Science.gov

Sample records for photon-counting microchannel plate

  1. High Speed Large Format Photon Counting Microchannel Plate Imaging Sensors

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Ertley, C.; Vallerga, J.

    The development of a new class of microchannel plate technology, using atomic layer deposition (ALD) techniques applied to a borosilicate microcapillary array is enabling the implementation of larger, more stable detectors for Astronomy and remote sensing. Sealed tubes with MCPs with SuperGenII, bialkali, GaAs and GaN photocathodes have been developed to cover a wide range of optical/UV sensing applications. Formats of 18mm and 25mm circular, and 50mm (Planacon) and 20cm square have been constructed for uses from night time remote reconnaissance and biological single-molecule fluorescence lifetime imaging microscopy, to large area focal plane imagers for Astronomy, neutron detection and ring imaging Cherenkov detection. The large focal plane areas were previously unattainable, but the new developments in construction of ALD microchannel plates allow implementation of formats of 20cm or more. Continuing developments in ALD microchannel plates offer improved overall sealed tube lifetime and gain stability, and furthermore show reduced levels of radiation induced background. High time resolution astronomical and remote sensing applications can be addressed with microchannel plate based imaging, photon time tagging detector sealed tube schemes. Photon counting imaging readouts for these devices vary from cross strip (XS), cross delay line (XDL), to stripline anodes, and pad arrays depending on the intended application. The XS and XDL readouts have been implemented in formats from 22mm, and 50mm to 20cm. Both use MCP charge signals detected on two orthogonal layers of conductive fingers to encode event X-Y positions. XDL readout uses signal propagation delay to encode positions while XS readout uses charge cloud centroiding. Spatial resolution readout of XS detectors can be better than 20 microns FWHM, with good image linearity while using low gain (<10^6), allowing high local counting rates and longer overall tube lifetime. XS tubes with electronics can encode event

  2. Silicon microchannel plates: initial results for photon counting detectors

    NASA Astrophysics Data System (ADS)

    Siegmund, Oswald H.; Tremsin, Anton S.; Vallerga, John V.; Beetz, Charles P.; Boerstler, Robert W.; Winn, D. R.

    2000-12-01

    The emergence of Silicon based microchannel plates (MCP's) has been awaited for a number of years, with many proposed advantages over standard glass MCPs for space-based detectors. Si should have a very low inherent background (< 0.01 events sec-1 cm-2), as well as being a low Z element with low stopping power for x, gamma and cosmic rays. The surface is oxidized and can be baked to very high temperatures (> 800 degrees Celsius), and will not react with photocathodes deposited on the surface. This could potentially allow opaque photocathodes, with their higher resolution and efficiency, to be used in the near UV/optical bands. Since the microchannel positions are determined photolithographically, the pattern will be uniform and coherent, resulting in more uniform flat fields and less differential non-linearity in the spatial response. Microchannel spacing could decrease to the micron regime, while size formats could increase. The potential advantages of Si MCPs encompass increased gain, stability, longevity, event rate, and QE. However, glass MCPs have a strong and successful heritage in space-based detector systems and the advantages of Si MCP's must be demonstrated in the laboratory before being considered for flight applications. We have tested some newly developed silicon (Si) MCP's provided by Nanosciences Corp. Although these are still in the developmental stage we have achieved a number of significant results. The gain, pulse height, response and gain uniformity, and quantum detection efficiency are very similar to glass MCP's. However the Si MCP background is approximately 0.02 events sec-1 cm-2 without shielding, a significant improvement over even low noise MCP's. The small samples we have tested are 25 mm format with 8 micrometer pore spacing, but they are taken from a 75 mm substrate, which offers the possibility of large MCP's in the near future. More testing and process development are underway to probe other operational parameters and optimize the

  3. Calibration of photon counting imaging microchannel plate detectors for EUV astronomy

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Vallerga, J.; Jelinsky, P.

    1986-01-01

    The calibration of photon counting imaging detectors for satellite based EUV astronomy is a complex process designed to ensure the validity of the data received 'in orbit'. The methods developed to accomplish calibration of microchannel plate detectors for the Extreme Ultraviolet Explorer are described and illustrated. The characterization of these detectors can be subdivided into three categories: stabilization, performance tests, and environmental tests.

  4. Photon-counting detector arrays based on microchannel array plates. [for image enhancement

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1975-01-01

    The recent development of the channel electron multiplier (CEM) and its miniaturization into the microchannel array plate (MCP) offers the possibility of fully combining the advantages of the photographic and photoelectric detection systems. The MCP has an image-intensifying capability and the potential of being developed to yield signal outputs superior to those of conventional photomultipliers. In particular, the MCP has a photon-counting capability with a negligible dark-count rate. Furthermore, the MCP can operate stably and efficiently at extreme-ultraviolet and soft X-ray wavelengths in a windowless configuration or can be integrated with a photo-cathode in a sealed tube for use at ultraviolet and visible wavelengths. The operation of one- and two-dimensional photon-counting detector arrays based on the MCP at extreme-ultraviolet wavelengths is described, and the design of sealed arrays for use at ultraviolet and visible wavelengths is briefly discussed.

  5. Development and test of photon-counting microchannel plate detector arrays for use on space telescopes

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1976-01-01

    The full sensitivity, dynamic range, and photometric stability of microchannel array plates(MCP) are incorporated into a photon-counting detection system for space operations. Components of the system include feedback-free MCP's for high gain and saturated output pulse-height distribution with a stable response; multi-anode readout arrays mounted in proximity focus with the output face of the MCP; and multi-layer ceramic headers to provide electrical interface between the anode array in a sealed detector tube and the associated electronics.

  6. Development of a single-photon-counting camera with use of a triple-stacked micro-channel plate.

    PubMed

    Yasuda, Naruomi; Suzuki, Hitoshi; Katafuchi, Tetsuro

    2016-01-01

    At the quantum-mechanical level, all substances (not merely electromagnetic waves such as light and X-rays) exhibit wave–particle duality. Whereas students of radiation science can easily understand the wave nature of electromagnetic waves, the particle (photon) nature may elude them. Therefore, to assist students in understanding the wave–particle duality of electromagnetic waves, we have developed a photon-counting camera that captures single photons in two-dimensional images. As an image intensifier, this camera has a triple-stacked micro-channel plate (MCP) with an amplification factor of 10(6). The ultra-low light of a single photon entering the camera is first converted to an electron through the photoelectric effect on the photocathode. The electron is intensified by the triple-stacked MCP and then converted to a visible light distribution, which is measured by a high-sensitivity complementary metal oxide semiconductor image sensor. Because it detects individual photons, the photon-counting camera is expected to provide students with a complete understanding of the particle nature of electromagnetic waves. Moreover, it measures ultra-weak light that cannot be detected by ordinary low-sensitivity cameras. Therefore, it is suitable for experimental research on scintillator luminescence, biophoton detection, and similar topics. PMID:26486629

  7. Evaluation of a photon-counting x-ray imaging detector based on microchannel plates for mammography applications

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.; Xu, Tong; Molloi, Sabee

    2004-05-01

    Experimental prototype of a photon counting scanning slit X-ray imaging system is being evaluated for potential application in digital mammography. This system is based on a recently developed and tested "edge-on" illuminated Microchannel Plate (MCP) detector. The MCP detectors are well known for providing a combination of capabilities such as direct conversion, physical charge amplification, pulse counting, high spatial and temporal resolution, and very low noise. However, their application for medical imaging was hampered by their low detection efficiency. This limitation was addressed using an "edge-on" illumination mode for MCP. The current experimental prototype was developed to investigate the imaging performance of this detector concept for digital mammography. The current prototype provides a 60 mm field of view, 200 kHz count rate with 20% non-paralysable dead time and >7 lp/mm limiting resolution. A 0.3 mm focal spot W target X-ray tube was used for image acquisition. The detector noise is 0.3 count/pixel for 50x50 micron pixels. The count rate of the current prototype is limited by the delay line readout electronics, which causes long scanning times (minutes) and high tube loading. This problem will be addressed using multichannel ASIC electronics for clinical implementation. However, the current readout architecture is adequate for evaluation of the performance parameters of the new detector concept. It is very simple and provides a maximum intrinsic resolution of 28 micron FWHM. The prototype was evaluated using resolution, contrast detail and breast Phantoms. The MTF and DQE of the system are being evaluated at different tube voltages. The design parameters of a scanning multiple slit mammography system are being evaluated. It is concluded that a photon counting, quantum limited and virtually scatter free digital mammography system can be developed based on the proposed detector.

  8. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, Bedabrata; Norton, Timothy J.; Haas, J. Patrick; Oegerle, William R. (Technical Monitor)

    2002-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest of by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  9. A High-Speed, Event-Driven, Active Pixel Sensor Readout for Photon-Counting Microchannel Plate Detectors

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Pain, B.; Norton, T. J.; Haas, P.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Silicon array readouts for microchannel plate intensifiers offer several attractive features. In this class of detector, the electron cloud output of the MCP intensifier is converted to visible light by a phosphor; that light is then fiber-optically coupled to the silicon array. In photon-counting mode, the resulting light splashes on the silicon array are recognized and centroided to fractional pixel accuracy by off-chip electronics. This process can result in very high (MCP-limited) spatial resolution for the readout while operating at a modest MCP gain (desirable for dynamic range and long term stability). The principal limitation of intensified CCD systems of this type is their severely limited local dynamic range, as accurate photon counting is achieved only if there are not overlapping event splashes within the frame time of the device. This problem can be ameliorated somewhat by processing events only in pre-selected windows of interest or by using an addressable charge injection device (CID) for the readout array. We are currently pursuing the development of an intriguing alternative readout concept based on using an event-driven CMOS Active Pixel Sensor. APS technology permits the incorporation of discriminator circuitry within each pixel. When coupled with suitable CMOS logic outside the array area, the discriminator circuitry can be used to trigger the readout of small sub-array windows only when and where an event splash has been detected, completely eliminating the local dynamic range problem, while achieving a high global count rate capability and maintaining high spatial resolution. We elaborate on this concept and present our progress toward implementing an event-driven APS readout.

  10. High Speed Optical Imaging Photon Counting Microchannel Plate Detectors for Astronomical and Space Sensing Applications

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Vallerga, J.; Welsh, B.; McPhate, J.; Rogers, D.

    In recent years we have implemented a variety of high-resolution, photon-counting MCP detectors in space instrumentation for satellite FUSE, GALEX, IMAGE, SOHO, SSULI, HST-COS, rocket, and shuttle payloads as well as sensors for ground based Astronomy, reconnaissance and biology. These detectors can meet many of the challenging imaging and timing demands of applications including astronomy of transient and time-variable sources, Earth atmospheric imaging and spectroscopy for real time space weather monitoring, biological single-molecule fluorescence lifetime microscopy, airborne and space situational awareness, and optical night-time/reconnaissance. Our recent work on high performance photon counting imaging readouts enables significant advancements over previous detector systems used for these applications. We have developed novel Cross-Strip and Cross-Delay-Line anode structures that can, in combination with small pore MCP's in sealed tube detectors, can achieve high spatial resolution (better than 10 um FWHM) with self triggered ~1 ns timing accuracy at up to 10 MHz event rates. Sealed tubes with formats, of 18mm, and 25mm with efficient S25 photocathodes have been built and are being used in several applications. The detectors and their properties will be discussed in this paper. Our installation and astronomical commissioning of one of these detectors at the South African Astronomical Observatory, South African Large Telescope (SALT) 10m telescope will be described. Our photometer is positioned in an auxiliary instrument port of the SALT. This is a stand-alone instrument that includes our detector system with two filter wheels (neutral density and U, B, V), an iris, and all the control modules necessary to operate the system. This instrument gives us access to the southern sky with significant sensitivity and unprecedented time resolution (microsec). High time resolution astronomy is still in its infancy, such that high cadence observations of the variable

  11. Cross strip anode readouts for large format, photon counting microchannel plate detectors: developing flight qualified prototypes of the detector and electronics

    NASA Astrophysics Data System (ADS)

    Vallerga, John; Raffanti, Rick; Cooney, Michael; Cumming, Harley; Varner, Gary; Seljak, Andrej

    2014-07-01

    Photon counting microchannel plate (MCP) imagers have been the detector of choice for most UV astronomical missions over the last two decades (e.g. EUVE, FUSE, COS on Hubble etc.). Over this duration, improvements in the MCP laboratory readout technology have resulted in better spatial resolution (x10), temporal resolution (x1000) and output event rate (x100), all the while operating at lower gain (x 10) resulting in lower high voltage requirements and longer MCP lifetimes. One such technology is the parallel cross strip (PXS) readout. Laboratory versions of PXS electronics have demonstrated < 20 μm FWHM spatial resolution, count rates on the order of 2 MHz, and temporal resolution of ~ 1ns. In 2012 our group at U.C. Berkeley, along with our partners at the U. Hawaii, received a Strategic Astrophysics Technology grant to raise the TRL of the PXS detector and electronics from 4 to 6 by replacing most of the high powered electronics with application specific integrated circuits (ASICs) which will lower the power, mass and volume requirements of the PXS detector. We were also tasked to design and fabricate a "standard" 50mm square active area MCP detector incorporating these electronics that can be environmentally qualified for flight (temperature, vacuum, vibration). The first ASICs designed for this program have been fabricated and are undergoing testing. We present the latest progress on these ASIC designs and performance and show imaging results from the new 50 x 50 mm XS detector.

  12. Fractal multifiber microchannel plates

    NASA Technical Reports Server (NTRS)

    Cook, Lee M.; Feller, W. B.; Kenter, Almus T.; Chappell, Jon H.

    1992-01-01

    The construction and performance of microchannel plates (MCPs) made using fractal tiling mehtods are reviewed. MCPs with 40 mm active areas having near-perfect channel ordering were produced. These plates demonstrated electrical performance characteristics equivalent to conventionally constructed MCPs. These apparently are the first MCPs which have a sufficiently high degree of order to permit single channel addressability. Potential applications for these devices and the prospects for further development are discussed.

  13. Optical Ranicon detectors for photon counting imaging.

    NASA Astrophysics Data System (ADS)

    Clampin, Mark; Crocker, Jim; Paresce, Francesco; Rafal, Marc

    1988-08-01

    The design and development of two detectors, known as Ranicon and advanced Ranicon, for optical photon counting imaging on ground-based telescopes are discussed. The proximity focusing, microchannel-plate stack, resistive anode, and signal processing characteristics are described. The theory behind the overall resolution of the Ranicon system is reviewed. Resolution measurements for the instruments are reported and discussed.

  14. Microchannel plate streak camera

    DOEpatents

    Wang, Ching L.

    1989-01-01

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 KeV x-rays.

  15. Microchannel plate streak camera

    DOEpatents

    Wang, C.L.

    1989-03-21

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras is disclosed. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1,000 KeV x-rays. 3 figs.

  16. Microchannel plate streak camera

    DOEpatents

    Wang, C.L.

    1984-09-28

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (uv to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 keV x-rays.

  17. Ultrafast microchannel plate photomultipliers.

    PubMed

    Kume, H; Koyama, K; Nakatsugawa, K; Suzuki, S; Fatlowitz, D

    1988-03-15

    Performance characteristics of several new types of photomultiplier tubes (PMT) with microchannel plates (MCP) are presented in this paper. They are the MCP-PMT with 6-microm diam channels, MCP-PMT with an S-l photocathode, and MCP-PMT with multi (discrete) anode and gatable MCP-PMT. Important requirements of an optical detector for picosecond lasers, fluorescence measurements, and material analysis are low light detectability, ultrafast time response, and versatile operation including modulation. The basic configuration, characteristics, and practical results of these detectors are described. PMID:20531532

  18. Micro-channel plate detector

    DOEpatents

    Elam, Jeffrey W.; Lee, Seon W.; Wang, Hsien -Hau; Pellin, Michael J.; Byrum, Karen; Frisch, Henry J.

    2015-09-22

    A method and system for providing a micro-channel plate detector. An anodized aluminum oxide membrane is provided and includes a plurality of nanopores which have an Al coating and a thin layer of an emissive oxide material responsive to incident radiation, thereby providing a plurality of radiation sensitive channels for the micro-channel plate detector.

  19. Highly curved microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Cully, S.; Warren, J.; Gaines, G. A.; Priedhorsky, W.; Bloch, J.

    1990-01-01

    Several spherically curved microchannel plate (MCP) stack configurations were studied as part of an ongoing astrophysical detector development program, and as part of the development of the ALEXIS satellite payload. MCP pairs with surface radii of curvature as small as 7 cm, and diameters up to 46 mm have been evaluated. The experiments show that the gain (greater than 1.5 x 10 exp 7) and background characteristics (about 0.5 events/sq cm per sec) of highly curved MCP stacks are in general equivalent to the performance achieved with flat MCP stacks of similar configuration. However, gain variations across the curved MCP's due to variations in the channel length to diameter ratio are observed. The overall pulse height distribution of a highly curved surface MCP stack (greater than 50 percent FWHM) is thus broader than its flat counterpart (less than 30 percent). Preconditioning of curved MCP stacks gives comparable results to flat MCP stacks, but it also decreases the overall gain variations. Flat fields of curved MCP stacks have the same general characteristics as flat MCP stacks.

  20. Single-molecule localization software applied to photon counting imaging.

    PubMed

    Hirvonen, Liisa M; Kilfeather, Tiffany; Suhling, Klaus

    2015-06-01

    Centroiding in photon counting imaging has traditionally been accomplished by a single-step, noniterative algorithm, often implemented in hardware. Single-molecule localization techniques in superresolution fluorescence microscopy are conceptually similar, but use more sophisticated iterative software-based fitting algorithms to localize the fluorophore. Here, we discuss common features and differences between single-molecule localization and photon counting imaging and investigate the suitability of single-molecule localization software for photon event localization. We find that single-molecule localization software packages designed for superresolution microscopy-QuickPALM, rapidSTORM, and ThunderSTORM-can work well when applied to photon counting imaging with a microchannel-plate-based intensified camera system: photon event recognition can be excellent, fixed pattern noise can be low, and the microchannel plate pores can easily be resolved. PMID:26192667

  1. Time-correlated single photon counting: an advancing technique in a plate reader for assay development and high throughput screening

    NASA Astrophysics Data System (ADS)

    Näther, Dirk U.; Fenske, Roger; Hurteaux, Reynald; Majno, Sandra; Smith, S. Desmond

    2006-10-01

    A new plate reader (Nanotaurus) has been developed by Edinburgh Instruments that has the principle design features of a confocal microscope and utilises the technique of Time Correlated Single Photon Counting for data acquisition. The advantages of Fluorescence Lifetime Measurements in the nanosecond time scale and analysis methods to recover lifetime parameters are discussed based on experimental data. First working assays using changes of lifetime parameters are presented that clearly demonstrate the advantages of the new instrument for biochemical assays and show strong promise for cell-based assays, by utilising the independence of lifetime parameters from sample volume and concentration.

  2. X-ray imaging with ``edge-on'' microchannel plate detector: first experimental results

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.; Molloi, Sabee

    2003-09-01

    A novel scanning slit X-ray imaging system based on an "edge-on" microchannel plate detector was developed and tested. Images were acquired at 50 kV(p) X-ray tube voltage with a limiting spatial resolution of 7 lp/mm. The pixel noise was measured to be 0.3 count/pixel/s for a 50×70 μm 2 pixel size. This photon counting detector can be considered to be virtually noise free.

  3. Background events in microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Vallerga, J.; Wargelin, B.

    1988-01-01

    Measurements have been made to assess the characteristics and origins of background events in microchannel plates (MCPs). An overall background rate of about 0.4 events/sq cm persec has been achieved consistently for MCPs that have been baked and scrubbed. The temperature and gain of the MCPs are found to have no significant effect on the background rate. Detection of 1.46-MeV gamma rays from the MCP glass confirms the presence of K-40, with a concentration of 0.0007 percent, in MCP glass. It is shown that beta decay from K-40 is sufficient to cause the background rate and spectrum observed. Anticoincidence measurements indicate the the background rate caused by cosmic ray interactions is small (less than 0.016 events/sq cm per sec).

  4. Micro-channel plates and vacuum detectors

    NASA Astrophysics Data System (ADS)

    Gys, T.

    2015-07-01

    A micro-channel plate is an array of miniature electron multipliers that are each acting as a continuous dynode chain. The compact channel structure results in high spatial and time resolutions and robustness to magnetic fields. Micro-channel plates have been originally developed for night vision applications and integrated as an amplification element in image intensifiers. These devices show single-photon sensitivity with very low noise and have been used as such for scintillating fiber tracker readout in high-energy physics experiments. Given their very short transit time spread, micro-channel plate photomultiplier tubes are also being used in time-of-flight and particle identification detectors. The present paper will cover the history of the micro-channel plate development, basic features, and some of their applications. Emphasis will be put on various new manufacturing processes that have been developed over the last few years, and that result in a significant improvement in terms of efficiency, noise, and lifetime performance.

  5. Electronic readout systems for microchannel plates

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1985-01-01

    The modes of operation of position-sensitive electronic readout systems which use high-gain microchannel plate (MCP) electron multipliers are described, and their performance characteristics, along with those of the MCP, are compared. Among the structures presented are the wedge-and-strip, Codacon, and multilayer coincidence-anode MAMA (Multimode Microchannel Array) arrays. Spatial resolution of 25 x 25 sq microns (coincidence anode arrays) is achieved with an array format of 256 x 1024 pixels. On the basis of the performance data it is concluded that the readout systems using only conducting electrodes offer the best performance characteristics.

  6. Imaging characteristics of the Extreme Ultraviolet Explorer microchannel plate detectors

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Kaplan, G. C.; Siegmund, O. H. W.; Lampton, M.; Malina, R. F.

    1989-01-01

    The Extreme Ultraviolet Explorer (EUVE) satellite will conduct an all-sky survey over the wavelength range from 70 A to 760 A using four grazing-incidence telescopes and seven microchannel-plate (MCP) detectors. The imaging photon-counting MCP detectors have active areas of 19.6 cm2. Photon arrival position is determined using a wedge-and-strip anode and associated pulse-encoding electronics. The imaging characteristics of the EUVE flight detectors are presented including image distortion, flat-field response, and spatial differential nonlinearity. Also included is a detailed discussion of image distortions due to the detector mechanical assembly, the wedge-and-strip anode, and the electronics. Model predictions of these distortions are compared to preflight calibration images which show distortions less than 1.3 percent rms of the detector diameter of 50 mm before correction. The plans for correcting these residual detector image distortions to less than 0.1 percent rms are also presented.

  7. Performance of low resistance microchannel plate stacks

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Stock, J.

    1991-01-01

    Results are presented from an evaluation of three sets of low resistance microchannel plate (MCP) stacks; the tests encompassed gain, pulse-height distribution, background rate, event rate capacity as a function of illuminated area, and performance changes due to high temperature bakeout and high flux UV scrub. The MCPs are found to heat up, requiring from minutes to hours to reach stabilization. The event rate is strongly dependent on the size of the area being illuminated, with larger areas experiencing a gain drop onset at lower rates than smaller areas.

  8. Microporous microchannel plates and method of manufacturing same

    DOEpatents

    Beetz, Jr., Charles P.; Boerstler, Robert W.; Steinbeck, John; Winn, David R.

    2000-01-01

    A microchannel plate and method of manufacturing same is provided. The microchannel plate includes a plate consisting of an anodized material and a plurality of channels which are formed during the anodization of the material and extend between the two sides of the plate. Electrodes are also disposed on each side of the plate for generating an electrical field within the channels. Preferably, the material is alumina and the channels are activated such that the channel walls are conductive and highly secondary emissive.

  9. Unique microchannel plate process doubles MCPI resolution

    SciTech Connect

    Thomas, S.; Power, G.

    1994-08-22

    Applying a dielectric layer to the output of a microchannel plate (MCP) has allowed the screen voltage of a sealed microchannel-plate intensifier tube (MCPI) to be raised to over 10 kV, producing a field strength of 36 kV/mm without any detectable field emission or breakdown of the MCP/screen gap. Tube resolution exceeded 16 lp/mm at 50% modulation. Breakdown is higher in a dielectric than in a vacuum. In a concept being patented by Gary Power, a few-{mu}m-thick layer of a dielectric was sputtered onto the output surface of an 18-mm MCP, which was incorporated into a tube under a contract for four tube starts. This process is applicable to any device incorporating a proximity-focused MCP and screen, including streak tubes and gated MCP x-ray imagers. Other improvements discussed include a patented use of a collimator for eliminating the electrons that are elastically scattered from the screen. This method also provides for further improvements in screen gap limited resolution to any desired degree by eliminating electrons with high transverse energy. This occurs at the expense of output brightness, which can be recovered through an appropriate increase in screen voltage.

  10. Progress towards a 256 channel multi-anode microchannel plate photomultiplier system with picosecond timing

    PubMed Central

    Lapington, J.S.; Ashton, T.J.R.; Ross, D.; Conneely, T.

    2012-01-01

    Despite the rapid advances in solid state technologies such as the silicon photomultiplier (SiPM), microchannel plate (MCP) photomultipliers still offer a proven and practical technological solution for high channel count pixellated photon-counting systems with very high time resolution. We describe progress towards a 256 channel optical photon-counting system using CERN-developed NINO and HTDC ASICs, and designed primarily for time resolved spectroscopy in life science applications. Having previously built and demonstrated a 18 mm diameter prototype tube with an 8×8 channel readout configuration and <43 ps rms single photon timing resolution, we are currently developing a 40 mm device with a 32×32 channel readout. Initially this will be populated with a 256 channel electronics system comprising four sets of modular 64 channel preamplifier/discriminator, and time-to-digital converter units, arranged in a compact three dimensional configuration. We describe the detector and electronics design and operation, and present performance measurements from the 256 channel development system. We discuss enhancements to the system including higher channel count and the use of application specific on-board signal processing capabilities. PMID:25843997

  11. X-ray focusing using microchannel plates

    NASA Technical Reports Server (NTRS)

    Kaaret, P.; Geissbuehler, P.; Chen, A.; Glavinas, E.

    1992-01-01

    We present measurements of the X-ray focusing properties of square-pore microchannel plates (MCP's). Square-pore MCP's contain large numbers of closely packed optical surfaces, as required for grazing incidence X-ray optics. The surface of individual MCP channels has been measured and found to have high microroughness transverse to the channel axis and low microroughness parallel to the axis. The high frequency transverse roughness, on length scales greater than 400 nm, has a rms value of 5.9 nm and a Gaussian autocorrelation function with correlation length of 1.41 micron. We find that the geometric misalignments of the surfaces of different channels limit the angular resolution obtainable with current samples of MCP's to 7.1 arcmin.

  12. Microchannel plate modal gain variations with temperature

    NASA Technical Reports Server (NTRS)

    Slater, David C.; Timothy, J. G.

    1993-01-01

    Measurements of the modal gain of two high-gain curved-channel microchannel plates (MCPs) at various operating temperatures are presented. Both MCPs were fabricated from the Long Life glass with 12-micron diam channels on 15-micron centers. The modal gain was found to decrease with increasing temperature at a rate of -0.1 percent C. This reduction of gain with temperature is attributed primarily to an axial temperature gradient along each MCP channel creating a nonuniform electric field within the channel that lowers the effective output gain. A lowering of the secondary electron yield resulting from increased phonon scattering of secondary electrons released within the walls of the MCP channels was assessed, but was found to have a negligible contribution to the drop in gain with temperature.

  13. Low noise and conductively cooled microchannel plates

    NASA Technical Reports Server (NTRS)

    Feller, W. B.

    1990-01-01

    Microchannel plate (MCP) dynamic range has recently been enhanced for both very low and very high input flux conditions. Improvements in MCP manufacturing technology reported earlier have led to MCPs with substantially reduced radioisotope levels, giving dramatically lower internal background-counting rates. An update is given on the Galileo low noise MCP. Also, new results in increasing the MCP linear counting range for high input flux densities are presented. By bonding the active face of a very low resistance MCP (less than 1 megaohm) to a substrate providing a conductive path for heat transport, the bias current limit (hence, MCP output count rate limit) can be increased up to two orders of magnitude. Normal pulse-counting MCP operation was observed at bias currents of several mA when a curved-channel MCP (80:1) was bonded to a ceramic multianode substrate; the MCP temperature rise above ambient was less than 40 C.

  14. One hundred anode microchannel plate ion detector

    SciTech Connect

    He Yi; Poehlman, John F.; Alexander, Andrew W.; Boraas, Kirk; Reilly, James P.

    2011-08-15

    A one-hundred-anode microchannel plate detector is constructed on a 10 cm x 15 cm printed circuit board and attached to a homebuilt matrix assisted laser desorption ionization (MALDI) time-of-flight mass spectrometer. Ringing and cross talk between anodes have been successfully eliminated and preliminary mass spectra of peptide ions recorded. With one hundred anodes on the printed circuit board, spatial information about the ion beam can also be readily determined with this detector. During operation, the detector anode assembly loses sensitivity after ions strike it for a considerable period of time due to charging of the non-conductive regions between anodes. However, this effect can be minimized by deflecting matrix ions away from the detector.

  15. Studies of high-gain microchannel plate photomultipliers

    SciTech Connect

    Oba, K.; Rehak, P.

    1980-01-01

    The characteristics and performance of several kinds of high-gain micro-channel plate photomultipliers have been investigated. Special attention was directed toward (1) lifetime studies, (2) performance in the magnetic field, and (3) timing properties. Lifetime studies include separate investigations of the photocathode quantum efficiency degradation caused by ion feedback, and the deterioration of the micro-channel plate gain. The dependence of the micro-channel plate photomultiplier gain on the intensity and the direction of the magnetic field (up to 7 kGauss) is reported.

  16. Photon-counting image sensors for the ultraviolet

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.

    1985-01-01

    An investigation on specific performance details of photon counting, ultraviolet image sensors having 2-dimensional formats is reviewed. In one study, controlled experiments were performed which compare the quantum efficiencies, in pulse counting mode, of CsI photocathodes deposited on: (1) the front surface of a microchannel plate (MCP), (2) a solid surface in front of an MCP, and (3) an intensified CCD image sensor (ICCD) where a CCD is directly bombarded by accelerated photoelectrons. Tests indicated that the detection efficiency of the CsI-coated MCP at 1026 A is lower by a factor of 2.5 than that of the MCP with a separate, opaque CsI photocathode, and the detection efficiency ratio increases substantially at longer wavelengths (ratio is 5 at 1216 A and 20 at 1608 A).

  17. Study of the electric field inside microchannel plate multipliers

    SciTech Connect

    Gatti, E.; Oba, K.; Rehak, P.

    1982-01-01

    Electric field inside high gain microchannel plate multipliers was studied. The calculations were based directly on the solution of the Maxwell equations applied to the microchannel plate (MCP) rather than on the conventional lumped RC model. The results are important to explain the performance of MCP's, (1) under a pulsed bias tension and, (2) at high rate conditions. The results were tested experimentally and a new method of MCP operation free from the positive ion feedback was demonstrated.

  18. Large area 200 psec gated microchannel plate detector

    SciTech Connect

    Eckart, M.J.; Hanks, R.L.; Kilkenny, J.D.; Pasha, R.; Wiedwald, J.D.; Hares, J.D.

    1986-03-01

    Results are presented with a 15 mm wide gated microchannel plate uv and x-ray detector. The active area is part of a 6 ohm transmission line driven by an electronically generated gate pulse. The microchannel plate is coated with CsI allowing tests with a frequency quadrupled, high repetition rate 1.05 ..mu..m laser. Results showing optical gate widths as short as 100 psec are presented.

  19. Large-area 200-ps gated microchannel plate detector

    SciTech Connect

    Eckart, M.J.; Hanks, R.L.; Kilkenny, J.D.; Pasha, R.; Wiedwald, J.D.; Hares, J.D.

    1986-08-01

    Results are presented with a 15-mm-wide gated microchannel plate UV and x-ray detector. The active area is part of a 6-..cap omega.. transmission line driven by an electronically generated gate pulse. The microchannel plate is coated with CsI allowing tests with a frequency-quadrupoled, high-repetition-rate 1.05-..mu..m laser. Results showing optical gate widths as short as 100 ps are presented.

  20. A Simple Model for Microchannel Plate Output

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Weaver, J. L.

