of nearby young stars.

  8. Three-dimensional particle-in-cell simulation on gain saturation effect of microchannel plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qiangqiang; Yuan, Zheng; Cao, Zhurong, E-mail: cao33jin@aliyun.com

    We present here the results of the simulation work, using the three-dimensional particle-in-cell method, on the performance of the lead glass microchannel plate under saturated state. We calculated the electron cascade process with different DC bias voltages under both self-consistent condition and non-self-consistent condition. The comparative results have demonstrated that the strong self-consistent field can suppress the cascade process and make the microchannel plate saturated. The simulation results were also compared to the experimental data and good agreement was obtained. The simulation results also show that the electron multiplication process in the channel is accompanied by the buildup process ofmore » positive charges in the channel wall. Though the interactions among the secondary electron cloud in the channel, the positive charges in the channel wall, and the external acceleration field can make the electron-surface collision more frequent, the collision energy will be inevitably reduced, thus the electron gain will also be reduced.« less

  9. Position and time resolution measurements with a microchannel plate image intensifier: A comparison of monolithic and pixelated CeBr3 scintillators

    NASA Astrophysics Data System (ADS)

    Ackermann, Ulrich; Eschbaumer, Stephan; Bergmaier, Andreas; Egger, Werner; Sperr, Peter; Greubel, Christoph; Löwe, Benjamin; Schotanus, Paul; Dollinger, Günther

    2016-07-01

    To perform Four Dimensional Age Momentum Correlation measurements in the near future, where one obtains the positron lifetime in coincidence with the three dimensional momentum of the electron annihilating with the positron, we have investigated the time and position resolution of two CeBr3 scintillators (monolithic and an array of pixels) using a Photek IPD340/Q/BI/RS microchannel plate image intensifier. The microchannel plate image intensifier has an active diameter of 40 mm and a stack of two microchannel plates in chevron configuration. The monolithic CeBr3 scintillator was cylindrically shaped with a diameter of 40 mm and a height of 5 mm. The pixelated scintillator array covered the whole active area of the microchannel plate image intensifier and the shape of each pixel was 2.5·2.5·8 mm3 with a pixel pitch of 3.3 mm. For the monolithic setup the measured mean single time resolution was 330 ps (FWHM) at a gamma energy of 511 keV. No significant dependence on the position was detected. The position resolution at the center of the monolithic scintillator was about 2.5 mm (FWHM) at a gamma energy of 662 keV. The single time resolution of the pixelated crystal setup reached 320 ps (FWHM) in the region of the center of the active area of the microchannel plate image intensifier. The position resolution was limited by the cross-section of the pixels. The gamma energy for the pixel setup measurements was 511 keV.

  10. Single Photon Counting Large Format Imaging Sensors with High Spatial and Temporal Resolution

    NASA Astrophysics Data System (ADS)

    Siegmund, O. H. W.; Ertley, C.; Vallerga, J. V.; Cremer, T.; Craven, C. A.; Lyashenko, A.; Minot, M. J.

    High time resolution astronomical and remote sensing applications have been addressed with microchannel plate based imaging, photon time tagging detector sealed tube schemes. These are being realized with the advent of cross strip readout techniques with high performance encoding electronics and atomic layer deposited (ALD) microchannel plate technologies. Sealed tube devices up to 20 cm square have now been successfully implemented with sub nanosecond timing and imaging. The objective is to provide sensors with large areas (25 cm2 to 400 cm2) with spatial resolutions of <20 μm FWHM and timing resolutions of <100 ps for dynamic imaging. New high efficiency photocathodes for the visible regime are discussed, which also allow response down below 150nm for UV sensing. Borosilicate MCPs are providing high performance, and when processed with ALD techniques are providing order of magnitude lifetime improvements and enhanced photocathode stability. New developments include UV/visible photocathodes, ALD MCPs, and high resolution cross strip anodes for 100 mm detectors. Tests with 50 mm format cross strip readouts suitable for Planacon devices show spatial resolutions better than 20 μm FWHM, with good image linearity while using low gain ( 106). Current cross strip encoding electronics can accommodate event rates of >5 MHz and event timing accuracy of 100 ps. High-performance ASIC versions of these electronics are in development with better event rate, power and mass suitable for spaceflight instruments.

  11. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, J.W.; Carrano, A.V.; Davidson, J.C.; Koo, J.C.

    1998-05-05

    A hybrid slab-microchannel gel electrophoresis system is described. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate. 4 figs.

  12. High-reliability GaAs image intensifier with unfilmed microchannel plate

    NASA Astrophysics Data System (ADS)

    Bender, Edward J.; Estrera, Joseph P.; Ford, C. E.; Giordana, A.; Glesener, John W.; Lin, P. P.; Nico, A. J.; Sinor, Timothy W.; Smithson, R. H.

    1999-07-01

    Current GaAs image intensifier technology requires that the microchannel plate (MCP) have a thin dielectric film on the side facing the photocathode. This protective coating substantially reduces the amount of outgassing of ions and neutral species from the microchannels. The prevention of MCP outgassing is necessary in order to prevent the `poisoning' of the Cs:O surface on the GaAs photocathode. Many authors have experimented with omitting the MCP coating. The results of such experiments invariably lead to an intensifier with a reported useful life of less than 100 hours, due to contamination of the Cs:O layer on the photocathode. Unfortunately, the MCP film is also a barrier to electron transport within the intensifier. Substantial enhancement of the image intensifier operating parameters is the motivation for the removal of the MCP film. This paper presents results showing for the first time that it is possible to fabricate a long lifetime image intensifier with a single uncoated MCP.

  13. Note: A timing micro-channel plate detector with backside fast preamplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; University of Chinese Academy of Sciences, Beijing 100049; School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000

    2014-03-15

    A timing micro-channel plate detector with a backside double-channel fast preamplifier was developed to avoid distortion during signal propagation from the anode to the preamplifier. The mechanical and electronic structure is described. The detector including its backside preamplifier is tested by a {sup 241}Am α-source and a rise time of ∼2 ns with an output background noise of 4 mV{sub rms} was achieved.

  14. a Vacuum Ultraviolet Study of the Alcator C Tokamak Plasma Using a High Resolution, One-Dimensional Photon Counting Detector.

    NASA Astrophysics Data System (ADS)

    Benjamin, Russell D.

    A photon counting detector based on an image intensified photodiode array was developed to meet the needs of one particular area of spectroscopic study, the determination of the kinetic temperature of impurity species. The image intensifier incorporates 3 high strip current ( ~300 muA) microchannel plates in a 'Z' configuration to achieve the gain required for the detection of single photon events. The design, construction, and laboratory testing of this system to determine its suitability for fusion plasma diagnostics is described, in particular, the ability to measure emission line profiles in order to determine the kinetic temperature of the emitting species. The photon counting detector, mounted on the exit plane of a 1m Ebert-Fastie spectrometer, was used to make spectroscopic measurements of the local ion temperature in Alcator C plasmas using impurity emission lines. Alcator experiments on one particular method of RF heating in a tokamak plasma, the launching of Ion Bernstein waves (IBW), are discussed. The O V kinetic temperature increases during IBW injection as the pre-RF plasma density is raised (on a shot-to-shot basis) above the region in which significant increases in the central ion temperature are observed. In addition, ion temperature profiles were measured during Ion Bernstein wave experiments by combining this point derived from the fit to the emission line of O VII with neutral particle analyzer data. The incorporation of the O VII temperature point in the determination of the pre-RF ion temperature profile results in a significant reduction (~0.4 cm) in the characteristic width of this profile. The high resolution and geometric stability of the photon counting detector made possible the measurement of small wavelength shifts (Deltalambda ~ 0.01 A) and, therefore, the determination of small bulk plasma motions (in this case, poloidal rotation of the plasma) through the Doppler shift of impurity emission lines. The Zeeman effect makes a

  15. The development and test of ultra-large-format multi-anode microchannel array detector systems

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1984-01-01

    The specific tasks that were accomplished with each of the key elements of the multi-anode microchannel array detector system are described. The modes of operation of position-sensitive electronic readout systems for use with high-gain microchannel plates are described and their performance characteristics compared and contrasted. Multi-anode microchannel array detector systems with formats as large as 256 x 1024 pixels are currently under evaluation. Preliminary performance data for sealed ultraviolet and visible-light detector tubes show that the detector systems have unique characteristics which make them complementary to photoconductive array detectors, such as CCDs, and superior to alternative pulse-counting detector systems employing high-gain MCPs.

  16. Tutorial on X-ray photon counting detector characterization.

    PubMed

    Ren, Liqiang; Zheng, Bin; Liu, Hong

    2018-01-01

    Recent advances in photon counting detection technology have led to significant research interest in X-ray imaging. As a tutorial level review, this paper covers a wide range of aspects related to X-ray photon counting detector characterization. The tutorial begins with a detailed description of the working principle and operating modes of a pixelated X-ray photon counting detector with basic architecture and detection mechanism. Currently available methods and techniques for charactering major aspects including energy response, noise floor, energy resolution, count rate performance (detector efficiency), and charge sharing effect of photon counting detectors are comprehensively reviewed. Other characterization aspects such as point spread function (PSF), line spread function (LSF), contrast transfer function (CTF), modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), bias voltage, radiation damage, and polarization effect are also remarked. A cadmium telluride (CdTe) pixelated photon counting detector is employed for part of the characterization demonstration and the results are presented. This review can serve as a tutorial for X-ray imaging researchers and investigators to understand, operate, characterize, and optimize photon counting detectors for a variety of applications.

  17. A novel ZVS high voltage power supply for micro-channel plate photomultiplier tubes

    NASA Astrophysics Data System (ADS)

    Pei, Chengquan; Tian, Jinshou; Liu, Zhen; Qin, Hong; Wu, Shengli

    2017-04-01

    A novel resonant high voltage power supply (HVPS) with zero voltage switching (ZVS), to reduce the voltage stress on switching devices and improve conversion efficiency, is proposed. The proposed HVPS includes a drive circuit, a transformer, several voltage multiplying circuits, and a regulator circuit. The HVPS contains several secondary windings that can be precisely regulated. The proposed HVPS performed better than the traditional resistor voltage divider, which requires replacing matching resistors resulting in resistor dispersibility in the Micro-Channel Plate (MCP). The equivalent circuit of the proposed HVPS was established and the operational principle analyzed. The entire switching element can achieve ZVS, which was validated by a simulation and experiments. The properties of this HVPS were tested including minimum power loss (240 mW), maximum power loss (1 W) and conversion efficiency (85%). The results of this research are that the proposed HVPS was suitable for driving the micro-channel plate photomultiplier tube (MCP-PMT). It was therefore adopted to test the MCP-PMT, which will be used in Daya Bay reactor neutrino experiment II in China.

  18. Development and test of photon counting lidar

    NASA Astrophysics Data System (ADS)

    Wang, Chun-hui; Wang, Ao-you; Tao, Yu-liang; Li, Xu; Peng, Huan; Meng, Pei-bei

    2018-02-01

    In order to satisfy the application requirements of spaceborne three dimensional imaging lidar , a prototype of nonscanning multi-channel lidar based on receiver field of view segmentation was designed and developed. High repetition frequency micro-pulse lasers, optics fiber array and Geiger-mode APD, combination with time-correlated single photon counting technology, were adopted to achieve multi-channel detection. Ranging experiments were carried out outdoors. In low echo photon condition, target photon counting showed time correlated and noise photon counting were random. Detection probability and range precision versus threshold were described and range precision increased from 0.44 to 0.11 when threshold increased from 4 to 8.

  19. Calibration of a microchannel plate based extreme ultraviolet grazing incident spectrometer at the Advanced Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakeman, M. S.; Lawrence Berkeley National Laboratory, Berkeley, California 94720; Tilborg, J. van

    We present the design and calibration of a microchannel plate based extreme ultraviolet spectrometer. Calibration was performed at the Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL). This spectrometer will be used to record the single shot spectrum of radiation emitted by the tapered hybrid undulator (THUNDER) undulator installed at the LOASIS GeV-class laser-plasma-accelerator. The spectrometer uses an aberration-corrected concave grating with 1200 lines/mm covering 11-62 nm and a microchannel plate detector with a CsI coated photocathode for increased quantum efficiency in the extreme ultraviolet. A touch screen interface controls the grating angle, aperture size, and placementmore » of the detector in vacuum, allowing for high-resolution measurements over the entire spectral range.« less

  20. Avalanche photodiode photon counting receivers for space-borne lidars

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic M.

    1991-01-01

    Avalanche photodiodes (APD) are studied for uses as photon counting detectors in spaceborne lidars. Non-breakdown APD photon counters, in which the APD's are biased below the breakdown point, are shown to outperform: (1) conventional APD photon counters biased above the breakdown point; (2) conventional APD photon counters biased above the breakdown point; and (3) APD's in analog mode when the received optical signal is extremely weak. Non-breakdown APD photon counters were shown experimentally to achieve an effective photon counting quantum efficiency of 5.0 percent at lambda = 820 nm with a dead time of 15 ns and a dark count rate of 7000/s which agreed with the theoretically predicted values. The interarrival times of the counts followed an exponential distribution and the counting statistics appeared to follow a Poisson distribution with no after pulsing. It is predicted that the effective photon counting quantum efficiency can be improved to 18.7 percent at lambda = 820 nm and 1.46 percent at lambda = 1060 nm with a dead time of a few nanoseconds by using more advanced commercially available electronic components.

  1. Absolute and angular efficiencies of a microchannel-plate position-sensitive detector

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Gibner, P. S.; Newman, J. H.; Smith, K. A.; Stebbings, R. F.

    1984-01-01

    This paper presents a characterization of a commercially available position-sensitive detector of energetic ions and neutrals. The detector consists of two microchannel plates followed by a resistive position-encoding anode. The work includes measurement of absolute efficiencies of H(+), He(+), and O(+) ions in the energy range between 250 and 5000 eV, measurement of relative detection efficiencies as a function of particle impact angle, and a simple method for accurate measurement of the time at which a particle strikes the detector.

  2. Comparative Response of Microchannel Plate and Channel Electron Multiplier Detectors to Penetrating Radiation in Space

    DOE PAGES

    Funsten, Herbert O.; Harper, Ronnie W.; Dors, Eric E.; ...

    2015-10-02

    Channel electron multiplier (CEM) and microchannel plate (MCP) detectors are routinely used in space instrumentation for measurement of space plasmas. Here, our goal is to understand the relative sensitivities of these detectors to penetrating radiation in space, which can generate background counts and shorten detector lifetime. We use 662 keV γ-rays as a proxy for penetrating radiation such as γ-rays, cosmic rays, and high-energy electrons and protons that are ubiquitous in the space environment. We find that MCP detectors are ~20 times more sensitive to 662 keV γ-rays than CEM detectors. This is attributed to the larger total area ofmore » multiplication channels in an MCP detector that is sensitive to electronic excitation and ionization resulting from the interaction of penetrating radiation with the detector material. In contrast to the CEM detector, whose quantum efficiency ε γ for 662 keVγ -rays is found to be 0.00175 and largely independent of detector bias, the quantum efficiency of the MCP detector is strongly dependent on the detector bias, with a power law index of 5.5. Lastly, background counts in MCP detectors from penetrating radiation can be reduced using MCP geometries with higher pitch and smaller channel diameter.« less

  3. Advances in photon counting for bioluminescence

    NASA Astrophysics Data System (ADS)

    Ingle, Martin B.; Powell, Ralph

    1998-11-01

    Photon counting systems were originally developed for astronomy, initially by the astronomical community. However, a major application area is in the study of luminescent probes in living plants, fishes and cell cultures. For these applications, it has been necessary to develop camera system capability at very low light levels -- a few photons occasionally -- and also at reasonably high light levels to enable the systems to be focused and to collect quality images of the object under study. The paper presents new data on MTF at extremely low photon flux and conventional ICCD illumination, counting efficiency and dark noise as a function of temperature.

  4. Photon-counting array detectors for space and ground-based studies at ultraviolet and vacuum ultraviolet /VUV/ wavelengths

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1981-01-01

    The Multi-Anode Microchannel Arrays (MAMAs) are a family of photoelectric photon-counting array detectors, with formats as large as (256 x 1024)-pixels that can be operated in a windowless configuration at vacuum ultraviolet (VUV) and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. This paper describes the construction and modes of operation of (1 x 1024)-pixel and (24 x 1024)-pixel MAMA detector systems that are being built and qualified for use in sounding-rocket spectrometers for solar and stellar observations at wavelengths below 1300 A. The performance characteristics of the MAMA detectors at ultraviolet and VUV wavelengths are also described.

  5. gPhoton: Time-tagged GALEX photon events analysis tools

    NASA Astrophysics Data System (ADS)

    Million, Chase C.; Fleming, S. W.; Shiao, B.; Loyd, P.; Seibert, M.; Smith, M.

    2016-03-01

    Written in Python, gPhoton calibrates and sky-projects the ~1.1 trillion ultraviolet photon events detected by the microchannel plates on the Galaxy Evolution Explorer Spacecraft (GALEX), archives these events in a publicly accessible database at the Mikulski Archive for Space Telescopes (MAST), and provides tools for working with the database to extract scientific results, particularly over short time domains. The software includes a re-implementation of core functionality of the GALEX mission calibration pipeline to produce photon list files from raw spacecraft data as well as a suite of command line tools to generate calibrated light curves, images, and movies from the MAST database.

  6. T-load microchannel array and fabrication method

    DOEpatents

    Swierkowski, Stefan P.

    2000-01-01

    A three-dimensional (3-D) T-load for planar microchannel arrays for electrophoresis, for example, which enables sample injection directly onto a plane perpendicular to the microchannels' axis, at their ends. This is accomplished by forming input wells that extend beyond the ends of the microchannel thereby eliminating the right angle connection from the input well into the end of the microchannel. In addition, the T-load input well eases the placement of electrode in or adjacent the well and thus enables very efficient reproducible electrokinetic (ek) injection. The T-load input well eliminates the prior input well/microchannel alignment concerns, since the input well can be drilled after the top and bottom microchannel plates are bonded together. The T-load input well may extend partially or entirely through the bottom microchannel plate which enables more efficient gel and solution flushing, and also enables placement of multiple electrodes to assist in the ek sample injection.

  7. Time and position sensitive single photon detector for scintillator read-out

    NASA Astrophysics Data System (ADS)

    Schössler, S.; Bromberger, B.; Brandis, M.; Schmidt, L. Ph H.; Tittelmeier, K.; Czasch, A.; Dangendorf, V.; Jagutzki, O.

    2012-02-01

    We have developed a photon counting detector system for combined neutron and γ radiography which can determine position, time and intensity of a secondary photon flash created by a high-energy particle or photon within a scintillator screen. The system is based on a micro-channel plate photomultiplier concept utilizing image charge coupling to a position- and time-sensitive read-out anode placed outside the vacuum tube in air, aided by a standard photomultiplier and very fast pulse-height analyzing electronics. Due to the low dead time of all system components it can cope with the high throughput demands of a proposed combined fast neutron and dual discrete energy γ radiography method (FNDDER). We show tests with different types of delay-line read-out anodes and present a novel pulse-height-to-time converter circuit with its potential to discriminate γ energies for the projected FNDDER devices for an automated cargo container inspection system (ACCIS).

  8. Comparison between two time-resolved approaches for prostate cancer diagnosis: high rate imager vs. photon counting system

    NASA Astrophysics Data System (ADS)

    Boutet, J.; Debourdeau, M.; Laidevant, A.; Hervé, L.; Dinten, J.-M.

    2010-02-01

    Finding a way to combine ultrasound and fluorescence optical imaging on an endorectal probe may improve early detection of prostate cancer. A trans-rectal probe adapted to fluorescence diffuse optical tomography measurements was developed by our team. This probe is based on a pulsed NIR laser source, an optical fiber network and a time-resolved detection system. A reconstruction algorithm was used to help locate and quantify fluorescent prostate tumors. In this study, two different kinds of time-resolved detectors are compared: High Rate Imaging system (HRI) and a photon counting system. The HRI is based on an intensified multichannel plate and a CCD Camera. The temporal resolution is obtained through a gating of the HRI. Despite a low temporal resolution (300ps), this system allows a simultaneous acquisition of the signal from a large number of detection fibers. In the photon counting setup, 4 photomultipliers are connected to a Time Correlated Single Photon Counting (TCSPC) board, providing a better temporal resolution (0.1 ps) at the expense of a limited number of detection fibers (4). At last, we show that the limited number of detection fibers of the photon counting setup is enough for a good localization and dramatically improves the overall acquisition time. The photon counting approach is then validated through the localization of fluorescent inclusions in a prostate-mimicking phantom.

  9. Microfabrication of microchannels for fuel cell plates.

    PubMed

    Jang, Ho Su; Park, Dong Sam

    2010-01-01

    Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of microchannel technology. In this study, the conventional method of chemical etching and the mechanical machining method of micro end milling were used for the microfabrication of microchannel for fuel cell separators. The two methods were compared in terms of their performance in the fabrication with regards to dimensional errors, flatness, straightness, and surface roughness. Following microchannel fabrication, the powder blasting technique is introduced to improve the coating performance of the catalyst on the surface of the microchannel. Experimental results show that end milling can remarkably increase the fabrication performance and that surface treatment by powder blasting can improve the performance of catalyst coating.

  10. Microfabrication of Microchannels for Fuel Cell Plates

    PubMed Central

    Jang, Ho Su; Park, Dong Sam

    2010-01-01

    Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of microchannel technology. In this study, the conventional method of chemical etching and the mechanical machining method of micro end milling were used for the microfabrication of microchannel for fuel cell separators. The two methods were compared in terms of their performance in the fabrication with regards to dimensional errors, flatness, straightness, and surface roughness. Following microchannel fabrication, the powder blasting technique is introduced to improve the coating performance of the catalyst on the surface of the microchannel. Experimental results show that end milling can remarkably increase the fabrication performance and that surface treatment by powder blasting can improve the performance of catalyst coating. PMID:22315533

  11. Electroless plated maghemite for three-dimensional magneto photonic crystals

    NASA Astrophysics Data System (ADS)

    Mito, Shinichiro; Kawashima, Takuya; Kawaguchi, Takuma; Sasano, Junji; Takagi, Hiroyuki; Inoue, Mitsuteru

    2017-05-01

    Three-dimensional magneto photonic crystals (3D-MPCs) are promising material for manipulating light in 3D space. In this study, we fabricated 3D-MPC that is filling the air-gap of opal photonic crystal with magnetic material by electroless plating. The electroless plating is an attractive film-forming method which provides magnetic material films on various substrates in aqueous solution at 24-90 °C. As magnetic material for filling the air-gap, maghemite (γ-Fe2O3) film was plated in opal photonic crystal. The plated maghemite film showed a Faraday rotation of 0.6 deg./μm at 440 nm and significantly lower absorption than magnetite. The plated opal showed photonic band gap and magneto-optic response. Faraday rotation of the plated opal was enhanced at the band edge. The photonic band gap and the Faraday rotation spectra were changed as a function of incident angle of light. Electroless plating of maghemite could be promising technique for fabricating 3D-MPCs.

  12. Particle and Photon Detection: Counting and Energy Measurement

    PubMed Central

    Janesick, James; Tower, John

    2016-01-01

    Fundamental limits for photon counting and photon energy measurement are reviewed for CCD and CMOS imagers. The challenges to extend photon counting into the visible/nIR wavelengths and achieve energy measurement in the UV with specific read noise requirements are discussed. Pixel flicker and random telegraph noise sources are highlighted along with various methods used in reducing their contribution on the sensor’s read noise floor. Practical requirements for quantum efficiency, charge collection efficiency, and charge transfer efficiency that interfere with photon counting performance are discussed. Lastly we will review current efforts in reducing flicker noise head-on, in hopes to drive read noise substantially below 1 carrier rms. PMID:27187398

  13. The Sydney University PAPA camera

    NASA Astrophysics Data System (ADS)

    Lawson, Peter R.

    1994-04-01

    The Precision Analog Photon Address (PAPA) camera is a photon-counting array detector that uses optical encoding to locate photon events on the output of a microchannel plate image intensifier. The Sydney University camera is a 256x256 pixel detector which can operate at speeds greater than 1 million photons per second and produce individual photon coordinates with a deadtime of only 300 ns. It uses a new Gray coded mask-plate which permits a simplified optical alignment and successfully guards against vignetting artifacts.

  14. Collimator application for microchannel plate image intensifier resolution improvement

    DOEpatents

    Thomas, S.W.

    1996-02-27

    A collimator is included in a microchannel plate image intensifier (MCPI). Collimators can be useful in improving resolution of MCPIs by eliminating the scattered electron problem and by limiting the transverse energy of electrons reaching the screen. Due to its optical absorption, a collimator will also increase the extinction ratio of an intensifier by approximately an order of magnitude. Additionally, the smooth surface of the collimator will permit a higher focusing field to be employed in the MCP-to-collimator region than is currently permitted in the MCP-to-screen region by the relatively rough and fragile aluminum layer covering the screen. Coating the MCP and collimator surfaces with aluminum oxide appears to permit additional significant increases in the field strength, resulting in better resolution. 2 figs.

  15. Collimator application for microchannel plate image intensifier resolution improvement

    DOEpatents

    Thomas, Stanley W.

    1996-02-27

    A collimator is included in a microchannel plate image intensifier (MCPI). Collimators can be useful in improving resolution of MCPIs by eliminating the scattered electron problem and by limiting the transverse energy of electrons reaching the screen. Due to its optical absorption, a collimator will also increase the extinction ratio of an intensifier by approximately an order of magnitude. Additionally, the smooth surface of the collimator will permit a higher focusing field to be employed in the MCP-to-collimator region than is currently permitted in the MCP-to-screen region by the relatively rough and fragile aluminum layer covering the screen. Coating the MCP and collimator surfaces with aluminum oxide appears to permit additional significant increases in the field strength, resulting in better resolution.

  16. High-speed photon-counting x-ray computed tomography system utilizing a multipixel photon counter

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akiro; Onagawa, Jun

    2009-07-01

    High-speed photon counting is useful for discriminating photon energy and for decreasing absorbed dose for patients in medical radiography, and the counting is usable for constructing an x-ray computed tomography (CT) system. A photon-counting x-ray CT system is of the first generation type and consists of an x-ray generator, a turn table, a translation stage, a two-stage controller, a multipixel photon counter (MPPC) module, a 1.0-mm-thick LSO crystal (scintillator), a counter card (CC), and a personal computer (PC). Tomography is accomplished by repeating the linear scanning and the rotation of an object, and projection curves of the object are obtained by the linear scanning using the detector consisting of a MPPC module and the LSO. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The lower level of the photon energy is roughly determined by a comparator circuit in the module, and the unit of the level is the photon equivalent (pe). Thus, the average photon energy of the x-ray spectra increases with increasing the lower-level voltage of the comparator. The maximum count rate was approximately 20 Mcps, and energy-discriminated CT was roughly carried out.

  17. Photon Counting Using Edge-Detection Algorithm

    NASA Technical Reports Server (NTRS)

    Gin, Jonathan W.; Nguyen, Danh H.; Farr, William H.

    2010-01-01

    New applications such as high-datarate, photon-starved, free-space optical communications require photon counting at flux rates into gigaphoton-per-second regimes coupled with subnanosecond timing accuracy. Current single-photon detectors that are capable of handling such operating conditions are designed in an array format and produce output pulses that span multiple sample times. In order to discern one pulse from another and not to overcount the number of incoming photons, a detection algorithm must be applied to the sampled detector output pulses. As flux rates increase, the ability to implement such a detection algorithm becomes difficult within a digital processor that may reside within a field-programmable gate array (FPGA). Systems have been developed and implemented to both characterize gigahertz bandwidth single-photon detectors, as well as process photon count signals at rates into gigaphotons per second in order to implement communications links at SCPPM (serial concatenated pulse position modulation) encoded data rates exceeding 100 megabits per second with efficiencies greater than two bits per detected photon. A hardware edge-detection algorithm and corresponding signal combining and deserialization hardware were developed to meet these requirements at sample rates up to 10 GHz. The photon discriminator deserializer hardware board accepts four inputs, which allows for the ability to take inputs from a quadphoton counting detector, to support requirements for optical tracking with a reduced number of hardware components. The four inputs are hardware leading-edge detected independently. After leading-edge detection, the resultant samples are ORed together prior to deserialization. The deserialization is performed to reduce the rate at which data is passed to a digital signal processor, perhaps residing within an FPGA. The hardware implements four separate analog inputs that are connected through RF connectors. Each analog input is fed to a high-speed 1

  18. Dynamic time-correlated single-photon counting laser ranging

    NASA Astrophysics Data System (ADS)

    Peng, Huan; Wang, Yu-rong; Meng, Wen-dong; Yan, Pei-qin; Li, Zhao-hui; Li, Chen; Pan, Hai-feng; Wu, Guang

    2018-03-01

    We demonstrate a photon counting laser ranging experiment with a four-channel single-photon detector (SPD). The multi-channel SPD improve the counting rate more than 4×107 cps, which makes possible for the distance measurement performed even in daylight. However, the time-correlated single-photon counting (TCSPC) technique cannot distill the signal easily while the fast moving targets are submersed in the strong background. We propose a dynamic TCSPC method for fast moving targets measurement by varying coincidence window in real time. In the experiment, we prove that targets with velocity of 5 km/s can be detected according to the method, while the echo rate is 20% with the background counts of more than 1.2×107 cps.

  19. The development and test of multi-anode microchannel array detector systems. Part 2: Soft X-ray detectors

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1986-01-01

    Detector systems based on the high gain microchannel plate (MCP) electron multiplier were used extensively for imaging at soft X-ray wavelengths both on the ground and in space. The latest pulse counting electronic readout systems provide zero readout noise, spatial resolutions (FWHM) of 25 microns or better and can determine the arrival times of detected photons to an accuracy of the order of 100 ns. These systems can be developed to produce detectors with active areas of 100 nm in diameter or greater. The use of CsI photocathodes produces very high detective quantum efficiencies at wavelengths between about 100 and 1A (approximately 0.1 to 10 keV) with moderate energy resolution. The operating characteristics of the different types of soft X-ray MCP detector systems are described and the prospects for future developments are discussed.

  20. Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.

    2009-01-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  1. A THUMBNAIL HISTORY OF HETEROTROPHIC PLATE COUNT (HPC) METHODOLOGY IN THE UNITED STATES

    EPA Science Inventory

    Over the past 100 years, the method of determining the number of bacteria in water, foods or other materials has been termed variously as: bacterial plate count, total plate count, total viable plate count, aerobic plate count, standard plate cound and more recently, heterotrophi...

  2. Development of a Photon Counting System for Differential Lidar Signal Detection

    NASA Technical Reports Server (NTRS)

    Elsayed-Ali, Hani

    1997-01-01

    Photon counting has been chosen as a means to extend the detection range of current airborne DIAL ozone measurements. Lidar backscattered return signals from the on and off-line lasers experience a significant exponential decay. To extract further data from the decaying ozone return signals, photon counting will be used to measure the low light levels, thus extending the detection range. In this application, photon counting will extend signal measurement where the analog return signal is too weak. The current analog measurement range is limited to approximately 25 kilometers from an aircraft flying at 12 kilometers. Photon counting will be able to exceed the current measurement range so as to follow the mid-latitude model of ozone density as a function of height. This report describes the development of a photon counting system. The initial development phase begins with detailed evaluation of individual photomultiplier tubes. The PMT qualities investigated are noise count rates, single electron response peaks, voltage versus gain values, saturation effects, and output signal linearity. These evaluations are followed by analysis of two distinctive tube base gating schemes. The next phase is to construct and operate a photon counting system in a laboratory environment. The laboratory counting simulations are used to determine optimum discriminator setpoints and to continue further evaluations of PMT properties. The final step in the photon counting system evaluation process is the compiling of photon counting measurements on the existing ozone DIAL laser system.

  3. Three-dimensional passive sensing photon counting for object classification

    NASA Astrophysics Data System (ADS)

    Yeom, Seokwon; Javidi, Bahram; Watson, Edward

    2007-04-01

    In this keynote address, we address three-dimensional (3D) distortion-tolerant object recognition using photon-counting integral imaging (II). A photon-counting linear discriminant analysis (LDA) is discussed for classification of photon-limited images. We develop a compact distortion-tolerant recognition system based on the multiple-perspective imaging of II. Experimental and simulation results have shown that a low level of photons is sufficient to classify out-of-plane rotated objects.

  4. Characteristics of square pore and low noise microchannel plate stacks. [for x-ray astronomy

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald H. W.; Marsh, Daniel; Stock, Joseph; Gaines, Geoffrey

    1992-01-01

    An evaluation is conducted of several square-pore microchannel plates (MCPs) with either 25- or 85-micron diameter pores and 80:1 or 50:1 channel length/diameter ratio. Flat field measurements show that the 25-micron-pored MCPs, unlike those with 85-micron pores, exhibit periodic modulation; this may be due to the MCP stacking configurations. Attention is given to the relative quantum detection efficiency advantages of the two MCPs.

  5. Low photon-count tip-tilt sensor

    NASA Astrophysics Data System (ADS)

    Saathof, Rudolf; Schitter, Georg

    2016-07-01

    Due to the low photon-count of dark areas of the universe, signal strength of tip-tilt sensor is low, limiting sky-coverage of reliable tip-tilt measurements. This paper presents the low photon-count tip-tilt (LPC-TT) sensor, which potentially achieves improved signal strength. Its optical design spatially samples and integrates the scene. This increases the probability that several individual sources coincide on a detector segment. Laboratory experiments show feasibility of spatial sampling and integration and the ability to measure tilt angles. By simulation an improvement of the SNR of 10 dB compared to conventional tip-tilt sensors is shown.

  6. Droplet-based magnetic bead immunoassay using microchannel-connected multiwell plates (μCHAMPs) for the detection of amyloid beta oligomers.

    PubMed

    Park, Min Cheol; Kim, Moojong; Lim, Gun Taek; Kang, Sung Min; An, Seong Soo A; Kim, Tae Song; Kang, Ji Yoon

    2016-06-21

    Multiwell plates are regularly used in analytical research and clinical diagnosis but often require laborious washing steps and large sample or reagent volumes (typically, 100 μL per well). To overcome such drawbacks in the conventional multiwell plate, we present a novel microchannel-connected multiwell plate (μCHAMP) that can be used for automated disease biomarker detection in a small sample volume by performing droplet-based magnetic bead immunoassay inside the plate. In this μCHAMP-based immunoassay platform, small volumes (30-50 μL) of aqueous-phase working droplets are stably confined within each well by the simple microchannel structure (200-300 μm in height and 0.5-1 mm in width), and magnetic beads are exclusively transported into an adjacent droplet through the oil-filled microchannels assisted by a magnet array aligned beneath and controlled by a XY-motorized stage. Using this μCHAMP-based platform, we were able to perform parallel detection of synthetic amyloid beta (Aβ) oligomers as a model analyte for the early diagnosis of Alzheimer's disease (AD). This platform easily simplified the laborious and consumptive immunoassay procedure by achieving automated parallel immunoassay (32 assays per operation in 3-well connected 96-well plate) within 1 hour and at low sample consumption (less than 10 μL per assay) with no cumbersome manual washing step. Moreover, it could detect synthetic Aβ oligomers even below 10 pg mL(-1) concentration with a calculated detection limit of ∼3 pg mL(-1). Therefore, the μCHAMP and droplet-based magnetic bead immunoassay, with the combination of XY-motorized magnet array, would be a useful platform in the diagnosis of human disease, including AD, which requires low consumption of the patient's body fluid sample and automation of the entire immunoassay procedure for high processing capacity.

  7. Atomic layer deposition of alternative glass microchannel plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Mahony, Aileen, E-mail: aom@incomusa.com; Craven, Christopher A.; Minot, Michael J.

    The technique of atomic layer deposition (ALD) has enabled the development of alternative glass microchannel plates (MCPs) with independently tunable resistive and emissive layers, resulting in excellent thickness uniformity across the large area (20 × 20 cm), high aspect ratio (60:1 L/d) glass substrates. Furthermore, the use of ALD to deposit functional layers allows the optimal substrate material to be selected, such as borosilicate glass, which has many benefits compared to the lead-oxide glass used in conventional MCPs, including increased stability and lifetime, low background noise, mechanical robustness, and larger area (at present up to 400 cm{sup 2}). Resistively stable, high gain MCPs are demonstratedmore » due to the deposition of uniform ALD resistive and emissive layers on alternative glass microcapillary substrates. The MCP performance characteristics reported include increased stability and lifetime, low background noise (0.04 events cm{sup −2} s{sup −1}), and low gain variation (±5%)« less

  8. Pulse pileup statistics for energy discriminating photon counting x-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Adam S.; Harrison, Daniel; Lobastov, Vladimir

    Purpose: Energy discriminating photon counting x-ray detectors can be subject to a wide range of flux rates if applied in clinical settings. Even when the incident rate is a small fraction of the detector's maximum periodic rate N{sub 0}, pulse pileup leads to count rate losses and spectral distortion. Although the deterministic effects can be corrected, the detrimental effect of pileup on image noise is not well understood and may limit the performance of photon counting systems. Therefore, the authors devise a method to determine the detector count statistics and imaging performance. Methods: The detector count statistics are derived analyticallymore » for an idealized pileup model with delta pulses of a nonparalyzable detector. These statistics are then used to compute the performance (e.g., contrast-to-noise ratio) for both single material and material decomposition contrast detection tasks via the Cramer-Rao lower bound (CRLB) as a function of the detector input count rate. With more realistic unipolar and bipolar pulse pileup models of a nonparalyzable detector, the imaging task performance is determined by Monte Carlo simulations and also approximated by a multinomial method based solely on the mean detected output spectrum. Photon counting performance at different count rates is compared with ideal energy integration, which is unaffected by count rate. Results: The authors found that an ideal photon counting detector with perfect energy resolution outperforms energy integration for our contrast detection tasks, but when the input count rate exceeds 20%N{sub 0}, many of these benefits disappear. The benefit with iodine contrast falls rapidly with increased count rate while water contrast is not as sensitive to count rates. The performance with a delta pulse model is overoptimistic when compared to the more realistic bipolar pulse model. The multinomial approximation predicts imaging performance very close to the prediction from Monte Carlo simulations. The

  9. Mcps-range photon-counting x-ray computed tomography system

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Oda, Yasuyuki; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Enomoto, Toshiyuki; Sugimura, Shigeaki; Endo, Haruyuki; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-10-01

    10 Mcps photon counting was carried out using a detector consisting of a 2.0 mm-thick ZnO (zinc oxide) single-crystal scintillator and an MPPC (multipixel photon counter) module in an X-ray computed tomography (CT) system. The maximum count rate was 10 Mcps (mega counts per second) at a tube voltage of 70 kV and a tube current of 2.0 mA. Next, a photon-counting X-ray CT system consists of an X-ray generator, a turntable, a scan stage, a two-stage controller, the ZnO-MPPC detector, a counter card (CC), and a personal computer (PC). Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan with a scan velocity of 25 mm/s. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The exposure time for obtaining a tomogram was 600 s at a scan step of 0.5 mm and a rotation step of 1.0°, and photon-counting CT was accomplished using iodine-based contrast media.

  10. Airborne UV photon-counting radiometer

    NASA Astrophysics Data System (ADS)

    Bauer, Marc C.; Wilcher, George; Banks, Calvin R.; Wood, Ronald L.

    2000-11-01

    The radiometric measurements group at the Arnold Engineering Development Center (AEDC) has developed new solar-blind radiometers for the SENSOR TALON flight test. These radiometers will be flown in an instrument pod by the 46th Test Wing at Eglin AFB. The radiometers are required to fit into a single quadrant of a 22-in.-diam sphere turret of the instrument pod. Because of minimal space requirements and photon-counting sensitivity needs, the radiometric measurements group used image intensifiers instead of the standard photomultiplier tubes (PMTs). The new design concept improved the photon-counting sensitivity, dynamic range, and uniformity of the field of view as compared to standard PMTs. A custom data acquisition system was required to miniaturize the electronics and generate a pulse code-modulated (PCM) data stream to the standard tape recording system.

  11. Mcps-range photon-counting X-ray computed tomography system utilizing an oscillating linear-YAP(Ce) photon detector

    NASA Astrophysics Data System (ADS)

    Oda, Yasuyuki; Sato, Eiichi; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Osawa, Akihiro; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sugimura, Shigeaki; Endo, Haruyuki; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-07-01

    High-speed X-ray photon counting is useful for discriminating photon energy, and the counting can be used for constructing an X-ray computed tomography (CT) system. A photon-counting X-ray CT system consists of an X-ray generator, a turntable, an oscillation linear detector, a two-stage controller, a multipixel photon counter (MPPC) module, a 1.0 mm-thick crystal (scintillator) of YAP(Ce) (cerium-doped yttrium aluminum perovskite), a counter card (CC), and a personal computer (PC). Tomography is accomplished by repeating the linear scanning and the rotation of an object, and projection curves of the object are obtained by the linear scanning using the detector consisting of an MPPC module, the YAP(Ce), and a scan stage. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. Because the lower level of the photon energy was roughly determined by a comparator in the module, the average photon energy of the X-ray spectra increased with increase in the lower-level voltage of the comparator at a constant tube voltage. The maximum count rate was approximately 3 Mcps (mega counts per second), and photon-counting CT was carried out.

  12. Experimental Setup and Commissioning of a Test Facility for Gain Evaluation of Microchannel-Plate Photomultipliers in High Magnetic Field at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Bringley, Eric; Cao, Tongtong; Ilieva, Yordonka; Nadel-Turonski, Pawel; Park, Kijun; Zorn, Carl

    2014-09-01

    At the Thomas Jefferson National Accelerator Facility (JLab) a research and development project for a Detector of Internally-Reflected Cherenkov light for the upcoming Electron Ion Collider is underway. One goal is the development of a compact readout camera that can operate in high magnetic fields. Small-size photon sensors, such as Microchannel-Plate Photomultipliers (MCP-PMT), are key components of the readout. Here we present our work to set up and commission a dedicated test facility at JLab where MCP-PMT gain is evaluated in magnetic fields of up to 5 T, and to develop a test procedure and analysis software to determine the gain. We operate the setup in a single-photon mode, where a light-emitting diode delivers photons to the sensor's photocathode. The PMT spectrum is measured with a flash Analog-to-Digital converter (fADC). We model the spectrum as a sum of an exponential background and a convolution of Poisson and Gaussian distributions of the pedestal and multiple photoelectron peaks, respectively. We determine the PMT's gain from the position of the single-photoelectron peak obtained by fitting the fADC spectrum to the model. Our gain uncertainty is <10%. The facility is now established and will have a long-lasting value for sensor tests and beyond-nuclear-physics applications.

  13. Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shcheslavskiy, V., E-mail: vis@becker-hickl.de; Becker, W.; Morozov, P.

    Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ∼15% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels withmore » counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board.« less

  14. Extreme ultraviolet quantum efficiency of opaque alkali halide photocathodes on microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Everman, E.; Vallerga, J. V.; Lampton, M.

    1988-01-01

    Comprehensive measurements are presented for the quantum detection efficiency (QDE) of the microchannel plate materials CsI, KBr, KCl, and MgF2, over the 44-1800 A wavelength range. QDEs in excess of 40 percent are achieved by several materials in specific wavelength regions of the EUV. Structure is noted in the wavelength dependence of the QDE that is directly related to the valence-band/conduction-band gap energy and the onset of atomic-like resonant transitions. A simple photocathode model allows interpretation of these features, together with the QDE efficiency variation, as a function of illumination angle.

  15. Dark-count-less photon-counting x-ray computed tomography system using a YAP-MPPC detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Sato, Yuich; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2012-10-01

    A high-sensitive X-ray computed tomography (CT) system is useful for decreasing absorbed dose for patients, and a dark-count-less photon-counting CT system was developed. X-ray photons are detected using a YAP(Ce) [cerium-doped yttrium aluminum perovskite] single crystal scintillator and an MPPC (multipixel photon counter). Photocurrents are amplified by a high-speed current-voltage amplifier, and smooth event pulses from an integrator are sent to a high-speed comparator. Then, logical pulses are produced from the comparator and are counted by a counter card. Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The image contrast of gadolinium medium slightly fell with increase in lower-level voltage (Vl) of the comparator. The dark count rate was 0 cps, and the count rate for the CT was approximately 250 kcps.

  16. High spatial resolution detection of low-energy electrons using an event-counting method, application to point projection microscopy

    NASA Astrophysics Data System (ADS)

    Salançon, Evelyne; Degiovanni, Alain; Lapena, Laurent; Morin, Roger

    2018-04-01

    An event-counting method using a two-microchannel plate stack in a low-energy electron point projection microscope is implemented. 15 μm detector spatial resolution, i.e., the distance between first-neighbor microchannels, is demonstrated. This leads to a 7 times better microscope resolution. Compared to previous work with neutrons [Tremsin et al., Nucl. Instrum. Methods Phys. Res., Sect. A 592, 374 (2008)], the large number of detection events achieved with electrons shows that the local response of the detector is mainly governed by the angle between the hexagonal structures of the two microchannel plates. Using this method in point projection microscopy offers the prospect of working with a greater source-object distance (350 nm instead of 50 nm), advancing toward atomic resolution.

  17. Single-photon counting multicolor multiphoton fluorescence microscope.

    PubMed

    Buehler, Christof; Kim, Ki H; Greuter, Urs; Schlumpf, Nick; So, Peter T C

    2005-01-01

    We present a multicolor multiphoton fluorescence microscope with single-photon counting sensitivity. The system integrates a standard multiphoton fluorescence microscope, an optical grating spectrograph operating in the UV-Vis wavelength region, and a 16-anode photomultiplier tube (PMT). The major technical innovation is in the development of a multichannel photon counting card (mC-PhCC) for direct signal collection from multi-anode PMTs. The electronic design of the mC-PhCC employs a high-throughput, fully-parallel, single-photon counting scheme along with a high-speed electrical or fiber-optical link interface to the data acquisition computer. There is no electronic crosstalk among the detection channels of the mC-PhCC. The collected signal remains linear up to an incident photon rate of 10(8) counts per second. The high-speed data interface offers ample bandwidth for real-time readout: 2 MByte lambda-stacks composed of 16 spectral channels, 256 x 256 pixel image with 12-bit dynamic range can be transferred at 30 frames per second. The modular design of the mC-PhCC can be readily extended to accommodate PMTs of more anodes. Data acquisition from a 64-anode PMT has been verified. As a demonstration of system performance, spectrally resolved images of fluorescent latex spheres and ex-vivo human skin are reported. The multicolor multiphoton microscope is suitable for highly sensitive, real-time, spectrally-resolved three-dimensional imaging in biomedical applications.

  18. Optimization of the performance of a tandem microchannel plate detector as a function of interplate spacing and voltage

    NASA Technical Reports Server (NTRS)

    Rogers, D.; Malina, R. F.

    1982-01-01

    The effect of varying the size of the gap voltage and spacing on the performance of a tandem pair of microchannel plates (MCP) is investigated. Results show that increasing the voltage in the gap increases the gain of the pair and also produces a narrower Gaussian pulse-height distribution, although beyond a critical voltage the gain of the channel plate pair is found to plateau. A model is developed which explains the nonlinear gain behavior of individual microchannels and the behavior of the electron cloud emitted from the first MCP as it spreads out between the two MCPs and hits the surface of the second. The model calculates the plateau voltage as a function of the gap size, the gain of each MCP, and the diameter of the channels, and is found to show good agreement with the observed results. It is concluded that interplate gaps of up to several millimeters can be accommodated without a significant degradation in pulse-height distribution.

  19. Novel Photon-Counting Detectors for Free-Space Communication

    NASA Technical Reports Server (NTRS)

    Krainak, M. A.; Yang, G.; Sun, X.; Lu, W.; Merritt, S.; Beck, J.

    2016-01-01

    We present performance data for novel photon-counting detectors for free space optical communication. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We present and compare dark count, photon-detection efficiency, wavelength response and communication performance data for these detectors. We successfully measured real-time communication performance using both the 2 detected-photon threshold and AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects. The HgCdTe APD array routinely demonstrated photon detection efficiencies of greater than 50% across 5 arrays, with one array reaching a maximum PDE of 70%. We performed high-resolution pixel-surface spot scans and measured the junction diameters of its diodes. We found that decreasing the junction diameter from 31 micrometers to 25 micrometers doubled the e- APD gain from 470 for an array produced in the year 2010 to a gain of 1100 on an array delivered to NASA GSFC recently. The mean single-photon SNR was over 12 and the excess noise factors measurements were 1.2-1.3. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output.

  20. Investigation of large format microchannel plate Z configurations

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Coburn, K.; Malina, R. F.

    1985-01-01

    The performance of triplet (Z) stacks of microchannel plates (MCPs) has been studied as a part of the instrument development for the Extreme Ultraviolet Explorer (EUVE) satellite mission. Relatively large MCPs with a 60-mm diameter and having a large 80:1 channel length to diameter (L:D) ratio were used in several configurations. The MCPs were used in the EUVE prototype imaging detector to provide more than 512 x 512 pixels with low image distortion (less than 1 percent). The gain and pulse height characteristics of the MCPs were examined, showing that both high gains (more than 2 x 10 to the 7th) and tight output pulse height distributions (less than 30 percent FWHM) may be achieved. Simple distribution techniques have also allowed low intrinsic background event rates (less than 0.15 events per sq cm/s) to be obtained. Variation of the quantum efficiency of the MCPs over the wavelength range 160-1216 A has been investigated for a range of angles of incidence. The effect of temperature variations on MCP operating characteristics has also been evaluated.

  1. OPTOELECTRONICS, FIBER OPTICS, AND OTHER ASPECTS OF QUANTUM ELECTRONICS: Time analyzing image converter with a microchannel plate at the input

    NASA Astrophysics Data System (ADS)

    Dashevskiĭ, B. E.; Podvyaznikov, V. A.; Prokhorov, A. M.; Chevokin, V. K.

    1989-08-01

    An image converter with interchangeable photocathodes was used in tests on a microchannel plate employed as a photoemitter. The image converter was operated in the linear slit-scanning regime. This image converter was found to be a promising tool for laser plasma diagnostics.

  2. Evaluation of Petrifilm Lactic Acid Bacteria Plates for Counting Lactic Acid Bacteria in Food.

    PubMed

    Kanagawa, Satomi; Ohshima, Chihiro; Takahashi, Hajime; Burenqiqige; Kikuchi, Misato; Sato, Fumina; Nakamura, Ayaka; Mohamed, Shimaa M; Kuda, Takashi; Kimura, Bon

    2018-06-01

    Although lactic acid bacteria (LAB) are used widely as starter cultures in the production of fermented foods, they are also responsible for food decay and deterioration. The undesirable growth of LAB in food causes spoilage, discoloration, and slime formation. Because of these adverse effects, food companies test for the presence of LAB in production areas and processed foods and consistently monitor the behavior of these bacteria. The 3M Petrifilm LAB Count Plates have recently been launched as a time-saving and simple-to-use plate designed for detecting and quantifying LAB. This study compares the abilities of Petrifilm LAB Count Plates and the de Man Rogosa Sharpe (MRS) agar medium to determine the LAB count in a variety of foods and swab samples collected from a food production area. Bacterial strains isolated from Petrifilm LAB Count Plates were identified by 16S rDNA sequence analysis to confirm the specificity of these plates for LAB. The results showed no significant difference in bacterial counts measured by using Petrifilm LAB Count Plates and MRS medium. Furthermore, all colonies growing on Petrifilm LAB Count Plates were confirmed to be LAB, while yeast colonies also formed in MRS medium. Petrifilm LAB Count Plates eliminated the plate preparation and plate inoculation steps, and the cultures could be started as soon as a diluted food sample was available. Food companies are required to establish quality controls and perform tests to check the quality of food products; the use of Petrifilm LAB Count Plates can simplify this testing process for food companies.

  3. HETEROTROPHIC PLATE COUNT BACTERIA - WHAT IS THEIR SIGNIFICANCE IN DRINKING WATER?

    EPA Science Inventory

    The possible health significance of heterotrophic plate count (HPC) bacteria, also know in earlier terminology as standard plate count (SPC) bacteria, in drinking water has been debated for decades. While the literature documents the universal occurrence of HPC bacteria in soil, ...

  4. Photon counting, censor corrections, and lifetime imaging for improved detection in two-photon microscopy

    PubMed Central

    Driscoll, Jonathan D.; Shih, Andy Y.; Iyengar, Satish; Field, Jeffrey J.; White, G. Allen; Squier, Jeffrey A.; Cauwenberghs, Gert

    2011-01-01

    We present a high-speed photon counter for use with two-photon microscopy. Counting pulses of photocurrent, as opposed to analog integration, maximizes the signal-to-noise ratio so long as the uncertainty in the count does not exceed the gain-noise of the photodetector. Our system extends this improvement through an estimate of the count that corrects for the censored period after detection of an emission event. The same system can be rapidly reconfigured in software for fluorescence lifetime imaging, which we illustrate by distinguishing between two spectrally similar fluorophores in an in vivo model of microstroke. PMID:21471395

  5. Photon-counting intensified random-access charge injection device

    NASA Astrophysics Data System (ADS)

    Norton, Timothy J.; Morrissey, Patrick F.; Haas, Patrick; Payne, Leslie J.; Carbone, Joseph; Kimble, Randy A.

    1999-11-01

    At NASA GSFC we are developing a high resolution solar-blind photon counting detector system for UV space based astronomy. The detector comprises a high gain MCP intensifier fiber- optically coupled to a charge injection device (CID). The detector system utilizes an FPGA based centroiding system to locate the center of photon events from the intensifier to high accuracy. The photon event addresses are passed via a PCI interface with a GPS derived time stamp inserted per frame to an integrating memory. Here we present imaging performance data which show resolution of MCP tube pore structure at an MCP pore diameter of 8 micrometer. This data validates the ICID concept for intensified photon counting readout. We also discuss correction techniques used in the removal of fixed pattern noise effects inherent in the centroiding algorithms used and present data which shows the local dynamic range of the device. Progress towards development of a true random access CID (RACID 810) is also discussed and astronomical data taken with the ICID detector system demonstrating the photon event time-tagging mode of the system is also presented.

  6. Information theoretic approach for assessing image fidelity in photon-counting arrays.

    PubMed

    Narravula, Srikanth R; Hayat, Majeed M; Javidi, Bahram

    2010-02-01

    The method of photon-counting integral imaging has been introduced recently for three-dimensional object sensing, visualization, recognition and classification of scenes under photon-starved conditions. This paper presents an information-theoretic model for the photon-counting imaging (PCI) method, thereby providing a rigorous foundation for the merits of PCI in terms of image fidelity. This, in turn, can facilitate our understanding of the demonstrated success of photon-counting integral imaging in compressive imaging and classification. The mutual information between the source and photon-counted images is derived in a Markov random field setting and normalized by the source-image's entropy, yielding a fidelity metric that is between zero and unity, which respectively corresponds to complete loss of information and full preservation of information. Calculations suggest that the PCI fidelity metric increases with spatial correlation in source image, from which we infer that the PCI method is particularly effective for source images with high spatial correlation; the metric also increases with the reduction in photon-number uncertainty. As an application to the theory, an image-classification problem is considered showing a congruous relationship between the fidelity metric and classifier's performance.

  7. Novel Photon-Counting Detectors for Free-Space Communication

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff

    2016-01-01

    We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.

  8. Fully integrated sub 100ps photon counting platform

    NASA Astrophysics Data System (ADS)

    Buckley, S. J.; Bellis, S. J.; Rosinger, P.; Jackson, J. C.

    2007-02-01

    Current state of the art high resolution counting modules, specifically designed for high timing resolution applications, are largely based on a computer card format. This has tended to result in a costly solution that is restricted to the computer it resides in. We describe a four channel timing module that interfaces to a computer via a USB port and operates with a resolution of less than 100 picoseconds. The core design of the system is an advanced field programmable gate array (FPGA) interfacing to a precision time interval measurement module, mass memory block and a high speed USB 2.0 serial data port. The FPGA design allows the module to operate in a number of modes allowing both continuous recording of photon events (time-tagging) and repetitive time binning. In time-tag mode the system reports, for each photon event, the high resolution time along with the chronological time (macro time) and the channel ID. The time-tags are uploaded in real time to a host computer via a high speed USB port allowing continuous storage to computer memory of up to 4 millions photons per second. In time-bin mode, binning is carried out with count rates up to 10 million photons per second. Each curve resides in a block of 128,000 time-bins each with a resolution programmable down to less than 100 picoseconds. Each bin has a limit of 65535 hits allowing autonomous curve recording until a bin reaches the maximum count or the system is commanded to halt. Due to the large memory storage, several curves/experiments can be stored in the system prior to uploading to the host computer for analysis. This makes this module ideal for integration into high timing resolution specific applications such as laser ranging and fluorescence lifetime imaging using techniques such as time correlated single photon counting (TCSPC).

  9. Single photon detection imaging of Cherenkov light emitted during radiation therapy

    NASA Astrophysics Data System (ADS)

    Adamson, Philip M.; Andreozzi, Jacqueline M.; LaRochelle, Ethan; Gladstone, David J.; Pogue, Brian W.

    2018-03-01

    Cherenkov imaging during radiation therapy has been developed as a tool for dosimetry, which could have applications in patient delivery verification or in regular quality audit. The cameras used are intensified imaging sensors, either ICCD or ICMOS cameras, which allow important features of imaging, including: (1) nanosecond time gating, (2) amplification by 103-104, which together allow for imaging which has (1) real time capture at 10-30 frames per second, (2) sensitivity at the level of single photon event level, and (3) ability to suppress background light from the ambient room. However, the capability to achieve single photon imaging has not been fully analyzed to date, and as such was the focus of this study. The ability to quantitatively characterize how a single photon event appears in amplified camera imaging from the Cherenkov images was analyzed with image processing. The signal seen at normal gain levels appears to be a blur of about 90 counts in the CCD detector, after going through the chain of photocathode detection, amplification through a microchannel plate PMT, excitation onto a phosphor screen and then imaged on the CCD. The analysis of single photon events requires careful interpretation of the fixed pattern noise, statistical quantum noise distributions, and the spatial spread of each pulse through the ICCD.