    2005-10-01

    Microchannel plates (MCPs) are an essential component in an imaging diagnostic known as an x-ray framing camera, which is currently used by NIF, Omega, Nike, and Z to image radiation imploded targets. An MCP is used to convert incident x-ray photons into electrons with gains of 10^2 to 10^4. These electrons are accelerated into a phosphor and the subsequent visible light is captured with a CCD. A variety of parameters, such as photocathode material type (Au, Ni, CsI), photocathode coating depth, and MCP bias angle, affect the gain and gain variations in the MCP electron output. This poster presents initial results of a simple 3D MCP computer model along with an experimental comparison. Several ideas for increasing MCP imaging performance by reducing gain variations and increasing MCP quantum efficiency are presented. Work supported by the Naval Research Laboratory, National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grant DE-FG52-03NA00064, and through DE FG53 2005 NA26014, and Livermore National Laboratory.

  1. Performance of Small Pore Microchannel Plates

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Gummin, M. A.; Ravinett, T.; Jelinsky, S. R.; Edgar, M.

    1995-01-01

    Small pore size microchannel plates (MCP's) are needed to satisfy the requirements for future high resolution small and large format detectors for astronomy. MCP's with pore sizes in the range 5 micron to 8 micron are now being manufactured, but they are of limited availability and are of small size. We have obtained sets of Galileo 8 micron and 6.5 micron MCP's, and Philips 6 micron and 7 micron pore MCP's, and compared them to our larger pore MCP Z stacks. We have tested back to back MCP stacks of four of these MCP's and achieved gains greater than 2 x 1O(exp 7) with pulse height distributions of less than 40% FWHM, and background rates of less than 0.3 events sec(exp -1) cm(exp -2). Local counting rates up to approx. 100 events/pore/sec have been attained with little drop of the MCP gain. The bare MCP quantum efficiencies are somewhat lower than those expected, however. Flat field images are characterized by an absence of MCP fixed pattern noise.

  2. Microchannel plate special nuclear materials sensor

    NASA Astrophysics Data System (ADS)

    Feller, W. B.; White, P. L.; White, P. B.; Siegmund, O. H. W.; Martin, A. P.; Vallerga, J. V.

    2011-10-01

    Nova Scientific Inc., is developing for the Domestic Nuclear Detection Office (DNDO SBIR #HSHQDC-08-C-00190), a solid-state, high-efficiency neutron detection alternative to 3He gas tubes, using neutron-sensitive microchannel plates (MCPs) containing 10B and/or Gd. This work directly supports DNDO development of technologies designed to detect and interdict nuclear weapons or illicit nuclear materials. Neutron-sensitized MCPs have been shown theoretically and more recently experimentally, to be capable of thermal neutron detection efficiencies equivalent to 3He gas tubes. Although typical solid-state neutron detectors typically have an intrinsic gamma sensitivity orders of magnitude higher than that of 3He gas detectors, we dramatically reduce gamma sensitivity by combining a novel electronic coincidence rejection scheme, employing a separate but enveloping gamma scintillator. This has already resulted in a measured gamma rejection ratio equal to a small 3He tube, without in principle sacrificing neutron detection efficiency. Ongoing improvements to the MCP performance as well as the coincidence counting geometry will be described. Repeated testing and validation with a 252Cf source has been underway throughout the Phase II SBIR program, with ongoing comparisons to a small commercial 3He gas tube. Finally, further component improvements and efforts toward integration maturity are underway, with the goal of establishing functional prototypes for SNM field testing.

  3. All-digital full waveform recording photon counting flash lidar

    NASA Astrophysics Data System (ADS)

    Grund, Christian J.; Harwit, Alex

    2010-08-01

    Current generation analog and photon counting flash lidar approaches suffer from limitation in waveform depth, dynamic range, sensitivity, false alarm rates, optical acceptance angle (f/#), optical and electronic cross talk, and pixel density. To address these issues Ball Aerospace is developing a new approach to flash lidar that employs direct coupling of a photocathode and microchannel plate front end to a high-speed, pipelined, all-digital Read Out Integrated Circuit (ROIC) to achieve photon-counting temporal waveform capture in each pixel on each laser return pulse. A unique characteristic is the absence of performance-limiting analog or mixed signal components. When implemented in 65nm CMOS technology, the Ball Intensified Imaging Photon Counting (I2PC) flash lidar FPA technology can record up to 300 photon arrivals in each pixel with 100 ps resolution on each photon return, with up to 6000 range bins in each pixel. The architecture supports near 100% fill factor and fast optical system designs (f/#<1), and array sizes to 3000×3000 pixels. Compared to existing technologies, >60 dB ultimate dynamic range improvement, and >104 reductions in false alarm rates are anticipated, while achieving single photon range precision better than 1cm. I2PC significantly extends long-range and low-power hard target imaging capabilities useful for autonomous hazard avoidance (ALHAT), navigation, imaging vibrometry, and inspection applications, and enables scannerless 3D imaging for distributed target applications such as range-resolved atmospheric remote sensing, vegetation canopies, and camouflage penetration from terrestrial, airborne, GEO, and LEO platforms. We discuss the I2PC architecture, development status, anticipated performance advantages, and limitations.

  4. Hybrid analog/digital, large format, photon counting detectors for astronomy

    NASA Astrophysics Data System (ADS)

    Crocker, J.; Rafal, M.; Denman, B.; Paresce, F.; Hiltner, A.

    1986-01-01

    The development of a new microchannel plate photon-counting detector with an analog readout method based on a resistive anode is reported. This detector exhibits extremely high, stable electron gains of 10 to the 8th. At this gain, the spatial resolution is no longer primarily limited by the noise of the resistive anode, so that digital methods of readout, such as discrete conductors, lose their advantage. These detectors can be readily scaled to 40 mm and 70 mm formats to match plate scales of 2-m (and larger) telescopes. New, high speed digital electronics fully exploit the high spatial and time resolution made possible by gains of this level. Analysis of the theoretical performance of this detector shows that the major limitation to the spatial resolution is the proximity focus of the photocathode and the first microchannel plate. The detector has been mated to an echelle spectrograph developed.

  5. Photon counting digital holography

    NASA Astrophysics Data System (ADS)

    Demoli, Nazif; Skenderović, Hrvoje; Stipčević, Mario; Pavičić, Mladen

    2016-05-01

    Digital holography uses electronic sensors for hologram recording and numerical method for hologram reconstruction enabling thus the development of advanced holography applications. However, in some cases, the useful information is concealed in a very wide dynamic range of illumination intensities and successful recording requires an appropriate dynamic range of the sensor. An effective solution to this problem is the use of a photon-counting detector. Such detectors possess counting rates of the order of tens to hundreds of millions counts per second, but conditions of recording holograms have to be investigated in greater detail. Here, we summarize our main findings on this problem. First, conditions for optimum recording of digital holograms for detecting a signal significantly below detector's noise are analyzed in terms of the most important holographic measures. Second, for time-averaged digital holograms, optimum recordings were investigated for exposures shorter than the vibration cycle. In both cases, these conditions are studied by simulations and experiments.

  6. Electronic measurement of microchannel plate pulse height distributionsa)

    NASA Astrophysics Data System (ADS)

    Gamboa, E. J.; Huntington, C. M.; Harding, E. C.; Drake, R. P.

    2010-10-01

    Microchannel plates are a central component of the x-ray framing cameras used as analog imagers in many plasma experiment diagnostic systems. The microchannel plate serves as an amplifying element, increasing the electronic signal from incident radiation by factors of 103-105, with a broad pulse-height distribution. Seeking to optimize the photon-to-electron conversion efficiency and noise distribution of x-ray cameras, we will characterize the pulse-height distribution of the electron output from a single microchannel plate. Replacing the framing camera's phosphor-coated fiber optic screen with a charge-collection plate and coupling to a low-noise multichannel analyzer, we quantified the distribution in the total charge generated per photon event. The electronically measured pulse height distribution is used to estimate the signal-to-noise ratio of radiographic images from framing cameras.

  7. Performance comparison of high speed microchannel plate photomultiplier tubes

    NASA Technical Reports Server (NTRS)

    Varghese, Thomas; Selden, Michael; Oldham, Thomas

    1993-01-01

    The transit time spread characteristics of high speed microchannel photomultipliers has improved since the upgrade of the NASA CDSLR network to MCP-PMT's in the mid-1980's. The improvement comes from the incorporation of 6 micron (pore size) microchannels and offers significant improvement to the satellite ranging precision. To examine the impact on ranging precision, two microchannel plate photomultiplier tubes (MCP-PMT) were evaluated for output pulse characteristics and temporal jitter. These were a Hamamatsu R 2566 U-7 MCP-PMT (6 micron) and an ITT 4129f MCP-PMT (12 micron).

  8. Photon-counting H33D detector for biological fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Michalet, X.; Siegmund, O. H. W.; Vallerga, J. V.; Jelinsky, P.; Millaud, J. E.; Weiss, S.

    2006-11-01

    We have developed a photon-counting High-temporal and High-spatial resolution, High-throughput 3-Dimensional detector (H33D) for biological imaging of fluorescent samples. The design is based on a 25 mm diameter S20 photocathode followed by a 3-microchannel plate stack, and a cross-delay line anode. We describe the bench performance of the H33D detector, as well as preliminary imaging results obtained with fluorescent beads, quantum dots and live cells and discuss applications of future generation detectors for single-molecule imaging and high-throughput study of biomolecular interactions.

  9. Photon-Counting H33D Detector for Biological Fluorescence Imaging.

    PubMed

    Michalet, X; Siegmund, O H W; Vallerga, J V; Jelinsky, P; Millaud, J E; Weiss, S

    2006-11-01

    We have developed a photon-counting High-temporal and High-spatial resolution, High-throughput 3-Dimensional detector (H33D) for biological imaging of fluorescent samples. The design is based on a 25 mm diameter S20 photocathode followed by a 3-microchannel plate stack, and a cross delay line anode. We describe the bench performance of the H33D detector, as well as preliminary imaging results obtained with fluorescent beads, quantum dots and live cells and discuss applications of future generation detectors for single-molecule imaging and high-throughput study of biomolecular interactions. PMID:20151021

  10. Development efforts to improve curved-channel microchannel plates

    NASA Technical Reports Server (NTRS)

    Corbett, M. B.; Feller, W. B.; Laprade, B. N.; Cochran, R.; Bybee, R.; Danks, A.; Joseph, C.

    1993-01-01

    Curved-channel microchannel plate (C-plate) improvements resulting from an ongoing NASA STIS microchannel plate (MCP) development program are described. Performance limitations of previous C-plates led to a development program in support of the STIS MAMA UV photon counter, a second generation instrument on the Hubble Space Telescope. C-plate gain, quantum detection efficiency, dark noise, and imaging distortion, which are influenced by channel curvature non-uniformities, have all been improved through use of a new centrifuge fabrication technique. This technique will be described, along with efforts to improve older, more conventional shearing methods. Process optimization methods used to attain targeted C-plate performance goals will be briefly characterized. Newly developed diagnostic measurement techniques to study image distortion, gain uniformity, input bias angle, channel curvature, and ion feedback, will be described. Performance characteristics and initial test results of the improved C-plates will be reported. Future work and applications will also be discussed.

  11. High background photon counting lidar

    NASA Technical Reports Server (NTRS)

    Lentz, W. J.

    1992-01-01

    Photon counting with lidar returns is usually limited to low light levels, while wide dynamic range is achieved by counting for long times. The broad emission spectrum of inexpensive high-power semiconductor lasers makes receiver filters pass too much background light for traditional photon counting in daylight. Very high speed photon counting is possible, however, at more than 500 MHz which allows the construction of eyesafe lidar operating in the presence of bright clouds. Detector improvements are possible to count to 20 GHz producing a single shot dynamic range of ten decades.

  12. Fundamental and practical limitations of FUV/EUV photon-counting image detectors

    NASA Technical Reports Server (NTRS)

    Lampton, M.

    1991-01-01

    In EUV and FUV space-astronomy applications, the best contemporary detector designs are based on the use of microchannel plates due to their ability to deliver photon-counting performance with high efficiency. The major unresolved issue is the choice of position-readout system for the individual photoevents. Electrical event-readout systems are divided into two classes: the discrete wire anodes that perform coordinate digitization by wire-group selection, and the continuous centroid-position encoders for which coordinates are digitized in the associated electronics. The centroid-position encoder techniques are discussed in terms of how they overcome the four chief limitations of the discrete-wire readouts - their limited format size, their flat focal surface, their fundamental hex-channel vs squared-pixel moire pattern, and their image undersampling. With these limitations overcome, microchannel based image systems can deliver the performance demanded by the forthcoming generation of applications in space astronomy.

  13. High Spatial Resolution Investigations of Microchannel Plate Imaging Properties for UV Detectors

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald

    1996-01-01

    Microchannel plate (MCP) photon counting detectors are currently being used with great success on many of the recent NASA/ESA ultraviolet (UV) astrophysics missions that make observations in the 1OO A - 1600 A range. These include HUT, the Wide Field Camera on ROSAT, EUVE, ALEXIS, ORFEUS, and SOHO. These devices have also been chosen to fly on future UV astrophysics missions such as FUSE, FUVITA, IMAGE, and both the HST STIS and Advanced Camera instruments. During the period of this award we have fabricated a dual-chamber vacuum test facility to carry out laboratory testing of detector resolution, image stability and linearity, and flat field performance to enable us to characterize the performance of MCPs and their associated read-out architectures. We have also fabricated and tested a laboratory 'test-bed' delay line detector, which can accommodate MCP's with a wide range of formats and run at high data rates, to continue our studies of MCP image fixed pattern noise, and particularly for new small pore MCP's which have recently come onto the market. These tests were mainly focussed on the assessment of cross delay-line (XDL) and double delay line (DDL) anode read-out schemes, with particular attention being focussed on flat-field and spatial resolution performance.

  14. Improved lifetime of microchannel-plate PMTs

    NASA Astrophysics Data System (ADS)

    Lehmann, A.; Britting, A.; Eyrich, W.; Uhlig, F.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Höhler, R.; Kalicy, G.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Dodokhov, V. Kh.; Düren, M.; Föhl, K.; Hayrapetyan, A.; Kröck, B.; Merle, O.; Rieke, J.; Cowie, E.; Keri, T.; Montgomery, R.; Rosner, G.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Sfienti, C.; Thiel, M.; Bühler, P.; Gruber, L.; Marton, J.; Suzuki, K.

    2014-12-01

    The charged particle identification at the PANDA experiment will be mainly performed with DIRC detectors. Because of their advantageous properties the preferred photon sensors are MCP-PMTs. However, until recently these devices showed serious aging problems which resulted in a diminishing quantum efficiency (QE) of the photo cathode. By applying innovative countermeasures against the aging causes, the manufacturers recently succeeded in drastically improving the lifetime of MCP-PMTs. Especially the application of an ALD coating technique to seal the material of the micro-channels proves very powerful and results in a lifetime of ≈ 6 C /cm2 integrated anode charge without a substantial QE degradation for the latest PHOTONIS XP85112. This paper will present a comparative measurement of the lifetime of several older and recent MCP-PMTs demonstrating this progress.

  15. Short recovery time, multianode, microchannel plate photomultiplier for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.; Bassan, M.; Sardella, A.; Perdon, E.

    1989-12-01

    Laser scattering-based plasma diagnostics are presently undertaken by means of a multianode microchannel plate (MCP) photomultiplier (PM) whose recovery time is two orders of magnitude shorter than that typical of conventional MCP devices. This PM is suitable for detection of fast light-pulse bursts whose repetition rate is sufficiently low for heat dissipation between successive bursts. Attention is given to the device's thermal behavior, measuring the temperature increase of the Z-plate due to a single, high-voltage square pulse as a function of pulse energy. The Z-plate recovers from the maximum linear pulse in about 50 microsec.

  16. Tracking rare-isotope beams with microchannel plates

    NASA Astrophysics Data System (ADS)

    Rogers, A. M.; Sanetullaev, A.; Lynch, W. G.; Tsang, M. B.; Lee, J.; Bazin, D.; Coupland, D.; Henzl, V.; Henzlova, D.; Kilburn, M.; Wallace, M. S.; Youngs, M.; Delaunay, F.; Famiano, M.; Shapira, D.; Jones, K. L.; Schmitt, K. T.; Sun, Z. Y.

    2015-09-01

    A system of two microchannel-plate detectors has been successfully implemented for tracking projectile-fragmentation beams. The detectors provide interaction positions, angles, and arrival times of ions at the reaction target. The current design is an adaptation of an assembly used for low-energy beams (~ 1.4 MeV / nucleon). In order to improve resolution in tracking high-energy heavy-ion beams, the magnetic field strength between the secondary-electron accelerating foil and the microchannel plate had to be increased substantially. Results from an experiment using a 37-MeV/nucleon 56Ni beam show that the tracking system can achieve sub-nanosecond timing resolution and a position resolution of ~1 mm for beam intensities up to 5 ×105 pps.

  17. Using Neural Networks to Recover Microchannel Plate Tracking Data

    NASA Astrophysics Data System (ADS)

    Howard, Meredith E.; Schradin, Leslie J.; Cizewski, Jolie A.

    2014-09-01

    Tracking nuclei in reaction experiments is a common method for improving energy resolution or reducing uncertainties in reaction kinematics. The microchannel plate (MCP) detector is an ideal tool for non-destructive ion beam tracking. Here, we outline a method using widely available software for training neural networks to solve the problem of extracting 2D positions from only three of the four corner signals of an MCP detector.

  18. A new approach to large area microchannel plate manufacture

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Methods of manufacture of twisted single elements as the base for producing microchannel plates (MCP) are discussed. Initial evaluations validated the off-axis channel concept and no technological roadblocks were identified which would prevent fabrication of high gain, high spatial resolution, large format MCP's using this technique. The first MP's have operated at stable gains of 3 million with pulse height resolution superior to results obtained by standard chevron MCP's.

  19. Laser ranging and mapping with a photon-counting detector.

    PubMed

    Priedhorsky, W C; Smith, R C; Ho, C

    1996-01-20

    We propose a new technique for remote sensing: photon-counting laser mapping. MicroChannel plate detectors with a crossed delay-line (MCP/CDL) readout combine high position accuracy and subnanosecond photon timing, at event rates of 10(6) detected photons per second and more. A mapping system would combine an MCP/CDL detector with a fast-pulse, high-repetition-rate laser illuminator. The system would map solid targets with exceptional in-range and cross-range resolution. The resulting images would be intrinsically three dimensional, without resorting to multiple viewing angles, so that objects of identical albedo could be discriminated. For a detector time resolution and pulse width of the order of 10(-10) s, the in-range resolution would be a few centimeters, permitting the discrimination of surfaces by their textures. Images could be taken at night, at illumination levels up to full moonlight, from ground, airborne, or space platforms. We discuss signal to noise as a function of laser flux and background level and present simulated images. PMID:21069029

  20. Characterization of a photon-counting ICCD prototype

    NASA Astrophysics Data System (ADS)

    Bergamini, Paolo; Bonelli, Giuseppe; Poletto, Luca; Tanzi, Enrico G.; Uslenghi, Michela; Tondello, Giuseppe

    1998-11-01

    The result obtained in the course of the characterization of a photon-counting ICCD prototype. The detector consists of a 40 mm diameter, Z stack, high gain microchannel plate intensifier, endowed with a RbTe photocathode. The intensifier electron cascade is transduced, via a phosphor screen and a 1:3.6 fiber optics reducer, into a 3 by 3 pixel, quasi-gaussian charge distribution on a 512 by 512 pixel format CCD matrix with square pixels of 15 micrometers . The CCD is read out, in the frame-transfer mode, through a single output amplifier at a frequency of 20 MHz. The data flow is acquired serially and fed to a virtual shift- register system, as to generate a 3 by 3 pixel even sash that sweeps dynamically the CCD matrix at the 50 ns clock pace. Each and every events has is searched for the presence of events whose integral charge distribution lie within set threshold levels, and satisfy given morphological rules, i.e. a single-peaked charge profile. The centroid coordinates of identified events are then determined with sub-pixel accuracy and subsequently stored in an external, high resolution memory. Detective quantum efficiency, spatial resolution and dynamic range obtained for the prototype system in the 150-600 nm spectral domain, are given and discussed, together with the up-graded performance expected for a second-generation prototype, presently being assembled.

  1. Low-Noise, Long-Life, High-Gain Microchannel-Plate Glass

    NASA Technical Reports Server (NTRS)

    Feller, W. Bruce; Cook, Lee M.

    1990-01-01

    Dark noise reduced substantially without degrading other properties. Glass suitable for use as active material for microchannel plates (MCP's) free of constituents including significant amounts of radioactive isotopes.

  2. Three-dimensional model of x-ray induced microchannel plate output

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Drake, R. P.

    2006-10-01

    Microchannel plates are an important component in a type of imaging diagnostic known as an x-ray framing camera, used in x-ray radiography of high-energy-density physics experiments. A microchannel plate is responsible for detecting x rays and then converting them into amplified bursts of electrons, which are then imaged onto a phosphor-coated fiber optic screen. We present the preliminary development of a three-dimensional model of a single microchannel plate channel in attempt to simulate the pulse height distribution of the microchannel plate electron output. Using a novel technique, initial simulations are compared with experimental data from an ungated x-ray framing camera.

  3. Three-dimensional model of x-ray induced microchannel plate output

    SciTech Connect

    Harding, E. C.; Drake, R. P.

    2006-10-15

    Microchannel plates are an important component in a type of imaging diagnostic known as an x-ray framing camera, used in x-ray radiography of high-energy-density physics experiments. A microchannel plate is responsible for detecting x rays and then converting them into amplified bursts of electrons, which are then imaged onto a phosphor-coated fiber optic screen. We present the preliminary development of a three-dimensional model of a single microchannel plate channel in attempt to simulate the pulse height distribution of the microchannel plate electron output. Using a novel technique, initial simulations are compared with experimental data from an ungated x-ray framing camera.

  4. Imaging by terahertz photon counting

    NASA Astrophysics Data System (ADS)

    Ikushima, Kenji; Komiyama, Susumu

    2010-08-01

    Photon counting method is indispensable in visible/near-infrared optical measurements for detecting extremely weak radiation. The method, however, has been inaccessible in terahertz region, where the photon energies are more than 100 times smaller and catching individual photons is difficult. Here we review photon counting measurements of terahertz waves, by incorporating a semiconductor quantum-dot terahertz-photon detector into a scanning terahertz microscope. By using a quantum Hall effect detector as well, measurements cover the intensity dynamic range more than six orders of magnitude. Applying the measurement system to the study of semiconductor quantum Hall effect devices, we image extremely weak cyclotron radiation emitted by nonequilibrium electrons. Owing to the unprecedented sensitivity, a variety of new features of electron kinetics are unveiled. Besides semiconductor electric devices studied here, the experimental method will find application in diverse areas of molecular dynamics, microthermography, and cell activities.

  5. Photon Counting - One More Time

    NASA Astrophysics Data System (ADS)

    Stanton, Richard H.

    2012-05-01

    Photon counting has been around for more than 60 years, and has been available to amateurs for most of that time. In most cases single photons are detected using photomultiplier tubes, "old technology" that became available after the Second World War. But over the last couple of decades the perfection of CCD devices has given amateurs the ability to perform accurate photometry with modest telescopes. Is there any reason to still count photons? This paper discusses some of the strengths of current photon counting technology, particularly relating to the search for fast optical transients. Technology advances in counters and photomultiplier modules are briefly mentioned. Illustrative data are presented including FFT analysis of bright star photometry and a technique for finding optical pulses in a large file of noisy data. This latter technique is shown to enable the discovery of a possible optical flare on the polar variable AM Her.

  6. Microchannel-plate-based x-ray optics

    NASA Astrophysics Data System (ADS)

    Beijersbergen, Marco W.; Bavdaz, Markos; Peacock, Anthony J.; Tomaselli, Enrico; Fraser, G.; Brunton, A.; Flyckt, E.; Krumrey, Michael K.; Souvorov, Alexei

    1999-10-01

    X-ray optics based on micro-channel plates (MCPs) offer some distinctive advantages over conventional technologies used to produce imagin optics for astrophysics applications. Such micro-pore optics (MPOs) are far lighter and allow a larger stacking density than optics based on metallic foils or plates. Until recent, x-ray optics based on MCPs were not feasible or useful because of the limited quality of the MCPs. We have produced thick square pore MPOs of improved quality and have developed methods to stack the channels in a radial pattern, as required for imagin optics based on Wolter type I or II designs. The individual plates were tested in synchrotron radiation facilities and conventional beam lines to determine their geometric and surface scattering properties.

  7. Thermal dependence of electrical characteristics of micromachined silica microchannel plates

    NASA Astrophysics Data System (ADS)

    Tremsin, Anton S.; Vallerga, John V.; Siegmund, Oswald H. W.; Beetz, Charles P.; Boerstler, Robert W.

    2004-04-01

    Micromachined silica microchannel plates (MCPs) under development have a number of advantages over standard glass MCPs and open completely new possibilities in detector technologies. In this article we present the results of our studies on the thermal properties of silica microchannel plates (sMCPs). Similar to standard glass microchanel plates the resistance of silica MCPs was measured to change exponentially with temperature with a negative thermal coefficient of -0.036 per °C, somewhat larger than that of standard glass MCPs. The resistance also decreases linearly with the applied voltage, with the voltage coefficient of -3.1×10-4 V-1. With the knowledge of these two coefficients, our thermal model allows the calculation of the maximum voltage, which can be applied to a given MCP without inducing a thermal runaway. A typical 25 mm diam, 240 μm thick sMCP with 6 μm pores has to have the resistance larger than ˜30 MΩ to operate safely at voltages up to 800 V. With this model we can also calculate the time required for a given silica MCP to reach the point of thermal equilibrium after a voltage increase. We hope that the ongoing efforts on a proper modification of the sMCP semiconducting layer will lead to the production of new MCPs with a small negative or even a positive thermal coefficient, reducing the possibility of thermal runaways of low-resistance MCPs required for high count rate applications.

  8. The capacitive division image readout: a novel imaging device for microchannel plate detectors

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Conneely, T. M.; Leach, S. A.; Moore, L.

    2013-09-01

    The Capacitive Division Image Readout (C-DIR) is a simple and novel image readout for photon counting detectors offering major performance advantages. C-DIR is a charge centroiding device comprising three elements; (i) a resistive anode providing event charge localization, event current return path and electrical isolation from detector high voltage, (ii) a dielectric substrate which capacitively couples the event transient signal to the third element, (iii) the readout device; an array of capacitively coupled electrodes which divides the signal among the readout charge measurement nodes. The resistive anode and dielectric substrate constitute the rear interface of the detector and capacitively couple the signal to the external C-DIR readout device. The C-DIR device is a passive, multilayer printed circuit board type device comprising a matrix of isolated electrodes whose geometries define the capacitive network. C-DIR is manufactured using conventional PCB geometries and is straightforward and economical to construct. C-DIR's robustness and simplicity belie its performance advantages. Its capacitive nature avoids partition noise, the Poisson noise associated with collection of discrete charges. The dominant noise limiting position resolution is electronic noise. However C-DIR also presents a low input capacitance to the readout electronics, minimising this noise component thus maximising spatial resolution. Optimisation of the C-DIR pattern-edge geometry can provide ~90% linear dynamic range. We present data showing image resolution and linearity of the C-DIR device in a microchannel plate detector and describe various electronic charge measurement scheme designed to exploit the full performance potential of the C-DIR device.

  9. Persistence of phosphor glow in microchannel plate image intensifiers

    NASA Technical Reports Server (NTRS)

    Torr, M. R.

    1985-01-01

    Image intensifier tubes using microchannel plate amplification stages and phosphor output stages are being increasingly used in various detection applications. In this paper, measurements of the decay times of what are attributed to be the P20 phosphors in various image intensifiers are reported. It is found that the long tail on the decay curve of the phosphor following illumination can be a limitation for certain observations. In addition, the background level of phosphor glow (which is seen by the subsequent detection system as a light signal) continues to build with continuing illumination.

  10. Performance characteristics of a new helical-channel microchannel plate

    NASA Technical Reports Server (NTRS)

    Slater, David C.; Timothy, J. Gethyn; Graves, Peter W.; Loretz, Thomas J.; Roy, Raymond L.

    1988-01-01

    An advanced version of the 'helical-channel' microchannel plate (MCP) is presented. This MCP is composed of four channels per fiber with each channel having a diameter of 50 microns. The dynamic range, pulse-height distribution, and gain characteristics of this MCP are discussed. It is found that increasing the twist density of the channels makes it possible to increase the detection efficiency and further improve the suppression of ion-feedback providing a tighter saturated pulse-height distribution and improved high-voltage characteristics.

  11. Dead-time effects in microchannel-plate imaging detectors

    NASA Technical Reports Server (NTRS)

    Zombeck, Martin V.; Fraser, George W.

    1991-01-01

    The observed counting rates of microchannel plate (MCP) based detectors for high resolution observations of celestial EUV and X-ray sources vary over many orders of magnitude; the counting capability of an individual channel, however, is not high, and is associated with dead-times ranging from 0.1 msec to 1 sec. The dead-time increases with the area illuminated; attention is presently given to laboratory determinations of the count rate characteristics of a MCP detector as a function of illuminated area, and a model is developed for these results' use in the interpretation of space observations.

  12. Characterization of borosilicate microchannel plates functionalized by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Ertley, C.; Siegmund, O. H. W.; Schwarz, J.; Mane, A. U.; Minot, M. J.; O'Mahony, A.; Craven, C. A.; Popecki, M.

    2015-08-01

    Borosilicate microcapillary arrays have been functionalized by Atomic Layer Deposition (ALD) of resistive and secondary emissive layers to produce robust microchannel plates (MCPs) with improved performance characteristics over traditional MCPs. These techniques produce MCP's with enhanced stability and lifetime, low background rates, and low levels of adsorbed gas. Using ALD to functionalize the substrate decouples the two and provides the opportunity to explore many new materials. The borosilicate substrates have many advantages over traditional lead glass MCPs, including the ability to be fabricated in large areas (currently at 400 cm2).

  13. Investigations of bonded and curved microchannel plate stacks

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.

    1988-01-01

    The technique of fusing, or bonding, individual microchannel plate (MCP) stacks together offers the possibility of improving the uniformity of MCP stack operating characteristics and provides a convenient monolithic format. Here, the effectiveness of bonded MCP stacks and stacks of MCPs with curved surfaces is investigated to determine if MCP requirements for future astrophysical detectors can be achieved. The results show that both configurations give superior MCP performance characteristics. However, some problems remain with regard to the fabrication of bonded MCP stacks resulting in poor flat field characteristics and increased background.

  14. Angular sensitivity of gated microchannel plate framing cameras

    SciTech Connect

    Landen, O. L.; Lobban, A.; Tutt, T.; Bell, P. M.; Costa, R.; Hargrove, D. R.; Ze, F.

    2001-01-01

    Gated, microchannel-plate-based (MCP) framing cameras have been deployed worldwide for 0.2--9 keV x-ray imaging and spectroscopy of transient plasma phenomena. For a variety of spectroscopic and imaging applications, the angular sensitivity of MCPs must be known for correctly interpreting the data. We present systematic measurements of angular sensitivity at discrete relevant photon energies and arbitrary MCP gain. The results can been accurately predicted by using a simple two-dimensional approximation to the three-dimensional MCP geometry and by averaging over all possible photon ray paths.

  15. Angular Sensitivity of Gated Micro-Channel Plate Framing Cameras

    SciTech Connect

    Landen, O L; Lobban, A; Tutt, T; Bell, P M; Costa, R; Ze, F

    2000-07-24

    Gated, microchannel-plate-based (MCP) framing cameras have been deployed worldwide for 0.2 - 9 keV x-ray imaging and spectroscopy of transient plasma phenomena. For a variety of spectroscopic and imaging applications, the angular sensitivity of MCPs must be known for correctly interpreting the data. We present systematic measurements of angular sensitivity at discrete relevant photon energies and arbitrary MCP gain. The results can been accurately predicted by using a simple 2D approximation to the 3D MCP geometry and by averaging over all possible photon ray paths.

  16. Curved-channel microchannel array plates. [photoelectric detectors

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1981-01-01

    The microchannel array plate (MCP) is a photoelectric detector with an imaging capability comparable to that of a photographic plate. Recently MCPs in which the channels are curved to inhibit ion feedback have become available. These devices represent a major advance in MCP technology, since a single curved-channel MCP can be operated stably at high gain in the pulse-counting mode without any of the problems of stability of response or short lifetime reported for 'chevron' MCP detectors. Attention is given to the mode of operation of channel electron multipliers (CEM) and MCP, curved-channel MCP, test procedures, and performance characteristics. The accumulated test data show that the fundamental operating characteristics of the curved-channel MCP are directly related to those for the CEM.