  10. Single electron counting using a dual MCP assembly

    NASA Astrophysics Data System (ADS)

    Yang, Yuzhen; Liu, Shulin; Zhao, Tianchi; Yan, Baojun; Wang, Peiliang; Yu, Yang; Lei, Xiangcui; Yang, Luping; Wen, Kaile; Qi, Ming; Heng, Yuekun

    2016-09-01

    The gain, pulse height resolution and peak-to-valley ratio of single electrons detected by using a Chevron configured Microchannel Plate (MCP) assembly are studied. The two MCPs are separated by a 280 μm gap and are biased by four electrodes. The purpose of the study is to determine the optimum bias voltage arrangements for single electron counting. By comparing the results of various bias voltage combinations, we conclude that good performance for the electron counting can be achieved by operating the MCP assembly in saturation mode. In addition, by applying a small reverse bias voltage across the gap while adjusting the bias voltages of the MCPs, optimum performance of electron counting can be obtained.

  11. HgCdTe APD-based linear-mode photon counting components and ladar receivers

    NASA Astrophysics Data System (ADS)

    Jack, Michael; Wehner, Justin; Edwards, John; Chapman, George; Hall, Donald N. B.; Jacobson, Shane M.

    2011-05-01

    Linear mode photon counting (LMPC) provides significant advantages in comparison with Geiger Mode (GM) Photon Counting including absence of after-pulsing, nanosecond pulse to pulse temporal resolution and robust operation in the present of high density obscurants or variable reflectivity objects. For this reason Raytheon has developed and previously reported on unique linear mode photon counting components and modules based on combining advanced APDs and advanced high gain circuits. By using HgCdTe APDs we enable Poisson number preserving photon counting. A metric of photon counting technology is dark count rate and detection probability. In this paper we report on a performance breakthrough resulting from improvement in design, process and readout operation enabling >10x reduction in dark counts rate to ~10,000 cps and >104x reduction in surface dark current enabling long 10 ms integration times. Our analysis of key dark current contributors suggest that substantial further reduction in DCR to ~ 1/sec or less can be achieved by optimizing wavelength, operating voltage and temperature.

  12. Single photon counting linear mode avalanche photodiode technologies

    NASA Astrophysics Data System (ADS)

    Williams, George M.; Huntington, Andrew S.

    2011-10-01

    The false count rate of a single-photon-sensitive photoreceiver consisting of a high-gain, low-excess-noise linear-mode InGaAs avalanche photodiode (APD) and a high-bandwidth transimpedance amplifier (TIA) is fit to a statistical model. The peak height distribution of the APD's multiplied dark current is approximated by the weighted sum of McIntyre distributions, each characterizing dark current generated at a different location within the APD's junction. The peak height distribution approximated in this way is convolved with a Gaussian distribution representing the input-referred noise of the TIA to generate the statistical distribution of the uncorrelated sum. The cumulative distribution function (CDF) representing count probability as a function of detection threshold is computed, and the CDF model fit to empirical false count data. It is found that only k=0 McIntyre distributions fit the empirically measured CDF at high detection threshold, and that false count rate drops faster than photon count rate as detection threshold is raised. Once fit to empirical false count data, the model predicts the improvement of the false count rate to be expected from reductions in TIA noise and APD dark current. Improvement by at least three orders of magnitude is thought feasible with further manufacturing development and a capacitive-feedback TIA (CTIA).

  13. Musculoskeletal imaging with a prototype photon-counting detector.

    PubMed

    Gruber, M; Homolka, P; Chmeissani, M; Uffmann, M; Pretterklieber, M; Kainberger, F

    2012-01-01

    To test a digital imaging X-ray device based on the direct capture of X-ray photons with pixel detectors, which are coupled with photon-counting readout electronics. The chip consists of a matrix of 256 × 256 pixels with a pixel pitch of 55 μm. A monolithic image of 11.2 cm × 7 cm was obtained by the consecutive displacement approach. Images of embalmed anatomical specimens of eight human hands were obtained at four different dose levels (skin dose 2.4, 6, 12, 25 μGy) with the new detector, as well as with a flat-panel detector. The overall rating scores for the evaluated anatomical regions ranged from 5.23 at the lowest dose level, 6.32 at approximately 6 μGy, 6.70 at 12 μGy, to 6.99 at the highest dose level with the photon-counting system. The corresponding rating scores for the flat-panel detector were 3.84, 5.39, 6.64, and 7.34. When images obtained at the same dose were compared, the new system outperformed the conventional DR system at the two lowest dose levels. At the higher dose levels, there were no significant differences between the two systems. The photon-counting detector has great potential to obtain musculoskeletal images of excellent quality at very low dose levels.

  14. Reduction of CMOS Image Sensor Read Noise to Enable Photon Counting.

    PubMed

    Guidash, Michael; Ma, Jiaju; Vogelsang, Thomas; Endsley, Jay

    2016-04-09

    Recent activity in photon counting CMOS image sensors (CIS) has been directed to reduction of read noise. Many approaches and methods have been reported. This work is focused on providing sub 1 e(-) read noise by design and operation of the binary and small signal readout of photon counting CIS. Compensation of transfer gate feed-through was used to provide substantially reduced CDS time and source follower (SF) bandwidth. SF read noise was reduced by a factor of 3 with this method. This method can be applied broadly to CIS devices to reduce the read noise for small signals to enable use as a photon counting sensor.

  15. Reduction of CMOS Image Sensor Read Noise to Enable Photon Counting

    PubMed Central

    Guidash, Michael; Ma, Jiaju; Vogelsang, Thomas; Endsley, Jay

    2016-01-01

    Recent activity in photon counting CMOS image sensors (CIS) has been directed to reduction of read noise. Many approaches and methods have been reported. This work is focused on providing sub 1 e− read noise by design and operation of the binary and small signal readout of photon counting CIS. Compensation of transfer gate feed-through was used to provide substantially reduced CDS time and source follower (SF) bandwidth. SF read noise was reduced by a factor of 3 with this method. This method can be applied broadly to CIS devices to reduce the read noise for small signals to enable use as a photon counting sensor. PMID:27070625

  16. HETEROTROPHIC PLATE COUNT (HPC) METHODOLOGY IN THE UNITED STATES

    EPA Science Inventory

    ABSTRACT

    In the United States (U.S.), the history of bacterial plate counting methods used for water can be traced largely through Standard Methods for the Examination of Water and Wastewater (Standard Methods). The bacterial count method has evolved from the original St...

  17. 32-channel single photon counting module for ultrasensitive detection of DNA sequences

    NASA Astrophysics Data System (ADS)

    Gudkov, Georgiy; Dhulla, Vinit; Borodin, Anatoly; Gavrilov, Dmitri; Stepukhovich, Andrey; Tsupryk, Andrey; Gorbovitski, Boris; Gorfinkel, Vera

    2006-10-01

    We continue our work on the design and implementation of multi-channel single photon detection systems for highly sensitive detection of ultra-weak fluorescence signals, for high-performance, multi-lane DNA sequencing instruments. A fiberized, 32-channel single photon detection (SPD) module based on single photon avalanche diode (SPAD), model C30902S-DTC, from Perkin Elmer Optoelectronics (PKI) has been designed and implemented. Unavailability of high performance, large area SPAD arrays and our desire to design high performance photon counting systems drives us to use individual diodes. Slight modifications in our quenching circuit has doubled the linear range of our system from 1MHz to 2MHz, which is the upper limit for these devices and the maximum saturation count rate has increased to 14 MHz. The detector module comprises of a single board computer PC-104 that enables data visualization, recording, processing, and transfer. Very low dark count (300-1000 counts/s), robust, efficient, simple data collection and processing, ease of connectivity to any other application demanding similar requirements and similar performance results to the best commercially available single photon counting module (SPCM from PKI) are some of the features of this system.

  18. High accuracy position response calibration method for a micro-channel plate ion detector

    NASA Astrophysics Data System (ADS)

    Hong, R.; Leredde, A.; Bagdasarova, Y.; Fléchard, X.; García, A.; Müller, P.; Knecht, A.; Liénard, E.; Kossin, M.; Sternberg, M. G.; Swanson, H. E.; Zumwalt, D. W.

    2016-11-01

    We have developed a position response calibration method for a micro-channel plate (MCP) detector with a delay-line anode position readout scheme. Using an in situ calibration mask, an accuracy of 8 μm and a resolution of 85 μm (FWHM) have been achieved for MeV-scale α particles and ions with energies of ∼10 keV. At this level of accuracy, the difference between the MCP position responses to high-energy α particles and low-energy ions is significant. The improved performance of the MCP detector can find applications in many fields of AMO and nuclear physics. In our case, it helps reducing systematic uncertainties in a high-precision nuclear β-decay experiment.

  19. Characterization of a hybrid energy-resolving photon-counting detector

    NASA Astrophysics Data System (ADS)

    Zang, A.; Pelzer, G.; Anton, G.; Ballabriga Sune, R.; Bisello, F.; Campbell, M.; Fauler, A.; Fiederle, M.; Llopart Cudie, X.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W. S.; Michel, T.

    2014-03-01

    Photon-counting detectors in medical x-ray imaging provide a higher dose efficiency than integrating detectors. Even further possibilities for imaging applications arise, if the energy of each photon counted is measured, as for example K-edge-imaging or optimizing image quality by applying energy weighting factors. In this contribution, we show results of the characterization of the Dosepix detector. This hybrid photon- counting pixel detector allows energy resolved measurements with a novel concept of energy binning included in the pixel electronics. Based on ideas of the Medipix detector family, it provides three different modes of operation: An integration mode, a photon-counting mode, and an energy-binning mode. In energy-binning mode, it is possible to set 16 energy thresholds in each pixel individually to derive a binned energy spectrum in every pixel in one acquisition. The hybrid setup allows using different sensor materials. For the measurements 300 μm Si and 1 mm CdTe were used. The detector matrix consists of 16 x 16 square pixels for CdTe (16 x 12 for Si) with a pixel pitch of 220 μm. The Dosepix was originally intended for applications in the field of radiation measurement. Therefore it is not optimized towards medical imaging. The detector concept itself still promises potential as an imaging detector. We present spectra measured in one single pixel as well as in the whole pixel matrix in energy-binning mode with a conventional x-ray tube. In addition, results concerning the count rate linearity for the different sensor materials are shown as well as measurements regarding energy resolution.

  20. The parameterization of microchannel-plate-based detection systems

    NASA Astrophysics Data System (ADS)

    Gershman, Daniel J.; Gliese, Ulrik; Dorelli, John C.; Avanov, Levon A.; Barrie, Alexander C.; Chornay, Dennis J.; MacDonald, Elizabeth A.; Holland, Matthew P.; Giles, Barbara L.; Pollock, Craig J.

    2016-10-01

    The most common instrument for low-energy plasmas consists of a top-hat electrostatic analyzer (ESA) geometry coupled with a microchannel-plate-based (MCP-based) detection system. While the electrostatic optics for such sensors are readily simulated and parameterized during the laboratory calibration process, the detection system is often less well characterized. Here we develop a comprehensive mathematical description of particle detection systems. As a function of instrument azimuthal angle, we parameterize (1) particle scattering within the ESA and at the surface of the MCP, (2) the probability distribution of MCP gain for an incident particle, (3) electron charge cloud spreading between the MCP and anode board, and (4) capacitive coupling between adjacent discrete anodes. Using the Dual Electron Spectrometers on the Fast Plasma Investigation on NASA's Magnetospheric Multiscale mission as an example, we demonstrate a method for extracting these fundamental detection system parameters from laboratory calibration. We further show that parameters that will evolve in flight, namely, MCP gain, can be determined through application of this model to specifically tailored in-flight calibration activities. This methodology provides a robust characterization of sensor suite performance throughout mission lifetime. The model developed in this work is not only applicable to existing sensors but also can be used as an analytical design tool for future particle instrumentation.

  1. An efficient and cost-effective microchannel plate detector for slow neutron radiography

    NASA Astrophysics Data System (ADS)

    Wiggins, B. B.; Vadas, J.; Bancroft, D.; deSouza, Z. O.; Huston, J.; Hudan, S.; Baxter, D. V.; deSouza, R. T.

    2018-05-01

    A novel approach for efficiently imaging objects with slow neutrons in two dimensions is realized. Neutron sensitivity is achieved by use of a boron doped microchannel plate (MCP). The resulting electron avalanche is further amplified with a Z-stack MCP before being sensed by two orthogonally oriented wire planes. Coupling of the wire planes to delay lines efficiently encodes the position information as a time difference. To determine the position resolution, slow neutrons were used to illuminate a Cd-mask placed directly in front of the detector. Peaks in the resulting spectrum exhibited an average peak width of 329 μm FWHM, corresponding to an average intrinsic resolution of 216 μm. The center region of the detector exhibits a significantly better spatial resolution with an intrinsic resolution of <100 μm observed.

  2. MicroCT with energy-resolved photon-counting detectors

    PubMed Central

    Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, BMW; Patt, B E; Frey, E C

    2011-01-01

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with Kabsorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences. PMID:21464527

  3. MicroCT with energy-resolved photon-counting detectors.

    PubMed

    Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, B M W; Patt, B E; Frey, E C

    2011-05-07

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with K-absorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences.

  4. A miniaturized 4 K platform for superconducting infrared photon counting detectors

    NASA Astrophysics Data System (ADS)

    Gemmell, Nathan R.; Hills, Matthew; Bradshaw, Tom; Rawlings, Tom; Green, Ben; Heath, Robert M.; Tsimvrakidis, Konstantinos; Dobrovolskiy, Sergiy; Zwiller, Val; Dorenbos, Sander N.; Crook, Martin; Hadfield, Robert H.

    2017-11-01

    We report on a miniaturized platform for superconducting infrared photon counting detectors. We have implemented a fibre-coupled superconducting nanowire single photon detector in a Stirling/Joule-Thomson platform with a base temperature of 4.2 K. We have verified a cooling power of 4 mW at 4.7 K. We report 20% system detection efficiency at 1310 nm wavelength at a dark count rate of 1 kHz. We have carried out compelling application demonstrations in single photon depth metrology and singlet oxygen luminescence detection.

  5. Ultrafast photon counting applied to resonant scanning STED microscopy.

    PubMed

    Wu, Xundong; Toro, Ligia; Stefani, Enrico; Wu, Yong

    2015-01-01

    To take full advantage of fast resonant scanning in super-resolution stimulated emission depletion (STED) microscopy, we have developed an ultrafast photon counting system based on a multigiga sample per second analogue-to-digital conversion chip that delivers an unprecedented 450 MHz pixel clock (2.2 ns pixel dwell time in each scan). The system achieves a large field of view (∼50 × 50 μm) with fast scanning that reduces photobleaching, and advances the time-gated continuous wave STED technology to the usage of resonant scanning with hardware-based time-gating. The assembled system provides superb signal-to-noise ratio and highly linear quantification of light that result in superior image quality. Also, the system design allows great flexibility in processing photon signals to further improve the dynamic range. In conclusion, we have constructed a frontier photon counting image acquisition system with ultrafast readout rate, excellent counting linearity, and with the capacity of realizing resonant-scanning continuous wave STED microscopy with online time-gated detection. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  6. A Flight Photon Counting Camera for the WFIRST Coronagraph

    NASA Astrophysics Data System (ADS)

    Morrissey, Patrick

    2018-01-01

    A photon counting camera based on the Teledyne-e2v CCD201-20 electron multiplying CCD (EMCCD) is being developed for the NASA WFIRST coronagraph, an exoplanet imaging technology development of the Jet Propulsion Laboratory (Pasadena, CA) that is scheduled to launch in 2026. The coronagraph is designed to directly image planets around nearby stars, and to characterize their spectra. The planets are exceedingly faint, providing signals similar to the detector dark current, and require the use of photon counting detectors. Red sensitivity (600-980nm) is preferred to capture spectral features of interest. Since radiation in space affects the ability of the EMCCD to transfer the required single electron signals, care has been taken to develop appropriate shielding that will protect the cameras during a five year mission. In this poster, consideration of the effects of space radiation on photon counting observations will be described with the mitigating features of the camera design. An overview of the current camera flight system electronics requirements and design will also be described.

  7. Characterization of spectrometric photon-counting X-ray detectors at different pitches

    NASA Astrophysics Data System (ADS)

    Jurdit, M.; Brambilla, A.; Moulin, V.; Ouvrier-Buffet, P.; Radisson, P.; Verger, L.

    2017-09-01

    There is growing interest in energy-sensitive photon-counting detectors based on high flux X-ray imaging. Their potential applications include medical imaging, non-destructive testing and security. Innovative detectors of this type will need to count individual photons and sort them into selected energy bins, at several million counts per second and per mm2. Cd(Zn)Te detector grade materials with a thickness of 1.5 to 3 mm and pitches from 800 μm down to 200 μm were assembled onto interposer boards. These devices were tested using in-house-developed full-digital fast readout electronics. The 16-channel demonstrators, with 256 energy bins, were experimentally characterized by determining spectral resolution, count rate, and charge sharing, which becomes challenging at low pitch. Charge sharing correction was found to efficiently correct X-ray spectra up to 40 × 106 incident photons.s-1.mm-2.

  8. Improving the counting efficiency in time-correlated single photon counting experiments by dead-time optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peronio, P.; Acconcia, G.; Rech, I.

    Time-Correlated Single Photon Counting (TCSPC) has been long recognized as the most sensitive method for fluorescence lifetime measurements, but often requiring “long” data acquisition times. This drawback is related to the limited counting capability of the TCSPC technique, due to pile-up and counting loss effects. In recent years, multi-module TCSPC systems have been introduced to overcome this issue. Splitting the light into several detectors connected to independent TCSPC modules proportionally increases the counting capability. Of course, multi-module operation also increases the system cost and can cause space and power supply problems. In this paper, we propose an alternative approach basedmore » on a new detector and processing electronics designed to reduce the overall system dead time, thus enabling efficient photon collection at high excitation rate. We present a fast active quenching circuit for single-photon avalanche diodes which features a minimum dead time of 12.4 ns. We also introduce a new Time-to-Amplitude Converter (TAC) able to attain extra-short dead time thanks to the combination of a scalable array of monolithically integrated TACs and a sequential router. The fast TAC (F-TAC) makes it possible to operate the system towards the upper limit of detector count rate capability (∼80 Mcps) with reduced pile-up losses, addressing one of the historic criticisms of TCSPC. Preliminary measurements on the F-TAC are presented and discussed.« less

  9. A design of a PET detector using micro-channel plate photomultipliers with transmission-line readout

    NASA Astrophysics Data System (ADS)

    Kim, H.; Frisch, H.; Chen, C.-T.; Genat, J.-F.; Tang, F.; Moses, W. W.; Choong, W. S.; Kao, C.-M.

    2010-10-01

    A computer simulation study has been conducted to investigate the feasibility of a positron emission tomography (PET) detector design by using micro-channel plate (MCP) photomultiplier tubes (PMT) with transmission-line (TL) readout and waveform sampling. The detector unit consisted of a 24×24 array of pixelated LSO crystals, each of which was 4×4×25 mm 3 in size, and two 102×102 mm 2 MCP-PMTs coupled to both sides of the scintillator array. The crystal (and TL) pitch was 4.25 mm and reflective medium was inserted between the crystals. The transport of the optical photons inside the scintillator were simulated by using the Geant4 package. The output pulses of the MCP-PMT/TL unit were formed by applying the measured single photo-electron response of the MCP-PMT/TL unit to each individual photon that interacts with the photo-cathode of the MCP-PMT. The waveforms of the pulses at both ends of the TL strips were measured and analyzed to produce energy and timing information for the detected event. An experimental setup was developed by employing a Photonis Planacon MCP-PMT (XP85022) and a prototype TL board for measuring the single photo-electron response of the MCP-PMT/TL. The simulation was validated by comparing the predicted output pulses to measurements obtained with a single MCP-PMT/TL coupled to an LSO crystal exposed to 511 keV gamma rays. The validated simulation was then used to investigate the performance of the proposed new detector design. Our simulation result indicates an energy resolution of ˜11% at 511 keV. When using a 400-600 keV energy window, we obtain a coincidence timing resolution of ˜323 ps FWHM and a coincidence detection efficiency of ˜40% for normally incident 511 keV photons. For the positioning accuracy, it is determined by the pitch of the TLs (and crystals) in the direction normal to the TLs and measured to be ˜2.5 mm in the direction parallel to the TLs. The energy and timing obtained at the front- and back-end of the

  10. A Design of a PET Detector Using Micro-Channel Plate Photomultipliers with Transmission-Line Readout.

    PubMed

    Kim, H; Frisch, H; Chen, C-T; Genat, J-F; Tang, F; Moses, W W; Choong, W S; Kao, C-M

    2010-01-01

    A computer simulation study has been conducted to investigate the feasibility of a positron emission tomography (PET) detector design by using micro-channel plate (MCP) photomultiplier tubes (PMT) with transmission-line (TL) read-out and waveform sampling. The detector unit consisted of a 24×24 array of pixelated LSO crystals, each of which was 4×4×25 mm(3) in size, and two 102×102 mm(2) MCP-PMTs coupled to both sides of the scintillator array. The crystal (and TL) pitch was 4.25 mm and reflective medium was inserted between the crystals. The transport of the optical photons inside the scintillator were simulated by using the Geant4 package. The output pulses of the MCP-PMT/TL unit were formed by applying the measured single photo-electron response of the MCP-PMT/TL unit to each individual photon that interacts with the photo-cathode of the MCP-PMT. The waveforms of the pulses at both ends of the TL strips were measured and analyzed to produce energy and timing information for the detected event. An experimental setup was developed by employing a Photonis Planacon MCP-PMT (XP85022) and a prototype TL board for measuring the single photo-electron response of the MCP-PMT/TL. The simulation was validated by comparing the predicted output pulses to measurements obtained with a single MCP-PMT/TL coupled to an LSO crystal exposed to 511 keV gamma rays. The validated simulation was then used to investigate the performance of the proposed new detector design. Our simulation result indicates an energy resolution of ~11% at 511 keV. When using a 400-600 keV energy window, we obtain a coincidence timing resolution of ~323 ps FWHM and a coincidence detection efficiency of ~40% for normally-incident 511keV photons. For the positioning accuracy, it is determined by the pitch of the TLs (and crystals) in the direction normal to the TLs and measured to be ~2.5 mm in the direction parallel to the TLs. The energy and timing obtained at the front- and back-end of the scintillator

  11. Reborn quadrant anode image sensor

    NASA Astrophysics Data System (ADS)

    Prokazov, Yury; Turbin, Evgeny; Vitali, Marco; Herzog, Andreas; Michaelis, Bernd; Zuschratter, Werner; Kemnitz, Klaus

    2009-06-01

    We describe a position sensitive photon counting microchannel plate based detector with an improved quadrant anode (QA) readout system. The technique relies on a combination of the four planar elements pattern and an additional fifth electrode. The charge cloud induced by single particle detection is split between the electrodes. The measured charge values uniquely define the position of the initial event. QA has been first published in 1976 by Lampton and Malina. This anode configuration was undeservedly forgotten and its potential has been hardly underestimated. The presented approach extends the operating spatial range to the whole sensitive area of the microchannel plate surface and demonstrates good linearity over the field of view. Therefore, the novel image sensor results in spatial resolution better then 50 μm and count rates up to one million events per second.

  12. Amplitude distributions of dark counts and photon counts in NbN superconducting single-photon detectors integrated with the HEMT readout

    NASA Astrophysics Data System (ADS)

    Kitaygorsky, J.; Słysz, W.; Shouten, R.; Dorenbos, S.; Reiger, E.; Zwiller, V.; Sobolewski, Roman

    2017-01-01

    We present a new operation regime of NbN superconducting single-photon detectors (SSPDs) by integrating them with a low-noise cryogenic high-electron-mobility transistor and a high-load resistor. The integrated sensors are designed to get a better understanding of the origin of dark counts triggered by the detector, as our scheme allows us to distinguish the origin of dark pulses from the actual photon pulses in SSPDs. The presented approach is based on a statistical analysis of amplitude distributions of recorded trains of the SSPD photoresponse transients. It also enables to obtain information on energy of the incident photons, as well as demonstrates some photon-number-resolving capability of meander-type SSPDs.

  13. Release of the gPhoton Database of GALEX Photon Events

    NASA Astrophysics Data System (ADS)

    Fleming, Scott W.; Million, Chase; Shiao, Bernie; Tucker, Michael; Loyd, R. O. Parke

    2016-01-01

    The GALEX spacecraft surveyed much of the sky in two ultraviolet bands between 2003 and 2013 with non-integrating microchannel plate detectors. The Mikulski Archive for Space Telescopes (MAST) has made more than one trillion photon events observed by the spacecraft available, stored as a 130 TB database, along with an open-source, python-based software package to query this database and create calibrated lightcurves or images from these data at user-defined spatial and temporal scales. In particular, MAST users can now conduct photometry at the intra-visit level (timescales of seconds and minutes). The software, along with the fully populated database, was officially released in Aug. 2015, and improvements to both software functionality and data calibration are ongoing. We summarize the current calibration status of the gPhoton software, along with examples of early science enabled by gPhoton that include stellar flares, AGN, white dwarfs, exoplanet hosts, novae, and nearby galaxies.

  14. Searching for flares in GALEX data with gPhoton

    NASA Astrophysics Data System (ADS)

    Million, Chase; Fleming, Scott W.; Brasseur, Clara; Osten, Rachel A.; Bianchi, Luciana; Shiao, Bernie

    2017-06-01

    The Galaxy Evolution Explorer (GALEX) spacecraft observed a large fraction of the sky in two ultraviolet bands using micro-channel plate detectors with time resolutions of less than ten milliseconds. The gPhoton database of calibrated GALEX photon events at MAST has recently enabled a thorough search of this legacy data set for astrophysical variability at cadences shorter than the orbital period of the spacecraft. (https://archive.stsci.edu/prepds/gphoton/) We explore techniques for mining photon-level data for variability on timescales of seconds to minutes with an emphasis on dwarf star flares, which can be probed at lower energies and shorter durations with gPhoton than prior surveys. We present the early results of a systematic search for such events.

  15. FPGA-based gating and logic for multichannel single photon counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooser, Raphael C; Earl, Dennis Duncan; Evans, Philip G

    2012-01-01

    We present results characterizing multichannel InGaAs single photon detectors utilizing gated passive quenching circuits (GPQC), self-differencing techniques, and field programmable gate array (FPGA)-based logic for both diode gating and coincidence counting. Utilizing FPGAs for the diode gating frontend and the logic counting backend has the advantage of low cost compared to custom built logic circuits and current off-the-shelf detector technology. Further, FPGA logic counters have been shown to work well in quantum key distribution (QKD) test beds. Our setup combines multiple independent detector channels in a reconfigurable manner via an FPGA backend and post processing in order to perform coincidencemore » measurements between any two or more detector channels simultaneously. Using this method, states from a multi-photon polarization entangled source are detected and characterized via coincidence counting on the FPGA. Photons detection events are also processed by the quantum information toolkit for application testing (QITKAT)« less

  16. Two-dimensional ultraviolet imagery with a microchannel-plate/resistive-anode detector

    NASA Technical Reports Server (NTRS)

    Opal, C. B.; Feldman, P. D.; Weaver, H. A.; Mcclintock, J. A.

    1979-01-01

    An imaging ultraviolet detector has been designed for use with a precision pointed telescope flown on a sounding rocket. Resolution of better than 80 microns over a field of 5 mm has been achieved. The ultraviolet image is converted to electrons at the front surface of a CsI coated chevron microchannel-plate electron multiplier. For each photoelectron, the multiplier produces a burst of about 3,000,000 electrons, which impinges on a tellurium-coated resistive anode with four evaporated hyperbolic readout electrodes. The sizes of the four resulting output pulses are digitized to 10 bit accuracy and telemetered to the ground, where they are divided in pairs to give the x and y coordinates of the photoelectron event. The coordinates are used to generate a picture in real time, and are recorded for computer processing later. The detector was successfully flown in December 1978. Good images of Jupiter and Capella in hydrogen Lyman alpha emission were obtained.

  17. Ultra-fast photon counting with a passive quenching silicon photomultiplier in the charge integration regime

    NASA Astrophysics Data System (ADS)

    Zhang, Guoqing; Lina, Liu

    2018-02-01

    An ultra-fast photon counting method is proposed based on the charge integration of output electrical pulses of passive quenching silicon photomultipliers (SiPMs). The results of the numerical analysis with actual parameters of SiPMs show that the maximum photon counting rate of a state-of-art passive quenching SiPM can reach ~THz levels which is much larger than that of the existing photon counting devices. The experimental procedure is proposed based on this method. This photon counting regime of SiPMs is promising in many fields such as large dynamic light power detection.

  18. Quantum Biometrics with Retinal Photon Counting

    NASA Astrophysics Data System (ADS)

    Loulakis, M.; Blatsios, G.; Vrettou, C. S.; Kominis, I. K.

    2017-10-01

    It is known that the eye's scotopic photodetectors, rhodopsin molecules, and their associated phototransduction mechanism leading to light perception, are efficient single-photon counters. We here use the photon-counting principles of human rod vision to propose a secure quantum biometric identification based on the quantum-statistical properties of retinal photon detection. The photon path along the human eye until its detection by rod cells is modeled as a filter having a specific transmission coefficient. Precisely determining its value from the photodetection statistics registered by the conscious observer is a quantum parameter estimation problem that leads to a quantum secure identification method. The probabilities for false-positive and false-negative identification of this biometric technique can readily approach 10-10 and 10-4, respectively. The security of the biometric method can be further quantified by the physics of quantum measurements. An impostor must be able to perform quantum thermometry and quantum magnetometry with energy resolution better than 10-9ℏ , in order to foil the device by noninvasively monitoring the biometric activity of a user.

  19. A position sensitive microchannel photomultiplier for ultraviolet space astronomy

    NASA Technical Reports Server (NTRS)

    Lampton, M.; Siegmund, O. H. W.; Bixler, J.; Bowyer, S.

    1986-01-01

    The 25-mm microchannel-plate, position-sensitive UV astronomy photomultiplier tube presented is intended for the EOM-1 Spacelab Mission's FAUST payload and conducts wide-field imaging surveys in the VUV over the 1400-1800-A range. The sealed detector encompasses a CsI photocathode deposited on the inner surface of a MgF2 window, a stack of microchannel plates, and a wedge-and-strip two-dimensional position-sensing anode. Since the wedge-and-strip principle requires only three anode signals, flight electronics can be reduced to three charge amplifiers and three analog-to-digital converters.

  20. Homodyne versus photon-counting quantum trajectories for dissipative Kerr resonators with two-photon driving

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Minganti, Fabrizio; Lolli, Jared; Ciuti, Cristiano

    2017-07-01

    We investigate two different kinds of quantum trajectories for a nonlinear photon resonator subject to two-photon pumping, a configuration recently studied for the generation of photonic Schrödinger cat states. In the absence of feedback control and in the strong-driving limit, the steady-state density matrix is a statistical mixture of two states with equal weight. While along a single photon-counting trajectory the systems intermittently switches between an odd and an even cat state, we show that upon homodyne detection the situation is different. Indeed, homodyne quantum trajectories reveal switches between coherent states of opposite phase.

  1. Towards a Graphene-Based Low Intensity Photon Counting Photodetector

    PubMed Central

    Williams, Jamie O. D.; Alexander-Webber, Jack A.; Lapington, Jon S.; Roy, Mervyn; Hutchinson, Ian B.; Sagade, Abhay A.; Martin, Marie-Blandine; Braeuninger-Weimer, Philipp; Cabrero-Vilatela, Andrea; Wang, Ruizhi; De Luca, Andrea; Udrea, Florin; Hofmann, Stephan

    2016-01-01

    Graphene is a highly promising material in the development of new photodetector technologies, in particular due its tunable optoelectronic properties, high mobilities and fast relaxation times coupled to its atomic thinness and other unique electrical, thermal and mechanical properties. Optoelectronic applications and graphene-based photodetector technology are still in their infancy, but with a range of device integration and manufacturing approaches emerging this field is progressing quickly. In this review we explore the potential of graphene in the context of existing single photon counting technologies by comparing their performance to simulations of graphene-based single photon counting and low photon intensity photodetection technologies operating in the visible, terahertz and X-ray energy regimes. We highlight the theoretical predictions and current graphene manufacturing processes for these detectors. We show initial experimental implementations and discuss the key challenges and next steps in the development of these technologies. PMID:27563903

  2. The supercontinuum laser as a flexible source for quasi-steady state and time resolved fluorescence studies

    NASA Astrophysics Data System (ADS)

    Fenske, Roger; Näther, Dirk U.; Dennis, Richard B.; Smith, S. Desmond

    2010-02-01

    Commercial Fluorescence Lifetime Spectrometers have long suffered from the lack of a simple, compact and relatively inexpensive broad spectral band light source that can be flexibly employed for both quasi-steady state and time resolved measurements (using Time Correlated Single Photon Counting [TCSPC]). This paper reports the integration of an optically pumped photonic crystal fibre, supercontinuum source1 (Fianium model SC400PP) as a light source in Fluorescence Lifetime Spectrometers (Edinburgh Instruments FLS920 and Lifespec II), with single photon counting detectors (micro-channel plate photomultiplier and a near-infrared photomultiplier) covering the UV to NIR range. An innovative method of spectral selection of the supercontinuum source involving wedge interference filters is also discussed.

  3. Spectroscopic micro-tomography of metallic-organic composites by means of photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Pichotka, M.; Jakubek, J.; Vavrik, D.

    2015-12-01

    The presumed capabilities of photon counting detectors have aroused major expectations in several fields of research. In the field of nuclear imaging ample benefits over standard detectors are to be expected from photon counting devices. First of all a very high contrast, as has by now been verified in numerous experiments. The spectroscopic capabilities of photon counting detectors further allow material decomposition in computed tomography and therefore inherently adequate beam hardening correction. For these reasons measurement setups featuring standard X-ray tubes combined with photon counting detectors constitute a possible replacement of the much more cost intensive tomographic setups at synchrotron light-sources. The actual application of photon counting detectors in radiographic setups in recent years has been impeded by a number of practical issues, above all by restrictions in the detectors size. Currently two tomographic setups in Czech Republic feature photon counting large-area detectors (LAD) fabricated in Prague. The employed large area hybrid pixel-detector assemblies [1] consisting of 10×10/10×5 Timepix devices have a surface area of 143×143 mm2 / 143×71,5 mm2 respectively, suitable for micro-tomographic applications. In the near future LAD devices featuring the Medipix3 readout chip as well as heavy sensors (CdTe, GaAs) will become available. Data analysis is obtained by a number of in house software tools including iterative multi-energy volume reconstruction.In this paper tomographic analysis of of metallic-organic composites is employed to illustrate the capabilities of our technology. Other than successful material decomposition by spectroscopic tomography we present a method to suppress metal artefacts under certain conditions.

  4. Linear operating region in the ozone dial photon counting system

    NASA Technical Reports Server (NTRS)

    Andrawis, Madeleine

    1995-01-01

    Ozone is a relatively unstable molecule found in Earth's atmosphere. An ozone molecule is made up of three atoms of oxygen. Depending on where ozone resides, it can protect or harm life on Earth. High in the atmosphere, about 15 miles up, ozone acts as a shield to protect Earth's surface from the sun's harmful ultraviolet radiation. Without this shield, we would be more susceptible to skin cancer, cataracts, and impaired immune systems. Closer to Earth, in the air we breathe, ozone is a harmful pollutant that causes damage to lung tissue and plants. Since the early 1980's, airborne lidar systems have been used for making measurements of ozone. The differential absorption lidar (DIAL) technique is used in the remote measurement of O3. This system allows the O3 to be measured as function of the range in the atmosphere. Two frequency-doubled Nd:YAG lasers are used to pump tunable dye lasers. The lasers are operating at 289 nm for the DIAL on-line wavelength of O3, and the other one is operated at 300 nm for the off-line wavelength. The DIAL wavelengths are produced in sequential laser pulses with a time separation of 300 micro s. The backscattered laser energy is collected by telescopes and measured using photon counting systems. The photon counting system measures the light signal by making use of the photon nature of light. The output pulse from the Photo-Multiplier Tube (PE), caused by a photon striking the PMT photo-cathode, is amplified and passed to a pulse height discriminator. The peak value of the pulse is compared to a reference voltage (discrimination level). If the pulse amplitude exceeds the discrimination level, the discriminator generates a standard pulse which is counted by the digital counter. Non-linearity in the system is caused by the overlapping of pulses and the finite response time of the electronics. At low count rates one expects the system to register one event for each output pulse from the PMT corresponding to a photon incident upon the

  5. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors.

    PubMed

    Dutton, Neale A W; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K

    2016-07-20

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed.

  6. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors

    PubMed Central

    Dutton, Neale A. W.; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K.

    2016-01-01

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed. PMID:27447643

  7. Modeling the frequency-dependent detective quantum efficiency of photon-counting x-ray detectors.

    PubMed

    Stierstorfer, Karl

    2018-01-01

    To find a simple model for the frequency-dependent detective quantum efficiency (DQE) of photon-counting detectors in the low flux limit. Formula for the spatial cross-talk, the noise power spectrum and the DQE of a photon-counting detector working at a given threshold are derived. Parameters are probabilities for types of events like single counts in the central pixel, double counts in the central pixel and a neighboring pixel or single count in a neighboring pixel only. These probabilities can be derived in a simple model by extensive use of Monte Carlo techniques: The Monte Carlo x-ray propagation program MOCASSIM is used to simulate the energy deposition from the x-rays in the detector material. A simple charge cloud model using Gaussian clouds of fixed width is used for the propagation of the electric charge generated by the primary interactions. Both stages are combined in a Monte Carlo simulation randomizing the location of impact which finally produces the required probabilities. The parameters of the charge cloud model are fitted to the spectral response to a polychromatic spectrum measured with our prototype detector. Based on the Monte Carlo model, the DQE of photon-counting detectors as a function of spatial frequency is calculated for various pixel sizes, photon energies, and thresholds. The frequency-dependent DQE of a photon-counting detector in the low flux limit can be described with an equation containing only a small set of probabilities as input. Estimates for the probabilities can be derived from a simple model of the detector physics. © 2017 American Association of Physicists in Medicine.

  8. Microchannel Distillation of JP-8 Jet Fuel for Sulfur Content Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Feng; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.

    2006-09-16

    In microchannel based distillation processes, thin vapor and liquid films are contacted in small channels where mass transfer is diffusion-limited. The microchannel architecture enables improvements in distillation processes. A shorter height equivalent of a theoretical plate (HETP) and therefore a more compact distillation unit can be achieved. A microchannel distillation unit was used to produce a light fraction of JP-8 fuel with reduced sulfur content for use as feed to produce fuel-cell grade hydrogen. The HETP of the microchannel unit is discussed, as well as the effects of process conditions such as feed temperature, flow rate, and reflux ratio.

  9. Material separation in x-ray CT with energy resolved photon-counting detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xiaolan; Meier, Dirk; Taguchi, Katsuyuki

    Purpose: The objective of the study was to demonstrate that, in x-ray computed tomography (CT), more than two types of materials can be effectively separated with the use of an energy resolved photon-counting detector and classification methodology. Specifically, this applies to the case when contrast agents that contain K-absorption edges in the energy range of interest are present in the object. This separation is enabled via the use of recently developed energy resolved photon-counting detectors with multiple thresholds, which allow simultaneous measurements of the x-ray attenuation at multiple energies. Methods: To demonstrate this capability, we performed simulations and physical experimentsmore » using a six-threshold energy resolved photon-counting detector. We imaged mouse-sized cylindrical phantoms filled with several soft-tissue-like and bone-like materials and with iodine-based and gadolinium-based contrast agents. The linear attenuation coefficients were reconstructed for each material in each energy window and were visualized as scatter plots between pairs of energy windows. For comparison, a dual-kVp CT was also simulated using the same phantom materials. In this case, the linear attenuation coefficients at the lower kVp were plotted against those at the higher kVp. Results: In both the simulations and the physical experiments, the contrast agents were easily separable from other soft-tissue-like and bone-like materials, thanks to the availability of the attenuation coefficient measurements at more than two energies provided by the energy resolved photon-counting detector. In the simulations, the amount of separation was observed to be proportional to the concentration of the contrast agents; however, this was not observed in the physical experiments due to limitations of the real detector system. We used the angle between pairs of attenuation coefficient vectors in either the 5-D space (for non-contrast-agent materials using energy resolved photon-counting

  10. Characterization of Sphinx1 ASIC X-ray detector using photon counting and charge integration

    NASA Astrophysics Data System (ADS)

    Habib, A.; Arques, M.; Moro, J.-L.; Accensi, M.; Stanchina, S.; Dupont, B.; Rohr, P.; Sicard, G.; Tchagaspanian, M.; Verger, L.

    2018-01-01

    Sphinx1 is a novel pixel architecture adapted for X-ray imaging, it detects radiation by photon counting and charge integration. In photon counting mode, each photon is compensated by one or more counter-charges typically consisting of 100 electrons (e-) each. The number of counter-charges required gives a measure of the incoming photon energy, thus allowing spectrometric detection. Pixels can also detect radiation by integrating the charges deposited by all incoming photons during one image frame and converting this analog value into a digital response with a 100 electrons least significant bit (LSB), based on the counter-charge concept. A proof of concept test chip measuring 5 mm × 5 mm, with 200 μm × 200 μm pixels has been produced and characterized. This paper provides details on the architecture and the counter-charge design; it also describes the two modes of operation: photon counting and charge integration. The first performance measurements for this test chip are presented. Noise was found to be ~80 e-rms in photon counting mode with a power consumption of only 0.9 μW/pixel for the static analog part and 0.3 μW/pixel for the static digital part.

  11. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarcella, Carmelo; Tosi, Alberto, E-mail: alberto.tosi@polimi.it; Villa, Federica

    2013-12-15

    We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 μm active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.

  12. Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies.

    PubMed

    Jeong, Tae Won; Singh, P K; Scullion, C; Ahmed, H; Kakolee, K F; Hadjisolomou, P; Alejo, A; Kar, S; Borghesi, M; Ter-Avetisyan, S

    2016-08-01

    The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.

  13. Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies

    NASA Astrophysics Data System (ADS)

    Jeong, Tae Won; Singh, P. K.; Scullion, C.; Ahmed, H.; Kakolee, K. F.; Hadjisolomou, P.; Alejo, A.; Kar, S.; Borghesi, M.; Ter-Avetisyan, S.

    2016-08-01

    The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.

  14. Photon counting statistics analysis of biophotons from hands.

    PubMed

    Jung, Hyun-Hee; Woo, Won-Myung; Yang, Joon-Mo; Choi, Chunho; Lee, Jonghan; Yoon, Gilwon; Yang, Jong S; Soh, Kwang-Sup

    2003-05-01

    The photon counting statistics of biophotons emitted from hands is studied with a view to test its agreement with the Poisson distribution. The moments of observed probability up to seventh order have been evaluated. The moments of biophoton emission from hands are in good agreement while those of dark counts of photomultiplier tube show large deviations from the theoretical values of Poisson distribution. The present results are consistent with the conventional delta-value analysis of the second moment of probability.

  15. Precision Timing with shower maximum detectors based on pixelated micro-channel plates

    NASA Astrophysics Data System (ADS)

    Bornheim, A.; Apresyan, A.; Ronzhin, A.; Xie, S.; Spiropulu, M.; Trevor, J.; Pena, C.; Presutti, F.; Los, S.

    2017-11-01

    Future calorimeters and shower maximum detectors at high luminosity colliders need to be highly radiation resistant and very fast. One exciting option for such a detector is a calorimeter composed of a secondary emitter as the active element. In this report we outline the study and development of a secondary emission calorimeter prototype using micro-channel plates (MCP) as the active element, which directly amplify the electromagnetic shower signal. We demonstrate the feasibility of using a bare MCP within an inexpensive and robust housing without the need for any photo cathode, which is a key requirement for high radiation tolerance. Test beam measurements of the prototype were performed with 120 GeV primary protons and secondary beams at the Fermilab Test Beam Facility, demonstrating basic calorimetric measurements and precision timing capabilities. Using multiple pixel readout on the MCP, we demonstrate a transverse spatial resolution of 0.8 mm, and time resolution better than 40 ps for electromagnetic showers.

  16. Precision Timing with shower maximum detectors based on pixelated micro-channel plates

    DOE PAGES

    Bornheim, A.; Apresyan, A.; Ronzhin, A.; ...

    2017-11-27

    Future calorimeters and shower maximum detectors at high luminosity colliders need to be highly radiation resistant and very fast. One exciting option for such a detector is a calorimeter composed of a secondary emitter as the active element. Here, we outline the study and development of a secondary emission calorimeter prototype using micro-channel plates (MCP) as the active element, which directly amplify the electromagnetic shower signal. We also demonstrate the feasibility of using a bare MCP within an inexpensive and robust housing without the need for any photo cathode, which is a key requirement for high radiation tolerance. Test beammore » measurements of the prototype were performed with 120 GeV primary protons and secondary beams at the Fermilab Test Beam Facility, demonstrating basic calorimetric measurements and precision timing capabilities. Using multiple pixel readout on the MCP, we demonstrate a transverse spatial resolution of 0.8 mm, and time resolution better than 40 ps for electromagnetic showers.« less

  17. Development of a compact E ? B microchannel plate detector for beam imaging

    DOE PAGES

    Wiggins, B. B.; Singh, Varinderjit; Vadas, J.; ...

    2017-06-17

    A beam imaging detector was developed by coupling a multi-strip anode with delay line readout to an E×B microchannel plate (MCP) detector. This detector is capable of measuring the incident position of the beam particles in one-dimension. To assess the spatial resolution, the detector was illuminated by an α-source with an intervening mask that consists of a series of precisely-machined slits. The measured spatial resolution was 520 um source FWHM, which was improved to 413 um FWHM by performing an FFT of the signals, rejecting spurious signals on the delay line, and requiring a minimum signal amplitude. This measured spatialmore » resolution of 413 um FWHM corresponds to an intrinsic resolution of 334 um FWHM when the effect of the finite slit width is de-convoluted. To understand the measured resolution, the performance of the detector is simulated with the ion-trajectory code SIMION.« less

  18. Development of a compact E ? B microchannel plate detector for beam imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiggins, B. B.; Singh, Varinderjit; Vadas, J.

    A beam imaging detector was developed by coupling a multi-strip anode with delay line readout to an E×B microchannel plate (MCP) detector. This detector is capable of measuring the incident position of the beam particles in one-dimension. To assess the spatial resolution, the detector was illuminated by an α-source with an intervening mask that consists of a series of precisely-machined slits. The measured spatial resolution was 520 um source FWHM, which was improved to 413 um FWHM by performing an FFT of the signals, rejecting spurious signals on the delay line, and requiring a minimum signal amplitude. This measured spatialmore » resolution of 413 um FWHM corresponds to an intrinsic resolution of 334 um FWHM when the effect of the finite slit width is de-convoluted. To understand the measured resolution, the performance of the detector is simulated with the ion-trajectory code SIMION.« less

  19. Manganese molybdate nanoflakes on silicon microchannel plates as novel nano energetic material

    PubMed Central

    Zhang, Chi; Wu, Dajun; Shi, Liming; Zhu, Yiping; Xiong, Dayuan; Xu, Shaohui; Huang, Rong; Qi, Ruijuan; Zhang, Wenchao; Chu, Paul K.

    2017-01-01

    Nano energetic materials have attracted great attention recently owing to their potential applications for both civilian and military purposes. By introducing silicon microchannel plates (Si-MCPs) three-dimensional (3D)-ordered structures, monocrystalline MnMoO4 with a size of tens of micrometres and polycrystalline MnMoO4 nanoflakes are produced on the surface and sidewall of nickel-coated Si-MCP, respectively. The MnMoO4 crystals ripen controllably forming polycrystalline nanoflakes with lattice fringes of 0.542 nm corresponding to the (1¯11) plane on the sidewall. And these MnMoO4 nanoflakes show apparent thermite performance which is rarely reported and represents MnMoO4 becoming a new category of energetic materials after nanocrystallization. Additionally, the nanocrystallization mechanism is interpreted by ionic diffusion caused by 3D structure. The results indicate that the Si-MCP is a promising substrate for nanocrystallization of energetic materials such as MnMoO4. PMID:29308255

  20. Manganese molybdate nanoflakes on silicon microchannel plates as novel nano energetic material.

    PubMed

    Zhang, Chi; Wu, Dajun; Shi, Liming; Zhu, Yiping; Xiong, Dayuan; Xu, Shaohui; Huang, Rong; Qi, Ruijuan; Zhang, Wenchao; Wang, Lianwei; Chu, Paul K

    2017-12-01

    Nano energetic materials have attracted great attention recently owing to their potential applications for both civilian and military purposes. By introducing silicon microchannel plates (Si-MCPs) three-dimensional (3D)-ordered structures, monocrystalline MnMoO 4 with a size of tens of micrometres and polycrystalline MnMoO 4 nanoflakes are produced on the surface and sidewall of nickel-coated Si-MCP, respectively. The MnMoO 4 crystals ripen controllably forming polycrystalline nanoflakes with lattice fringes of 0.542 nm corresponding to the [Formula: see text] plane on the sidewall. And these MnMoO 4 nanoflakes show apparent thermite performance which is rarely reported and represents MnMoO 4 becoming a new category of energetic materials after nanocrystallization. Additionally, the nanocrystallization mechanism is interpreted by ionic diffusion caused by 3D structure. The results indicate that the Si-MCP is a promising substrate for nanocrystallization of energetic materials such as MnMoO 4 .

  1. Simulating the growth of an charge cloud for a microchannel plate detector

    NASA Astrophysics Data System (ADS)

    Siwal, Davinder; Wiggins, Blake; Desouza, Romualdo

    2015-10-01

    Position sensitive microchannel plate (MCP) detectors have a variety of applications in the fields of astronomy, medical imaging, neutron imaging, and ion beam tracking. Recently, a novel approach has been implemented to detect the position of an incident particle. The charge cloud produced by the MCP induces a signal on a wire harp placed between the MCP and an anode. On qualitative grounds it is clear that in this detector the induced signal shape depends on the size of the electron cloud. A detailed study has therefore been performed to investigate the size of the charge cloud within the MCP and its growth as it propagates from the MCP to the anode. A simple model has been developed to calculate the impact of charge repulsion on the growth of the electron cloud. Both the details of the model and its predictions will be presented. Supported by the US DOE NNSA under Award No. DE-NA0002012.

  2. Precision Timing with shower maximum detectors based on pixelated micro-channel plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornheim, A.; Apresyan, A.; Ronzhin, A.

    Future calorimeters and shower maximum detectors at high luminosity colliders need to be highly radiation resistant and very fast. One exciting option for such a detector is a calorimeter composed of a secondary emitter as the active element. Here, we outline the study and development of a secondary emission calorimeter prototype using micro-channel plates (MCP) as the active element, which directly amplify the electromagnetic shower signal. We also demonstrate the feasibility of using a bare MCP within an inexpensive and robust housing without the need for any photo cathode, which is a key requirement for high radiation tolerance. Test beammore » measurements of the prototype were performed with 120 GeV primary protons and secondary beams at the Fermilab Test Beam Facility, demonstrating basic calorimetric measurements and precision timing capabilities. Using multiple pixel readout on the MCP, we demonstrate a transverse spatial resolution of 0.8 mm, and time resolution better than 40 ps for electromagnetic showers.« less

  3. Second generation large area microchannel plate flat panel phototubes

    NASA Astrophysics Data System (ADS)

    Ertley, C. D.; Siegmund, O. H. W.; Jelinsky, S. R.; Tedesco, J.; Minot, M. J.; O'Mahony, A.; Craven, C. A.; Popecki, M.; Lyashenko, A. V.; Foley, M. R.

    2016-07-01

    Very large (20 cm × 20 cm) flat panel phototubes are being developed which employ novel microchannel plates (MCPs). The MCPs are manufactured using borosilicate microcapillary arrays which are functionalized by the application of resistive and secondary emissive layers using atomic layer deposition (ALD). This allows the operational parameters to be set by tailoring sequential ALD deposition processes. The borosilicate substrates are robust, including the ability to be produced in large formats (20 cm square). ALD MCPs have performance characteristics (gain, pulse amplitude distributions, and imaging) that are equivalent or better than conventional MCPs. They have low intrinsic background (0.045 events cm-2 sec-1)., high open area ratios (74% for the latest generation of borosilicate substrates), and stable gain during >7 C cm-2 charge extraction after preconditioning (vacuum bake and burn-in). The tube assemblies use a pair of 20 cm × 20 cm ALD MCPs comprised of a borosilicate entrance window, a proximity focused bialkali photocathode, and a strip-line readout anode. The second generation design employs an all glass body with a hot indium seal and a transfer photocathode. We have achieved >20% quantum efficiency and good gain uniformity over the 400 cm2 field of view, spatial resolution of <1 cm and obtained event timing accuracy of close to 100 ps FWHM.

  4. Photon Counting Detectors for the 1.0 - 2.0 Micron Wavelength Range

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    2004-01-01

    We describe results on the development of greater than 200 micron diameter, single-element photon-counting detectors for the 1-2 micron wavelength range. The technical goals include quantum efficiency in the range 10-70%; detector diameter greater than 200 microns; dark count rate below 100 kilo counts-per-second (cps), and maximum count rate above 10 Mcps.

  5. Photon counting microstrip X-ray detectors with GaAs sensors

    NASA Astrophysics Data System (ADS)

    Ruat, M.; Andrä, M.; Bergamaschi, A.; Barten, R.; Brückner, M.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Lopez-Cuenca, C.; Lozinskaya, A. D.; Mezza, D.; Mozzanica, A.; Novikov, V. A.; Ramilli, M.; Redford, S.; Ruder, C.; Schmitt, B.; Shi, X.; Thattil, D.; Tinti, G.; Tolbanov, O. P.; Tyazhev, A.; Vetter, S.; Zarubin, A. N.; Zhang, J.

    2018-01-01

    High-Z sensors are increasingly used to overcome the poor efficiency of Si sensors above 15 keV, and further extend the energy range of synchrotron and FEL experiments. Detector-grade GaAs sensors of 500 μm thickness offer 98% absorption efficiency at 30 keV and 50% at 50 keV . In this work we assess the usability of GaAs sensors in combination with the MYTHEN photon-counting microstrip readout chip developed at PSI. Different strip length and pitch are compared, and the detector performance is evaluated in regard of the sensor material properties. Despite increased leakage current and noise, photon-counting strips mounted with GaAs sensors can be used with photons of energy as low as 5 keV, and exhibit excellent linearity with energy. The charge sharing is doubled as compared to silicon strips, due to the high diffusion coefficient of electrons in GaAs.

  6. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging

    PubMed Central

    Iwanczyk, Jan S.; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C.; Hartsough, Neal E.; Malakhov, Nail; Wessel, Jan C.

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm2/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a 57Co source. An output rate of 6×106 counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and energy

  7. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    PubMed

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  8. TU-FG-209-03: Exploring the Maximum Count Rate Capabilities of Photon Counting Arrays Based On Polycrystalline Silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, A K; Koniczek, M; Antonuk, L E

    Purpose: Photon counting arrays (PCAs) offer several advantages over conventional, fluence-integrating x-ray imagers, such as improved contrast by means of energy windowing. For that reason, we are exploring the feasibility and performance of PCA pixel circuitry based on polycrystalline silicon. This material, unlike the crystalline silicon commonly used in photon counting detectors, lends itself toward the economic manufacture of radiation tolerant, monolithic large area (e.g., ∼43×43 cm2) devices. In this presentation, exploration of maximum count rate, a critical performance parameter for such devices, is reported. Methods: Count rate performance for a variety of pixel circuit designs was explored through detailedmore » circuit simulations over a wide range of parameters (including pixel pitch and operating conditions) with the additional goal of preserving good energy resolution. The count rate simulations assume input events corresponding to a 72 kVp x-ray spectrum with 20 mm Al filtration interacting with a CZT detector at various input flux rates. Output count rates are determined at various photon energy threshold levels, and the percentage of counts lost (e.g., due to deadtime or pile-up) is calculated from the ratio of output to input counts. The energy resolution simulations involve thermal and flicker noise originating from each circuit element in a design. Results: Circuit designs compatible with pixel pitches ranging from 250 to 1000 µm that allow count rates over a megacount per second per pixel appear feasible. Such rates are expected to be suitable for radiographic and fluoroscopic imaging. Results for the analog front-end circuitry of the pixels show that acceptable energy resolution can also be achieved. Conclusion: PCAs created using polycrystalline silicon have the potential to offer monolithic large-area detectors with count rate performance comparable to those of crystalline silicon detectors. Further improvement through detailed

  9. Dynamic range considerations for EUV MAMA detectors. [Extreme UV Multianode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Illing, Rainer M. E.; Bybee, Richard L.; Timothy, J. G.

    1990-01-01

    The multianode microchannel array (MAMA) has been chosen as the detector for two instruments on the ESA/NASA Solar Heliospheric Observatory. The response of the MAMA to the two extreme types of solar spectra, disk and corona, have been modeled with a view toward evaluating dynamic range effects present. The method of MAMA operation is discussed, with emphasis given to modeling the effect of electron cloud charge spreading to several detector anodes and amplifiers (n-fold events). Representative synthetic EUV spectra have been created. The detector response to these spectra is modeled by dissecting the input photon radiation field across the detector array into contributions to the various amplifier channels. The results of this dissection are shown for spectral regions across the entire wavelength region of interest. These results are used to identify regions in which total array photon counting rate or individual amplifier rate may exceed the design limits. This allows the design or operational modes to be tailored to eliminate the problem areas.

  10. Compact Ceramic Microchannel Heat Exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewinsohn, Charles

    The objective of the proposed work was to demonstrate the feasibility of a step change in power plant efficiency at a commercially viable cost, by obtaining performance data for prototype, compact, ceramic microchannel heat exchangers. By performing the tasks described in the initial proposal, all of the milestones were met. The work performed will advance the technology from Technology Readiness Level 3 (TRL 3) to Technology Readiness Level 4 (TRL 4) and validate the potential of using these heat exchangers for enabling high efficiency solid oxide fuel cell (SOFC) or high-temperature turbine-based power plants. The attached report will describe howmore » this objective was met. In collaboration with The Colorado School of Mines (CSM), specifications were developed for a high temperature heat exchanger for three commercial microturbines. Microturbines were selected because they are a more mature commercial technology than SOFC, they are a low-volume and high-value target for market entry of high-temperature heat exchangers, and they are essentially scaled-down versions of turbines used in utility-scale power plants. Using these specifications, microchannel dimensions were selected to meet the performance requirements. Ceramic plates were fabricated with microchannels of these dimensions. The plates were tested at room temperature and elevated temperature. Plates were joined together to make modular, heat exchanger stacks that were tested at a variety of temperatures and flow rates. Although gas flow rates equivalent to those in microturbines could not be achieved in the laboratory environment, the results showed expected efficiencies, robust operation under significant temperature gradients at high temperature, and the ability to cycle the stacks. Details of the methods and results are presented in this final report.« less

  11. Exploration of maximum count rate capabilities for large-area photon counting arrays based on polycrystalline silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua

    2016-03-01

    Pixelated photon counting detectors with energy discrimination capabilities are of increasing clinical interest for x-ray imaging. Such detectors, presently in clinical use for mammography and under development for breast tomosynthesis and spectral CT, usually employ in-pixel circuits based on crystalline silicon - a semiconductor material that is generally not well-suited for economic manufacture of large-area devices. One interesting alternative semiconductor is polycrystalline silicon (poly-Si), a thin-film technology capable of creating very large-area, monolithic devices. Similar to crystalline silicon, poly-Si allows implementation of the type of fast, complex, in-pixel circuitry required for photon counting - operating at processing speeds that are not possible with amorphous silicon (the material currently used for large-area, active matrix, flat-panel imagers). The pixel circuits of two-dimensional photon counting arrays are generally comprised of four stages: amplifier, comparator, clock generator and counter. The analog front-end (in particular, the amplifier) strongly influences performance and is therefore of interest to study. In this paper, the relationship between incident and output count rate of the analog front-end is explored under diagnostic imaging conditions for a promising poly-Si based design. The input to the amplifier is modeled in the time domain assuming a realistic input x-ray spectrum. Simulations of circuits based on poly-Si thin-film transistors are used to determine the resulting output count rate as a function of input count rate, energy discrimination threshold and operating conditions.

  12. Comparison of plate counts, Petrifilm, dipslides, and adenosine triphosphate bioluminescence for monitoring bacteria in cooling-tower waters.

    PubMed

    Mueller, Sherry A; Anderson, James E; Kim, Byung R; Ball, James C

    2009-04-01

    Effective bacterial control in cooling-tower systems requires accurate and timely methods to count bacteria. Plate-count methods are difficult to implement on-site, because they are time- and labor-intensive and require sterile techniques. Several field-applicable methods (dipslides, Petrifilm, and adenosine triphosphate [ATP] bioluminescence) were compared with the plate count for two sample matrices--phosphate-buffered saline solution containing a pure culture of Pseudomonas fluorescens and cooling-tower water containing an undefined mixed bacterial culture. For the pure culture, (1) counts determined on nutrient agar and plate-count agar (PCA) media and expressed as colony-forming units (CFU) per milliliter were equivalent to those on R2A medium (p = 1.0 and p = 1.0, respectively); (2) Petrifilm counts were not significantly different from R2A plate counts (p = 0.99); (3) the dipslide counts were up to 2 log units higher than R2A plate counts, but this discrepancy was not statistically significant (p = 0.06); and (4) a discernable correlation (r2 = 0.67) existed between ATP readings and plate counts. For cooling-tower water samples (n = 62), (1) bacterial counts using R2A medium were higher (but not significant; p = 0.63) than nutrient agar and significantly higher than tryptone-glucose yeast extract (TGE; p = 0.03) and PCA (p < 0.001); (2) Petrifilm counts were significantly lower than nutrient agar or R2A (p = 0.02 and p < 0.001, respectively), but not statistically different from TGE, PCA, and dipslides (p = 0.55, p = 0.69, and p = 0.91, respectively); (3) the dipslide method yielded bacteria counts 1 to 3 log units lower than nutrient agar and R2A (p < 0.001), but was not significantly different from Petrifilm (p = 0.91), PCA (p = 1.00) or TGE (p = 0.07); (4) the differences between dipslides and the other methods became greater with a 6-day incubation time; and (5) the correlation between ATP readings and plate counts varied from system to system, was poor

  13. Enumeration of total aerobic microorganisms in foods by SimPlate Total Plate Count-Color Indicator methods and conventional culture methods: collaborative study.

    PubMed

    Feldsine, Philip T; Leung, Stephanie C; Lienau, Andrew H; Mui, Linda A; Townsend, David E

    2003-01-01

    The relative efficacy of the SimPlate Total Plate Count-Color Indicator (TPC-CI) method (SimPlate 35 degrees C) was compared with the AOAC Official Method 966.23 (AOAC 35 degrees C) for enumeration of total aerobic microorganisms in foods. The SimPlate TPC-CI method, incubated at 30 degrees C (SimPlate 30 degrees C), was also compared with the International Organization for Standardization (ISO) 4833 method (ISO 30 degrees C). Six food types were analyzed: ground black pepper, flour, nut meats, frozen hamburger patties, frozen fruits, and fresh vegetables. All foods tested were naturally contaminated. Nineteen laboratories throughout North America and Europe participated in the study. Three method comparisons were conducted. In general, there was <0.3 mean log count difference in recovery among the SimPlate methods and their corresponding reference methods. Mean log counts between the 2 reference methods were also very similar. Repeatability (Sr) and reproducibility (SR) standard deviations were similar among the 3 method comparisons. The SimPlate method (35 degrees C) and the AOAC method were comparable for enumerating total aerobic microorganisms in foods. Similarly, the SimPlate method (30 degrees C) was comparable to the ISO method when samples were prepared and incubated according to the ISO method.

  14. Long lifetime generation IV image intensifiers with unfilmed microchannel plate

    NASA Astrophysics Data System (ADS)

    Estrera, Joseph P.; Bender, Edward J.; Giordana, A.; Glesener, John W.; Iosue, Mike J.; Lin, P. P.; Sinor, Timothy W.

    2000-11-01

    Current Generation II Gallium Arsenide (GaAs) image intensifier tube technology requires that the tube microchannel plate (MCP) component have a thin dielectric coating on the side facing the tube's photocathode component. This protective coating substantially reduces the release from the MCP of ions and neutral species, particularly when the image intensifier is operated. The prevention of MCP outgassing is necessary in order ot prevent the poisoning of the Cs:O surface on the GaAs photocathode. Many authors have experimented with omitting the MCP coating. Such experiments have consistently led to an intensifier with a significantly reduced lifetime, due to contamination of the Cs:O layer on the photocathode. Unfortunately the MCP film acts as a scattering cneter to electron transport within the intensifier and effectively reduces the photoelectron detection efficiency. Substantial enhancement of the image intensifier operating parameters is the motivation for the removal of the MCP film. Removal of the MCP film promises to simplify MCP fabrication and enhance the intensifier parameters related to Electro-Optical performance and image quality. This paper presents results showing for the first time that it is possible to fabricate a long lifetime image intensifier with a single unfilmed MCP and achieve improved imaging and performance characteristics.

  15. Study on ultra-fast single photon counting spectrometer based on PCI

    NASA Astrophysics Data System (ADS)

    Zhang, Xi-feng

    2010-10-01

    The time-correlated single photon counting spectrometer developed uses PCI bus technology. We developed the ultrafast data acquisition card based on PCI, replace multi-channel analyzer primary. The system theory and design of the spectrometer are presented in detail, and the process of operation is introduced with the integration of the system. Many standard samples have been measured and the data have been analyzed and contrasted. Experimental results show that the spectrometer, s sensitive is single photon counting, and fluorescence life-span and time resolution is picosecond level. And the instrument could measure time-resolved spectroscopy.

  16. Energy response calibration of photon-counting detectors using x-ray fluorescence: a feasibility study.

    PubMed

    Cho, H-M; Ding, H; Ziemer, B P; Molloi, S

    2014-12-07

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using x-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for x-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm(2) in detection area. The angular dependence of x-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded x-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of x-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of x-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic x-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the x-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory.

  17. Energy response calibration of photon-counting detectors using X-ray fluorescence: a feasibility study

    PubMed Central

    Cho, H-M; Ding, H; Ziemer, BP; Molloi, S

    2014-01-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using X-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for X-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm2 in detection area. The angular dependence of X-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded X-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of X-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of X-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic X-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the X-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory. PMID:25369288

  18. Reconfigurable Computing As an Enabling Technology for Single-Photon-Counting Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Powell, Wesley; Hicks, Edward; Pinchinat, Maxime; Dabney, Philip; McGarry, Jan; Murray, Paul

    2003-01-01

    Single-photon-counting laser altimetry is a new measurement technique offering significant advantages in vertical resolution, reducing instrument size, mass, and power, and reducing laser complexity as compared to analog or threshold detection laser altimetry techniques. However, these improvements come at the cost of a dramatically increased requirement for onboard real-time data processing. Reconfigurable computing has been shown to offer considerable performance advantages in performing this processing. These advantages have been demonstrated on the Multi-KiloHertz Micro-Laser Altimeter (MMLA), an aircraft based single-photon-counting laser altimeter developed by NASA Goddard Space Flight Center with several potential spaceflight applications. This paper describes how reconfigurable computing technology was employed to perform MMLA data processing in real-time under realistic operating constraints, along with the results observed. This paper also expands on these prior results to identify concepts for using reconfigurable computing to enable spaceflight single-photon-counting laser altimeter instruments.

  19. A multispectral photon-counting double random phase encoding scheme for image authentication.

    PubMed

    Yi, Faliu; Moon, Inkyu; Lee, Yeon H

    2014-05-20

    In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI) and double random phase encoding (DRPE) schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color) in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.

  20. Gallium nitride photocathodes for imaging photon counters

    NASA Astrophysics Data System (ADS)

    Siegmund, Oswald H. W.; Hull, Jeffrey S.; Tremsin, Anton S.; McPhate, Jason B.; Dabiran, Amir M.

    2010-07-01

    Gallium nitride opaque and semitransparent photocathodes provide high ultraviolet quantum efficiencies from 100 nm to a long wavelength cutoff at ~380 nm. P (Mg) doped GaN photocathode layers ~100 nm thick with a barrier layer of AlN (22 nm) on sapphire substrates also have low out of band response, and are highly robust. Opaque GaN photocathodes are relatively easy to optimize, and consistently provide high quantum efficiency (70% at 120 nm) provided the surface cleaning and activation (Cs) processes are well established. We have used two dimensional photon counting imaging microchannel plate detectors, with an active area of 25 mm diameter, to investigate the imaging characteristics of semitransparent GaN photocathodes. These can be produced with high (20%) efficiency, but the thickness and conductivity of the GaN must be carefully optimized. High spatial resolution of ~50 μm with low intrinsic background (~7 events sec-1 cm-2) and good image uniformity have been achieved. Selectively patterned deposited GaN photocathodes have also been used to allow quick diagnostics of optimization parameters. GaN photocathodes of both types show great promise for future detector applications in ultraviolet Astrophysical instruments.

  1. Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging

    NASA Technical Reports Server (NTRS)

    Lu, Wei; Krainak, Michael A.; Yang, Guangning; Sun, Xiaoli; Merritt, Scott

    2016-01-01

    We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies ((is) greater than 50%) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.

  2. Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging

    NASA Technical Reports Server (NTRS)

    Lu, Wei; Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Merritt, Scott

    2016-01-01

    We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies (50) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.

  3. K-edge energy-based calibration method for photon counting detectors

    NASA Astrophysics Data System (ADS)

    Ge, Yongshuai; Ji, Xu; Zhang, Ran; Li, Ke; Chen, Guang-Hong

    2018-01-01

    In recent years, potential applications of energy-resolved photon counting detectors (PCDs) in the x-ray medical imaging field have been actively investigated. Unlike conventional x-ray energy integration detectors, PCDs count the number of incident x-ray photons within certain energy windows. For PCDs, the interactions between x-ray photons and photoconductor generate electronic voltage pulse signals. The pulse height of each signal is proportional to the energy of the incident photons. By comparing the pulse height with the preset energy threshold values, x-ray photons with specific energies are recorded and sorted into different energy bins. To quantitatively understand the meaning of the energy threshold values, and thus to assign an absolute energy value to each energy bin, energy calibration is needed to establish the quantitative relationship between the threshold values and the corresponding effective photon energies. In practice, the energy calibration is not always easy, due to the lack of well-calibrated energy references for the working energy range of the PCDs. In this paper, a new method was developed to use the precise knowledge of the characteristic K-edge energy of materials to perform energy calibration. The proposed method was demonstrated using experimental data acquired from three K-edge materials (viz., iodine, gadolinium, and gold) on two different PCDs (Hydra and Flite, XCounter, Sweden). Finally, the proposed energy calibration method was further validated using a radioactive isotope (Am-241) with a known decay energy spectrum.

  4. Absolute detection efficiency of a microchannel plate detector to X rays in the 1-100 KeV energy range

    NASA Astrophysics Data System (ADS)

    Burginyon, Gary A.; Jacoby, Barry A.; Wobser, James K.; Ernst, Richard; Ancheta, Dione S.; Tirsell, Kenneth G.

    1993-02-01

    There is little information in the literature on the performance of working micro-channel plate (MCP) detectors at high x-ray energies. We have measured the absolute efficiency of a microchannel-plate-intensified, subnanosecond, one dimensional imaging x-ray detector developed at LLNL in the 1 to 100 keV range and at 1.25 MeV. The detector consists of a gold photocathode deposited on the front surface of the MCP (optimized for Ni K(subscript (alpha) ) x rays) to convert x rays to electrons, an MCP to amplify the electrons, and a fast In:CdS phosphor that converts the electron's kinetic energy to light. The phosphor is coated on a fiber-optic faceplate to transmit the light out of the vacuum system. Electrostatic focusing electrodes compress the electron current out of the MCP in one dimension while preserving spatial resolution in the other. The calibration geometry, dictated by a recent experiment, required grazing incidence x rays (15.6 degree(s)) onto the MCP detector in order to maximize deliverable current. The experiment also used a second detector made up of 0.071 in. thick BC422 plastic scintillator material from the Bicron Corporation. We compare the absolute efficiencies of these two detectors in units of optical W/cm(superscript 2) into 4 (pi) per x ray W/cm(superscript 2) incident. At 7.47 keV and 900 volts MCP bias, the MCP detector delivers approximately 1400 times more light than the scintillator detector.

  5. Multi-anode microchannel arrays. [for use in ground-based and spaceborne telescopes

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Mount, G. H.; Bybee, R. L.

    1979-01-01

    The Multi-Anode Microchannel Arrays (MAMA's) are a family of photoelectric, photon-counting array detectors being developed for use in instruments on both ground-based and space-borne telescopes. These detectors combine high sensitivity and photometric stability with a high-resolution imaging capability. MAMA detectors can be operated in a windowless configuration at extreme-ultraviolet and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. Prototype MAMA detectors with up to 512 x 512 pixels are now being tested in the laboratory and telescope operation of a simple (10 x 10)-pixel visible-light detector has been initiated. The construction and modes-of-operation of the MAMA detectors are briefly described and performance data are presented.

  6. Broadband one-dimensional photonic crystal wave plate containing single-negative materials.

    PubMed

    Chen, Yihang

    2010-09-13

    The properties of the phase shift of wave reflected from one-dimensional photonic crystals consisting of periodic layers of single-negative (permittivity- or permeability-negative) materials are demonstrated. As the incident angle increases, the reflection phase shift of TE wave decreases, while that of TM wave increases. The phase shifts of both polarized waves vary smoothly as the frequency changes across the photonic crystal stop band. Consequently, the difference between the phase shift of TE and that of TM wave could remain constant in a rather wide frequency range inside the stop band. These properties are useful to design wave plate or retarder which can be used in wide spectral band. In addition, a broadband photonic crystal quarter-wave plate is proposed.

  7. Single Photon Counting Detectors for Low Light Level Imaging Applications

    NASA Astrophysics Data System (ADS)

    Kolb, Kimberly

    2015-10-01

    This dissertation presents the current state-of-the-art of semiconductor-based photon counting detector technologies. HgCdTe linear-mode avalanche photodiodes (LM-APDs), silicon Geiger-mode avalanche photodiodes (GM-APDs), and electron-multiplying CCDs (EMCCDs) are compared via their present and future performance in various astronomy applications. LM-APDs are studied in theory, based on work done at the University of Hawaii. EMCCDs are studied in theory and experimentally, with a device at NASA's Jet Propulsion Lab. The emphasis of the research is on GM-APD imaging arrays, developed at MIT Lincoln Laboratory and tested at the RIT Center for Detectors. The GM-APD research includes a theoretical analysis of SNR and various performance metrics, including dark count rate, afterpulsing, photon detection efficiency, and intrapixel sensitivity. The effects of radiation damage on the GM-APD were also characterized by introducing a cumulative dose of 50 krad(Si) via 60 MeV protons. Extensive development of Monte Carlo simulations and practical observation simulations was completed, including simulated astronomical imaging and adaptive optics wavefront sensing. Based on theoretical models and experimental testing, both the current state-of-the-art performance and projected future performance of each detector are compared for various applications. LM-APD performance is currently not competitive with other photon counting technologies, and are left out of the application-based comparisons. In the current state-of-the-art, EMCCDs in photon counting mode out-perform GM-APDs for long exposure scenarios, though GM-APDs are better for short exposure scenarios (fast readout) due to clock-induced-charge (CIC) in EMCCDs. In the long term, small improvements in GM-APD dark current will make them superior in both long and short exposure scenarios for extremely low flux. The efficiency of GM-APDs will likely always be less than EMCCDs, however, which is particularly disadvantageous for

  8. Photon counting detector for the personal radiography inspection system "SIBSCAN"

    NASA Astrophysics Data System (ADS)

    Babichev, E. A.; Baru, S. E.; Grigoriev, D. N.; Leonov, V. V.; Oleynikov, V. P.; Porosev, V. V.; Savinov, G. A.

    2017-02-01

    X-ray detectors operating in the energy integrating mode are successfully used in many different applications. Nevertheless the direct photon counting detectors, having the superior parameters in comparison with the integrating ones, are rarely used yet. One of the reasons for this is the low value of the electrical signal generated by a detected photon. Silicon photomultiplier (SiPM) based scintillation counters have a high detection efficiency, high electronic gain and compact dimensions. This makes them a very attractive candidate to replace routinely used detectors in many fields. More than 10 years ago the digital scanning radiography system based on multistrip ionization chamber (MIC) was suggested at Budker Institute of Nuclear Physics. The detector demonstrates excellent radiation resistance and parameter stability after 5 year operations and an imaging of up to 1000 persons per day. Currently, the installations operate at several Russian airports and at subway stations in some cities. At the present time we design a new detector operating in the photon counting mode, having superior parameters than the gas one, based on scintillator - SiPM assemblies. This detector has close to zero noise, higher quantum efficiency and a count rate capability of more than 5 MHz per channel (20% losses), which leads to better image quality and improved detection capability. The suggested detector technology could be expanded to medical applications.

  9. Scanning Microscopes Using X Rays and Microchannels

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2003-01-01

    Scanning microscopes that would be based on microchannel filters and advanced electronic image sensors and that utilize x-ray illumination have been proposed. Because the finest resolution attainable in a microscope is determined by the wavelength of the illumination, the xray illumination in the proposed microscopes would make it possible, in principle, to achieve resolutions of the order of nanometers about a thousand times as fine as the resolution of a visible-light microscope. Heretofore, it has been necessary to use scanning electron microscopes to obtain such fine resolution. In comparison with scanning electron microscopes, the proposed microscopes would likely be smaller, less massive, and less expensive. Moreover, unlike in scanning electron microscopes, it would not be necessary to place specimens under vacuum. The proposed microscopes are closely related to the ones described in several prior NASA Tech Briefs articles; namely, Miniature Microscope Without Lenses (NPO-20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43; and Reflective Variants of Miniature Microscope Without Lenses (NPO-20610), NASA Tech Briefs, Vol. 26, No. 9 (September 2002) page 6a. In all of these microscopes, the basic principle of design and operation is the same: The focusing optics of a conventional visible-light microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. A microchannel plate containing parallel, microscopic-cross-section holes much longer than they are wide is placed between a specimen and an image sensor, which is typically the CCD. The microchannel plate must be made of a material that absorbs the illuminating radiation reflected or scattered from the specimen. The microchannels must be positioned and dimensioned so that each one is registered with a pixel on the image sensor. Because most of the radiation incident on the microchannel walls becomes absorbed, the radiation that reaches the

  10. Review of an initial experience with an experimental spectral photon-counting computed tomography system

    NASA Astrophysics Data System (ADS)

    Si-Mohamed, Salim; Bar-Ness, Daniel; Sigovan, Monica; Cormode, David P.; Coulon, Philippe; Coche, Emmanuel; Vlassenbroek, Alain; Normand, Gabrielle; Boussel, Loic; Douek, Philippe

    2017-11-01

    Spectral photon-counting CT (SPCCT) is an emerging X-ray imaging technology that extends the scope of available diagnostic imaging tools. The main advantage of photon-counting CT technology is better sampling of the spectral information from the transmitted spectrum in order to benefit from additional physical information being produced during matter interaction, including photo-electric and Compton effects, and the K-edge effect. The K-edge, which is specific for a given element, is the increase in X-ray absorption of the element above the binding energy between its inner electronic shell and the nucleus. Hence, the spectral information contributes to better characterization of tissues and materials of interest, explaining the excitement surrounding this area of X-ray imaging. Other improvements of SPCCT compared with conventional CT, such as higher spatial resolution, lower radiation exposure and lower noise are also expected to provide benefits for diagnostic imaging. In this review, we describe multi-energy CT imaging, from dual energy to photon counting technology, and our initial experience results using a clinical-scale spectral photon counting CT (SPCCT) prototype system in vitro and in vivo. In addition, possible clinical applications are introduced.

  11. Photon Counting Imaging with an Electron-Bombarded Pixel Image Sensor

    PubMed Central

    Hirvonen, Liisa M.; Suhling, Klaus

    2016-01-01

    Electron-bombarded pixel image sensors, where a single photoelectron is accelerated directly into a CCD or CMOS sensor, allow wide-field imaging at extremely low light levels as they are sensitive enough to detect single photons. This technology allows the detection of up to hundreds or thousands of photon events per frame, depending on the sensor size, and photon event centroiding can be employed to recover resolution lost in the detection process. Unlike photon events from electron-multiplying sensors, the photon events from electron-bombarded sensors have a narrow, acceleration-voltage-dependent pulse height distribution. Thus a gain voltage sweep during exposure in an electron-bombarded sensor could allow photon arrival time determination from the pulse height with sub-frame exposure time resolution. We give a brief overview of our work with electron-bombarded pixel image sensor technology and recent developments in this field for single photon counting imaging, and examples of some applications. PMID:27136556

  12. Determination of the laser intensity applied to a Ta witness plate from the measured X-ray signal using a pulsed micro-channel plate detector

    DOE PAGES

    Pickworth, L. A.; Rosen, M. D.; Schneider, M. B.; ...

    2017-04-14

    The laser intensity distribution at the surface of a high-Z material, such as Ta, can be deduced from imaging the self-emission of the produced x-ray spot using suitable calibration data. This paper presents a calibration method which uses the measured x-ray emissions from laser spots of di erent intensities hitting a Ta witness plate. The x-ray emission is measured with a micro-channel plate (MCP) based x-ray framing camera plus filters. Data from di erent positions on one MCP strip or from di erent MCP assemblies are normalized to each other using a standard candle laser beam spot at 1x10 14more » W/cm 2 intensity. The distribution of the resulting dataset agrees with results from a pseudo spectroscopic model for laser intensities between 4 and 15x10 13 W/cm 2. The model is then used to determine the absolute scaling factor between the experimental results from assemblies using two di erent x-ray filters. The data and model method also allows unique calibration factors for each MCP system and each MCP gain to be compared. We also present simulation results investigating alternate witness plate materials (Ag, Eu and Au).« less

  13. Determination of the laser intensity applied to a Ta witness plate from the measured X-ray signal using a pulsed micro-channel plate detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickworth, L. A.; Rosen, M. D.; Schneider, M. B.

    The laser intensity distribution at the surface of a high-Z material, such as Ta, can be deduced from imaging the self-emission of the produced x-ray spot using suitable calibration data. This paper presents a calibration method which uses the measured x-ray emissions from laser spots of di erent intensities hitting a Ta witness plate. The x-ray emission is measured with a micro-channel plate (MCP) based x-ray framing camera plus filters. Data from di erent positions on one MCP strip or from di erent MCP assemblies are normalized to each other using a standard candle laser beam spot at 1x10 14more » W/cm 2 intensity. The distribution of the resulting dataset agrees with results from a pseudo spectroscopic model for laser intensities between 4 and 15x10 13 W/cm 2. The model is then used to determine the absolute scaling factor between the experimental results from assemblies using two di erent x-ray filters. The data and model method also allows unique calibration factors for each MCP system and each MCP gain to be compared. We also present simulation results investigating alternate witness plate materials (Ag, Eu and Au).« less

  14. Energy response calibration of photon-counting detectors using x-ray fluorescence: a feasibility study

    NASA Astrophysics Data System (ADS)

    Cho, H.-M.; Ding, H.; Ziemer, BP; Molloi, S.

    2014-12-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using x-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for x-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3  ×  3 mm2 in detection area. The angular dependence of x-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded x-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of x-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of x-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic x-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the x-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory.

  15. A fast microchannel plate-scintillator detector for velocity map imaging and imaging mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winter, B.; King, S. J.; Vallance, C., E-mail: claire.vallance@chem.ox.ac.uk

    2014-02-15

    The time resolution achievable using standard position-sensitive ion detectors, consisting of a chevron pair of microchannel plates coupled to a phosphor screen, is primarily limited by the emission lifetime of the phosphor, around 70 ns for the most commonly used P47 phosphor. We demonstrate that poly-para-phenylene laser dyes may be employed extremely effectively as scintillators, exhibiting higher brightness and much shorter decay lifetimes than P47. We provide an extensive characterisation of the properties of such scintillators, with a particular emphasis on applications in velocity-map imaging and microscope-mode imaging mass spectrometry. The most promising of the new scintillators exhibits an electron-to-photonmore » conversion efficiency double that of P47, with an emission lifetime an order of magnitude shorter. The new scintillator screens are vacuum stable and show no signs of signal degradation even over longer periods of operation.« less

  16. Signal to noise ratio of energy selective x-ray photon counting systems with pileup.

    PubMed

    Alvarez, Robert E

    2014-11-01

    To derive fundamental limits on the effect of pulse pileup and quantum noise in photon counting detectors on the signal to noise ratio (SNR) and noise variance of energy selective x-ray imaging systems. An idealized model of the response of counting detectors to pulse pileup is used. The model assumes a nonparalyzable response and delta function pulse shape. The model is used to derive analytical formulas for the noise and energy spectrum of the recorded photons with pulse pileup. These formulas are first verified with a Monte Carlo simulation. They are then used with a method introduced in a previous paper [R. E. Alvarez, "Near optimal energy selective x-ray imaging system performance with simple detectors," Med. Phys. 37, 822-841 (2010)] to compare the signal to noise ratio with pileup to the ideal SNR with perfect energy resolution. Detectors studied include photon counting detectors with pulse height analysis (PHA), detectors that simultaneously measure the number of photons and the integrated energy (NQ detector), and conventional energy integrating and photon counting detectors. The increase in the A-vector variance with dead time is also computed and compared to the Monte Carlo results. A formula for the covariance of the NQ detector is developed. The validity of the constant covariance approximation to the Cramèr-Rao lower bound (CRLB) for larger counts is tested. The SNR becomes smaller than the conventional energy integrating detector (Q) SNR for 0.52, 0.65, and 0.78 expected number photons per dead time for counting (N), two, and four bin PHA detectors, respectively. The NQ detector SNR is always larger than the N and Q SNR but only marginally so for larger dead times. Its noise variance increases by a factor of approximately 3 and 5 for the A1 and A2 components as the dead time parameter increases from 0 to 0.8 photons per dead time. With four bin PHA data, the increase in variance is approximately 2 and 4 times. The constant covariance approximation

  17. Signal to noise ratio of energy selective x-ray photon counting systems with pileup

    PubMed Central

    Alvarez, Robert E.

    2014-01-01

    Purpose: To derive fundamental limits on the effect of pulse pileup and quantum noise in photon counting detectors on the signal to noise ratio (SNR) and noise variance of energy selective x-ray imaging systems. Methods: An idealized model of the response of counting detectors to pulse pileup is used. The model assumes a nonparalyzable response and delta function pulse shape. The model is used to derive analytical formulas for the noise and energy spectrum of the recorded photons with pulse pileup. These formulas are first verified with a Monte Carlo simulation. They are then used with a method introduced in a previous paper [R. E. Alvarez, “Near optimal energy selective x-ray imaging system performance with simple detectors,” Med. Phys. 37, 822–841 (2010)] to compare the signal to noise ratio with pileup to the ideal SNR with perfect energy resolution. Detectors studied include photon counting detectors with pulse height analysis (PHA), detectors that simultaneously measure the number of photons and the integrated energy (NQ detector), and conventional energy integrating and photon counting detectors. The increase in the A-vector variance with dead time is also computed and compared to the Monte Carlo results. A formula for the covariance of the NQ detector is developed. The validity of the constant covariance approximation to the Cramèr–Rao lower bound (CRLB) for larger counts is tested. Results: The SNR becomes smaller than the conventional energy integrating detector (Q) SNR for 0.52, 0.65, and 0.78 expected number photons per dead time for counting (N), two, and four bin PHA detectors, respectively. The NQ detector SNR is always larger than the N and Q SNR but only marginally so for larger dead times. Its noise variance increases by a factor of approximately 3 and 5 for the A1 and A2 components as the dead time parameter increases from 0 to 0.8 photons per dead time. With four bin PHA data, the increase in variance is approximately 2 and 4 times. The

  18. Development of new photon-counting detectors for single-molecule fluorescence microscopy.

    PubMed

    Michalet, X; Colyer, R A; Scalia, G; Ingargiola, A; Lin, R; Millaud, J E; Weiss, S; Siegmund, Oswald H W; Tremsin, Anton S; Vallerga, John V; Cheng, A; Levi, M; Aharoni, D; Arisaka, K; Villa, F; Guerrieri, F; Panzeri, F; Rech, I; Gulinatti, A; Zappa, F; Ghioni, M; Cova, S

    2013-02-05

    Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level.

  19. Development of new photon-counting detectors for single-molecule fluorescence microscopy

    PubMed Central

    Michalet, X.; Colyer, R. A.; Scalia, G.; Ingargiola, A.; Lin, R.; Millaud, J. E.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Cheng, A.; Levi, M.; Aharoni, D.; Arisaka, K.; Villa, F.; Guerrieri, F.; Panzeri, F.; Rech, I.; Gulinatti, A.; Zappa, F.; Ghioni, M.; Cova, S.

    2013-01-01

    Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level. PMID:23267185

  20. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

    PubMed Central

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D.; Hennessy, John J.; Carver, Alexander G.; Jones, Todd J.; Goodsall, Timothy M.; Hamden, Erika T.; Suvarna, Puneet; Bulmer, J.; Shahedipour-Sandvik, F.; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L. Douglas

    2016-01-01

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100–300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399

  1. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials.

    PubMed

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D; Hennessy, John J; Carver, Alexander G; Jones, Todd J; Goodsall, Timothy M; Hamden, Erika T; Suvarna, Puneet; Bulmer, J; Shahedipour-Sandvik, F; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L Douglas

    2016-06-21

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100-300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness.

  2. Characterization of photon-counting multislit breast tomosynthesis.

    PubMed

    Berggren, Karl; Cederström, Björn; Lundqvist, Mats; Fredenberg, Erik

    2018-02-01

    It has been shown that breast tomosynthesis may improve sensitivity and specificity compared to two-dimensional mammography, resulting in increased detection-rate of cancers or lowered call-back rates. The purpose of this study is to characterize a spectral photon-counting multislit breast tomosynthesis system that is able to do single-scan spectral imaging with multiple collimated x-ray beams. The system differs in many aspects compared to conventional tomosynthesis using energy-integrating flat-panel detectors. The investigated system was a prototype consisting of a dual-threshold photon-counting detector with 21 collimated line detectors scanning across the compressed breast. A review of the system is done in terms of detector, acquisition geometry, and reconstruction methods. Three reconstruction methods were used, simple back-projection, filtered back-projection and an iterative algebraic reconstruction technique. The image quality was evaluated by measuring the modulation transfer-function (MTF), normalized noise-power spectrum, detective quantum-efficiency (DQE), and artifact spread-function (ASF) on reconstructed spectral tomosynthesis images for a total-energy bin (defined by a low-energy threshold calibrated to remove electronic noise) and for a high-energy bin (with a threshold calibrated to split the spectrum in roughly equal parts). Acquisition was performed using a 29 kVp W/Al x-ray spectrum at a 0.24 mGy exposure. The difference in MTF between the two energy bins was negligible, that is, there was no energy dependence on resolution. The MTF dropped to 50% at 1.5 lp/mm to 2.3 lp/mm in the scan direction and 2.4 lp/mm to 3.3 lp/mm in the slit direction, depending on the reconstruction method. The full width at half maximum of the ASF was found to range from 13.8 mm to 18.0 mm for the different reconstruction methods. The zero-frequency DQE of the system was found to be 0.72. The fraction of counts in the high-energy bin was measured to be 59% of the

  3. Image-based spectral distortion correction for photon-counting x-ray detectors

    PubMed Central

    Ding, Huanjun; Molloi, Sabee

    2012-01-01

    Purpose: To investigate the feasibility of using an image-based method to correct for distortions induced by various artifacts in the x-ray spectrum recorded with photon-counting detectors for their application in breast computed tomography (CT). Methods: The polyenergetic incident spectrum was simulated with the tungsten anode spectral model using the interpolating polynomials (TASMIP) code and carefully calibrated to match the x-ray tube in this study. Experiments were performed on a Cadmium-Zinc-Telluride (CZT) photon-counting detector with five energy thresholds. Energy bins were adjusted to evenly distribute the recorded counts above the noise floor. BR12 phantoms of various thicknesses were used for calibration. A nonlinear function was selected to fit the count correlation between the simulated and the measured spectra in the calibration process. To evaluate the proposed spectral distortion correction method, an empirical fitting derived from the calibration process was applied on the raw images recorded for polymethyl methacrylate (PMMA) phantoms of 8.7, 48.8, and 100.0 mm. Both the corrected counts and the effective attenuation coefficient were compared to the simulated values for each of the five energy bins. The feasibility of applying the proposed method to quantitative material decomposition was tested using a dual-energy imaging technique with a three-material phantom that consisted of water, lipid, and protein. The performance of the spectral distortion correction method was quantified using the relative root-mean-square (RMS) error with respect to the expected values from simulations or areal analysis of the decomposition phantom. Results: The implementation of the proposed method reduced the relative RMS error of the output counts in the five energy bins with respect to the simulated incident counts from 23.0%, 33.0%, and 54.0% to 1.2%, 1.8%, and 7.7% for 8.7, 48.8, and 100.0 mm PMMA phantoms, respectively. The accuracy of the effective attenuation

  4. Photon counting phosphorescence lifetime imaging with TimepixCam

    DOE PAGES

    Hirvonen, Liisa M.; Fisher-Levine, Merlin; Suhling, Klaus; ...

    2017-01-12

    TimepixCam is a novel fast optical imager based on an optimized silicon pixel sensor with a thin entrance window, and read out by a Timepix ASIC. The 256 x 256 pixel sensor has a time resolution of 15 ns at a sustained frame rate of 10 Hz. We used this sensor in combination with an image intensifier for wide-field time-correlated single photon counting (TCSPC) imaging. We have characterised the photon detection capabilities of this detector system, and employed it on a wide-field epifluorescence microscope to map phosphorescence decays of various iridium complexes with lifetimes of about 1 μs in 200more » μm diameter polystyrene beads.« less

  5. Photon counting phosphorescence lifetime imaging with TimepixCam.

    PubMed

    Hirvonen, Liisa M; Fisher-Levine, Merlin; Suhling, Klaus; Nomerotski, Andrei

    2017-01-01

    TimepixCam is a novel fast optical imager based on an optimized silicon pixel sensor with a thin entrance window and read out by a Timepix Application Specific Integrated Circuit. The 256 × 256 pixel sensor has a time resolution of 15 ns at a sustained frame rate of 10 Hz. We used this sensor in combination with an image intensifier for wide-field time-correlated single photon counting imaging. We have characterised the photon detection capabilities of this detector system and employed it on a wide-field epifluorescence microscope to map phosphorescence decays of various iridium complexes with lifetimes of about 1 μs in 200 μm diameter polystyrene beads.

  6. Photon counting phosphorescence lifetime imaging with TimepixCam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirvonen, Liisa M.; Fisher-Levine, Merlin; Suhling, Klaus

    TimepixCam is a novel fast optical imager based on an optimized silicon pixel sensor with a thin entrance window, and read out by a Timepix ASIC. The 256 x 256 pixel sensor has a time resolution of 15 ns at a sustained frame rate of 10 Hz. We used this sensor in combination with an image intensifier for wide-field time-correlated single photon counting (TCSPC) imaging. We have characterised the photon detection capabilities of this detector system, and employed it on a wide-field epifluorescence microscope to map phosphorescence decays of various iridium complexes with lifetimes of about 1 μs in 200more » μm diameter polystyrene beads.« less

  7. Photon counting phosphorescence lifetime imaging with TimepixCam

    NASA Astrophysics Data System (ADS)

    Hirvonen, Liisa M.; Fisher-Levine, Merlin; Suhling, Klaus; Nomerotski, Andrei

    2017-01-01

    TimepixCam is a novel fast optical imager based on an optimized silicon pixel sensor with a thin entrance window and read out by a Timepix Application Specific Integrated Circuit. The 256 × 256 pixel sensor has a time resolution of 15 ns at a sustained frame rate of 10 Hz. We used this sensor in combination with an image intensifier for wide-field time-correlated single photon counting imaging. We have characterised the photon detection capabilities of this detector system and employed it on a wide-field epifluorescence microscope to map phosphorescence decays of various iridium complexes with lifetimes of about 1 μs in 200 μm diameter polystyrene beads.

  8. Applicability of micro-channel plate followed by phosphor screen to charged particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himura, H., E-mail: himura@kit.ac.jp; Nakata, S.; Sanpei, A.

    2016-06-15

    This paper experimentally investigates the applicability of a micro-channel plate (MCP) followed by a phosphor screen to charged particles along with a calibration method for estimating the acceptable limit of input particle flux and appropriate operation parameters of a particular MCP. For the first time, plasmas consisting of only lithium ions are injected into the MCP. Despite large ion numbers (N{sub i}) on the order of ≃10{sup 7}, no deterioration in the effective gain (αG) of the MCP owing to an excess amount of the extracted charge occurs in a certain range of the amplifier voltage (ΔU{sub M}) applied tomore » the MCP. The measured αG nearly agrees with the expected value. However, once ΔU{sub M} exceeds a limit value, αG eventually begins to saturate. This is also verified in experiments using pure electron plasmas. An appropriate range of ΔU{sub M} is presented to avoid saturation and, finally, derive N{sub i} directly from the secondary electron current outputted from the MCP only after the indispensable calibration.« less

  9. Photon Counting System for High-Sensitivity Detection of Bioluminescence at Optical Fiber End.

    PubMed

    Iinuma, Masataka; Kadoya, Yutaka; Kuroda, Akio

    2016-01-01

    The technique of photon counting is widely used for various fields and also applicable to a high-sensitivity detection of luminescence. Thanks to recent development of single photon detectors with avalanche photodiodes (APDs), the photon counting system with an optical fiber has become powerful for a detection of bioluminescence at an optical fiber end, because it allows us to fully use the merits of compactness, simple operation, highly quantum efficiency of the APD detectors. This optical fiber-based system also has a possibility of improving the sensitivity to a local detection of Adenosine triphosphate (ATP) by high-sensitivity detection of the bioluminescence. In this chapter, we are introducing a basic concept of the optical fiber-based system and explaining how to construct and use this system.

  10. Direct tests of a pixelated microchannel plate as the active element of a shower maximum detector

    DOE PAGES

    Apresyan, A.; Los, S.; Pena, C.; ...

    2016-05-07

    One possibility to make a fast and radiation resistant shower maximum detector is to use a secondary emitter as an active element. We report our studies of microchannel plate photomultipliers (MCPs) as the active element of a shower-maximum detector. We present test beam results obtained using Photonis XP85011 to detect secondary particles of an electromagnetic shower. We focus on the use of the multiple pixels on the Photonis MCP in order to find a transverse two-dimensional shower distribution. A spatial resolution of 0.8 mm was obtained with an 8 GeV electron beam. As a result, a method for measuring themore » arrival time resolution for electromagnetic showers is presented, and we show that time resolution better than 40 ps can be achieved.« less

  11. Direct tests of a pixelated microchannel plate as the active element of a shower maximum detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apresyan, A.; Los, S.; Pena, C.

    One possibility to make a fast and radiation resistant shower maximum detector is to use a secondary emitter as an active element. We report our studies of microchannel plate photomultipliers (MCPs) as the active element of a shower-maximum detector. We present test beam results obtained using Photonis XP85011 to detect secondary particles of an electromagnetic shower. We focus on the use of the multiple pixels on the Photonis MCP in order to find a transverse two-dimensional shower distribution. A spatial resolution of 0.8 mm was obtained with an 8 GeV electron beam. As a result, a method for measuring themore » arrival time resolution for electromagnetic showers is presented, and we show that time resolution better than 40 ps can be achieved.« less

  12. Spectral X-Ray Diffraction using a 6 Megapixel Photon Counting Array Detector.

    PubMed

    Muir, Ryan D; Pogranichniy, Nicholas R; Muir, J Lewis; Sullivan, Shane Z; Battaile, Kevin P; Mulichak, Anne M; Toth, Scott J; Keefe, Lisa J; Simpson, Garth J

    2015-03-12

    Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging.

  13. Spectral x-ray diffraction using a 6 megapixel photon counting array detector

    NASA Astrophysics Data System (ADS)

    Muir, Ryan D.; Pogranichniy, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.

    2015-03-01

    Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging.

  14. The Slope Imaging Multi-Polarization Photon-Counting Lidar: Development and Performance Results

    NASA Technical Reports Server (NTRS)

    Dabney, Phillip

    2010-01-01

    The Slope Imaging Multi-polarization Photon-counting Lidar is an airborne instrument developed to demonstrate laser altimetry measurement methods that will enable more efficient observations of topography and surface properties from space. The instrument was developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryosphere remote sensing. The SIMPL transmitter is an 11 KHz, 1064 nm, plane-polarized micropulse laser transmitter that is frequency doubled to 532 nm and split into four push-broom beams. The receiver employs single-photon, polarimetric ranging at 532 and 1064 nm using Single Photon Counting Modules in order to achieve simultaneous sampling of surface elevation, slope, roughness and depolarizing scattering properties, the latter used to differentiate surface types. Data acquired over ice-covered Lake Erie in February, 2009 are documenting SIMPL s measurement performance and capabilities, demonstrating differentiation of open water and several ice cover types. ICESat-2 will employ several of the technologies advanced by SIMPL, including micropulse, single photon ranging in a multi-beam, push-broom configuration operating at 532 nm.

  15. Analogue saturation limit of single and double 10 mm microchannel plate photomultiplier tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milnes, J. S., E-mail: james.milnes@photek.co.uk; Conneely, T. M.; Horsfield, C. J.

    Photek are a well-established supplier of microchannel plate (MCP) photomultiplier tubes (PMTs) to the inertial confinement fusion community. The analogue signals produced at the major inertial confinement fusion facilities cover many orders of magnitude, therefore understanding the upper saturation limit of MCP-PMTs to large low rate signals takes on a high importance. Here we present a study of a single and a double MCP-PMT with 10 mm diameter active area. The saturation was studied for a range of optical pulse widths from 4 ns to 100 ns and at a range of electron gain values: 10{sup 3} to 10{sup 4}more » for the single and 10{sup 4} to 10{sup 6} for the double. We have shown that the saturation level of ∼1.2 nC depends only on the integrated charge of the pulse and is independent of pulse width and gain over this range, but that the level of charge available in deep saturation is proportional to the operating gain.« less

  16. Detector motion method to increase spatial resolution in photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Lee, Daehee; Park, Kyeongjin; Lim, Kyung Taek; Cho, Gyuseong

    2017-03-01

    Medical imaging requires high spatial resolution of an image to identify fine lesions. Photon-counting detectors in medical imaging have recently been rapidly replacing energy-integrating detectors due to the former`s high spatial resolution, high efficiency and low noise. Spatial resolution in a photon counting image is determined by the pixel size. Therefore, the smaller the pixel size, the higher the spatial resolution that can be obtained in an image. However, detector redesigning is required to reduce pixel size, and an expensive fine process is required to integrate a signal processing unit with reduced pixel size. Furthermore, as the pixel size decreases, charge sharing severely deteriorates spatial resolution. To increase spatial resolution, we propose a detector motion method using a large pixel detector that is less affected by charge sharing. To verify the proposed method, we utilized a UNO-XRI photon-counting detector (1-mm CdTe, Timepix chip) at the maximum X-ray tube voltage of 80 kVp. A similar spatial resolution of a 55- μm-pixel image was achieved by application of the proposed method to a 110- μm-pixel detector with a higher signal-to-noise ratio. The proposed method could be a way to increase spatial resolution without a pixel redesign when pixels severely suffer from charge sharing as pixel size is reduced.

  17. Calibration methods influence quantitative material decomposition in photon-counting spectral CT

    NASA Astrophysics Data System (ADS)

    Curtis, Tyler E.; Roeder, Ryan K.

    2017-03-01

    Photon-counting detectors and nanoparticle contrast agents can potentially enable molecular imaging and material decomposition in computed tomography (CT). Material decomposition has been investigated using both simulated and acquired data sets. However, the effect of calibration methods on material decomposition has not been systematically investigated. Therefore, the objective of this study was to investigate the influence of the range and number of contrast agent concentrations within a modular calibration phantom on quantitative material decomposition. A commerciallyavailable photon-counting spectral micro-CT (MARS Bioimaging) was used to acquire images with five energy bins selected to normalize photon counts and leverage the contrast agent k-edge. Material basis matrix values were determined using multiple linear regression models and material decomposition was performed using a maximum a posteriori estimator. The accuracy of quantitative material decomposition was evaluated by the root mean squared error (RMSE), specificity, sensitivity, and area under the curve (AUC). An increased maximum concentration (range) in the calibration significantly improved RMSE, specificity and AUC. The effects of an increased number of concentrations in the calibration were not statistically significant for the conditions in this study. The overall results demonstrated that the accuracy of quantitative material decomposition in spectral CT is significantly influenced by calibration methods, which must therefore be carefully considered for the intended diagnostic imaging application.

  18. Low photon count based digital holography for quadratic phase cryptography.

    PubMed

    Muniraj, Inbarasan; Guo, Changliang; Malallah, Ra'ed; Ryle, James P; Healy, John J; Lee, Byung-Geun; Sheridan, John T

    2017-07-15

    Recently, the vulnerability of the linear canonical transform-based double random phase encryption system to attack has been demonstrated. To alleviate this, we present for the first time, to the best of our knowledge, a method for securing a two-dimensional scene using a quadratic phase encoding system operating in the photon-counted imaging (PCI) regime. Position-phase-shifting digital holography is applied to record the photon-limited encrypted complex samples. The reconstruction of the complex wavefront involves four sparse (undersampled) dataset intensity measurements (interferograms) at two different positions. Computer simulations validate that the photon-limited sparse-encrypted data has adequate information to authenticate the original data set. Finally, security analysis, employing iterative phase retrieval attacks, has been performed.

  19. Photon-HDF5: an open file format for single-molecule fluorescence experiments using photon-counting detectors

    DOE PAGES

    Ingargiola, A.; Laurence, T. A.; Boutelle, R.; ...

    2015-12-23

    We introduce Photon-HDF5, an open and efficient file format to simplify exchange and long term accessibility of data from single-molecule fluorescence experiments based on photon-counting detectors such as single-photon avalanche diode (SPAD), photomultiplier tube (PMT) or arrays of such detectors. The format is based on HDF5, a widely used platform- and language-independent hierarchical file format for which user-friendly viewers are available. Photon-HDF5 can store raw photon data (timestamp, channel number, etc) from any acquisition hardware, but also setup and sample description, information on provenance, authorship and other metadata, and is flexible enough to include any kind of custom data. Themore » format specifications are hosted on a public website, which is open to contributions by the biophysics community. As an initial resource, the website provides code examples to read Photon-HDF5 files in several programming languages and a reference python library (phconvert), to create new Photon-HDF5 files and convert several existing file formats into Photon-HDF5. As a result, to encourage adoption by the academic and commercial communities, all software is released under the MIT open source license.« less

  20. Detective quantum efficiency of photon-counting x-ray detectors.

    PubMed

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A

    2015-01-01

    Single-photon-counting (SPC) x-ray imaging has the potential to improve image quality and enable novel energy-dependent imaging methods. Similar to conventional detectors, optimizing image SPC quality will require systems that produce the highest possible detective quantum efficiency (DQE). This paper builds on the cascaded-systems analysis (CSA) framework to develop a comprehensive description of the DQE of SPC detectors that implement adaptive binning. The DQE of SPC systems can be described using the CSA approach by propagating the probability density function (PDF) of the number of image-forming quanta through simple quantum processes. New relationships are developed to describe PDF transfer through serial and parallel cascades to accommodate scatter reabsorption. Results are applied to hypothetical silicon and selenium-based flat-panel SPC detectors including the effects of reabsorption of characteristic/scatter photons from photoelectric and Compton interactions, stochastic conversion of x-ray energy to secondary quanta, depth-dependent charge collection, and electronic noise. Results are compared with a Monte Carlo study. Depth-dependent collection efficiency can result in substantial broadening of photopeaks that in turn may result in reduced DQE at lower x-ray energies (20-45 keV). Double-counting interaction events caused by reabsorption of characteristic/scatter photons may result in falsely inflated image signal-to-noise ratio and potential overestimation of the DQE. The CSA approach is extended to describe signal and noise propagation through photoelectric and Compton interactions in SPC detectors, including the effects of escape and reabsorption of emission/scatter photons. High-performance SPC systems can be achieved but only for certain combinations of secondary conversion gain, depth-dependent collection efficiency, electronic noise, and reabsorption characteristics.

  1. Optical and UV Sensing Sealed Tube Microchannel Plate Imaging Detectors with High Time Resolution

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Vallerga, J.; Tremsin, A.; Hull, J.; Elam, J.; Mane, A.

    2014-09-01

    Microchannel plate (MCP) based imaging, photon time tagging detector sealed tube schemes have a unique set of operational features that enable high time resolution astronomical and remote sensing applications to be addressed. New detectors using the cross strip (XS), cross delay line (XDL), or stripline anode readouts, a wide range of photocathode types, and advanced MCP technologies have been implemented to improve many performance characteristics. A variety of sealed tubes have been developed including 18mm XS readout devices with GaAs and SuperGenII photocathodes, 25mm XDL readout devices with SuperGenII and GaN photocathodes, and 20 x 20 cm sealed tubes with bialkali photocathodes and strip line readout. One key technology that has just become viable is the ability to make MCPs using atomic layer deposition (ALD) techniques. This employs nanofabrication of the active layers of an MCP on a microcapillary array. This technique opens new performance opportunities, including, very large MCP areas (>20cm), very low intrinsic background, lower radiation induced background, much longer overall lifetime and gain stability, and markedly lower outgassing which can improve the sealed tube lifetime and ease of fabrication. The XS readout has been implemented in formats of 22mm, 50mm and 100mm, and uses MCP charge signals detected on two orthogonal layers of conductive fingers to encode event X-Y positions. We have achieved spatial resolution XS detectors better than 25 microns FWHM, with good image linearity while at low gain (<10^6), substantially increasing local counting rate capabilities and the overall tube lifetime. XS tubes with updated electronics can encode event rates of >5 MHz with ~12% dead time and event timing accuracy of ~100ps. XDL sealed tubes in 25mm format demonstrate ~40 micron spatial resolution at up to ~2 MHz event rates, and have been developed with SupergenII visible regime photocathodes. The XDL tubes also achieve ~100 ps time resolution. Most

  2. Diffusion-Welded Microchannel Heat Exchanger for Industrial Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piyush Sabharwall; Denis E. Clark; Michael V. Glazoff

    The goal of next generation reactors is to increase energy ef?ciency in the production of electricity and provide high-temperature heat for industrial processes. The ef?cient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process. The need for ef?ciency, compactness, and safety challenge the boundaries of existing heat exchanger technology. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more ef?cientmore » industrial processes. Modern compact heat exchangers can provide high compactness, a measure of the ratio of surface area-to-volume of a heat exchange. The microchannel heat exchanger studied here is a plate-type, robust heat exchanger that combines compactness, low pressure drop, high effectiveness, and the ability to operate with a very large pressure differential between hot and cold sides. The plates are etched and thereafter joined by diffusion welding, resulting in extremely strong all-metal heat exchanger cores. After bonding, any number of core blocks can be welded together to provide the required ?ow capacity. This study explores the microchannel heat exchanger and draws conclusions about diffusion welding/bonding for joining heat exchanger plates, with both experimental and computational modeling, along with existing challenges and gaps. Also, presented is a thermal design method for determining overall design speci?cations for a microchannel printed circuit heat exchanger for both supercritical (24 MPa) and subcritical (17 MPa) Rankine power cycles.« less

  3. Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate

    PubMed Central

    Schuck, Carsten; Pernice, Wolfram H. P.; Tang, Hong X.

    2013-01-01

    Superconducting nanowire single-photon detectors are an ideal match for integrated quantum photonic circuits due to their high detection efficiency for telecom wavelength photons. Quantum optical technology also requires single-photon detection with low dark count rate and high timing accuracy. Here we present very low noise superconducting nanowire single-photon detectors based on NbTiN thin films patterned directly on top of Si3N4 waveguides. We systematically investigate a large variety of detector designs and characterize their detection noise performance. Milli-Hz dark count rates are demonstrated over the entire operating range of the nanowire detectors which also feature low timing jitter. The ultra-low dark count rate, in combination with the high detection efficiency inherent to our travelling wave detector geometry, gives rise to a measured noise equivalent power at the 10−20 W/Hz1/2 level. PMID:23714696

  4. Temporal binning of time-correlated single photon counting data improves exponential decay fits and imaging speed

    PubMed Central

    Walsh, Alex J.; Sharick, Joe T.; Skala, Melissa C.; Beier, Hope T.