  17. Using induced signals to sense position from a microchannel plate detector

    NASA Astrophysics Data System (ADS)

    deSouza, R. T.; Gosser, Z. Q.; Hudan, S.

    2012-05-01

    We demonstrate a novel concept for a position sensitive microchannel plate detector. This detector provides sub-millimeter spatial resolution by examining the signal induced on a wire harp by the electron cloud from a microchannel plate detector. Wires in the harp are efficiently read out by coupling them to a delay line.

  18. Application of atomic layer deposited microchannel plates to imaging photodetectors with high time resolution

    NASA Astrophysics Data System (ADS)

    Siegmund, O. H. W.; McPhate, J. B.; Tremsin, A. S.; Vallerga, J. V.; Ertley, C. D.; Richner, N. J.; Gerard, T. M.; Frisch, H. J.; Elam, J. W.; Mane, A. U.; Wagner, R. G.; Minot, M. J.; O`Mahony, A.; Craven, C. A.

    2015-07-01

    Novel microchannel plates have been constructed using borosilicate glass micro-capillary array substrates with 20 μm and 10 μm pores and coated with resistive, and secondary electron emissive, layers by atomic layer deposition. Microchannel plates in 33 mm, 50 mm and 20 cm square formats have been made and tested. Although their amplification, imaging, and timing properties are comparable to standard glass microchannel plates, the background rates and lifetime characteristics are considerably improved. Sealed tube detectors based on the Planacon tube, and a 25 mm cross delay line readout tube with a GaN(Mg) opaque photocathode deposited on borosilicate microchannel plates have been fabricated. Considerable progress has also been made with 20 cm microchannel plates for a 20 cm format sealed tube sensor with strip-line readout that is being developed for Cherenkov light detection.

  19. High-resolution microchannel plate image tube results

    NASA Astrophysics Data System (ADS)

    Johnson, C. Bruce; Patton, Stanley B.; Bender, E.

    1992-07-01

    The present 18-mm active diameter proximity-focused microchannel plate (MCP) image tube design has been modified to produce significantly higher limiting spatial resolution. A glass input window of the `bulls-eye' design with the blackened glass border, reduced cathode-to-MCP spacing, reduced channel center-to-center distance, reduced MCP-to-phosphor screen spacing, a brushed P20 phosphor screen, and a fiber optic output window were used to achieve a limiting resolution in excess of 50 lp/mm. Test results, showing limiting resolution versus applied potentials, are correlated with a simple physical model of performance. The low-light-level white-light sine-wave modulation transfer function, T(f), has been measured to be T(f) equals exp[-(f/21.5)1.46], where f is the spatial frequency in cycles per millimeter.

  20. Note: Non-gain microchannel plate gated framing camera

    SciTech Connect

    Cai Houzhi; Peng Xiang; Liu Jinyuan; Niu Lihong; Peng Wenda; Niu Hanben; Long Jinghua

    2011-05-15

    An x-ray framing camera using a non-gain microchannel plate (MCP) is reported in this article. The advantage of the non-gain MCP is the less transit time spread. The non-gain MCP gated framing camera has four microstrip line cathodes with 6 mm in width. The time domain reflectometry curves of the four microstrip lines are measured, which show that the characteristic impedance of each microstrip line is about 17 {Omega}. While the photocathode is driven by the gating electrical pulse with width of 125 ps and amplitude of -1.48 kV with -400 V bias, the measured exposure time of this camera is about 72 ps.

  1. Gated Microchannel Plate Photomultiplier For Longitudinal BeamDiagnostics

    SciTech Connect

    Byrd, John M.; De Santis, Stefano; Thurman-Keup, Randy

    2006-05-03

    A gated microchannel plate photomultiplier can be used as aneffective tool for measuring the longitudinal distribution of particlesaround most electron and high-energy proton rings. The broad availablewavelength range,low noise, and high sensitivity allow using such adevice for measuring the emitted synchrotron radiation and to extract thebeam intensity. The fast gate rise time can be used to reject strongsignals coming from filled RF buckets and avoid saturation of thephotocathode so that it is possible to monitor, with a high degree ofresolution, gaps in the machine fill and growth of parasitic bunches. Therugged characteristics of the device and its simplicity of use make itideal for all those applications where more complex and expensiveinstrumentation is not absolutely necessary. We present the experimentalresults obtained at the Advanced Light Source and on the Tevatron usingan Hamamatsu R5916U-50 series model.

  2. Collimator application for microchannel plate image intensifier resolution improvement

    DOEpatents

    Thomas, S.W.

    1996-02-27

    A collimator is included in a microchannel plate image intensifier (MCPI). Collimators can be useful in improving resolution of MCPIs by eliminating the scattered electron problem and by limiting the transverse energy of electrons reaching the screen. Due to its optical absorption, a collimator will also increase the extinction ratio of an intensifier by approximately an order of magnitude. Additionally, the smooth surface of the collimator will permit a higher focusing field to be employed in the MCP-to-collimator region than is currently permitted in the MCP-to-screen region by the relatively rough and fragile aluminum layer covering the screen. Coating the MCP and collimator surfaces with aluminum oxide appears to permit additional significant increases in the field strength, resulting in better resolution. 2 figs.

  3. Collimator application for microchannel plate image intensifier resolution improvement

    DOEpatents

    Thomas, Stanley W.

    1996-02-27

    A collimator is included in a microchannel plate image intensifier (MCPI). Collimators can be useful in improving resolution of MCPIs by eliminating the scattered electron problem and by limiting the transverse energy of electrons reaching the screen. Due to its optical absorption, a collimator will also increase the extinction ratio of an intensifier by approximately an order of magnitude. Additionally, the smooth surface of the collimator will permit a higher focusing field to be employed in the MCP-to-collimator region than is currently permitted in the MCP-to-screen region by the relatively rough and fragile aluminum layer covering the screen. Coating the MCP and collimator surfaces with aluminum oxide appears to permit additional significant increases in the field strength, resulting in better resolution.

  4. A high resolution delay line readout for microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, O. S. W.; Lampton, M. L.; Raffanti, R.

    1989-01-01

    Investigations are reported of delay line configurations used to encode photon event locations in microchannel plate (MCP) detectors. Several delay line schemes of planar and multilayer structure are discussed. The importance of the delay line substrate material is examined, and it is shown that the raw signals from delay lines are narrow (about 3-4 ns FWHM). The factors determining the delay line resolution are evaluated, and it is demonstrated that these are in agreement with measurements. Resolutions of about 18-micron FWHM have been achieved. Measurements of the linearity of the delay line readout show that event centroid locations deviate from perfect linearity by less than 50 microns, even with the very simple anode fabrication methods employed. The image stability has also been evaluated and it is shown that image shifts are less than one resolution element over a period of two months.

  5. Noise factor of microchannel plate with ion barrier film

    NASA Astrophysics Data System (ADS)

    Liu, Shu-lin; Shi, Feng; Li, Zhou-kui; Zhu, Yu-feng; Zhang, Ni; Gu, Yan; Sun, Jian-ning; Cong, Xiao-qing; Zhao, Hui-min; Pan, Jing-sheng; Qian, Yun-sheng; Zheng, Shao-cheng; Chang, Ben-kang

    2012-10-01

    According to definition of noise factor of microchannel plate and the test principle, the authors set up a test installation, and measured the numerical values of MCPs which were made of different materials and channel pore including no / with ion barrier film in input of MCP. In order to seek the technical approach to reduce noise factor of MCP at the same time, we tested and analyzed the relation between noise factor and MCP voltage, combined relation between signal-to-noise ratio of GEN Ⅲ image intensifier and MCP voltage, open out relation between signal-to-noise ratio of GEN Ⅲ image intensifier and noise factor of MCP with ion barrier film.

  6. Photon counting compressive depth mapping.

    PubMed

    Howland, Gregory A; Lum, Daniel J; Ware, Matthew R; Howell, John C

    2013-10-01

    We demonstrate a compressed sensing, photon counting lidar system based on the single-pixel camera. Our technique recovers both depth and intensity maps from a single under-sampled set of incoherent, linear projections of a scene of interest at ultra-low light levels around 0.5 picowatts. Only two-dimensional reconstructions are required to image a three-dimensional scene. We demonstrate intensity imaging and depth mapping at 256 × 256 pixel transverse resolution with acquisition times as short as 3 seconds. We also show novelty filtering, reconstructing only the difference between two instances of a scene. Finally, we acquire 32 × 32 pixel real-time video for three-dimensional object tracking at 14 frames-per-second. PMID:24104293

  7. Performance evaluation of a photon-counting intensified CCD

    NASA Astrophysics Data System (ADS)

    Bergamini, Paolo; Bonelli, Giuseppe; D'Angelo, Sergio; Latorre, Stefano; Poletto, Luca; Sechi, Giacomo; Tanzi, Enrico G.; Tondello, Giuseppe; Uslenghi, Michela

    1997-10-01

    The performance of a prototype photon counting imaging detector, being developed for the international UV space mission spectrum-UV, is presented. The detector is based on a 4-cm diameter, Z stack, high gain microchannel plate (MCP) intensifier endowed with a RbTe photocathode. The electron cascade generated by the MCP intensifier is transduced, via a phosphor screen and a 1:3.6 fiber optics reducer, into a 5 by 5 pixel(superscript 2), quasi-Gaussian charge distribution on a 15 micrometer, 512 by 512 pixel(superscript 2) format CCD matrix read out in the frame-transfer mode at 20 MHz, corresponding to 60 frame sec(superscript -1) in the full frame mode and to 220 frame sec(superscript -1) in the window (128 by 512 pixel(superscript 2)) mode. The data flow is acquired serially as to generate a 5 by 5 pixel(superscript 2) event sash that sweeps dynamically the CCD matrix at the 50 ns place of the readout clock. Each and every event sash is searched for the presence of events whose charge distribution lie within set thresholds and satisfy given morphological rules, i.e. a peaked charge profile. The centroid coordinates of identified events are subsequently determined with sub-pixel accuracy and stored in an external, high resolution memory. The data acquisition and processing system, based on field programmable gate array technology, is well able to resolve the front MCP pore geometry (10 micrometer diameter pores at 12 micrometer pitch).

  8. Nano-engineered ultra-high-gain microchannel plates

    NASA Astrophysics Data System (ADS)

    Beaulieu, D. R.; Gorelikov, D.; de Rouffignac, P.; Saadatmand, K.; Stenton, K.; Sullivan, N.; Tremsin, A. S.

    2009-08-01

    Highly localized and very fast electron amplification of microchannel plates (MCPs) enables a large number of high-resolution and high-sensitivity detection technologies, which provide spatial and/or temporal information for each detected photon/electron/ion/neutron. Although there has been significant progress in photocathode and readout technologies the MCPs themselves have not evolved much from the technology developed several decades ago. Substantial increases in the gain of existing MCP technology have been accomplished by utilizing state-of-the-art processes developed for nano-engineered structures. The gain of treated MCPs with aspect ratio of 40:1 is reproducibly measured to reach unprecedented values of 2×10 5. This gain enhancement is shown to be stable during MCP operation. In addition, the initial experiments indicate improved stability of gain as a function of extracted charge and MCP storage conditions. We also present results from a fully independent thin-film process for manufacturing non-lead glass MCPs using engineered thin films for both the resistive and emissive layers. These substrate-independent MCPs show high gain, less gain degradation with extracted charge, and greater pore-to-pore and plate-to-plate uniformity than has been possible with conventional lead glass structures.

  9. High event rate ROICs (HEROICs) for astronomical UV photon counting detectors

    NASA Astrophysics Data System (ADS)

    Harwit, Alex; France, Kevin; Argabright, Vic; Franka, Steve; Freymiller, Ed; Ebbets, Dennis

    2014-07-01

    The next generation of astronomical photocathode / microchannel plate based UV photon counting detectors will overcome existing count rate limitations by replacing the anode arrays and external cabled electronics with anode arrays integrated into imaging Read Out Integrated Circuits (ROICs). We have fabricated a High Event Rate ROIC (HEROIC) consisting of a 32 by 32 array of 55 μm square pixels on a 60 μm pitch. The pixel sensitivity (threshold) has been designed to be globally programmable between 1 × 103 and 1 × 106 electrons. To achieve the sensitivity of 1 × 103 electrons, parasitic capacitances had to be minimized and this was achieved by fabricating the ROIC in a 65 nm CMOS process. The ROIC has been designed to support pixel counts up to 4096 events per integration period at rates up to 1 MHz per pixel. Integration time periods can be controlled via an external signal with a time resolution of less than 1 microsecond enabling temporally resolved imaging and spectroscopy of astronomical sources. An electrical injection port is provided to verify functionality and performance of each ROIC prior to vacuum integration with a photocathode and microchannel plate amplifier. Test results on the first ROICs using the electrical injection port demonstrate sensitivities between 3 × 103 and 4 × 105 electrons are achieved. A number of fixes are identified for a re-spin of this ROIC.

  10. Optimization of microchannel plate multipliers for tracking minimum-ionizing particles

    SciTech Connect

    Oba, K.; Rehak, P.; Potter, D.

    1981-01-01

    The progress in development of special Microchannel Plates for particle tracking is reported. The requirements of (1) high spatial resolution; (2) high density of information; and (3) rate capability were found to be satisfied in a thick Microchannel Plate with a CsI coating operating in a focusing magnetic field. The measurements of the Microchannel Plate detection efficiency, gain and noise are presented for several detectors. The pictures of the passage and interaction of the high energy charged particles inside the detector are shown.

  11. High Throughput, High Yield Fabrication of High Quantum Efficiency Back-Illuminated Photon Counting, Far UV, UV, and Visible Detector Arrays

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh; Hoenk, M. E.; Carver, A. G.; Jones, T. J.; Greer, F.; Hamden, E.; Goodsall, T.

    2013-01-01

    In this paper we discuss the high throughput end-to-end post fabrication processing of high performance delta-doped and superlattice-doped silicon imagers for UV, visible, and NIR applications. As an example, we present our results on far ultraviolet and ultraviolet quantum efficiency (QE) in a photon counting, detector array. We have improved the QE by nearly an order of magnitude over microchannel plates (MCPs) that are the state-of-the-art UV detectors for many NASA space missions as well as defense applications. These achievements are made possible by precision interface band engineering of Molecular Beam Epitaxy (MBE) and Atomic Layer Deposition (ALD).

  12. Photon counts from stellar occultation sources

    NASA Technical Reports Server (NTRS)

    Buglia, James J.

    1987-01-01

    The feasibility of using stars as radiation sources for Earth atmospheric occultation experiments is investigated. Exoatmospheric photon counts of the order of 10 to the 6th power photons/sq cm/sec are realized for the 15 visually brightest stars. Most photon counts appear to be marginally detectable unless photomultiplier or cascade detection devices can be used.

  13. Cross strip anode readouts for microchannel plate detectors: developing flight qualified prototypes

    NASA Astrophysics Data System (ADS)

    Vallerga, John; Cooney, M.; Raffanti, R.; Varner, G.; Siegmund, O.; McPhate, J. B.; Tremsin, A.

    2014-01-01

    Photon counting microchannel plate (MCP) imagers have been the detector of choice for most UV astronomical missions over the last two decades (eg. EUVE, FUSE, COS on Hubble etc.). Over this duration, improvements in the MCP laboratory readout technology have resulted in better spatial resolution (x10), temporal resolution (x 1000) and output event rate (x100), all the while operating at lower gain (x 10) resulting in lower high voltage requirements and longer MCP lifetimes. One such technology is the parallel cross strip (PXS) readout. The PXS anode is a set of orthogonal conducting strips (80 x 80), typically spaced at a 635 micron pitch onto which charge clouds from MCP amplified events land. Each strip has its own charge sensitive amplifier that is sampled continuously by a dedicated analog to digital (ADC) converter at 50MHz. All of the 160 ADC digital output lines are fed into a field programmable gate array (FGPA) which can detect charge events landing on the strips, measure the peak amplitudes of those charge events and calculate their spatial centroid along with their time of arrival (X,Y,T). Laboratory versions of these electronics have demonstrated < 20 microns FWHM spatial resolution, count rates on the order of 2 MHz, and temporal resolution of ~ 1ns. In 2012 the our group at U.C. Berkeley, along with our partners at the U. Hawaii, received a Strategic Astrophysics Technology grant to raise the TRL of the PXS detector from 4 to 6 by replacing most of the 19" rack mounted, high powered electronics with application specific integrated circuits (ASICs) which will lower the power, mass and volume requirements of the PXS detector. We were also tasked to design and fabricate a "standard" 50mm square active area MCP detector incorporating these electronics that can be environmentally qualified for flight (temperature, vacuum, vibration). This detector design could then be modified for individual flight opportunities with a higher level of confidence than

  14. Monte Carlo simulations of microchannel plate detectors I: steady-state voltage bias results

    SciTech Connect

    Ming Wu, Craig Kruschwitz, Dane Morgan, Jiaming Morgan

    2008-07-01

    X-ray detectors based on straight-channel microchannel plates (MCPs) are a powerful diagnostic tool for two-dimensional, time-resolved imaging and timeresolved x-ray spectroscopy in the fields of laser-driven inertial confinement fusion and fast z-pinch experiments. Understanding the behavior of microchannel plates as used in such detectors is critical to understanding the data obtained. The subject of this paper is a Monte Carlo computer code we have developed to simulate the electron cascade in a microchannel plate under a static applied voltage. Also included in the simulation is elastic reflection of low-energy electrons from the channel wall, which is important at lower voltages. When model results were compared to measured microchannel plate sensitivities, good agreement was found. Spatial resolution simulations of MCP-based detectors were also presented and found to agree with experimental measurements.

  15. Measurement and analysis of signal to noise ratio for image intensifier tube, 18mm microchannel plate

    NASA Astrophysics Data System (ADS)

    Bai, Xiaofeng; Shi, Feng; Feng, Hanliang; Liu, Rong; Yin, Lei; He, Yingping

    2011-08-01

    Output signal to noise ratio is an important technical index for evaluating detectability of microchannel plate image intensifier tube, and the characteristic for detecting of microchannel plate image intensifier tube restricts the detectability of the night vision system. It has been proved in theory and in practice that the value of output signal to noise ratio of image intensifier tube equipped for night vision system decides the farthest distance and imaging definition of system which used under low light level in square root way. In this article, method and device for measuring the output signal to noise ratio of 18mm microchannel plate image intensifier tube has been introduced in detail. Output signal to noise ratio values of several 18mm microchannel plate image intensifier tube selected have been measured. Contacting to work condition of image intensifier tube, relationship between voltage of cathode, microchannel plate, screen and output signal to noise ratio of 18mm microchannel plate image intensifier tube bas been studied, which is available for other image intensifier tube.

  16. Readout for a large area neutron sensitive microchannel plate detector

    NASA Astrophysics Data System (ADS)

    Wang, Yiming; Yang, Yigang; Wang, Xuewu; Li, Yuanjing

    2015-06-01

    A neutron sensitive microchannel plate (MCP) detector was developed for neutron imaging on the beamline of a compact pulsed hadron source (CPHS). The detector was set up with a Wedge-and-Strip Anode (WSA) and a delay line anode readout to compare the spatial resolution and throughput with these two anodes. Tests show that the WSA readout is suitable for small area imaging with a spatial resolution of 200 μm with low energy X-rays in a 50 mm diameter MCP-WSA assembly. However, the spatial resolution deteriorated to ~2 mm in a 106 mm diameter MCP-WSA assembly because the noise caused by the parasitic capacitance is 10 times larger in the larger assembly than in the 50 mm diameter assembly. A 120 mm by 120 mm delay line anode was then used for the 106 mm MCP readout. The spatial resolution was evaluated for various voltages applied to the MCP V-stack, various readout voltages and various distances between the MCP V-stack rear face and the delay line. The delay line readout had resolutions of 65.6 μm in the x direction and 63.7 μm in the y direction and the throughput was greater than 600 kcps. The MCP was then used to acquire a neutron image of an USAF1951 Gd-mask.

  17. Lithography process of micropore array pattern in Si microchannel plates

    NASA Astrophysics Data System (ADS)

    Fan, Linlin; Han, Jun; Liu, Huan; Wang, Yawei

    2015-02-01

    Microchannel plates - MCPs - are the key component of the image intensifier. Compared with the traditional MCPs, the Si MCPs which are fabricated by micro-nanofabrication technologies have a high gain, low noise and high resolution etc. In this paper, the lithography process is studied in the process of fabricating periodic micropore array with 10 um pores and 5 um pitch on Si. The effects of exposure time, reversal bake temperature and development time on the lithography quality are focused. By doing a series of experiments the better result is got: the photoresist film is obtained at a low speed 500/15(rpm/s) and a high speed 4500/50(rpm/s); the soft bake time is 10min at 100°; the exposure time is 10s; the reversal bake time is 80s at 115°; the development time is 55s. By microscope observation and measurement, the pattern is complete and the size of the pattern is accure, it meets the requirement of lithography process for fabricating Si-MCP.

  18. Breakthrough in the lifetime of microchannel plate photomultipliers

    NASA Astrophysics Data System (ADS)

    Uhlig, F.; Britting, A.; Eyrich, W.; Lehmann, A.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Kumawat, H.; Lehmann, D.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Dodokhov, V. Kh.; Düren, M.; Etzelmüller, E.; Föhl, K.; Hayrapetyan, A.; Kröck, B.; Merle, O.; Rieke, J.; Cowie, E.; Keri, T.; Montgomery, R.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Schlimme, S.; Sfienti, C.; Thiel, M.; Bühler, P.; Gruber, L.; Marton, J.; Suzuki, K.

    2015-07-01

    Cherenkov detectors using the DIRC (Detection of Internally Reflected Cherenkov Light) principle are foreseen for particle identification in the P bar ANDA experiment at FAIR. Promising sensors for the detection of the Cherenkov light are the so-called micro-channel plate (MCP) photomultipliers (PMT). They have an excellent time resolution, can be operated at high gain for single photon detection and have a high resistivity against magnetic fields. The disadvantage of these devices was their limited lifetime, due to damage by feedback ions on the photocathode. The lifetime of various types of MCP-PMTs from different manufactures has been tested under conditions similar to that in the P bar ANDA experiment. The sensors are assembled in one setup, to ensure the same illumination conditions. The measurement procedure requires permanent monitoring of the illumination and interruptions after about 2-3 weeks to measure dark count rate, gain and spectral quantum efficiency of all sensors. Furthermore surface scans of the whole photocathode are done every 2-4 months to determine faster aging areas. The latest results show very good lifetime performance for MCP-PMTs, where the MCPs have been treated with the atomic layer deposition (ALD) technique.

  19. Application research on microchannel plate in new fields

    NASA Astrophysics Data System (ADS)

    Li, Yanhong; Chen, Xiaomei; Ni, Guoqiang

    2015-08-01

    Microchannel plate (MCP) is a photoelectron multiplier as the core component of low-level light (LLL) image intensifier. MCP has two-dimensional space, time, and energy resolution, fast response time, low background noise, wide dynamic range and high gain characteristics, as well as electrons, ions, UV and soft X-ray photon detection capability directly. In recent years, with the publication of foreign advanced technology and Chinese research staff in-depth understanding of MCP's unique characteristics, the applications of MCP have extended into many new fields accordingly in China. In addition to the image intensifier, the MCP can be used in deep space exploration and scientific experiments, detecting kinds of trace rays and particles, such as pulsars navigation, nuclear simulation diagnostics, UV, EUV, neutron, neutrino detection and imaging. North Night Vision Technology Co. Ltd (NVT) as the only unit possessing MCP production capacity in China is constantly working on improving, innovation and application research on MCP technology. In this paper, based on the researches on MCP in some new fields the NVT Company has undertaken and ongoing, the technological breakthroughs and application research progresses achieved are described.

  20. Analysis and modeling on noise factor of microchannel plate

    NASA Astrophysics Data System (ADS)

    Li, Yanhong; Chen, Xiaomei; Ni, Guoqiang

    2013-12-01

    The Microchannel plate (MCP) is the main noise source of low-level light (LLL) image intensifier. Material and the whole manufacturing process of MCP have great impact on the noises of MCP. In this paper, based on the physical mechanisms of MCP, noises of MCP are classified scientifically. By using the data obtained from the actual production and the process test, the regression equation of the noise figure of MCP is derived, and the theoretical model of MCP noise figure is established, including the background noise figure model caused by the dark current of the MCP primarily about the time of the alkali corrosion technic, the ion feedback induced noise figure model caused by the patterns of the MCP channel wall primarily about the time and temperature of the hydrogen reduction technic, and the electronic scattering noise figure model caused by the open area ratio of the MCP primarily about the time of the alkali corrosion technic. Guided by the theoretical model of noise figure, the methods of suppressing noises of MCP are obtained and the technics are optimized. Taking advantage of the new techniques, the noise figure of the third generation MCP has been reduced to below 1.8.

  1. Understanding the dynamic performance of microchannel plates in pulsed mode

    SciTech Connect

    Ray Thomas; Ming Wu; Nathan Joseph; Craig Kruschwitz; Gregroy A. Rochau

    2007-06-22

    The dynamic performance of a microchannel plate (MCP) is highly dependent on the high-voltage waveforms that are applied to it. Impedance mismatches in MCP detectors can significantly vary the waveforms on the MCP compared to the input pulses. High-voltage pulse waveforms launched onto surface coatings on the MCPs have historically been difficult and expensive to measure. Over the past few years, we have developed and tested techniques utilizing probes to measure the voltage propagation on the surface of MCPs. Square and Gaussian pulses with widths ranging from 200 ps to 2 ns have been applied. We have investigated the effects of coating thickness, microstrip width, and openended versus terminated strips. These data provide a wealth of knowledge that is enabling a better understanding of images recorded with these devices. This presentation discusses a method for measuring voltage profiles on the surface of the MCP and presents Monte Carlo simulations of the optical gate profiles based on the measured waveforms. Excellent agreement in the optical gate profiles have been achieved between the simulations and the experimental measurements using a short-pulse ultraviolet laser.

  2. Development of microchannel plates in advanced wind-tunnel instrumentation

    NASA Technical Reports Server (NTRS)

    Feller, W. Bruce

    1990-01-01

    Microchannel plate (MCP) electron multiplier dynamic range has been increased 3 to 4 orders of magnitude at ambient temperatures, through enhanced input count rate capability and reduced background or 'dark' noise. The previous upper limit of roughly 10(exp 7) - 10(exp 8) cm(exp -2)s(exp -1) at ambient has been extended to levels approach 10(exp 10) cm(exp -2)s(exp -1) under continuous dc operation. The lower limit, previously set by an irreducible background component (approximately 0.6 cm(exp -2)s(exp -1)), has been lowered to the cosmic ray limit of .01 cm(exp -2)s(exp -1). The high end improvement was achieved by conductively cooling a very low resistance MCP by bonding it to a heat sink, while maintaining pulse-counting operation with multianode readouts. The low-end improvement was achieved by removing all radioisotopes from the MCP matrix glass. The detectors will benefit optical and mass spectrometry, flow visualization, plasma diagnostics, magnetometry, and other high signal flux applications. Very low MCP background noise will benefit X-ray and UV astronomy, medical imaging, trace isotope mass spectrometry, and other applications where the signal flux is often extremely low.

  3. Development of a novel position-sensitive microchannel plate detector

    NASA Astrophysics Data System (ADS)

    Wiggins, Blake; Siwal, Davinder; Desouza, Romualdo

    2015-10-01

    Position sensitive microchannel plate (MCP) detectors which measure the position of an incident electron, ion, or photon, are useful in imaging applications. Recently, a novel detector, which utilizes an induced approach to provide position sensitivity, has been developed. In the prototype detector, using only the zero-crossing point of the inherently bipolar signals, a position resolution of 466 μm (FWHM) has been achieved. Implementing a differential readout may improve on this resolution. To realize this differential approach, a better understanding of the dependence of the induced signal shape on the position of the electron cloud is required. To characterize the dependence of the induced signal shape on position a resistive anode (RA) has been incorporated into the detector. The RA will allow determination of the centroid of the electron cloud. Factors impacting the position resolution obtained with the RA will be discussed and the achieved position resolution of 157 μm (FWHM) will be presented. Supported by the US DOE NNSA under Award No. DE-NA0002012.

  4. The gain, temporal resolution and magnetic-field immunity of microchannel plates

    NASA Astrophysics Data System (ADS)

    Fraser, G. W.

    1990-06-01

    The variation of microchannel plate (MCP) pulse gain, pulse transit time and transit time spread with channel diameter and length-to-diameter ratio is described, using a variable-spacing dynode model of the electron avalanche which accounts for the effects of wall charge saturation. The analysis includes a description of the response of a single microchannel to the prompt arrival of N electrons, thus providing a microscopic basis for the empirical laws currently used to describe the gain of two- or three-stage MCP multipliers. Preliminary results of microchannel plate gain fatigue "lifetests" conducted in software are described. Finally, an expression is derived for the gain of a microchannel plate, as a function of bias voltage, in the presence of a strong axial magnetic field. Here, as throughout the paper, the results of calculation are compared with experiment.

  5. SIS Detectors for Terahertz Photon Counting System

    NASA Astrophysics Data System (ADS)

    Ezawa, Hajime; Matsuo, Hiroshi; Ukibe, Masahiro; Fujii, Go; Shiki, Shigetomo

    2016-07-01

    An Intensity interferometer with photon counting detector is a candidate to realize a THz interferometer for astronomical observations. We have demonstrated that synthesis imaging is possible even with intensity interferometers. An SIS junction (or STJ) with low leakage current of 1 pA is a suitable device for photon counting detectors. Readout circuit utilizing FETs with low gate leakage, low gate capacitance, and fast response is discussed.

  6. Microchannel plates as detectors and amplifiers of x-ray images

    SciTech Connect

    Wiedwald, J.D.

    1992-08-01

    Two decades of development driven largely by military night vision applications has led to the availability of a wide selection of microchannel plates for use by the scientific community. Microchannel plates (MCPs) are electron multipliers which retain a high degree of spatial resolution making it possible to amplify electron images by factors of 1,000 or more. Plates having 40 mm diameter and intrinsic spatial resolution of 8 [mu]m are readily available. By coating the front surface of a microchannel plate with an x-ray sensitive photocathode material, x-ray images can be detected and amplified. While the detective quantum efficiency is relatively low, the low noise of the MCP (including the ability to construct images by single photon detection) and its high dynamic range make it suitable for some x-ray microscopy applications. The principles of MCP operation and typical performance are discussed. Examples of related applications and commercial capabilities are also presented.

  7. Microchannel plates as detectors and amplifiers of x-ray images

    SciTech Connect

    Wiedwald, J.D.

    1992-08-01

    Two decades of development driven largely by military night vision applications has led to the availability of a wide selection of microchannel plates for use by the scientific community. Microchannel plates (MCPs) are electron multipliers which retain a high degree of spatial resolution making it possible to amplify electron images by factors of 1,000 or more. Plates having 40 mm diameter and intrinsic spatial resolution of 8 {mu}m are readily available. By coating the front surface of a microchannel plate with an x-ray sensitive photocathode material, x-ray images can be detected and amplified. While the detective quantum efficiency is relatively low, the low noise of the MCP (including the ability to construct images by single photon detection) and its high dynamic range make it suitable for some x-ray microscopy applications. The principles of MCP operation and typical performance are discussed. Examples of related applications and commercial capabilities are also presented.

  8. A high-throughput, multi-channel photon-counting detector with picosecond timing

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Fraser, G. W.; Miller, G. M.; Ashton, T. J. R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.

    2009-06-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.

  9. Characterisation of low power readout electronics for a UV microchannel plate detector with cross-strip readout

    NASA Astrophysics Data System (ADS)

    Pfeifer, M.; Barnstedt, J.; Diebold, S.; Hermanutz, S.; Kalkuhl, C.; Kappelmann, N.; Schanz, T.; Schütze, B.; Werner, K.

    2014-07-01

    Astronomical observations in the ultraviolet (UV) wavelength range between 91 and 300nm are fundamental for the progress in astrophysics. Scientific success of future UV observatories raises the need for technology development in the areas of detectors, optical components, and their coatings. We develop solar blind and photon counting microchannel plate (MCP) UV detectors as a contribution to the progress in UV observation technology. New combinations of materials for the photocathode (see paper No. 9144-111, this volume, for details) as well as a cross-strip (XS) anode, having 64 strips on each layer, are used. Pre-amplification of the charge deposited onto the anode is performed by the Beetle chip designed at the Max-Planck-Institute for Nuclear Physics in Heidelberg for LHCb at CERN. It features 128 pre-amplifiers on one die and provides the analogue output in a four-fold serial stream. This stream is digitised by only four ADCs and is processed in an FPGA. This concept results in a reduced power consumption well below 10W as well as a reduced volume, weight and complexity of the readout electronics compared to existing cross-strip readouts. We developed an electronics prototype assembly and a setup in a vacuum chamber that is similar to the configuration in the final detector. The setup in the chamber is used for the burn-in of the MCPs as well as for tests of the readout electronics prototype assembly incorporating realistic signals. In this paper, information on the XS anodes as well as on the hybrid PCB carrying the Beetle pre-amplifier chip is shown. Details on the readout electronics design as well as details of the setup in the vacuum chamber are presented. An outlook to the next steps in the development process is given.

  10. Preliminary results with saturable microchannel array plates. [featuring positive ion feedback elimination

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1974-01-01

    Microchannel array plates with a performance comparable to that of a conventional channel electron multiplier have been obtained for the first time. These array plates employ an angled electrostatic field to inhibit the feedback of positive ions within the microchannels. Saturated output pulse height distributions with modal gain values in excess of 10 million have been obtained and stable operation demonstrated over a range of ambient pressures from 0.0000001 to 0.00008 torr. However, a time-dependent reduction in the gain has been observed with these experimental plates because of the accumulation of charge on the insulating strips which are inserted in the wall of the microchannel to establish the angled electrostatic field.

  11. Study on the strain in a silicon microchannel plate by micro-Raman analysis

    NASA Astrophysics Data System (ADS)

    Xu, Shaohui; Fang, Jiabing; Wu, Dajun; Zhang, Chi; Zhu, Yiping; Xiong, Dayuan; Wang, Lianwei; Yang, Pingxiong; Chu, Paul K.

    2016-05-01

    Micro-Raman analysis was used to identify the oxidation of a silicon microchannel plate (SiMCP) and it indicated that the bend phenomenon of the SiMCP was related to the release of stress and the volume expending of the silicon wall during the oxidation process.

  12. Flare star monitoring with a new photon-counting imaging detector

    SciTech Connect

    Casperson, D.

    1997-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A search for faint time-varying optical signals from the nighttime sky has been conducted in parallel with the programmatic development of a new type of imaging detector. This detector combines high spatial and high temporal resolution with single-photon-counting sensitivity over a 40-mm diameter large-area format. It is called a microchannel plate with crossed delay line readout, or MCP/CDL, and is placed in the focal plane of a telescope to collect time-resolved images from objects such as flaring stars and other astrophysical transient sources. A short-lived prototype MCP/CDL was used to provide the initial stellar images for this project, but the author could not generate any extended database with which to characterize flare star populations. Consequently, a supplementary experimental search for optical transients was begun, utilizing the NASA 3-meter-aperture Liquid Mirror Telescope (LMT) facility in Cloudcroft, NM.

  13. Capacity approaching codes for photon counting receivers

    NASA Astrophysics Data System (ADS)

    Mondin, Marina; Daneshgaran, Fred; Bari, Inam; Delgado, Maria Teresa

    2012-10-01

    [1] a low-complexity photon-counting receiver has been presented, which may be employed for weak-energy optical communications and which is typically modeled through its equivalent Binary Symmetric Channel (BSC) model. In this paper we consider the scheme described in [1], we model it as a time varying Binary Input-Multiple Output (BIMO) channel and analyze its performance in presence of soft-metric based capacity approaching iteratively decoded error correcting codes, and in particular using soft-metric based Low Density Parity Check (LDPC) codes. To take full advantage of such detector, soft information is generated in the form of Log-Likelihood Ratios (LLRs), achieving reduction in Bit Error Rate (BER) and Frame Error Rate (FER) with respect to classical BSC and Additive White Gaussian Noise (AWGN) channel models. Furthermore, we explore the limits of the achievable performance gains when using photon counting detectors as compared to the case when such detectors are not available. To this end, we find the classical capacity of the considered BIMO channel, clearly showing the potential gains that photon counting detectors can provide in the context of a realistic cost-effective scheme from an implementation point of view. Furthermore, we show that from a channel modeling point of view, we can observe that the BIMO channel can be approximated with an AWGN channel for high values of mean photon count Nc, while the AWGN model offers an unreliable result with a low mean photon number Nc, (i.e. with low raw BER). This effect is more evident with lower coding rates.

  14. Physical characterization of photon-counting tomosynthesis

    NASA Astrophysics Data System (ADS)

    Berggren, Karl; Lundqvist, Mats; Cederström, Björn; Danielsson, Mats E.; Fredenberg, Erik

    2015-03-01

    Tomosynthesis is emerging as a next generation technology in mammography. Combined with photon-counting detectors with the ability for energy discrimination, a novel modality is enabled — spectral tomosynthesis. Further advantages of photon-counting detectors in the context of tomosynthesis include elimination of electronic noise, efficient scatter rejection (in some geometries) and no lag. Fourier-based linear-systems analysis is a well-established method for optimizing image quality in two-dimensional x-ray systems. The method has been successfully adapted to threedimensional imaging, including tomosynthesis, but several areas need further investigation. This study focuses on two such areas: 1) Adaption of the methodology to photon-counting detectors, and 2) violation of the shift-invariance and stationarity assumptions in non-cylindrical geometries. We have developed a Fourier-based framework to study the image quality in a photon-counting tomosynthesis system, assuming locally linear, stationary, and shift-invariant system response. The framework includes a cascaded-systems model to propagate the modulation-transfer function (MTF) and noise-power spectrum (NPS) through the system. The model was validated by measurements of the MTF and NPS. High degrees of non-shift invariance and non-stationarity were observed, in particular for the depth resolution as the angle of incidence relative the reconstruction plane varied throughout the imaging volume. The largest effects on image quality in a given point in space were caused by interpolation from the inherent coordinate system of the x-rays to the coordinate system that was used for reconstruction. This study is part of our efforts to fully characterize the spectral tomosynthesis system, we intend to extend the model further to include the detective-quantum efficiency, observer modelling, and spectral effects.

  15. Micro-channel plate photon detector studies for the TORCH detector

    NASA Astrophysics Data System (ADS)

    Castillo García, L.; Brook, N.; Cowie, E. N.; Cussans, D.; Forty, R.; Frei, C.; Gao, R.; Gys, T.; Harnew, N.; Piedigrossi, D.; Van Dijk, M.

    2015-07-01

    The Time Of internally Reflected Cherenkov light (TORCH) detector is under development. Charged particle tracks passing through a 1 cm plate of quartz will generate the Cherenkov photons, and their arrival will be timed by an array of micro-channel plate photon detectors. As part of the TORCH R&D studies, commercial and custom-made micro-channel plate detectors are being characterized. The final photon detectors for this application are being produced in a three-phase program in collaboration with industry. Custom-made single-channel devices with extended lifetime have been manufactured and their performance is being systematically investigated in the laboratory. Optical studies for the preparation of beam and laboratory tests of a TORCH prototype are also underway.

  16. Optimizing the position resolution of a Z-stack microchannel plate resistive anode detector for low intensity signals

    SciTech Connect

    Wiggins, B. B.; Richardson, E.; Siwal, D.; Hudan, S.; Souza, R. T. de

    2015-08-15

    A method for achieving good position resolution of low-intensity electron signals using a microchannel plate resistive anode detector is demonstrated. Electron events at a rate of 7 counts s{sup −1} are detected using a Z-stack microchannel plate. The dependence of position resolution on both the distance and the potential difference between the microchannel plate and resistive anode is investigated. Using standard commercial electronics, a measured position resolution of 170 μm (FWHM) is obtained, which corresponds to an intrinsic resolution of 157 μm (FWHM)

  17. High resolution decoding techniques and single-chip decoders for multi-anode microchannel arrays

    NASA Technical Reports Server (NTRS)

    Kasle, David B.

    1989-01-01

    While the pixel size in a standard multianode microchannel array (MAMA) photon-counting detector is determined by the spacing of the anode array, the factor most fundamentally limiting pixel resolution is the spacing of the channels in the microchannel plate. Detector resolution can be improved by means of digitization followed by a centroiding procedure. The decoding hardware and the techniques for enhanced pixel resolution are presently discussed with a view to the factors of speed and complexity. A single-chip CMOS gate-array implementation of the decoder is devised and compared with existing multichip decoders' performance.

  18. Calibration of a microchannel plate based extreme ultraviolet grazing incident spectrometer at the Advanced Light Source.

    PubMed

    Bakeman, M S; van Tilborg, J; Sokollik, T; Baum, D; Ybarrolaza, N; Duarte, R; Toth, C; Leemans, W P

    2010-10-01

    We present the design and calibration of a microchannel plate based extreme ultraviolet spectrometer. Calibration was performed at the Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL). This spectrometer will be used to record the single shot spectrum of radiation emitted by the tapered hybrid undulator (THUNDER) undulator installed at the LOASIS GeV-class laser-plasma-accelerator. The spectrometer uses an aberration-corrected concave grating with 1200 lines/mm covering 11-62 nm and a microchannel plate detector with a CsI coated photocathode for increased quantum efficiency in the extreme ultraviolet. A touch screen interface controls the grating angle, aperture size, and placement of the detector in vacuum, allowing for high-resolution measurements over the entire spectral range. PMID:21034012

  19. Antiproton, positron, and electron imaging with a microchannel plate/phosphor detector

    SciTech Connect

    Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Bertsche, W.; Butler, E.; Charlton, M.; Humphries, A. J.; Joergensen, L. V.; Kerrigan, S. J.; Madsen, N.; Werf, D. P. van der; Bray, C. C.; Chapman, S.; Fajans, J.; Povilus, A. P.; Cesar, C. L.; Lambo, R.; Fujiwara, M. C.; Gill, D. R.; Collaboration: ALPHA Collaboration; and others

    2009-12-15

    A microchannel plate (MCP)/phosphor screen assembly has been used to destructively measure the radial profile of cold, confined antiprotons, electrons, and positrons in the ALPHA experiment, with the goal of using these trapped particles for antihydrogen creation and confinement. The response of the MCP to low energy (10-200 eV, <1 eV spread) antiproton extractions is compared to that of electrons and positrons.

  20. Characteristics of square pore and low noise microchannel plate stacks. [for x-ray astronomy

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald H. W.; Marsh, Daniel; Stock, Joseph; Gaines, Geoffrey

    1992-01-01

    An evaluation is conducted of several square-pore microchannel plates (MCPs) with either 25- or 85-micron diameter pores and 80:1 or 50:1 channel length/diameter ratio. Flat field measurements show that the 25-micron-pored MCPs, unlike those with 85-micron pores, exhibit periodic modulation; this may be due to the MCP stacking configurations. Attention is given to the relative quantum detection efficiency advantages of the two MCPs.

  1. Note: A timing micro-channel plate detector with backside fast preamplifier

    SciTech Connect

    Wang, Wei; Yu, Deyang Lu, Rongchun; Liu, Junliang; Cai, Xiaohong

    2014-03-15

    A timing micro-channel plate detector with a backside double-channel fast preamplifier was developed to avoid distortion during signal propagation from the anode to the preamplifier. The mechanical and electronic structure is described. The detector including its backside preamplifier is tested by a {sup 241}Am α-source and a rise time of ∼2 ns with an output background noise of 4 mV{sub rms} was achieved.

  2. Antiproton, positron, and electron imaging with a microchannel plate/phosphor detector.

    PubMed

    Andresen, G B; Bertsche, W; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jørgensen, L V; Kerrigan, S J; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A P; Pusa, P; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; van der Werf, D P; Yamazaki, Y

    2009-12-01

    A microchannel plate (MCP)/phosphor screen assembly has been used to destructively measure the radial profile of cold, confined antiprotons, electrons, and positrons in the ALPHA experiment, with the goal of using these trapped particles for antihydrogen creation and confinement. The response of the MCP to low energy (10-200 eV, <1 eV spread) antiproton extractions is compared to that of electrons and positrons. PMID:20073120

  3. Advances in photon counting for bioluminescence

    NASA Astrophysics Data System (ADS)

    Ingle, Martin B.; Powell, Ralph

    1998-11-01

    Photon counting systems were originally developed for astronomy, initially by the astronomical community. However, a major application area is in the study of luminescent probes in living plants, fishes and cell cultures. For these applications, it has been necessary to develop camera system capability at very low light levels -- a few photons occasionally -- and also at reasonably high light levels to enable the systems to be focused and to collect quality images of the object under study. The paper presents new data on MTF at extremely low photon flux and conventional ICCD illumination, counting efficiency and dark noise as a function of temperature.

  4. Fabrication and characterization of monolithically integrated microchannel plates based on amorphous silicon

    PubMed Central

    Franco, Andrea; Geissbühler, Jonas; Wyrsch, Nicolas; Ballif, Christophe

    2014-01-01

    Microchannel plates are vacuum-based electron multipliers for particle—in particular, photon— detection, with applications ranging from image intensifiers to single-photon detectors. Their key strengths are large signal amplification, large active area, micrometric spatial resolution and picosecond temporal resolution. Here, we present the first microchannel plate made of hydrogenated amorphous silicon (a-Si:H) instead of lead glass. The breakthrough lies in the possibility of realizing amorphous silicon-based microchannel plates (AMCPs) on any kind of substrate. This achievement is based on mastering the deposition of an ultra-thick (80–120 μm) stress-controlled a-Si:H layer from the gas phase at temperatures of about 200°C and micromachining the channels by dry etching. We fabricated AMCPs that are vertically integrated on metallic anodes of test structures, proving the feasibility of monolithic integration of, for instance, AMCPs on application-specific integrated circuits for signal processing. We show an electron multiplication factor exceeding 30 for an aspect ratio, namely channel length over aperture, of 12.5:1. This result was achieved for input photoelectron currents up to 100 pA, in the continuous illumination regime, which provides a first evidence of the a-Si:H effectiveness in replenishing the electrons dispensed in the multiplication process. PMID:24698955

  5. Developments in microchannel plate detectors for imaging X-ray astronomy

    NASA Astrophysics Data System (ADS)

    Fraser, G. W.; Whiteley, M. J.; Pearson, J. F.

    The authors present new results in four areas of microchannel plate (MCP) X-ray detector operation. The performance in pulse counting mode of MCPs with 8 micron channel diameters is reported. The effects on MCP quantum detection efficiency and energy discrimination of multiple CsI coatings are described. A new mode of operation of two-stage multipliers is evaluated. Replacing the conventional electron-accelerating inter-plate potential difference by a retarding field is shown to result in definite advantages with regard to X-ray energy discrimination and detector lifetime. The source of the MCP internal background is discussed.

  6. Performance studies of high gain photomultiplier having Z-configuration of microchannel plates

    NASA Astrophysics Data System (ADS)

    Lo, C. C.; Leskovar, B.

    1980-11-01

    The characteristics of a high gain type ITT F4129 photomultiplier having three microchannel plates in cascade for electron multiplications were investigated. These plates are in the Z-configuration. Measurements are given of the gain dark current, cathode quantum efficiency, anode pulse linearity, electron transit time, single and multiphoton time spreads, fatigue, and pulse height resolution. The gain as a function of transverse magnetic field was measured and discussed. Photomultiplier characteristics as a function of the input pulse repetition frequency were also investigated and discussed.

  7. Radiation hardness tests and characterization of the CLARO-CMOS, a low power and fast single-photon counting ASIC in 0.35 micron CMOS technology

    NASA Astrophysics Data System (ADS)

    Fiorini, M.; Andreotti, M.; Baldini, W.; Calabrese, R.; Carniti, P.; Cassina, L.; Cotta Ramusino, A.; Giachero, A.; Gotti, C.; Luppi, E.; Maino, M.; Malaguti, R.; Pessina, G.; Tomassetti, L.

    2014-12-01

    The CLARO-CMOS is a prototype ASIC that allows fast photon counting with 5 ns peaking time, a recovery time to baseline smaller than 25 ns, and a power consumption of less than 1 mW per channel. This chip is capable of single-photon counting with multi-anode photomultipliers and finds applications also in the read-out of silicon photomultipliers and microchannel plates. The prototype is realized in AMS 0.35 micron CMOS technology. In the LHCb RICH environment, assuming 10 years of operation at the nominal luminosity expected after the upgrade in Long Shutdown 2 (LS2), the ASIC must withstand a total fluence of about 6×1012 1 MeV neq /cm2 and a total ionizing dose of 400 krad. A systematic evaluation of the radiation effects on the CLARO-CMOS performance is therefore crucial to ensure long term stability of the electronics front-end. The results of multi-step irradiation tests with neutrons and X-rays up to the fluence of 1014 cm-2 and a dose of 4 Mrad, respectively, are presented, including measurement of single event effects during irradiation and chip performance evaluation before and after each irradiation step.

  8. Research on resistance properties of conductive layer materials of microchannel plate film dynode

    NASA Astrophysics Data System (ADS)

    Peng, Ling-ling; Duanmu, Qingduo; Yang, Ji-kai; Wang, Guo-zheng

    2015-03-01

    Silicon Microchannel Plate - MCP - is a new image multiplier devices based semiconductor process technology. Compared with the traditional glass MCP, Silicon MCP has an advantage in technology that the dynode materials and the substrate materials are separate. At the same time, the dynode preparation process and the microchannel arrays are also separate. Two different dynode conductive layer films are prepared: polysilicon conductive films prepared by low pressure chemical vapor deposition (LPCVD) and AZO thin films coated by atomic layer deposition (ALD). The conductive films coated by ALD are superior to dynode conductive films prepared by LPCVD. By comparing the resistivity of conductive polysilicon thin film and AZO thin film of different Al concentrations doped, AZO thin film of different Al concentrations doped is a more suitable conductive layer dynode material to satisfy the MCP conductive layer resistivity requirements.

  9. Three-dimensional photon counting double-random-phase encryption.

    PubMed

    Cho, Myungjin; Javidi, Bahram

    2013-09-01

    In this Letter, we present a three-dimensional (3D) photon counting double-random-phase encryption (DRPE) technique using passive integral imaging. A 3D photon counting DRPE can encrypt a 3D scene and provides more security and authentications due to photon counting Poisson nonlinear transformation on the encrypted image. In addition, 3D imaging allows verification of the 3D object at different depths. Preliminary results and performance evaluation have been presented. PMID:23988912

  10. Photon Counting Using Edge-Detection Algorithm

    NASA Technical Reports Server (NTRS)

    Gin, Jonathan W.; Nguyen, Danh H.; Farr, William H.

    2010-01-01

    New applications such as high-datarate, photon-starved, free-space optical communications require photon counting at flux rates into gigaphoton-per-second regimes coupled with subnanosecond timing accuracy. Current single-photon detectors that are capable of handling such operating conditions are designed in an array format and produce output pulses that span multiple sample times. In order to discern one pulse from another and not to overcount the number of incoming photons, a detection algorithm must be applied to the sampled detector output pulses. As flux rates increase, the ability to implement such a detection algorithm becomes difficult within a digital processor that may reside within a field-programmable gate array (FPGA). Systems have been developed and implemented to both characterize gigahertz bandwidth single-photon detectors, as well as process photon count signals at rates into gigaphotons per second in order to implement communications links at SCPPM (serial concatenated pulse position modulation) encoded data rates exceeding 100 megabits per second with efficiencies greater than two bits per detected photon. A hardware edge-detection algorithm and corresponding signal combining and deserialization hardware were developed to meet these requirements at sample rates up to 10 GHz. The photon discriminator deserializer hardware board accepts four inputs, which allows for the ability to take inputs from a quadphoton counting detector, to support requirements for optical tracking with a reduced number of hardware components. The four inputs are hardware leading-edge detected independently. After leading-edge detection, the resultant samples are ORed together prior to deserialization. The deserialization is performed to reduce the rate at which data is passed to a digital signal processor, perhaps residing within an FPGA. The hardware implements four separate analog inputs that are connected through RF connectors. Each analog input is fed to a high-speed 1

  11. Detecting small debris using a ground-based photon counting detector

    SciTech Connect

    Ho, C.; Priedhorsky, W.C.; Baron, M.H.

    1993-05-01

    We describe a sensitive technique for detecting small space debris that exploits a fast photon-counting imager. Microchannel plate detectors using crossed delay-line readout can achieve a resolution of 2048 {times} 2048 spatial pixels and a maximum count rate of about 10{sup 6} photons per second. A baseline debris-tracking system might couple this detector to a 16-cm aperture telescope. The detector yields x, y, and time information for each detected photon. When visualized in (x, y, t) space, photons from a fast-moving orbital object appear on a straight line. They can be distinguished from diffuse background photons, randomly scattered in the space, and star photons, which fall on a line with sidereal velocity. By searching for this unique signature, we can detect and track small debris objects. At dawn and dusk, a spherical object of 1.3 cm diameter at 400 km will reflect sunlight for an apparent magnitude of V {approx} 16. The baseline system would detect about 16 photons from this object as it crosses a 1 degree field of view in about 1 second. The Ene in (x, y, t) space will be significant in a diffuse background of {approximately} 10{sup 6} photons. We discuss the data processing scheme and line detection algorithm. The advantages of this technique are that one can (1) detect cm-size debris objects with a small telescope, and (2) detect debris moving with any direction and velocity. In this paper, we describe the progress in the development of detector and data acquisition system, the preparation for a field test for such a system, and the development and optimization of the data analysis algorithm. Detection sensitivity would currently be constrained by the capability of the data acquisition and the data processing systems, but further improvements could alleviate these bottlenecks.

  12. Detecting small debris using a ground-based photon counting detector

    SciTech Connect

    Ho, C.; Priedhorsky, W.C.; Baron, M.H.

    1993-01-01

    We describe a sensitive technique for detecting small space debris that exploits a fast photon-counting imager. Microchannel plate detectors using crossed delay-line readout can achieve a resolution of 2048 [times] 2048 spatial pixels and a maximum count rate of about 10[sup 6] photons per second. A baseline debris-tracking system might couple this detector to a 16-cm aperture telescope. The detector yields x, y, and time information for each detected photon. When visualized in (x, y, t) space, photons from a fast-moving orbital object appear on a straight line. They can be distinguished from diffuse background photons, randomly scattered in the space, and star photons, which fall on a line with sidereal velocity. By searching for this unique signature, we can detect and track small debris objects. At dawn and dusk, a spherical object of 1.3 cm diameter at 400 km will reflect sunlight for an apparent magnitude of V [approx] 16. The baseline system would detect about 16 photons from this object as it crosses a 1 degree field of view in about 1 second. The Ene in (x, y, t) space will be significant in a diffuse background of [approximately] 10[sup 6] photons. We discuss the data processing scheme and line detection algorithm. The advantages of this technique are that one can (1) detect cm-size debris objects with a small telescope, and (2) detect debris moving with any direction and velocity. In this paper, we describe the progress in the development of detector and data acquisition system, the preparation for a field test for such a system, and the development and optimization of the data analysis algorithm. Detection sensitivity would currently be constrained by the capability of the data acquisition and the data processing systems, but further improvements could alleviate these bottlenecks.

  13. Second generation airborne 3D imaging lidars based on photon counting

    NASA Astrophysics Data System (ADS)

    Degnan, John J.; Wells, David; Machan, Roman; Leventhal, Edward

    2007-09-01

    The first successful photon-counting airborne laser altimeter was demonstrated in 2001 under NASA's Instrument Incubator Program (IIP). This "micro-altimeter" flew at altitudes up to 22,000 ft (6.7 km) and, using single photon returns in daylight, successfully recorded high resolution images of the underlying topography including soil, low-lying vegetation, tree canopies, water surfaces, man-made structures, ocean waves, and moving vehicles. The lidar, which operated at a wavelength of 532 nm near the peak of the solar irradiance curve, was also able to see the underlying terrain through trees and thick atmospheric haze and performed shallow water bathymetry to depths of a few meters over the Atlantic Ocean and Assawoman Bay off the Virginia coast. Sigma Space Corporation has recently developed second generation systems suitable for use in a small aircraft or mini UAV. A frequency-doubled Nd:YAG microchip laser generates few microjoule, subnanosecond pulses at fire rates up to 22 kHz. A Diffractive Optical Element (DOE) breaks the transmit beam into a 10x10 array of quasi-uniform spots which are imaged by the receive optics onto individual anodes of a high efficiency 10x10 GaAsP segmented anode microchannel plate photomultiplier. Each anode is input to one channel of a 100 channel, multistop timer demonstrated to have a 100 picosecond timing (1.5 cm range) resolution and an event recovery time less than 2 nsec. The pattern and frequency of a dual wedge optical scanner, synchronized to the laser fire rate, are tailored to provide contiguous coverage of a ground scene in a single overflight.

  14. A fast readout and processing electronics for photon counting intensified charge-coupled device

    NASA Astrophysics Data System (ADS)

    Bergamini, P.; Bonelli, G.; Tanzi, E. G.; Uslenghi, M.; Poletto, L.; Tondello, G.

    2000-04-01

    The design features and the performances of a prototype photon counting imaging detector, being developed for the international ultraviolet (UV) space mission Spectrum UV, are presented. The photon counter is an intensified charge coupled device (ICCD) in which photon events, generating an electron cascade through a high gain microchannel plate (MCP) stack, are transduced, via a phosphor screen and a fiber optics reducer, into a 3×3 pixel2, quasi-Gaussian charge distributions on a 15×15 μm2,512×512 pixel2 format CCD matrix. The CCD is read out in the frame-transfer mode at a pixel rate of 19.75 MHz, and its output data flow is acquired serially as to generate a 3×3 pixel2 event sash that sweeps dynamically the CCD matrix at the 50.6 ns rate of the readout clock. Each and every event sash is searched for the presence of events whose charge content lie within proper limits and satisfy a given set of morphological rules, i.e., a single peak charge profile. The centroid coordinates of identified events are determined with subpixel accuracy (up to a 210 bin/pixel) and subsequently stored as photon list coordinate pairs. The data acquisition and processing system is based on field programmable gate array technology and is capable of satisfying the requirements of real-time operation. The modular construction of the data acquisition and processing electronics provides a great deal of flexibility for supporting advancements in CCD readout techniques (multiple output and higher clocking speed) and of MCPs (larger formats, smaller pore, and higher dynamic range). The results of the performance verification of the data acquisition and processing system integrated with a laboratory ICCD prototype are presented and discussed.

  15. Method and apparatus for enhancing microchannel plate data

    DOEpatents

    Thoe, Robert S.

    1987-01-01

    A method and apparatus for determining centroid channel locations is disclosed for use in a system activated by one or more multichannel plates (16,18) and including a linear diode array (24) providing channels of information 1, 2, . . . , n, . . . , N containing signal amplitudes A.sub.n. A source of analog A.sub.n signals (40), and a source of digital clock signals n (48), are provided. Non-zero A.sub.n values are detected in a discriminator (42). A digital signal representing p, the value of n immediately preceding that whereat A.sub.n takes its first non-zero value, is generated in a scaler (50). The analog A.sub.n signals are converted to digital in an analog to digital converter (44). The digital A.sub.n signals are added to produce a digital .SIGMA.A.sub.n signal in a full adder (46). Digital 1, 2, . . . , m signals representing the number of non-zero A.sub.n are produced by a discriminator pulse counter (52). Digital signals representing 1 A.sub.p+ 1, 2 A.sub.p+2, . . . , m A.sub.p+m are produced by pairwise multiplication in multiplier (54). These signals are added in multiplier summer (56) to produce a digital .SIGMA.nA.sub.n -p.SIGMA.A.sub.n signal. This signal is divided by the digital .SIGMA.A.sub.n signal in divider (58) to provide a digital (.SIGMA.nA.sub.n /.SIGMA.A.sub.n) -p signal. Finally, this last signal is added to the digital p signal in an offset summer (60) to provide .SIGMA.nA.sub.n /.SIGMA.A.sub.n, the centroid channel locations.

  16. Method and apparatus for enhancing microchannel plate data

    DOEpatents

    Thoe, R.S.

    1983-10-24

    A method and apparatus for determining centroid channel locations are disclosed for use in a system activated by one or more multichannel plates and including a linear diode array providing channels of information 1, 2, ...,n, ..., N containing signal amplitudes A/sub n/. A source of analog A/sub n/ signals, and a source of digital clock signals n, are provided. Non-zero A/sub n/ values are detected in a discriminator. A digital signal representing p, the value of n immediately preceding that whereat A/sub n/ takes its first non-zero value, is generated in a scaler. The analog A/sub n/ signals are converted to digital in an analog to digital converter. The digital A/sub n/ signals are added to produce a digital ..sigma..A/sub n/ signal in a full adder. Digital 1, 2, ..., m signals representing the number of non-zero A/sub n/ are produced by a discriminator pulse counter. Digital signals representing 1 A/sub p+1/, 2 A/sub p+2/, ..., m A/sub p+m/ are produced by pairwise multiplication in multiplier. These signal are added in multiplier summer to produce a digital ..sigma..nA/sub n/ - p..sigma..A/sub n/ signal. This signal is divided by the digital ..sigma..A/sub n/ signal in divider to provide a digital (..sigma..nA/sub n//..sigma..A/sub n/) -p signal. Finally, this last signal is added to the digital p signal in an offset summer to provide ..sigma..nA/sub n//..sigma..A/sub n/, the centroid channel locations.

  17. Determining time resolution of microchannel plate detectors for electron time-of-flight spectrometers.

    PubMed

    Zhang, Qi; Zhao, Kun; Chang, Zenghu

    2010-07-01

    The temporal resolution of a 40 mm diameter chevron microchannel plate (MCP) detector followed by a constant fraction discriminator and a time-to-digital converter was determined by using the third order harmonic of 25 fs Ti:sapphire laser pulses. The resolution was found to deteriorate from 200 to 300 ps as the total voltage applied on the two MCPs increased from 1600 to 2000 V. This was likely due to a partial saturation of the MCP and/or the constant fraction discriminator working with signals beyond its optimum range of pulse width and shape. PMID:20687710

  18. Extreme ultraviolet quantum efficiency of opaque alkali halide photocathodes on microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Everman, E.; Vallerga, J. V.; Lampton, M.

    1988-01-01

    Comprehensive measurements are presented for the quantum detection efficiency (QDE) of the microchannel plate materials CsI, KBr, KCl, and MgF2, over the 44-1800 A wavelength range. QDEs in excess of 40 percent are achieved by several materials in specific wavelength regions of the EUV. Structure is noted in the wavelength dependence of the QDE that is directly related to the valence-band/conduction-band gap energy and the onset of atomic-like resonant transitions. A simple photocathode model allows interpretation of these features, together with the QDE efficiency variation, as a function of illumination angle.

  19. Development of a low-cost fast-timing microchannel plate photodetector

    NASA Astrophysics Data System (ADS)

    Xie, Junqi; Byrum, Karen; Demarteau, Marcel; May, Edward; Wagner, Robert; Walters, Dean; Wang, Jingbo; Xia, Lei; Zhao, Huyue

    2016-07-01

    We report on the design, fabrication and characterization of a prototype 6 × 6cm2 microchannel plate photodetector with precise fast-timing measurement capability. The whole assembly is made of low cost glass materials with a bialkali photocathode top window. All components are hermetically sealed in vacuum. The prototype photodetector exhibits time resolution of 65 ps and 16 ps at single-photoelectron and multi-photoelectron levels, respectively. The spatial resolution reaches 0.54 mm for multi-photoelectron measurements. The bialkali photocathode exhibits a maximum quantum efficiency exceeding 20% with a uniformity of ± 40 %.

  20. Microchannel plate pinhole camera for 20 to 100 keV x-ray imaging

    SciTech Connect

    Wang, C.L.; Leipelt, G.R.; Nilson, D.G.

    1984-10-03

    We present the design and construction of a sensitive pinhole camera for imaging suprathermal x-rays. Our device is a pinhole camera consisting of four filtered pinholes and microchannel plate electron multiplier for x-ray detection and signal amplification. We report successful imaging of 20, 45, 70, and 100 keV x-ray emissions from the fusion targets at our Novette laser facility. Such imaging reveals features of the transport of hot electrons and provides views deep inside the target.