    2016-01-01

    Time-correlated single photon counting (TCSPC) enables acquisition of fluorescence lifetime decays with high temporal resolution within the fluorescence decay. However, many thousands of photons per pixel are required for accurate lifetime decay curve representation, instrument response deconvolution, and lifetime estimation, particularly for two-component lifetimes. TCSPC imaging speed is inherently limited due to the single photon per laser pulse nature and low fluorescence event efficiencies (<10%) required to reduce bias towards short lifetimes. Here, simulated fluorescence lifetime decays are analyzed by SPCImage and SLIM Curve software to determine the limiting lifetime parameters and photon requirements of fluorescence lifetime decays that can be accurately fit. Data analysis techniques to improve fitting accuracy for low photon count data were evaluated. Temporal binning of the decays from 256 time bins to 42 time bins significantly (p<0.0001) improved fit accuracy in SPCImage and enabled accurate fits with low photon counts (as low as 700 photons/decay), a 6-fold reduction in required photons and therefore improvement in imaging speed. Additionally, reducing the number of free parameters in the fitting algorithm by fixing the lifetimes to known values significantly reduced the lifetime component error from 27.3% to 3.2% in SPCImage (p<0.0001) and from 50.6% to 4.2% in SLIM Curve (p<0.0001). Analysis of nicotinamide adenine dinucleotide–lactate dehydrogenase (NADH-LDH) solutions confirmed temporal binning of TCSPC data and a reduced number of free parameters improves exponential decay fit accuracy in SPCImage. Altogether, temporal binning (in SPCImage) and reduced free parameters are data analysis techniques that enable accurate lifetime estimation from low photon count data and enable TCSPC imaging speeds up to 6x and 300x faster, respectively, than traditional TCSPC analysis. PMID:27446663

  5. Photon Counting Techniques Applied to Single Aerosol Particle Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Joynson, Steven

    Available from UMI in association with The British Library. Optical effects on single airborne particles were examined for their potential use in aerosol characterisation. All phenomena arising from the elastic or quasi-elastic scattering, or the absorption of light were considered. A survey of published research identified the effects that have so far been proposed and investigated by other researchers. The feasibility of using these effects is then discussed and appropriate calculations and measurements made. After reviewing the classical theory of the interaction of light with small particles it was apparent that there was a number of other effects that had not yet been considered or examined by other researchers. Calculations and measurements of these effects were then made and are also presented here. The effects were examined optically using photon counting equipment to count and store the dynamic light scattering signals from a single particles in an aerosol flow. The measurement thus entailed using a low intensity probe beam to measure the effects of higher intensity pump radiation on the motion, shape and scattering properties of a test particle. The amount of information in the probe signal was increased by using a velocimetry arrangement. In the absence of suitable commercially available photon counting equipment a new system had to be designed and developed at RMCS. Although requiring much time and effort to develop, the equipment allowed a new approach to light scattering research. The successful operation of the equipment was confirmed by the good agreement found when comparing measured photon count series statistics with those of the simulated signals presented by other researchers. Experiments that were done to measure some of the optical effects are described and the results presented. They demonstrate the successful diffusion sizing of individual aerosol particles and their motion under radiation pressure. Further experimental results demonstrate

  6. TH-EF-207A-03: Photon Counting Implementation Challenges Using An Electron Multiplying Charged-Coupled Device Based Micro-CT System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podgorsak, A; Bednarek, D; Rudin, S

    2016-06-15

    Purpose: To successfully implement and operate a photon counting scheme on an electron multiplying charged-coupled device (EMCCD) based micro-CT system. Methods: We built an EMCCD based micro-CT system and implemented a photon counting scheme. EMCCD detectors use avalanche transfer registries to multiply the input signal far above the readout noise floor. Due to intrinsic differences in the pixel array, using a global threshold for photon counting is not optimal. To address this shortcoming, we generated a threshold array based on sixty dark fields (no x-ray exposure). We calculated an average matrix and a variance matrix of the dark field sequence.more » The average matrix was used for the offset correction while the variance matrix was used to set individual pixel thresholds for the photon counting scheme. Three hundred photon counting frames were added for each projection and 360 projections were acquired for each object. The system was used to scan various objects followed by reconstruction using an FDK algorithm. Results: Examination of the projection images and reconstructed slices of the objects indicated clear interior detail free of beam hardening artifacts. This suggests successful implementation of the photon counting scheme on our EMCCD based micro-CT system. Conclusion: This work indicates that it is possible to implement and operate a photon counting scheme on an EMCCD based micro-CT system, suggesting that these devices might be able to operate at very low x-ray exposures in a photon counting mode. Such devices could have future implications in clinical CT protocols. NIH Grant R01EB002873; Toshiba Medical Systems Corp.« less

  7. Microchannel plate fabrication using glass capillary arrays with Atomic Layer Deposition films for resistance and gain

    NASA Astrophysics Data System (ADS)

    Popecki, M. A.; Adams, B.; Craven, C. A.; Cremer, T.; Foley, M. R.; Lyashenko, A.; O'Mahony, A.; Minot, M. J.; Aviles, M.; Bond, J. L.; Stochaj, M. E.; Worstell, W.; Elam, J. W.; Mane, A. U.; Siegmund, O. H. W.; Ertley, C.; Kistler, L. M.; Granoff, M. S.

    2016-08-01

    Microchannel plates (MCPs) have been used for many years in space flight instrumentation as fast, lightweight electron multipliers. A new MCP fabrication method combines a glass substrate composed of hollow glass capillary arrays with thin film coatings to provide the resistive and secondary electron emissive properties. Using this technique, the gain, resistance, and glass properties may be chosen independently. Large-area MCPs are available at moderate cost. Secondary emission films of Al2O3 and MgO provide sustained high gain as charge is extracted from the MCP. Long lifetimes are possible, and a total extracted charge of 7 C/cm2 has been demonstrated. Background rates are low because the glass substrate has little radioactive potassium 40. Curved MCPs are easily fabricated with this technique to suit instrument symmetries, simplifying secondary electron steering and smoothing azimuthal efficiency.

  8. Vapor bubble evolution on a heated surface containing open microchannels

    NASA Astrophysics Data System (ADS)

    Forster, Christopher J.; Glezer, Ari; Smith, Marc K.

    2011-11-01

    Power electronics require cooling technologies capable of high heat fluxes at or below the operating temperatures of these devices. Boiling heat transfer is an effective choice for such cooling, but it is limited by the critical heat flux (CHF), which is typically near 125 W/cm2 for pool boiling of water on a flat plate at standard pressure and gravity. One method of increasing CHF is to incorporate an array of microchannels into the heated surface. Microchannels have been experimentally shown to improve CHF, and the goal of this study is to determine the primary mechanisms associated with the microchannels that allow for the increased CHF. While the use of various microstructures is not new, the emphasis of previous work has been on heat transfer aspects, as opposed to the fluid dynamics inside and in the vicinity of the microchannels. This work considers the non-isothermal fluid motion during bubble growth and departure by varying channel geometry, spacing, and heat flux input using a level-set method including vaporization and condensation. These results and the study of the underlying mechanisms will aid in the design optimization of microchannel-based cooling devices. Supported by ONR.

  9. Investigation of energy weighting using an energy discriminating photon counting detector for breast CT

    PubMed Central

    Kalluri, Kesava S.; Mahd, Mufeed; Glick, Stephen J.

    2013-01-01

    Purpose: Breast CT is an emerging imaging technique that can portray the breast in 3D and improve visualization of important diagnostic features. Early clinical studies have suggested that breast CT has sufficient spatial and contrast resolution for accurate detection of masses and microcalcifications in the breast, reducing structural overlap that is often a limiting factor in reading mammographic images. For a number of reasons, image quality in breast CT may be improved by use of an energy resolving photon counting detector. In this study, the authors investigate the improvements in image quality obtained when using energy weighting with an energy resolving photon counting detector as compared to that with a conventional energy integrating detector. Methods: Using computer simulation, realistic CT images of multiple breast phantoms were generated. The simulation modeled a prototype breast CT system using an amorphous silicon (a-Si), CsI based energy integrating detector with different x-ray spectra, and a hypothetical, ideal CZT based photon counting detector with capability of energy discrimination. Three biological signals of interest were modeled as spherical lesions and inserted into breast phantoms; hydroxyapatite (HA) to represent microcalcification, infiltrating ductal carcinoma (IDC), and iodine enhanced infiltrating ductal carcinoma (IIDC). Signal-to-noise ratio (SNR) of these three lesions was measured from the CT reconstructions. In addition, a psychophysical study was conducted to evaluate observer performance in detecting microcalcifications embedded into a realistic anthropomorphic breast phantom. Results: In the energy range tested, improvements in SNR with a photon counting detector using energy weighting was higher (than the energy integrating detector method) by 30%–63% and 4%–34%, for HA and IDC lesions and 12%–30% (with Al filtration) and 32%–38% (with Ce filtration) for the IIDC lesion, respectively. The average area under the

  10. Estimating the vegetation canopy height using micro-pulse photon-counting LiDAR data.

    PubMed

    Nie, Sheng; Wang, Cheng; Xi, Xiaohuan; Luo, Shezhou; Li, Guoyuan; Tian, Jinyan; Wang, Hongtao

    2018-05-14

    The upcoming space-borne LiDAR satellite Ice, Cloud and land Elevation Satellite-2 (ICESat-2) is scheduled to launch in 2018. Different from the waveform LiDAR system onboard the ICESat, ICESat-2 will use a micro-pulse photon-counting LiDAR system. Thus new data processing algorithms are required to retrieve vegetation canopy height from photon-counting LiDAR data. The objective of this paper is to develop and validate an automated approach for better estimating vegetation canopy height. The new proposed method consists of three key steps: 1) filtering out the noise photons by an effective noise removal algorithm based on localized statistical analysis; 2) separating ground returns from canopy returns using an iterative photon classification algorithm, and then determining ground surface; 3) generating canopy-top surface and calculating vegetation canopy height based on canopy-top and ground surfaces. This automatic vegetation height estimation approach was tested to the simulated ICESat-2 data produced from Sigma Space LiDAR data and Multiple Altimeter Beam Experimental LiDAR (MABEL) data, and the retrieved vegetation canopy heights were validated by canopy height models (CHMs) derived from airborne discrete-return LiDAR data. Results indicated that the estimated vegetation canopy heights have a relatively strong correlation with the reference vegetation heights derived from airborne discrete-return LiDAR data (R 2 and RMSE values ranging from 0.639 to 0.810 and 4.08 m to 4.56 m respectively). This means our new proposed approach is appropriate for retrieving vegetation canopy height from micro-pulse photon-counting LiDAR data.

  11. Technical note: enumeration of mesophilic aerobes in milk: evaluation of standard official protocols and Petrifilm aerobic count plates.

    PubMed

    Freitas, R; Nero, L A; Carvalho, A F

    2009-07-01

    Enumeration of mesophilic aerobes (MA) is the main quality and hygiene parameter for raw and pasteurized milk. High levels of these microorganisms indicate poor conditions in production, storage, and processing of milk, and also the presence of pathogens. Fifteen raw and 15 pasteurized milk samples were submitted for MA enumeration by a conventional plating method (using plate count agar) and Petrifilm Aerobic Count plates (3M, St. Paul, MN), followed by incubation according to 3 official protocols: IDF/ISO (incubation at 30 degrees C for 72 h), American Public Health Association (32 degrees C for 48 h), and Brazilian Ministry of Agriculture (36 degrees C for 48 h). The results were compared by linear regression and ANOVA. Considering the results from conventional methodology, good correlation indices and absence of significant differences between mean counts were observed, independent of type of milk sample (raw or pasteurized) and incubation conditions (IDF/ISO, American Public Health Association, or Ministry of Agriculture). Considering the results from Petrifilm Aerobic Count plates, good correlation indices and absence of significant differences were only observed for raw milk samples. The microbiota of pasteurized milk interfered negatively with the performance of Petrifilm Aerobic Count plates, probably because of the presence of microorganisms that poorly reduce the dye indicator of this system.

  12. Detective quantum efficiency of photon-counting x-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanguay, Jesse, E-mail: jessetan@mail.ubc.ca; Yun, Seungman; Kim, Ho Kyung

    Purpose: Single-photon-counting (SPC) x-ray imaging has the potential to improve image quality and enable novel energy-dependent imaging methods. Similar to conventional detectors, optimizing image SPC quality will require systems that produce the highest possible detective quantum efficiency (DQE). This paper builds on the cascaded-systems analysis (CSA) framework to develop a comprehensive description of the DQE of SPC detectors that implement adaptive binning. Methods: The DQE of SPC systems can be described using the CSA approach by propagating the probability density function (PDF) of the number of image-forming quanta through simple quantum processes. New relationships are developed to describe PDF transfermore » through serial and parallel cascades to accommodate scatter reabsorption. Results are applied to hypothetical silicon and selenium-based flat-panel SPC detectors including the effects of reabsorption of characteristic/scatter photons from photoelectric and Compton interactions, stochastic conversion of x-ray energy to secondary quanta, depth-dependent charge collection, and electronic noise. Results are compared with a Monte Carlo study. Results: Depth-dependent collection efficiency can result in substantial broadening of photopeaks that in turn may result in reduced DQE at lower x-ray energies (20–45 keV). Double-counting interaction events caused by reabsorption of characteristic/scatter photons may result in falsely inflated image signal-to-noise ratio and potential overestimation of the DQE. Conclusions: The CSA approach is extended to describe signal and noise propagation through photoelectric and Compton interactions in SPC detectors, including the effects of escape and reabsorption of emission/scatter photons. High-performance SPC systems can be achieved but only for certain combinations of secondary conversion gain, depth-dependent collection efficiency, electronic noise, and reabsorption characteristics.« less

  13. Short communication: Repeatability of differential goat bulk milk culture and associations with somatic cell count, total bacterial count, and standard plate count.

    PubMed

    Koop, G; Dik, N; Nielen, M; Lipman, L J A

    2010-06-01

    The aims of this study were to assess how different bacterial groups in bulk milk are related to bulk milk somatic cell count (SCC), bulk milk total bacterial count (TBC), and bulk milk standard plate count (SPC) and to measure the repeatability of bulk milk culturing. On 53 Dutch dairy goat farms, 3 bulk milk samples were collected at intervals of 2 wk. The samples were cultured for SPC, coliform count, and staphylococcal count and for the presence of Staphylococcus aureus. Furthermore, SCC (Fossomatic 5000, Foss, Hillerød, Denmark) and TBC (BactoScan FC 150, Foss) were measured. Staphylococcal count was correlated to SCC (r=0.40), TBC (r=0.51), and SPC (r=0.53). Coliform count was correlated to TBC (r=0.33), but not to any of the other variables. Staphylococcus aureus did not correlate to SCC. The contribution of the staphylococcal count to the SPC was 31%, whereas the coliform count comprised only 1% of the SPC. The agreement of the repeated measurements was low. This study indicates that staphylococci in goat bulk milk are related to SCC and make a significant contribution to SPC. Because of the high variation in bacterial counts, repeated sampling is necessary to draw valid conclusions from bulk milk culturing. 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. An efficient computational approach to model statistical correlations in photon counting x-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faby, Sebastian; Maier, Joscha; Sawall, Stefan

    2016-07-15

    Purpose: To introduce and evaluate an increment matrix approach (IMA) describing the signal statistics of energy-selective photon counting detectors including spatial–spectral correlations between energy bins of neighboring detector pixels. The importance of the occurring correlations for image-based material decomposition is studied. Methods: An IMA describing the counter increase patterns in a photon counting detector is proposed. This IMA has the potential to decrease the number of required random numbers compared to Monte Carlo simulations by pursuing an approach based on convolutions. To validate and demonstrate the IMA, an approximate semirealistic detector model is provided, simulating a photon counting detector inmore » a simplified manner, e.g., by neglecting count rate-dependent effects. In this way, the spatial–spectral correlations on the detector level are obtained and fed into the IMA. The importance of these correlations in reconstructed energy bin images and the corresponding detector performance in image-based material decomposition is evaluated using a statistically optimal decomposition algorithm. Results: The results of IMA together with the semirealistic detector model were compared to other models and measurements using the spectral response and the energy bin sensitivity, finding a good agreement. Correlations between the different reconstructed energy bin images could be observed, and turned out to be of weak nature. These correlations were found to be not relevant in image-based material decomposition. An even simpler simulation procedure based on the energy bin sensitivity was tested instead and yielded similar results for the image-based material decomposition task, as long as the fact that one incident photon can increase multiple counters across neighboring detector pixels is taken into account. Conclusions: The IMA is computationally efficient as it required about 10{sup 2} random numbers per ray incident on a detector pixel

  15. X-ray tests of a microchannel plate detector and amorphous silicon pixel array readout for neutron radiography

    NASA Astrophysics Data System (ADS)

    Ambrosi, R. M.; Street, R.; Feller, B.; Fraser, G. W.; Watterson, J. I. W.; Lanza, R. C.; Dowson, J.; Ross, D.; Martindale, A.; Abbey, A. F.; Vernon, D.

    2007-03-01

    High-performance large area imaging detectors for fast neutrons in the 5-14 MeV energy range do not exist at present. The aim of this project is to combine microchannel plates or MCPs (or similar electron multiplication structures) traditionally used in image intensifiers and X-ray detectors with amorphous silicon (a-Si) pixel arrays to produce a composite converter and intensifier position sensitive imaging system. This detector will provide an order of magnitude improvement in image resolution when compared with current millimetre resolution limits obtained using phosphor or scintillator-based hydrogen rich converters. In this study we present the results of the initial experimental evaluation of the prototype system. This study was carried out using a medical X-ray source for the proof of concept tests, the next phase will involve neutron imaging tests. The hybrid detector described in this study is a unique development and paves the way for large area position sensitive detectors consisting of MCP or microsphere plate detectors and a-Si or polysilicon pixel arrays. Applications include neutron and X-ray imaging for terrestrial applications. The technology could be extended to space instrumentation for X-ray astronomy.

  16. Ultraviolet quantum detection efficiency of potassium bromide as an opaque photocathode applied to microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald H. W.; Everman, E.; Vallerga, J. V.; Sokolowski, J.; Lampton, M.

    1987-01-01

    The quantum detection efficiency (QDE) of potassium bromide as a photocathode applied directly to the surface of a microchannel plate over the 250-1600 A wavelength range has been measured. The contributions of the photocathode material in the channels and on the interchannel web to the QDE have been determined. Two broad peaks in the QDE centered at about 450 and about 1050 A are apparent, the former with about 50 percent peak QDE and the latter with about 40 percent peak QDE. The photoelectric threshold is observed at about 1600 A, and there is a narrow QDE minimum at about 750 A which correlates with 2X the band gap energy for KBr. The angular variation of the QDE from 0 to 40 deg to the channnel axis has also been examined. The stability of Kbr with time is shown to be good with no significant degradation of QDE at wavelengths below 1216 A over a 15-day period in air.

  17. Energy-correction photon counting pixel for photon energy extraction under pulse pile-up

    NASA Astrophysics Data System (ADS)

    Lee, Daehee; Park, Kyungjin; Lim, Kyung Taek; Cho, Gyuseong

    2017-06-01

    A photon counting detector (PCD) has been proposed as an alternative solution to an energy-integrating detector (EID) in medical imaging field due to its high resolution, high efficiency, and low noise. The PCD has expanded to variety of fields such as spectral CT, k-edge imaging, and material decomposition owing to its capability to count and measure the number and the energy of an incident photon, respectively. Nonetheless, pulse pile-up, which is a superimposition of pulses at the output of a charge sensitive amplifier (CSA) in each PC pixel, occurs frequently as the X-ray flux increases due to the finite pulse processing time (PPT) in CSAs. Pulse pile-up induces not only a count loss but also distortion in the measured X-ray spectrum from each PC pixel and thus it is a main constraint on the use of PCDs in high flux X-ray applications. To minimize these effects, an energy-correction PC (ECPC) pixel is proposed to resolve pulse pile-up without cutting off the PPT by adding an energy correction logic (ECL) via a cross detection method (CDM). The ECPC pixel with a size of 200×200 μm2 was fabricated by using a 6-metal 1-poly 0.18 μm CMOS process with a static power consumption of 7.2 μW/pixel. The maximum count rate of the ECPC pixel was extended by approximately three times higher than that of a conventional PC pixel with a PPT of 500 nsec. The X-ray spectrum of 90 kVp, filtered by 3 mm Al filter, was measured as the X-ray current was increased using the CdTe and the ECPC pixel. As a result, the ECPC pixel dramatically reduced the energy spectrum distortion at 2 Mphotons/pixel/s when compared to that of the ERCP pixel with the same 500 nsec PPT.

  18. Detection of Salmonella sp., Vibrio sp. and total plate count bacteria on blood cockle (Anadara granosa)

    NASA Astrophysics Data System (ADS)

    Ekawati, ER; Yusmiati, S. N. H.

    2018-01-01

    Blood cockle (Anadara granosa) has high level of zinc and protein, which is beneficial for therapeutic function for malnourished particularly stunting case in children. Zinc in animal foods is more absorbable than that from vegetable food. Blood cockle (Anadara granosa) is rich in nutrient and an excellent environment for the growth of microorganisms. This research aimed to identify the contamination of Salmonella sp., Vibrio sp. and total plate count bacteria on blood cockle (Anadara granosa). This was observation research with laboratory analysis. Salmonella sp. and Vibrio sp. were detected from blood cockle. Total plate count was determine of the total amount of the bacteria. Results detected from 20 samples of blood cockle showed that all samples were negative of Salmonella sp. and 1 sample positive Vibrio sp. The result of total plate count bacteria was < 5 x 105 colony/g sample.

  19. High quantum efficiency and low dark count rate in multi-layer superconducting nanowire single-photon detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafari Salim, A., E-mail: ajafaris@uwaterloo.ca; Eftekharian, A.; University of Waterloo, Waterloo, Ontario N2L 3G1

    In this paper, we theoretically show that a multi-layer superconducting nanowire single-photon detector (SNSPD) is capable of approaching characteristics of an ideal SNSPD in terms of the quantum efficiency, dark count, and band-width. A multi-layer structure improves the performance in two ways. First, the potential barrier for thermally activated vortex crossing, which is the major source of dark counts and the reduction of the critical current in SNSPDs is elevated. In a multi-layer SNSPD, a vortex is made of 2D-pancake vortices that form a stack. It will be shown that the stack of pancake vortices effectively experiences a larger potentialmore » barrier compared to a vortex in a single-layer SNSPD. This leads to an increase in the experimental critical current as well as significant decrease in the dark count rate. In consequence, an increase in the quantum efficiency for photons of the same energy or an increase in the sensitivity to photons of lower energy is achieved. Second, a multi-layer structure improves the efficiency of single-photon absorption by increasing the effective optical thickness without compromising the single-photon sensitivity.« less

  20. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    PubMed Central

    Ding, Huanjun; Cho, Hyo-Min; Barber, William C.; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  1. A generalized plate method for estimating total aerobic microbial count.

    PubMed

    Ho, Kai Fai

    2004-01-01

    The plate method outlined in Chapter 61: Microbial Limit Tests of the U.S. Pharmacopeia (USP 61) provides very specific guidance for assessing total aerobic bioburden in pharmaceutical articles. This methodology, while comprehensive, lacks the flexibility to be useful in all situations. By studying the plate method as a special case within a more general family of assays, the effects of each parameter in the guidance can be understood. Using a mathematical model to describe the plate counting procedure, a statistical framework for making more definitive statements about total aerobic bioburden is developed. Such a framework allows the laboratory scientist to adjust the USP 61 methods to satisfy specific practical constraints. In particular, it is shown that the plate method can be conducted, albeit with stricter acceptance criteria, using a test specimen quantity that is smaller than the 10 g or 10 mL prescribed in the guidance. Finally, the interpretation of results proffered by the guidance is re-examined within this statistical framework and shown to be overly aggressive.

  2. Microchannel apparatus and methods of conducting catalyzed oxidative dehydrogenation

    DOEpatents

    Tonkovich, Anna Lee [Dublin, OH; Yang, Bin [Columbus, OH; Perry, Steven T [Galloway, OH; Mazanec, Terry [Solon, OH; Arora, Ravi [New Albany, OH; Daly, Francis P [Delaware, OH; Long, Richard [New Albany, OH; Yuschak, Thomas D [Lewis Center, OH; Neagle, Paul W [Westerville, OH; Glass, Amanda [Galloway, OH

    2011-08-16

    Methods of oxidative dehydrogenation are described. Surprisingly, Pd and Au alloys of Pt have been discovered to be superior for oxidative dehydrogenation in microchannels. Methods of forming these catalysts via an electroless plating methodology are also described. An apparatus design that minimizes heat transfer to the apparatus' exterior is also described.

  3. Smart photonic coating as a new visualization technique of strain deformation of metal plates

    NASA Astrophysics Data System (ADS)

    Fudouzi, Hiroshi; Sawada, Tsutomu; Tanaka, Yoshikazu; Ario, Ichiro; Hyakutake, Tsuyoshi; Nishizaki, Itaru

    2012-04-01

    We will present a simple and low cost method to visualize local strain distribution in deformed aluminum plates. In this study, aluminum plates were coated with opal photonic crystal film with tunable structural color. The photonic crystal films consist of a silicone elastomer that contains an array of submicron polystyrene colloidal particles. When the aluminum sheets were stretched, the change in the spacing of the colloidal particles in the opal film alters the color of the film. This approach could be useful as a new strain gauge having a visual indicator to detect mechanical deformation.

  4. Research on silicon microchannel array oxidation insulation technology and stress issues

    NASA Astrophysics Data System (ADS)

    Chai, Jin; Li, Mo; Liang, Yong-zhao; Yang, Ji-kai; Wang, Guo-zheng; Duanmu, Qing-duo

    2013-08-01

    Microchannel plate is widely used in the field of low light level night vision, photomultiplier, tubes, X-ray enhancer and so on. In order to meet the requirement of microchannel plate electron multiplier, we used the method of thermal oxidation to produce a thin film of silicon dioxide which could play a role in electric insulation. Silicon dioxide film has a high breakdown voltage, it can satisfy the high breakdown voltage requirements of electron multiplier. We should find the reasonable parameter values and preparation process in the oxidation so that the thickness and uniformity of the silicon dioxide layer would meet requirement. This article has been focused on researching and analyzing of the problem of oxide insulation and thermal stress in the process of production of silicon dioxide film. In this experiment, dry oxygen and wet oxygen were carried out respectively for 8 hours. The thickness of dry oxygen silicon dioxide films was 458 nm and wet oxygen silicon dioxide films was 1.4 μm. Under these conditions, the silicon microchannel is uniformity and neat, meanwhile the insulating layer's breakdown voltage was measured at 450 V after the wet oxygen oxidation. By using ANSYS finite element software, we analyze the thermal stress, which came from the microchannel oxygen processes, under the conditions of which ambient temperature was 27 ℃ and porosity was 64%, we simulated the thermal stress in the temperature of 1200 ℃ and 1000 ℃, finally we got the maximum equivalent thermal stress of 472 MPa and 403 MPa respectively. The higher thermal stress area was spread over Si-SiO2 interface, by simulate conditions 50% porosity silicon microchannel sample was selected for simulation analysis at 1100 ℃, we got the maximum equivalent thermal stress of 472 MPa, Thermal stress is the minimum value of 410 MPa.

  5. High-security communication by coherence modulation at the photon-counting level.

    PubMed

    Rhodes, William T; Boughanmi, Abdellatif; Moreno, Yezid Torres

    2016-05-20

    We show that key-specified interferometer path-length difference modulation (often referred to as coherence modulation), operating in the photon-counting regime with a broadband source, can provide a quantifiably high level of physics-guaranteed security for binary signal transmission. Each signal bit is associated with many photocounts, perhaps numbering in the thousands. Of great importance, the presence of an eavesdropper can be quickly detected. We first review the operation of key-specified coherence modulation at high light levels, illustrating by means of an example its lack of security against attack. We then show, using the same example, that, through the reduction of light intensities to photon-counting levels, a high level of security can be attained. A particular attack on the system is analyzed to demonstrate the quantifiability of the scheme's security, and various remaining research issues are discussed. A potential weakness of the scheme lies in a possible vulnerability to light amplification by an attacker.

  6. A study of pile-up in integrated time-correlated single photon counting systems

    NASA Astrophysics Data System (ADS)

    Arlt, Jochen; Tyndall, David; Rae, Bruce R.; Li, David D.-U.; Richardson, Justin A.; Henderson, Robert K.

    2013-10-01

    Recent demonstration of highly integrated, solid-state, time-correlated single photon counting (TCSPC) systems in CMOS technology is set to provide significant increases in performance over existing bulky, expensive hardware. Arrays of single photon single photon avalanche diode (SPAD) detectors, timing channels, and signal processing can be integrated on a single silicon chip with a degree of parallelism and computational speed that is unattainable by discrete photomultiplier tube and photon counting card solutions. New multi-channel, multi-detector TCSPC sensor architectures with greatly enhanced throughput due to minimal detector transit (dead) time or timing channel dead time are now feasible. In this paper, we study the potential for future integrated, solid-state TCSPC sensors to exceed the photon pile-up limit through analytic formula and simulation. The results are validated using a 10% fill factor SPAD array and an 8-channel, 52 ps resolution time-to-digital conversion architecture with embedded lifetime estimation. It is demonstrated that pile-up insensitive acquisition is attainable at greater than 10 times the pulse repetition rate providing over 60 dB of extended dynamic range to the TCSPC technique. Our results predict future CMOS TCSPC sensors capable of live-cell transient observations in confocal scanning microscopy, improved resolution of near-infrared optical tomography systems, and fluorescence lifetime activated cell sorting.

  7. A study of pile-up in integrated time-correlated single photon counting systems.

    PubMed

    Arlt, Jochen; Tyndall, David; Rae, Bruce R; Li, David D-U; Richardson, Justin A; Henderson, Robert K

    2013-10-01

    Recent demonstration of highly integrated, solid-state, time-correlated single photon counting (TCSPC) systems in CMOS technology is set to provide significant increases in performance over existing bulky, expensive hardware. Arrays of single photon single photon avalanche diode (SPAD) detectors, timing channels, and signal processing can be integrated on a single silicon chip with a degree of parallelism and computational speed that is unattainable by discrete photomultiplier tube and photon counting card solutions. New multi-channel, multi-detector TCSPC sensor architectures with greatly enhanced throughput due to minimal detector transit (dead) time or timing channel dead time are now feasible. In this paper, we study the potential for future integrated, solid-state TCSPC sensors to exceed the photon pile-up limit through analytic formula and simulation. The results are validated using a 10% fill factor SPAD array and an 8-channel, 52 ps resolution time-to-digital conversion architecture with embedded lifetime estimation. It is demonstrated that pile-up insensitive acquisition is attainable at greater than 10 times the pulse repetition rate providing over 60 dB of extended dynamic range to the TCSPC technique. Our results predict future CMOS TCSPC sensors capable of live-cell transient observations in confocal scanning microscopy, improved resolution of near-infrared optical tomography systems, and fluorescence lifetime activated cell sorting.

  8. A three-wavelength multi-channel brain functional imager based on digital lock-in photon-counting technique

    NASA Astrophysics Data System (ADS)

    Ding, Xuemei; Wang, Bingyuan; Liu, Dongyuan; Zhang, Yao; He, Jie; Zhao, Huijuan; Gao, Feng

    2018-02-01

    During the past two decades there has been a dramatic rise in the use of functional near-infrared spectroscopy (fNIRS) as a neuroimaging technique in cognitive neuroscience research. Diffuse optical tomography (DOT) and optical topography (OT) can be employed as the optical imaging techniques for brain activity investigation. However, most current imagers with analogue detection are limited by sensitivity and dynamic range. Although photon-counting detection can significantly improve detection sensitivity, the intrinsic nature of sequential excitations reduces temporal resolution. To improve temporal resolution, sensitivity and dynamic range, we develop a multi-channel continuous-wave (CW) system for brain functional imaging based on a novel lock-in photon-counting technique. The system consists of 60 Light-emitting device (LED) sources at three wavelengths of 660nm, 780nm and 830nm, which are modulated by current-stabilized square-wave signals at different frequencies, and 12 photomultiplier tubes (PMT) based on lock-in photon-counting technique. This design combines the ultra-high sensitivity of the photon-counting technique with the parallelism of the digital lock-in technique. We can therefore acquire the diffused light intensity for all the source-detector pairs (SD-pairs) in parallel. The performance assessments of the system are conducted using phantom experiments, and demonstrate its excellent measurement linearity, negligible inter-channel crosstalk, strong noise robustness and high temporal resolution.

  9. ON THE USE OF SHOT NOISE FOR PHOTON COUNTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zmuidzinas, Jonas, E-mail: jonas@caltech.edu

    Lieu et al. have recently claimed that it is possible to substantially improve the sensitivity of radio-astronomical observations. In essence, their proposal is to make use of the intensity of the photon shot noise as a measure of the photon arrival rate. Lieu et al. provide a detailed quantum-mechanical calculation of a proposed measurement scheme that uses two detectors and conclude that this scheme avoids the sensitivity degradation that is associated with photon bunching. If correct, this result could have a profound impact on radio astronomy. Here I present a detailed analysis of the sensitivity attainable using shot-noise measurement schemesmore » that use either one or two detectors, and demonstrate that neither scheme can avoid the photon bunching penalty. I perform both semiclassical and fully quantum calculations of the sensitivity, obtaining consistent results, and provide a formal proof of the equivalence of these two approaches. These direct calculations are furthermore shown to be consistent with an indirect argument based on a correlation method that establishes an independent limit to the sensitivity of shot-noise measurement schemes. Furthermore, these calculations are directly applicable to the regime of interest identified by Lieu et al. Collectively, these results conclusively demonstrate that the photon-bunching sensitivity penalty applies to shot-noise measurement schemes just as it does to ordinary photon counting, in contradiction to the fundamental claim made by Lieu et al. The source of this contradiction is traced to a logical fallacy in their argument.« less

  10. Polarimetric, Two-Color, Photon-Counting Laser Altimeter Measurements of Forest Canopy Structure

    NASA Technical Reports Server (NTRS)

    Harding, David J.; Dabney, Philip W.; Valett, Susan

    2011-01-01

    Laser altimeter measurements of forest stands with distinct structures and compositions have been acquired at 532 nm (green) and 1064 nm (near-infrared) wavelengths and parallel and perpendicular polarization states using the Slope Imaging Multi-polarization Photon Counting Lidar (SIMPL). The micropulse, single photon ranging measurement approach employed by SIMPL provides canopy structure measurements with high vertical and spatial resolution. Using a height distribution analysis method adapted from conventional, 1064 nm, full-waveform lidar remote sensing, the sensitivity of two parameters commonly used for above-ground biomass estimation are compared as a function of wavelength. The results for the height of median energy (HOME) and canopy cover are for the most part very similar, indicating biomass estimations using lidars operating at green and near-infrared wavelengths will yield comparable estimates. The expected detection of increasing depolarization with depth into the canopies due to volume multiple-scattering was not observed, possibly due to the small laser footprint and the small detector field of view used in the SIMPL instrument. The results of this work provide pathfinder information for NASA's ICESat-2 mission that will employ a 532 nm, micropulse, photon counting laser altimeter.

  11. 15Mcps photon-counting X-ray computed tomography system using a ZnO-MPPC detector and its application to gadolinium imaging.

    PubMed

    Sato, Eiichi; Sugimura, Shigeaki; Endo, Haruyuki; Oda, Yasuyuki; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Osawa, Akihiro; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2012-01-01

    15Mcps photon-counting X-ray computed tomography (CT) system is a first-generation type and consists of an X-ray generator, a turntable, a translation stage, a two-stage controller, a detector consisting of a 2mm-thick zinc-oxide (ZnO) single-crystal scintillator and an MPPC (multipixel photon counter) module, a counter card (CC), and a personal computer (PC). High-speed photon counting was carried out using the detector in the X-ray CT system. The maximum count rate was 15Mcps (mega counts per second) at a tube voltage of 100kV and a tube current of 1.95mA. Tomography is accomplished by repeated translations and rotations of an object, and projection curves of the object are obtained by the translation. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The minimum exposure time for obtaining a tomogram was 15min, and photon-counting CT was accomplished using gadolinium-based contrast media. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Radiation-Resistant Photon-Counting Detector Package Providing Sub-ps Stability for Laser Time Transfer in Space

    NASA Technical Reports Server (NTRS)

    Prochzaka, Ivan; Kodat, Jan; Blazej, Josef; Sun, Xiaoli (Editor)

    2015-01-01

    We are reporting on a design, construction and performance of photon-counting detector packages based on silicon avalanche photodiodes. These photon-counting devices have been optimized for extremely high stability of their detection delay. The detectors have been designed for future applications in fundamental metrology and optical time transfer in space. The detectors have been qualified for operation in space missions. The exceptional radiation tolerance of the detection chip itself and of all critical components of a detector package has been verified in a series of experiments.

  13. 1.5- μm single photon counting using polarization-independent up-conversion detector

    NASA Astrophysics Data System (ADS)

    Takesue, Hiroki; Diamanti, Eleni; Langrock, Carsten; Fejer, M. M.; Yamamoto, Yoshihisa

    2006-12-01

    We report a 1.5- μm band polarization independent single photon detector based on frequency up-conversion in periodically poled lithium niobate (PPLN) waveguides. To overcome the polarization dependence of the PPLN waveguides, we employed a polarization diversity configuration composed of two up-conversion detectors connected with a polarization beam splitter. We experimentally confirmed polarization independent single photon counting using our detector. We undertook a proof-of-principle differential phase shift quantum key distribution experiment using the detector, and confirmed that the sifted key rate and error rate remained stable when the polarization state was changed during single photon transmission.

  14. SOI metal-oxide-semiconductor field-effect transistor photon detector based on single-hole counting.

    PubMed

    Du, Wei; Inokawa, Hiroshi; Satoh, Hiroaki; Ono, Atsushi

    2011-08-01

    In this Letter, a scaled-down silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistor (MOSFET) is characterized as a photon detector, where photogenerated individual holes are trapped below the negatively biased gate and modulate stepwise the electron current flowing in the bottom channel induced by the positive substrate bias. The output waveforms exhibit clear separation of current levels corresponding to different numbers of trapped holes. Considering this capability of single-hole counting, a small dark count of less than 0.02 s(-1) at room temperature, and low operation voltage of 1 V, SOI MOSFET could be a unique photon-number-resolving detector if the small quantum efficiency were improved. © 2011 Optical Society of America

  15. Development, Fabrication, and Testing of a Liquid/Liquid Microchannel Heat Exchanger for Constellation Spacecrafts

    NASA Technical Reports Server (NTRS)

    Hawkins-Reynolds, Ebony; Le, Hung; Stephan, Ryan

    2010-01-01

    Microchannel technology can be incorporated into heat exchanger designs to decrease the mass and volume of space hardware. The National Aeronautics and Space Administration at the Johnson Space Center (NASA JSC) partnered with Pacific Northwest National Laboratories (PNNL) to develop a liquid/liquid microchannel heat exchanger that has significant mass and volume savings without sacrificing thermal and pressure drop performance. PNNL designed the microchannel heat exchanger to the same performance design requirements of a conventional plate and fin liquid/liquid heat exchanger; 3 kW duty with inlet temperatures of 26 C and 4 C. Both heat exchangers were tested using the same test parameters on a test apparatus and performance data compared.

  16. On Approaching the Ultimate Limits of Communication Using a Photon-Counting Detector

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris I.; Moision, Bruce E.; Dolinar, Samuel J.; Birnbaum, Kevin M.; Divsalar, Dariush

    2012-01-01

    Coherent states achieve the Holevo capacity of a pure-loss channel when paired with an optimal measurement, but a physical realization of this measurement scheme is as of yet unknown, and it is also likely to be of high complexity. In this paper, we focus on the photon-counting measurement and study the photon and dimensional efficiencies attainable with modulations over classical- and nonclassical-state alphabets. We analyze two binary modulation architectures that improve upon the dimensional versus photon efficiency tradeoff achievable with the state-of-the-art coherent-state on-off keying modulation. We show that at high photon efficiency these architectures achieve an efficiency tradeoff that differs from the best possible tradeoff--determined by the Holevo capacity--by only a constant factor. The first architecture we analyze is a coherent-state transmitter that relies on feedback from the receiver to control the transmitted energy. The second architecture uses a single-photon number-state source.

  17. Phasor imaging with a widefield photon-counting detector

    PubMed Central

    Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Weiss, Shimon

    2012-01-01

    Abstract. Fluorescence lifetime can be used as a contrast mechanism to distinguish fluorophores for localization or tracking, for studying molecular interactions, binding, assembly, and aggregation, or for observing conformational changes via Förster resonance energy transfer (FRET) between donor and acceptor molecules. Fluorescence lifetime imaging microscopy (FLIM) is thus a powerful technique but its widespread use has been hampered by demanding hardware and software requirements. FLIM data is often analyzed in terms of multicomponent fluorescence lifetime decays, which requires large signals for a good signal-to-noise ratio. This confines the approach to very low frame rates and limits the number of frames which can be acquired before bleaching the sample. Recently, a computationally efficient and intuitive graphical representation, the phasor approach, has been proposed as an alternative method for FLIM data analysis at the ensemble and single-molecule level. In this article, we illustrate the advantages of combining phasor analysis with a widefield time-resolved single photon-counting detector (the H33D detector) for FLIM applications. In particular we show that phasor analysis allows real-time subsecond identification of species by their lifetimes and rapid representation of their spatial distribution, thanks to the parallel acquisition of FLIM information over a wide field of view by the H33D detector. We also discuss possible improvements of the H33D detector’s performance made possible by the simplicity of phasor analysis and its relaxed timing accuracy requirements compared to standard time-correlated single-photon counting (TCSPC) methods. PMID:22352658

  18. The piecewise-linear dynamic attenuator reduces the impact of count rate loss with photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-06-01

    Photon counting x-ray detectors (PCXDs) offer several advantages compared to standard energy-integrating x-ray detectors, but also face significant challenges. One key challenge is the high count rates required in CT. At high count rates, PCXDs exhibit count rate loss and show reduced detective quantum efficiency in signal-rich (or high flux) measurements. In order to reduce count rate requirements, a dynamic beam-shaping filter can be used to redistribute flux incident on the patient. We study the piecewise-linear attenuator in conjunction with PCXDs without energy discrimination capabilities. We examined three detector models: the classic nonparalyzable and paralyzable detector models, and a ‘hybrid’ detector model which is a weighted average of the two which approximates an existing, real detector (Taguchi et al 2011 Med. Phys. 38 1089-102 ). We derive analytic expressions for the variance of the CT measurements for these detectors. These expressions are used with raw data estimated from DICOM image files of an abdomen and a thorax to estimate variance in reconstructed images for both the dynamic attenuator and a static beam-shaping (‘bowtie’) filter. By redistributing flux, the dynamic attenuator reduces dose by 40% without increasing peak variance for the ideal detector. For non-ideal PCXDs, the impact of count rate loss is also reduced. The nonparalyzable detector shows little impact from count rate loss, but with the paralyzable model, count rate loss leads to noise streaks that can be controlled with the dynamic attenuator. With the hybrid model, the characteristic count rates required before noise streaks dominate the reconstruction are reduced by a factor of 2 to 3. We conclude that the piecewise-linear attenuator can reduce the count rate requirements of the PCXD in addition to improving dose efficiency. The magnitude of this reduction depends on the detector, with paralyzable detectors showing much greater benefit than nonparalyzable detectors.

  19. InGaAs/InP SPAD photon-counting module with auto-calibrated gate-width generation and remote control

    NASA Astrophysics Data System (ADS)

    Tosi, Alberto; Ruggeri, Alessandro; Bahgat Shehata, Andrea; Della Frera, Adriano; Scarcella, Carmelo; Tisa, Simone; Giudice, Andrea

    2013-01-01

    We present a photon-counting module based on InGaAs/InP SPAD (Single-Photon Avalanche Diode) for detecting single photons up to 1.7 μm. The module exploits a novel architecture for generating and calibrating the gate width, along with other functions (such as module supervision, counting and processing of detected photons, etc.). The gate width, i.e. the time interval when the SPAD is ON, is user-programmable in the range from 500 ps to 1.5 μs, by means of two different delay generation methods implemented with an FPGA (Field-Programmable Gate Array). In order to compensate chip-to-chip delay variation, an auto-calibration circuit picks out a combination of delays in order to match at best the selected gate width. The InGaAs/InP module accepts asynchronous and aperiodic signals and introduces very low timing jitter. Moreover the photon counting module provides other new features like a microprocessor for system supervision, a touch-screen for local user interface, and an Ethernet link for smart remote control. Thanks to the fullyprogrammable and configurable architecture, the overall instrument provides high system flexibility and can easily match all requirements set by many different applications requiring single photon-level sensitivity in the near infrared with very low photon timing jitter.

  20. Measurements on a full-field digital mammography system with a photon counting crystalline silicon detector

    NASA Astrophysics Data System (ADS)

    Lundqvist, Mats; Danielsson, Mats; Cederstroem, Bjoern; Chmill, Valery; Chuntonov, Alexander; Aslund, Magnus

    2003-06-01

    Sectra Microdose is the first single photon counting mammography detector. An edge-on crystalline silicon detector is connected to application specific integrated circuits that individually process each photon. The detector is scanned across the breast and the rejection of scattered radiation exceeds 97% without the use of a Bucky. Processing of each x-rays individually enables an optimization of the information transfer from the x-rays to the image in a way previously not possible. Combined with an almost absence of noise from scattered radiation and from electronics we foresee a possibility to reduce the radiation dose and/or increase the image quality. We will discuss fundamental features of the new direct photon counting technique in terms of dose efficiency and present preliminary measurements for a prototype on physical parameters such as Noise Power Spectra (NPS), MTF and DQE.

  1. Development of two-channel prototype ITER vacuum ultraviolet spectrometer with back-illuminated charge-coupled device and microchannel plate detectors.

    PubMed

    Seon, C R; Choi, S H; Cheon, M S; Pak, S; Lee, H G; Biel, W; Barnsley, R

    2010-10-01

    A vacuum ultraviolet (VUV) spectrometer of a five-channel spectral system is designed for ITER main plasma impurity measurement. To develop and verify the system design, a two-channel prototype system is fabricated with No. 3 (14.4-31.8 nm) and No. 4 (29.0-60.0 nm) among the five channels. The optical system consists of a collimating mirror to collect the light from source to slit, two holographic diffraction gratings with toroidal geometry, and two different electronic detectors. For the test of the prototype system, a hollow cathode lamp is used as a light source. To find the appropriate detector for ITER VUV system, two kinds of detectors of the back-illuminated charge-coupled device and the microchannel plate electron multiplier are tested, and their performance has been investigated.

  2. Evaluation of heterotrophic plate and chromogenic agar colony counting in water quality laboratories.

    PubMed

    Hallas, Gary; Monis, Paul

    2015-01-01

    The enumeration of bacteria using plate-based counts is a core technique used by food and water microbiology testing laboratories. However, manual counting of bacterial colonies is both time and labour intensive, can vary between operators and also requires manual entry of results into laboratory information management systems, which can be a source of data entry error. An alternative is to use automated digital colony counters, but there is a lack of peer-reviewed validation data to allow incorporation into standards. We compared the performance of digital counting technology (ProtoCOL3) against manual counting using criteria defined in internationally recognized standard methods. Digital colony counting provided a robust, standardized system suitable for adoption in a commercial testing environment. The digital technology has several advantages:•Improved measurement of uncertainty by using a standard and consistent counting methodology with less operator error.•Efficiency for labour and time (reduced cost).•Elimination of manual entry of data onto LIMS.•Faster result reporting to customers.

  3. Merged analog and photon counting profiles used as input for other RLPROF VAPs

    DOE Data Explorer

    Newsom, Rob

    2014-10-03

    The rlprof_merge VAP "merges" the photon counting and analog signals appropriately for each channel, creating an output data file that is very similar to the original raw data file format that the Raman lidar initially had.

  4. Merged analog and photon counting profiles used as input for other RLPROF VAPs

    DOE Data Explorer

    Newsom, Rob

    1998-03-01

    The rlprof_merge VAP "merges" the photon counting and analog signals appropriately for each channel, creating an output data file that is very similar to the original raw data file format that the Raman lidar initially had.

  5. Microtomography with photon counting detectors: improving the quality of tomographic reconstruction by voxel-space oversampling

    NASA Astrophysics Data System (ADS)

    Dudak, J.; Zemlicka, J.; Karch, J.; Hermanova, Z.; Kvacek, J.; Krejci, F.

    2017-01-01

    Photon counting detectors Timepix are known for their unique properties enabling X-ray imaging with extremely high contrast-to-noise ratio. Their applicability has been recently further improved since a dedicated technique for assembling large area Timepix detector arrays was introduced. Despite the fact that the sensitive area of Timepix detectors has been significantly increased, the pixel pitch is kept unchanged (55 microns). This value is much larger compared to widely used and popular X-ray imaging cameras utilizing scintillation crystals and CCD-based read-out. On the other hand, photon counting detectors provide steeper point-spread function. Therefore, with given effective pixel size of an acquired radiography, Timepix detectors provide higher spatial resolution than X-ray cameras with scintillation-based devices unless the image is affected by penumbral blur. In this paper we take an advance of steep PSF of photon counting detectors and test the possibility to improve the quality of computed tomography reconstruction using finer sampling of reconstructed voxel space. The achieved results are presented in comparison with data acquired under the same conditions using a commercially available state-of-the-art CCD X-ray camera.

  6. Photon-Counting Multikilohertz Microlaser Altimeters for Airborne and Spaceborne Topographic Measurements

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2000-01-01

    We consider the optimum design of photon-counting microlaser altimeters operating from airborne and spaceborne platforms under both day and night conditions. Extremely compact Q-switched microlaser transmitters produce trains of low energy pulses at multi-kHz rates and can easily generate subnanosecond pulse-widths for precise ranging. To guide the design, we have modeled the solar noise background and developed simple algorithms, based on Post-Detection Poisson Filtering (PDPF), to optimally extract the weak altimeter signal from a high noise background during daytime operations. Practical technology issues, such as detector and/or receiver dead times, have also been considered in the analysis. We describe an airborne prototype, being developed under NASA's instrument Incubator Program, which is designed to operate at a 10 kHz rate from aircraft cruise altitudes up to 12 km with laser pulse energies on the order of a few microjoules. We also analyze a compact and power efficient system designed to operate from Mars orbit at an altitude of 300 km and sample the Martian surface at rates up to 4.3 kHz using a 1 watt laser transmitter and an 18 cm telescope. This yields a Power-Aperture Product of 0.24 W-square meter, corresponding to a value almost 4 times smaller than the Mars Orbiting Laser Altimeter (0. 88W-square meter), yet the sampling rate is roughly 400 times greater (4 kHz vs 10 Hz) Relative to conventional high power laser altimeters, advantages of photon-counting laser altimeters include: (1) a more efficient use of available laser photons providing up to two orders of magnitude greater surface sampling rates for a given laser power-telescope aperture product; (2) a simultaneous two order of magnitude reduction in the volume, cost and weight of the telescope system; (3) the unique ability to spatially resolve the source of the surface return in a photon counting mode through the use of pixellated or imaging detectors; and (4) improved vertical and

  7. Photon counting photodiode array detector for far ultraviolet (FUV) astronomy

    NASA Technical Reports Server (NTRS)

    Hartig, G. F.; Moos, H. W.; Pembroke, R.; Bowers, C.

    1982-01-01

    A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location. Previously announced in STAR as N82-19118

  8. Image processing operations achievable with the Microchannel Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    Warde, C.; Fisher, A. D.; Thackara, J. I.; Weiss, A. M.

    1980-01-01

    The Microchannel Spatial Light Modulator (MSLM) is a versatile, optically-addressed, highly-sensitive device that is well suited for low-light-level, real-time, optical information processing. It consists of a photocathode, a microchannel plate (MCP), a planar acceleration grid, and an electro-optic plate in proximity focus. A framing rate of 20 Hz with full modulation depth, and 100 Hz with 20% modulation depth has been achieved in a vacuum-demountable LiTaO3 device. A halfwave exposure sensitivity of 2.2 mJ/sq cm and an optical information storage time of more than 2 months have been achieved in a similar gridless LiTaO3 device employing a visible photocathode. Image processing operations such as analog and digital thresholding, real-time image hard clipping, contrast reversal, contrast enhancement, image addition and subtraction, and binary-level logic operations such as AND, OR, XOR, and NOR can be achieved with this device. This collection of achievable image processing characteristics makes the MSLM potentially useful for a number of smart sensor applications.

  9. Multi-channel photon counting DOT system based on digital lock-in detection technique

    NASA Astrophysics Data System (ADS)

    Wang, Tingting; Zhao, Huijuan; Wang, Zhichao; Hou, Shaohua; Gao, Feng

    2011-02-01

    Relying on deeper penetration of light in the tissue, Diffuse Optical Tomography (DOT) achieves organ-level tomography diagnosis, which can provide information on anatomical and physiological features. DOT has been widely used in imaging of breast, neonatal cerebral oxygen status and blood oxygen kinetics observed by its non-invasive, security and other advantages. Continuous wave DOT image reconstruction algorithms need the measurement of the surface distribution of the output photon flow inspired by more than one driving source, which means that source coding is necessary. The most currently used source coding in DOT is time-division multiplexing (TDM) technology, which utilizes the optical switch to switch light into optical fiber of different locations. However, in case of large amounts of the source locations or using the multi-wavelength, the measurement time with TDM and the measurement interval between different locations within the same measurement period will therefore become too long to capture the dynamic changes in real-time. In this paper, a frequency division multiplexing source coding technology is developed, which uses light sources modulated by sine waves with different frequencies incident to the imaging chamber simultaneously. Signal corresponding to an individual source is obtained from the mixed output light using digital phase-locked detection technology at the detection end. A digital lock-in detection circuit for photon counting measurement system is implemented on a FPGA development platform. A dual-channel DOT photon counting experimental system is preliminary established, including the two continuous lasers, photon counting detectors, digital lock-in detection control circuit, and codes to control the hardware and display the results. A series of experimental measurements are taken to validate the feasibility of the system. This method developed in this paper greatly accelerates the DOT system measurement, and can also obtain the

  10. Sea-Ice Freeboard Retrieval Using Digital Photon-Counting Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Farrell, Sinead L.; Brunt, Kelly M.; Ruth, Julia M.; Kuhn, John M.; Connor, Laurence N.; Walsh, Kaitlin M.

    2015-01-01

    Airborne and spaceborne altimeters provide measurements of sea-ice elevation, from which sea-ice freeboard and thickness may be derived. Observations of the Arctic ice pack by satellite altimeters indicate a significant decline in ice thickness, and volume, over the last decade. NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) is a next-generation laser altimeter designed to continue key sea-ice observations through the end of this decade. An airborne simulator for ICESat-2, the Multiple Altimeter Beam Experimental Lidar (MABEL), has been deployed to gather pre-launch data for mission development. We present an analysis of MABEL data gathered over sea ice in the Greenland Sea and assess the capabilities of photon-counting techniques for sea-ice freeboard retrieval. We compare freeboard estimates in the marginal ice zone derived from MABEL photon-counting data with coincident data collected by a conventional airborne laser altimeter. We find that freeboard estimates agree to within 0.03m in the areas where sea-ice floes were interspersed with wide leads, and to within 0.07m elsewhere. MABEL data may also be used to infer sea-ice thickness, and when compared with coincident but independent ice thickness estimates, MABEL ice thicknesses agreed to within 0.65m or better.

  11. Real-time computational photon-counting LiDAR

    NASA Astrophysics Data System (ADS)

    Edgar, Matthew; Johnson, Steven; Phillips, David; Padgett, Miles

    2018-03-01

    The availability of compact, low-cost, and high-speed MEMS-based spatial light modulators has generated widespread interest in alternative sampling strategies for imaging systems utilizing single-pixel detectors. The development of compressed sensing schemes for real-time computational imaging may have promising commercial applications for high-performance detectors, where the availability of focal plane arrays is expensive or otherwise limited. We discuss the research and development of a prototype light detection and ranging (LiDAR) system via direct time of flight, which utilizes a single high-sensitivity photon-counting detector and fast-timing electronics to recover millimeter accuracy three-dimensional images in real time. The development of low-cost real time computational LiDAR systems could have importance for applications in security, defense, and autonomous vehicles.

  12. Influence of the three-dimensional heterogeneous roughness on electrokinetic transport in microchannels.

    PubMed

    Hu, Yandong; Werner, Carsten; Li, Dongqing

    2004-12-15

    Surface roughness has been considered as a passive means of enhancing species mixing in electroosmotic flow through microfluidic systems. It is highly desirable to understand the synergetic effect of three-dimensional (3D) roughness and surface heterogeneity on the electrokinetic flow through microchannels. In this study, we developed a three-dimensional finite-volume-based numerical model to simulate electroosmotic transport in a slit microchannel (formed between two parallel plates) with numerous heterogeneous prismatic roughness elements arranged symmetrically and asymmetrically on the microchannel walls. We consider that all 3D prismatic rough elements have the same surface charge or zeta potential, the substrate (the microchannel wall) surface has a different zeta potential. The results showed that the rough channel's geometry and the electroosmotic mobility ratio of the roughness elements' surface to that of the substrate, epsilon(mu), have a dramatic influence on the induced-pressure field, the electroosmotic flow patterns, and the electroosmotic flow rate in the heterogeneous rough microchannels. The associated sample-species transport presents a tidal-wave-like concentration field at the intersection between four neighboring rough elements under low epsilon(mu) values and has a concentration field similar to that of the smooth channels under high epsilon(mu) values.

  13. [Analysis on 2011 quality control results on aerobic plate count of microbiology laboratories in China].

    PubMed

    Han, Haihong; Li, Ning; Li, Yepeng; Fu, Ping; Yu, Dongmin; Li Zhigang; Du, Chunming; Guo, Yunchang

    2015-01-01

    To test the aerobic plate count examining capability of microbiology laboratories, to ensure the accuracy and comparability of quantitative bacteria examination results, and to improve the quality of monitoring. The 4 different concentration aerobic plate count piece samples were prepared and noted as I, II, III and IV. After homogeneity and stability tests, the samples were delivered to monitoring institutions. The results of I, II, III samples were logarithmic transformed, and evaluated with Z-score method using the robust average and standard deviation. The results of IV samples were evaluated as "satisfactory" when reported as < 10 CFU/piece or as "not satisfactory" otherwise. Pearson χ2 test was used to analyze the ratio results. 309 monitoring institutions, which was 99.04% of the total number, reported their results. 271 institutions reported a satisfactory result, and the satisfactory rate was 87.70%. There was no statistical difference in satisfactory rates of I, II and III samples which were 81.52%, 88.30% and 91.40% respectively. The satisfactory rate of IV samples was 93.33%. There was no statistical difference in satisfactory rates between provincial and municipal CDC. The quality control program has provided scientific data that the aerobic plate count capability of the laboratories meets the requirements of monitoring tasks.

  14. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications.

    PubMed

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew; Shi, Linxi; Gounis, Matthew J; Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo

    2016-05-01

    High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 μm. After resampling to 54

  15. Historical review of lung counting efficiencies for low energy photon emitters

    DOE PAGES

    Jeffers, Karen L.; Hickman, David P.

    2014-03-01

    This publication reviews the measured efficiency and variability over time of a high purity planar germanium in vivo lung count system for multiple photon energies using increasingly thick overlays with the Lawrence Livermore Torso Phantom. Furthermore, the measured variations in efficiency are compared with the current requirement for in vivo bioassay performance as defined by the American National Standards Institute Standard.