  1. Note: Determining the detection efficiency of excited neutral atoms by a microchannel plate detector

    SciTech Connect

    Berry, Ben; Zohrabi, M.; Hayes, D.; Ablikim, U.; Jochim, Bethany; Severt, T.; Carnes, K. D.; Ben-Itzhak, I.

    2015-04-15

    We present a method for determining the detection efficiency of neutral atoms relative to keV ions. Excited D* atoms are produced by D{sub 2} fragmentation in a strong laser field. The fragments are detected by a micro-channel plate detector either directly as neutrals or as keV ions following field ionization and acceleration by a static electric field. Moreover, we propose a new mechanism by which neutrals are detected. We show that the ratio of the yield of neutrals and ions can be related to the relative detection efficiency of these species.

  2. Optimizing the input and output transmission lines that gate the microchannel plate in a high-speed framing camera

    NASA Astrophysics Data System (ADS)

    Lugten, John B.; Brown, Charles G.; Piston, Kenneth W.; Beeman, Bart V.; Allen, Fred V.; Boyle, Dustin T.; Brown, Christopher G.; Cruz, Jason G.; Kittle, Douglas R.; Lumbard, Alexander A.; Torres, Peter; Hargrove, Dana R.; Benedetti, Laura R.; Bell, Perry M.

    2015-08-01

    We present new designs for the launch and receiver boards used in a high speed x-ray framing camera at the National Ignition Facility. The new launch board uses a Klopfenstein taper to match the 50 ohm input impedance to the ~10 ohm microchannel plate. The new receiver board incorporates design changes resulting in an output monitor pulse shape that more accurately represents the pulse shape at the input and across the microchannel plate; this is valuable for assessing and monitoring the electrical performance of the assembled framing camera head. The launch and receiver boards maximize power coupling to the microchannel plate, minimize cross talk between channels, and minimize reflections. We discuss some of the design tradeoffs we explored, and present modeling results and measured performance. We also present our methods for dealing with the non-ideal behavior of coupling capacitors and terminating resistors. We compare the performance of these new designs to that of some earlier designs.

  3. Urea separation in flat-plate microchannel hemodialyzer; experiment and modeling.

    PubMed

    Tuhy, Alana R; Anderson, Eric K; Jovanovic, Goran N

    2012-06-01

    Two flat-plate microchannel hemodialyzers were constructed consisting of two identical laminae separated by a 20[μm] thick ultrafiltration membrane (Gambro AN69). Each lamina contains a parallel array of microchannels 100[μm] deep, 200[μm] wide, and 5.6[cm] or 9.9[cm] in length respectively. Urea was removed from the aqueous stream containing 1.0[g] urea per liter de-ionized water in the blood side, by countercurrent contact with pure de-ionized water in the dialysate side of the flat-plate hemodialyzer. In all cases volumetric flow rate of water in the dialysate side was equal or less than the volumetric flow rate in the blood side, which is in large contrast to commercial applications of hollow-fiber hemodialyzers where dialysate flow is severalfold larger than blood flow rate. A three-dimensional finite volume mass transport model, built entirely from the first principles with no adjustable parameters, was written in FORTRAN. The results of the mathematical model excellently predict experimental results. The fractional removals of urea predicted by the model are within 2.7%-11% of experimentally obtained values for different blood and dialysate velocities/flow rates in microchannels, and for different transmembrane pressures. The overall mass transfer coefficient was calculated using the urea outlet concentrations obtained at various average velocities (1.0-5.0[cm/s]) in the blood and dialysate, and two nominal transmembrane pressures (∆P(tm) = 0 and 10,000.[Pa]). Overall mass transfer coefficients obtained experimentally ranged from 0.068 to 0.14 [cm/min]. The numerical model predicted an average overall mass transfer coefficient of 0.08 [cm/min]. This value is 60% higher than those found in commercial dialyzers (~0.05[cm/min]). PMID:22374475

  4. The LAMBDA photon-counting pixel detector

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Lange, S.; Smoljanin, S.; Hirsemann, H.; Graafsma, H.; Epple, M.; Zuvic, M.; Lampert, M.-O.; Fritzsch, T.; Rothermund, M.

    2013-03-01

    The Medipix3 photon-counting detector chip has a number of novel features that are attractive for synchrotron experiments, such as a high frame rate with zero dead time and high spatial resolution. DESY are developing a large-area Medipix3-based detector array (LAMBDA). A single LAMBDA module consists of 2 by 6 Medipix3 chips on a ceramic carrier board, bonded to either a single large silicon sensor or two smaller high-Z sensors. The readout system fits behind the carrier board to allow module tiling, and uses a large on-board RAM and multiple 10 Gigabit Ethernet links to permit high-speed readout. Currently, the first large silicon modules have been constructed and read out at low speed, and the firmware for highspeed readout is being developed. In addition to these silicon sensors, we are developing a germanium hybrid pixel detector in collaboration with Canberra for higher-energy beamlines. Canberra have produced a set of 256-by-256-pixel planar germanium sensors with 55μm pitch, and these are currently being bonded to Medipix3 readout chips by Fraunhofer IZM (Berlin).

  5. Multidimensional time-correlated single photon counting

    NASA Astrophysics Data System (ADS)

    Becker, Wolfgang; Bergmann, Axel

    2006-10-01

    Time-correlated single photon counting (TCSPC) is based on the detection of single photons of a periodic light signal, measurement of the detection time of the photons, and the build-up of the photon distribution versus the time in the signal period. TCSPC achieves a near ideal counting efficiency and transit-time-spread-limited time resolution for a given detector. The drawback of traditional TCSPC is the low count rate, long acquisition time, and the fact that the technique is one-dimensional, i.e. limited to the recording of the pulse shape of light signals. We present an advanced TCSPC technique featuring multi-dimensional photon acquisition and a count rate close to the capability of currently available detectors. The technique is able to acquire photon distributions versus wavelength, spatial coordinates, and the time on the ps scale, and to record fast changes in the fluorescence lifetime and fluorescence intensity of a sample. Biomedical applications of advanced TCSPC techniques are time-domain optical tomography, recording of transient phenomena in biological systems, spectrally resolved fluorescence lifetime imaging, FRET experiments in living cells, and the investigation of dye-protein complexes by fluorescence correlation spectroscopy. We demonstrate the potential of the technique for selected applications.

  6. Enabling photon counting detectors with dynamic attenuators

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-03-01

    Photon-counting x-ray detectors (PCXDs) are being investigated as a replacement for conventional x-ray detectors because they promise several advantages, including better dose efficiency, higher resolution and spectral imaging. However, many of these advantages disappear when the x-ray flux incident on the detector is too high. We recently proposed a dynamic, piecewise-linear attenuator (or beam shaping filter) that can control the flux incident on the detector. This can restrict the operating range of the PCXD to keep the incident count rate below a given limit. We simulated a system with the piecewise-linear attenuator and a PCXD using raw data generated from forward projected DICOM files. We investigated the classic paralyzable and nonparalyzable PCXD as well as a weighted average of the two, with the weights chosen to mimic an existing PCXD (Taguchi et al, Med Phys 2011). The dynamic attenuator has small synergistic benefits with the nonparalyzable detector and large synergistic benefits with the paralyzable detector. Real PCXDs operate somewhere between these models, and the weighted average model still shows large benefits from the dynamic attenuator. We conclude that dynamic attenuators can reduce the count rate performance necessary for adopting PCXDs.

  7. Three-dimensional particle-in-cell simulation on gain saturation effect of microchannel plate

    NASA Astrophysics Data System (ADS)

    Wang, Qiangqiang; Yuan, Zheng; Cao, Zhurong; Deng, Bo; Chen, Tao; Deng, Keli

    2016-07-01

    We present here the results of the simulation work, using the three-dimensional particle-in-cell method, on the performance of the lead glass microchannel plate under saturated state. We calculated the electron cascade process with different DC bias voltages under both self-consistent condition and non-self-consistent condition. The comparative results have demonstrated that the strong self-consistent field can suppress the cascade process and make the microchannel plate saturated. The simulation results were also compared to the experimental data and good agreement was obtained. The simulation results also show that the electron multiplication process in the channel is accompanied by the buildup process of positive charges in the channel wall. Though the interactions among the secondary electron cloud in the channel, the positive charges in the channel wall, and the external acceleration field can make the electron-surface collision more frequent, the collision energy will be inevitably reduced, thus the electron gain will also be reduced.

  8. Three-dimensional particle-in-cell simulation on gain saturation effect of microchannel plate.

    PubMed

    Wang, Qiangqiang; Yuan, Zheng; Cao, Zhurong; Deng, Bo; Chen, Tao; Deng, Keli

    2016-07-01

    We present here the results of the simulation work, using the three-dimensional particle-in-cell method, on the performance of the lead glass microchannel plate under saturated state. We calculated the electron cascade process with different DC bias voltages under both self-consistent condition and non-self-consistent condition. The comparative results have demonstrated that the strong self-consistent field can suppress the cascade process and make the microchannel plate saturated. The simulation results were also compared to the experimental data and good agreement was obtained. The simulation results also show that the electron multiplication process in the channel is accompanied by the buildup process of positive charges in the channel wall. Though the interactions among the secondary electron cloud in the channel, the positive charges in the channel wall, and the external acceleration field can make the electron-surface collision more frequent, the collision energy will be inevitably reduced, thus the electron gain will also be reduced. PMID:27475552

  9. Microchannel Plates for the UVCS and SUMER Instruments on the SOHO Satellite

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Gummin, M. A.; Sasseen, T.; Jelinsky, P.; Gaines, G. A.; Hull, J.; Stock, J. M.; Edgar, M.; Welsh, B.; Jelinsky, S.; Vallerga, J.

    1995-01-01

    The microchannel plates for the detectors in the SUMER (Solar Ultraviolet Measurements of Emitted Radiation) and UVCS (Ultraviolet Coronograph Spectrometer) instruments aboard the Solar Orbiting Heliospheric Observatory (SOHO) mission to be launched in late 1995 are described. A low resistance Z stack of microchannel plates (MCP's) is employed in a detector format of 27 mm x 10 mm using a multilayer cross delay line anode (XDL) with 1024 x 360 digitized pixels. The MCP stacks provide gains of greater than 2 x 10(exp 7) with good pulse height distributions (as low as 25% FWHM) under uniform flood illumination. Background rates of approx. 0.6 event cm(exp -2) sec(exp -1) are obtained for this configuration. Local counting rates up to about 800 events/pixel/sec have been achieved with little drop of the MCP gain. MCP preconditioning results are discussed, showing that some MCP stacks fail to have gain decreases when subjected to a high flux UV scrub. Also, although the bare MCP quantum efficiencies are close to those expected (10%), we found that the long wavelength response of KBr photocathodes could be substantially enhanced by the MCP scrubbing process. Flat field images are characterized by a low level of MCP fixed pattern noise and are stable. Preliminary calibration results for the instruments are shown.

  10. Calculating and optimizing inter-electrode capacitances of charge division microchannel plate detectors

    NASA Astrophysics Data System (ADS)

    Xing, Yan; Chen, Bo; Zhang, Hong-Ji; Wang, Hai-Feng; He, Ling-Ping; Jin, Fang-Yuan

    2016-04-01

    Based on the principle of charge division microchannel plate detectors, the inter-electrode capacitances of charge division anodes which are related to electronic noise of the charge sensitive amplifier and crosstalk effect of the anode are presented. Under all the requirements of charge division microchannel plate detectors such as the imaging linearity and spatial resolution, decreasing the inter-electrode capacitances is one way to improve the imaging performance. In this paper, we illustrate the simulation process of calculating the inter-electrode capacitances. Moreover, a Wedge and Strip (WSZ) anode is fabricated with the picosecond laser micromachining process. Comparing the simulated capacitances and measured capacitances, the three-dimensional finite element method is proved to be valid. Furthermore, by adjusting the design parameters of the anode, the effects of the substrate permittivity, insulation width and the size of pitch on the inter-electrode capacitances have been analysed. The structure of the charge division anode has been optimized based on the simulation data.

  11. An embedded microchannel in a MEMS plate resonator for ultrasensitive mass sensing in liquid.

    PubMed

    Agache, V; Blanco-Gomez, G; Baleras, F; Caillat, P

    2011-08-01

    A mass sensor innovative concept is presented here, based on a hollow plate Micro Electro Mechanical System (MEMS) resonator. This approach consists in running a solution through an embedded microchannel, while the plate resonator is actuated according to a Lamé-mode by electrostatic coupling in dry environment. The experimental results have shown a clear relationship between the measured shift of the resonance frequency and the sample solution density. Additionally, depending on the channel design and the solution properties, the quality factor (Q-factor) was noticed maintaining its level and even substantial improvement in particular cases. Resonators demonstrate resonance frequencies close to 78 MHz and Q-factor of a few thousands for liquid phase detection operating at ambient temperature and atmospheric pressure. Frequency fluctuations study revealed a 13 Hz instability level, equivalent to 1.5 fg in mass. Using a fully electronic readout configuration, a mass responsivity of ca. 850 fg kHz(-1) was monitored. PMID:21660349

  12. High resolution, two-dimensional imaging, microchannel plate detector for use on a sounding rocket experiment

    NASA Technical Reports Server (NTRS)

    Bush, Brett C.; Cotton, Daniel M.; Siegmund, Oswald H.; Chakrabarti, Supriya; Harris, Walter; Clarke, John

    1991-01-01

    We discuss a high resolution microchannel plate (MCP) imaging detector to be used in measurements of Doppler-shifted hydrogen Lyman-alpha line emission from Jupiter and the interplanetary medium. The detector is housed in a vacuum-tight stainless steel cylinder (to provide shielding from magnetic fields) with a MgF2 window. Operating at nominal voltage, the four plate configuration provides a gain of 1.2 x 10 exp 7 electrons per incident photon. The wedge-and-strip anode has two-dimensional imaging capabilities, with a resolution of 40 microns FWHM over a one centimeter diameter area. The detector has a high quantum efficiency while retaining a low background rate. A KBr photocathode is used to enhance the quantum efficiency of the bare MCPs to a value of 35 percent at Lyman-alpha.

  13. Microchannel plate as a novel bipolar electrode for high-performance enrichment of anions.

    PubMed

    Cao, Zhen; Yobas, Levent

    2013-07-01

    Microchannel plate (MCP), a high-porosity glass membrane used as an electron multiplier in analytical/scientific instruments for the detection of energetic photons and charged particles is demonstrated here as a highly effective bipolar electrode (BPE) for electrokinetic focusing of anions. Assembled between a pair of microfluidic channels filled with an electrolyte buffer and subjected to a sufficient bias potential, MCP supports faradaic reactions, owing to its semiconducting characteristics. Thousands of microcapillary tubes fused together define MCP and act in unison such that each microcapillary serves as a tiny BPE surrounding an infinitesimal element of bulk electrolyte with a large surface-area-to-volume ratio and hence performs highly effective as compared to a planar electrode inlaid into a microchannel. This performance has been validated here where concentration enrichment of a fluorescent tracer has been demonstrated at a remarkable rate of up to 175-fold/s exceeding those reported for planar BPEs. We attribute such high performance to the rapid onset of ion-depletion zone and subsequent steep field gradient, signifying the high-porosity structure of MCP as an effective BPE. PMID:24024243

  14. Cascaded systems analysis of photon counting detectors

    PubMed Central

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W.; Taguchi, K.; Lundqvist, M.; Fredenberg, E.; Carrino, J. A.; Siewerdsen, J. H.

    2014-01-01

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at

  15. Cascaded systems analysis of photon counting detectors

    SciTech Connect

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W.; Taguchi, K.; Carrino, J. A.; Lundqvist, M.; Fredenberg, E.; Siewerdsen, J. H.

    2014-10-15

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f{sub 50} (spatial

  16. A microcontroller-based failsafe for single photon counting modules

    NASA Astrophysics Data System (ADS)

    Gordon, Matthew P.; Selvin, Paul R.

    2003-02-01

    Avalanche photodiode-based single photon counting modules (SPCMs) can be damaged by exposure to excessive light levels. A flexible and inexpensive failsafe is presented which has been shown to protect SPCMs from light levels far exceeding the damage threshold.

  17. Multiple-Event, Single-Photon Counting Imaging Sensor

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Cunningham, Thomas J.; Sun, Chao; Wang, Kang L.

    2011-01-01

    The single-photon counting imaging sensor is typically an array of silicon Geiger-mode avalanche photodiodes that are monolithically integrated with CMOS (complementary metal oxide semiconductor) readout, signal processing, and addressing circuits located in each pixel and the peripheral area of the chip. The major problem is its single-event method for photon count number registration. A single-event single-photon counting imaging array only allows registration of up to one photon count in each of its pixels during a frame time, i.e., the interval between two successive pixel reset operations. Since the frame time can t be too short, this will lead to very low dynamic range and make the sensor merely useful for very low flux environments. The second problem of the prior technique is a limited fill factor resulting from consumption of chip area by the monolithically integrated CMOS readout in pixels. The resulting low photon collection efficiency will substantially ruin any benefit gained from the very sensitive single-photon counting detection. The single-photon counting imaging sensor developed in this work has a novel multiple-event architecture, which allows each of its pixels to register as more than one million (or more) photon-counting events during a frame time. Because of a consequently boosted dynamic range, the imaging array of the invention is capable of performing single-photon counting under ultra-low light through high-flux environments. On the other hand, since the multiple-event architecture is implemented in a hybrid structure, back-illumination and close-to-unity fill factor can be realized, and maximized quantum efficiency can also be achieved in the detector array.

  18. Using pulse shape analysis to improve the position resolution of a resistive anode microchannel plate detector

    NASA Astrophysics Data System (ADS)

    Siwal, Davinder; Wiggins, B. B.; deSouza, R. T.

    2015-12-01

    Digital signal processing techniques were employed to investigate the joint use of charge division and risetime analyses for the resistive anode (RA) coupled to a microchannel plate detector (MCP). In contrast to the typical approach of using the relative charge at each corner of the RA, this joint approach results in a significantly improved position resolution. A conventional charge division analysis utilizing analog signal processing provides a measured position resolution of 170 μm (FWHM). By using the correlation between risetime and position we were able to obtain a measured resolution of 92 μm (FWHM), corresponding to an intrinsic resolution of 64 μm (FWHM) for a single Z-stack MCP detector.

  19. Improved time response for large area microchannel plate photomultiplier tubes in fusion diagnostics

    SciTech Connect

    Milnes, J. S. Conneely, T. M.; Howorth, J.; Horsfield, C. J.

    2014-11-15

    Fusion diagnostics that utilise high speed scintillators often need to capture a large area of light with a high degree of time accuracy. Microchannel plate (MCP) photomultiplier tubes (PMTs) are recognised as the leading device for capturing fast optical signals. However, when manufactured in their traditional proximity focused construction, the time response performance is reduced as the active area increases. This is due to two main factors: the capacitance of a large anode and the difficulty of obtaining small pore MCPs with a large area. Collaboration between Photek and AWE has produced prototype devices that combine the excellent time response of small area MCP-PMTs with a large active area by replacing the traditional proximity-gap front section with an electro-optically focused photocathode to MCP. We present results from both single and double MCP devices with a 40 mm diameter active area and show simulations for the 100 mm device being built this year.

  20. The effect of gain variation in micro-channel plates on gamma-ray energy resolution

    PubMed Central

    Han, Ling; Barrett, Harrison H.; Barber, H. Bradford; Furenlid, Lars R.

    2015-01-01

    A Monte Carlo simulation of micro-channel plate (MCP) with particular interest in its effect on energy resolution performance is presented. Important physical processes occurring in MCP channels are described and modeled, including secondary electron (SE) yield, SE emission, and primary electron reflection. The effects causing channel saturation are also introduced. A two dimensional Monte Carlo simulation is implemented under the assumption of unsaturated channel. Simulation results about basic MCP performances and especially gain and energy resolution performances are presented and analyzed. It’s found that energy resolution as an intrinsic property of MCP cannot be improved simply by adjusting system parameters; however it can be improved by increasing input signal or number of photoelectrons (PEs) in the context of image intensifier. An initial experiment with BazookaSPECT detector and CsI(Tl) scintillator is performed to validate and correlate with the simulation results and good agreement is achieved. PMID:26339114

  1. Two-dimensional ultraviolet imagery with a microchannel-plate/resistive-anode detector

    NASA Technical Reports Server (NTRS)

    Opal, C. B.; Feldman, P. D.; Weaver, H. A.; Mcclintock, J. A.

    1979-01-01

    An imaging ultraviolet detector has been designed for use with a precision pointed telescope flown on a sounding rocket. Resolution of better than 80 microns over a field of 5 mm has been achieved. The ultraviolet image is converted to electrons at the front surface of a CsI coated chevron microchannel-plate electron multiplier. For each photoelectron, the multiplier produces a burst of about 3,000,000 electrons, which impinges on a tellurium-coated resistive anode with four evaporated hyperbolic readout electrodes. The sizes of the four resulting output pulses are digitized to 10 bit accuracy and telemetered to the ground, where they are divided in pairs to give the x and y coordinates of the photoelectron event. The coordinates are used to generate a picture in real time, and are recorded for computer processing later. The detector was successfully flown in December 1978. Good images of Jupiter and Capella in hydrogen Lyman alpha emission were obtained.

  2. Simulating the growth of an charge cloud for a microchannel plate detector

    NASA Astrophysics Data System (ADS)

    Siwal, Davinder; Wiggins, Blake; Desouza, Romualdo

    2015-10-01

    Position sensitive microchannel plate (MCP) detectors have a variety of applications in the fields of astronomy, medical imaging, neutron imaging, and ion beam tracking. Recently, a novel approach has been implemented to detect the position of an incident particle. The charge cloud produced by the MCP induces a signal on a wire harp placed between the MCP and an anode. On qualitative grounds it is clear that in this detector the induced signal shape depends on the size of the electron cloud. A detailed study has therefore been performed to investigate the size of the charge cloud within the MCP and its growth as it propagates from the MCP to the anode. A simple model has been developed to calculate the impact of charge repulsion on the growth of the electron cloud. Both the details of the model and its predictions will be presented. Supported by the US DOE NNSA under Award No. DE-NA0002012.

  3. Response of microchannel plates to single particles and to electromagnetic showers

    NASA Astrophysics Data System (ADS)

    Brianza, L.; Cavallari, F.; Del Re, D.; Gelli, S.; Ghezzi, A.; Gotti, C.; Govoni, P.; Jorda Lopez, C.; Martelli, A.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Pernié, L.; Pigazzini, S.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Tabarelli de Fatis, T.; Trevisani, N.

    2015-10-01

    We report on the response of microchannel plates (MCPs) to single relativistic particles and to electromagnetic showers. Particle detection by means of secondary emission of electrons at the MCP surface has long been proposed and is used extensively in ion time-of-flight mass spectrometers. What has not been investigated in depth is their use to detect the ionizing component of showers. The time resolution of MCPs exceeds anything that has been previously used in calorimeters and, if exploited effectively, could aid in the event reconstruction at high luminosity colliders. Several prototypes of photodetectors with the amplification stage based on MCPs were exposed to cosmic rays and to 491 MeV electrons at the INFN-LNF Beam-Test Facility. The time resolution and the efficiency of the MCPs are measured as a function of the particle multiplicity, and the results used to model the response to high-energy showers.

  4. Further investigation of CsI-coated microchannel plate quantum efficiencies

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.

    1988-01-01

    Previously, pulse-counting detection efficiencies measured for CsI-coated microchannel plate (MCP) detectors (two-stage chevron configuration with a single collecting anode) have been reported to be 15-20 percent near Lyman-alpha (1216 A), compared to typical 65 percent quantum yields of opaque CsI photocathodes. To investigate the possibility that an improvement in quantum yield could result from use of MCPs with a bias angle of about 25 deg instead of 8 deg as used previously, the previous measurements were reported with new MCPs having the larger bias angle. No significant improvement in detection efficiency was achieved; the new detector tests still yielded maximum efficiencies of the order of 20 percent near 1216 A.

  5. Direct tests of a pixelated microchannel plate as the active element of a shower maximum detector

    DOE PAGESBeta

    Apresyan, A.; Los, S.; Pena, C.; Presutti, F.; Ronzhin, A.; Spiropulu, M.; Xie, S.

    2016-05-07

    One possibility to make a fast and radiation resistant shower maximum detector is to use a secondary emitter as an active element. We report our studies of microchannel plate photomultipliers (MCPs) as the active element of a shower-maximum detector. We present test beam results obtained using Photonis XP85011 to detect secondary particles of an electromagnetic shower. We focus on the use of the multiple pixels on the Photonis MCP in order to find a transverse two-dimensional shower distribution. A spatial resolution of 0.8 mm was obtained with an 8 GeV electron beam. As a result, a method for measuring themore » arrival time resolution for electromagnetic showers is presented, and we show that time resolution better than 40 ps can be achieved.« less

  6. An Application of Micro-channel Plate Photomultiplier Tube to Positron Emission Tomography

    PubMed Central

    Kim, H.; Chen, C.-T.; Frisch, H.; Tang, F.; Kao, C.-M.

    2012-01-01

    We are developing a Time-of-Flight Positron Emission Tomography detector using flat panel micro-channel plate photomultiplier tubes (MCP PMT). The high-speed waveform sampling data acquisition is adopted to exploit the fast time response of MCP PMT efficiently by using transmission-line readout scheme. To demonstrate the feasibility of the proposed detector, prototype detector modules were built using Photonis XP85022 MCP PMT, transmission-line board (TL), and high-speed waveform sampling electronics equipped with DRS4 chips. The MCP/TL module was coupled to single LYSO crystal, and experimental tests have been conducted in a coincidence setup to measure the responses to 511 keV annihilation photon. The details of the prototype module, experimental setup, and the preliminary results are presented and discussed. PMID:23227135

  7. Super capacitance properties of SnO2 coated nickel/silicon microchannel plates

    NASA Astrophysics Data System (ADS)

    Hui, Keshuang; Zhu, Yiping; Xu, Shaohui; Wang, Lianwei; Chu, Paul K.

    2013-12-01

    Supercapacitor is achieved by combining tin oxide with three dimensional silicon microchannel plates (Si-MCPs) deposited with nickel film. Electro deposition is applied to deposit the tin oxide on the Ni/Si-MCPs structure followed by sintering at 450°C. The structure and morphology of the samples are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties are investigated in 1 M Na2SO4 solution by cyclic voltammetry, galvanostatic charging-discharging, and electrochemical impedance spectroscopy. The highest specific capacitance of 0.814 F/cm2 (171.37 F/g) is achieved from the sample deposited for 2 h followed by sintering for 2 h.

  8. Operation of a microchannel plate counting system in a mass spectrometer

    NASA Technical Reports Server (NTRS)

    Murphy, D. M.; Mauersberger, K.

    1985-01-01

    A multiplier detector system has been developed as part of a mass spectrometer in an ion counting mode. During its operation ions striking a microchannel plate release pulses of electrons which are accelerated to a phosphor layer. The resulting flash of light is carried by a fiber-optic bundle to a photodiode array. The detector simultaneously counts ions throughout a mass spectrum covering more than 30 amu. It extends the mass spectrometer's operation toward low count rates for trace gas analysis. Each mass peak can be independently measured at count rates between 0.1 and 1000 counts/s. Higher rates on a few peaks do not blind the entire detector. The detector's capabilities have been demonstrated by measuring Kr and Xe isotopes in air at natural abundances. The mass spectrometer, detector, and readout electronics are sufficiently compact to permit use in a balloon-borne experiment.

  9. Improved time response for large area microchannel plate photomultiplier tubes in fusion diagnostics

    NASA Astrophysics Data System (ADS)

    Milnes, J. S.; Horsfield, C. J.; Conneely, T. M.; Howorth, J.

    2014-11-01

    Fusion diagnostics that utilise high speed scintillators often need to capture a large area of light with a high degree of time accuracy. Microchannel plate (MCP) photomultiplier tubes (PMTs) are recognised as the leading device for capturing fast optical signals. However, when manufactured in their traditional proximity focused construction, the time response performance is reduced as the active area increases. This is due to two main factors: the capacitance of a large anode and the difficulty of obtaining small pore MCPs with a large area. Collaboration between Photek and AWE has produced prototype devices that combine the excellent time response of small area MCP-PMTs with a large active area by replacing the traditional proximity-gap front section with an electro-optically focused photocathode to MCP. We present results from both single and double MCP devices with a 40 mm diameter active area and show simulations for the 100 mm device being built this year.

  10. A fast microchannel plate-scintillator detector for velocity map imaging and imaging mass spectrometry

    SciTech Connect

    Winter, B.; King, S. J.; Vallance, C.; Brouard, M.

    2014-02-15

    The time resolution achievable using standard position-sensitive ion detectors, consisting of a chevron pair of microchannel plates coupled to a phosphor screen, is primarily limited by the emission lifetime of the phosphor, around 70 ns for the most commonly used P47 phosphor. We demonstrate that poly-para-phenylene laser dyes may be employed extremely effectively as scintillators, exhibiting higher brightness and much shorter decay lifetimes than P47. We provide an extensive characterisation of the properties of such scintillators, with a particular emphasis on applications in velocity-map imaging and microscope-mode imaging mass spectrometry. The most promising of the new scintillators exhibits an electron-to-photon conversion efficiency double that of P47, with an emission lifetime an order of magnitude shorter. The new scintillator screens are vacuum stable and show no signs of signal degradation even over longer periods of operation.

  11. An Application of Micro-channel Plate Photomultiplier Tube to Positron Emission Tomography.

    PubMed

    Kim, H; Chen, C-T; Frisch, H; Tang, F; Kao, C-M

    2012-01-01

    We are developing a Time-of-Flight Positron Emission Tomography detector using flat panel micro-channel plate photomultiplier tubes (MCP PMT). The high-speed waveform sampling data acquisition is adopted to exploit the fast time response of MCP PMT efficiently by using transmission-line readout scheme. To demonstrate the feasibility of the proposed detector, prototype detector modules were built using Photonis XP85022 MCP PMT, transmission-line board (TL), and high-speed waveform sampling electronics equipped with DRS4 chips. The MCP/TL module was coupled to single LYSO crystal, and experimental tests have been conducted in a coincidence setup to measure the responses to 511 keV annihilation photon. The details of the prototype module, experimental setup, and the preliminary results are presented and discussed. PMID:23227135

  12. Improved time response for large area microchannel plate photomultiplier tubes in fusion diagnostics.

    PubMed

    Milnes, J S; Horsfield, C J; Conneely, T M; Howorth, J

    2014-11-01

    Fusion diagnostics that utilise high speed scintillators often need to capture a large area of light with a high degree of time accuracy. Microchannel plate (MCP) photomultiplier tubes (PMTs) are recognised as the leading device for capturing fast optical signals. However, when manufactured in their traditional proximity focused construction, the time response performance is reduced as the active area increases. This is due to two main factors: the capacitance of a large anode and the difficulty of obtaining small pore MCPs with a large area. Collaboration between Photek and AWE has produced prototype devices that combine the excellent time response of small area MCP-PMTs with a large active area by replacing the traditional proximity-gap front section with an electro-optically focused photocathode to MCP. We present results from both single and double MCP devices with a 40 mm diameter active area and show simulations for the 100 mm device being built this year. PMID:25430347

  13. Nanosecond Gating of Microstripline Microchannel Plate Framing Cameras: Characterization and Simulation

    SciTech Connect

    Holder, J; Hargrove, D; Sibernagel, C; Perry, T; Bradley, D; Bell, P

    2004-04-09

    The soft x-ray microstripline microchannel plate (MCP) framing camera has become one of the workhorses of ICF diagnostics. Much progress has been made in making these diagnostics work well with gate times of 100 ps and below. Often weak input signal or source timing uncertainties dictate a requirement for longer gate times, preferably in the same instrument that also has fast gating capability. The large power-law dependence of MCP gain on applied voltage is useful in shortening the gating time of the microstripline camera. However, this sensitivity leads to tight constraints on the shape of the long duration electrical pulses that are needed to drive the MCP to produce experimentally desirable optical gating profiles. Simple modeling and measurements are used to better understand the character of the voltage pulses needed to achieve optical gate widths between 500 ps and {approx}2 ns.

  14. Ultraviolet quantum detection efficiency of potassium bromide as an opaque photocathode applied to microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald H. W.; Everman, E.; Vallerga, J. V.; Sokolowski, J.; Lampton, M.