  16. Approaching the Ultimate Limits of Communication Efficiency with a Photon-Counting Detector

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris; Moision, Bruce; Dolinar, Samuel J.; Birnbaum, Kevin M.; Divsalar, Dariush

    2012-01-01

    Coherent states achieve the Holevo capacity of a pure-loss channel when paired with an optimal measurement, but a physical realization of this measurement is as of yet unknown, and it is also likely to be of high complexity. In this paper, we focus on the photon-counting measurement and study the photon and dimensional efficiencies attainable with modulations over classical- and nonclassical-state alphabets. We first review the state-of-the-art coherent on-off-keying (OOK) with a photoncounting measurement, illustrating its asymptotic inefficiency relative to the Holevo limit. We show that a commonly made Poisson approximation in thermal noise leads to unbounded photon information efficiencies, violating the conjectured Holevo limit. We analyze two binary-modulation architectures that improve upon the dimensional versus photon efficiency tradeoff achievable with conventional OOK. We show that at high photon efficiency these architectures achieve an efficiency tradeoff that differs from the best possible tradeoff--determined by the Holevo capacity--by only a constant factor. The first architecture we analyze is a coherent-state transmitter that relies on feedback from the receiver to control the transmitted energy. The second architecture uses a single-photon number-state source.

  17. Anti-aliasing techniques in photon-counting depth imaging using GHz clock rates

    NASA Astrophysics Data System (ADS)

    Krichel, Nils J.; McCarthy, Aongus; Collins, Robert J.; Buller, Gerald S.

    2010-04-01

    Single-photon detection technologies in conjunction with low laser illumination powers allow for the eye-safe acquisition of time-of-flight range information on non-cooperative target surfaces. We previously presented a photon-counting depth imaging system designed for the rapid acquisition of three-dimensional target models by steering a single scanning pixel across the field angle of interest. To minimise the per-pixel dwelling times required to obtain sufficient photon statistics for accurate distance resolution, periodic illumination at multi- MHz repetition rates was applied. Modern time-correlated single-photon counting (TCSPC) hardware allowed for depth measurements with sub-mm precision. Resolving the absolute target range with a fast periodic signal is only possible at sufficiently short distances: if the round-trip time towards an object is extended beyond the timespan between two trigger pulses, the return signal cannot be assigned to an unambiguous range value. Whereas constructing a precise depth image based on relative results may still be possible, problems emerge for large or unknown pixel-by-pixel separations or in applications with a wide range of possible scene distances. We introduce a technique to avoid range ambiguity effects in time-of-flight depth imaging systems at high average pulse rates. A long pseudo-random bitstream is used to trigger the illuminating laser. A cyclic, fast-Fourier supported analysis algorithm is used to search for the pattern within return photon events. We demonstrate this approach at base clock rates of up to 2 GHz with varying pattern lengths, allowing for unambiguous distances of several kilometers. Scans at long stand-off distances and of scenes with large pixel-to-pixel range differences are presented. Numerical simulations are performed to investigate the relative merits of the technique.

  18. Evaluation of the UFXC32k photon-counting detector for pump-probe experiments using synchrotron radiation.

    PubMed

    Koziol, Anna; Bordessoule, Michel; Ciavardini, Alessandra; Dawiec, Arkadiusz; Da Silva, Paulo; Desjardins, Kewin; Grybos, Pawel; Kanoute, Brahim; Laulhe, Claire; Maj, Piotr; Menneglier, Claude; Mercere, Pascal; Orsini, Fabienne; Szczygiel, Robert

    2018-03-01

    This paper presents the performance of a single-photon-counting hybrid pixel X-ray detector with synchrotron radiation. The camera was evaluated with respect to time-resolved experiments, namely pump-probe-probe experiments held at SOLEIL. The UFXC camera shows very good energy resolution of around 1.5 keV and allows the minimum threshold setting to be as low as 3 keV keeping the high-count-rate capabilities. Measurements of a synchrotron characteristic filling mode prove the proper separation of an isolated bunch of photons and the usability of the detector in time-resolved experiments.

  19. Dual-energy imaging using a photon counting detector with electronic spectrum-splitting

    NASA Astrophysics Data System (ADS)

    Bornefalk, Hans; Lundqvist, Mats

    2006-03-01

    This paper presents a dual-energy imaging technique optimized for contrast-enhanced mammography using a photon counting detector. Each photon pulse is processed separately in the detector and the addition of an electronic threshold near the middle of the energy range of the x-ray spectrum allows discrimination of high and low energy photons. This effectively makes the detector energy sensitive, and allows the acquisition of high- and low-energy images simultaneously. These high- and low-energy images can be combined to dual-energy images where the anatomical clutter has been suppressed. By setting the electronic threshold close to 33.2 keV (the k-edge of iodine) the system is optimized for dual-energy contrast-enhanced imaging of breast tumors. Compared to other approaches, this method not only eliminates the need for separate exposures that might lead to motion artifacts, it also eliminates the otherwise deteriorating overlap between high- and low-energy spectra. We present phantom dual-energy images acquired on a prototype system to illustrate that the technique is already operational, albeit in its infancy. We also present a theoretical estimation of the potential gain in tumor signal-difference-to-noise ratio when using this electronic spectrum-splitting method as opposed to acquiring the high- and low-energy images separately with double exposures with separate x-ray spectra. Assuming ideal energy sensitive photon counting detectors, we arrive at the conclusion that the signal-difference-to-noise ratio could be increased by 145% at constant dose. We also illustrate our results on synthetic images.

  20. Femtosecond Photon-Counting Receiver

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time/pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  1. Femtosecond Photon-Counting Receiver

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time-pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  2. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    NASA Astrophysics Data System (ADS)

    Kumpová, I.; Vavřík, D.; Fíla, T.; Koudelka, P.; Jandejsek, I.; Jakůbek, J.; Kytýř, D.; Zlámal, P.; Vopálenský, M.; Gantar, A.

    2016-02-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical simulations.

  3. Conditionally Teleported States Using Optical Squeezers and Photon Counting

    NASA Astrophysics Data System (ADS)

    Fan, Hong-Yi; Fan, Yue; Cheng, Hai-Ling

    2002-04-01

    By virtue of the neat expression of the two-mode squeezing operator in the Einstein, Podolsky and Rosen entangled state representation, we provide a new approach for discussing the teleportation scheme using optical squeezers and photon counting devices. We derive the explicit form of the teleported states, so that the conditional property of teleportation and teleportation fidelity of this protocol can be seen more clearly. The derivation is concise. The project supported by the President Foundation of the Chinese Academy of Sciences and National Natural Science Foundation of China

  4. Feasibility of using single photon counting X-ray for lung tumor position estimation based on 4D-CT.

    PubMed

    Aschenbrenner, Katharina P; Guthier, Christian V; Lyatskaya, Yulia; Boda-Heggemann, Judit; Wenz, Frederik; Hesser, Jürgen W

    2017-09-01

    In stereotactic body radiation therapy of lung tumors, reliable position estimation of the tumor is necessary in order to minimize normal tissue complication rate. While kV X-ray imaging is frequently used, continuous application during radiotherapy sessions is often not possible due to concerns about the additional dose. Thus, ultra low-dose (ULD) kV X-ray imaging based on a single photon counting detector is suggested. This paper addresses the lower limit of photons to locate the tumor reliably with an accuracy in the range of state-of-the-art methods, i.e. a few millimeters. 18 patient cases with four dimensional CT (4D-CT), which serves as a-priori information, are included in the study. ULD cone beam projections are simulated from the 4D-CTs including Poisson noise. The projections from the breathing phases which correspond to different tumor positions are compared to the ULD projection by means of Poisson log-likelihood (PML) and correlation coefficient (CC), and template matching under these metrics. The results indicate that in full thorax imaging five photons per pixel suffice for a standard deviation in tumor positions of less than half a breathing phase. Around 50 photons per pixel are needed to achieve this accuracy with the field of view restricted to the tumor region. Compared to CC, PML tends to perform better for low photon counts and shifts in patient setup. Template matching only improves the position estimation in high photon counts. The quality of the reconstruction is independent of the projection angle. The accuracy of the proposed ULD single photon counting system is in the range of a few millimeters and therefore comparable to state-of-the-art tumor tracking methods. At the same time, a reduction in photons per pixel by three to four orders of magnitude relative to commercial systems with flatpanel detectors can be achieved. This enables continuous kV image-based position estimation during all fractions since the additional dose to the

  5. Two-Photon Luminescence and Second Harmonic Generation from Gold Micro-Plates

    PubMed Central

    Wang, Xu; Shi, Hao; Wang, Naiyin; Cheng, Lianghui; Gao, Ying; Huang, Lu; Jiang, Yuqiang

    2014-01-01

    Micron-sized gold plates were prepared by reducing chloroauric acid with lemongrass extract. Their two-photon luminescence (TPL) and second harmonic generation (SHG) were investigated. The results show that the TPL and SHG intensity of gold plates is dependent on the wavelength and polarization of excitation laser. The TPL intensity of gold plates decreases with the increase of the excitation wavelength except for a small peak around 820–840 nm, while SHG intensity increases with the excitation wavelength redshift. In addition, it is found that the TPL intensity of the gold plate’s edge is related with the angle between the edge orientation and the polarization direction of the excitation light. The TPL intensity increases with the angle increase from 0° to 90°. PMID:25268923

  6. Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes.

    PubMed

    Acconcia, G; Labanca, I; Rech, I; Gulinatti, A; Ghioni, M

    2017-02-01

    The minimization of Single Photon Avalanche Diodes (SPADs) dead time is a key factor to speed up photon counting and timing measurements. We present a fully integrated Active Quenching Circuit (AQC) able to provide a count rate as high as 100 MHz with custom technology SPAD detectors. The AQC can also operate the new red enhanced SPAD and provide the timing information with a timing jitter Full Width at Half Maximum (FWHM) as low as 160 ps.

  7. A dynamic system with digital lock-in-photon-counting for pharmacokinetic diffuse fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Yin, Guoyan; Zhang, Limin; Zhang, Yanqi; Liu, Han; Du, Wenwen; Ma, Wenjuan; Zhao, Huijuan; Gao, Feng

    2018-02-01

    Pharmacokinetic diffuse fluorescence tomography (DFT) can describe the metabolic processes of fluorescent agents in biomedical tissue and provide helpful information for tumor differentiation. In this paper, a dynamic DFT system was developed by employing digital lock-in-photon-counting with square wave modulation, which predominates in ultra-high sensitivity and measurement parallelism. In this system, 16 frequency-encoded laser diodes (LDs) driven by self-designed light source system were distributed evenly in the imaging plane and irradiated simultaneously. Meanwhile, 16 detection fibers collected emission light in parallel by the digital lock-in-photon-counting module. The fundamental performances of the proposed system were assessed with phantom experiments in terms of stability, linearity, anti-crosstalk as well as images reconstruction. The results validated the availability of the proposed dynamic DFT system.

  8. Update on Linear Mode Photon Counting with the HgCdTe Linear Mode Avalanche Photodiode

    NASA Technical Reports Server (NTRS)

    Beck, Jeffrey D.; Kinch, Mike; Sun, Xiaoli

    2014-01-01

    The behavior of the gain-voltage characteristic of the mid-wavelength infrared cutoff HgCdTe linear mode avalanche photodiode (e-APD) is discussed both experimentally and theoretically as a function of the width of the multiplication region. Data are shown that demonstrate a strong dependence of the gain at a given bias voltage on the width of the n- gain region. Geometrical and fundamental theoretical models are examined to explain this behavior. The geometrical model takes into account the gain-dependent optical fill factor of the cylindrical APD. The theoretical model is based on the ballistic ionization model being developed for the HgCdTe APD. It is concluded that the fundamental theoretical explanation is the dominant effect. A model is developed that combines both the geometrical and fundamental effects. The model also takes into account the effect of the varying multiplication width in the low bias region of the gain-voltage curve. It is concluded that the lower than expected gain seen in the first 2 × 8 HgCdTe linear mode photon counting APD arrays, and higher excess noise factor, was very likely due to the larger than typical multiplication region length in the photon counting APD pixel design. The implications of these effects on device photon counting performance are discussed.

  9. Generation of mechanical interference fringes by multi-photon counting

    NASA Astrophysics Data System (ADS)

    Ringbauer, M.; Weinhold, T. J.; Howard, L. A.; White, A. G.; Vanner, M. R.

    2018-05-01

    Exploring the quantum behaviour of macroscopic objects provides an intriguing avenue to study the foundations of physics and to develop a suite of quantum-enhanced technologies. One prominent path of study is provided by quantum optomechanics which utilizes the tools of quantum optics to control the motion of macroscopic mechanical resonators. Despite excellent recent progress, the preparation of mechanical quantum superposition states remains outstanding due to weak coupling and thermal decoherence. Here we present a novel optomechanical scheme that significantly relaxes these requirements allowing the preparation of quantum superposition states of motion of a mechanical resonator by exploiting the nonlinearity of multi-photon quantum measurements. Our method is capable of generating non-classical mechanical states without the need for strong single-photon coupling, is resilient against optical loss, and offers more favourable scaling against initial mechanical thermal occupation than existing schemes. Moreover, our approach allows the generation of larger superposition states by projecting the optical field onto NOON states. We experimentally demonstrate this multi-photon-counting technique on a mechanical thermal state in the classical limit and observe interference fringes in the mechanical position distribution that show phase super-resolution. This opens a feasible route to explore and exploit quantum phenomena at a macroscopic scale.

  10. Channel-capacity gain in entanglement-assisted communication protocols based exclusively on linear optics, single-photon inputs, and coincidence photon counting

    DOE PAGES

    Lougovski, P.; Uskov, D. B.

    2015-08-04

    Entanglement can effectively increase communication channel capacity as evidenced by dense coding that predicts a capacity gain of 1 bit when compared to entanglement-free protocols. However, dense coding relies on Bell states and when implemented using photons the capacity gain is bounded by 0.585 bits due to one's inability to discriminate between the four optically encoded Bell states. In this research we study the following question: Are there alternative entanglement-assisted protocols that rely only on linear optics, coincidence photon counting, and separable single-photon input states and at the same time provide a greater capacity gain than 0.585 bits? In thismore » study, we show that besides the Bell states there is a class of bipartite four-mode two-photon entangled states that facilitate an increase in channel capacity. We also discuss how the proposed scheme can be generalized to the case of two-photon N-mode entangled states for N=6,8.« less

  11. A photon-counting photodiode array detector for far ultraviolet (FUV) astronomy

    NASA Technical Reports Server (NTRS)

    Hartig, G. F.; Moos, H. W.; Pembroke, R.; Bowers, C.

    1982-01-01

    A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location.

  12. Linear Mode HgCdTe Avalanche Photodiodes for Photon Counting Applications

    NASA Technical Reports Server (NTRS)

    Sullivan, William, III; Beck, Jeffrey; Scritchfield, Richard; Skokan, Mark; Mitra, Pradip; Sun, Xiaoli; Abshire, James; Carpenter, Darren; Lane, Barry

    2015-01-01

    An overview of recent improvements in the understanding and maturity of linear mode photon counting with HgCdTe electron-initiated avalanche photodiodes is presented. The first HgCdTe LMPC 2x8 format array fabricated in 2011 with 64 micron pitch was a remarkable success in terms of demonstrating a high single photon signal to noise ratio of 13.7 with an excess noise factor of 1.3-1.4, a 7 ns minimum time between events, and a broad spectral response extending from 0.4 micron to 4.2 micron. The main limitations were a greater than 10x higher false event rate than expected of greater than 1 MHz, a 5-7x lower than expected APD gain, and a photon detection efficiency of only 50% when greater than 60% was expected. This paper discusses the reasons behind these limitations and the implementation of their mitigations with new results.

  13. Two-dimensional photon detector

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1976-01-01

    Device incorporates set of cascaded microchannel-array plates in proximity focus with two sets of mutually-orthogonal linear anodes. Technique allows data from N x M picture elements to be recorded with only N + M amplifiers.

  14. Microcomputed tomography with a second generation photon-counting x-ray detector: contrast analysis and material separation

    NASA Astrophysics Data System (ADS)

    Wang, X.; Meier, D.; Oya, P.; Maehlum, G. E.; Wagenaar, D. J.; Tsui, B. M. W.; Patt, B. E.; Frey, E. C.

    2010-04-01

    The overall aim of this work was to evaluate the potential for improving in vivo small animal microCT through the use of an energy resolved photon-counting detector. To this end, we developed and evaluated a prototype microCT system based on a second-generation photon-counting x-ray detector which simultaneously counted photons with energies above six energy thresholds. First, we developed a threshold tuning procedure to reduce the dependence of detector uniformity and to reduce ring artifacts. Next, we evaluated the system in terms of the contrast-to-noise ratio in different energy windows for different target materials. These differences provided the possibility to weight the data acquired in different windows in order to optimize the contrast-to-noise ratio. We also explored the ability of the system to use data from different energy windows to aid in distinguishing various materials. We found that the energy discrimination capability provided the possibility for improved contrast-to-noise ratios and allowed separation of more than two materials, e.g., bone, soft-tissue and one or more contrast materials having K-absorption edges in the energy ranges of interest.

  15. Optical and acoustic sensing using Fano-like resonances in dual phononic and photonic crystal plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoudache, Samira; Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou; Moiseyenko, Rayisa

    2016-03-21

    We perform a theoretical study based on the transmissions of optical and acoustic waves normally impinging to a periodic perforated silicon plate when the embedded medium is a liquid and show the existence of Fano-like resonances in both cases. The signature of the resonances appears as well-defined asymmetric peaks in the phononic and photonic transmission spectra. We show that the origin of the Fano-like resonances is different with respect to the nature of the wave. In photonic, the origin comes from guided modes in the photonic plate while in phononic we show that it comes from the excitation of standingmore » waves confined inside the cavity coming from the deformation of the water/silicon edges of the cylindrical inclusion. We finally use these features for sensing and show ultra-sensitivity to the light and sound velocities for different concentrations of analytes.« less

  16. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications

    PubMed Central

    Shrestha, Suman; Karellas, Andrew; Shi, Linxi; Gounis, Matthew J.; Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo

    2016-01-01

    Purpose: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. Methods: A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. Results: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54

  17. Micro-PIV/LIF measurements on electrokinetically-driven flow in surface modified microchannels

    NASA Astrophysics Data System (ADS)

    Ichiyanagi, Mitsuhisa; Sasaki, Seiichi; Sato, Yohei; Hishida, Koichi

    2009-04-01

    Effects of surface modification patterning on flow characteristics were investigated experimentally by measuring electroosmotic flow velocities, which were obtained by micron-resolution particle image velocimetry using a confocal microscope. The depth-wise velocity was evaluated by using the continuity equation and the velocity data. The microchannel was composed of a poly(dimethylsiloxane) chip and a borosilicate cover-glass plate. Surface modification patterns were fabricated by modifying octadecyltrichlorosilane (OTS) on the glass surface. OTS can decrease the electroosmotic flow velocity compared to the velocity in the glass microchannel. For the surface charge varying parallel to the electric field, the depth-wise velocity was generated at the boundary area between OTS and the glass surfaces. For the surface charge varying perpendicular to the electric field, the depth-wise velocity did not form because the surface charge did not vary in the stream-wise direction. The surface charge pattern with the oblique stripes yielded a three-dimensional flow in a microchannel. Furthermore, the oblique patterning was applied to a mixing flow field in a T-shaped microchannel, and mixing efficiencies were evaluated from heterogeneity degree of fluorescent dye intensity, which was obtained by laser-induced fluorescence. It was found that the angle of the oblique stripes is an important factor to promote the span-wise and depth-wise momentum transport and contributes to the mixing flow in a microchannel.

  18. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    NASA Astrophysics Data System (ADS)

    Zang, A.; Anton, G.; Ballabriga, R.; Bisello, F.; Campbell, M.; Celi, J. C.; Fauler, A.; Fiederle, M.; Jensch, M.; Kochanski, N.; Llopart, X.; Michel, N.; Mollenhauer, U.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W.; Michel, T.

    2015-04-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation was carried out to use the Dosepix detector as a kVp-meter, that means to determine the applied acceleration voltage from measured X-ray tubes spectra.

  19. Photon-Counting Kinetic Inductance Detectors (KID) for Far/Mid-Infrared Space Spectroscopy with the Origins Space Telescope (OST)

    NASA Astrophysics Data System (ADS)

    Noroozian, Omid; Barrentine, Emily M.; Stevenson, Thomas R.; Brown, Ari D.; Moseley, Samuel Harvey; Wollack, Edward; Pontoppidan, Klaus Martin; U-Yen, Konpop; Mikula, Vilem

    2018-01-01

    Photon-counting detectors are highly desirable for reaching the ~ 10-20 W/√Hz power sensitivity permitted by the Origins Space Telescope (OST). We are developing unique Kinetic Inductance Detectors (KIDs) with photon counting capability in the far/mid-IR. Combined with an on-chip far-IR spectrometer onboard OST these detectors will enable a new data set for exploring galaxy evolution and the growth of structure in the Universe. Mid-IR spectroscopic surveys using these detectors will enable mapping the composition of key volatiles in planet-forming material around protoplanetary disks and their evolution into solar systems. While these OST science objectives represent a well-organized community agreement they are impossible to reach without a significant leap forward in detector technology, and the OST is likely not to be recommended if a path to suitable detectors does not exist.To reach the required sensitivity we are experimenting with superconducting resonators made from thin aluminum films on single-crystal silicon substrates. Under the right conditions, small-volume inductors made from these films can become ultra-sensitive to single photons >90 GHz. Understanding the physics of these superconductor-dielectric systems is critical to performance. We achieved a very high quality factor of 0.5 x 106 for a 10-nm Al resonator at n ~ 1 microwave photon drive power, by far the highest value for such thin films in the literature. We measured a residual electron density of < 5 /µm3 and extremely long lifetime of ~ 6.0 ms, both within requirements for photon-counting. To realize an optically coupled device, we are integrating these films with our on-chip spectrometer (μ-Spec) fabrication process. Using a detailed model we simulated the detector when illuminated with randomly arriving photon events. Our results show that photon counting with >95% efficiency at 0.5 - 1.0 THz is achievable.We report on these developments and discuss plans to test in our facility

  20. Soft X-ray and extreme utraviolet quantum detection efficiency of potassium chloride photocathode layers on microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald H. W.; Everman, Elaine; Hull, Jeff; Vallerga, John V.; Lampton, Michael

    1988-01-01

    The quantum detection efficiency (QDE) of KCl photocathodes in the 44-1460 A range was investigated. An opaque layer of KCl, about 15,000-A-thick, was evaporated and applied the surface of a microchannel plate (MCP), and the contribution of the photocathode material in the channels (and on the interchannel web) to the QDE was measured using a Z stack MCP detector. It is shown that KCl is a relatively stable photocathode material, with the QDE equal to 30-40 percent in the EUV. At wavelengths above 200 A, the QDE is slightly better than the QDE of CsI, as reported by Siegmund et al. (1986). While the shape of the QDE curve as a function of wavelength is similar to those reported for CsI and KBr, KCl was found to lack the high QDE peak found in the curves of CsI and KBr at about 100 A. A simple QDE model is described, the predictions of which were found to agree with the measurements on the KCl photocathode.

  1. Characterization of x-ray framing cameras for the National Ignition Facility using single photon pulse height analysis.

    PubMed

    Holder, J P; Benedetti, L R; Bradley, D K

    2016-11-01

    Single hit pulse height analysis is applied to National Ignition Facility x-ray framing cameras to quantify gain and gain variation in a single micro-channel plate-based instrument. This method allows the separation of gain from detectability in these photon-detecting devices. While pulse heights measured by standard-DC calibration methods follow the expected exponential distribution at the limit of a compound-Poisson process, gain-gated pulse heights follow a more complex distribution that may be approximated as a weighted sum of a few exponentials. We can reproduce this behavior with a simple statistical-sampling model.

  2. Microchannel emulsification: A promising technique towards encapsulation of functional compounds.

    PubMed

    Khalid, Nauman; Kobayashi, Isao; Neves, Marcos A; Uemura, Kunihiko; Nakajima, Mitsutoshi

    2017-06-13

    This review provides an overview of microchannel emulsification (MCE) for production of functional monodispersed emulsion droplets. The main emphasis has been put on functional bioactives encapsulation using grooved-type and straight-through microchannel array plates. MCE successfully encapsulates the bioactives like β-carotene, oleuropein, γ-oryzanol, β-sitosterol, L-ascorbic acid and ascorbic acid derivatives, vitamin D and quercetin. These bioactives were encapsulated in a variety of delivery systems like simple and multiple emulsions, polymeric particles, microgels, solid lipid particles and functional vesicles. The droplet generation process in MCE is based upon spontaneous transformation of interfaces rather than high energy shear stress systems. The scale-up of MCE can increase the productivity of monodispersed droplets >100 L h -1 and makes it a promising tool at industrial level.

  3. Limits on Achievable Dimensional and Photon Efficiencies with Intensity-Modulation and Photon-Counting Due to Non-Ideal Photon-Counter Behavior

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Erkmen, Baris I.; Farr, William; Dolinar, Samuel J.; Birnbaum, Kevin M.

    2012-01-01

    An ideal intensity-modulated photon-counting channel can achieve unbounded photon information efficiencies (PIEs). However, a number of limitations of a physical system limit the practically achievable PIE. In this paper, we discuss several of these limitations and illustrate their impact on the channel. We show that, for the Poisson channel, noise does not strictly bound PIE, although there is an effective limit, as the dimensional information efficiency goes as e[overline] e PIE beyond a threshold PIE. Since the Holevo limit is bounded in the presence of noise, this illustrates that the Poisson approximation is invalid at large PIE for any number of noise modes. We show that a finite transmitter extinction ratio bounds the achievable PIE to a maximum that is logarithmic in the extinction ratio. We show how detector jitter limits the ability to mitigate noise in the PPM signaling framework. We illustrate a method to model detector blocking when the number of detectors is large, and illustrate mitigation of blocking with spatial spreading and altering. Finally, we illustrate the design of a high photon efficiency system using state-of-the-art photo-detectors and taking all these effects into account.

  4. Arbitrary photonic wave plate operations on chip: Realizing Hadamard, Pauli-X, and rotation gates for polarisation qubits

    PubMed Central

    Heilmann, René; Gräfe, Markus; Nolte, Stefan; Szameit, Alexander

    2014-01-01

    Chip-based photonic quantum computing is an emerging technology that promises much speedup over conventional computers at small integration volumes. Particular interest is thereby given to polarisation-encoded photonic qubits, and many protocols have been developed for this encoding. However, arbitrary wave plate operation on chip are not available so far, preventing from the implementation of integrated universal quantum computing algorithms. In our work we close this gap and present Hadamard, Pauli-X, and rotation gates of high fidelity for photonic polarisation qubits on chip by employing a reorientation of the optical axis of birefringent waveguides. The optical axis of the birefringent waveguide is rotated due to the impact of an artificial stress field created by an additional modification close to the waveguide. By adjusting this length of the defect along the waveguide, the retardation between ordinary and extraordinary field components is precisely tunable including half-wave plate and quarter-wave plate operations. Our approach demonstrates the full range control of orientation and strength of the induced birefringence and thus allows arbitrary wave plate operations without affecting the degree of polarisation or introducing additional losses to the waveguides. The implemented gates are tested with classical and quantum light. PMID:24534893

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirvonen, Liisa M.; Le Marois, Alix; Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk

    We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reducedmore » lifetime near the coverslip in TIR compared to epifluorescence FLIM.« less

  6. Rocket instrument for far-UV spectrophotometry of faint astronomical objects.

    PubMed

    Hartig, G F; Fastie, W G; Davidsen, A F

    1980-03-01

    A sensitive sounding rocket instrument for moderate (~10-A) resolution far-UV (lambda1160-lambda1750-A) spectrophotometry of faint astronomical objects has been developed. The instrument employs a photon-counting microchannel plate imaging detector and a concave grating spectrograph behind a 40-cm Dall-Kirkham telescope. A unique remote-control pointing system, incorporating an SIT vidicon aspect camera, two star trackers, and a tone-encoded command telemetry link, permits the telescope to be oriented to within 5 arc sec of any target for which suitable guide stars can be found. The design, construction, calibration, and flight performance of the instrument are discussed.

  7. 3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls

    NASA Astrophysics Data System (ADS)

    Farshchian, Bahador; Amirsadeghi, Alborz; Choi, Junseo; Park, Daniel S.; Kim, Namwon; Park, Sunggook

    2017-03-01

    Microfluidic devices where the microchannel walls were decorated with micro and nanostructures were fabricated using 3D nanomolding. Using 3D molded microfluidic devices with microchannel walls decorated with microscale gratings, the fluid mixing behavior was investigated through experiments and numerical simulation. The use of microscale gratings in the micromixer was predicated by the fact that large obstacles in a microchannel enhances the mixing performance. Slanted ratchet gratings on the channel walls resulted in a helical flow along the microchannel, thus increasing the interfacial area between fluids and cutting down the diffusion length. Increasing the number of walls decorated with continuous ratchet gratings intensified the strength of the helical flow, enhancing mixing further. When ratchet gratings on the surface of the top cover plate were aligned in a direction to break the continuity of gratings from the other three walls, a stack of two helical flows was formed one above each other. This work concludes that the 3D nanomolding process can be a cost-effective tool for scaling-up the fabrication of microfluidic mixers with improved mixing efficiencies.[Figure not available: see fulltext.

  8. FPGA-based photon-counting phase-modulation fluorometer and a brief comparison with that operated in a pulsed-excitation mode

    NASA Astrophysics Data System (ADS)

    Iwata, Tetsuo; Taga, Takanori; Mizuno, Takahiko

    2018-02-01

    We have constructed a high-efficiency, photon-counting phase-modulation fluorometer (PC-PMF) using a field-programmable gate array, which is a modified version of the photon-counting fluorometer (PCF) that works in a pulsed-excitation mode (Iwata and Mizuno in Meas Sci Technol 28:075501, 2017). The common working principle for both is the simultaneous detection of the photoelectron pulse train, which covers 64 ns with a 1.0-ns resolution time (1.0 ns/channel). The signal-gathering efficiency was improved more than 100 times over that of conventional time-correlated single-photon-counting at the expense of resolution time depending on the number of channels. The system dead time for building a histogram was eliminated, markedly shortening the measurement time for fluorescent samples with moderately high quantum yields. We describe the PC-PMF and make a brief comparison with the pulsed-excitation PCF in precision, demonstrating the potential advantage of PC-PMF.

  9. Microchannel contacting of crystalline silicon solar cells

    DOE PAGES

    Bullock, James; Ota, Hiroki; Wang, Hanchen; ...

    2017-08-22

    There is tremendous interest in reducing losses caused by the metal contacts in silicon photovoltaics, particularly the optical and resistive losses of the front metal grid. One commonly sought-after goal is the creation of high aspect-ratio metal fingers which provide an optically narrow and low resistance pathway to the external circuit. Currently, the most widely used metal contact deposition techniques are limited to widths and aspect-ratios of ~40 μm and ~0.5, respectively. In this study, we introduce the use of a micropatterned polydimethylsiloxane encapsulation layer to form narrow (~20 μm) microchannels, with aspect-ratios up to 8, on the surface ofmore » solar cells. We demonstrate that low temperature metal pastes, electroless plating and atomic layer deposition can all be used within the microchannels. Further, we fabricate proof-of-concept structures including simple planar silicon heterojunction and homojunction solar cells. While preliminary in both design and efficiency, these results demonstrate the potential of this approach and its compatibility with current solar cell architectures.« less

  10. Microchannel contacting of crystalline silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullock, James; Ota, Hiroki; Wang, Hanchen

    There is tremendous interest in reducing losses caused by the metal contacts in silicon photovoltaics, particularly the optical and resistive losses of the front metal grid. One commonly sought-after goal is the creation of high aspect-ratio metal fingers which provide an optically narrow and low resistance pathway to the external circuit. Currently, the most widely used metal contact deposition techniques are limited to widths and aspect-ratios of ~40 μm and ~0.5, respectively. In this study, we introduce the use of a micropatterned polydimethylsiloxane encapsulation layer to form narrow (~20 μm) microchannels, with aspect-ratios up to 8, on the surface ofmore » solar cells. We demonstrate that low temperature metal pastes, electroless plating and atomic layer deposition can all be used within the microchannels. Further, we fabricate proof-of-concept structures including simple planar silicon heterojunction and homojunction solar cells. While preliminary in both design and efficiency, these results demonstrate the potential of this approach and its compatibility with current solar cell architectures.« less

  11. The role of charged particles in the positive corona-generated photon count in a rod to plane air gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bian, X. M.; Wang, Y. J.; MacAlpine, J. M. K.

    The relationship between the calculated charged-particle densities in positive corona, the rate of streamer production, and the photon count from the corona were investigated and found to be closely related. Both the densities of electrons and positive ions peaked at 11.8 kV, near the corona inception voltage; they then fell rapidly before slowly rising again. This behavior was exactly matched by the measured photon count. The calculation of the charged-particle density in a positive corona was achieved by means of a fluid model.

  12. Microcalcification detectability using a bench-top prototype photon-counting breast CT based on a Si strip detector.

    PubMed

    Cho, Hyo-Min; Ding, Huanjun; Barber, William C; Iwanczyk, Jan S; Molloi, Sabee

    2015-07-01

    To investigate the feasibility of detecting breast microcalcification (μCa) with a dedicated breast computed tomography (CT) system based on energy-resolved photon-counting silicon (Si) strip detectors. The proposed photon-counting breast CT system and a bench-top prototype photon-counting breast CT system were simulated using a simulation package written in matlab to determine the smallest detectable μCa. A 14 cm diameter cylindrical phantom made of breast tissue with 20% glandularity was used to simulate an average-sized breast. Five different size groups of calcium carbonate grains, from 100 to 180 μm in diameter, were simulated inside of the cylindrical phantom. The images were acquired with a mean glandular dose (MGD) in the range of 0.7-8 mGy. A total of 400 images was used to perform a reader study. Another simulation study was performed using a 1.6 cm diameter cylindrical phantom to validate the experimental results from a bench-top prototype breast CT system. In the experimental study, a bench-top prototype CT system was constructed using a tungsten anode x-ray source and a single line 256-pixels Si strip photon-counting detector with a pixel pitch of 100 μm. Calcium carbonate grains, with diameter in the range of 105-215 μm, were embedded in a cylindrical plastic resin phantom to simulate μCas. The physical phantoms were imaged at 65 kVp with an entrance exposure in the range of 0.6-8 mGy. A total of 500 images was used to perform another reader study. The images were displayed in random order to three blinded observers, who were asked to give a 4-point confidence rating on each image regarding the presence of μCa. The μCa detectability for each image was evaluated by using the average area under the receiver operating characteristic curve (AUC) across the readers. The simulation results using a 14 cm diameter breast phantom showed that the proposed photon-counting breast CT system can achieve high detection accuracy with an average AUC greater

  13. Image charge multi-role and function detectors

    NASA Astrophysics Data System (ADS)

    Milnes, James; Lapington, Jon S.; Jagutzki, Ottmar; Howorth, Jon

    2009-06-01

    The image charge technique used with microchannel plate imaging tubes provides several operational and practical benefits by serving to isolate the electronic image readout from the detector. The simple dielectric interface between detector and readout provides vacuum isolation and no vacuum electrical feed-throughs are required. Since the readout is mechanically separate from the detector, an image tube of generic design can be simply optimised for various applications by attaching it to different readout devices and electronics. We present imaging performance results using a single image tube with a variety of readout devices suited to differing applications: (a) A four electrode charge division tetra wedge anode, optimised for best spatial resolution in photon counting mode. (b) A cross delay line anode, enabling higher count rate, and the possibility of discriminating near co-incident events, and an event timing resolution of better than 1 ns. (c) A multi-anode readout connected, either to a multi-channel oscilloscope for analogue measurements of fast optical pulses, or alternately, to a multi-channel time correlated single photon counting (TCSPC) card.

  14. Wedge-and-strip anodes for centroid-finding position-sensitive photon and particle detectors

    NASA Technical Reports Server (NTRS)

    Martin, C.; Jelinsky, P.; Lampton, M.; Malina, R. F.

    1981-01-01

    The paper examines geometries employing position-dependent charge partitioning to obtain a two-dimensional position signal from each detected photon or particle. Requiring three or four anode electrodes and signal paths, images have little distortion and resolution is not limited by thermal noise. An analysis of the geometrical image nonlinearity between event centroid location and the charge partition ratios is presented. In addition, fabrication and testing of two wedge-and-strip anode systems are discussed. Images obtained with EUV radiation and microchannel plates verify the predicted performance, with further resolution improvements achieved by adopting low noise signal circuitry. Also discussed are the designs of practical X-ray, EUV, and charged particle image systems.

  15. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy

    PubMed Central

    Michalet, Xavier; Ingargiola, Antonino; Colyer, Ryan A.; Scalia, Giuseppe; Weiss, Shimon; Maccagnani, Piera; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo

    2014-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements. PMID:25309114

  16. Single photon counting fluorescence lifetime detection of pericellular oxygen concentrations

    NASA Astrophysics Data System (ADS)

    Hosny, Neveen A.; Lee, David A.; Knight, Martin M.

    2012-01-01

    Fluorescence lifetime imaging microscopy offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods are either invasive, require custom-made systems, or show limited spatial resolution. Therefore, these methods are unsuitable for investigation of pericellular oxygen concentrations. This study describes an adaptation of commercially available equipment which has been optimized for quantitative extracellular oxygen detection with high lifetime accuracy and spatial resolution while avoiding systematic photon pile-up. The oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)3]2+, was excited using a two-photon excitation laser. Lifetime was measured using a Becker & Hickl time-correlated single photon counting, which will be referred to as a TCSPC card. [Ru(bipy)3]2+ characterization studies quantified the influences of temperature, pH, cellular culture media and oxygen on the fluorescence lifetime measurements. This provided a precisely calibrated and accurate system for quantification of pericellular oxygen concentration based on measured lifetimes. Using this technique, quantification of oxygen concentrations around isolated viable chondrocytes, seeded in three-dimensional agarose gel, revealed a subpopulation of cells that exhibited significant spatial oxygen gradients such that oxygen concentration reduced with increasing proximity to the cell. This technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.

  17. Single photon counting fluorescence lifetime detection of pericellular oxygen concentrations.

    PubMed

    Hosny, Neveen A; Lee, David A; Knight, Martin M

    2012-01-01

    Fluorescence lifetime imaging microscopy offers a non-invasive method for quantifying local oxygen concentrations. However, existing methods are either invasive, require custom-made systems, or show limited spatial resolution. Therefore, these methods are unsuitable for investigation of pericellular oxygen concentrations. This study describes an adaptation of commercially available equipment which has been optimized for quantitative extracellular oxygen detection with high lifetime accuracy and spatial resolution while avoiding systematic photon pile-up. The oxygen sensitive fluorescent dye, tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate [Ru(bipy)(3)](2+), was excited using a two-photon excitation laser. Lifetime was measured using a Becker & Hickl time-correlated single photon counting, which will be referred to as a TCSPC card. [Ru(bipy)(3)](2+) characterization studies quantified the influences of temperature, pH, cellular culture media and oxygen on the fluorescence lifetime measurements. This provided a precisely calibrated and accurate system for quantification of pericellular oxygen concentration based on measured lifetimes. Using this technique, quantification of oxygen concentrations around isolated viable chondrocytes, seeded in three-dimensional agarose gel, revealed a subpopulation of cells that exhibited significant spatial oxygen gradients such that oxygen concentration reduced with increasing proximity to the cell. This technique provides a powerful tool for quantifying spatial oxygen gradients within three-dimensional cellular models.

  18. Controlled viable release of selectively captured label-free cells in microchannels.

    PubMed

    Gurkan, Umut Atakan; Anand, Tarini; Tas, Huseyin; Elkan, David; Akay, Altug; Keles, Hasan Onur; Demirci, Utkan

    2011-12-07

    Selective capture of cells from bodily fluids in microchannels has broadly transformed medicine enabling circulating tumor cell isolation, rapid CD4(+) cell counting for HIV monitoring, and diagnosis of infectious diseases. Although cell capture methods have been demonstrated in microfluidic systems, the release of captured cells remains a significant challenge. Viable retrieval of captured label-free cells in microchannels will enable a new era in biological sciences by allowing cultivation and post-processing. The significant challenge in release comes from the fact that the cells adhere strongly to the microchannel surface, especially when immuno-based immobilization methods are used. Even though fluid shear and enzymes have been used to detach captured cells in microchannels, these methods are known to harm cells and affect cellular characteristics. This paper describes a new technology to release the selectively captured label-free cells in microchannels without the use of fluid shear or enzymes. We have successfully released the captured CD4(+) cells (3.6% of the mononuclear blood cells) from blood in microfluidic channels with high specificity (89% ± 8%), viability (94% ± 4%), and release efficiency (59% ± 4%). We have further validated our system by specifically capturing and controllably releasing the CD34(+) stem cells from whole blood, which were quantified to be 19 cells per million blood cells in the blood samples used in this study. Our results also indicated that both CD4(+) and CD34(+) cells released from the microchannels were healthy and amenable for in vitro culture. Manual flow based microfluidic method utilizes inexpensive, easy to fabricate microchannels allowing selective label-free cell capture and release in less than 10 minutes, which can also be used at the point-of-care. The presented technology can be used to isolate and purify a broad spectrum of cells from mixed populations offering widespread applications in applied biological

  19. Design and fabrication of prototype 6×6 cm 2 microchannel plate photodetector with bialkali photocathode for fast timing applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Junqi; Byrum, Karen; Demarteau, Marcel

    Planar microchannel plate-based photodetector with bialkali photocathode is capable of fast and accurate time and position resolutions. A new 6 cm x 6 cm photodetector production facility was designed and built at Argonne National Laboratory. Small form-factor MCP-based photodetectors completely constructed of glass were designed and prototypes were successfully fabricated. Knudsen effusion cells were incorporated in the photocathode growth chamber to achieve uniform and high quantum efficiency hotocathodes. The thin film uniformity distribution was simulated and measured for an antimony film deposition, showing uniformity of better than 10%. Several prototype devices with bialkali photocathodes have been fabricated with the describedmore » system and their characteristics were evaluated in the large signal (multi-PE) limit. A typical prototype device exhibits time-of-flight resolution of ~ 27 psec and differential time resolution of ~ 9 psec, corresponding to spatial resolution of ~ 0.65 mm.« less

  20. Maximizing the quantum efficiency of microchannel plate detectors - The collection of photoelectrons from the interchannel web using an electric field

    NASA Technical Reports Server (NTRS)

    Taylor, R. C.; Hettrick, M. C.; Malina, R. F.

    1983-01-01

    High quantum efficiency and two-dimensional imaging capabilities make the microchannel plate (MCP) a suitable detector for a sky survey instrument. The Extreme Ultraviolet Explorer satellite, to be launched in 1987, will use MCP detectors. A feature which limits MCP efficiency is related to the walls of individual channels. The walls are of finite thickness and thus form an interchannel web. Under normal circumstances, this web does not contribute to the detector's quantum efficiency. Panitz and Foesch (1976) have found that in the case of a bombardment with ions, electrons were ejected from the electrode material coating the web. By applying a small electric field, the electrons were returned to the MCP surface where they were detected. The present investigation is concerned with the enhancement of quantum efficiencies in the case of extreme UV wavelengths. Attention is given to a model and a computer simulation which quantitatively reproduce the experimental results.

  1. Energy-resolved CT imaging with a photon-counting silicon-strip detector

    NASA Astrophysics Data System (ADS)

    Persson, Mats; Huber, Ben; Karlsson, Staffan; Liu, Xuejin; Chen, Han; Xu, Cheng; Yveborg, Moa; Bornefalk, Hans; Danielsson, Mats

    2014-03-01

    Photon-counting detectors are promising candidates for use in the next generation of x-ray CT scanners. Among the foreseen benefits are higher spatial resolution, better trade-off between noise and dose, and energy discriminating capabilities. Silicon is an attractive detector material because of its low cost, mature manufacturing process and high hole mobility. However, it is sometimes claimed to be unsuitable for use in computed tomography because of its low absorption efficiency and high fraction of Compton scatter. The purpose of this work is to demonstrate that high-quality energy-resolved CT images can nonetheless be acquired with clinically realistic exposure parameters using a photon-counting silicon-strip detector with eight energy thresholds developed in our group. We use a single detector module, consisting of a linear array of 50 0.5 × 0.4 mm detector elements, to image a phantom in a table-top lab setup. The phantom consists of a plastic cylinder with circular inserts containing water, fat and aqueous solutions of calcium, iodine and gadolinium, in different concentrations. We use basis material decomposition to obtain water, calcium, iodine and gadolinium basis images and demonstrate that these basis images can be used to separate the different materials in the inserts. We also show results showing that the detector has potential for quantitative measurements of substance concentrations.

  2. Neural signal registration and analysis of axons grown in microchannels

    NASA Astrophysics Data System (ADS)

    Pigareva, Y.; Malishev, E.; Gladkov, A.; Kolpakov, V.; Bukatin, A.; Mukhina, I.; Kazantsev, V.; Pimashkin, A.

    2016-08-01

    Registration of neuronal bioelectrical signals remains one of the main physical tools to study fundamental mechanisms of signal processing in the brain. Neurons generate spiking patterns which propagate through complex map of neural network connectivity. Extracellular recording of isolated axons grown in microchannels provides amplification of the signal for detailed study of spike propagation. In this study we used neuronal hippocampal cultures grown in microfluidic devices combined with microelectrode arrays to investigate a changes of electrical activity during neural network development. We found that after 5 days in vitro after culture plating the spiking activity appears first in microchannels and on the next 2-3 days appears on the electrodes of overall neural network. We conclude that such approach provides a convenient method to study neural signal processing and functional structure development on a single cell and network level of the neuronal culture.

  3. Dead-time optimized time-correlated photon counting instrument with synchronized, independent timing channels

    NASA Astrophysics Data System (ADS)

    Wahl, Michael; Rahn, Hans-Jürgen; Gregor, Ingo; Erdmann, Rainer; Enderlein, Jörg

    2007-03-01

    Time-correlated single photon counting is a powerful method for sensitive time-resolved fluorescence measurements down to the single molecule level. The method is based on the precisely timed registration of single photons of a fluorescence signal. Historically, its primary goal was the determination of fluorescence lifetimes upon optical excitation by a short light pulse. This goal is still important today and therefore has a strong influence on instrument design. However, modifications and extensions of the early designs allow for the recovery of much more information from the detected photons and enable entirely new applications. Here, we present a new instrument that captures single photon events on multiple synchronized channels with picosecond resolution and over virtually unlimited time spans. This is achieved by means of crystal-locked time digitizers with high resolution and very short dead time. Subsequent event processing in programmable logic permits classical histogramming as well as time tagging of individual photons and their streaming to the host computer. Through the latter, any algorithms and methods for the analysis of fluorescence dynamics can be implemented either in real time or offline. Instrument test results from single molecule applications will be presented.

  4. Fluorescence lifetime microscopy with a time- and space-resolved single-photon counting detector

    PubMed Central

    Michalet, X.; Siegmund, O.H.W.; Vallerga, J.V.; Jelinsky, P.; Pinaud, F. F.; Millaud, J.E.; Weiss, S.

    2017-01-01

    We have recently developed a wide-field photon-counting detector (the H33D detector) having high-temporal and high-spatial resolutions and capable of recording up to 500,000 photons per sec. Its temporal performance has been previously characterized using solutions of fluorescent materials with different lifetimes, and its spatial resolution using sub-diffraction objects (beads and quantum dots). Here we show its application to fluorescence lifetime imaging of live cells and compare its performance to a scanning confocal TCSPC approach. With the expected improvements in photocathode sensitivity and increase in detector throughput, this technology appears as a promising alternative to the current lifetime imaging solutions. PMID:29449756

  5. Sensitivity of photon-counting based K-edge imaging in X-ray computed tomography.

    PubMed

    Roessl, Ewald; Brendel, Bernhard; Engel, Klaus-Jürgen; Schlomka, Jens-Peter; Thran, Axel; Proksa, Roland

    2011-09-01

    The feasibility of K-edge imaging using energy-resolved, photon-counting transmission measurements in X-ray computed tomography (CT) has been demonstrated by simulations and experiments. The method is based on probing the discontinuities of the attenuation coefficient of heavy elements above and below the K-edge energy by using energy-sensitive, photon counting X-ray detectors. In this paper, we investigate the dependence of the sensitivity of K-edge imaging on the atomic number Z of the contrast material, on the object diameter D , on the spectral response of the X-ray detector and on the X-ray tube voltage. We assume a photon-counting detector equipped with six adjustable energy thresholds. Physical effects leading to a degradation of the energy resolution of the detector are taken into account using the concept of a spectral response function R(E,U) for which we assume four different models. As a validation of our analytical considerations and in order to investigate the influence of elliptically shaped phantoms, we provide CT simulations of an anthropomorphic Forbild-Abdomen phantom containing a gold-contrast agent. The dependence on the values of the energy thresholds is taken into account by optimizing the achievable signal-to-noise ratios (SNR) with respect to the threshold values. We find that for a given X-ray spectrum and object size the SNR in the heavy element's basis material image peaks for a certain atomic number Z. The dependence of the SNR in the high- Z basis-material image on the object diameter is the natural, exponential decrease with particularly deteriorating effects in the case where the attenuation from the object itself causes a total signal loss below the K-edge. The influence of the energy-response of the detector is very important. We observed that the optimal SNR values obtained with an ideal detector and with a CdTe pixel detector whose response, showing significant tailing, has been determined at a synchrotron differ by factors of

  6. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array.

    PubMed

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L; McCollough, Cynthia H

    2016-02-21

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  7. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M.; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F.; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L.; McCollough, Cynthia H.

    2016-02-01

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  8. Photoionization of Trapped Carriers in Avalanche Photodiodes to Reduce Afterpulsing During Geiger-Mode Photon Counting

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    2005-01-01

    We reduced the afterpulsing probability by a factor of five in a Geiger-mode photon-counting InGaAs avalanche photodiode by using sub-band-gap (lambda = 1.95 micron) laser diode illumination, which we believe photoionizes the trapped carriers.

  9. Static response of deformable microchannels

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.; Sidhore, Tanmay C.

    2017-11-01

    Microfluidic channels manufactured from PDMS are a key component of lab-on-a-chip devices. Experimentally, rectangular microchannels are found to deform into a non-rectangular cross-section due to fluid-structure interactions. Deformation affects the flow profile, which results in a nonlinear relationship between the volumetric flow rate and the pressure drop. We develop a framework, within the lubrication approximation (l >> w >> h), to self-consistently derive flow rate-pressure drop relations. Emphasis is placed on handling different types of elastic response: from pure plate-bending, to half-space deformation, to membrane stretching. The ``simplest'' model (Stokes flow in a 3D rectangular channel capped with a linearly elastic Kirchhoff-Love plate) agrees well with recent experiments. We also simulate the static response of such microfluidic channels under laminar flow conditions using ANSYSWorkbench. Simulations are calibrated using experimental flow rate-pressure drop data from the literature. The simulations provide highly resolved deformation profiles, which are difficult to measure experimentally. By comparing simulations, experiments and our theoretical models, we show good agreement in many flow/deformation regimes, without any fitting parameters.

  10. Concept of a photon-counting camera based on a diffraction-addressed Gray-code mask

    NASA Astrophysics Data System (ADS)

    Morel, Sébastien

    2004-09-01

    A new concept of photon counting camera for fast and low-light-level imaging applications is introduced. The possible spectrum covered by this camera ranges from visible light to gamma rays, depending on the device used to transform an incoming photon into a burst of visible photons (photo-event spot) localized in an (x,y) image plane. It is actually an evolution of the existing "PAPA" (Precision Analog Photon Address) Camera that was designed for visible photons. This improvement comes from a simplified optics. The new camera transforms, by diffraction, each photo-event spot from an image intensifier or a scintillator into a cross-shaped pattern, which is projected onto a specific Gray code mask. The photo-event position is then extracted from the signal given by an array of avalanche photodiodes (or photomultiplier tubes, alternatively) downstream of the mask. After a detailed explanation of this camera concept that we have called "DIAMICON" (DIffraction Addressed Mask ICONographer), we briefly discuss about technical solutions to build such a camera.

  11. Absolute dose calibration of an X-ray system and dead time investigations of photon-counting techniques

    NASA Astrophysics Data System (ADS)

    Carpentieri, C.; Schwarz, C.; Ludwig, J.; Ashfaq, A.; Fiederle, M.

    2002-07-01

    High precision concerning the dose calibration of X-ray sources is required when counting and integrating methods are compared. The dose calibration for a dental X-ray tube was executed with special dose calibration equipment (dosimeter) as function of exposure time and rate. Results were compared with a benchmark spectrum and agree within ±1.5%. Dead time investigations with the Medipix1 photon-counting chip (PCC) have been performed by rate variations. Two different types of dead time, paralysable and non-paralysable will be discussed. The dead time depends on settings of the front-end electronics and is a function of signal height, which might lead to systematic defects of systems. Dead time losses in excess of 30% have been found for the PCC at 200 kHz absorbed photons per pixel.

  12. Axially Tapered And Bilayer Microchannels For Evaporative Cooling Devices

    DOEpatents

    Nilson, Robert; Griffiths, Stewart

    2005-10-04

    The invention consists of an evaporative cooling device comprising one or more microchannels whose cross section is axially reduced to control the maximum capillary pressure differential between liquid and vapor phases. In one embodiment, the evaporation channels have a rectangular cross section that is reduced in width along a flow path. In another embodiment, channels of fixed width are patterned with an array of microfabricated post-like features such that the feature size and spacing are gradually reduced along the flow path. Other embodiments incorporate bilayer channels consisting of an upper cover plate having a pattern of slots or holes of axially decreasing size and a lower fluid flow layer having channel widths substantially greater than the characteristic microscale dimensions of the patterned cover plate. The small dimensions of the cover plate holes afford large capillary pressure differentials while the larger dimensions of the lower region reduce viscous flow resistance.

  13. ChromAIX2: A large area, high count-rate energy-resolving photon counting ASIC for a Spectral CT Prototype

    NASA Astrophysics Data System (ADS)

    Steadman, Roger; Herrmann, Christoph; Livne, Amir

    2017-08-01

    Spectral CT based on energy-resolving photon counting detectors is expected to deliver additional diagnostic value at a lower dose than current state-of-the-art CT [1]. The capability of simultaneously providing a number of spectrally distinct measurements not only allows distinguishing between photo-electric and Compton interactions but also discriminating contrast agents that exhibit a K-edge discontinuity in the absorption spectrum, referred to as K-edge Imaging [2]. Such detectors are based on direct converting sensors (e.g. CdTe or CdZnTe) and high-rate photon counting electronics. To support the development of Spectral CT and show the feasibility of obtaining rates exceeding 10 Mcps/pixel (Poissonian observed count-rate), the ChromAIX ASIC has been previously reported showing 13.5 Mcps/pixel (150 Mcps/mm2 incident) [3]. The ChromAIX has been improved to offer the possibility of a large area coverage detector, and increased overall performance. The new ASIC is called ChromAIX2, and delivers count-rates exceeding 15 Mcps/pixel with an rms-noise performance of approximately 260 e-. It has an isotropic pixel pitch of 500 μm in an array of 22×32 pixels and is tile-able on three of its sides. The pixel topology consists of a two stage amplifier (CSA and Shaper) and a number of test features allowing to thoroughly characterize the ASIC without a sensor. A total of 5 independent thresholds are also available within each pixel, allowing to acquire 5 spectrally distinct measurements simultaneously. The ASIC also incorporates a baseline restorer to eliminate excess currents induced by the sensor (e.g. dark current and low frequency drifts) which would otherwise cause an energy estimation error. In this paper we report on the inherent electrical performance of the ChromAXI2 as well as measurements obtained with CZT (CdZnTe)/CdTe sensors and X-rays and radioactive sources.

  14. Hybrid Ion-Detector/Data-Acquisition System for a TOF-MS

    NASA Technical Reports Server (NTRS)

    Burton, William D., Jr.; Schultz, J. Albert; Vaughn, Valentine; McCully, Michael; Ulrich, Steven; Egan, Thomas F.

    2006-01-01

    A modified ion-detector/data-acquisition system has been devised to increase the dynamic range of a time-of-flight mass spectrometer (TOF-MS) that, previously, included a microchannel-plate detector and a data-acquisition system based on counting pulses and time-tagging them by use of a time-to-digital converter (TDC). The dynamic range of the TOF-MS was limited by saturation of the microchannel plate detector, which can handle no more than a few million counts per second. The modified system includes (1) a combined microchannel plate/discrete ion multiplier and (2) a hybrid data-acquisition system that simultaneously performs analog current or voltage measurements and multianode single-ion-pulse-counting time-of-flight measurements to extend the dynamic range of a TDC into the regime in which a mass peak comprises multiple ions arriving simultaneously at the detector. The multianode data are used to determine, in real time, whether the detector is saturated. When saturation is detected, the data-acquisition system selectively enables circuitry that simultaneously determines the ion-peak intensity by measuring the time profile of the analog current or voltage detector-output signal.

  15. 6 Mcps photon-counting X-ray computed tomography system using a 25 mm/s-scan linear LSO-MPPC detector and its application to gadolinium imaging

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Oda, Yasuyuki; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sugimura, Shigeaki; Endo, Haruyuki; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-12-01

    6 Mcps photon counting was carried out using a detector consisting of a 1.0 mm-thick LSO [Lu 2(SiO 4)O] single-crystal scintillator and an MPPC (multipixel photon counter) module in an X-ray computed tomography (CT) system. The maximum count rate was 6 Mcps (mega counts per second) at a tube voltage of 100 kV and a tube current of 0.91 mA. Next, a photon-counting X-ray CT system consists of an X-ray generator, a turntable, a scan stage, a two-stage controller, the LSO-MPPC detector, a counter card (CC), and a personal computer (PC). Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan with a scan velocity of 25 mm/s. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The exposure time for obtaining a tomogram was 600 s at a scan step of 0.5 mm and a rotation step of 1.0°, and photon-counting CT was accomplished using gadolinium-based contrast media.

  16. 3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls.

    PubMed

    Farshchian, Bahador; Amirsadeghi, Alborz; Choi, Junseo; Park, Daniel S; Kim, Namwon; Park, Sunggook

    2017-01-01

    Microfluidic devices where the microchannel walls were decorated with micro and nanostructures were fabricated using 3D nanomolding. Using 3D molded microfluidic devices with microchannel walls decorated with microscale gratings, the fluid mixing behavior was investigated through experiments and numerical simulation. The use of microscale gratings in the micromixer was predicated by the fact that large obstacles in a microchannel enhances the mixing performance. Slanted ratchet gratings on the channel walls resulted in a helical flow along the microchannel, thus increasing the interfacial area between fluids and cutting down the diffusion length. Increasing the number of walls decorated with continuous ratchet gratings intensified the strength of the helical flow, enhancing mixing further. When ratchet gratings on the surface of the top cover plate were aligned in a direction to break the continuity of gratings from the other three walls, a stack of two helical flows was formed one above each other. This work concludes that the 3D nanomolding process can be a cost-effective tool for scaling-up the fabrication of microfluidic mixers with improved mixing efficiencies.Graphical abstractIn this paper we show that a micromixer with patterned walls can be fabricated using 3D nanomolding and solvent-assisted bonding to manipulate the flow patterns to improve mixing.

  17. Spectral performance of a whole-body research photon counting detector CT: quantitative accuracy in derived image sets

    NASA Astrophysics Data System (ADS)

    Leng, Shuai; Zhou, Wei; Yu, Zhicong; Halaweish, Ahmed; Krauss, Bernhard; Schmidt, Bernhard; Yu, Lifeng; Kappler, Steffen; McCollough, Cynthia

    2017-09-01

    Photon-counting computed tomography (PCCT) uses a photon counting detector to count individual photons and allocate them to specific energy bins by comparing photon energy to preset thresholds. This enables simultaneous multi-energy CT with a single source and detector. Phantom studies were performed to assess the spectral performance of a research PCCT scanner by assessing the accuracy of derived images sets. Specifically, we assessed the accuracy of iodine quantification in iodine map images and of CT number accuracy in virtual monoenergetic images (VMI). Vials containing iodine with five known concentrations were scanned on the PCCT scanner after being placed in phantoms representing the attenuation of different size patients. For comparison, the same vials and phantoms were also scanned on 2nd and 3rd generation dual-source, dual-energy scanners. After material decomposition, iodine maps were generated, from which iodine concentration was measured for each vial and phantom size and compared with the known concentration. Additionally, VMIs were generated and CT number accuracy was compared to the reference standard, which was calculated based on known iodine concentration and attenuation coefficients at each keV obtained from the U.S. National Institute of Standards and Technology (NIST). Results showed accurate iodine quantification (root mean square error of 0.5 mgI/cc) and accurate CT number of VMIs (percentage error of 8.9%) using the PCCT scanner. The overall performance of the PCCT scanner, in terms of iodine quantification and VMI CT number accuracy, was comparable to that of EID-based dual-source, dual-energy scanners.

  18. Cascaded systems analysis of photon counting detectors.

    PubMed

    Xu, J; Zbijewski, W; Gang, G; Stayman, J W; Taguchi, K; Lundqvist, M; Fredenberg, E; Carrino, J A; Siewerdsen, J H

    2014-10-01

    Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1-7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at which the MTF falls to a value of

  19. Maturing CCD Photon-Counting Technology for Space Flight

    NASA Technical Reports Server (NTRS)

    Mallik, Udayan; Lyon, Richard; Petrone, Peter; McElwain, Michael; Benford, Dominic; Clampin, Mark; Hicks, Brian

    2015-01-01

    This paper discusses charge blooming and starlight saturation - two potential technical problems - when using an Electron Multiplying Charge Coupled Device (EMCCD) type detector in a high-contrast instrument for imaging exoplanets. These problems especially affect an interferometric type coronagraph - coronagraphs that do not use a mask to physically block starlight in the science channel of the instrument. These problems are presented using images taken with a commercial Princeton Instrument EMCCD camera in the Goddard Space Flight Center's (GSFC), Interferometric Coronagraph facility. In addition, this paper discusses techniques to overcome such problems. This paper also discusses the development and architecture of a Field Programmable Gate Array and Digital-to-Analog Converter based shaped clock controller for a photon-counting EMCCD camera. The discussion contained here will inform high-contrast imaging groups in their work with EMCCD detectors.

  20. Photon-Counting Laser Altimeters: Aircraft Demonstration and Future Application to Globally Contiguous Spaceborne Topographic Mapping

    NASA Astrophysics Data System (ADS)

    Degnan, J. J.

    2002-05-01

    We have recently demonstrated a scanning, photon-counting, laser altimeter, which is capable of daylight operations from aircraft cruise altitudes. The instrument measures the times-of-flight of individual photons to deduce the distances between the instrument reference and points on the underlying terrain from which the arriving photons were reflected. By imaging the terrain onto a highly pixellated detector followed by a multi-channel timing receiver, one can make multiple spatially-resolved measurements to the surface within a single laser pulse. The horizontal spatial resolution is limited by the optical projection of a single pixel onto the surface. In short, a 3D image of the terrain within the laser ground spot is obtained on each laser fire, assuming at least one signal photon is recorded by each pixel.. In test flights, a prototype airborne system has successfully recorded few kHz rate, single photon returns from clouds, soils, man-made objects, vegetation, and water surfaces at mid-day under conditions of maximum solar illumination. The system has also demonstrated a capability to resolve volumetrically distributed targets, such as tree canopies, and has performed wave height measurements and shallow water bathymetry over the Chesapeake Bay and Atlantic Ocean. The signal photons were reliably extracted from the solar noise background using an optimized Post-Detection Poisson Filter. The passively Q-switched microchip Nd:YAG laser transmitter measures only 2.25 mm in length and is pumped by a single 1.2 Watt laser diode. The output is frequency-doubled to take advantage of higher detector counting efficiencies and narrower spectral filters available at 532 nm. The transmitter produces a few microjoules of green energy in a subnanosecond pulse at several kilohertz rates. The illuminated ground area is imaged by a 14 cm diameter, diffraction-limited, off-axis telescope onto a segmented anode photomultiplier with up to 16 pixels (4 x4). Each anode segment is

  1. A simulator for airborne laser swath mapping via photon counting

    NASA Astrophysics Data System (ADS)

    Slatton, K. C.; Carter, W. E.; Shrestha, R.

    2005-06-01

    Commercially marketed airborne laser swath mapping (ALSM) instruments currently use laser rangers with sufficient energy per pulse to work with return signals of thousands of photons per shot. The resulting high signal to noise level virtually eliminates spurious range values caused by noise, such as background solar radiation and sensor thermal noise. However, the high signal level approach requires laser repetition rates of hundreds of thousands of pulses per second to obtain contiguous coverage of the terrain at sub-meter spatial resolution, and with currently available technology, affords little scalability for significantly downsizing the hardware, or reducing the costs. A photon-counting ALSM sensor has been designed by the University of Florida and Sigma Space, Inc. for improved topographic mapping with lower power requirements and weight than traditional ALSM sensors. Major elements of the sensor design are presented along with preliminary simulation results. The simulator is being developed so that data phenomenology and target detection potential can be investigated before the system is completed. Early simulations suggest that precise estimates of terrain elevation and target detection will be possible with the sensor design.

  2. Prototype Test Results for the Single Photon Detection SLR2000 Satellite Laser Ranging System

    NASA Technical Reports Server (NTRS)

    Zagwodzki, Thomas W.; McGarry, Jan F.; Degnan, John J.; Cheek, Jack W.; Dunn, Peter J.; Patterson, Don; Donovan, Howard

    2004-01-01

    NASA's aging Satellite Laser Ranging (SLR) network is scheduled to be replaced over the next few years with a fully automated single photon detection system. A prototype of this new system, called SLR2000, is currently undergoing field trials at the Goddard Space Flight Center in Greenbelt, Maryland to evaluate photon counting techniques and determine system hardware, software, and control algorithm performance levels and limitations. Newly developed diode pumped microchip lasers and quadrant microchannel plate-based photomultiplier tubes have enabled the development of this high repetition rate single photon detection SLR system. The SLR2000 receiver threshold is set at the single photoelectron (pe) level but tracks satellites with an average signal level typically much less than 1 pe. The 2 kHz laser fire rate aids in satellite acquisition and tracking and will enable closed loop tracking by accumulating single photon count statistics in a quadrant detector and using this information to correct for pointing errors. Laser transmitter beamwidths of 10 arcseconds (FWHM) or less are currently being used to maintain an adequate signal level for tracking while the receiver field of view (FOV) has been opened to 40 arcseconds to accommodate point ahead/look behind angular offsets. In the near future, the laser transmitter point ahead will be controlled by a pair of Risley prisms. This will allow the telescope to point behind and enable closure of the receiver FOV to roughly match the transmitter beam divergence. Bandpass filters (BPF) are removed for night tracking operations while 0.2 nm or 1 nm filters are used during daylight operation. Both day and night laser tracking of Low Earth Orbit (LEO) satellites has been achieved with a laser transmitter energy of only 65 microjoules per pulse. Satellite tracking is presently limited to LEO satellites until the brassboard laser transmitter can be upgraded or replaced. Simultaneous tracks have also been observed with NASA s

  3. Physical characterization of a scanning photon counting digital mammography system based on Si-strip detectors.

    PubMed

    Aslund, Magnus; Cederström, Björn; Lundqvist, Mats; Danielsson, Mats

    2007-06-01

    The physical performance of a scanning multislit full field digital mammography system was determined using basic image quality parameters. The system employs a direct detection detector comprised of linear silicon strip sensors in an edge-on geometry connected to photon counting electronics. The pixel size is 50 microm and the field of view 24 x 26 cm2. The performance was quantified using the presampled modulation transfer function, the normalized noise power spectrum and the detective quantum efficiency (DQE). Compared to conventional DQE methods, the scanning geometry with its intrinsic scatter rejection poses additional requirements on the measurement setup, which are investigated in this work. The DQE of the photon counting system was found to be independent of the dose level to the detector in the 7.6-206 microGy range. The peak DQE was 72% and 73% in the scan and slit direction, respectively, measured with a 28 kV W-0.5 mm Al anode-filter combination with an added 2 mm Al filtration.

  4. Gamma-ray detection efficiency of the microchannel plate installed as an ion detector in the low energy particle instrument onboard the GEOTAIL satellite.

    PubMed

    Tanaka, Y T; Yoshikawa, I; Yoshioka, K; Terasawa, T; Saito, Y; Mukai, T

    2007-03-01

    A microchannel plate (MCP) assembly has been used as an ion detector in the low energy particle (LEP) instrument onboard the magnetospheric satellite GEOTAIL. Recently the MCP assembly has detected gamma rays emitted from an astronomical object and has been shown to provide unique information of gamma rays if they are intense enough. However, the detection efficiency for gamma rays was not measured before launch, and therefore we could not analyze the LEP data quantitatively. In this article, we report the gamma-ray detection efficiency of the MCP assembly. The measured efficiencies are 1.29%+/-0.71% and 0.21%+/-0.14% for normal incidence 60 and 662 keV gamma rays, respectively. The incident angle dependence is also presented. Our calibration is crucial to study high energy astrophysical phenomena by using the LEP.

  5. Initial steps toward the realization of large area arrays of single photon counting pixels based on polycrystalline silicon TFTs

    NASA Astrophysics Data System (ADS)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Jiang, Hao; Street, Robert A.; Lu, Jeng Ping

    2014-03-01

    The thin-film semiconductor processing methods that enabled creation of inexpensive liquid crystal displays based on amorphous silicon transistors for cell phones and televisions, as well as desktop, laptop and mobile computers, also facilitated the development of devices that have become ubiquitous in medical x-ray imaging environments. These devices, called active matrix flat-panel imagers (AMFPIs), measure the integrated signal generated by incident X rays and offer detection areas as large as ~43×43 cm2. In recent years, there has been growing interest in medical x-ray imagers that record information from X ray photons on an individual basis. However, such photon counting devices have generally been based on crystalline silicon, a material not inherently suited to the cost-effective manufacture of monolithic devices of a size comparable to that of AMFPIs. Motivated by these considerations, we have developed an initial set of small area prototype arrays using thin-film processing methods and polycrystalline silicon transistors. These prototypes were developed in the spirit of exploring the possibility of creating large area arrays offering single photon counting capabilities and, to our knowledge, are the first photon counting arrays fabricated using thin film techniques. In this paper, the architecture of the prototype pixels is presented and considerations that influenced the design of the pixel circuits, including amplifier noise, TFT performance variations, and minimum feature size, are discussed.

  6. Discussion on the solar concentrating thermoelectric generation using micro-channel heat pipe array

    NASA Astrophysics Data System (ADS)

    Li, Guiqiang; Feng, Wei; Jin, Yi; Chen, Xiao; Ji, Jie

    2017-11-01

    Heat pipe is a high efficient tool in solar energy applications. In this paper, a novel solar concentrating thermoelectric generation using micro-channel heat pipe array (STEG-MCHP) was presented. The flat-plate micro-channel heat pipe array not only has a higher heat transfer performance than the common heat pipe, but also can be placed on the surface of TEG closely, which can further reduce the thermal resistance between the heat pipe and the TEG. A preliminary comparison experiment was also conducted to indicate the advantages of the STEG-MCHP. The optimization based on the model verified by the experiment was demonstrated, and the concentration ratio and selective absorbing coating area were also discussed. In addition, the cost analysis was also performed to compare between the STEG-MCHP and the common solar concentrating TEGs in series. The outcome showed that the solar concentrating thermoelectric generation using micro-channel heat pipe array has the higher electrical efficiency and lower cost, which may provide a suitable way for solar TEG applications.

  7. Software defined photon counting system for time resolved x-ray experiments.

    PubMed

    Acremann, Y; Chembrolu, V; Strachan, J P; Tyliszczak, T; Stöhr, J

    2007-01-01

    The time structure of synchrotron radiation allows time resolved experiments with sub-100 ps temporal resolution using a pump-probe approach. However, the relaxation time of the samples may require a lower repetition rate of the pump pulse compared to the full repetition rate of the x-ray pulses from the synchrotron. The use of only the x-ray pulse immediately following the pump pulse is not efficient and often requires special operation modes where only a few buckets of the storage ring are filled. We designed a novel software defined photon counting system that allows to implement a variety of pump-probe schemes at the full repetition rate. The high number of photon counters allows to detect the response of the sample at multiple time delays simultaneously, thus improving the efficiency of the experiment. The system has been successfully applied to time resolved scanning transmission x-ray microscopy. However, this technique is applicable more generally.

  8. The Slope Imaging Multi-polarization Photon-counting Lidar: an Advanced Technology Airborne Laser Altimeter

    NASA Astrophysics Data System (ADS)

    Dabney, P.; Harding, D. J.; Huss, T.; Valett, S.; Yu, A. W.; Zheng, Y.

    2009-12-01

    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) is an airborne laser altimeter developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryopshere remote sensing. The SIMPL instrument incorporates a variety of advanced technologies in order to demonstrate measurement approaches of potential benefit for improved airborne laser swath mapping and spaceflight laser altimeter missions. SIMPL incorporates beam splitting, single-photon ranging and polarimetry technologies at green and near-infrared wavelengths in order to achieve simultaneous sampling of surface elevation, slope, roughness and scattering properties, the latter used to differentiate surface types. The transmitter is a 1 nsec pulse width, 11 kHz, 1064 nm microchip laser, frequency doubled to 532 nm and split into four plane-polarized beams using birefringent calcite crystal in order to maintain co-alignment of the two colors. The 16 channel receiver splits the received energy for each beam into the two colors and each color is split into energy parallel and perpendicular to the transmit polarization plane thereby proving a measure of backscatter depolarization. The depolarization ratio is sensitive to the proportions of specular reflection and surface and volume scattering, and is a function of wavelength. The ratio can differentiate, for example, water, young translucent ice, older granular ice and snow. The solar background count rate is controlled by spatial filtering using a pinhole array and by spectral filtering using temperature-controlled narrow bandwidth filters. The receiver is fiber coupled to 16 Single Photon Counting Modules (SPCMs). To avoid range biases due to the long dead time of these detectors the probability of detection per laser fire on each channel is controlled to be below 30%, using mechanical irises and flight altitude. Event timers with 0.1 nsec resolution in combination the narrow transmit pulse yields single

  9. Spatio-energetic cross talk in photon counting detectors: Detector model and correlated Poisson data generator.

    PubMed

    Taguchi, Katsuyuki; Polster, Christoph; Lee, Okkyun; Stierstorfer, Karl; Kappler, Steffen

    2016-12-01

    An x-ray photon interacts with photon counting detectors (PCDs) and generates an electron charge cloud or multiple clouds. The clouds (thus, the photon energy) may be split between two adjacent PCD pixels when the interaction occurs near pixel boundaries, producing a count at both of the pixels. This is called double-counting with charge sharing. (A photoelectric effect with K-shell fluorescence x-ray emission would result in double-counting as well). As a result, PCD data are spatially and energetically correlated, although the output of individual PCD pixels is Poisson distributed. Major problems include the lack of a detector noise model for the spatio-energetic cross talk and lack of a computationally efficient simulation tool for generating correlated Poisson data. A Monte Carlo (MC) simulation can accurately simulate these phenomena and produce noisy data; however, it is not computationally efficient. In this study, the authors developed a new detector model and implemented it in an efficient software simulator that uses a Poisson random number generator to produce correlated noisy integer counts. The detector model takes the following effects into account: (1) detection efficiency; (2) incomplete charge collection and ballistic effect; (3) interaction with PCDs via photoelectric effect (with or without K-shell fluorescence x-ray emission, which may escape from the PCDs or be reabsorbed); and (4) electronic noise. The correlation was modeled by using these two simplifying assumptions: energy conservation and mutual exclusiveness. The mutual exclusiveness is that no more than two pixels measure energy from one photon. The effect of model parameters has been studied and results were compared with MC simulations. The agreement, with respect to the spectrum, was evaluated using the reduced χ 2 statistics or a weighted sum of squared errors, χ red 2 (≥1), where χ red 2 =1 indicates a perfect fit. The model produced spectra with flat field irradiation that

  10. Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs

    NASA Astrophysics Data System (ADS)

    Davies, J.; Maynes, D.; Webb, B. W.; Woolford, B.

    2006-08-01

    One approach recently proposed for reducing the frictional resistance to liquid flow in microchannels is the patterning of microribs and cavities on the channel walls. When treated with a hydrophobic coating, the liquid flowing in the microchannel wets only the surfaces of the ribs, and does not penetrate the cavities, provided the pressure is not too high. The net result is a reduction in the surface contact area between channel walls and the flowing liquid. For microribs and cavities that are aligned normal to the channel axis (principal flow direction), these micropatterns form a repeating, periodic structure. This paper presents results of a study exploring the momentum transport in a parallel-plate microchannel with such microengineered walls. The investigation explored the entire laminar flow Reynolds number range and characterized the influence of the vapor cavity depth on the overall flow field. The liquid-vapor interface (meniscus) in the cavity regions is treated as flat in the numerical analysis and two conditions are explored with regard to the cavity region: (1) The liquid flow at the liquid-vapor interface is treated as shear-free (vanishing viscosity in the vapor region), and (2) the liquid flow in the microchannel core and the vapor flow within the cavity are coupled by matching the velocity and shear stress at the interface. Regions of slip and no-slip behavior exist and the velocity field shows distinct variations from classical laminar flow in a parallel-plate channel. The local streamwise velocity profiles, interfacial velocity distributions, and maximum interfacial velocities are presented for a number of scenarios and provide a sound understanding of the local flow physics. The predictions and accompanying measurements reveal that significant reductions in the frictional pressure drop (enhancement in effective fluid slip at the channel walls) can be achieved relative to the classical smooth-channel Stokes flow. Reductions in the friction

  11. The ultraviolet detection component based on Te-Cs image intensifier

    NASA Astrophysics Data System (ADS)

    Qian, Yunsheng; Zhou, Xiaoyu; Wu, Yujing; Wang, Yan; Xu, Hua

    2017-05-01

    Ultraviolet detection technology has been widely focused and adopted in the fields of ultraviolet warning and corona detection for its significant value and practical meaning. The component structure of ultraviolet ICMOS, imaging driving and the photon counting algorithm are studied in this paper. Firstly, the one-inch and wide dynamic range CMOS chip with the coupling optical fiber panel is coupled to the ultraviolet image intensifier. The photocathode material in ultraviolet image intensifier is Te-Cs, which contributes to the solar blind characteristic, and the dual micro-channel plates (MCP) structure ensures the sufficient gain to achieve the single photon counting. Then, in consideration of the ultraviolet detection demand, the drive circuit of the CMOS chip is designed and the corresponding program based on Verilog language is written. According to the characteristics of ultraviolet imaging, the histogram equalization method is applied to enhance the ultraviolet image and the connected components labeling way is utilized for the ultraviolet single photon counting. Moreover, one visible light video channel is reserved in the ultraviolet ICOMS camera, which can be used for the fusion of ultraviolet and visible images. Based upon the module, the ultraviolet optical lens and the deep cut-off solar blind filter are adopted to construct the ultraviolet detector. At last, the detection experiment of the single photon signal is carried out, and the test results are given and analyzed.

  12. Bacteriocidal activity of sanitizers against Enterococcus faecium attached to stainless steel as determined by plate count and impedance methods.

    PubMed

    Andrade, N J; Bridgeman, T A; Zottola, E A

    1998-07-01

    Enterococcus faecium attached to stainless steel chips (100 mm2) was treated with the following sanitizers: sodium hypochlorite, peracetic acid (PA), peracetic acid plus an organic acid (PAS), quaternary ammonium, organic acid, and anionic acid. The effectiveness of sanitizer solutions on planktonic cells (not attached) was evaluated by the Association of Official Analytical Chemists (AOAC) suspension test. The number of attached cells was determined by impedance measurement and plate count method after vortexing. The decimal reduction (DR) in numbers of the E. faecium population was determined for the three methods and was analyzed by analysis of variance (P < 0.05) using Statview software. The adhered cells were more resistant (P < 0.05) than nonadherent cells. The DR averages for all of the sanitizers for 30 s of exposure were 6.4, 2.2, and 2.5 for the AOAC suspension test, plate count method after vortexing, and impedance measurement, respectively. Plate count and impedance methods showed a difference (P < 0.05) after 30 s of sanitizer exposure but not after 2 min. The impedance measurement was the best method to measure adherent cells. Impedance measurement required the development of a quadratic regression. The equation developed from 82 samples is as follows: log CFU/chip = 0.2385T2-0.96T + 9.35, r2 = 0.92, P < 0.05, T = impedance detection time in hours. This method showed that the sanitizers PAS and PA were more effective against E. faecium than the other sanitizers. At 30 s, the impedance method recovered about 25 times more cells than the plate count method after vortexing. These data suggest that impedance measurement is the method of choice when evaluating the number of bacterial cells adhered to a surface.

  13. Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm

    NASA Astrophysics Data System (ADS)

    Svensson, Tomas; Alerstam, Erik; Khoptyar, Dmitry; Johansson, Jonas; Folestad, Staffan; Andersson-Engels, Stefan

    2009-06-01

    Photon time-of-flight spectroscopy (PTOFS) is a powerful tool for analysis of turbid materials. We have constructed a time-of-flight spectrometer based on a supercontinuum fiber laser, acousto-optical tunable filtering, and an InP/InGaAsP microchannel plate photomultiplier tube. The system is capable of performing PTOFS up to 1400 nm, and thus covers an important region for vibrational spectroscopy of solid samples. The development significantly increases the applicability of PTOFS for analysis of chemical content and physical properties of turbid media. The great value of the proposed approach is illustrated by revealing the distinct absorption features of turbid epoxy resin. Promising future applications of the approach are discussed, including quantitative assessment of pharmaceuticals, powder analysis, and calibration-free near-infrared spectroscopy.

  14. Sensitivity analysis of pulse pileup model parameter in photon counting detectors

    NASA Astrophysics Data System (ADS)

    Shunhavanich, Picha; Pelc, Norbert J.

    2017-03-01

    Photon counting detectors (PCDs) may provide several benefits over energy-integrating detectors (EIDs), including spectral information for tissue characterization and the elimination of electronic noise. PCDs, however, suffer from pulse pileup, which distorts the detected spectrum and degrades the accuracy of material decomposition. Several analytical models have been proposed to address this problem. The performance of these models are dependent on the assumptions used, including the estimated pulse shape whose parameter values could differ from the actual physical ones. As the incident flux increases and the corrections become more significant the needed parameter value accuracy may be more crucial. In this work, the sensitivity of model parameter accuracies is analyzed for the pileup model of Taguchi et al. The spectra distorted by pileup at different count rates are simulated using either the model or Monte Carlo simulations, and the basis material thicknesses are estimated by minimizing the negative log-likelihood with Poisson or multivariate Gaussian distributions. From simulation results, we find that the accuracy of the deadtime, the height of pulse negative tail, and the timing to the end of the pulse are more important than most other parameters, and they matter more with increasing count rate. This result can help facilitate further work on parameter calibrations.

  15. Solid-state image sensor with focal-plane digital photon-counting pixel array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)

    1995-01-01

    A photosensitive layer such as a-Si for a UV/visible wavelength band is provided for low light level imaging with at least a separate CMOS amplifier directly connected to each PIN photodetector diode to provide a focal-plane array of NxN pixels, and preferably a separate photon-counting CMOS circuit directly connected to each CMOS amplifier, although one row of counters may be time shared for reading out the photon flux rate of each diode in the array, together with a buffer memory for storing all rows of the NxN image frame before transfer to suitable storage. All CMOS circuitry is preferably fabricated in the same silicon layer as the PIN photodetector diode for a monolithic structure, but when the wavelength band of interest requires photosensitive material different from silicon, the focal-plane array may be fabricated separately on a different semiconductor layer bump-bonded or otherwise bonded for a virtually monolithic structure with one free terminal of each diode directly connected to the input terminal of its CMOS amplifier and digital counter for integration of the photon flux rate at each photodetector of the array.

  16. Cascaded systems analysis of photon counting detectors

    PubMed Central

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W.; Taguchi, K.; Lundqvist, M.; Fredenberg, E.; Carrino, J. A.; Siewerdsen, J. H.

    2014-01-01

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at

  17. Improved normal tissue protection by proton and X-ray microchannels compared to homogeneous field irradiation.

    PubMed

    Girst, S; Marx, C; Bräuer-Krisch, E; Bravin, A; Bartzsch, S; Oelfke, U; Greubel, C; Reindl, J; Siebenwirth, C; Zlobinskaya, O; Multhoff, G; Dollinger, G; Schmid, T E; Wilkens, J J

    2015-09-01

    The risk of developing normal tissue injuries often limits the radiation dose that can be applied to the tumour in radiation therapy. Microbeam Radiation Therapy (MRT), a spatially fractionated photon radiotherapy is currently tested at the European Synchrotron Radiation Facility (ESRF) to improve normal tissue protection. MRT utilizes an array of microscopically thin and nearly parallel X-ray beams that are generated by a synchrotron. At the ion microprobe SNAKE in Munich focused proton microbeams ("proton microchannels") are studied to improve normal tissue protection. Here, we comparatively investigate microbeam/microchannel irradiations with sub-millimetre X-ray versus proton beams to minimize the risk of normal tissue damage in a human skin model, in vitro. Skin tissues were irradiated with a mean dose of 2 Gy over the irradiated area either with parallel synchrotron-generated X-ray beams at the ESRF or with 20 MeV protons at SNAKE using four different irradiation modes: homogeneous field, parallel lines and microchannel applications using two different channel sizes. Normal tissue viability as determined in an MTT test was significantly higher after proton or X-ray microchannel irradiation compared to a homogeneous field irradiation. In line with these findings genetic damage, as determined by the measurement of micronuclei in keratinocytes, was significantly reduced after proton or X-ray microchannel compared to a homogeneous field irradiation. Our data show that skin irradiation using either X-ray or proton microchannels maintain a higher cell viability and DNA integrity compared to a homogeneous irradiation, and thus might improve normal tissue protection after radiation therapy. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Photon counting spectral breast CT: effect of adaptive filtration on CT numbers, noise, and contrast to noise ratio.

    PubMed

    Silkwood, Justin D; Matthews, Kenneth L; Shikhaliev, Polad M

    2013-05-01

    Photon counting spectral (PCS) computed tomography (CT) shows promise for breast imaging. An issue with current photon-counting detectors is low count rate capabilities, artifacts resulting from nonuniform count rate across the field of view, and suboptimal spectral information. These issues are addressed in part by using tissue-equivalent adaptive filtration of the x-ray beam. The purpose of the study was to investigate the effect of adaptive filtration on different aspects of PCS breast CT. The theoretical formulation for the filter shape was derived for different filter materials and evaluated by simulation and an experimental prototype of the filter was fabricated from a tissue-like material (acrylic). The PCS CT images of a glandular breast phantom with adipose and iodine contrast elements were simulated at 40, 60, 90, and 120 kVp tube voltages, with and without adaptive filter. The CT numbers, CT noise, and contrast-to-noise ratio (CNR) were compared for spectral CT images acquired with and without adaptive filters. Similar comparison was made for material-decomposed PCS CT images. The adaptive filter improved the uniformity of CT numbers, CT noise, and CNR in both ordinary and material decomposed PCS CT images. At the same tube output the average CT noise with adaptive filter, although uniform, was higher than the average noise without adaptive filter due to x-ray absorption by the filter. Increasing tube output, so that average skin exposure with the adaptive filter was same as without filter, made the noise with adaptive filter comparable to or lower than that without adaptive filter. Similar effects were observed when energy weighting was applied, and when material decompositions were performed using energy selective CT data. An adaptive filter decreases count rate requirements to the photon counting detectors which enables PCS breast CT based on commercially available detector technologies. Adaptive filter also improves image quality in PCS breast CT by

  19. Analysis of photon count data from single-molecule fluorescence experiments

    NASA Astrophysics Data System (ADS)

    Burzykowski, T.; Szubiakowski, J.; Rydén, T.

    2003-03-01

    We consider single-molecule fluorescence experiments with data in the form of counts of photons registered over multiple time-intervals. Based on the observation schemes, linking back to works by Dehmelt [Bull. Am. Phys. Soc. 20 (1975) 60] and Cook and Kimble [Phys. Rev. Lett. 54 (1985) 1023], we propose an analytical approach to the data based on the theory of Markov-modulated Poisson processes (MMPP). In particular, we consider maximum-likelihood estimation. The method is illustrated using a real-life dataset. Additionally, the properties of the proposed method are investigated through simulations and compared to two other approaches developed by Yip et al. [J. Phys. Chem. A 102 (1998) 7564] and Molski [Chem. Phys. Lett. 324 (2000) 301].

  20. Monolithic microchannel heatsink

    DOEpatents

    Benett, W.J.; Beach, R.J.; Ciarlo, D.R.

    1996-08-20

    A silicon wafer has slots sawn in it that allow diode laser bars to be mounted in contact with the silicon. Microchannels are etched into the back of the wafer to provide cooling of the diode bars. To facilitate getting the channels close to the diode bars, the channels are rotated from an angle perpendicular to the diode bars which allows increased penetration between the mounted diode bars. This invention enables the fabrication of monolithic silicon microchannel heatsinks for laser diodes. The heatsinks have low thermal resistance because of the close proximity of the microchannels to the laser diode being cooled. This allows high average power operation of two-dimensional laser diode arrays that have a high density of laser diode bars and therefore high optical power density. 9 figs.

  1. Monolithic microchannel heatsink

    DOEpatents

    Benett, William J.; Beach, Raymond J.; Ciarlo, Dino R.

    1996-01-01

    A silicon wafer has slots sawn in it that allow diode laser bars to be mounted in contact with the silicon. Microchannels are etched into the back of the wafer to provide cooling of the diode bars. To facilitate getting the channels close to the diode bars, the channels are rotated from an angle perpendicular to the diode bars which allows increased penetration between the mounted diode bars. This invention enables the fabrication of monolithic silicon microchannel heatsinks for laser diodes. The heatsinks have low thermal resistance because of the close proximity of the microchannels to the laser diode being cooled. This allows high average power operation of two-dimensional laser diode arrays that have a high density of laser diode bars and therefore high optical power density.

  2. Phasor-based single-molecule fluorescence lifetime imaging using a wide-field photon-counting detector

    PubMed Central

    Colyer, R.; Siegmund, O.; Tremsin, A.; Vallerga, J.; Weiss, S.; Michalet, X.

    2011-01-01

    Fluorescence lifetime imaging (FLIM) is a powerful approach to studying the immediate environment of molecules. For example, it is used in biology to study changes in the chemical environment, or to study binding processes, aggregation, and conformational changes by measuring Förster resonance energy transfer (FRET) between donor and acceptor fluorophores. FLIM can be acquired by time-domain measurements (time-correlated single-photon counting) or frequency-domain measurements (with PMT modulation or digital frequency domain acquisition) in a confocal setup, or with wide-field systems (using time-gated cameras). In the best cases, the resulting data is analyzed in terms of multicomponent fluorescence lifetime decays with demanding requirements in terms of signal level (and therefore limited frame rate). Recently, the phasor approach has been proposed as a powerful alternative for fluorescence lifetime analysis of FLIM, ensemble, and single-molecule experiments. Here we discuss the advantages of combining phasor analysis with a new type of FLIM acquisition hardware presented previously, consisting of a high temporal and spatial resolution wide-field single-photon counting device (the H33D detector). Experimental data with live cells and quantum dots will be presented as an illustration of this new approach. PMID:21625298

  3. Si-strip photon counting detectors for contrast-enhanced spectral mammography

    NASA Astrophysics Data System (ADS)

    Chen, Buxin; Reiser, Ingrid; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasi; Chen, Chin-Tu; Iwanczyk, Jan S.; Barber, William C.

    2015-08-01

    We report on the development of silicon strip detectors for energy-resolved clinical mammography. Typically, X-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a-Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting Si strip detectors. The required performance for mammography in terms of the output count rate, spatial resolution, and dynamic range must be obtained with sufficient field of view for the application, thus requiring the tiling of pixel arrays and particular scanning techniques. Room temperature Si strip detector, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the X-ray energy ranges of the application. We present our methods and results from the optimization of Si-strip detectors for contrast enhanced spectral mammography. We describe the method being developed for quantifying iodine contrast using the energy-resolved detector with fixed thresholds. We demonstrate the feasibility of the method by scanning an iodine phantom with clinically relevant contrast levels.

  4. Use of simulation tools to illustrate the effect of data management practices for low and negative plate counts on the estimated parameters of microbial reduction models.

    PubMed

    Garcés-Vega, Francisco; Marks, Bradley P

    2014-08-01

    In the last 20 years, the use of microbial reduction models has expanded significantly, including inactivation (linear and nonlinear), survival, and transfer models. However, a major constraint for model development is the impossibility to directly quantify the number of viable microorganisms below the limit of detection (LOD) for a given study. Different approaches have been used to manage this challenge, including ignoring negative plate counts, using statistical estimations, or applying data transformations. Our objective was to illustrate and quantify the effect of negative plate count data management approaches on parameter estimation for microbial reduction models. Because it is impossible to obtain accurate plate counts below the LOD, we performed simulated experiments to generate synthetic data for both log-linear and Weibull-type microbial reductions. We then applied five different, previously reported data management practices and fit log-linear and Weibull models to the resulting data. The results indicated a significant effect (α = 0.05) of the data management practices on the estimated model parameters and performance indicators. For example, when the negative plate counts were replaced by the LOD for log-linear data sets, the slope of the subsequent log-linear model was, on average, 22% smaller than for the original data, the resulting model underpredicted lethality by up to 2.0 log, and the Weibull model was erroneously selected as the most likely correct model for those data. The results demonstrate that it is important to explicitly report LODs and related data management protocols, which can significantly affect model results, interpretation, and utility. Ultimately, we recommend using only the positive plate counts to estimate model parameters for microbial reduction curves and avoiding any data value substitutions or transformations when managing negative plate counts to yield the most accurate model parameters.

  5. Distributive Distillation Enabled by Microchannel Process Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Ravi

    The application of microchannel technology for distributive distillation was studied to achieve the Grand Challenge goals of 25% energy savings and 10% return on investment. In Task 1, a detailed study was conducted and two distillation systems were identified that would meet the Grand Challenge goals if the microchannel distillation technology was used. Material and heat balance calculations were performed to develop process flow sheet designs for the two distillation systems in Task 2. The process designs were focused on two methods of integrating the microchannel technology 1) Integrating microchannel distillation to an existing conventional column, 2) Microchannel distillation formore » new plants. A design concept for a modular microchannel distillation unit was developed in Task 3. In Task 4, Ultrasonic Additive Machining (UAM) was evaluated as a manufacturing method for microchannel distillation units. However, it was found that a significant development work would be required to develop process parameters to use UAM for commercial distillation manufacturing. Two alternate manufacturing methods were explored. Both manufacturing approaches were experimentally tested to confirm their validity. The conceptual design of the microchannel distillation unit (Task 3) was combined with the manufacturing methods developed in Task 4 and flowsheet designs in Task 2 to estimate the cost of the microchannel distillation unit and this was compared to a conventional distillation column. The best results were for a methanol-water separation unit for the use in a biodiesel facility. For this application microchannel distillation was found to be more cost effective than conventional system and capable of meeting the DOE Grand Challenge performance requirements.« less

  6. Solid-state Image Sensor with Focal-plane Digital Photon-counting Pixel Array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Pain, Bedabrata

    1997-01-01

    A solid-state focal-plane imaging system comprises an NxN array of high gain. low-noise unit cells. each unit cell being connected to a different one of photovoltaic detector diodes, one for each unit cell, interspersed in the array for ultra low level image detection and a plurality of digital counters coupled to the outputs of the unit cell by a multiplexer(either a separate counter for each unit cell or a row of N of counters time shared with N rows of digital counters). Each unit cell includes two self-biasing cascode amplifiers in cascade for a high charge-to-voltage conversion gain (greater than 1mV/e(-)) and an electronic switch to reset input capacitance to a reference potential in order to be able to discriminate detection of an incident photon by the photoelectron (e(-))generated in the detector diode at the input of the first cascode amplifier in order to count incident photons individually in a digital counter connected to the output of the second cascade amplifier. Reseting the input capacitance and initiating self-biasing of the amplifiers occurs every clock cycle of an integratng period to enable ultralow light level image detection by the may of photovoltaic detector diodes under such ultralow light level conditions that the photon flux will statistically provide only a single photon at a time incident on anyone detector diode during any clock cycle.

  7. Forced-Convection, Liquid-Cooled, Microchannel Heat Sinks

    DTIC Science & Technology

    1988-01-07

    SINK PERFORMANCE 131 5.1 Purpose of the Experimental Investigation 131 5.2 Heat -Sink Fabrication 131 5.2.1 Manufacturing the Microchannels in Indium...the thermal performance of microchannel heat sinks. The methods of microchannel fabrication including precision sawing and orientation-dependent...could be lower than if the microchannel heat sink had been fabricated directly in the back of the IC chip! Figure 4-9 presents the thermal and fluid

  8. Separation process using microchannel technology

    DOEpatents

    Tonkovich, Anna Lee [Dublin, OH; Perry, Steven T [Galloway, OH; Arora, Ravi [Dublin, OH; Qiu, Dongming [Bothell, WA; Lamont, Michael Jay [Hilliard, OH; Burwell, Deanna [Cleveland Heights, OH; Dritz, Terence Andrew [Worthington, OH; McDaniel, Jeffrey S [Columbus, OH; Rogers, Jr; William, A [Marysville, OH; Silva, Laura J [Dublin, OH; Weidert, Daniel J [Lewis Center, OH; Simmons, Wayne W [Dublin, OH; Chadwell, G Bradley [Reynoldsburg, OH

    2009-03-24

    The disclosed invention relates to a process and apparatus for separating a first fluid from a fluid mixture comprising the first fluid. The process comprises: (A) flowing the fluid mixture into a microchannel separator in contact with a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the first fluid is sorbed by the sorption medium, removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing first fluid from the sorption medium and removing desorbed first fluid from the microchannel separator. The process and apparatus are suitable for separating nitrogen or methane from a fluid mixture comprising nitrogen and methane. The process and apparatus may be used for rejecting nitrogen in the upgrading of sub-quality methane.

  9. Comparison of Primary Models to Predict Microbial Growth by the Plate Count and Absorbance Methods.

    PubMed

    Pla, María-Leonor; Oltra, Sandra; Esteban, María-Dolores; Andreu, Santiago; Palop, Alfredo

    2015-01-01

    The selection of a primary model to describe microbial growth in predictive food microbiology often appears to be subjective. The objective of this research was to check the performance of different mathematical models in predicting growth parameters, both by absorbance and plate count methods. For this purpose, growth curves of three different microorganisms (Bacillus cereus, Listeria monocytogenes, and Escherichia coli) grown under the same conditions, but with different initial concentrations each, were analysed. When measuring the microbial growth of each microorganism by optical density, almost all models provided quite high goodness of fit (r(2) > 0.93) for all growth curves. The growth rate remained approximately constant for all growth curves of each microorganism, when considering one growth model, but differences were found among models. Three-phase linear model provided the lowest variation for growth rate values for all three microorganisms. Baranyi model gave a variation marginally higher, despite a much better overall fitting. When measuring the microbial growth by plate count, similar results were obtained. These results provide insight into predictive microbiology and will help food microbiologists and researchers to choose the proper primary growth predictive model.

  10. Characterization of an ultraviolet imaging detector with high event rate ROIC (HEROIC) readout

    NASA Astrophysics Data System (ADS)

    Nell, Nicholas; France, Kevin; Harwit, Alex; Bradley, Scott; Franka, Steve; Freymiller, Ed; Ebbets, Dennis

    2016-07-01

    We present characterization results from a photon counting imaging detector consisting of one microchannel plate (MCP) and an array of two readout integrated circuits (ROIC) that record photon position. The ROICs used in the position readout are the high event rate ROIC (HEROIC) devices designed to handle event rates up to 1 MHz per pixel, recently developed by the Ball Aerospace and Technologies Corporation in collaboration with the University of Colorado. An opaque cesium iodide (CsI) photocathode sensitive in the far-ultraviolet (FUV; 122-200 nm), is deposited on the upper surface of the MCP. The detector is characterized in a chamber developed by CU Boulder that is capable of illumination with vacuum-ultraviolet (VUV) monochromatic light and measurement of absolute ux with a calibrated photodiode. Testing includes investigation of the effects of adjustment of internal settings of the HEROIC devices including charge threshold, gain, and amplifier bias. The detector response to high count rates is tested. We report initial results including background, uniformity, and quantum detection efficiency (QDE) as a function of wavelength.

  11. Photon Counting as a Probe of Superfluidity in a Two-Band Bose-Hubbard System Coupled to a Cavity Field

    NASA Astrophysics Data System (ADS)

    Rajaram, Sara; Trivedi, Nandini

    2013-12-01

    We show that photon number measurement can be used to detect superfluidity for a two-band Bose-Hubbard model coupled to a cavity field. The atom-photon coupling induces transitions between the two internal atomic levels and results in entangled polaritonic states. In the presence of a cavity field, we find different photon numbers in the Mott-insulating versus superfluid phases, providing a method of distinguishing the atomic phases by photon counting. Furthermore, we examine the dynamics of the photon field after a rapid quench to zero atomic hopping by increasing the well depth. We find a robust correlation between the field’s quench dynamics and the initial superfluid order parameter, thereby providing a novel and accurate method of determining the order parameter.

  12. A technology review of time-of-flight photon counting for advanced remote sensing

    NASA Astrophysics Data System (ADS)

    Lamb, Robert A.

    2010-04-01

    Time correlated single photon counting (TCSPC) has made tremendous progress during the past ten years enabling improved performance in precision time-of-flight (TOF) rangefinding and lidar. In this review the development and performance of several ranging systems is presented that use TCSPC for accurate ranging and range profiling over distances up to 17km. A range resolution of a few millimetres is routinely achieved over distances of several kilometres. These systems include single wavelength devices operating in the visible; multi-wavelength systems covering the visible and near infra-red; the use of electronic gating to reduce in-band solar background and, most recently, operation at high repetition rates without range aliasing- typically 10MHz over several kilometres. These systems operate at very low optical power (<100μW). The technique therefore has potential for eye-safe lidar monitoring of the environment and obvious military, security and surveillance sensing applications. The review will highlight the theoretical principles of photon counting and progress made in developing absolute ranging techniques that enable high repetition rate data acquisition that avoids range aliasing. Technology trends in TCSPC rangefinding are merging with those of quantum cryptography and its future application to revolutionary quantum imaging provides diverse and exciting research into secure covert sensing, ultra-low power active imaging and quantum rangefinding.

  13. Investigation of the Performance of an Ultralow-Dark-Count Superconducting Nanowire Single-Photon Detector

    NASA Astrophysics Data System (ADS)

    Subashchandran, Shanthi; Okamoto, Ryo; Zhang, Labao; Tanaka, Akira; Okano, Masayuki; Kang, Lin; Chen, Jian; Wu, Peiheng; Takeuchi, Shigeki

    2013-10-01

    The realization of an ultralow-dark-count rate (DCR) along with the conservation of high detection efficiency (DE) is critical for many applications using single photon detectors in quantum information technologies, material sciences, and biological sensing. For this purpose, a fiber-coupled superconducting nanowire single-photon detector (SNSPD) with a meander-type niobium nitride nanowire (width: 50 nm) is studied. Precise measurements of the bias current dependence of DE are carried out for a wide spectral range (from 500 to 1650 nm in steps of 50 nm) using a white light source and a laser line Bragg tunable band-pass filter. An ultralow DCR (0.0015 cps) and high DE (32%) are simultaneously achieved by the SNSPD at a wavelength of 500 nm.

  14. Progress on the Use of Combined Analog and Photon Counting Detection for Raman Lidar

    NASA Technical Reports Server (NTRS)

    Newsom, Rob; Turner, Dave; Clayton, Marian; Ferrare, Richard

    2008-01-01

    The Atmospheric Radiation Measurement (ARM) program Raman Lidar (CARL) was upgraded in 2004 with a new data system that provides simultaneous measurements of both the photomultiplier analog output voltage and photon counts. The so-called merge value added procedure (VAP) was developed to combine the analog and count-rate signals into a single signal with improved dynamic range. Earlier versions of this VAP tended to cause unacceptably large biases in the water vapor mixing ratio during the daytime as a result of improper matching between the analog and count-rate signals in the presence of elevated solar background levels. We recently identified several problems and tested a modified version of the merge VAP by comparing profiles of water vapor mixing ratio derived from CARL with simultaneous sonde data over a six month period. We show that the modified merge VAP significantly reduces the daytime bias, and results in mean differences that are within approximately 1% for both nighttime and daytime measurements.

  15. Electroosmotic flows of non-Newtonian power-law fluids in a cylindrical microchannel.

    PubMed

    Zhao, Cunlu; Yang, Chun

    2013-03-01

    EOF of non-Newtonian power-law fluids in a cylindrical microchannel is analyzed theoretically. Specially, exact solutions of electroosmotic velocity corresponding to two special fluid behavior indices (n = 0.5 and 1.0) are found, while approximate solutions are derived for arbitrary values of fluid behavior index. It is found that because of the approximation for the first-order modified Bessel function of the first kind, the approximate solutions introduce largest errors for predicting electroosmotic velocity when the thickness of electric double layer is comparable to channel radius, but can accurately predict the electroosmotic velocity when the thickness of electric double layer is much smaller or larger than the channel radius. Importantly, the analysis reveals that the Helmholtz-Smoluchowski velocity of power-law fluids in cylindrical microchannels becomes dependent on geometric dimensions (radius of channel), standing in stark contrast to the Helmholtz-Smoluchowski velocity over planar surfaces or in parallel-plate microchannels. Such interesting and counterintuitive effects can be attributed to the nonlinear coupling among the electrostatics, channel geometry, and non-Newtonian hydrodynamics. Furthermore, a method for enhancement of EOFs of power-law fluids is proposed under a combined DC and AC electric field. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Aberrations in square pore micro-channel optics used for x-ray lobster eye telescopes

    NASA Astrophysics Data System (ADS)

    Willingale, R.; Pearson, J. F.; Martindale, A.; Feldman, C. H.; Fairbend, R.; Schyns, E.; Petit, S.; Osborne, J. P.; O'Brien, P. T.

    2016-07-01

    We identify all the significant aberrations that limit the performance of square pore micro-channel plate optics (MPOs) used as an X-ray lobster eye. These include aberrations intrinsic to the geometry, intrinsic errors associated with the slumping process used to introduce a spherical form to the plates and imperfections associated with the plate manufacturing process. The aberrations are incorporated into a comprehensive software model of the X-ray response of the optics and the predicted imaging response is compared with the measured X-ray performance obtained from a breadboard lobster eye. The results reveal the manufacturing tolerances which limit the current performance of MPOs and enable us to identify particular intrinsic aberrations which will limit the ultimate performance we can expect from MPO-lobster eye telescopes.

  17. Miniature, low-power X-ray tube using a microchannel electron generator electron source

    NASA Technical Reports Server (NTRS)

    Elam, Wm. Timothy (Inventor); Kelliher, Warren C. (Inventor); Hershyn, William (Inventor); DeLong, David P. (Inventor)

    2011-01-01

    Embodiments of the invention provide a novel, low-power X-ray tube and X-ray generating system. Embodiments of the invention use a multichannel electron generator as the electron source, thereby increasing reliability and decreasing power consumption of the X-ray tube. Unlike tubes using a conventional filament that must be heated by a current power source, embodiments of the invention require only a voltage power source, use very little current, and have no cooling requirements. The microchannel electron generator comprises one or more microchannel plates (MCPs), Each MCP comprises a honeycomb assembly of a plurality of annular components, which may be stacked to increase electron intensity. The multichannel electron generator used enables directional control of electron flow. In addition, the multichannel electron generator used is more robust than conventional filaments, making the resulting X-ray tube very shock and vibration resistant.

  18. Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, Aongus; Collins, Robert J.; Krichel, Nils J.

    2009-11-10

    We describe a scanning time-of-flight system which uses the time-correlated single-photon counting technique to produce three-dimensional depth images of distant, noncooperative surfaces when these targets are illuminated by a kHz to MHz repetition rate pulsed laser source. The data for the scene are acquired using a scanning optical system and an individual single-photon detector. Depth images have been successfully acquired with centimeter xyz resolution, in daylight conditions, for low-signature targets in field trials at distances of up to 325 m using an output illumination with an average optical power of less than 50 {mu}W.

  19. A fast and high-sensitive dual-wavelength diffuse optical tomography system using digital lock-in photon-counting technique

    NASA Astrophysics Data System (ADS)

    Chen, Weiting; Yi, Xi; Zhao, Huijuan; Gao, Feng

    2014-09-01

    We presented a novel dual-wavelength diffuse optical imaging system which can perform 2-D or 3-D imaging fast and high-sensitively for monitoring the dynamic change of optical parameters. A newly proposed lock-in photon-counting detection method was adopted for week optical signal collection, which brought in excellent property as well as simplified geometry. Fundamental principles of the lock-in photon-counting detection were elaborately demonstrated, and the feasibility was strictly verified by the linearity experiment. Systemic performance of the prototype set up was experimentally accessed, including stray light rejection and inherent interference. Results showed that the system possessed superior anti-interference capability (under 0.58% in darkroom) compared with traditional photon-counting detection, and the crosstalk between two wavelengths was lower than 2.28%. For comprehensive assessment, 2-D phantom experiments towards relatively large dimension model (diameter of 4cm) were conducted. Different absorption targets were imaged to investigate detection sensitivity. Reconstruction image under all conditions was exciting, with a desirable SNR. Study on image quality v.s. integration time put forward a new method for accessing higher SNR with the sacrifice of measuring speed. In summary, the newly developed system showed great potential in promoting detection sensitivity as well as measuring speed. This will make substantial progress in dynamically tracking the blood concentration distribution in many clinical areas, such as small animal disease modeling, human brain activity research and thick tissues (for example, breast) diagnosis.

  20. Field-effect Flow Control in Polymer Microchannel Networks

    NASA Technical Reports Server (NTRS)

    Sniadecki, Nathan; Lee, Cheng S.; Beamesderfer, Mike; DeVoe, Don L.

    2003-01-01

    A new Bio-MEMS electroosmotic flow (EOF) modulator for plastic microchannel networks has been developed. The EOF modulator uses field-effect flow control (FEFC) to adjust the zeta potential at the Parylene C microchannel wall. By setting a differential EOF pumping rate in two of the three microchannels at a T-intersection with EOF modulators, the induced pressure at the intersection generated pumping in the third, field-free microchannel. The EOF modulators are able to change the magnitude and direction of the pressure pumping by inducing either a negative or positive pressure at the intersection. The flow velocity is tracked by neutralized fluorescent microbeads in the microchannels. The proof-of-concept of the EOF modulator described here may be applied to complex plastic ,microchannel networks where individual microchannel flow rates are addressable by localized induced-pressure pumping.

  1. X-ray imaging with sub-micron resolution using large-area photon counting detectors Timepix

    NASA Astrophysics Data System (ADS)

    Dudak, J.; Karch, J.; Holcova, K.; Zemlicka, J.

    2017-12-01

    As X-ray micro-CT became a popular tool for scientific purposes a number of commercially available CT systems have emerged on the market. Micro-CT systems have, therefore, become widely accessible and the number of research laboratories using them constantly increases. However, even when CT scans with spatial resolution of several micrometers can be performed routinely, data acquisition with sub-micron precision remains a complicated task. Issues come mostly from prolongation of the scan time inevitably connected with the use of nano-focus X-ray sources. Long exposure time increases the noise level in the CT projections. Furthermore, considering the sub-micron resolution even effects like source-spot drift, rotation stage wobble or thermal expansion become significant and can negatively affect the data. The use of dark-current free photon counting detectors as X-ray cameras for such applications can limit the issue of increased image noise in the data, however the mechanical stability of the whole system still remains a problem and has to be considered. In this work we evaluate the performance of a micro-CT system equipped with nano-focus X-ray tube and a large area photon counting detector Timepix for scans with effective pixel size bellow one micrometer.

  2. IR spectroscopic studies in microchannel structures

    NASA Astrophysics Data System (ADS)

    Guber, A. E.; Bier, W.

    1998-06-01

    By means of the various microengineering methods available, microreaction systems can be produced among others. These microreactors consist of microchannels, where chemical reactions take place under defined conditions. For optimum process control, continuous online analytics is envisaged in the microchannels. For this purpose, a special analytical module has been developed. It may be applied for IR spectroscopic studies at any point of the microchannel.

  3. Active microchannel heat exchanger

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Roberts, Gary L [West Richland, WA; Call, Charles J [Pasco, WA; Wegeng, Robert S [Richland, WA; Wang, Yong [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  4. Gas-Liquid Processing in Microchannels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TeGrotenhuis, Ward E.; Stenkamp, Victoria S.; Twitchell, Alvin

    Processing gases and liquids together in microchannels having at least one dimension <1 mm has unique advantages for rapid heat and mass transfer. One approach for managing the two phases is to use porous structures as wicks within microchannels to segregate the liquid phase from the gas phase. Gas-liquid processing is accomplished by providing a gas flow path and inducing flow of the liquid phase through or along the wick under an induced pressure gradient. A variety of unit operations are enabled, including phase separation, partial condensation, absorption, desorption, and distillation. Results are reported of an investigation of microchannel phasemore » separation in a transparent, single-channel device. Next, heat exchange is integrated with the microchannel wick approach to create a partial condenser that also separates the condensate. Finally, the scale-up to a multi-channel phase separator is described.« less

  5. WE-G-204-03: Photon-Counting Hexagonal Pixel Array CdTe Detector: Optimal Resampling to Square Pixels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, S; Vedantham, S; Karellas, A

    Purpose: Detectors with hexagonal pixels require resampling to square pixels for distortion-free display of acquired images. In this work, the presampling modulation transfer function (MTF) of a hexagonal pixel array photon-counting CdTe detector for region-of-interest fluoroscopy was measured and the optimal square pixel size for resampling was determined. Methods: A 0.65mm thick CdTe Schottky sensor capable of concurrently acquiring up to 3 energy-windowed images was operated in a single energy-window mode to include ≥10 KeV photons. The detector had hexagonal pixels with apothem of 30 microns resulting in pixel spacing of 60 and 51.96 microns along the two orthogonal directions.more » Images of a tungsten edge test device acquired under IEC RQA5 conditions were double Hough transformed to identify the edge and numerically differentiated. The presampling MTF was determined from the finely sampled line spread function that accounted for the hexagonal sampling. The optimal square pixel size was determined in two ways; the square pixel size for which the aperture function evaluated at the Nyquist frequencies along the two orthogonal directions matched that from the hexagonal pixel aperture functions, and the square pixel size for which the mean absolute difference between the square and hexagonal aperture functions was minimized over all frequencies up to the Nyquist limit. Results: Evaluation of the aperture functions over the entire frequency range resulted in square pixel size of 53 microns with less than 2% difference from the hexagonal pixel. Evaluation of the aperture functions at Nyquist frequencies alone resulted in 54 microns square pixels. For the photon-counting CdTe detector and after resampling to 53 microns square pixels using quadratic interpolation, the presampling MTF at Nyquist frequency of 9.434 cycles/mm along the two directions were 0.501 and 0.507. Conclusion: Hexagonal pixel array photon-counting CdTe detector after resampling to square

  6. The theoretical simulation on electrostatic distribution of 1st proximity region in proximity focusing low-light-level image intensifier

    NASA Astrophysics Data System (ADS)

    Zhang, Liandong; Bai, Xiaofeng; Song, De; Fu, Shencheng; Li, Ye; Duanmu, Qingduo

    2015-03-01

    Low-light-level night vision technology is magnifying low light level signal large enough to be seen by naked eye, which uses the photons - photoelectron as information carrier. Until the micro-channel plate was invented, it has been possibility for the realization of high performance and miniaturization of low-light-level night vision device. The device is double-proximity focusing low-light-level image intensifier which places a micro-channel plate close to photocathode and phosphor screen. The advantages of proximity focusing low-light-level night vision are small size, light weight, small power consumption, no distortion, fast response speed, wide dynamic range and so on. It is placed parallel to each other for Micro-channel plate (both sides of it with metal electrode), the photocathode and the phosphor screen are placed parallel to each other. The voltage is applied between photocathode and the input of micro-channel plate when image intensifier works. The emission electron excited by photo on the photocathode move towards to micro-channel plate under the electric field in 1st proximity focusing region, and then it is multiplied through the micro-channel. The movement locus of emission electrons can be calculated and simulated when the distributions of electrostatic field equipotential lines are determined in the 1st proximity focusing region. Furthermore the resolution of image tube can be determined. However the distributions of electrostatic fields and equipotential lines are complex due to a lot of micro-channel existing in the micro channel plate. This paper simulates electrostatic distribution of 1st proximity region in double-proximity focusing low-light-level image intensifier with the finite element simulation analysis software Ansoft maxwell 3D. The electrostatic field distributions of 1st proximity region are compared when the micro-channel plates' pore size, spacing and inclination angle ranged. We believe that the electron beam movement

  7. Improvement of spatial resolution in a Timepix based CdTe photon counting detector using ToT method

    NASA Astrophysics Data System (ADS)

    Park, Kyeongjin; Lee, Daehee; Lim, Kyung Taek; Kim, Giyoon; Chang, Hojong; Yi, Yun; Cho, Gyuseong

    2018-05-01

    Photon counting detectors (PCDs) have been recognized as potential candidates in X-ray radiography and computed tomography due to their many advantages over conventional energy-integrating detectors. In particular, a PCD-based X-ray system shows an improved contrast-to-noise ratio, reduced radiation exposure dose, and more importantly, exhibits a capability for material decomposition with energy binning. For some applications, a very high resolution is required, which translates into smaller pixel size. Unfortunately, small pixels may suffer from energy spectral distortions (distortion in energy resolution) due to charge sharing effects (CSEs). In this work, we propose a method for correcting CSEs by measuring the point of interaction of an incident X-ray photon by the time-of-threshold (ToT) method. Moreover, we also show that it is possible to obtain an X-ray image with a reduced pixel size by using the concept of virtual pixels at a given pixel size. To verify the proposed method, modulation transfer function (MTF) and signal-to-noise ratio (SNR) measurements were carried out with the Timepix chip combined with the CdTe pixel sensor. The X-ray test condition was set at 80 kVp with 5 μA, and a tungsten edge phantom and a lead line phantom were used for the measurements. Enhanced spatial resolution was achieved by applying the proposed method when compared to that of the conventional photon counting method. From experiment results, MTF increased from 6.3 (conventional counting method) to 8.3 lp/mm (proposed method) at 0.3 MTF. On the other hand, the SNR decreased from 33.08 to 26.85 dB due to four virtual pixels.