    1987-01-01

    The quantum detection efficiency (QDE) of potassium bromide as a photocathode applied directly to the surface of a microchannel plate over the 250-1600 A wavelength range has been measured. The contributions of the photocathode material in the channels and on the interchannel web to the QDE have been determined. Two broad peaks in the QDE centered at about 450 and about 1050 A are apparent, the former with about 50 percent peak QDE and the latter with about 40 percent peak QDE. The photoelectric threshold is observed at about 1600 A, and there is a narrow QDE minimum at about 750 A which correlates with 2X the band gap energy for KBr. The angular variation of the QDE from 0 to 40 deg to the channnel axis has also been examined. The stability of Kbr with time is shown to be good with no significant degradation of QDE at wavelengths below 1216 A over a 15-day period in air.

  15. Multiple-photon disambiguation on stripline-anode Micro-Channel Plates

    NASA Astrophysics Data System (ADS)

    Jocher, Glenn R.; Wetstein, Matthew J.; Adams, Bernhard; Nishimura, Kurtis; Usman, Shawn M.

    2016-06-01

    Large-Area Picosecond Photo-Detectors (LAPPDs) show great potential for expanding the performance envelope of Micro-Channel Plates (MCPs) to areas of up to 20×20 cm and larger. Such scaling introduces new challenges, including how to meet the electronics readout burden of ever larger area MCPs. One solution is to replace the traditional grid anode used for readout with a microwave stripline anode, thus allowing the channel count to scale with MCP width rather than area. However, stripline anodes introduce new issues not commonly dealt with in grid-anodes, especially as their length increases. One of these issues is the near simultaneous arrival of multiple photons on the detector, creating possible confusion about how to reconstruct their arrival times and positions. We propose a maximum a posteriori solution to the problem and verify its performance in simulated scintillator and water-Cherenkov detectors.

  16. Physical Vapor Deposition Chamber for Coating Microchannel Plates in X-Ray Radiography

    NASA Astrophysics Data System (ADS)

    Perry, S. L.; Drake, R. P.; Swain, A. D.; Cornwall, N. C.; Forsyth, M. A.; Harding, E. C.; Huntington, C. M.

    2010-11-01

    Experiments to characterize microchannel plates (MCPs) at the University of Michigan aim to maximize the quantum efficiency of our detector by coating the layers of a photocathode directly on a bare MCP. These experiments can be improved with more control over the processing of coating MCPs, parts often used in diagnosing high-energy-density laser experiments. Process control will allow us to alter factors that influence photocathode quantum efficiency, such as film thickness, coating angle, and substrate baking. This should ultimately reduce costs of characterizing MCPs and improve our x-ray radiography data. A thin film deposition chamber was designed and built, achieving high vacuum pressures of 1E-7 torr and temperatures of 1800 C to vaporize coating materials. A rotating substrate platform and a quartz crystal microbalance help achieve precise, even coatings. A design overview of this system is presented, with a discussion of most recent coating results.

  17. Observation of Ultra-Slow Antiprotons using Micro-channel Plate

    SciTech Connect

    Imao, H.; Toyoda, H.; Shimoyama, T.; Kanai, Y.; Mohri, A.; Yamazaki, Y.; Torii, H. A.; Nagata, Y.; Enomoto, Y.; Higaki, H.

    2008-08-08

    Our group ASACUSA-MUSASHI has succeeded in accumulating several million antiprotons and extracting them as monochromatic ultra-slow antiproton beams (10 eV-1 keV) at CERN AD. We have observed ultra-slow antiprotons using micro-channel plates (MCP). The integrated pulse area of the output signals generated when the MCP was irradiated by ultra-slow antiprotons was 6 times higher than that by electrons. As a long-term effect, we also observed an increase in the background rate presumably due to the radioactivation of the MCP surface. Irradiating the antiproton beams on the MCP induces antiproton-nuclear annihilations only on the first layer of the surface. Low-energy and short-range secondary particles like charged nuclear fragments caused by the 'surface nuclear reactions' would be the origin of our observed phenomena.

  18. Direct tests of a pixelated microchannel plate as the active element of a shower maximum detector

    NASA Astrophysics Data System (ADS)

    Apresyan, A.; Los, S.; Pena, C.; Presutti, F.; Ronzhin, A.; Spiropulu, M.; Xie, S.

    2016-08-01

    One possibility to make a fast and radiation resistant shower maximum detector is to use a secondary emitter as an active element. We report our studies of microchannel plate photomultipliers (MCPs) as the active element of a shower-maximum detector. We present test beam results obtained using Photonis XP85011 to detect secondary particles of an electromagnetic shower. We focus on the use of the multiple pixels on the Photonis MCP in order to find a transverse two-dimensional shower distribution. A spatial resolution of 0.8 mm was obtained with an 8 GeV electron beam. A method for measuring the arrival time resolution for electromagnetic showers is presented, and we show that time resolution better than 40 ps can be achieved.

  19. Performance characteristics of a curved-channel microchannel plate with a curved input face and a plane output face

    NASA Technical Reports Server (NTRS)

    Slater, David C.; Morgan, Jeffrey S.; Timothy, J. Gethyn

    1989-01-01

    The presently performance-evaluated format, in which a high-gain curved-channel microchannel plate (M2MCP) has a spherical concave input face and a plane output face, allows the input face of the MCP (1) to match such curved focal surfaces as that of a Rowland-circle spectrometer mounting, while (2) having a high-resolution plane readout array in proximity focus with the output face. This MCP has been evaluated in a discrete-anode multicathode microchannel array detector system. The saturated modal gain was found to be inversely proportional to the length/diameter ratio of the channels and directly proportional to the applied MCP voltage.

  20. Influence and analysis on ion barrier film to the noise factor of micro-channel plate

    NASA Astrophysics Data System (ADS)

    Zhu, Yu-feng; Zhang, Fan; Zhang, Ni; Nie, Jing; Li, Dan; Zhang, Tai-min; Wang, Shu-fei; Liu, Xiao-jian; Liu, Zhao-lu

    2015-03-01

    The noise factor, which is the main factor affecting the noise performance of image intensifier and can accurately reflect the noise characteristics of the micro-channel plate(MCP), is the ratio of the input signal to noise ratio (SNR) and the output SNR. According to definition of noise factor of micro channel plate, noise mechanism and test principle, noise factor of filmed MCP test system is established in order to study the technical way to reduce noise factor of MCP. Because the input surface of the MCP is covered with ion barrier film to block the feedback ions, which have a great impact on the noise factor of the MCP. Hence, noise factor of filmed MCP and un-filmed MCP is measured respectively, and noise factors with different materials and different filmed thickness are measured too. Relationships between noise factor and filmed thickness, noise factor and output SNR of image intensifier have been obtained. That is valuable to reduce the noise of filmed MCP.

  1. Advanced Photon Counting Imaging Detectors with 100ps Timing for Astronomical and Space Sensing Applications

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Vallerga, J.; Welsh, B.; Rabin, M.; Bloch, J.

    In recent years EAG has implemented a variety of high-resolution, large format, photon-counting MCP detectors in space instrumentation for satellite FUSE, GALEX, IMAGE, SOHO, HST-COS, rocket, and shuttle payloads. Our scheme of choice has been delay line readouts encoding photon event position centroids, by determination of the difference in arrival time of the event charge at the two ends of a distributed resistive-capacitive (RC) delay line. Our most commonly used delay line configuration is the cross delay line (XDL). In its simplest form the delay-line encoding electronics consists of a fast amplifier for each end of the delay line, followed by time-to-digital converters (TDC's). We have achieved resolutions of < 25 μm in tests over 65 mm x 65 mm (3k x3k resolution elements) with excellent linearity. Using high speed TDC's, we have been able to encode event positions for random photon rates of ~1 MHz, while time tagging events using the MCP output signal to better than 100 ps. The unique ability to record photon X,Y,T high fidelity information has advantages over "frame driven" recording devices for some important applications. For example we have built open face and sealed tube cross delay line detectors used for biological fluorescence lifetime imaging, observation of flare stars, orbital satellites and space debris with the GALEX satellite, and time resolved imaging of the Crab Pulsar with a telescope as small as 1m. Although microchannel plate delay line detectors meet many of the imaging and timing demands of various applications, they have limitations. The relatively high gain (107) reduces lifetime and local counting rate, and the fixed delay (10's of ns) makes multiple simultaneous event recording problematic. To overcome these limitations we have begun development of cross strip readout anodes for microchannel plate detectors. The cross strip (XS) anode is a coarse (~0.5 mm) multi-layer metal and ceramic pattern of crossed fingers on an alumina

  2. Synthesis of Rh/Macro-Porous Alumina Over Micro-Channel Plate and Its Catalytic Activity Tests for Diesel Reforming.

    PubMed

    Seong, Yeon Baek; Kim, Yong Sul; Park, No-Kuk; Lee, Tae Jin

    2015-11-01

    Macro-porous Al2O3 as the catalytic support material was synthesized using colloidal polystyrene spheres over a micro-channel plate. The colloidal polystyrene spheres were used as a template for the production of an ordered macro porous material using an alumina nitrate solution as the precursor for Al2O3. The close-packed colloidal crystal array template method was applied to the formulation of ordered macro-porous Al2O3 used as a catalytic support material over a micro-channel plate. The solvent in the mixture solution, which also contained the colloidal polystyrene solution, aluminum nitrate solution and the precursor of the catalytic active materials (Rh), was evaporated in a vacuum oven at 50 degrees C. The ordered polystyrene spheres and aluminum salt of the solid state were deposited over a micro channel plate, and macro-porous Al2O3 was formed after calcination at 600 degrees C to remove the polystyrene spheres. The catalytic activity of the Rh/macro-porous alumina supported over the micro-channel plate was tested for diesel reforming. PMID:26726602

  3. Response of Microchannel Plate (MCP) Detectors to MeV Electrons: Beamline tests in support of Juno, JUICE, and Europa Mission UVS instrument investigations

    NASA Astrophysics Data System (ADS)

    Retherford, Kurt D.; Davis, Michael W.; Greathouse, Thomas K.; Gladstone, G. Randall; Steffl, Andrew J.; Grodent, Denis; Siegmund, Oswald H.W.

    2014-11-01

    The response of Microchannel Plate (MCP) detectors to far-UV photons is excellent. MCPs provide a photon-counting capability that is especially useful for high-quality stellar and solar occultation measurements. However, use of MCPs within the Jovian magnetosphere for UV measurements is hampered by their ~30% detection efficiency to energetic electrons and ~1% efficiency to γ-rays. High-Z shielding stops energetic electrons, but creates numerous secondary particles; γ-rays are the most important of these for MCPs. These detected particles are a noise background to the measured far-UV photon signal, and at particularly intense times their combination can approach detector global count rates of ~500 kHz when operating at nominal HV levels. To address the challenges presented by the intense radiation environment experienced during Europa encounters we performed electron beam radiation testing of the Juno-UVS flight spare cross-delay line (XDL) MCP in June 2012 at MIT’s High Voltage Research Laboratory (HVRL), and again in Nov. 2013 adding an atomic-layer deposition (ALD) coated test-MCP, to measure the detection efficiency and pulse height distribution characteristics for energetic electrons and γ-rays. A key result from this UVS-dedicated SwRI IR&D project is a detailed characterization of our XDL’s response to both particles (electrons and γ-rays) and photons as a function of HV level. These results provide confidence that good science data quality is achievable when operating at Europa closest approach and/or in orbit. Comparisons with in-flight data obtained with New Horizons Pluto-Alice MeV electron response measurements at Jupiter (Steffl et al., JGR, 2012), LRO-LAMP electron and proton event data, and Juno-UVS Earth proton-belt flyby data, and recent bench tests with radioactive sources at Sensor Sciences increase this confidence. We present a description of the test setup, quantitative results, and several lessons learned to help inform future beamline

  4. Advantages of Photon Counting Detectors for Terahertz Astronomy

    NASA Astrophysics Data System (ADS)

    Matsuo, Hiroshi; Ezawa, Hajime

    2016-08-01

    For astronomical observation at terahertz frequencies, a variety of cryogenic detector technologies are being developed to achieve background-limited observation from space, where a noise equivalent power (NEP) of less than 10^{-18} W/Hz^{0.5} is often required. When each photon signal is resolved in time, the requirements on NEP are reduced and 1 ns time resolution corresponds to an NEP of approximately 10^{-17} W/Hz^{0.5} at THz frequencies. Furthermore, fast photon counting detectors have a high dynamic range to observe bright terahertz sources such as stars and active galactic nuclei. Applications of photon counting detector are discussed for cosmic microwave background and photon counting terahertz interferometry.

  5. Photon counting detector array algorithms for deep space optical communications

    NASA Astrophysics Data System (ADS)

    Srinivasan, Meera; Andrews, Kenneth S.; Farr, William H.; Wong, Andre

    2016-03-01

    For deep-space optical communications systems utilizing an uplink optical beacon, a single-photon-counting detector array on the flight terminal can be used to simultaneously perform uplink tracking and communications as well as accurate downlink pointing at photon-starved (pW=m2) power levels. In this paper, we discuss concepts and algorithms for uplink signal acquisition, tracking, and parameter estimation using a photon-counting camera. Statistical models of detector output data and signal processing algorithms are presented, incorporating realistic effects such as Earth background and detector/readout blocking. Analysis and simulation results are validated against measured laboratory data using state-of-the-art commercial photon-counting detector arrays, demonstrating sub-microradian tracking errors under channel conditions representative of deep space optical links.

  6. Development of the micro-channel plate photomultiplier for the Belle II time-of-propagation counter

    NASA Astrophysics Data System (ADS)

    Hirose, Shigeki; Iijima, Toru; Inami, Kenji; Furumura, Daiki; Hayakawa, Tomokatsu; Kato, Yuji; Matsuoka, Kodai; Mizuno, Ryo; Sato, Yutaro; Suzuki, Kazuhito; Yonekura, Takuya

    2015-07-01

    The time-of-propagation counter for the Belle II experiment is a new particle identification device using ring imaging Cherenkov technique. In order to detect each Cherenkov photon with a timing precision of 30-40 ps in a 1.5 T magnetic field, a micro-channel plate photomultiplier tube is a suitable device for the TOP counter. By introducing an atomic layer deposition technique on the micro-channel plate surface, the tube lifetime was improved by a factor of 3-10 relative to more conventional devices. A total of 530 tubes have been produced. To ensure appropriate tube performance, the quantum efficiency, gain and transit time spread have been measured for all units. The results from each measurement are discussed. Results from a beamtest with a 2 GeV/c positron beam are also reported and demonstrate the good tube performance.

  7. Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.

    2009-01-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  8. Photon counting modules using RCA silicon avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Lightstone, Alexander W.; Macgregor, Andrew D.; Macsween, Darlene E.; Mcintyre, Robert J.; Trottier, Claude; Webb, Paul P.

    1989-01-01

    Avalanche photodiodes (APD) are excellent small area, solid state detectors for photon counting. Performance possibilities include: photon detection efficiency in excess of 50 percent; wavelength response from 400 to 1000 nm; count rate to 10 (exp 7) counts per sec; afterpulsing at negligible levels; timing resolution better than 1 ns. Unfortunately, these performance levels are not simultaneously available in a single detector amplifier configuration. By considering theoretical performance predictions and previous and new measurements of APD performance, the anticipated performance of a range of proposed APD-based photon counting modules is derived.

  9. Quantum efficiencies of imaging detectors with alkali halide photocathodes. I - Microchannel plates with separate and integral CsI photocathodes

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.

    1987-01-01

    Measurements and comparisons have been made of the quantum efficiencies of microchannel plate (MCP) detectors in the far-UV (below 2000-A) wavelength range using CsI photocathodes (a) deposited on the front surfaces of microchannel plates and (b) deposited on solid substrates as opaque photocathodes with the resulting photoelectrons input to microchannel plates. The efficiences were measured in both pulse-counting and photodiode modes of operation. Typical efficiencies are about 15 percent at 1216 A for a CsI-coated MCP compared with 65 percent for an opaque CsI photocathode MCP detector. Special processing has yielded an efficiency as high as 20 percent for a CsI-coated MCP. This may possibly be further improved by optimization of the tilt angle of the MCP channels relative to the front face of the MCP and incident radiation. However, at present there still remains a factor of at least 3 quantum efficiency advantage in the separate opaque CsI photocathode configuration.

  10. Development of the microchannel plate detector for FUV spectroscopy in the BepiColombo mission

    NASA Astrophysics Data System (ADS)

    Murakami, Go; Yoshioka, Kazuo; Sakai, Kouichi; Honma, Tatsuro; Yoshikawa, Ichiro; Maria, Jean-Luc; Quemerais, E.

    PHEBUS (Probing of Hermean Exosphere By Ultraviolet Spectroscopy) is a double ultraviolet spectrometer for the MPO spacecraft of the BepiColombo mission, which is dedicated to the study of the Mercury. The purpose of this instrument is to reveal the composition and the distribution of the Mercury's exosphere by detecting emission lines in the wavelength range from 55 to 315 nm. The instrument is basically composed of two ultraviolet spectrometers and one scanning mirror with a single axis of rotation. Each detector has a specific range of wavelengths: the Extreme Ultraviolet (EUV) channel from 55 to 155 nm, and the Far Ultraviolet (FUV) channel from 145 to 315 nm. The FUV detector consists of a MgF2 input window, a Cs2 Te photocathode, microchannel plates (MCPs), and a resistive anode encoder (RAE). We have manufactured and tested the optical prototype of the FUV detector. In a position-sensitive system with an RAE, the spatial resolution depends on the bias voltage applied to each part of the detector. We optimized the bias voltage and achieved a high spatial resolution of 45 m, corresponding to 480480 pixels. In addition, the long-term aging of the detector against incidence of photon flux was tested. Based on the result of our laboratory measurement, both gain and quantum efficiency of the MCPs will decrease by about 40% during the BepiColombo mission. In our presentation we report the specific performance of the optical prototype of the FUV detector.

  11. Optimization of high count rate event counting detector with Microchannel Plates and quad Timepix readout

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Vallerga, J. V.; McPhate, J. B.; Siegmund, O. H. W.

    2015-07-01

    Many high resolution event counting devices process one event at a time and cannot register simultaneous events. In this article a frame-based readout event counting detector consisting of a pair of Microchannel Plates and a quad Timepix readout is described. More than 104 simultaneous events can be detected with a spatial resolution of ~55 μm, while >103 simultaneous events can be detected with <10 μm spatial resolution when event centroiding is implemented. The fast readout electronics is capable of processing >1200 frames/sec, while the global count rate of the detector can exceed 5×108 particles/s when no timing information on every particle is required. For the first generation Timepix readout, the timing resolution is limited by the Timepix clock to 10-20 ns. Optimization of the MCP gain, rear field voltage and Timepix threshold levels are crucial for the device performance and that is the main subject of this article. These devices can be very attractive for applications where the photon/electron/ion/neutron counting with high spatial and temporal resolution is required, such as energy resolved neutron imaging, Time of Flight experiments in lidar applications, experiments on photoelectron spectroscopy and many others.

  12. Research of ion feedback-induced noise of micro-channel plate

    NASA Astrophysics Data System (ADS)

    Li, Dan; Zhu, Yufeng; Zhang, Ni; Nie, Jing; Zhang, Fan; Zhang, Taimin; Li, Shilong; Liu, Xiaojian; Liu, Zhaolu

    2014-09-01

    Rb+, Cs+ and other alkali metal ions in the Micro-channel Plate (MCP) channel, under the action of an electric field, leave out of the channel wall of MCP, and accelerate to input surface of channel along the opposite direction of the electric field to form ion feedback-induced noise. The feedback ions will cause great harms, it will bombard the cathode surface, resulting in decreased cathode sensitivity, reducing tube life, so you must take measures to reduce ion feedback-induced noise. This paper analyzes how to reduce ion feedback-induced noise from five aspects of the MCP materials, etching, annealing in hydrogen, high-temperature baking and electron scrubbing. Through the utilization of mixed alkali effect of suppressing mutual diffusion and decreasing internal network cavity to improve structure of MCP glass wall, the diffusion coefficient of each ion is reduced; the content of Al2O3 is reduced to reduce the Na+, K+ diffusion losses; etching process is optimized, except for the acid corrosion, the alkali corrosion, special acid etching and vacuum baking process are used; annealing in hydrogen technology is also optimized, the time of annealing in hydrogen was chosen on 270 ~ 350 minutes; and the vacuum baking and electron scrubbing are handled before manufacturing. By the above methods the ion feedback-induced noise is reduced.

  13. Microchannel Plate Imaging Photon Counters for Ultraviolet through NIR Detection with High Time Resolution

    PubMed Central

    Siegmund, Oswald H.W.; Vallerga, John V.; Tremsin, Anton S.; McPhate, Jason; Michalet, X.; Colyer, R. A.; Weiss, S.

    2013-01-01

    Cross strip and cross delay line readout microchannel plate detectors in 18 mm, 25 mm and 40 mm active area formats including open face (UV/particle) and sealed tube (optical) configurations have been constructed. These have been tested with a field programmable gate array based electronics for single event encoding. Using small pore MCPs (6 μm) operated in a pair, we achieve gains of >1 × 106 which is sufficient to provide spatial resolution of ~17 μm FHWM with the 18 mm and 40 mm cross strip readouts. New cross strip electronics can process high output event rates (> 4 MHz) with high spatial resolution, and self triggered event timing accuracy of ~1.5 ns for sealed tube XS optical sensors. A peak quantum efficiency of between 13% and 19% at 500 nm has been achieved with SuperGenII photocathodes with response from 400 nm to 900 nm for both cross strip and cross delay line sealed tubes. Local area counting rates of up to 40 kHz (100μm spot) have been attained with XS sealed tubes, along with image linearity and stability to better than 50 μm. 25mm cross delay line tubes achieve ~50 μm resolution and > 2 MHz output event rates. PMID:23833700

  14. Applicability of micro-channel plate followed by phosphor screen to charged particles

    NASA Astrophysics Data System (ADS)

    Himura, H.; Nakata, S.; Sanpei, A.

    2016-06-01

    This paper experimentally investigates the applicability of a micro-channel plate (MCP) followed by a phosphor screen to charged particles along with a calibration method for estimating the acceptable limit of input particle flux and appropriate operation parameters of a particular MCP. For the first time, plasmas consisting of only lithium ions are injected into the MCP. Despite large ion numbers (Ni) on the order of ≃107, no deterioration in the effective gain (αG) of the MCP owing to an excess amount of the extracted charge occurs in a certain range of the amplifier voltage (ΔUM) applied to the MCP. The measured αG nearly agrees with the expected value. However, once ΔUM exceeds a limit value, αG eventually begins to saturate. This is also verified in experiments using pure electron plasmas. An appropriate range of ΔUM is presented to avoid saturation and, finally, derive Ni directly from the secondary electron current outputted from the MCP only after the indispensable calibration.

  15. Development of output signal-to-noise ratio tester for microchannel plate and fluorescent screen component

    NASA Astrophysics Data System (ADS)

    Wu, Xinglin; Qiu, Yafeng; Zhou, Jin; Qian, Yunsheng

    The core components of Image intensifier is microchannel plate (MCP) and fluorescent screen component. The present paper deeply studies output signal-to-noise ratio (SNR) characteristics of MCP and fluorescent screen component. A tester system using to the evaluation of characteristics of the output SNR of MCP and fluorescent screen component, consists of a vacuum system, a surface electron source, mechanical mechanism components ,a high-voltage power supply system, a signal processing system, communication interfaces, a data acquisition and control system, computer system, and testing software. a hot cathode used as an electron source, generates a surface electron flow to provide the input signal. A photomultiplier tube is used to detection faceplate output brightness of the light spot. Then, the output SNR of MCP and fluorescent screen component is processed with a combination of methods of the hardware filter and digital filtering software. The output SNR of MCP and fluorescent screen component is measured under different conditions, and the results are analyzed. This test system Provide a technical to promote the image intensifier research, and experience to testing other parameters or in other areas of research.

  16. Cross strip microchannel plate imaging photon counters with high time resolution

    SciTech Connect

    Stonehill, Laura C; Shirey, Robert; Rabin, Michael W; Thompson, David C; Siegmund, Oswald H W; Vallerga, John V; Tremsin, Anton S

    2010-01-01

    We have implemented cross strip readout microchannel plate detectors in 18 mm active area format including open face (UV/particle) and sealed tube (optical) configurations. These have been tested with a field programmable gate array based parallel channel electronics for event encoding which can process high input event rates (> 5 MHz) with high spatial resolution. Using small pore MCPs (6 {micro}m) operated in a pair, we achieve gains of >5 x 10{sup 5} which is sufficient to provide spatial resolution of <35 {micro}m FHWM, with self triggered event timing accuracy of {approx}2 ns for sealed tube optical sensors. A peak quantum efficiency of {approx}19% at 500 nm has been achieved with SuperGenII photocathodes that have response over the 400 nm to 900 nm range. Local area counting rates of up to >200 events/mcp pore sec{sup -1} have been attained, along with image linearity and stability to better than 50 {micro}m.

  17. Nano-oxide thin films deposited via atomic layer deposition on microchannel plates

    NASA Astrophysics Data System (ADS)

    Yan, Baojun; Liu, Shulin; Heng, Yuekun

    2015-04-01

    Microchannel plate (MCP) as a key part is a kind of electron multiplied device applied in many scientific fields. Oxide thin films such as zinc oxide doped with aluminum oxide (ZnO:Al2O3) as conductive layer and pure aluminum oxide (Al2O3) as secondary electron emission (SEE) layer were prepared in the pores of MCP via atomic layer deposition (ALD) which is a method that can precisely control thin film thickness on a substrate with a high aspect ratio structure. In this paper, nano-oxide thin films ZnO:Al2O3 and Al2O3 were prepared onto varied kinds of substrates by ALD technique, and the morphology, element distribution, structure, and surface chemical states of samples were systematically investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoemission spectroscopy (XPS), respectively. Finally, electrical properties of an MCP device as a function of nano-oxide thin film thickness were firstly studied, and the electrical measurement results showed that the average gain of MCP was greater than 2,000 at DC 800 V with nano-oxide thin film thickness approximately 122 nm. During electrical measurement, current jitter was observed, and possible reasons were preliminarily proposed to explain the observed experimental phenomenon.

  18. Monte Carlo Simulations of Microchannel Plate Detectors II: Pulsed Voltage Results

    SciTech Connect

    Kruschwitz, Craig A.; Wu, Ming; Rochau, Greg A.

    2011-02-11

    This paper is part of a continuing study of straight-channel microchannel plate (MCP)–based x-ray detectors. Such detectors are a useful diagnostic tool for two-dimensional, time-resolved imaging and time-resolved x-ray spectroscopy. To interpret the data from such detectors, it is critical to develop a better understanding of the behavior of MCPs biased with subnanosecond voltage pulses. The subject of this paper is a Monte Carlo computer code that simulates the electron cascade in a MCP channel under an arbitrary pulsed voltage, particularly those pulses with widths comparable to the transit time of the electron cascade in the MCP under DC voltage bias. We use this code to study the gain as a function of time (also called the gate profile or optical gate) for various voltage pulse shapes, including pulses measured along the MCP. In addition, experimental data of MCP behavior in pulsed mode are obtained with a short-pulse UV laser. Comparisons between the simulations and experimental data show excellent agreement for both the gate profile and the peak relative sensitivity along the MCP strips. We report that the dependence of relative gain on peak voltage increases in sensitivity in pulsed mode when the width of the high-voltage waveform is smaller than the transit time of cascading electrons in the MCP.

  19. Development of atomic layer deposition-activated microchannel plates for single particle detection at cryogenic temperatures

    SciTech Connect

    Gorelikov, Dmitry Sullivan, Neal; Rouffignac, Philippe de; Li, Huazhi; Narayanamoorthy, Jayasri; Tremsin, Anton S.

    2014-03-15

    Atomic layer deposition (ALD) technology is used to nanoengineer functional films inside the pores of microchannel plate (MCP) electron multipliers, enabling a novel MCP manufacturing technology that substantially improves performance and opens novel applications. The authors have developed custom tools and recipes for the growth of conformal films, with optimized conductance and secondary electron emission inside very long channels (∼6–20 μm diameter and >600 μm length, with tens of millions of channels per single MCP) by ALD. The unique ability to tune the characteristics of these ALD films enables their optimization to applications where time-resolved single particle imaging can be performed in extreme conditions, such as high counting rates at cryogenic temperatures. Adhesion of the conductive and emissive nanofilms to the 20 μm pore MCP glass substrates and their mechanical stability over a very wide range of temperatures (10–700 K) were confirmed experimentally. Resistance of ALD MCPs was reproducible during multiple cool-down cycles with no film degradation observed. Optimizing resistance of novel MCPs for operation at cryogenic temperature should enable high count rate event detection at temperatures below 20 K.

  20. Exploring the spatial resolution of position-sensitive microchannel plate detectors

    NASA Astrophysics Data System (ADS)

    Wiggins, Blake; Siwal, Davinder; Desouza, Romualdo

    2016-03-01

    High amplification and excellent timing make microchannel plate (MCP) detectors excellent devices for detection of photons, electrons, and ions. In addition to providing sub-nanosecond time resolution MCP detectors can also provide spatial resolution, thus making them useful in imaging applications. Use of a resistive anode (RA) is a routinely used approach to make an MCP position-sensitive. The spatial resolution of the RA associated with detection of a single incident electron was determined. Factors impacting the spatial resolution obtained with the RA will be discussed and the achieved spatial resolution of 64 μm (FWHM) will be presented. Recently, a novel approach has been developed to provide position-sensitivity for an MCP detector. In this approach, namely the induced signal approach, the position of the incident particle is determined by sensing the electron cloud emanating from a MCP stack. By utilizing the zero-crossing point of the inherently bipolar signals, a spatial resolution of 466 μm (FWHM) has been achieved. Work to improve the spatial resolution of the induced signal approach further will be presented. Supported by the US DOE NNSA under Award No. DE-NA0002012.

  1. Synchrotron beam test with a photon-counting pixel detector.

    PubMed

    Brönnimann, C; Florin, S; Lindner, M; Schmitt, B; Schulze-Briese, C

    2000-09-01

    Synchrotron beam measurements were performed with a single-photon-counting pixel detector to investigate the influence of threshold settings on charge sharing. Improvement of image homogeneity by adjusting the threshold of each pixel individually was demonstrated. With a flat-field correction, the homogeneity could be improved. A measurement of the point spread function is reported. PMID:16609212

  2. Time-resolved non-contact fluorescence diffuse optical tomography measurements with ultra-fast time-correlated single photon counting avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Bérubé-Lauzière, Yves; Robichaud, Vincent; Lapointe, Éric

    2007-07-01

    The design and fabrication of time-correlated single photon counting (TCSPC) avalanche photodiodes (APDs) and associated quenching circuits have made significant progresses in recent years. APDs with temporal resolutions comparable to microchannel plate photomultiplier tubes (MCP-PMTs) are now available. MCP-PMTs were until these progresses the best TCSPC detectors with timing resolutions down to 30ps. APDs can now achieve these resolutions at a fraction of the cost. Work is under way to make the manufacturing of TCSPC APDs compatible with standard electronics fabrication practices. This should allow to further reduce their cost and render them easier to integrate in complex multi-channel TCSPC electronics, as needed in diffuse optical tomography (DOT) systems. Even if their sensitive area is much smaller than that of the ubiquitous PMT used in TCSPC, we show that with appropriate selection of optical components, TCSPC APDs can be used in time-domain DOT. To support this, we present experimental data and calculations clearly demonstrating that comparable measurements can be obtained with APDs and PMTs. We are, to our knowledge, the first group using APDs in TD DOT, in particular in non-contact TD fluorescence DOT.