  8. Novel silicon microchannels device for use in red blood cell deformability studies

    NASA Astrophysics Data System (ADS)

    Zheng, Xiao-Lin; Liao, Yan-Jian; Zhang, Wen-Xian

    2001-10-01

    Currently, a number of techniques are used to access cell deformability. We study a novel silicon microchannels device for use in red blood cell deformability. The channels are produced in silicon substrate using microengineering technology. The microgrooves formed in the surface of a single-crystal silicon substrate. They were converted to channels by tightly covering them with an optical flat glass plate. An array of flow channels (number 950 in parallel) have typical dimensions of 5 micrometers width X 5.5 Xm depth, and 30 micrometers length. There the RBC's are forced to pass through channels. Thus, the microchannels are used to simulate human blood capillaries. It provides a specific measurement of individual cell in terms of both flow velocity profile and an index of cell volume while the cell flow through the channels. It dominates the complex cellular flow behavior, such as, the viscosity of whole blood is a nonlinear function of shear rate, index of filtration, etc.

  9. Breast Tissue Characterization with Photon-counting Spectral CT Imaging: A Postmortem Breast Study

    PubMed Central

    Ding, Huanjun; Klopfer, Michael J.; Ducote, Justin L.; Masaki, Fumitaro

    2014-01-01

    Purpose To investigate the feasibility of breast tissue characterization in terms of water, lipid, and protein contents with a spectral computed tomographic (CT) system based on a cadmium zinc telluride (CZT) photon-counting detector by using postmortem breasts. Materials and Methods Nineteen pairs of postmortem breasts were imaged with a CZT-based photon-counting spectral CT system with beam energy of 100 kVp. The mean glandular dose was estimated to be in the range of 1.8–2.2 mGy. The images were corrected for pulse pile-up and other artifacts by using spectral distortion corrections. Dual-energy decomposition was then applied to characterize each breast into water, lipid, and protein contents. The precision of the three-compartment characterization was evaluated by comparing the composition of right and left breasts, where the standard error of the estimations was determined. The results of dual-energy decomposition were compared by using averaged root mean square to chemical analysis, which was used as the reference standard. Results The standard errors of the estimations of the right-left correlations obtained from spectral CT were 7.4%, 6.7%, and 3.2% for water, lipid, and protein contents, respectively. Compared with the reference standard, the average root mean square error in breast tissue composition was 2.8%. Conclusion Spectral CT can be used to accurately quantify the water, lipid, and protein contents in breast tissue in a laboratory study by using postmortem specimens. © RSNA, 2014 PMID:24814180

  10. Turbulent convection in microchannels

    NASA Astrophysics Data System (ADS)

    Adams, Thomas Mcdaniel

    1998-10-01

    Single-phase forced convection in microchannels is an effective cooling mechanism capable of accommodating the high heat fluxes encountered in fission reactor cores, accelerator targets, microelectronic heat sinks and micro-heat exchangers. Traditional Nusselt type correlations, however, have generally been obtained using data from channels with hydraulic diameters >2 cm. Application of such relationships to microchannels is therefore questionable. A diameter limit below which traditional correlations are invalid had not been established. The objective of this investigation was to systematically address the effect of small hydraulic diameter on turbulent single-phase forced convection of water. A number of microchannels having hydraulic diameters ranging from 0.76 to 1.13 mm were constructed and tested over a wide range of flow rates and heat fluxes. Experimentally obtained Nusselt numbers were significantly higher than the values predicted by the Gnielinski correlation for large channels, the effect of decreasing diameter being to further increase heat transfer enhancement. A working correlation predicting the heat transfer enhancement for turbulent convection in microchannels was developed. The correlation predicts the lower diameter limit below which traditional correlations are no longer valid to be approximately 1.2 mm. Of further interest was the effect of the desorption of noncondensable gases dissolved in the water on turbulent convection. In large channels noncondensables undergo little desorption and their effect is negligible. The large pressure drops coupled with large temperature increases for high heat fluxes in microchannels, however, leads to a two-phase, two-component flow thereby enhancing heat transfer coefficients above their liquid- only values. A detailed mathematical model was developed to predict the resulting void fractions and liquid- coolant accelerations due to the desorption of noncondensables in microchannels. Experiments were also

  11. High power density fuel cell comprising an array of microchannels

    DOEpatents

    Morse, Jeffrey D.; Upadhye, Ravindra S.; Spadaccini, Christopher M.; Park, Hyung Gyu

    2013-10-15

    A fuel cell according to one embodiment includes a porous electrolyte support structure defining an array of microchannels, the microchannels including fuel and oxidant microchannels; fuel electrodes formed along some of the microchannels; and oxidant electrodes formed along other of the microchannels. A method of making a fuel cell according to one embodiment includes forming an array of walls defining microchannels therebetween using at least one of molding, stamping, extrusion, injection and electrodeposition; processing the walls to make the walls porous, thereby creating a porous electrolyte support structure; forming anode electrodes along some of the microchannels; and forming cathode electrodes along other of the microchannels. Additional embodiments are also disclosed.

  12. A cascaded model of spectral distortions due to spectral response effects and pulse pileup effects in a photon-counting x-ray detector for CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cammin, Jochen, E-mail: jcammin1@jhmi.edu, E-mail: ktaguchi@jhmi.edu; Taguchi, Katsuyuki, E-mail: jcammin1@jhmi.edu, E-mail: ktaguchi@jhmi.edu; Xu, Jennifer

    Purpose: Energy discriminating, photon-counting detectors (PCDs) are an emerging technology for computed tomography (CT) with various potential benefits for clinical CT. The photon energies measured by PCDs can be distorted due to the interactions of a photon with the detector and the interaction of multiple coincident photons. These effects result in distorted recorded x-ray spectra which may lead to artifacts in reconstructed CT images and inaccuracies in tissue identification. Model-based compensation techniques have the potential to account for the distortion effects. This approach requires only a small number of parameters and is applicable to a wide range of spectra andmore » count rates, but it needs an accurate model of the spectral distortions occurring in PCDs. The purpose of this study was to develop a model of those spectral distortions and to evaluate the model using a PCD (model DXMCT-1; DxRay, Inc., Northridge, CA) and various x-ray spectra in a wide range of count rates. Methods: The authors hypothesize that the complex phenomena of spectral distortions can be modeled by: (1) separating them into count-rate independent factors that we call the spectral response effects (SRE), and count-rate dependent factors that we call the pulse pileup effects (PPE), (2) developing separate models for SRE and PPE, and (3) cascading the SRE and PPE models into a combined SRE+PPE model that describes PCD distortions at both low and high count rates. The SRE model describes the probability distribution of the recorded spectrum, with a photo peak and a continuum tail, given the incident photon energy. Model parameters were obtained from calibration measurements with three radioisotopes and then interpolated linearly for other energies. The PPE model used was developed in the authors’ previous work [K. Taguchi et al., “Modeling the performance of a photon counting x-ray detector for CT: Energy response and pulse pileup effects,” Med. Phys. 38(2), 1089–1102

  13. A cascaded model of spectral distortions due to spectral response effects and pulse pileup effects in a photon-counting x-ray detector for CT

    PubMed Central

    Cammin, Jochen; Xu, Jennifer; Barber, William C.; Iwanczyk, Jan S.; Hartsough, Neal E.; Taguchi, Katsuyuki

    2014-01-01

    Purpose: Energy discriminating, photon-counting detectors (PCDs) are an emerging technology for computed tomography (CT) with various potential benefits for clinical CT. The photon energies measured by PCDs can be distorted due to the interactions of a photon with the detector and the interaction of multiple coincident photons. These effects result in distorted recorded x-ray spectra which may lead to artifacts in reconstructed CT images and inaccuracies in tissue identification. Model-based compensation techniques have the potential to account for the distortion effects. This approach requires only a small number of parameters and is applicable to a wide range of spectra and count rates, but it needs an accurate model of the spectral distortions occurring in PCDs. The purpose of this study was to develop a model of those spectral distortions and to evaluate the model using a PCD (model DXMCT-1; DxRay, Inc., Northridge, CA) and various x-ray spectra in a wide range of count rates. Methods: The authors hypothesize that the complex phenomena of spectral distortions can be modeled by: (1) separating them into count-rate independent factors that we call the spectral response effects (SRE), and count-rate dependent factors that we call the pulse pileup effects (PPE), (2) developing separate models for SRE and PPE, and (3) cascading the SRE and PPE models into a combined SRE+PPE model that describes PCD distortions at both low and high count rates. The SRE model describes the probability distribution of the recorded spectrum, with a photo peak and a continuum tail, given the incident photon energy. Model parameters were obtained from calibration measurements with three radioisotopes and then interpolated linearly for other energies. The PPE model used was developed in the authors’ previous work [K. Taguchi , “Modeling the performance of a photon counting x-ray detector for CT: Energy response and pulse pileup effects,” Med. Phys. 38(2), 1089–1102 (2011)]. The

  14. Initial results from a prototype whole-body photon-counting computed tomography system.

    PubMed

    Yu, Z; Leng, S; Jorgensen, S M; Li, Z; Gutjahr, R; Chen, B; Duan, X; Halaweish, A F; Yu, L; Ritman, E L; McCollough, C H

    X-ray computed tomography (CT) with energy-discriminating capabilities presents exciting opportunities for increased dose efficiency and improved material decomposition analyses. However, due to constraints imposed by the inability of photon-counting detectors (PCD) to respond accurately at high photon flux, to date there has been no clinical application of PCD-CT. Recently, our lab installed a research prototype system consisting of two x-ray sources and two corresponding detectors, one using an energy-integrating detector (EID) and the other using a PCD. In this work, we report the first third-party evaluation of this prototype CT system using both phantoms and a cadaver head. The phantom studies demonstrated several promising characteristics of the PCD sub-system, including improved longitudinal spatial resolution and reduced beam hardening artifacts, relative to the EID sub-system. More importantly, we found that the PCD sub-system offers excellent pulse pileup control in cases of x-ray flux up to 550 mA at 140 kV, which corresponds to approximately 2.5×10 11 photons per cm 2 per second. In an anthropomorphic phantom and a cadaver head, the PCD sub-system provided image quality comparable to the EID sub-system for the same dose level. Our results demonstrate the potential of the prototype system to produce clinically-acceptable images in vivo .

  15. Initial results from a prototype whole-body photon-counting computed tomography system

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Leng, S.; Jorgensen, S. M.; Li, Z.; Gutjahr, R.; Chen, B.; Duan, X.; Halaweish, A. F.; Yu, L.; Ritman, E. L.; McCollough, C. H.

    2015-03-01

    X-ray computed tomography (CT) with energy-discriminating capabilities presents exciting opportunities for increased dose efficiency and improved material decomposition analyses. However, due to constraints imposed by the inability of photon-counting detectors (PCD) to respond accurately at high photon flux, to date there has been no clinical application of PCD-CT. Recently, our lab installed a research prototype system consisting of two x-ray sources and two corresponding detectors, one using an energy-integrating detector (EID) and the other using a PCD. In this work, we report the first third-party evaluation of this prototype CT system using both phantoms and a cadaver head. The phantom studies demonstrated several promising characteristics of the PCD sub-system, including improved longitudinal spatial resolution and reduced beam hardening artifacts, relative to the EID sub-system. More importantly, we found that the PCD sub-system offers excellent pulse pileup control in cases of x-ray flux up to 550 mA at 140 kV, which corresponds to approximately 2.5×1011 photons per cm2 per second. In an anthropomorphic phantom and a cadaver head, the PCD sub-system provided image quality comparable to the EID sub-system for the same dose level. Our results demonstrate the potential of the prototype system to produce clinically-acceptable images in vivo.

  16. Selective enumeration of propionibacteria in Emmental-type cheese using Petrifilm™ aerobic count plates added to lithium glycerol broth.

    PubMed

    de Freitas, Rosângela; Luiz, Lívia M Pinheiro; Alves, Maura Pinheiro; Valence-Bertel, Florence; Nero, Luís Augusto; de Carvalho, Antônio Fernandes

    2013-08-01

    Propionibacteria derived from dairy products are relevant starter cultures for the production of Swiss and Emmental-type cheeses, and the monitoring of which is mandatory for proper quality control. This study aimed to evaluate an alternative procedure to enumerate propionibacteria, in order to develop a reliable and practical methodology to be employed by dairy industries. 2,3,5-triphenyltetrazolium chloride (TTC) inhibitory activity was tested against five reference strains (CIRM 09, 38, 39, 40 and 116); TTC at 0·0025% (w/v) was not inhibitory, with the exception of one strain (CIRM 116). Subsequently, the four TTC-resistant strains, three commercial starter cultures (PS-1, PB-I, and CHOO) and twelve Emmental-type cheese samples were subjected to propionibacteria enumeration using Lithium Glycerol (LG) agar, and Petrifilm™ Aerobic Count (AC) plates added to LG broth (anaerobic incubation at 30 °C for 7 d). Petrifilm™ AC added to LG broth presented high counts than LG agar (P<0·05) for only two reference strains (CIRM 39, and 40) and for all commercial starter cultures. Cheese sample counts obtained by both procedures did not show significant differences (P<0·05). Significant correlation indexes were observed between the counts recorded by both methods (P<0·05). These results demonstrate the reliability of Petrifilm™ AC plates added to LG broth in enumerating select Propionibacterium spp., despite some limitations observed for specific commercial starter cultures.

  17. Modeling the performance of a photon counting x-ray detector for CT: energy response and pulse pileup effects.

    PubMed

    Taguchi, Katsuyuki; Zhang, Mengxi; Frey, Eric C; Wang, Xiaolan; Iwanczyk, Jan S; Nygard, Einar; Hartsough, Neal E; Tsui, Benjamin M W; Barber, William C

    2011-02-01

    Recently, photon counting x-ray detectors (PCXDs) with energy discrimination capabilities have been developed for potential use in clinical computed tomography (CT) scanners. These PCXDs have great potential to improve the quality of CT images due to the absence of electronic noise and weights applied to the counts and the additional spectral information. With high count rates encountered in clinical CT, however, coincident photons are recorded as one event with a higher or lower energy due to the finite speed of the PCXD. This phenomenon is called a "pulse pileup event" and results in both a loss of counts (called "deadtime losses") and distortion of the recorded energy spectrum. Even though the performance of PCXDs is being improved, it is essential to develop algorithmic methods based on accurate models of the properties of detectors to compensate for these effects. To date, only one PCXD (model DXMCT-1, DxRay, Inc., Northridge, CA) has been used for clinical CT studies. The aim of that study was to evaluate the agreement between data measured by DXMCT-1 and those predicted by analytical models for the energy response, the deadtime losses, and the distorted recorded spectrum caused by pulse pileup effects. An energy calibration was performed using 99mTc (140 keV), 57Co (122 keV), and an x-ray beam obtained with four x-ray tube voltages (35, 50, 65, and 80 kVp). The DXMCT-1 was placed 150 mm from the x-ray focal spot; the count rates and the spectra were recorded at various tube current values from 10 to 500 microA for a tube voltage of 80 kVp. Using these measurements, for each pulse height comparator we estimated three parameters describing the photon energy-pulse height curve, the detector deadtime tau, a coefficient k that relates the x-ray tube current I to an incident count rate a by a = k x I, and the incident spectrum. The mean pulse shape of all comparators was acquired in a separate study and was used in the model to estimate the distorted recorded

  18. Modeling the performance of a photon counting x-ray detector for CT: Energy response and pulse pileup effects

    PubMed Central

    Taguchi, Katsuyuki; Zhang, Mengxi; Frey, Eric C.; Wang, Xiaolan; Iwanczyk, Jan S.; Nygard, Einar; Hartsough, Neal E.; Tsui, Benjamin M. W.; Barber, William C.

    2011-01-01

    Purpose: Recently, photon counting x-ray detectors (PCXDs) with energy discrimination capabilities have been developed for potential use in clinical computed tomography (CT) scanners. These PCXDs have great potential to improve the quality of CT images due to the absence of electronic noise and weights applied to the counts and the additional spectral information. With high count rates encountered in clinical CT, however, coincident photons are recorded as one event with a higher or lower energy due to the finite speed of the PCXD. This phenomenon is called a “pulse pileup event” and results in both a loss of counts (called “deadtime losses”) and distortion of the recorded energy spectrum. Even though the performance of PCXDs is being improved, it is essential to develop algorithmic methods based on accurate models of the properties of detectors to compensate for these effects. To date, only one PCXD (model DXMCT-1, DxRay, Inc., Northridge, CA) has been used for clinical CT studies. The aim of that study was to evaluate the agreement between data measured by DXMCT-1 and those predicted by analytical models for the energy response, the deadtime losses, and the distorted recorded spectrum caused by pulse pileup effects. Methods: An energy calibration was performed using 99mTc (140 keV), 57Co (122 keV), and an x-ray beam obtained with four x-ray tube voltages (35, 50, 65, and 80 kVp). The DXMCT-1 was placed 150 mm from the x-ray focal spot; the count rates and the spectra were recorded at various tube current values from 10 to 500 μA for a tube voltage of 80 kVp. Using these measurements, for each pulse height comparator we estimated three parameters describing the photon energy-pulse height curve, the detector deadtime τ, a coefficient k that relates the x-ray tube current I to an incident count rate a by a=k×I, and the incident spectrum. The mean pulse shape of all comparators was acquired in a separate study and was used in the model to estimate the

  19. Means and method for calibrating a photon detector utilizing electron-photon coincidence

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K. (Inventor)

    1984-01-01

    An arrangement for calibrating a photon detector particularly applicable for the ultraviolet and vacuum ultraviolet regions is based on electron photon coincidence utilizing crossed electron beam atom beam collisions. Atoms are excited by electrons which lose a known amount of energy and scatter with a known remaining energy, while the excited atoms emit photons of known radiation. Electrons of the known remaining energy are separated from other electrons and are counted. Photons emitted in a direction related to the particular direction of scattered electrons are detected to serve as a standard. Each of the electrons is used to initiate the measurements of a time interval which terminates with the arrival of a photon exciting the photon detector. Only the number of time intervals related to the coincidence correlation and of electrons scattered in the particular direction with the known remaining energy and photons of a particular radiation level emitted due to the collisions of such scattered electrons are counted. The detector calibration is related to the number of counted electrons and photons.

  20. On the single-photon-counting (SPC) modes of imaging using an XFEL source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhehui

    In this study, the requirements to achieve high detection efficiency (above 50%) and gigahertz (GHz) frame rate for the proposed 42-keV X-ray free-electron laser (XFEL) at Los Alamos are summarized. Direct detection scenarios using C (diamond), Si, Ge and GaAs semiconductor sensors are analyzed. Single-photon counting (SPC) mode and weak SPC mode using Si can potentially meet the efficiency and frame rate requirements and be useful to both photoelectric absorption and Compton physics as the photon energy increases. Multilayer three-dimensional (3D) detector architecture, as a possible means to realize SPC modes, is compared with the widely used two-dimensional (2D) hybridmore » planar electrode structure and 3D deeply entrenched electrode architecture. Demonstration of thin film cameras less than 100-μm thick with onboard thin ASICs could be an initial step to realize multilayer 3D detectors and SPC modes for XFELs.« less

  1. On the single-photon-counting (SPC) modes of imaging using an XFEL source

    DOE PAGES

    Wang, Zhehui

    2015-12-14

    In this study, the requirements to achieve high detection efficiency (above 50%) and gigahertz (GHz) frame rate for the proposed 42-keV X-ray free-electron laser (XFEL) at Los Alamos are summarized. Direct detection scenarios using C (diamond), Si, Ge and GaAs semiconductor sensors are analyzed. Single-photon counting (SPC) mode and weak SPC mode using Si can potentially meet the efficiency and frame rate requirements and be useful to both photoelectric absorption and Compton physics as the photon energy increases. Multilayer three-dimensional (3D) detector architecture, as a possible means to realize SPC modes, is compared with the widely used two-dimensional (2D) hybridmore » planar electrode structure and 3D deeply entrenched electrode architecture. Demonstration of thin film cameras less than 100-μm thick with onboard thin ASICs could be an initial step to realize multilayer 3D detectors and SPC modes for XFELs.« less

  2. Method for Performing Aerobic Plate Counts of Anhydrous Cosmetics Utilizing Tween 60 and Arlacel 80 as Dispersing Agents

    PubMed Central

    McConville, John F.; Anger, Claude B.; Anderson, David W.

    1974-01-01

    An aqueous diluent containing Tween 60 and Arlacel 80 gave greater recovery of microorganisms when compared with two common diluents as determined by aerobic plate count of inoculated anhydrous cosmetics. The greater recovery was caused by better dispersion of the anhydrous cosmetics in the diluents. Images PMID:4203790

  3. Development and flight testing of UV optimized Photon Counting CCDs

    NASA Astrophysics Data System (ADS)

    Hamden, Erika T.

    2018-06-01

    I will discuss the latest results from the Hamden UV/Vis Detector Lab and our ongoing work using a UV optimized EMCCD in flight. Our lab is currently testing efficiency and performance of delta-doped, anti-reflection coated EMCCDs, in collaboration with JPL. The lab has been set-up to test quantum efficiency, dark current, clock-induced-charge, and read noise. I will describe our improvements to our circuit boards for lower noise, updates from a new, more flexible NUVU controller, and the integration of an EMCCD in the FIREBall-2 UV spectrograph. I will also briefly describe future plans to conduct radiation testing on delta-doped EMCCDs (both warm, unbiased and cold, biased configurations) thus summer and longer term plans for testing newer photon counting CCDs as I move the HUVD Lab to the University of Arizona in the Fall of 2018.

  4. A multichannel block-matching denoising algorithm for spectral photon-counting CT images.

    PubMed

    Harrison, Adam P; Xu, Ziyue; Pourmorteza, Amir; Bluemke, David A; Mollura, Daniel J

    2017-06-01

    We present a denoising algorithm designed for a whole-body prototype photon-counting computed tomography (PCCT) scanner with up to 4 energy thresholds and associated energy-binned images. Spectral PCCT images can exhibit low signal to noise ratios (SNRs) due to the limited photon counts in each simultaneously-acquired energy bin. To help address this, our denoising method exploits the correlation and exact alignment between energy bins, adapting the highly-effective block-matching 3D (BM3D) denoising algorithm for PCCT. The original single-channel BM3D algorithm operates patch-by-patch. For each small patch in the image, a patch grouping action collects similar patches from the rest of the image, which are then collaboratively filtered together. The resulting performance hinges on accurate patch grouping. Our improved multi-channel version, called BM3D_PCCT, incorporates two improvements. First, BM3D_PCCT uses a more accurate shared patch grouping based on the image reconstructed from photons detected in all 4 energy bins. Second, BM3D_PCCT performs a cross-channel decorrelation, adding a further dimension to the collaborative filtering process. These two improvements produce a more effective algorithm for PCCT denoising. Preliminary results compare BM3D_PCCT against BM3D_Naive, which denoises each energy bin independently. Experiments use a three-contrast PCCT image of a canine abdomen. Within five regions of interest, selected from paraspinal muscle, liver, and visceral fat, BM3D_PCCT reduces the noise standard deviation by 65.0%, compared to 40.4% for BM3D_Naive. Attenuation values of the contrast agents in calibration vials also cluster much tighter to their respective lines of best fit. Mean angular differences (in degrees) for the original, BM3D_Naive, and BM3D_PCCT images, respectively, were 15.61, 7.34, and 4.45 (iodine); 12.17, 7.17, and 4.39 (galodinium); and 12.86, 6.33, and 3.96 (bismuth). We outline a multi-channel denoising algorithm tailored for

  5. Three Temperature Regimes in Superconducting Photon Detectors: Quantum, Thermal and Multiple Phase-Slips as Generators of Dark Counts

    PubMed Central

    Murphy, Andrew; Semenov, Alexander; Korneev, Alexander; Korneeva, Yulia; Gol’tsman, Gregory; Bezryadin, Alexey

    2015-01-01

    We perform measurements of the switching current distributions of three w ≈ 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijärvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced. PMID:25988591

  6. Three temperature regimes in superconducting photon detectors: quantum, thermal and multiple phase-slips as generators of dark counts.

    PubMed

    Murphy, Andrew; Semenov, Alexander; Korneev, Alexander; Korneeva, Yulia; Gol'tsman, Gregory; Bezryadin, Alexey

    2015-05-19

    We perform measurements of the switching current distributions of three w ≈ 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijärvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced.

  7. In situ detection of warfarin using time-correlated single-photon counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosengren, Annika M.; Karlsson, Bjoern C.G.; Naeslund, Inga

    Highlights: {yields} Direct in situ measurement of specific isomeric forms of the anticoagulant warfarin. {yields} TCSPC spectroscopy in conjunction with synthetic Sudlow I binding site receptors. {yields} Development of sensor principle for use in clinical and environmental monitoring. -- Abstract: Here we report on a novel method for the direct in situ measurement of specific isomeric forms of the anticoagulant warfarin using time correlated single-photon counting (TCSPC) spectroscopy in conjunction with synthetic Sudlow I binding site receptors. The method is highly robust over the clinically significant concentration range, and demonstrates the potential of the binding site mimics in conjunction withmore » the spectroscopic strategy employed here for the determination of this important pharmaceutical in clinical or even environmental samples.« less

  8. Systems and methods for forming microchannel plate (MCP) photodetector assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Lei; Zhao, Huyue; Wagner, Robert G.

    A MCP photodetector assembly includes an anode plate including a plurality of electrical traces positioned thereon, a plurality of MCPs and a plurality of grid spacers. The MCPs are positioned between the grid spacers. The grid spacers have a grid spacer shape defining at least one aperture. A plurality of shims are positioned between the grid spacers and the MCPs so as to form a stack positioned on the anode plate. Each of the plurality of shims have a shim shape which is the same as the grid spacer shape such that each of the plurality of shims and eachmore » of the plurality of grid spacers overlap so as to define at least one MCP aperture. At least a portion of the plurality of MCPs are positioned within the MCP aperture. The shims are structured to electrically couple the MCPs to the anode plate.« less

  9. Correlation between standard plate count and somatic cell count milk quality results for Wisconsin dairy producers.

    PubMed

    Borneman, Darand L; Ingham, Steve

    2014-05-01

    The objective of this study was to determine if a correlation exists between standard plate count (SPC) and somatic cell count (SCC) monthly reported results for Wisconsin dairy producers. Such a correlation may indicate that Wisconsin producers effectively controlling sanitation and milk temperature (reflected in low SPC) also have implemented good herd health management practices (reflected in low SCC). The SPC and SCC results for all grade A and B dairy producers who submitted results to the Wisconsin Department of Agriculture, Trade, and Consumer Protection, in each month of 2012 were analyzed. Grade A producer SPC results were less dispersed than grade B producer SPC results. Regression analysis showed a highly significant correlation between SPC and SCC, but the R(2) value was very small (0.02-0.03), suggesting that many other factors, besides SCC, influence SPC. Average SCC (across 12 mo) for grade A and B producers decreased with an increase in the number of monthly SPC results (out of 12) that were ≤ 25,000 cfu/mL. A chi-squared test of independence showed that the proportion of monthly SCC results >250,000 cells/mL varied significantly depending on whether the corresponding SPC result was ≤ 25,000 or >25,000 cfu/mL. This significant difference occurred in all months of 2012 for grade A and B producers. The results suggest that a generally consistent level of skill exists across dairy production practices affecting SPC and SCC. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Dual-contrast agent photon-counting computed tomography of the heart: initial experience.

    PubMed

    Symons, Rolf; Cork, Tyler E; Lakshmanan, Manu N; Evers, Robert; Davies-Venn, Cynthia; Rice, Kelly A; Thomas, Marvin L; Liu, Chia-Ying; Kappler, Steffen; Ulzheimer, Stefan; Sandfort, Veit; Bluemke, David A; Pourmorteza, Amir

    2017-08-01

    To determine the feasibility of dual-contrast agent imaging of the heart using photon-counting detector (PCD) computed tomography (CT) to simultaneously assess both first-pass and late enhancement of the myocardium. An occlusion-reperfusion canine model of myocardial infarction was used. Gadolinium-based contrast was injected 10 min prior to PCD CT. Iodinated contrast was infused immediately prior to PCD CT, thus capturing late gadolinium enhancement as well as first-pass iodine enhancement. Gadolinium and iodine maps were calculated using a linear material decomposition technique and compared to single-energy (conventional) images. PCD images were compared to in vivo and ex vivo magnetic resonance imaging (MRI) and histology. For infarct versus remote myocardium, contrast-to-noise ratio (CNR) was maximal on late enhancement gadolinium maps (CNR 9.0 ± 0.8, 6.6 ± 0.7, and 0.4 ± 0.4, p < 0.001 for gadolinium maps, single-energy images, and iodine maps, respectively). For infarct versus blood pool, CNR was maximum for iodine maps (CNR 11.8 ± 1.3, 3.8 ± 1.0, and 1.3 ± 0.4, p < 0.001 for iodine maps, gadolinium maps, and single-energy images, respectively). Combined first-pass iodine and late gadolinium maps allowed quantitative separation of blood pool, scar, and remote myocardium. MRI and histology analysis confirmed accurate PCD CT delineation of scar. Simultaneous multi-contrast agent cardiac imaging is feasible with photon-counting detector CT. These initial proof-of-concept results may provide incentives to develop new k-edge contrast agents, to investigate possible interactions between multiple simultaneously administered contrast agents, and to ultimately bring them to clinical practice.

  11. Ultraviolet imaging detectors for the GOLD mission

    NASA Astrophysics Data System (ADS)

    Siegmund, O. H. W.; McPhate, J.; Curtis, T.; Jelinsky, S.; Vallerga, J. V.; Hull, J.; Tedesco, J.

    2016-07-01

    The GOLD mission is a NASA Explorer class ultraviolet Earth observing spectroscopy instrument that will be flown on a telecommunications satellite in geostationary orbit in 2018. Microchannel plate detectors operating in the 132 nm to 162 nm FUV bandpass with 2D imaging cross delay line readouts and electronics have been built for each of the two spectrometer channels for GOLD. The detectors are "open face" with CsI photocathodes, providing 30% efficiency at 130.4 nm and 15% efficiency at 160.8 nm. These detectors with their position encoding electronics provide 600 x 500 FWHM resolution elements and are photon counting, with event handling rates of > 200 KHz. The operational details of the detectors and their performance are discussed.

  12. A miniaturized counting technique for anaerobic bacteria.

    PubMed

    Sharpe, A N; Pettipher, G L; Lloyd, G R

    1976-12-01

    A miniaturized counting technique gave results as good as the pour-plate and Most Probable Number (MPN) techniques for enumeration of clostridia spp. and anaerobic isolates from the gut. Highest counts were obtained when ascorbic acid (1%) and dithiothreitol (0.015%) were added to the reinforced clostridial medium used for counting. This minimized the effect of exposure to air before incubation. The miniature technique allowed up to 40 samples to be plated and incubated in one McIntosh-Filde's-type anaerobic jar, compared with 3 or 4 by the normal pour plate.

  13. Robust design of microchannel cooler

    NASA Astrophysics Data System (ADS)

    He, Ye; Yang, Tao; Hu, Li; Li, Leimin

    2005-12-01

    Microchannel cooler has offered a new method for the cooling of high power diode lasers, with the advantages of small volume, high efficiency of thermal dissipation and low cost when mass-produced. In order to reduce the sensitivity of design to manufacture errors or other disturbances, Taguchi method that is one of robust design method was chosen to optimize three parameters important to the cooling performance of roof-like microchannel cooler. The hydromechanical and thermal mathematical model of varying section microchannel was calculated using finite volume method by FLUENT. A special program was written to realize the automation of the design process for improving efficiency. The optimal design is presented which compromises between optimal cooling performance and its robustness. This design method proves to be available.

  14. The detective quantum efficiency of photon-counting x-ray detectors using cascaded-systems analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanguay, Jesse; Yun, Seungman; School of Mechanical Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735

    Purpose: Single-photon counting (SPC) x-ray imaging has the potential to improve image quality and enable new advanced energy-dependent methods. The purpose of this study is to extend cascaded-systems analyses (CSA) to the description of image quality and the detective quantum efficiency (DQE) of SPC systems. Methods: Point-process theory is used to develop a method of propagating the mean signal and Wiener noise-power spectrum through a thresholding stage (required to identify x-ray interaction events). The new transfer relationships are used to describe the zero-frequency DQE of a hypothetical SPC detector including the effects of stochastic conversion of incident photons to secondarymore » quanta, secondary quantum sinks, additive noise, and threshold level. Theoretical results are compared with Monte Carlo calculations assuming the same detector model. Results: Under certain conditions, the CSA approach can be applied to SPC systems with the additional requirement of propagating the probability density function describing the total number of image-forming quanta through each stage of a cascaded model. Theoretical results including DQE show excellent agreement with Monte Carlo calculations under all conditions considered. Conclusions: Application of the CSA method shows that false counts due to additive electronic noise results in both a nonlinear image signal and increased image noise. There is a window of allowable threshold values to achieve a high DQE that depends on conversion gain, secondary quantum sinks, and additive noise.« less

  15. A burst-mode photon counting receiver with automatic channel estimation and bit rate detection

    NASA Astrophysics Data System (ADS)

    Rao, Hemonth G.; DeVoe, Catherine E.; Fletcher, Andrew S.; Gaschits, Igor D.; Hakimi, Farhad; Hamilton, Scott A.; Hardy, Nicholas D.; Ingwersen, John G.; Kaminsky, Richard D.; Moores, John D.; Scheinbart, Marvin S.; Yarnall, Timothy M.

    2016-04-01

    We demonstrate a multi-rate burst-mode photon-counting receiver for undersea communication at data rates up to 10.416 Mb/s over a 30-foot water channel. To the best of our knowledge, this is the first demonstration of burst-mode photon-counting communication. With added attenuation, the maximum link loss is 97.1 dB at λ=517 nm. In clear ocean water, this equates to link distances up to 148 meters. For λ=470 nm, the achievable link distance in clear ocean water is 450 meters. The receiver incorporates soft-decision forward error correction (FEC) based on a product code of an inner LDPC code and an outer BCH code. The FEC supports multiple code rates to achieve error-free performance. We have selected a burst-mode receiver architecture to provide robust performance with respect to unpredictable channel obstructions. The receiver is capable of on-the-fly data rate detection and adapts to changing levels of signal and background light. The receiver updates its phase alignment and channel estimates every 1.6 ms, allowing for rapid changes in water quality as well as motion between transmitter and receiver. We demonstrate on-the-fly rate detection, channel BER within 0.2 dB of theory across all data rates, and error-free performance within 1.82 dB of soft-decision capacity across all tested code rates. All signal processing is done in FPGAs and runs continuously in real time.

  16. Effects of calibration methods on quantitative material decomposition in photon-counting spectral computed tomography using a maximum a posteriori estimator.

    PubMed

    Curtis, Tyler E; Roeder, Ryan K

    2017-10-01

    Advances in photon-counting detectors have enabled quantitative material decomposition using multi-energy or spectral computed tomography (CT). Supervised methods for material decomposition utilize an estimated attenuation for each material of interest at each photon energy level, which must be calibrated based upon calculated or measured values for known compositions. Measurements using a calibration phantom can advantageously account for system-specific noise, but the effect of calibration methods on the material basis matrix and subsequent quantitative material decomposition has not been experimentally investigated. Therefore, the objective of this study was to investigate the influence of the range and number of contrast agent concentrations within a modular calibration phantom on the accuracy of quantitative material decomposition in the image domain. Gadolinium was chosen as a model contrast agent in imaging phantoms, which also contained bone tissue and water as negative controls. The maximum gadolinium concentration (30, 60, and 90 mM) and total number of concentrations (2, 4, and 7) were independently varied to systematically investigate effects of the material basis matrix and scaling factor calibration on the quantitative (root mean squared error, RMSE) and spatial (sensitivity and specificity) accuracy of material decomposition. Images of calibration and sample phantoms were acquired using a commercially available photon-counting spectral micro-CT system with five energy bins selected to normalize photon counts and leverage the contrast agent k-edge. Material decomposition of gadolinium, calcium, and water was performed for each calibration method using a maximum a posteriori estimator. Both the quantitative and spatial accuracy of material decomposition were most improved by using an increased maximum gadolinium concentration (range) in the basis matrix calibration; the effects of using a greater number of concentrations were relatively small in

  17. Measurements with Si and GaAs pixel detectors bonded to photon counting readout chips

    NASA Astrophysics Data System (ADS)

    Schwarz, C.; Campbell, M.; Goeppert, R.; Ludwig, J.; Mikulec, B.; Runge, K.; Smith, K. M.; Snoeys, W.

    2001-06-01

    Detectors fabricated with SI-GaAs and Si bulk material were bonded to Photon Counting Chips (PCC), developed in the framework of the MEDIPIX Collaboration. The PCC consists of a matrix of 64×64 identical square pixels (170 μm×170 μm) with a 15-bit counter in each cell. We investigated the imaging properties of these detector systems under exposure of a dental X-ray tube at room temperature. The image homogeneity and the mean count rate were determined via flood exposure images and compared. Exposures for GaAs detectors exhibit a 3 times larger spread in count rate per image in comparison to Si detectors. This also results in a 3 times worse signal to noise ratio. IV-characteristics and X-ray images at different values of the detectors bias voltage were also taken and show a 30 times higher leakage current for GaAs. The Si detector is fully active beginning from 70 V, whereas the GaAs detector does not reach full charge collection. The presampling modulation transfer function of both assembly types was measured via slit images and gives a spatial resolution of 4.3 lp/mm for both detector systems.

  18. Hydrodynamic dispersion in a combined magnetohydrodynamic- electroosmotic-driven flow through a microchannel with slowly varying wall zeta potentials

    NASA Astrophysics Data System (ADS)

    Vargas, C.; Arcos, J.; Bautista, O.; Méndez, F.

    2017-09-01

    The effective dispersion coefficient of a neutral solute in the combined electroosmotic (EO) and magnetohydrodynamic (MHD)-driven flow of a Newtonian fluid through a parallel flat plate microchannel is studied. The walls of the microchannel are assumed to have modulated and low zeta potentials that vary slowly in the axial direction in a sinusoidal manner. The flow field required to obtain the dispersion coefficient is solved using the lubrication approximation theory. The solution of the electrical potential is based on the Debye-Hückel approximation for a symmetric (Z :Z ) electrolyte solution. The EO and MHD effects, together with the variations in the zeta potentials of the walls, are observed to notably modify the axial distribution of the effective dispersion coefficient. The problem is formulated for two cases of the zeta potential function. Note that the dispersion coefficient primarily depends on the Hartmann number, on the ratio of the half height of the microchannel to the Debye length, and on the assumed variation in the zeta potentials of the walls.

  19. High power density fuel cell comprising an array of microchannels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sopchak, David A; Morse, Jeffrey D; Upadhye, Ravindra S

    2014-05-06

    A phosphoric acid fuel cell according to one embodiment includes an array of microchannels defined by a porous electrolyte support structure extending between bottom and upper support layers, the microchannels including fuel and oxidant microchannels; fuel electrodes formed along some of the microchannels; and air electrodes formed along other of the microchannels. A method of making a phosphoric acid fuel cell according to one embodiment includes etching an array of microchannels in a substrate, thereby forming walls between the microchannels; processing the walls to make the walls porous, thereby forming a porous electrolyte support structure; forming anode electrodes along somemore » of the walls; forming cathode electrodes along other of the walls; and filling the porous electrolyte support structure with a phosphoric acid electrolyte. Additional embodiments are also disclosed.« less

  20. Method for producing microchannels in drawn material

    DOEpatents

    D'urso, Brian R [Clinton, TN; Simpson, John T [Clinton, TN

    2009-12-29

    A microchannel glass article includes a glass body having a porous, spinodal nanostructure and defining at least one microchannel extending from a surface of the article substantially through the article.

  1. 1.5-μm band polarization entangled photon-pair source with variable Bell states.

    PubMed

    Arahira, Shin; Kishimoto, Tadashi; Murai, Hitoshi

    2012-04-23

    In this paper we report a polarization-entangled photon-pair source in a 1.5-μm band which can generate arbitrary entangled states including four maximum entangled states (Bell states) by using cascaded optical second nonlinearities (second-harmonic generation and the following spontaneous parametric down conversion) in a periodically poled LiNbO(3) (PPLN) ridge-waveguide device. Exchange among the Bell states was achieved by using an optical phase bias compensator (OPBC) in a Sagnac loop interferometer and a half-wave plate outside the loop for polarization conversion. Quantitative evaluation was made on the performance of the photon-pair source through the experiments of two-photon interferences, quantum state tomography, and test of violation of Bell inequality. We observed high visibilities of 96%, fidelities of 97%, and 2.71 of the S parameter in inequality of Clauser, Horne, Shimony, and Holt (CHSH). The experimental values, including peak coincidence counts in the two-photon interference (approximately 170 counts per second), remained almost unchanged in despite of the exchange among the Bell states. They were also in good agreement with the theoretical assumption from the mean number of the photon-pairs under the test (0.04 per pulse). More detailed experimental studies on the dependence of the mean number of the photon-pairs revealed that the quantum states were well understood as the Werner state. © 2012 Optical Society of America

  2. Comparison of bulk-tank standard plate count and somatic cell count for Wisconsin dairy farms in three size categories.

    PubMed

    Ingham, S C; Hu, Y; Ané, C

    2011-08-01

    The objective of this study was to evaluate possible claims by advocates of small-scale dairy farming that milk from smaller Wisconsin farms is of higher quality than milk from larger Wisconsin farms. Reported bulk tank standard plate count (SPC) and somatic cell count (SCC) test results for Wisconsin dairy farms were obtained for February to December, 2008. Farms were sorted into 3 size categories using available size-tracking criteria: small (≤118 cows; 12,866 farms), large (119-713 cattle; 1,565 farms), and confined animal feeding operations (≥714 cattle; 160 farms). Group means were calculated (group=farm size category) for the farms' minimum, median, mean, 90th percentile, and maximum SPC and SCC. Statistical analysis showed that group means for median, mean, 90th percentile, and maximum SPC and SCC were almost always significantly higher for the small farm category than for the large farm and confined animal feeding operations farm categories. With SPC and SCC as quality criteria and the 3 farm size categories of ≤118, 119 to 713, and ≥714 cattle, the claim of Wisconsin smaller farms producing higher quality milk than Wisconsin larger farms cannot be supported. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Characteristic performance evaluation of a photon counting Si strip detector for low dose spectral breast CT imaging

    PubMed Central

    Cho, Hyo-Min; Barber, William C.; Ding, Huanjun; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: The possible clinical applications which can be performed using a newly developed detector depend on the detector's characteristic performance in a number of metrics including the dynamic range, resolution, uniformity, and stability. The authors have evaluated a prototype energy resolved fast photon counting x-ray detector based on a silicon (Si) strip sensor used in an edge-on geometry with an application specific integrated circuit to record the number of x-rays and their energies at high flux and fast frame rates. The investigated detector was integrated with a dedicated breast spectral computed tomography (CT) system to make use of the detector's high spatial and energy resolution and low noise performance under conditions suitable for clinical breast imaging. The aim of this article is to investigate the intrinsic characteristics of the detector, in terms of maximum output count rate, spatial and energy resolution, and noise performance of the imaging system. Methods: The maximum output count rate was obtained with a 50 W x-ray tube with a maximum continuous output of 50 kVp at 1.0 mA. A109Cd source, with a characteristic x-ray peak at 22 keV from Ag, was used to measure the energy resolution of the detector. The axial plane modulation transfer function (MTF) was measured using a 67 μm diameter tungsten wire. The two-dimensional (2D) noise power spectrum (NPS) was measured using flat field images and noise equivalent quanta (NEQ) were calculated using the MTF and NPS results. The image quality parameters were studied as a function of various radiation doses and reconstruction filters. The one-dimensional (1D) NPS was used to investigate the effect of electronic noise elimination by varying the minimum energy threshold. Results: A maximum output count rate of 100 million counts per second per square millimeter (cps/mm2) has been obtained (1 million cps per 100 × 100 μm pixel). The electrical noise floor was less than 4 keV. The energy resolution

  4. Microchannel cooling of face down bonded chips

    DOEpatents

    Bernhardt, A.F.

    1993-06-08

    Microchannel cooling is applied to flip-chip bonded integrated circuits, in a manner which maintains the advantages of flip-chip bonds, while overcoming the difficulties encountered in cooling the chips. The technique is suited to either multi chip integrated circuit boards in a plane, or to stacks of circuit boards in a three dimensional interconnect structure. Integrated circuit chips are mounted on a circuit board using flip-chip or control collapse bonds. A microchannel structure is essentially permanently coupled with the back of the chip. A coolant delivery manifold delivers coolant to the microchannel structure, and a seal consisting of a compressible elastomer is provided between the coolant delivery manifold and the microchannel structure. The integrated circuit chip and microchannel structure are connected together to form a replaceable integrated circuit module which can be easily decoupled from the coolant delivery manifold and the circuit board. The coolant supply manifolds may be disposed between the circuit boards in a stack and coupled to supplies of coolant through a side of the stack.

  5. Microchannel cooling of face down bonded chips

    DOEpatents

    Bernhardt, Anthony F.

    1993-01-01

    Microchannel cooling is applied to flip-chip bonded integrated circuits, in a manner which maintains the advantages of flip-chip bonds, while overcoming the difficulties encountered in cooling the chips. The technique is suited to either multichip integrated circuit boards in a plane, or to stacks of circuit boards in a three dimensional interconnect structure. Integrated circuit chips are mounted on a circuit board using flip-chip or control collapse bonds. A microchannel structure is essentially permanently coupled with the back of the chip. A coolant delivery manifold delivers coolant to the microchannel structure, and a seal consisting of a compressible elastomer is provided between the coolant delivery manifold and the microchannel structure. The integrated circuit chip and microchannel structure are connected together to form a replaceable integrated circuit module which can be easily decoupled from the coolant delivery manifold and the circuit board. The coolant supply manifolds may be disposed between the circuit boards in a stack and coupled to supplies of coolant through a side of the stack.

  6. Microchannel heat sink assembly

    DOEpatents

    Bonde, W.L.; Contolini, R.J.

    1992-03-24

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

  7. Microchannel heat sink assembly

    DOEpatents

    Bonde, Wayne L.; Contolini, Robert J.

    1992-01-01

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watetight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures.

  8. Evaluation of a photon counting Medipix3RX CZT spectral x-ray detector

    PubMed Central

    Jorgensen, Steven M.; Vercnocke, Andrew J.; Rundle, David S.; Butler, Philip H.; McCollough, Cynthia H.; Ritman, Erik L.

    2016-01-01

    We assessed the performance of a cadmium zinc telluride (CZT)-based Medipix3RX x-ray detector as a candidate for micro-computed tomography (micro-CT) imaging. This technology was developed at CERN for the Large Hadron Collider. It features an array of 128 by 128, 110 micrometer square pixels, each with eight simultaneous threshold counters, five of which utilize real-time charge summing, significantly reducing the charge sharing between contiguous pixels. Pixel response curves were created by imaging a range of x-ray intensities by varying x-ray tube current and by varying the exposure time with fixed x-ray current. Photon energy-related assessments were made by flooding the detector with the tin foil filtered emission of an I-125 radioisotope brachytherapy seed and sweeping the energy threshold of each of the four charge-summed counters of each pixel in 1 keV steps. Long term stability assessments were made by repeating exposures over the course of one hour. The high properly-functioning pixel yield (99%), long term stability (linear regression of whole-chip response over one hour of acquisitions: y = −0.0038x + 2284; standard deviation: 3.7 counts) and energy resolution (2.5 keV FWHM (single pixel), 3.7 keV FWHM across the full image) make this device suitable for spectral micro-CT. The charge summing performance effectively reduced the measurement corruption caused by charge sharing which, when unaccounted for, shifts the photon energy assignment to lower energies, degrading both count and energy accuracy. Effective charge summing greatly improves the potential for calibrated, energy-specific material decomposition and K edge difference imaging approaches. PMID:27795606

  9. Evaluation of a photon counting Medipix3RX CZT spectral x-ray detector.

    PubMed

    Jorgensen, Steven M; Vercnocke, Andrew J; Rundle, David S; Butler, Philip H; McCollough, Cynthia H; Ritman, Erik L

    2016-08-28

    We assessed the performance of a cadmium zinc telluride (CZT)-based Medipix3RX x-ray detector as a candidate for micro-computed tomography (micro-CT) imaging. This technology was developed at CERN for the Large Hadron Collider. It features an array of 128 by 128, 110 micrometer square pixels, each with eight simultaneous threshold counters, five of which utilize real-time charge summing, significantly reducing the charge sharing between contiguous pixels. Pixel response curves were created by imaging a range of x-ray intensities by varying x-ray tube current and by varying the exposure time with fixed x-ray current. Photon energy-related assessments were made by flooding the detector with the tin foil filtered emission of an I-125 radioisotope brachytherapy seed and sweeping the energy threshold of each of the four charge-summed counters of each pixel in 1 keV steps. Long term stability assessments were made by repeating exposures over the course of one hour. The high properly-functioning pixel yield (99%), long term stability (linear regression of whole-chip response over one hour of acquisitions: y = -0.0038x + 2284; standard deviation: 3.7 counts) and energy resolution (2.5 keV FWHM (single pixel), 3.7 keV FWHM across the full image) make this device suitable for spectral micro-CT. The charge summing performance effectively reduced the measurement corruption caused by charge sharing which, when unaccounted for, shifts the photon energy assignment to lower energies, degrading both count and energy accuracy. Effective charge summing greatly improves the potential for calibrated, energy-specific material decomposition and K edge difference imaging approaches.

  10. Detector response function of an energy-resolved CdTe single photon counting detector.

    PubMed

    Liu, Xin; Lee, Hyoung Koo

    2014-01-01

    While spectral CT using single photon counting detector has shown a number of advantages in diagnostic imaging, knowledge of the detector response function of an energy-resolved detector is needed to correct the signal bias and reconstruct the image more accurately. The objective of this paper is to study the photo counting detector response function using laboratory sources, and investigate the signal bias correction method. Our approach is to model the detector response function over the entire diagnostic energy range (20 keV photon energies. The 12 parameters are obtained by non-linear least-square fitting with the measured detector response functions at the six energies. The correlations of the 12 parameters with energy are also investigated with the measured data. The analytical model generally describes the detector response function and is in good agreement with the measured data. The trend lines of the 12 parameters indicate higher energies tend to cause grater spectrum distortion. The spectrum distortion caused by the detector response function on spectral CT reconstruction is analyzed theoretically, and a solution to correct this spectrum distortion is also proposed. In spectral and fluorescence CT, the spectrum distortion caused by detector response function poses a problem and cannot be ignored in any quantitative analysis. The detector response function of a CdTe detector can be obtained by a semi-analytical method.

  11. In Orbit Performance of Si Avalanche Photodiode Single Photon Counting Modules in the Geoscience Laser Altimeter System on ICESat

    NASA Technical Reports Server (NTRS)

    Sun, X.; Jester, P. L.; Palm, S. P.; Abshire, J. B.; Spinhime, J. D.; Krainak, M. A.

    2006-01-01

    Si avalanche photodiode (APD) single photon counting modules (SPCMs) are used in the Geoscience Laser Altimeter System (GLAS) on Ice, Cloud, anti land Elevation Satellite (ICESat), currently in orbit measuring Earth surface elevation and atmosphere backscattering. These SPCMs are used to measure cloud and aerosol backscatterings to the GLAS laser light at 532-nm wavelength with 60-70% quantum efficiencies and up to 15 millions/s maximum count rates. The performance of the SPCMs has been closely monitored since ICESat launch on January 12, 2003. There has been no measurable change in the quantum efficiency, as indicated by the average photon count rates in response to the background light from the sunlit earth. The linearity and the afterpulsing seen from the cloud and surface backscatterings profiles have been the same as those during ground testing. The detector dark count rates monitored while the spacecraft was in the dark side of the globe have increased almost linearly at about 60 counts/s per day due to space radiation damage. The radiation damage appeared to be independent of the device temperature and power states. There was also an abrupt increase in radiation damage during the solar storm in 28-30 October 2003. The observed radiation damage is a factor of two to three lower than the expected and sufficiently low to provide useful atmosphere backscattering measurements through the end of the ICESat mission. To date, these SPCMs have been in orbit for more than three years. The accumulated operating time to date has reached 290 days (7000 hours). These SPCMs have provided unprecedented receiver sensitivity and dynamic range in ICESat atmosphere backscattering measurements.

  12. Integration of microplasma and microfluidic technologies for localised microchannel surface modification

    NASA Astrophysics Data System (ADS)

    Szili, Endre J.; Al-Bataineh, Sameer A.; Priest, Craig; Gruner, Philipp J.; Ruschitzka, Paul; Bradley, James W.; Ralston, John; Steele, David A.; Short, Robert D.

    2011-12-01

    In this paper we describe the spatial surface chemical modification of bonded microchannels through the integration of microplasmas into a microfluidic chip (MMC). The composite MMC comprises an array of precisely aligned electrodes surrounding the gas/fluid microchannel. Pairs of electrodes are used to locally ignite microplasmas inside the microchannel. Microplasmas, comprising geometrically confined microscopic electrically-driven gas discharges, are used to spatially functionalise the walls of the microchannels with proteins and enzymes down to scale lengths of 300 μm inside 50 μm-wide microchannels. Microchannels in poly(dimethylsiloxane) (PDMS) or glass were used in this study. Protein specifically adsorbed on to the regions inside the PDMS microchannel that were directly exposed to the microplasma. Glass microchannels required pre-functionalisation to enable the spatial patterning of protein. Firstly, the microchannel wall was functionalised with a protein adhesion layer, 3-aminopropyl-triethoxysilane (APTES), and secondly, a protein blocking agent (bovine serum albumin, BSA) was adsorbed onto APTES. The functionalised microchannel wall was then treated with an array of spatially localised microplasmas that reduced the blocking capability of the BSA in the region that had been exposed to the plasma. This enabled the functionalisation of the microchannel with an array of spatially separated protein. As an alternative we demonstrated the feasibility of depositing functional thin films inside the MMC by spatially plasma depositing acrylic acid and 1,7-octadiene within the microchannel. This new MMC technology enables the surface chemistry of microchannels to be engineered with precision, which is expected to broaden the scope of lab-on-a-chip type applications.

  13. Improvements in brain activation detection using time-resolved diffuse optical means

    NASA Astrophysics Data System (ADS)

    Montcel, Bruno; Chabrier, Renee; Poulet, Patrick

    2005-08-01

    An experimental method based on time-resolved absorbance difference is described. The absorbance difference is calculated over each temporal step of the optical signal with the time-resolved Beer-Lambert law. Finite element simulations show that each step corresponds to a different scanned zone and that cerebral contribution increases with the arrival time of photons. Experiments are conducted at 690 and 830 nm with a time-resolved system consisting of picosecond laser diodes, micro-channel plate photo-multiplier tube and photon counting modules. The hemodynamic response to a short finger tapping stimulus is measured over the motor cortex. Time-resolved absorbance difference maps show that variations in the optical signals are not localized in superficial regions of the head, which testify for their cerebral origin. Furthermore improvements in the detection of cerebral activation is achieved through the increase of variations in absorbance by a factor of almost 5 for time-resolved measurements as compared to non-time-resolved measurements.