  3. Centroiding algorithms for high speed crossed strip readout of microchannel plate detectors.

    PubMed

    Vallerga, John; Tremsin, Anton; Raffanti, Rick; Siegmund, Oswald

    2011-05-01

    Imaging microchannel plate (MCP) detectors with cross strip (XS) readout anodes require centroiding algorithms to determine the location of the amplified charge cloud from the incident radiation, be it photon or particle. We have developed a massively parallel XS readout electronic system that employs an amplifier and ADC for each strip and uses this digital data to calculate the centroid of each event in real time using a field programmable gate array (FPGA). Doing the calculations in real time in the front end electronics using an FPGA enables a much higher input event rate, nearly two orders of magnitude faster, by avoiding the bandwidth limitations of the raw data transfer to a computer. We report on our detailed efforts to optimize the algorithms used on both an 18 mm and 40 mm diameter XS MCP detector with strip pitch of 640 microns and read out with multiple 32 channel "Preshape32" ASIC amplifiers (developed at Rutherford Appleton Laboratory). Each strip electrode is continuously digitized to 12 bits at 50 MHz with all 64 digital channels (128 for the 40 mm detector) transferred to a Xilinx Virtex 5 FPGA. We describe how events are detected in the continuous data stream and then multiplexed into firmware modules that spatially and temporally filter and weight the input after applying offset and gain corrections. We will contrast a windowed "center of gravity" algorithm to a convolution with a special centroiding kernel in terms of resolution and distortion and show results with < 20 microns FWHM resolution at input rates > 1 MHz. PMID:21918588

  4. Three-Dimensional Photon Counting Imaging with Axially Distributed Sensing.

    PubMed

    Cho, Myungjin; Javidi, Bahram

    2016-01-01

    In this paper, we review three-dimensional (3D) photon counting imaging with axially distributed sensing. Under severely photon-starved conditions, we have proposed various imaging and algorithmic approaches to reconstruct a scene in 3D, which are not possible by using conventional imaging system due to lack of sufficient number of photons. In this paper, we present an overview of optical sensing and imaging system along with dedicated algorithms for reconstructing 3D scenes by photon counting axially distributed sensing, which may be implemented by moving a single image sensor along its optical axis. To visualize the 3D image, statistical estimation methods and computational reconstruction of axially distributed sensing is applied. PMID:27483262

  5. Towards a Graphene-Based Low Intensity Photon Counting Photodetector.

    PubMed

    Williams, Jamie O D; Alexander-Webber, Jack A; Lapington, Jon S; Roy, Mervyn; Hutchinson, Ian B; Sagade, Abhay A; Martin, Marie-Blandine; Braeuninger-Weimer, Philipp; Cabrero-Vilatela, Andrea; Wang, Ruizhi; De Luca, Andrea; Udrea, Florin; Hofmann, Stephan

    2016-01-01

    Graphene is a highly promising material in the development of new photodetector technologies, in particular due its tunable optoelectronic properties, high mobilities and fast relaxation times coupled to its atomic thinness and other unique electrical, thermal and mechanical properties. Optoelectronic applications and graphene-based photodetector technology are still in their infancy, but with a range of device integration and manufacturing approaches emerging this field is progressing quickly. In this review we explore the potential of graphene in the context of existing single photon counting technologies by comparing their performance to simulations of graphene-based single photon counting and low photon intensity photodetection technologies operating in the visible, terahertz and X-ray energy regimes. We highlight the theoretical predictions and current graphene manufacturing processes for these detectors. We show initial experimental implementations and discuss the key challenges and next steps in the development of these technologies. PMID:27563903

  6. The non-linearity of the ESA Photon Counting Detector

    NASA Astrophysics Data System (ADS)

    Llebaria, A.; Nieto, J.-L.; di Serego Alighieri, S.

    1986-11-01

    The time-resolved imaging mode (TRIM) suggested by di Serego Alighieri and Perryman (1986), in which photons are recorded separately on each television camera frame, was used to analyze the data obtained in 1984 on the nucleus of M31 with the ESA Photon Counting Detector (PCD) on the Canada-France-Hawaii telescope. Through the examination of the TRIM data, it was possible to detect nonlinearity in the response of the ESA PCD, which is interpreted as being due to phosphorescence in the intensifier. A quantitative measurement of this effect is shown. It is argued that if the interpretation is correct, the same kind of nonlinearity should be found in all photon counting detectors with phosphor screen. The amount of the nonlinearity is presumably higher in detectors with lower thresholds.

  7. Deep UV photon-counting detectors and applications

    NASA Astrophysics Data System (ADS)

    Shaw, Gary A.; Siegel, Andrew M.; Model, Joshua; Geboff, Adam; Soloviev, Stanislav; Vert, Alexey; Sandvik, Peter

    2009-05-01

    Photon counting detectors are used in many diverse applications and are well-suited to situations in which a weak signal is present in a relatively benign background. Examples of successful system applications of photon-counting detectors include ladar, bio-aerosol detection, communication, and low-light imaging. A variety of practical photon-counting detectors have been developed employing materials and technologies that cover the waveband from deep ultraviolet (UV) to the near-infrared. However, until recently, photoemissive detectors (photomultiplier tubes (PMTs) and their variants) were the only viable technology for photon-counting in the deep UV region of the spectrum. While PMTs exhibit extremely low dark count rates and large active area, they have other characteristics which make them unsuitable for certain applications. The characteristics and performance limitations of PMTs that prevent their use in some applications include bandwidth limitations, high bias voltages, sensitivity to magnetic fields, low quantum efficiency, large volume and high cost. Recently, DARPA has initiated a program called Deep UV Avalanche Photodiode (DUVAP) to develop semiconductor alternatives to PMTs for use in the deep UV. The higher quantum efficiency of Geiger-mode avalanche photodiode (GM-APD) detectors and the ability to fabricate arrays of individually-addressable detectors will open up new applications in the deep UV. In this paper, we discuss the system design trades that must be considered in order to successfully replace low-dark count, large-area PMTs with high-dark count, small-area GM-APD detectors. We also discuss applications that will be enabled by the successful development of deep UV GM-APD arrays, and we present preliminary performance data for recently fabricated silicon carbide GM-APD arrays.

  8. Avalanche photodiode photon counting receivers for space-borne lidars

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic M.

    1991-01-01

    Avalanche photodiodes (APD) are studied for uses as photon counting detectors in spaceborne lidars. Non-breakdown APD photon counters, in which the APD's are biased below the breakdown point, are shown to outperform: (1) conventional APD photon counters biased above the breakdown point; (2) conventional APD photon counters biased above the breakdown point; and (3) APD's in analog mode when the received optical signal is extremely weak. Non-breakdown APD photon counters were shown experimentally to achieve an effective photon counting quantum efficiency of 5.0 percent at lambda = 820 nm with a dead time of 15 ns and a dark count rate of 7000/s which agreed with the theoretically predicted values. The interarrival times of the counts followed an exponential distribution and the counting statistics appeared to follow a Poisson distribution with no after pulsing. It is predicted that the effective photon counting quantum efficiency can be improved to 18.7 percent at lambda = 820 nm and 1.46 percent at lambda = 1060 nm with a dead time of a few nanoseconds by using more advanced commercially available electronic components.

  9. Correction for nonlinear photon counting effects in lidar systems

    NASA Technical Reports Server (NTRS)

    Donovan, D. P.; Whiteway, J. A.; Carswell, A. I.

    1992-01-01

    Photomultiplier tubes (PMT's) employed in the photon counting (PC) mode of operation are widely used as detectors in lidar systems. In our laboratory, we have developed a versatile Nd:YAG lidar which is used for measurement of both the middle atmosphere and the troposphere. With this system, we encounter a very wide range of signal levels ranging from the extremely weak signals from the top of the mesosphere to the very strong returns from low level clouds. Although the system is capable of operating the PMT's in either the analog detection or photon counting mode, we find that often when we use photon counting we have portions of our lidar return which contain very useful information but are not within the linear operating regime of the PC system. We report the results of our efforts to explore the extent to which such high intensity PC signals can be quantitatively analyzed. In particular, a useful model relating the mean 'true' count rate and the observed count rate is presented and it's application to our system demonstrated. This model takes into account the variation in height of the PMT output pulses and the effect of the pulse height discrimination threshold.

  10. Charge coupled devices vs. microchannel plates in the extreme and far ultraviolet - A comparison based on the latest laboratory measurements

    NASA Technical Reports Server (NTRS)

    Vallerga, J.; Lampton, M.

    1988-01-01

    While microchannel plates (MCPs) have been established as imaging photon counters in the EUV and FUV for some years, CCDs are associated with low light level sensing at visible and near-IR wavelengths. Attention is presently given to recent proposals for CCDs' use as EUV and FUV detectors with quantum efficiencies sometimes exceeding those of MCPs; quantum resolution, format size, dynamic range, and long-term stability are also used as bases of comparison, for the cases of both space-based astronomical and spectroscopic applications.

  11. Electron-beam processing effect on photoemitting-structures parameters and the noise factor of microchannel plates

    NASA Astrophysics Data System (ADS)

    Avdeev, Sergey P.; Kravchenko, Aleksandr A.; Gusev, Evgeny Yu.; Petrov, Sergey N.

    2007-05-01

    This paper presents invesigation findings of electron-beam influence on parameters and characteristics of trialcali and bialkali photocathocles of vacuum photoelectric devices and electron-beam amplification channels modification of microchannel plate image intensifier (MCP) of the electrooptical transducer. The electron-beam processing (EBP) increases total sensitivity by 10 - 12% and reduces spoilage in photocathode production to a fourth. The noise factor of MCP subjected EBP before recovery procedure MCP, reduces in 1.5 - 2.0 times, the sensibility of electrooptical transducer increases.

  12. The high-resolution microchannel plate detector for FUV spectroscopy in the BepiColombo mission

    NASA Astrophysics Data System (ADS)

    Murakami, Go; Ezawa, Fukuhiro; Yoshioka, Kazuo; Yoshikawa, Ichiro; Chassefiere, Eric; Maria, Jean-Luc

    Mariner-10 UV measurements and telescopic spectroscopy from the Earth identified six elements (Ca, Na, K, H, He, and O) in the Mercury's exosphere. Other species are expected, e.g. H2 , OH, and some noble gasses (Ar, Ne, and Xe). All species representative of the surface composition, directly produced by impact vaporization driven by micrometeoroids, physical sputtering, photo-stimulated desorption, and thermal desorption from the regolith, should also be present. To determine the composition of the Mercury's exosphere, the PHEBUS (Probing of Hermean Exosphere By Ultraviolet Spectroscopy) instrument on Mercury Planetary Orbiter (MPO) will measure the emission lines of the exosphere. PHEBUS is a dual FUV-EUV spectrometer working in the wavelength range from 55 to 315 nm. We are now developing the compact detector system sensitive to FUV airglow emissions of the Mercury. The FUV detector is required to have high spatial resolution (80 µm) so that the wavelength resolution of the PHEBUS instrument should be 2 nm at the FUV range. The FUV detector consists of a Cs2 Te photocathode, microchannel plates (MCPs), and a resistive anode encoder (RAE). In a position-sensitive system with an RAE, the spatial resolution is determined by the signal-to-noise ratios at the anode terminals. Therefore, a high and stable electron gain of MCPs allows the position determination of each photoelectron event with high spatial resolution. We studied a method for achieving a high and stable electron gain. We fabricated a test model of the FUV detector incorporating a clamped pair of MCPs (V-stack) followed by a gap and a clamped triplet of MCPs (Z-stack) in cascade. We have investigated the effect of the negative potential applied across the inter-stack (V-Z) gap on the PHD and the spatial resolution by means of calculation and experiments. The calculation with a simple ballistic model showed that the negative inter-stack potential reduced the size of the electron cloud by 70%. The result

  13. Dark-Field Scanning Transmission Ion Microscopy via Detection of Forward-Scattered Helium Ions with a Microchannel Plate.

    PubMed

    Woehl, Taylor J; White, Ryan M; Keller, Robert R

    2016-06-01

    A microchannel plate was used as an ion sensitive detector in a commercial helium ion microscope (HIM) for dark-field transmission imaging of nanomaterials, i.e. scanning transmission ion microscopy (STIM). In contrast to previous transmission HIM approaches that used secondary electron conversion holders, our new approach detects forward-scattered helium ions on a dedicated annular shaped ion sensitive detector. Minimum collection angles between 125 mrad and 325 mrad were obtained by varying the distance of the sample from the microchannel plate detector during imaging. Monte Carlo simulations were used to predict detector angular ranges at which dark-field images with atomic number contrast could be obtained. We demonstrate atomic number contrast imaging via scanning transmission ion imaging of silica-coated gold nanoparticles and magnetite nanoparticles. Although the resolution of STIM is known to be degraded by beam broadening in the substrate, we imaged magnetite nanoparticles with high contrast on a relatively thick silicon nitride substrate. We expect this new approach to annular dark-field STIM will open avenues for more quantitative ion imaging techniques and advance fundamental understanding of underlying ion scattering mechanisms leading to image formation. PMID:27153003

  14. Noise filtering techniques for photon-counting ladar data

    NASA Astrophysics Data System (ADS)

    Magruder, Lori A.; Wharton, Michael E., III; Stout, Kevin D.; Neuenschwander, Amy L.

    2012-06-01

    Many of the recent small, low power ladar systems provide detection sensitivities on the photon(s) level for altimetry applications. These "photon-counting" instruments, many times, are the operational solution to high altitude or space based platforms where low signal strength and size limitations must be accommodated. Despite the many existing algorithms for lidar data product generation, there remains a void in techniques available for handling the increased noise level in the photon-counting measurements as the larger analog systems do not exhibit such low SNR. Solar background noise poses a significant challenge to accurately extract surface features from the data. Thus, filtering is required prior to implementation of other post-processing efforts. This paper presents several methodologies for noise filtering photoncounting data. Techniques include modified Canny Edge Detection, PDF-based signal extraction, and localized statistical analysis. The Canny Edge detection identifies features in a rasterized data product using a Gaussian filter and gradient calculation to extract signal photons. PDF-based analysis matches local probability density functions with the aggregate, thereby extracting probable signal points. The localized statistical method assigns thresholding values based on a weighted local mean of angular variances. These approaches have demonstrated the ability to remove noise and subsequently provide accurate surface (ground/canopy) determination. The results presented here are based on analysis of multiple data sets acquired with the high altitude NASA MABEL system and photon-counting data supplied by Sigma Space Inc. configured to simulate the NASA upcoming ICESat-2 mission instrument expected data product.

  15. High quantum efficiency S-20 photocathodes in photon counting detectors

    NASA Astrophysics Data System (ADS)

    Orlov, D. A.; DeFazio, J.; Duarte Pinto, S.; Glazenborg, R.; Kernen, E.

    2016-04-01

    Based on conventional S-20 processes, a new series of high quantum efficiency (QE) photocathodes has been developed that can be specifically tuned for use in the ultraviolet, blue or green regions of the spectrum. The QE values exceed 30% at maximum response, and the dark count rate is found to be as low as 30 Hz/cm2 at room temperature. This combination of properties along with a fast temporal response makes these photocathodes ideal for application in photon counting detectors, which is demonstrated with an MCP photomultiplier tube for single and multi-photoelectron detection.

  16. Ultrafast three-photon counting in a photomultiplier tube.

    PubMed

    Nevet, Amir; Hayat, Alex; Orenstein, Meir

    2011-03-01

    We demonstrate experimentally ultrafast three-photon counting by three-photon absorption in a GaAsP photomultiplier tube at the wavelength range of 1800-1900 nm, and analyze its sensitivity and time response. Pulse energy of ∼500 fJ is shown to be detectable for ultrafast 170 fs pulses. The presented three-photon counter may serve as a unique tool for ultrafast quantum state characterization as well as for ultrasensitive third-order temporal measurements. PMID:21368962

  17. Optical and UV Sensing Sealed Tube Microchannel Plate Imaging Detectors with High Time Resolution

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Vallerga, J.; Tremsin, A.; Hull, J.; Elam, J.; Mane, A.

    2014-09-01

    Microchannel plate (MCP) based imaging, photon time tagging detector sealed tube schemes have a unique set of operational features that enable high time resolution astronomical and remote sensing applications to be addressed. New detectors using the cross strip (XS), cross delay line (XDL), or stripline anode readouts, a wide range of photocathode types, and advanced MCP technologies have been implemented to improve many performance characteristics. A variety of sealed tubes have been developed including 18mm XS readout devices with GaAs and SuperGenII photocathodes, 25mm XDL readout devices with SuperGenII and GaN photocathodes, and 20 x 20 cm sealed tubes with bialkali photocathodes and strip line readout. One key technology that has just become viable is the ability to make MCPs using atomic layer deposition (ALD) techniques. This employs nanofabrication of the active layers of an MCP on a microcapillary array. This technique opens new performance opportunities, including, very large MCP areas (>20cm), very low intrinsic background, lower radiation induced background, much longer overall lifetime and gain stability, and markedly lower outgassing which can improve the sealed tube lifetime and ease of fabrication. The XS readout has been implemented in formats of 22mm, 50mm and 100mm, and uses MCP charge signals detected on two orthogonal layers of conductive fingers to encode event X-Y positions. We have achieved spatial resolution XS detectors better than 25 microns FWHM, with good image linearity while at low gain (<10^6), substantially increasing local counting rate capabilities and the overall tube lifetime. XS tubes with updated electronics can encode event rates of >5 MHz with ~12% dead time and event timing accuracy of ~100ps. XDL sealed tubes in 25mm format demonstrate ~40 micron spatial resolution at up to ~2 MHz event rates, and have been developed with SupergenII visible regime photocathodes. The XDL tubes also achieve ~100 ps time resolution. Most

  18. Novel Photon-Counting Detectors for Free-Space Communication

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff

    2016-01-01

    We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.

  19. Ultrafast photon counting applied to resonant scanning STED microscopy.

    PubMed

    Wu, Xundong; Toro, Ligia; Stefani, Enrico; Wu, Yong

    2015-01-01

    To take full advantage of fast resonant scanning in super-resolution stimulated emission depletion (STED) microscopy, we have developed an ultrafast photon counting system based on a multigiga sample per second analogue-to-digital conversion chip that delivers an unprecedented 450 MHz pixel clock (2.2 ns pixel dwell time in each scan). The system achieves a large field of view (∼50 × 50 μm) with fast scanning that reduces photobleaching, and advances the time-gated continuous wave STED technology to the usage of resonant scanning with hardware-based time-gating. The assembled system provides superb signal-to-noise ratio and highly linear quantification of light that result in superior image quality. Also, the system design allows great flexibility in processing photon signals to further improve the dynamic range. In conclusion, we have constructed a frontier photon counting image acquisition system with ultrafast readout rate, excellent counting linearity, and with the capacity of realizing resonant-scanning continuous wave STED microscopy with online time-gated detection. PMID:25227160

  20. Novel photon-counting detectors for free-space communication

    NASA Astrophysics Data System (ADS)

    Krainak, M. A.; Yang, G.; Sun, X.; Lu, W.; Merritt, S.; Beck, J.

    2016-03-01

    We present performance data for novel photon-counting detectors for free space optical communication. NASA GSFC is testing the performance of three types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We present and compare dark count, photon-detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array routinely demonstrated photon detection efficiencies of greater than 50% across 5 arrays, with one array reaching a maximum PDE of 70%. We performed high-resolution pixel-surface spot scans and measured the junction diameters of its diodes. We found that decreasing the junction diameter from 31 μm to 25 μm doubled the e- APD gain from 470 for an array produced in the year 2010 to a gain of 1100 on an array delivered to NASA GSFC recently. The mean single-photon SNR was over 12 and the excess noise factors measurements were 1.2-1.3. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output.

  1. Ultrafast Photon Counting Applied to Resonant Scanning STED Microscopy

    PubMed Central

    Wu, Xundong; Toro, Ligia; Stefani, Enrico; Wu, Yong

    2014-01-01

    Summary To take full advantage of fast resonant scanning in super-resolution STimulated Emission Depletion (STED) microscopy, we have developed an ultrafast photon counting system based on a multi-giga-sample per second analog-to-digital conversion (ADC) chip that delivers an unprecedented 450 MHz pixel clock (2.2 ns pixel dwell time in each scan). The system achieves a large field of view (~50 × 50 μm) with fast scanning that reduces photobleaching, and advances the time-gated continuous wave (CW) STED technology to the usage of resonant scanning with hardware based time-gating. The assembled system provides superb signal-to-noise ratio and highly linear quantification of light that result in superior image quality. Also, the system design allows great flexibility in processing photon signals to further improve the dynamic range. In conclusion, we have constructed a frontier photon counting image acquisition system with ultrafast readout rate, excellent counting linearity, and with the capacity of realizing resonant-scanning CW-STED microscopy with on-line time-gated detection. PMID:25227160

  2. Energy dispersive photon counting detectors for breast imaging

    NASA Astrophysics Data System (ADS)

    Barber, William C.; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasidharan; Nygard, Einar; Iwanczyk, Jan S.

    2013-09-01

    We report on our efforts toward the development of silicon (Si) strip detectors for energy-resolved clinical breast imaging. Typically, x-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a- Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting silicon Si strip detectors. Mammography requires high flux from the x-ray generator, therefore, in order to achieve energy resolved single photon counting, a high output count rate (OCR) for the detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions. We present our methods and results from the optimization of prototype detectors based on Si strip structures. We describe the detector optimization and the development of ASIC readout electronics that provide the required spatial resolution, low noise, high count rate capabilities and minimal power consumption.

  3. Improved photon counting efficiency calibration using superconducting single photon detectors

    NASA Astrophysics Data System (ADS)

    Gan, Haiyong; Xu, Nan; Li, Jianwei; Sun, Ruoduan; Feng, Guojin; Wang, Yanfei; Ma, Chong; Lin, Yandong; Zhang, Labao; Kang, Lin; Chen, Jian; Wu, Peiheng

    2015-10-01

    The quantum efficiency of photon counters can be measured with standard uncertainty below 1% level using correlated photon pairs generated through spontaneous parametric down-conversion process. Normally a laser in UV, blue or green wavelength range with sufficient photon energy is applied to produce energy and momentum conserved photon pairs in two channels with desired wavelengths for calibration. One channel is used as the heralding trigger, and the other is used for the calibration of the detector under test. A superconducting nanowire single photon detector with advantages such as high photon counting speed (<20 MHz), low dark count rate (<50 counts per second), and wideband responsivity (UV to near infrared) is used as the trigger detector, enabling correlated photons calibration capabilities into shortwave visible range. For a 355nm single longitudinal mode pump laser, when a superconducting nanowire single photon detector is used as the trigger detector at 1064nm and 1560nm in the near infrared range, the photon counting efficiency calibration capabilities can be realized at 532nm and 460nm. The quantum efficiency measurement on photon counters such as photomultiplier tubes and avalanche photodiodes can be then further extended in a wide wavelength range (e.g. 400-1000nm) using a flat spectral photon flux source to meet the calibration demands in cutting edge low light applications such as time resolved fluorescence and nonlinear optical spectroscopy, super resolution microscopy, deep space observation, and so on.

  4. Subnanosecond time-correlated photon counting with tunable lasers.

    PubMed

    Spears, K G; Cramer, L E; Hoffland, L D

    1978-02-01

    We present several laser based methods to improve the technique of time-correlated photon counting. Our Ar(+) laser pumped tunable dye laser can be operated in three timing configurations: acousto-optically mode locked, cavity dumped, and cavity dumped-mode locked. Performance characteristics of the laser system in various operational modes are described along with measurement techniques for both gas and liquid phase. The subnanosecond pulses generated by mode locking are extremely stable and they maintain identical pulse shapes over a 6-h period, as shown via photon counting measurements at a 15-psec channel resolution. Our RCA C31034 photomultiplier with a red sensitive GaAs photocathode provides wavelength-independent response to detected fluorescence in both the visible and ultraviolet. The present limit of our apparatus is controlled by the accuracy of deconvoluting fluorescence decay from the finite response width caused by photomultiplier transit time dispersion (0.8 nsec FWHM). Our system stability is sufficient to accurately determine exponential decays as short as 50 psec. Furthermore, we can successfully analyze dual exponential decays such as those arising from solution reorientation times of 390 psec competing with a fluorescence lifetime of 725 psec. Examples of the laser performance are selected from a variety of measurements in the gas phase and from the fluorescent dye rose bengal in the liquid phase. PMID:18699071

  5. Dynamic Characterizations of an 8-frame Half-Strip High-speed X-ray Microchannel Plate Imager

    SciTech Connect

    Ken Moy, Ming Wu, Craig Kruschwitz, Aric Tibbits, Matt Griffin, Greg Rochau

    2008-09-05

    High-speed microchannel plate (MCP)–based imagers are critical detectors for x-ray diagnostics employed on Z-experiments at Sandia National Laboratories (SNL) to measure time-resolved x-ray spectra and to image dynamic hohlraums. A multiframe design using eight half strips in one imager permits recordings of radiation events in discrete temporal snapshots to yield a time-evolved movie. We present data using various facilities to characterize the performance of this design. These characterization studies include DC and pulsed-voltage biased measurements in both saturated and linear operational regimes using an intense, short-pulsed UV laser. Electrical probe measurements taken to characterize the shape of the HV pulse propagating across the strips help to corroborate the spatial gain dependence.

  6. Characterization Studies and Performance of Half-strip High-speed X-ray Microchannel Plate Imager

    SciTech Connect

    Kenneth Moy; Ming Wu

    2008-03-01

    High-speed microchannel plate (MCP)–based imagers are critical detectors for x-ray diagnostics employed on Z-experiments at Sandia National Laboratories (SNL) to measure time-resolved x-ray spectra and to image dynamic hohlraums. A design using eight half-strip x-ray photocathodes in one imager permits recordings of radiation events in discrete temporal snapshots to yield a time-evolved movie. We present data using various facilities to characterize the performance of this design. These characterization studies include DC and pulsed-voltage biased measurements in both saturated and linear operational regimes using an intense, short-pulsed UV laser and Manson source. Surface voltage profile measurements using a picoprobe help to determine the gain variation across the strips. Test data from a recent SNL ZR-experiment demonstrates the flexibility and high-quality images obtained by this MCP imager.

  7. Development of a New Fast Shower Maximum Detector Based on Microchannel Plates Photomultipliers (MCP-PMT) as an Active Element

    SciTech Connect

    Ronzhin, A.; Los, S.; Ramberg, E.; Spiropulu, M.; Apresyan, A.; Xie, S.; Kim, H.; Zatserklyaniy, A.

    2014-09-21

    One possibility to make a fast and radiation resistant shower maximum (SM) detector is to use a secondary emitter as an active element. We present below test beam results, obtained with different types of photodetectors based on microchannel plates (MCPs) as the secondary emitter. We performed the measurements at the Fermilab Test Beam Facility with 120GeV proton beam and 12GeV and 32GeV secondary beams. The goal of the measurement with 120GeV protons was to determine time resolution for minimum ionizing particles (MIPs). The SM time resolution we obtained for this new type of detector is at the level of 20-30ps. We estimate that a significant contribution to the detector response originates from secondary emission of the MCP. This work can be considered as the first step in building a new type of calorimeter based on this principle.

  8. Thomson spectrometer-microchannel plate assembly calibration for MeV-range positive and negative ions, and neutral atoms

    SciTech Connect

    Prasad, R.; Abicht, F.; Braenzel, J.; Priebe, G.; Schnuerer, M.; Borghesi, M.; Ter-Avetisyan, S.; Nickles, P. V.

    2013-05-15

    We report on the absolute calibration of a microchannel plate (MCP) detector, used in conjunction with a Thomson parabola spectrometer. The calibration delivers the relation between a registered count numbers in the CCD camera (on which the MCP phosphor screen is imaged) and the number of ions incident on MCP. The particle response of the MCP is evaluated for positive, negative, and neutral particles at energies below 1 MeV. As the response of MCP depends on the energy and the species of the ions, the calibration is fundamental for the correct interpretation of the experimental results. The calibration method and arrangement exploits the unique emission symmetry of a specific source of fast ions and atoms driven by a high power laser.

  9. Design and fabrication of prototype 6×6 cm2 microchannel plate photodetector with bialkali photocathode for fast timing applications

    NASA Astrophysics Data System (ADS)

    Xie, Junqi; Byrum, Karen; Demarteau, Marcel; Gregar, Joseph; May, Edward; Virgo, Mathew; Wagner, Robert; Walters, Dean; Wang, Jingbo; Xia, Lei; Zhao, Huyue

    2015-06-01

    Planar microchannel plate-based photodetectors with a bialkali photocathode are able to achieve photon detection with very good time and position resolution. A 6×6 cm2 photodetector production facility was designed and built at Argonne National Laboratory. Small form-factor MCP-based photodetectors completely constructed out of glass were designed and prototypes were successfully fabricated. Knudsen effusion cells were incorporated in the photocathode growth chamber to achieve uniform and high quantum efficiency photocathodes. The thin film uniformity was simulated and measured for an antimony film deposition, showing uniformity of better than 10%. Several prototype devices with bialkali photocathodes have been fabricated with the described system and their characteristics were evaluated in the large signal (multi-PE) limit. A typical prototype device exhibits time-of-flight resolution of ~27 psec and differential time resolution of ~9 psec, corresponding to spatial resolution of ~0.65 mm.

  10. A low noise front end electronics for micro-channel plate detector with wedge and strip anode

    NASA Astrophysics Data System (ADS)

    Hu, K.; Li, F.; Liang, F.; Chen, L.; Jin, G.

    2016-03-01

    A low noise Front End Electronics (FEE) for two-dimensional position sensitive Micro-Channel Plate (MCP) detector has been developed. The MCP detector is based on Wedge and Strip Anode (WSA) with induction readout mode. The WSA has three electrodes, the wedge electrode, the strip electrode, and the zigzag electrode. Then, three readout channels are designed in the Printed Circuit Board (PCB). The FEE is calibrated by a pulse generator from Agilent. We also give an analysis of the charge loss from the CSA. The noise levels of the three channels are less than 1 fC RMS at the shaping time of 200 ns. The experimental result shows that the position resolution of the MCP detector coupled with the designed PCB can reach up to 110 μm.

  11. Development of a new fast shower maximum detector based on microchannel plates photomultipliers (MCP-PMT) as an active element

    NASA Astrophysics Data System (ADS)

    Ronzhin, A.; Los, S.; Ramberg, E.; Spiropulu, M.; Apresyan, A.; Xie, S.; Kim, H.; Zatserklyaniy, A.

    2014-09-01

    One possibility to make a fast and radiation resistant shower maximum (SM) detector is to use a secondary emitter as an active element. We present below test beam results, obtained with different types of photodetectors based on microchannel plates (MCPs) as the secondary emitter. We performed the measurements at the Fermilab Test Beam Facility with 120 GeV proton beam and 12 GeV and 32 GeV secondary beams. The goal of the measurement with 120 GeV protons was to determine time resolution for minimum ionizing particles (MIPs). The SM time resolution we obtained for this new type of detector is at the level of 20-30 ps. We estimate that a significant contribution to the detector response originates from secondary emission of the MCP. This work can be considered as the first step in building a new type of calorimeter based on this principle.

  12. Position and time resolution measurements with a microchannel plate image intensifier: A comparison of monolithic and pixelated CeBr3 scintillators

    NASA Astrophysics Data System (ADS)

    Ackermann, Ulrich; Eschbaumer, Stephan; Bergmaier, Andreas; Egger, Werner; Sperr, Peter; Greubel, Christoph; Löwe, Benjamin; Schotanus, Paul; Dollinger, Günther

    2016-07-01

    To perform Four Dimensional Age Momentum Correlation measurements in the near future, where one obtains the positron lifetime in coincidence with the three dimensional momentum of the electron annihilating with the positron, we have investigated the time and position resolution of two CeBr3 scintillators (monolithic and an array of pixels) using a Photek IPD340/Q/BI/RS microchannel plate image intensifier. The microchannel plate image intensifier has an active diameter of 40 mm and a stack of two microchannel plates in chevron configuration. The monolithic CeBr3 scintillator was cylindrically shaped with a diameter of 40 mm and a height of 5 mm. The pixelated scintillator array covered the whole active area of the microchannel plate image intensifier and the shape of each pixel was 2.5·2.5·8 mm3 with a pixel pitch of 3.3 mm. For the monolithic setup the measured mean single time resolution was 330 ps (FWHM) at a gamma energy of 511 keV. No significant dependence on the position was detected. The position resolution at the center of the monolithic scintillator was about 2.5 mm (FWHM) at a gamma energy of 662 keV. The single time resolution of the pixelated crystal setup reached 320 ps (FWHM) in the region of the center of the active area of the microchannel plate image intensifier. The position resolution was limited by the cross-section of the pixels. The gamma energy for the pixel setup measurements was 511 keV.