  14. Performance of In-Pixel Circuits for Photon Counting Arrays (PCAs) Based on Polycrystalline Silicon TFTs

    PubMed Central

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Street, Robert A.; Lu, Jeng Ping

    2017-01-01

    Photon counting arrays (PCAs), defined as pixelated imagers which measure the absorbed energy of x-ray photons individually and record this information digitally, are of increasing clinical interest. A number of PCA prototypes with a 1 mm pixel-to-pixel pitch have recently been fabricated with polycrystalline silicon (poly-Si) — a thin-film technology capable of creating monolithic imagers of a size commensurate with human anatomy. In this study, analog and digital simulation frameworks were developed to provide insight into the influence of individual poly-Si transistors on pixel circuit performance — information that is not readily available through empirical means. The simulation frameworks were used to characterize the circuit designs employed in the prototypes. The analog framework, which determines the noise produced by individual transistors, was used to estimate energy resolution, as well as to identify which transistors contribute the most noise. The digital framework, which analyzes how well circuits function in the presence of significant variations in transistor properties, was used to estimate how fast a circuit can produce an output (referred to as output count rate). In addition, an algorithm was developed and used to estimate the minimum pixel pitch that could be achieved for the pixel circuits of the current prototypes. The simulation frameworks predict that the analog component of the PCA prototypes could have energy resolution as low as 8.9% FWHM at 70 keV; and the digital components should work well even in the presence of significant TFT variations, with the fastest component having output count rates as high as 3 MHz. Finally, based on conceivable improvements in the underlying fabrication process, the algorithm predicts that the 1 mm pitch of the current PCA prototypes could be reduced significantly, potentially to between ~240 and 290 μm. PMID:26878107

  15. Performance of in-pixel circuits for photon counting arrays (PCAs) based on polycrystalline silicon TFTs.

    PubMed

    Liang, Albert K; Koniczek, Martin; Antonuk, Larry E; El-Mohri, Youcef; Zhao, Qihua; Street, Robert A; Lu, Jeng Ping

    2016-03-07

    Photon counting arrays (PCAs), defined as pixelated imagers which measure the absorbed energy of x-ray photons individually and record this information digitally, are of increasing clinical interest. A number of PCA prototypes with a 1 mm pixel-to-pixel pitch have recently been fabricated with polycrystalline silicon (poly-Si)-a thin-film technology capable of creating monolithic imagers of a size commensurate with human anatomy. In this study, analog and digital simulation frameworks were developed to provide insight into the influence of individual poly-Si transistors on pixel circuit performance-information that is not readily available through empirical means. The simulation frameworks were used to characterize the circuit designs employed in the prototypes. The analog framework, which determines the noise produced by individual transistors, was used to estimate energy resolution, as well as to identify which transistors contribute the most noise. The digital framework, which analyzes how well circuits function in the presence of significant variations in transistor properties, was used to estimate how fast a circuit can produce an output (referred to as output count rate). In addition, an algorithm was developed and used to estimate the minimum pixel pitch that could be achieved for the pixel circuits of the current prototypes. The simulation frameworks predict that the analog component of the PCA prototypes could have energy resolution as low as 8.9% full width at half maximum (FWHM) at 70 keV; and the digital components should work well even in the presence of significant thin-film transistor (TFT) variations, with the fastest component having output count rates as high as 3 MHz. Finally, based on conceivable improvements in the underlying fabrication process, the algorithm predicts that the 1 mm pitch of the current PCA prototypes could be reduced significantly, potentially to between ~240 and 290 μm.

  16. Investigation of a Multi-Anode Microchannel Plate PMT for Time-of-Flight PET

    NASA Astrophysics Data System (ADS)

    Choong, Woon-Seng

    2010-10-01

    We report on an investigation of a mulit-anode microchannel plate PMT for time-of-flight PET detector modules. The primary advantages of an MCP lie in its excellent timing properties (fast rise time and low transit time spread), compact size, and reasonably large active area, thus making it a good candidate for TOF applications. In addition, the anode can be segmented into an array of collection electrodes with fine pitch to attain good position sensitivity. In this paper, we investigate using the Photonis Planacon MCP-PMT with a pore size of 10 μm to construct a PET detector module, specifically for time-of-flight applications. We measure the single electron response by exciting the Planacon with pulsed laser diode. We also measure the performance of the Planacon as a PET detector by coupling a 4 mm×4 mm×10 mm LSO crystal to individual pixel to study its gain uniformity, energy resolution, and timing resolution. The rise time of the Planacon is 440 ps with pulse duration of about 1 ns. A transit time spread of 120 ps FWHM is achieved. The gain is fairly uniform across the central region of the Planacon, but drops off by as much as a factor of 2.5 around the edges. The energy resolution is fairly uniform across the Planacon with an average value of 18.6 ± 0.7% FWHM. While the average timing resolution of 252 ± 7 ps FWHM is achieved in the central region of the Planacon, it degrades to 280 ± 9 ps FWHM for edge pixels and 316 ± 15 ps FWHM for corner pixels. We compare the results with measurements performed with a fast timing conventional PMT (Hamamatsu R-9800). We find that the R9800, which has significantly higher PDE, has a better timing resolution than the Planacon. Furthermore, we perform detector simulations to calculate the improvement that can be achieved with a higher PDE Planacon. The calculation shows that the Planacon can achieve significantly better timing resolution if it can attain the same PDE as the R-9800, while only

  17. CLARO: an ASIC for high rate single photon counting with multi-anode photomultipliers

    NASA Astrophysics Data System (ADS)

    Baszczyk, M.; Carniti, P.; Cassina, L.; Cotta Ramusino, A.; Dorosz, P.; Fiorini, M.; Gotti, C.; Kucewicz, W.; Malaguti, R.; Pessina, G.

    2017-08-01

    The CLARO is a radiation-hard 8-channel ASIC designed for single photon counting with multi-anode photomultiplier tubes. Each channel outputs a digital pulse when the input signal from the photomultiplier crosses a configurable threshold. The fast return to baseline, typically within 25 ns, and below 50 ns in all conditions, allows to count up to 107 hits/s on each channel, with a power consumption of about 1 mW per channel. The ASIC presented here is a much improved version of the first 4-channel prototype. The threshold can be precisely set in a wide range, between 30 ke- (5 fC) and 16 Me- (2.6 pC). The noise of the amplifier with a 10 pF input capacitance is 3.5 ke- (0.6 fC) RMS. All settings are stored in a 128-bit configuration and status register, protected against soft errors with triple modular redundancy. The paper describes the design of the ASIC at transistor-level, and demonstrates its performance on the test bench.

  18. Performance and capacity analysis of Poisson photon-counting based Iter-PIC OCDMA systems.

    PubMed

    Li, Lingbin; Zhou, Xiaolin; Zhang, Rong; Zhang, Dingchen; Hanzo, Lajos

    2013-11-04

    In this paper, an iterative parallel interference cancellation (Iter-PIC) technique is developed for optical code-division multiple-access (OCDMA) systems relying on shot-noise limited Poisson photon-counting reception. The novel semi-analytical tool of extrinsic information transfer (EXIT) charts is used for analysing both the bit error rate (BER) performance as well as the channel capacity of these systems and the results are verified by Monte Carlo simulations. The proposed Iter-PIC OCDMA system is capable of achieving two orders of magnitude BER improvements and a 0.1 nats of capacity improvement over the conventional chip-level OCDMA systems at a coding rate of 1/10.

  19. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring.

    PubMed

    Van Nevel, S; Koetzsch, S; Proctor, C R; Besmer, M D; Prest, E I; Vrouwenvelder, J S; Knezev, A; Boon, N; Hammes, F

    2017-04-15

    Drinking water utilities and researchers continue to rely on the century-old heterotrophic plate counts (HPC) method for routine assessment of general microbiological water quality. Bacterial cell counting with flow cytometry (FCM) is one of a number of alternative methods that challenge this status quo and provide an opportunity for improved water quality monitoring. After more than a decade of application in drinking water research, FCM methodology is optimised and established for routine application, supported by a considerable amount of data from multiple full-scale studies. Bacterial cell concentrations obtained by FCM enable quantification of the entire bacterial community instead of the minute fraction of cultivable bacteria detected with HPC (typically < 1% of all bacteria). FCM measurements are reproducible with relative standard deviations below 3% and can be available within 15 min of samples arriving in the laboratory. High throughput sample processing and complete automation are feasible and FCM analysis is arguably less expensive than HPC when measuring more than 15 water samples per day, depending on the laboratory and selected staining procedure(s). Moreover, many studies have shown FCM total (TCC) and intact (ICC) cell concentrations to be reliable and robust process variables, responsive to changes in the bacterial abundance and relevant for characterising and monitoring drinking water treatment and distribution systems. The purpose of this critical review is to initiate a constructive discussion on whether FCM could replace HPC in routine water quality monitoring. We argue that FCM provides a faster, more descriptive and more representative quantification of bacterial abundance in drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Quantification of breast density with spectral mammography based on a scanned multi-slit photon-counting detector: A feasibility study

    PubMed Central

    Ding, Huanjun; Molloi, Sabee

    2012-01-01

    Purpose A simple and accurate measurement of breast density is crucial for the understanding of its impact in breast cancer risk models. The feasibility to quantify volumetric breast density with a photon-counting spectral mammography system has been investigated using both computer simulations and physical phantom studies. Methods A computer simulation model involved polyenergetic spectra from a tungsten anode x-ray tube and a Si-based photon-counting detector has been evaluated for breast density quantification. The figure-of-merit (FOM), which was defined as the signal-to-noise ratio (SNR) of the dual energy image with respect to the square root of mean glandular dose (MGD), was chosen to optimize the imaging protocols, in terms of tube voltage and splitting energy. A scanning multi-slit photon-counting spectral mammography system has been employed in the experimental study to quantitatively measure breast density using dual energy decomposition with glandular and adipose equivalent phantoms of uniform thickness. Four different phantom studies were designed to evaluate the accuracy of the technique, each of which addressed one specific variable in the phantom configurations, including thickness, density, area and shape. In addition to the standard calibration fitting function used for dual energy decomposition, a modified fitting function has been proposed, which brought the tube voltages used in the imaging tasks as the third variable in dual energy decomposition. Results For an average sized breast of 4.5 cm thick, the FOM was maximized with a tube voltage of 46kVp and a splitting energy of 24 keV. To be consistent with the tube voltage used in current clinical screening exam (~ 32 kVp), the optimal splitting energy was proposed to be 22 keV, which offered a FOM greater than 90% of the optimal value. In the experimental investigation, the root-mean-square (RMS) error in breast density quantification for all four phantom studies was estimated to be

  1. Quantification of breast density with spectral mammography based on a scanned multi-slit photon-counting detector: a feasibility study.

    PubMed

    Ding, Huanjun; Molloi, Sabee

    2012-08-07

    A simple and accurate measurement of breast density is crucial for the understanding of its impact in breast cancer risk models. The feasibility to quantify volumetric breast density with a photon-counting spectral mammography system has been investigated using both computer simulations and physical phantom studies. A computer simulation model involved polyenergetic spectra from a tungsten anode x-ray tube and a Si-based photon-counting detector has been evaluated for breast density quantification. The figure-of-merit (FOM), which was defined as the signal-to-noise ratio of the dual energy image with respect to the square root of mean glandular dose, was chosen to optimize the imaging protocols, in terms of tube voltage and splitting energy. A scanning multi-slit photon-counting spectral mammography system has been employed in the experimental study to quantitatively measure breast density using dual energy decomposition with glandular and adipose equivalent phantoms of uniform thickness. Four different phantom studies were designed to evaluate the accuracy of the technique, each of which addressed one specific variable in the phantom configurations, including thickness, density, area and shape. In addition to the standard calibration fitting function used for dual energy decomposition, a modified fitting function has been proposed, which brought the tube voltages used in the imaging tasks as the third variable in dual energy decomposition. For an average sized 4.5 cm thick breast, the FOM was maximized with a tube voltage of 46 kVp and a splitting energy of 24 keV. To be consistent with the tube voltage used in current clinical screening exam (∼32 kVp), the optimal splitting energy was proposed to be 22 keV, which offered a FOM greater than 90% of the optimal value. In the experimental investigation, the root-mean-square (RMS) error in breast density quantification for all four phantom studies was estimated to be approximately 1.54% using standard calibration

  2. Process for separating nitrogen from methane using microchannel process technology

    DOEpatents

    Tonkovich, Anna Lee [Marysville, OH; Qiu, Dongming [Dublin, OH; Dritz, Terence Andrew [Worthington, OH; Neagle, Paul [Westerville, OH; Litt, Robert Dwayne [Westerville, OH; Arora, Ravi [Dublin, OH; Lamont, Michael Jay [Hilliard, OH; Pagnotto, Kristina M [Cincinnati, OH

    2007-07-31

    The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

  3. Bone cell-materials interaction on Si microchannels with bioinert coatings.

    PubMed

    Condie, Russell; Bose, Susmita; Bandyopadhyay, Amit

    2007-07-01

    Bone implant life is dependent upon integration of biomaterial surfaces with local osteoblasts. This investigation studied the effects of various microchannel parameters and surface chemistry on immortalized osteoblast precursor cell (OPC1) adhesion. Cell-materials interactions were observed within channels of varying length, width, tortuosity, convergence, divergence and chemistry. Si wafers were used to create four distinct 1cm(2) designs of varying channel dimensions. After anisotropic chemical etching to a depth of 120microm, wafers were sputter coated with gold and titanium; and on another surface SiO(2) was grown to vary the surface chemistry of these microchannels. OPC1 cells were seeded in the central cavity of each chip before incubation in tissue culture plates. On days 5, 11 and 16, samples were taken out, fixed and processed for microscopic analysis. Samples were visually characterized, qualitatively scored and analyzed. Channel walls did not contain OPC1 migration, but showed locally interrupted adhesion. Scores for channels of floor widths as narrow as 350microm were significantly reduced. No statistically significant preference was detected for gold, titanium or SiO(2) surfaces. Bands of OPC1 cells appeared to align with nearby channels, suggesting that cell morphology may be controlled by topography of the design to improve osseointegration.

  4. Microbiological assessment of house and imported bottled water by comparison of bacterial endotoxin concentration, heterotrophic plate count, and fecal coliform count.

    PubMed

    Reyes, Mayra I; Pérez, Cynthia M; Negrón, Edna L

    2008-03-01

    Consumers increasingly use bottled water and home water treatment systems to avoid direct tap water. According to the International Bottled Water Association (IBWA), an industry trade group, 5 billion gallons of bottled water were consumed by North Americans in 2001. The principal aim of this study was to assess the microbial quality of in-house and imported bottled water for human consumption, by measurement and comparison of the concentration of bacterial endotoxin and standard cultivable methods of indicator microorganisms, specifically, heterotrophic and fecal coliform plate counts. A total of 21 brands of commercial bottled water, consisting of 10 imported and 11 in-house brands, selected at random from 96 brands that are consumed in Puerto Rico, were tested at three different time intervals. The Standard Limulus Amebocyte Lysate test, gel clot method, was used to measure the endotoxin concentrations. The minimum endotoxin concentration in 63 water samples was less than 0.0625 EU/mL, while the maximum was 32 EU/mL. The minimum bacterial count showed no growth, while the maximum was 7,500 CFU/mL. Bacterial isolates like P. fluorescens, Corynebacterium sp. J-K, S. paucimobilis, P. versicularis, A. baumannii, P. chlororaphis, F. indologenes, A. faecalis and P. cepacia were identified. Repeated measures analysis of variance demonstrated that endotoxin concentration did not change over time, while there was a statistically significant (p < 0.05) decrease in bacterial count over time. In addition, multiple linear regression analysis demonstrated that a unit change in the concentration of endotoxin across time was associated with a significant (p < 0.05) reduction in the bacteriological cell count. This analysis evidenced a significant time effect in the average log bacteriological cell count. Although bacterial growth was not detected in some water samples, endotoxin was present. Measurement of Gram-negative bacterial endotoxins is one of the methods that have been

  5. New Method for Accurate Calibration of Micro-Channel Plate based Detection Systems and its use in the Fast Plasma Investigation of NASA's Magnetospheric MultiScale Mission

    NASA Astrophysics Data System (ADS)

    Gliese, U.; Avanov, L. A.; Barrie, A.; Kujawski, J. T.; Mariano, A. J.; Tucker, C. J.; Chornay, D. J.; Cao, N. T.; Zeuch, M.; Pollock, C. J.; Jacques, A. D.

    2013-12-01

    The Fast Plasma Investigation (FPI) of the NASA Magnetospheric MultiScale (MMS) mission employs 16 Dual Electron Spectrometers (DESs) and 16 Dual Ion Spectrometers (DISs) with 4 of each type on each of 4 spacecraft to enable fast (30ms for electrons; 150ms for ions) and spatially differentiated measurements of full the 3D particle velocity distributions. This approach presents a new and challenging aspect to the calibration and operation of these instruments on ground and in flight. The response uniformity and reliability of their calibration and the approach to handling any temporal evolution of these calibrated characteristics all assume enhanced importance in this application, where we attempt to understand the meaning of particle distributions within the ion and electron diffusion regions. Traditionally, the micro-channel plate (MCP) based detection systems for electrostatic particle spectrometers have been calibrated by setting a fixed detection threshold and, subsequently, measuring a detection system count rate plateau curve to determine the MCP voltage that ensures the count rate has reached a constant value independent of further variation in the MCP voltage. This is achieved when most of the MCP pulse height distribution (PHD) is located at higher values (larger pulses) than the detection amplifier threshold. This method is adequate in single-channel detection systems and in multi-channel detection systems with very low crosstalk between channels. However, in dense multi-channel systems, it can be inadequate. Furthermore, it fails to fully and individually characterize each of the fundamental parameters of the detection system. We present a new detection system calibration method that enables accurate and repeatable measurement and calibration of MCP gain, MCP efficiency, signal loss due to variation in gain and efficiency, crosstalk from effects both above and below the MCP, noise margin, and stability margin in one single measurement. The fundamental

  6. Compact microchannel system

    DOEpatents

    Griffiths, Stewart

    2003-09-30

    The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

  7. Comparison of viable plate count, turbidity measurement and real-time PCR for quantification of Porphyromonas gingivalis.

    PubMed

    Clais, S; Boulet, G; Van Kerckhoven, M; Lanckacker, E; Delputte, P; Maes, L; Cos, P

    2015-01-01

    The viable plate count (VPC) is considered as the reference method for bacterial enumeration in periodontal microbiology but shows some important limitations for anaerobic bacteria. As anaerobes such as Porphyromonas gingivalis are difficult to culture, VPC becomes time-consuming and less sensitive. Hence, efficient normalization of experimental data to bacterial cell count requires alternative rapid and reliable quantification methods. This study compared the performance of VPC with that of turbidity measurement and real-time PCR (qPCR) in an experimental context using highly concentrated bacterial suspensions. Our TaqMan-based qPCR assay for P. gingivalis 16S rRNA proved to be sensitive and specific. Turbidity measurements offer a fast method to assess P. gingivalis growth, but suffer from high variability and a limited dynamic range. VPC was very time-consuming and less repeatable than qPCR. Our study concludes that qPCR provides the most rapid and precise approach for P. gingivalis quantification. Although our data were gathered in a specific research context, we believe that our conclusions on the inferior performance of VPC and turbidity measurements in comparison to qPCR can be extended to other research and clinical settings and even to other difficult-to-culture micro-organisms. Various clinical and research settings require fast and reliable quantification of bacterial suspensions. The viable plate count method (VPC) is generally seen as 'the gold standard' for bacterial enumeration. However, VPC-based quantification of anaerobes such as Porphyromonas gingivalis is time-consuming due to their stringent growth requirements and shows poor repeatability. Comparison of VPC, turbidity measurement and TaqMan-based qPCR demonstrated that qPCR possesses important advantages regarding speed, accuracy and repeatability. © 2014 The Society for Applied Microbiology.

  8. Experimental study on flame pattern formation and combustion completeness in a radial microchannel

    NASA Astrophysics Data System (ADS)

    Fan, Aiwu; Minaev, Sergey; Kumar, Sudarshan; Liu, Wei; Maruta, Kaoru

    2007-12-01

    Combustion behavior in a radial microchannel with a gap of 2.0 mm and a diameter of 50 mm was experimentally investigated. In order to simulate the heat recirculation, which is an essential strategy in microscale combustion devices, positive temperature gradients along the radial flow direction were given to the microchannel by an external heat source. A methane-air mixture was supplied from the center of the top plate through a 4.0 mm diameter delivery tube. A variety of flame patterns, including a stable circular flame and several unstable flame patterns termed unstable circular flame, single and double pelton-like flames, traveling flame and triple flame, were observed in the experiments. The regime diagram of all these flame patterns is presented in this paper. Some characteristics of the various flame patterns, such as the radii of stable and unstable circular flames, major combustion products and combustion efficiencies of all these flame patterns, were also investigated. Furthermore, the effect of the heat recirculation on combustion stability was studied by changing the wall temperature levels.

  9. Integrated four-channel all-fiber up-conversion single-photon-detector with adjustable efficiency and dark count.

    PubMed

    Zheng, Ming-Yang; Shentu, Guo-Liang; Ma, Fei; Zhou, Fei; Zhang, Hai-Ting; Dai, Yun-Qi; Xie, Xiuping; Zhang, Qiang; Pan, Jian-Wei

    2016-09-01

    Up-conversion single photon detector (UCSPD) has been widely used in many research fields including quantum key distribution, lidar, optical time domain reflectrometry, and deep space communication. For the first time in laboratory, we have developed an integrated four-channel all-fiber UCSPD which can work in both free-running and gate modes. This compact module can satisfy different experimental demands with adjustable detection efficiency and dark count. We have characterized the key parameters of the UCSPD system.

  10. Microchannel neural interface manufacture by stacking silicone and metal foil laminae

    NASA Astrophysics Data System (ADS)

    Lancashire, Henry T.; Vanhoestenberghe, Anne; Pendegrass, Catherine J.; Ajam, Yazan Al; Magee, Elliot; Donaldson, Nick; Blunn, Gordon W.

    2016-06-01

    Objective. Microchannel neural interfaces (MNIs) overcome problems with recording from peripheral nerves by amplifying signals independent of node of Ranvier position. Selective recording and stimulation using an MNI requires good insulation between microchannels and a high electrode density. We propose that stacking microchannel laminae will improve selectivity over single layer MNI designs due to the increase in electrode number and an improvement in microchannel sealing. Approach. This paper describes a manufacturing method for creating MNIs which overcomes limitations on electrode connectivity and microchannel sealing. Laser cut silicone—metal foil laminae were stacked using plasma bonding to create an array of microchannels containing tripolar electrodes. Electrodes were DC etched and electrode impedance and cyclic voltammetry were tested. Main results. MNIs with 100 μm and 200 μm diameter microchannels were manufactured. High electrode density MNIs are achievable with electrodes present in every microchannel. Electrode impedances of 27.2 ± 19.8 kΩ at 1 kHz were achieved. Following two months of implantation in Lewis rat sciatic nerve, micro-fascicles were observed regenerating through the MNI microchannels. Significance. Selective MNIs with the peripheral nervous system may allow upper limb amputees to control prostheses intuitively.

  11. Study of condensation of refrigerants in a micro-channel for development of future compact micro-channel condensers

    NASA Astrophysics Data System (ADS)

    Chowdhury, Sourav

    2009-12-01

    Mini- and micro-channel technology has gained considerable ground in the recent years in industry and is favored due to its several advantages stemming from its high surface to volume ratio and high values of proof pressure it can withstand. Micro-channel technology has paved the way to development of highly compact heat exchangers with low cost and mass penalties. In the present work, the issues related to the sizing of compact micro-channel condensers have been explored. The considered designs encompass both the conventional and MEMS fabrication techniques. In case of MEMS-fabricated micro-channel condenser, wet etching of the micro-channel structures, followed by bonding of two such wafers with silicon nitride layers at the interface was attempted. It was concluded that the silicon nitride bonding requires great care in terms of high degree of surface flatness and absence of roughness and also high degree of surface purity and thus cannot be recommended for mass fabrication. Following this investigation, a carefully prepared experimental setup and test micro-channel with hydraulic diameter 700 mum and aspect ratio 7:1 was fabricated and overall heat transfer and pressure drop aspects of two condensing refrigerants, R134a and R245fa were studied at a variety of test conditions. To the best of author's knowledge, so far no data has been reported in the literature on condensation in such high aspect ratio micro-channels. Most of the published experimental works on condensation of refrigerants are concerning conventional hydraulic diameter channels (> 3mm) and only recently some experimental data has been reported in the sub-millimeter scale channels for which the surface tension and viscosity effects play a dominant role and the effect of gravity is diminished. It is found that both experimental data and empirically-derived correlations tend to under-predict the present data by an average of 25%. The reason for this deviation could be because a high aspect ratio

  12. Macintosh/LabVIEW based control and data acquisition system for a single photon counting fluorometer

    NASA Astrophysics Data System (ADS)

    Stryjewski, Wieslaw J.

    1991-08-01

    A flexible software system has been developed for controlling fluorescence decay measurements using the virtual instrument approach offered by LabVIEW. The time-correlated single photon counting instrument operates under computer control in both manual and automatic mode. Implementation time was short and the equipment is now easier to use, reducing the training time required for new investigators. It is not difficult to customize the front panel or adapt the program to a different instrument. We found LabVIEW much more convenient to use for this application than traditional, textual computer languages.

  13. Development of low-dose photon-counting contrast-enhanced tomosynthesis with spectral imaging.

    PubMed

    Schmitzberger, Florian F; Fallenberg, Eva Maria; Lawaczeck, Rüdiger; Hemmendorff, Magnus; Moa, Elin; Danielsson, Mats; Bick, Ulrich; Diekmann, Susanne; Pöllinger, Alexander; Engelken, Florian J; Diekmann, Felix

    2011-05-01

    To demonstrate the feasibility of low-dose photon-counting tomosynthesis in combination with a contrast agent (contrast material-enhanced tomographic mammography) for the differentiation of breast cancer. All studies were approved by the institutional review board, and all patients provided written informed consent. A phantom model with wells of iodinated contrast material (3 mg of iodine per milliliter) 1, 2, 5, 10, and 15 mm in diameter was assessed. Nine patients with malignant lesions and one with a high-risk lesion (atypical papilloma) were included (all women; mean age, 60.7 years). A multislit photon-counting tomosynthesis system was utilized (spectral imaging) to produce both low- and high-energy tomographic data (below and above the k edge of iodine, respectively) in a single scan, which allowed for dual-energy visualization of iodine. Images were obtained prior to contrast material administration and 120 and 480 seconds after contrast material administration. Four readers independently assessed the images along with conventional mammograms, ultrasonographic images, and magnetic resonance images. Glandular dose was estimated. Contrast agent was visible in the phantom model with simulated spherical tumor diameters as small as 5 mm. The average glandular dose was measured as 0.42 mGy per complete spectral imaging tomosynthesis scan of one breast. Because there were three time points (prior to contrast medium administration and 120 and 480 seconds after contrast medium administration), this resulted in a total dose of 1.26 mGy for the whole procedure in the breast with the abnormality. Seven of 10 cases were categorized as Breast Imaging Reporting and Data System score of 4 or higher by all four readers when reviewing spectral images in combination with mammograms. One lesion near the chest wall was not captured on the spectral image because of a positioning problem. The use of contrast-enhanced tomographic mammography has been demonstrated successfully in

  14. A position- and time-sensitive photon-counting detector with delay- line read-out

    NASA Astrophysics Data System (ADS)

    Jagutzki, Ottmar; Dangendorf, Volker; Lauck, Ronald; Czasch, Achim; Milnes, James

    2007-05-01

    We have developed image intensifier tubes with delay-anode read-out for time- and position-sensitive photon counting. The timing precision is better than 1 ns with 1000x1000 pixels position resolution and up to one megacounts/s processing rate. Large format detectors of 40 and 75 mm active diameter with internal helical-wire delay-line anodes have been produced and specified. A different type of 40 and 25 mm tubes with semi-conducting screen for image charge read-out allow for an economic and robust tube design and for placing the read-out anodes outside the sealed housing. Two types of external delay-line anodes, i.e. pick-up electrodes for the image charge, have been tested. We present tests of the detector and anode performance. Due to the low background this technique is well suited for applications with very low light intensity and especially if a precise time tagging for each photon is required. As an example we present the application of scintillator read-out in time-of-flight (TOF) neutron radiography. Further applications so far are Fluorescence Life-time Microscopy (FLIM) and Astronomy.

  15. Spectral prior image constrained compressed sensing (spectral PICCS) for photon-counting computed tomography

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.

    2016-09-01

    Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43-73%) without sacrificing CT number accuracy or spatial resolution.

  16. Spectral Prior Image Constrained Compressed Sensing (Spectral PICCS) for Photon-Counting Computed Tomography

    PubMed Central

    Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.

    2016-01-01

    Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in-vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43~73%) without sacrificing CT number accuracy or spatial resolution. PMID:27551878

  17. The Quanta Image Sensor: Every Photon Counts

    PubMed Central

    Fossum, Eric R.; Ma, Jiaju; Masoodian, Saleh; Anzagira, Leo; Zizza, Rachel

    2016-01-01

    The Quanta Image Sensor (QIS) was conceived when contemplating shrinking pixel sizes and storage capacities, and the steady increase in digital processing power. In the single-bit QIS, the output of each field is a binary bit plane, where each bit represents the presence or absence of at least one photoelectron in a photodetector. A series of bit planes is generated through high-speed readout, and a kernel or “cubicle” of bits (x, y, t) is used to create a single output image pixel. The size of the cubicle can be adjusted post-acquisition to optimize image quality. The specialized sub-diffraction-limit photodetectors in the QIS are referred to as “jots” and a QIS may have a gigajot or more, read out at 1000 fps, for a data rate exceeding 1 Tb/s. Basically, we are trying to count photons as they arrive at the sensor. This paper reviews the QIS concept and its imaging characteristics. Recent progress towards realizing the QIS for commercial and scientific purposes is discussed. This includes implementation of a pump-gate jot device in a 65 nm CIS BSI process yielding read noise as low as 0.22 e− r.m.s. and conversion gain as high as 420 µV/e−, power efficient readout electronics, currently as low as 0.4 pJ/b in the same process, creating high dynamic range images from jot data, and understanding the imaging characteristics of single-bit and multi-bit QIS devices. The QIS represents a possible major paradigm shift in image capture. PMID:27517926

  18. Photon-counting-based diffraction phase microscopy combined with single-pixel imaging

    NASA Astrophysics Data System (ADS)

    Shibuya, Kyuki; Araki, Hiroyuki; Iwata, Tetsuo

    2018-04-01

    We propose a photon-counting (PC)-based quantitative-phase imaging (QPI) method for use in diffraction phase microscopy (DPM) that is combined with a single-pixel imaging (SPI) scheme (PC-SPI-DPM). This combination of DPM with the SPI scheme overcomes a low optical throughput problem that has occasionally prevented us from obtaining quantitative-phase images in DPM through use of a high-sensitivity single-channel photodetector such as a photomultiplier tube (PMT). The introduction of a PMT allowed us to perform PC with ease and thus solved a dynamic range problem that was inherent to SPI. As a proof-of-principle experiment, we performed a comparison study of analogue-based SPI-DPM and PC-SPI-DPM for a 125-nm-thick indium tin oxide (ITO) layer coated on a silica glass substrate. We discuss the basic performance of the method and potential future modifications of the proposed system.

  19. Role of rough surface topography on gas slip flow in microchannels.

    PubMed

    Zhang, Chengbin; Chen, Yongping; Deng, Zilong; Shi, Mingheng

    2012-07-01

    We conduct a lattice Boltzmann simulation of gas slip flow in microchannels incorporating rough surface effects as characterized by fractal geometry with a focus on gas-solid interaction. The gas slip flow in rough microchannels, which is characterized by Poiseuille number and mass flow rate, is evaluated and compared with smooth microchannels. The effects of roughness height, surface fractal dimension, and Knudsen number on slip behavior of gas flow in microchannels are all investigated and discussed. The results indicate that the presence of surface roughness reduces boundary slip for gas flow in microchannels with respect to a smooth surface. The gas flows at the valleys of rough walls are no-slip while velocity slips are observed over the top of rough walls. We find that the gas flow behavior in rough microchannels is insensitive to the surface topography irregularity (unlike the liquid flow in rough microchannels) but is influenced by the statistical height of rough surface and rarefaction effects. In particular, decrease in roughness height or increase in Knudsen number can lead to large wall slip for gas flow in microchannels.

  20. Electroosmotic flow mixing in zigzag microchannels.

    PubMed

    Chen, Jia-Kun; Yang, Ruey-Jen

    2007-03-01

    In this study we performed numerical and experimental investigations into the mixing of EOFs in zigzag microchannels with two different corner geometries, namely sharp corners and flat corners. In the zigzag microchannel with sharp corners, the flow travels more rapidly near the inner wall of the corner than near the outer wall as a result of the higher electric potential drop. The resulting velocity gradient induces a racetrack effect, which enhances diffusion within the fluid and hence improves the mixing performance. The simulation results reveal that the mixing index is approximately 88.83%. However, the sharp-corner geometry causes residual liquid or bubbles to become trapped in the channel at the point where the flow is almost stationary, when the channel is in the process of cleaning. Accordingly, a zigzag microchannel with flat-corner geometry is developed. The flat-corner geometry forms a convergent-divergent type nozzle which not only enhances the mixing performance in the channel, but also prevents the accumulation of residual liquid or bubbles. Scaling analysis reveals that this corner geometry leads to an effective increase in the mixing length. The experimental results reveal that the mixing index is increased to 94.30% in the flat-corner zigzag channel. Hence, the results demonstrate that the mixing index of the flat-corner zigzag channel is better than that of the conventional sharp-corner microchannel. Finally, the results of Taguchi analysis indicate that the attainable mixing index is determined primarily by the number of corners in the microchannel and by the flow passing height at each corner.

  1. Numerical Study on Electroosmotic Flow in Trapezoidal Microchannels

    NASA Astrophysics Data System (ADS)

    Zuo, C. C.; Ji, F.; Wang, L. F.

    The analysis of electroosmotic flow mechanism in trapezoidal microchannels is performed in this work. The coupled Poisson-Boltzmann equation, Laplace equation, and modified Navier-Stokes equation are solved by finite volume method to describe distribution of electroosmotic flow. The detailed numerical results show that the salt concentration and applied electrical potential have great effects on the fundamental characteristics of elelctroosmotic flow. The most important finding is that the corner and wall effects in trapezoidal microchannels are stronger than those in rectangular microchannels.

  2. Membrane-based microchannel device for continuous quantitative extraction of dissolved free sulfide from water and from oil.

    PubMed

    Toda, Kei; Ebisu, Yuki; Hirota, Kazutoshi; Ohira, Shin-Ichi

    2012-09-05

    Underground fluids are important natural sources of drinking water, geothermal energy, and oil-based fuels. To facilitate the surveying of such underground fluids, a novel microchannel extraction device was investigated for in-line continuous analysis and flow injection analysis of sulfide levels in water and in oil. Of the four designs investigated, the honeycomb-patterned microchannel extraction (HMCE) device was found to offer the most effective liquid-liquid extraction. In the HMCE device, a thin silicone membrane was sandwiched between two polydimethylsiloxane plates in which honeycomb-patterned microchannels had been fabricated. The identical patterns on the two plates were accurately aligned. The extracted sulfide was detected by quenching monitoring of fluorescein mercuric acetate (FMA). The sulfide extraction efficiencies from water and oil samples of the HMCE device and of three other designs (two annular and one rectangular channel) were examined theoretically and experimentally. The best performance was obtained with the HMCE device because of its thin sample layer (small diffusion distance) and large interface area. Quantitative extraction from both water and oil could be obtained using the HMCE device. The estimated limit of detection for continuous monitoring was 0.05 μM, and sulfide concentrations in the range of 0.15-10 μM could be determined when the acceptor was 5 μM FMA alkaline solution. The method was applied to natural water analysis using flow injection mode, and the data agreed with those obtained using headspace gas chromatography-flame photometric detection. The analysis of hydrogen sulfide levels in prepared oil samples was also performed. The proposed device is expected to be used for real time survey of oil wells and groundwater wells. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Selective photon counter for digital x-ray mammography tomosynthesis

    NASA Astrophysics Data System (ADS)

    Goldan, Amir H.; Karim, Karim S.; Rowlands, J. A.

    2006-03-01

    Photon counting is an emerging detection technique that is promising for mammography tomosynthesis imagers. In photon counting systems, the value of each image pixel is equal to the number of photons that interact with the detector. In this research, we introduce the design and implementation of a low noise, novel selective photon counting pixel for digital mammography tomosynthesis in crystalline silicon CMOS (complementary metal oxide semiconductor) 0.18 micron technology. The design comprises of a low noise charge amplifier (CA), two low offset voltage comparators, a decision-making unit (DMU), a mode selector, and a pseudo-random counter. Theoretical calculations and simulation results of linearity, gain, and noise of the photon counting pixel are presented.

  4. Feasibility of estimating volumetric breast density from mammographic x-ray spectra using a cadmium telluride photon-counting detector.

    PubMed

    Ghammraoui, Bahaa; Badal, Andreu; Glick, Stephen J

    2018-06-03

    Mammographic density of glandular breast tissue has a masking effect that can reduce lesion detection accuracy and is also a strong risk factor for breast cancer. Therefore, accurate quantitative estimation of breast density is clinically important. In this study, we investigate experimentally the feasibility of quantifying volumetric breast density with spectral mammography using a CdTe-based photon-counting detector. To demonstrate proof-of-principle, this study was carried out using the single pixel Amptek XR-100T-CdTe detector. The total number of x rays recorded by the detector from a single pencil-beam projection through 50%/50% of adipose/glandular mass fraction-equivalent phantoms was measured. Material decomposition assuming two, four, and eight energy bins was then applied to characterize the inspected phantom into adipose and glandular using log-likelihood estimation, taking into account the polychromatic source, the detector response function, and the energy-dependent attenuation. Measurement tests were carried out for different doses, kVp settings, and different breast sizes. For dose of 1 mGy and above, the percent relative root mean square (RMS) errors of the estimated breast density was measured below 7% for all three phantom studies. It was also observed that some decrease in RMS errors was achieved using eight energy bins. For 3 and 4 cm thick phantoms, performance at 40 and 45 kVp showed similar performance. However, it was observed that 45 kVp showed better performance for a phantom thickness of 6 cm at low dose levels due to increased statistical variation at lower photon count levels with 40 kVp. The results of the current study suggest that photon-counting spectral mammography systems using CdTe detectors have the potential to be used for accurate quantification of volumetric breast density on a pixel-to-pixel basis, with an RMS error of less than 7%. Published 2018. This article is a U.S. Government work and is in the public domain in the

  5. Study of different cross-shaped microchannels affecting thermal-bubble-actuated microparticle manipulation

    NASA Astrophysics Data System (ADS)

    Li, Weichen; Tsou, Chingfu

    2015-10-01

    This paper presents a thermal-bubble-actuated microfluidic chip with cross-shaped microchannels for evaluating the effect of different microchannel designs on microparticle manipulation. Four cross-shaped microchannel designs, with orthogonal, misaligned, skewed, and antiskewed types, were proposed in this study. The thermal bubble micropump, which is based on a resistive bulk microheater, was used to drive fluid transportation, and it can be realized using a simple microfabrication process with a silicon-on-isolator wafer. Using commercial COMSOL software, the flow profiles of microfluidics in various cross-shaped microchannels were simulated qualitatively under different pumping pressures. Microbeads, with a diameter of 20 μm, manipulated in four cross-shaped microchannels, were also implemented in this experiment. The results showed that a skewed microchannel design has a higher sorting rate compared with orthogonal, misaligned, and antiskewed microchannels because its flow velocity in the main microchannel is significantly reduced by pumping pressure. Typically, the successful sorting rate for this type of skewed microchannel can reach 30% at a pumping frequency of 100 Hz.

  6. Inverse relationship between photon flux densities and nanotesla magnetic fields over cell aggregates: Quantitative evidence for energetic conservation.

    PubMed

    Persinger, Michael A; Dotta, Blake T; Karbowski, Lukasz M; Murugan, Nirosha J

    2015-01-01

    The quantitative relationship between local changes in magnetic fields and photon emissions within ∼2 mm of aggregates of 10(5)-10(6) cells was explored experimentally. The vertical component of the earth's magnetic field as measured by different magnetometers was ∼15 nT higher when plates of cells removed from incubation were measured compared to plates containing only medium. Additional experiments indicated an inverse relationship over the first ∼45 min between changes in photon counts (∼10(-12) W·m(-2)) following removal from incubation and similar changes in magnetic field intensity. Calculations indicated that the energy within the aqueous volume containing the cells was equivalent for that associated with the flux densities of the magnetic fields and the photon emissions. For every approximately 1 nT increase in magnetic field intensity value there was a decrease of ∼2 photons (equivalent of 10(-18) J). These results complement correlation studies and suggest there may be a conservation of energy between expression as magnetic fields that are subtracted or added to the adjacent geomagnetic field and reciprocal changes in photon emissions when aggregates of cells within a specific volume of medium (water) adapt to new environments.

  7. Formation of microchannels from low-temperature plasma-deposited silicon oxynitride

    DOEpatents

    Matzke, Carolyn M.; Ashby, Carol I. H.; Bridges, Monica M.; Manginell, Ronald P.

    2000-01-01

    A process for forming one or more fluid microchannels on a substrate is disclosed that is compatible with the formation of integrated circuitry on the substrate. The microchannels can be formed below an upper surface of the substrate, above the upper surface, or both. The microchannels are formed by depositing a covering layer of silicon oxynitride over a mold formed of a sacrificial material such as photoresist which can later be removed. The silicon oxynitride is deposited at a low temperature (.ltoreq.100.degree. C.) and preferably near room temperature using a high-density plasma (e.g. an electron-cyclotron resonance plasma or an inductively-coupled plasma). In some embodiments of the present invention, the microchannels can be completely lined with silicon oxynitride to present a uniform material composition to a fluid therein. The present invention has applications for forming microchannels for use in chromatography and electrophoresis. Additionally, the microchannels can be used for electrokinetic pumping, or for localized or global substrate cooling.

  8. Evaporative CO2 microchannel cooling for the LHCb VELO pixel upgrade

    NASA Astrophysics Data System (ADS)

    de Aguiar Francisco, O. A.; Buytaert, J.; Collins, P.; Dumps, R.; John, M.; Mapelli, A.; Romagnoli, G.

    2015-05-01

    The LHCb Vertex Detector (VELO) will be upgraded in 2018 to a lightweight pixel detector capable of 40 MHz readout and operation in very close proximity to the LHC beams. The thermal management of the system will be provided by evaporative CO2 circulating in microchannels embedded within thin silicon plates. This solution has been selected due to the excellent thermal efficiency, the absence of thermal expansion mismatch with silicon ASICs and sensors, the radiation hardness of CO2, and very low contribution to the material budget. Although microchannel cooling is gaining considerable attention for applications related to microelectronics, it is still a novel technology for particle physics experiments, in particular when combined with evaporative CO2 cooling. The R&D effort for LHCb is focused on the design and layout of the channels together with a fluidic connector and its attachment which must withstand pressures up to 170 bar. Even distribution of the coolant is ensured by means of the use of restrictions implemented before the entrance to a race track like layout of the main cooling channels. The coolant flow and pressure drop have been simulated as well as the thermal performance of the device. This proceeding describes the design and optimization of the cooling system for LHCb and the latest prototyping results.

  9. Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection.

    PubMed

    Jiménez-Banzo, Ana; Ragàs, Xavier; Kapusta, Peter; Nonell, Santi

    2008-09-01

    Two recent advances in optoelectronics, namely novel near-IR sensitive photomultipliers and inexpensive yet powerful diode-pumped solid-state lasers working at kHz repetition rate, enable the time-resolved detection of singlet oxygen (O2(a1Deltag)) phosphorescence in photon counting mode, thereby boosting the time-resolution, sensitivity, and dynamic range of this well-established detection technique. Principles underlying this novel approach and selected examples of applications are provided in this perspective, which illustrate the advantages over the conventional analog detection mode.

  10. Laser Transmitter Design and Performance for the Slope Imaging Multi-Polarization Photon-Counting Lidar (SIMPL) Instrument

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Harding, David J.; Dabney, Philip W.

    2016-01-01

    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) instrument is a polarimetric, two-color, multibeam push broom laser altimeter developed through the NASA Earth Science Technology Office Instrument Incubator Program and has been flown successfully on multiple airborne platforms since 2008. In this talk we will discuss the laser transmitter performance and present recent science data collected over the Greenland ice sheet and sea ice in support of the NASA Ice Cloud and land Elevation Satellite 2 (ICESat-2) mission to be launched in 2017.

  11. Magnetic microparticle-polydimethylsiloxane composite for reversible microchannel bonding

    PubMed Central

    Tsao, Chia-Wen; Lee, Yueh-Pu

    2016-01-01

    Abstract In this study, an iron oxide magnetic microparticles and poly(dimethylsiloxane) (MMPs-PDMS) composite material was employed to demonstrate a simple high-strength reversible magnetic bonding method. This paper presents the casting of opaque-view (where optical inspection through the microchannels was impossible) and clear-view (where optical inspection through the microchannel was possible) MMPs-PDMS. The influence of the microchannel geometries on the casting of the opaque-view casting was limited, which is similar to standard PDMS casting. Clear-view casting performance was highly associated with the microchannel geometries. The effects of the microchannel layout and the gap between the PDMS cover layer and the micromold substrate were thoroughly investigated. Compared with the native PDMS bonding strength of 31 kPa, the MMPs-PDMS magnetic bonding experiments showed that the thin PDMS film with an MMPs-PDMS layer effectively reduced the surface roughness and enhanced MMPs-PDMS reversible magnetic bonding strength. A thin PDMS film-coated opaque-view MMPs-PDMS device exhibited the greatest bonding strength of 110 kPa, and a clear-view MMPs-PDMS device with a thin PDMS film attained a magnetic bonding strength of 81 kPa. PMID:27877852

  12. The effect of an antibacterial washing-up liquid in reducing dishwater aerobic plate counts.

    PubMed

    Holah, J T; Hall, K E

    2006-05-01

    To assess any significant differences in the aerobic plate count (APC) of catering dishwaters following the use of a traditional, nonantibacterial or an antibacterial washing-up liquid. A dishwashing trial was undertaken within a commercial restaurant of 6 weeks duration (3 weeks with each washing-up liquid in a randomized, weekly pattern). Five replicate samples were taken from the dishwater at the end of the washing-up operation, on three separate occasions each day corresponding to mid-morning, lunchtime and mid-afternoon meal preparations. The antibacterial product was shown to significantly reduce the APC by an average log10 reduction of 1.81 CFU ml(-1) (98.5%) as compared with the traditional product. APC were lower for each of the three weekly time periods for the antibacterial product. Continued use of the antibacterial product did not decrease the APC of the dishwater, though with the traditional product, dishwater counts increased throughout the trial week. Antibacterial washing-up liquids, with proven activity in controlling levels of microorganisms in dishwaters, could play a significant role in reducing the risk of cross-contamination between washed articles during washing-up operations.

  13. Quadrant anode image sensor

    NASA Technical Reports Server (NTRS)

    Lampton, M.; Malina, R. F.

    1976-01-01

    A position-sensitive event-counting electronic readout system for microchannel plates (MCPs) is described that offers the advantages of high spatial resolution and fast time resolution. The technique relies upon a four-quadrant electron-collecting anode located behind the output face of the microchannel plate, so that the electron cloud from each detected event is partly intercepted by each of the four quadrants. The relative amounts of charge collected by each quadrant depend on event position, permitting each event to be localized with two ratio circuits. A prototype quadrant anode system for ion, electron, and extreme ultraviolet imaging is described. The spatial resolution achieved, about 10 microns, allows individual MCP channels to be distinguished.

  14. Extended length microchannels for high density high throughput electrophoresis systems

    DOEpatents

    Davidson, James C.; Balch, Joseph W.

    2000-01-01

    High throughput electrophoresis systems which provide extended well-to-read distances on smaller substrates, thus compacting the overall systems. The electrophoresis systems utilize a high density array of microchannels for electrophoresis analysis with extended read lengths. The microchannel geometry can be used individually or in conjunction to increase the effective length of a separation channel while minimally impacting the packing density of channels. One embodiment uses sinusoidal microchannels, while another embodiment uses plural microchannels interconnected by a via. The extended channel systems can be applied to virtually any type of channel confined chromatography.

  15. Technical Note: Comparison of first- and second-generation photon-counting slit-scanning tomosynthesis systems.

    PubMed

    Berggren, Karl; Cederström, Björn; Lundqvist, Mats; Fredenberg, Erik

    2018-02-01

    Digital breast tomosynthesis (DBT) is an emerging tool for breast-cancer screening and diagnostics. The purpose of this study is to present a second-generation photon-counting slit-scanning DBT system and compare it to the first-generation system in terms of geometry and image quality. The study presents the first image-quality measurements on the second-generation system. The geometry of the new system is based on a combined rotational and linear motion, in contrast to a purely rotational scan motion in the first generation. In addition, the calibration routines have been updated. Image quality was measured in the center of the image field in terms of in-slice modulation transfer function (MTF), artifact spread function (ASF), and in-slice detective quantum efficiency (DQE). Images were acquired using a W/Al 29 kVp spectrum at 13 mAs with 2 mm Al additional filtration and reconstructed using simple back-projection. The in-slice 50% MTF was improved in the chest-mammilla direction, going from 3.2 to 3.5 lp/mm, and the zero-frequency DQE increased from 0.71 to 0.77. The MTF and ASF were otherwise found to be on par for the two systems. The new system has reduced in-slice variation of the tomographic angle. The new geometry is less curved, which reduces in-slice tomographic-angle variation, and increases the maximum compression height, making the system accessible for a larger population. The improvements in MTF and DQE were attributed to the updated calibration procedures. We conclude that the second-generation system maintains the key features of the photon-counting system while maintaining or improving image quality and improving the maximum compression height. © 2017 American Association of Physicists in Medicine.

  16. Injector-concentrator electrodes for microchannel electrophoresis

    DOEpatents

    Swierkowski, Stefan P.

    2003-05-06

    An input port geometry, with injector-concentrator electrodes, for planar microchannel array for electrophoresis. This input port geometry enables efficient extraction and injection of the DNA sample from a single input port. The geometry, which utilizes injector-concentrator electrodes, allows simultaneous concentration, in different channels, of the sample into a longitudinally narrow strip just before releasing it for a run with enhanced injection spatial resolution, and time resolution. Optional multiple electrodes, at a different bias than the concentrator electrodes, may be used to discriminate against sample impurity ions. Electrode passivation can be utilized to prevent electrolysis. An additional electrode in or on the input hole can better define the initial loading. The injector-concentrator electrodes are positioned so that they cross the drift channel in a narrow strip at the bond plane between the top and bottom plates of the instrument and are located close to the inlet hole. The optional sample purification electrodes are located at a greater distance from the input hole than the injector-concentrate electrodes.

  17. Energy Calibration of a Silicon-Strip Detector for Photon-Counting Spectral CT by Direct Usage of the X-ray Tube Spectrum

    NASA Astrophysics Data System (ADS)

    Liu, Xuejin; Chen, Han; Bornefalk, Hans; Danielsson, Mats; Karlsson, Staffan; Persson, Mats; Xu, Cheng; Huber, Ben

    2015-02-01

    The variation among energy thresholds in a multibin detector for photon-counting spectral CT can lead to ring artefacts in the reconstructed images. Calibration of the energy thresholds can be used to achieve homogeneous threshold settings or to develop compensation methods to reduce the artefacts. We have developed an energy-calibration method for the different comparator thresholds employed in a photon-counting silicon-strip detector. In our case, this corresponds to specifying the linear relation between the threshold positions in units of mV and the actual deposited photon energies in units of keV. This relation is determined by gain and offset values that differ for different detector channels due to variations in the manufacturing process. Typically, the calibration is accomplished by correlating the peak positions of obtained pulse-height spectra to known photon energies, e.g. with the aid of mono-energetic x rays from synchrotron radiation, radioactive isotopes or fluorescence materials. Instead of mono-energetic x rays, the calibration method presented in this paper makes use of a broad x-ray spectrum provided by commercial x-ray tubes. Gain and offset as the calibration parameters are obtained by a regression analysis that adjusts a simulated spectrum of deposited energies to a measured pulse-height spectrum. Besides the basic photon interactions such as Rayleigh scattering, Compton scattering and photo-electric absorption, the simulation takes into account the effect of pulse pileup, charge sharing and the electronic noise of the detector channels. We verify the method for different detector channels with the aid of a table-top setup, where we find the uncertainty of the keV-value of a calibrated threshold to be between 0.1 and 0.2 keV.

  18. Systematic implementation of spectral CT with a photon counting detector for liquid security inspection

    NASA Astrophysics Data System (ADS)

    Xu, Xiaofei; Xing, Yuxiang; Wang, Sen; Zhang, Li

    2018-06-01

    X-ray liquid security inspection system plays an important role in homeland security, while the conventional dual-energy CT (DECT) system may have a big deviation in extracting the atomic number and the electron density of materials in various conditions. Photon counting detectors (PCDs) have the capability of discriminating the incident photons of different energy. The technique becomes more and more mature in nowadays. In this work, we explore the performance of a multi-energy CT imaging system with a PCD for liquid security inspection in material discrimination. We used a maximum-likelihood (ML) decomposition method with scatter correction based on a cross-energy response model (CERM) for PCDs so that to improve the accuracy of atomic number and electronic density imaging. Experimental study was carried to examine the effectiveness and robustness of the proposed system. Our results show that the concentration of different solutions in physical phantoms can be reconstructed accurately, which could improve the material identification compared to current available dual-energy liquid security inspection systems. The CERM-base decomposition and reconstruction method can be easily used to different applications such as medical diagnosis.

  19. Hydrophilic-treated plastic plates for wide-range analysis of Giemsa-stained red blood cells and automated Plasmodium infection rate counting.

    PubMed

    Hashimoto, Muneaki; Yatsushiro, Shouki; Yamamura, Shohei; Tanaka, Masato; Sakamoto, Hirokazu; Ido, Yusuke; Kajimoto, Kazuaki; Bando, Mika; Kido, Jun-Ichi; Kataoka, Masatoshi

    2017-08-08

    Malaria is a red blood cell (RBC) infection caused by Plasmodium parasites. To determine RBC infection rate, which is essential for malaria study and diagnosis, microscopic evaluation of Giemsa-stained thin blood smears on glass slides ('Giemsa microscopy') has been performed as the accepted gold standard for over 100 years. However, only a small area of the blood smear provides a monolayer of RBCs suitable for determination of infection rate, which is one of the major reasons for the low parasite detection rate by Giemsa microscopy. In addition, because Giemsa microscopy is exacting and time-consuming, automated counting of infection rates is highly desirable. A method that allows for microscopic examination of Giemsa-stained cells spread in a monolayer on almost the whole surface of hydrophilic-treated cyclic olefin copolymer (COC) plates was established. Because wide-range Giemsa microscopy can be performed on a hydrophilic-treated plate, the method may enable more reliable diagnosis of malaria in patients with low parasitaemia burden. Furthermore, the number of RBCs and parasites stained with a fluorescent nuclear staining dye could be counted automatically with a software tool, without Giemsa staining. As a result, researchers studying malaria may calculate the infection rate easily, rapidly, and accurately even in low parasitaemia. Because the running cost of these methods is very low and they do not involve complicated techniques, the use of hydrophilic COC plates may contribute to improved and more accurate diagnosis and research of malaria.

  20. Why did we elaborate an entangled photons experiment in our engineering school?

    NASA Astrophysics Data System (ADS)

    Jacubowiez, Lionel; Avignon, Thierry

    2005-10-01

    We will describe a simple setup experiment that allows students to create polarization-entangled photons pairs. These photon pairs are in an entangled state first described in the famous 1935 article in Phys.Rev by Einstein-Podolsky-Rosen, often called E.P.R. state. Photons pairs at 810 nm are produced in two nonlinear crystals by spontaneous parametric downconversion of photons at 405 nm emitted by a violet laser diode. The polarization state of the photons pairs is easily tunable with a half-wave plate and a Babinet compensator on the laser diode beam. After having adjusted the polarization-entangled state of the photon pairs, our students can perform a test of Bell's inequalities. They will find the amazing value for the Bell parameter between 2.3 and 2.6, depending on the quality of the adjustments of the state of polarization. The experiments described can be done in 4 or 5 hours. What is the importance of creating an entangled photons experiment for our engineering students? First of all, entanglement concept is clearly one of the most strikingly nonclassical features of quantum theory and it is playing an increasing role in present-day physics. But in this paper, we will emphasise the experimental point of view. We will try to explain why we believe that for our students this lab experiment is a unique opportunity to deal with established concepts and experimental techniques on polarization, non linear effects, phase matching, photon counting avalanche photodiodes, counting statistics, coincidences detectors. Let us recall that the first convincing experimental violations of Bell's inequalities were performed by Alain Aspect and Philippe Grangier with pairs of entangled photons at the Institut d'Optique between 1976 and 1982. Twenty five years later, due to recent advances in laser diode technology, new techniques for generation of photon pairs and avalanche photodiodes, this experiment is now part of the experimental lab courses for our students.