  13. Single Photon Counting Detectors for Low Light Level Imaging Applications

    NASA Astrophysics Data System (ADS)

    Kolb, Kimberly

    2015-10-01

    This dissertation presents the current state-of-the-art of semiconductor-based photon counting detector technologies. HgCdTe linear-mode avalanche photodiodes (LM-APDs), silicon Geiger-mode avalanche photodiodes (GM-APDs), and electron-multiplying CCDs (EMCCDs) are compared via their present and future performance in various astronomy applications. LM-APDs are studied in theory, based on work done at the University of Hawaii. EMCCDs are studied in theory and experimentally, with a device at NASA's Jet Propulsion Lab. The emphasis of the research is on GM-APD imaging arrays, developed at MIT Lincoln Laboratory and tested at the RIT Center for Detectors. The GM-APD research includes a theoretical analysis of SNR and various performance metrics, including dark count rate, afterpulsing, photon detection efficiency, and intrapixel sensitivity. The effects of radiation damage on the GM-APD were also characterized by introducing a cumulative dose of 50 krad(Si) via 60 MeV protons. Extensive development of Monte Carlo simulations and practical observation simulations was completed, including simulated astronomical imaging and adaptive optics wavefront sensing. Based on theoretical models and experimental testing, both the current state-of-the-art performance and projected future performance of each detector are compared for various applications. LM-APD performance is currently not competitive with other photon counting technologies, and are left out of the application-based comparisons. In the current state-of-the-art, EMCCDs in photon counting mode out-perform GM-APDs for long exposure scenarios, though GM-APDs are better for short exposure scenarios (fast readout) due to clock-induced-charge (CIC) in EMCCDs. In the long term, small improvements in GM-APD dark current will make them superior in both long and short exposure scenarios for extremely low flux. The efficiency of GM-APDs will likely always be less than EMCCDs, however, which is particularly disadvantageous for

  14. Soft tissue imaging with photon counting spectroscopic CT

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.

    2015-03-01

    The purpose of this work was experimental investigation of photon counting spectroscopic CT (PCS-CT) imaging of anatomical soft tissue with clinically relevant size. The imaging experiments were performed using a spectroscopic CT system based on CdZnTe photon counting detector with two rows of pixels, 256 pixels in each row, 1  ×  1 mm2 pixel size, and 25.6 cm detector length. The detector could split the x-ray energy spectrum to 5 regions (energy bins), and acquire 5 multi-energy (spectroscopic) CT images in a single CT scan. A sample of round shaped anatomical soft tissue of 14 cm diameter including lean and fat was used for imaging. To avoid the negative effect of anatomical noise on quantitative analysis, a spectroscopic CT phantom with tissue equivalent solid materials was used. The images were acquired at 60, 90, and 120 kVp tube voltages, and spectroscopic image series were acquired with 3 and 5 energy bins. Spectroscopic CT numbers were introduced and used to evaluate an energy selective image series. The anatomical soft tissue with 14 cm diameter was visualized with good quality and without substantial artifacts by the photon counting spectroscopic CT system. The effects of the energy bin crosstalk on spectroscopic CT numbers were quantified and analyzed. The single and double slice PCS-CT images were acquired and compared. Several new findings were observed, including the effect of soft tissue non-uniformity on image artifacts, unique status of highest energy bin, and material dependent visualization in spectroscopic image series. Fat-lean decomposition was performed using dual energy subtraction and threshold segmentation methods, and compared. Using K-edge filtered x-rays improved fat-lean decomposition as compared to conventional x-rays. Several new and important aspects of the PCS-CT were investigated. These include imaging soft tissue with clinically relevant size, single- and double-slice PCS-CT imaging, using spectroscopic CT

  15. Soft tissue imaging with photon counting spectroscopic CT.

    PubMed

    Shikhaliev, Polad M

    2015-03-21

    The purpose of this work was experimental investigation of photon counting spectroscopic CT (PCS-CT) imaging of anatomical soft tissue with clinically relevant size. The imaging experiments were performed using a spectroscopic CT system based on CdZnTe photon counting detector with two rows of pixels, 256 pixels in each row, 1  ×  1 mm(2) pixel size, and 25.6 cm detector length. The detector could split the x-ray energy spectrum to 5 regions (energy bins), and acquire 5 multi-energy (spectroscopic) CT images in a single CT scan. A sample of round shaped anatomical soft tissue of 14 cm diameter including lean and fat was used for imaging. To avoid the negative effect of anatomical noise on quantitative analysis, a spectroscopic CT phantom with tissue equivalent solid materials was used. The images were acquired at 60, 90, and 120 kVp tube voltages, and spectroscopic image series were acquired with 3 and 5 energy bins. Spectroscopic CT numbers were introduced and used to evaluate an energy selective image series. The anatomical soft tissue with 14 cm diameter was visualized with good quality and without substantial artifacts by the photon counting spectroscopic CT system. The effects of the energy bin crosstalk on spectroscopic CT numbers were quantified and analyzed. The single and double slice PCS-CT images were acquired and compared. Several new findings were observed, including the effect of soft tissue non-uniformity on image artifacts, unique status of highest energy bin, and material dependent visualization in spectroscopic image series. Fat-lean decomposition was performed using dual energy subtraction and threshold segmentation methods, and compared. Using K-edge filtered x-rays improved fat-lean decomposition as compared to conventional x-rays. Several new and important aspects of the PCS-CT were investigated. These include imaging soft tissue with clinically relevant size, single- and double-slice PCS-CT imaging, using spectroscopic CT

  16. Photon-counting array detectors for space and ground-based studies at ultraviolet and vacuum ultraviolet /VUV/ wavelengths

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1981-01-01

    The Multi-Anode Microchannel Arrays (MAMAs) are a family of photoelectric photon-counting array detectors, with formats as large as (256 x 1024)-pixels that can be operated in a windowless configuration at vacuum ultraviolet (VUV) and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. This paper describes the construction and modes of operation of (1 x 1024)-pixel and (24 x 1024)-pixel MAMA detector systems that are being built and qualified for use in sounding-rocket spectrometers for solar and stellar observations at wavelengths below 1300 A. The performance characteristics of the MAMA detectors at ultraviolet and VUV wavelengths are also described.

  17. Optimal selection of thresholds for photon counting CT

    NASA Astrophysics Data System (ADS)

    O'Donnell, Thomas; Schoeck, Friederike; Cheheltani, Rabee; Cormode, David; Fayad, Zahi A.

    2016-03-01

    Recent advances in Photon Counting CT (PCCT) have facilitated the simultaneous acquisition of multiple image volumes with differing energy thresholds. This presents the user with several choices for energy threshold combinations. As compared to standard clinical Dual kVp CT , where the user typically has only three choices of kVp pairings (e.g., 80/150Sn, 90/150Sn, 100/150Sn), a "quad" PCCT system with 14 threshold settings has Choose(14,4)= 1001 possible threshold combinations (assuming no restrictions). In this paper we describe a computationally tractable means to order, from best (most accurate) to worst (least accurate), threshold combinations for the task of discriminating pure materials of assumed approximate concentrations using the Bhattacharyya Coefficient. We observe that this ordering is not necessarily identical to the ordering for the task of decomposing material mixtures into their components. We demonstrate our approach on phantom data.

  18. Maturing CCD photon-counting technology for space flight

    NASA Astrophysics Data System (ADS)

    Mallik, Udayan; Lyon, Richard; Petrone, Peter; McElwain, Michael; Benford, Dominic; Clampin, Mark; HIcks, Brian

    2015-09-01

    This paper discusses charge blooming and starlight saturation - two potential technical problems - when using an Electron Multiplying Charge Coupled Device (EMCCD) type detector in a high-contrast instrument for imaging exoplanets. These problems especially affect an interferometric type coronagraph - coronagraphs that do not use a mask to physically block starlight in the science channel of the instrument. These problems are presented using images taken with a commercial Princeton Instrument EMCCD camera in the Goddard Space Flight Center's (GSFC), Interferometric Coronagraph facility. In addition, this paper discusses techniques to overcome such problems. This paper also discusses the development and architecture of a Field Programmable Gate Array and Digital-to-Analog Converter based shaped clock controller for a photon-counting EMCCD camera. The discussion contained here will inform high-contrast imaging groups in their work with EMCCD detectors.

  19. Single-quantum dot imaging with a photon counting camera

    PubMed Central

    Michalet, X.; Colyer, R. A.; Antelman, J.; Siegmund, O.H.W.; Tremsin, A.; Vallerga, J.V.; Weiss, S.

    2010-01-01

    The expanding spectrum of applications of single-molecule fluorescence imaging ranges from fundamental in vitro studies of biomolecular activity to tracking of receptors in live cells. The success of these assays has relied on progresses in organic and non-organic fluorescent probe developments as well as improvements in the sensitivity of light detectors. We describe a new type of detector developed with the specific goal of ultra-sensitive single-molecule imaging. It is a wide-field, photon-counting detector providing high temporal and high spatial resolution information for each incoming photon. It can be used as a standard low-light level camera, but also allows access to a lot more information, such as fluorescence lifetime and spatio-temporal correlations. We illustrate the single-molecule imaging performance of our current prototype using quantum dots and discuss on-going and future developments of this detector. PMID:19689323

  20. Multimode model for projective photon-counting measurements

    SciTech Connect

    Tualle-Brouri, Rosa; Ourjoumtsev, Alexei; Dantan, Aurelien; Grangier, Philippe; Wubs, Martijn; Soerensen, Anders S.

    2009-07-15

    We present a general model to account for the multimode nature of the quantum electromagnetic field in projective photon-counting measurements. We focus on photon-subtraction experiments, where non-Gaussian states are produced conditionally. These are useful states for continuous-variable quantum-information processing. We present a general method called mode reduction that reduces the multimode model to an effective two-mode problem. We apply this method to a multimode model describing broadband parametric down-conversion, thereby improving the analysis of existing experimental results. The main improvement is that spatial and frequency filters before the photon detector are taken into account explicitly. We find excellent agreement with previously published experimental results, using fewer free parameters than before, and discuss the implications of our analysis for the optimized production of states with negative Wigner functions.

  1. Photon-counting technique for rapid fluorescence-decay measurement.

    PubMed

    Pack, S D; Renfro, M W; King, G B; Laurendeau, N M

    1998-08-01

    We report on a novel laser-induced fluorescence triple-integration method (LIFTIME) that is capable of making rapid, continuous fluorescence lifetime measurements by a unique photon-counting technique. The LIFTIME has been convolved with picosecond time-resolved laser-induced fluorescence, which employs a high-repetition-rate mode-locked laser, permitting the eventual monitoring of instantaneous species concentrations in turbulent flames. We verify the technique by application of the LIFTIME to two known fluorescence media, diphenyloxazole (PPO) and quinine sulfate monohydrate (QSM). PPO has a fluorescence lifetime of 1.28 ns, whereas QSM has a fluorescence lifetime that can be varied from 1.0 to 3.0 ns. From these liquid samples we demonstrate that fluorescence lifetime can currently be monitored at a sampling rate of up to 500 Hz with less than 10% uncertainty (1 sigma) . PMID:18087478

  2. Breakdown of the cross-Kerr scheme for photon counting.

    PubMed

    Fan, Bixuan; Kockum, Anton F; Combes, Joshua; Johansson, Göran; Hoi, Io-chun; Wilson, C M; Delsing, Per; Milburn, G J; Stace, Thomas M

    2013-02-01

    We show, in the context of single-photon detection, that an atomic three-level model for a transmon in a transmission line does not support the predictions of the nonlinear polarizability model known as the cross-Kerr effect. We show that the induced displacement of a probe in the presence or absence of a single photon in the signal field, cannot be resolved above the quantum noise in the probe. This strongly suggests that cross-Kerr media are not suitable for photon counting or related single-photon applications. Our results are presented in the context of a transmon in a one-dimensional microwave waveguide, but the conclusions also apply to optical systems. PMID:23414018

  3. Time-averaged photon-counting digital holography.

    PubMed

    Demoli, Nazif; Skenderović, Hrvoje; Stipčević, Mario

    2015-09-15

    Time-averaged holography has been using photo-emulsions (early stage) and digital photo-sensitive arrays (later) to record holograms. We extend the recording possibilities by utilizing a photon-counting camera, and we further investigate the possibility of obtaining accurate hologram reconstructions in rather severe experimental conditions. To achieve this, we derived an expression for fringe function comprising the main parameters affecting the hologram recording. Influence of the main parameters, namely the exposure time and the number of averaged holograms, is analyzed by simulations and experiments. It is demonstrated that taking long exposure times can be avoided by averaging over many holograms with the exposure times much shorter than the vibration cycle. Conditions in which signal-to-noise ratio in reconstructed holograms can be substantially increased are provided. PMID:26371907

  4. OPTIMA: A Photon Counting High-Speed Photometer

    NASA Astrophysics Data System (ADS)

    Straubmeier, C.; Kanbach, G.; Schrey, F.

    OPTIMA is a small, versatile high-speed photometer which is primarily intended for time resolved observations of young high energy pulsars at optical wavelengths. The detector system consists of eight fiber fed photon counters based on avalanche photodiodes, a GPS timing receiver, an integrating CCD camera to ensure the correct pointing of the telescope and a computerized control unit. Since January 1999 OPTIMA proves its scientific potential by measuring a very detailed lightcurve of the Crab Pulsar as well as by observing cataclysmic variable stars on very short timescales. In this article we describe the design of the detector system focussing on the photon counting units and the software control which correlates the detected photons with the GPS timing signal.

  5. Single photon counting pixel detectors for synchrotron radiation experiments

    NASA Astrophysics Data System (ADS)

    Toyokawa, H.; Broennimann, Ch.; Eikenberry, E. F.; Henrich, B.; Kawase, M.; Kobas, M.; Kraft, P.; Sato, M.; Schmitt, B.; Suzuki, M.; Tanida, H.; Uruga, T.

    2010-11-01

    At the Paul Scherrer Institute PSI an X-ray single photon counting pixel detector (PILATUS) based on the hybrid-pixel detector technology was developed in collaboration with SPring-8. The detection element is a 320 or 450 μm thick silicon sensor forming pixelated pn-diodes with a pitch of 172 μm×172 μm. An array of 2×8 custom CMOS readout chips are indium bump-bonded to the sensor, which leads to 33.5 mm×83.8 mm detective area. Each pixel contains a charge-sensitive amplifier, a single level discriminator and a 20 bit counter. This design realizes a high dynamic range, short readout time of less than 3 ms, a high framing rate of over 200 images per second and an excellent point-spread function. The maximum counting rate achieves more than 2×10 6 X-rays/s/pixel.

  6. Performance of single-photon-counting PILATUS detector modules

    PubMed Central

    Kraft, P.; Bergamaschi, A.; Broennimann, Ch.; Dinapoli, R.; Eikenberry, E. F.; Henrich, B.; Johnson, I.; Mozzanica, A.; Schlepütz, C. M.; Willmott, P. R.; Schmitt, B.

    2009-01-01

    PILATUS is a silicon hybrid pixel detector system, operating in single-photon-counting mode, that has been developed at the Paul Scherrer Institut for the needs of macromolecular crystallography at the Swiss Light Source (SLS). A calibrated PILATUS module has been characterized with monochromatic synchrotron radiation. The influence of charge sharing on the count rate and the overall energy resolution of the detector were investigated. The dead-time of the system was determined using the attenuated direct synchrotron beam. A single module detector was also tested in surface diffraction experiments at the SLS, whereby its performance regarding fluorescence suppression and saturation tolerance were evaluated, and have shown to greatly improve the sensitivity, reliability and speed of surface diffraction data acquisition. PMID:19395800

  7. Photon counting photodiode array detector for far ultraviolet (FUV) astronomy

    NASA Technical Reports Server (NTRS)

    Hartig, G. F.; Moos, H. W.; Pembroke, R.; Bowers, C.

    1982-01-01

    A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location. Previously announced in STAR as N82-19118

  8. Investigation of a photon counting avalanche photodiode from Hamamatsu photonics

    NASA Astrophysics Data System (ADS)

    Britvitch, I.; Musienko, Y.; Renker, D.

    2006-11-01

    Multi-cell avalanche photodiodes (APDs) operating in Geiger mode have been shown to be a very promising alternative to photomultiplier tubes for the detection of single photons at room temperature. Like a photomultiplier they have high gain and a fast rise time and they are insensitive to pickup. Beyond it they operate in high magnetic fields, are compact and need a relatively low bias voltage. It is expected that the MOS production technique makes them cheap. Recently PSI and Hamamatsu Photonics worked together for the development of a radiation-hard APD for CMS ECAL and had very good success. The development continued based on a similar design for a photon counting multielement Geiger-mode APD with an area of 1×1 mm 2. The properties of this device have been measured and will be reported.

  9. Novel Photon-Counting Detectors for Free-Space Communication

    NASA Technical Reports Server (NTRS)

    Krainak, M. A.; Yang, G.; Sun, X.; Lu, W.; Merritt, S.; Beck, J.

    2016-01-01

    We present performance data for novel photon-counting detectors for free space optical communication. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We present and compare dark count, photon-detection efficiency, wavelength response and communication performance data for these detectors. We successfully measured real-time communication performance using both the 2 detected-photon threshold and AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects. The HgCdTe APD array routinely demonstrated photon detection efficiencies of greater than 50% across 5 arrays, with one array reaching a maximum PDE of 70%. We performed high-resolution pixel-surface spot scans and measured the junction diameters of its diodes. We found that decreasing the junction diameter from 31 micrometers to 25 micrometers doubled the e- APD gain from 470 for an array produced in the year 2010 to a gain of 1100 on an array delivered to NASA GSFC recently. The mean single-photon SNR was over 12 and the excess noise factors measurements were 1.2-1.3. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output.

  10. Phasor imaging with a widefield photon-counting detector

    PubMed Central

    Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Weiss, Shimon

    2012-01-01

    Abstract. Fluorescence lifetime can be used as a contrast mechanism to distinguish fluorophores for localization or tracking, for studying molecular interactions, binding, assembly, and aggregation, or for observing conformational changes via Förster resonance energy transfer (FRET) between donor and acceptor molecules. Fluorescence lifetime imaging microscopy (FLIM) is thus a powerful technique but its widespread use has been hampered by demanding hardware and software requirements. FLIM data is often analyzed in terms of multicomponent fluorescence lifetime decays, which requires large signals for a good signal-to-noise ratio. This confines the approach to very low frame rates and limits the number of frames which can be acquired before bleaching the sample. Recently, a computationally efficient and intuitive graphical representation, the phasor approach, has been proposed as an alternative method for FLIM data analysis at the ensemble and single-molecule level. In this article, we illustrate the advantages of combining phasor analysis with a widefield time-resolved single photon-counting detector (the H33D detector) for FLIM applications. In particular we show that phasor analysis allows real-time subsecond identification of species by their lifetimes and rapid representation of their spatial distribution, thanks to the parallel acquisition of FLIM information over a wide field of view by the H33D detector. We also discuss possible improvements of the H33D detector’s performance made possible by the simplicity of phasor analysis and its relaxed timing accuracy requirements compared to standard time-correlated single-photon counting (TCSPC) methods. PMID:22352658

  11. Lossless compression of projection data from photon counting detectors

    NASA Astrophysics Data System (ADS)

    Shunhavanich, Picha; Pelc, Norbert J.

    2016-03-01

    With many attractive attributes, photon counting detectors with many energy bins are being considered for clinical CT systems. In practice, a large amount of projection data acquired for multiple energy bins must be transferred in real time through slip rings and data storage subsystems, causing a bandwidth bottleneck problem. The higher resolution of these detectors and the need for faster acquisition additionally contribute to this issue. In this work, we introduce a new approach to lossless compression, specifically for projection data from photon counting detectors, by utilizing the dependencies in the multi-energy data. The proposed predictor estimates the value of a projection data sample as a weighted average of its neighboring samples and an approximation from other energy bins, and the prediction residuals are then encoded. Context modeling using three or four quantized local gradients is also employed to detect edge characteristics of the data. Using three simulated phantoms including a head phantom, compression of 2.3:1-2.4:1 was achieved. The proposed predictor using zero, three, and four gradient contexts was compared to JPEG-LS and the ideal predictor (noiseless projection data). Among our proposed predictors, three-gradient context is preferred with a compression ratio from Golomb coding 7% higher than JPEG-LS and only 3% lower than the ideal predictor. In encoder efficiency, the Golomb code with the proposed three-gradient contexts has higher compression than block floating point. We also propose a lossy compression scheme, which quantizes the prediction residuals with scalar uniform quantization using quantization boundaries that limit the ratio of quantization error variance to quantum noise variance. Applying our proposed predictor with three-gradient context, the lossy compression achieved a compression ratio of 3.3:1 but inserted a 2.1% standard deviation of error compared to that of quantum noise in reconstructed images. From the initial

  12. First inductively coupled plasma-distance-of-flight mass spectrometer: instrument performance with a microchannel plate/phosphor imaging detector

    SciTech Connect

    Gundlach-Graham, Alexander W.; Dennis, Elise; Ray, Steven J.; Enke, Christie G.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2013-09-01

    Here we describe the first combination of a Distance-of-Flight Mass Spectrometry (DOFMS) instrument and an inductively coupled plasma (ICP) ion source. DOFMS is a velocity-based MS technique in which ions of a range of mass-to-charge (m/z) values are detected simultaneously along the length of a spatially selective detector. As a relative of time-of-flight (TOF) MS, DOFMS leverages benefits fromboth TOFMS and spatially dispersive MS. The simultaneous detection of groups of m/z values improves dynamic range by spreading ion signal across many detector elements and reduces correlated noise by signal ratioing. To ascertain the performance characteristics of the ICP-DOFMS instrument, we have employed a microchannel-plate/phosphor detection assembly with a scientific CCD to capture images of the phosphor plate. With this simple (and commercially available) detection scheme, elemental detection limits from 2–30 ng L*1 and a linear dynamic range of 5 orders of magnitude (10–106 ng L1) have been demonstrated. Additionally, a competitive isotope-ratio precision of 0.1% RSD has been achieved with only a 6 s signal integration period. In addition to first figures of merit, this paper outlines technical considerations for the design of the ICP-DOFMS.

  13. Preparation and characterization of novel nickel-palladium electrodes supported by silicon microchannel plates for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Miao, Fengjuan; Tao, Bairui; Sun, Li; Liu, Tao; You, Jinchuan; Wang, Lianwei; Chu, Paul K.

    A novel anode structure based on the three-dimensional silicon microchannel plates (Si-MCP) is proposed for direct methanol fuel cells (DMFCs). Ni-Pd nanoparticles produced by electroless plating onto the Si-MCP inner sidewalls and followed by annealing at 300 °C under argon serve as the catalyst. In order to evaluate the electroactivity of the nanocomposites, Ni-Pd/silicon composites synthesized by the same method are compared. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and electrochemical methods are employed to investigate the Ni-Pd/Si-MCP anode materials. As a result of the synergetic effects rendered by the MCP and Ni-Pd nanoparticles, the Ni-Pd/Si-MCP nanocomposites exhibit superior electrocatalytic properties towards methanol electro-oxidation in alkaline solutions, as manifested by the negative onset potential and strong current response to methanol even during long-term cyclical oxidation of methanol. This new structure possesses unique and significant advantages such as low cost and integratability with silicon-based devices.

  14. Prospects of photon counting lidar for savanna ecosystem structural studies

    NASA Astrophysics Data System (ADS)

    Gwenzi, D.; Lefsky, M. A.

    2014-11-01

    Discrete return and waveform lidar have demonstrated a capability to measure vegetation height and the associated structural attributes such as aboveground biomass and carbon storage. Since discrete return lidar (DRL) is mainly suitable for small scale studies and the only existing spaceborne lidar sensor (ICESat-GLAS) has been decommissioned, the current question is what the future holds in terms of large scale lidar remote sensing studies. The earliest planned future spaceborne lidar mission is ICESat-2, which will use a photon counting technique. To pre-validate the capability of this mission for studying three dimensional vegetation structure in savannas, we assessed the potential of the measurement approach to estimate canopy height in a typical savanna landscape. We used data from the Multiple Altimeter Beam Experimental Lidar (MABEL), an airborne photon counting lidar sensor developed by NASA Goddard. MABEL fires laser pulses in the green (532 nm) and near infrared (1064 nm) bands at a nominal repetition rate of 10 kHz and records the travel time of individual photons that are reflected back to the sensor. The photons' time of arrival and the instrument's GPS positions and Inertial Measurement Unit (IMU) orientation are used to calculate the distance the light travelled and hence the elevation of the surface below. A few transects flown over the Tejon ranch conservancy in Kern County, California, USA were used for this work. For each transect we extracted the data from one near infrared channel that had the highest number of photons. We segmented each transect into 50 m, 25 m and 10 m long blocks and aggregated the photons in each block into a histogram based on their elevation values. We then used an expansion window algorithm to identify cut off points where the cumulative density of photons from the highest elevation resembles the canopy top and likewise where such cumulative density from the lowest elevation resembles mean ground elevation. These cut off

  15. Development of a Photon Counting System for Differential Lidar Signal Detection

    NASA Technical Reports Server (NTRS)

    Elsayed-Ali, Hani

    1997-01-01

    Photon counting has been chosen as a means to extend the detection range of current airborne DIAL ozone measurements. Lidar backscattered return signals from the on and off-line lasers experience a significant exponential decay. To extract further data from the decaying ozone return signals, photon counting will be used to measure the low light levels, thus extending the detection range. In this application, photon counting will extend signal measurement where the analog return signal is too weak. The current analog measurement range is limited to approximately 25 kilometers from an aircraft flying at 12 kilometers. Photon counting will be able to exceed the current measurement range so as to follow the mid-latitude model of ozone density as a function of height. This report describes the development of a photon counting system. The initial development phase begins with detailed evaluation of individual photomultiplier tubes. The PMT qualities investigated are noise count rates, single electron response peaks, voltage versus gain values, saturation effects, and output signal linearity. These evaluations are followed by analysis of two distinctive tube base gating schemes. The next phase is to construct and operate a photon counting system in a laboratory environment. The laboratory counting simulations are used to determine optimum discriminator setpoints and to continue further evaluations of PMT properties. The final step in the photon counting system evaluation process is the compiling of photon counting measurements on the existing ozone DIAL laser system.

  16. Pseudo-random single photon counting: a high-speed implementation

    PubMed Central

    Zhang, Qiang; Chen, Ling; Chen, Nanguang

    2010-01-01

    Pseudo-random single photon counting (PRSPC) is a new time-resolved optical measurement method which combines the spread spectrum time-resolved method with single photon counting. A pseudo-random bit sequence is used to modulate a continuous wave laser diode, while single photon counting is used to build up the optical signal in response to the modulated excitation. Periodic cross-correlation is performed to obtain the temporal profile of the subject of interest. Compared with conventional time-correlated single photon counting (TCSPC), PRSPC enjoys many advantages such as low cost and high count rate without compromising the sensitivity and time-resolution. In this paper, we report a PRSPC system that can be used for high-speed acquisition of the temporal point spread function of diffuse photons. It can reach a photon count rate as high as 3 Mcps (counts per second). Phantom experiments have been conducted to demonstrate the system performance. PMID:21258444

  17. Imaging at soft X-ray wavelengths with high-gain microchannel plate detector systems

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn

    1986-01-01

    Multianode microchannel array (MAMA) detector systems with formats of 256 x 1024 pixels and active areas of 6 x 26 mm are now under evaluation at visible, UV and soft X-ray wavelengths. Very-large-format versions of the MAMA detectors with formats of 2048 x 2048 pixels and active areas of 52 x 52 mm are under development for use in the NASA Goddard Space Telescope Imaging Spectrograph (STIS). Open-structure versions of these detectors with Cs I photocathodes can provide a high-resolution imaging capability at EUV and soft X-ray wavelengths and can deliver a maximum count rate from each array in excess of 10 to the 6th counts/s. In addition, these detector systems have the unique capability to determine the arrival time of a detected photon to an accuracy of 100 ns or better. The construction, mode of operation, and performance characteristics of the MAMA detectors are described, and the program for the development of the very-large-format detectors is outlined.

  18. Multibeam multifocal multiphoton photon counting imaging in scattering media

    NASA Astrophysics Data System (ADS)

    Hoover, Erich E.

    Multiphoton microscopy is an invaluable technique for the neurological community, allowing for deep explorations within highly scattering tissues such as the brain. However, prior to this research multiphoton microscopy was limited in its ability to rapidly construct volumetric images deep within scattering specimens. This work establishes a technique that permits such exploration through the application of multiple beams separated in both space and time, where signal photons corresponding to those beams are demultiplexed through the use of a field programmable gate array. With this system a number of improvements are provided to research in scattering media, including the coveted ability to perform photon-counting imaging with multiple beams. The ability to perform these measurements with multiple beams permits unique quantitative measurements of fluorophores within living specimens, allowing new research into dynamic three-dimensional behavior occurring within the brain. Additionally, the ability to perform multimodal measurements without filtering allows for unique avenues of research where the harmonic generation is indistinguishable from the two-photon excited fluorescence. These improvements provide neuroscience researchers with a large assortment of technological tools that will permit them to perform numerous novel experiments within the brain and other highly-scattering specimens, which should one day lead to significant advances in our understanding of complex neuronal activity.

  19. Mean and variance of single photon counting with deadtime

    NASA Astrophysics Data System (ADS)

    Yu, Daniel F.; Fessler, Jeffrey A.

    2000-07-01

    The statistics of photon counting by systems affected by deadtime are potentially important for statistical image reconstruction methods. We present a new way of analysing the moments of the counting process for a counter system affected by various models of deadtime related to PET and SPECT imaging. We derive simple and exact expressions for the first and second moments of the number of recorded events under various models. From our mean expression for a SPECT deadtime model, we derive a simple estimator for the actual intensity of the underlying Poisson process; simulations show that our estimator is unbiased even for extremely high count rates. From this analysis, we study the suitability of the Poisson statistical model assumed in most statistical image reconstruction algorithms. For systems containing `modules' with several detector elements, where each element can cause deadtime losses for the entire module, such as block PET detectors or Anger cameras, the Poisson statistical model appears to be adequate even in the presence of deadtime losses.

  20. Photon counting altimeter and lidar for air and spaceborne applications

    NASA Astrophysics Data System (ADS)

    Vacek, Michael; Michalek, Vojtech; Peca, Marek; Prochazka, Ivan; Blazej, Josef; Kodet, Jan

    2011-06-01

    We are presenting the concept and preliminary design of modular multipurpose device for space segment: single photon counting laser altimeter, atmospheric lidar, laser transponder and one way laser ranging receiver. For all the mentioned purposes, the same compact configuration of the device is appropriate. Overall estimated device weight should not exceed 5 kg with the power consumption below 10 W. The device will consists of three main parts, namely, receiver, transmitter and control and processing unit. As a transmitter a commercial solid state laser at 532 nm wavelength with 10 mW power will be used. The transmitter optics will have a diameter at most of 50 mm. The laser pulse width will be of hundreds of picoseconds order. For the laser altimeter and atmospheric lidar application, the repetition rate of 10 kHz is planned in order to obtain sufficient number of data for a distance value computing. The receiver device will be composed of active quenched Single Photon Avalanche Diode module, tiny optics, and narrow-band optical filter. The core part of the control and processing unit including high precision timing unit is implemented using single FPGA chip. The preliminary device concept includes considerations on energy balance, and statistical algorithms to meet all the mentioned purposes. Recently, the bread board version of the device is under construction in our labs. The concept, construction, and timing results will be presented.

  1. Algol - CPNG: photon counting cameras for interferometry in visible wavelengths

    NASA Astrophysics Data System (ADS)

    Blazit, A.; Thiébaut, E.; Vakili, F.; Abe, L.; Spang, A.; Clausse, J.-M.; Mourard, D.; Foy, R.; Rondeau, X.

    Images in visible interferometry are characterised by their low coherence time, and except for brightest stars, the flux on the detector is much less than one photon per pixel per image. Algol and Comptage de Photons Nouvelle Génération (CPNG) are new photon counting cameras developed for high angular resolution in the visible. They are intensified CCDs built to benefit from improvements in photonic commercial components, and personal computer processing power. We present how we achieve optimal performances (sensitivity and spatiotemporal resolution) by the combination of proper optical and electronics design, and real-time elaborated data processing. The number of pixels is 532× 516 and 768× 640 read at a frame rate of 262 Hz and 50 Hz for CPNG and Algol respectively. The dark current is very low: 5×10-4 electron.pixel-1.s-1. Quantum efficiencies reach up to 36% in the visible with the GaAsP photocathodes and and 26% in the red with the GaAs ones, thanks to the sensitivity of the photocathodes and to the photon centroiding algorithm; they are likely the highest values reported for ICCDs.

  2. Underwater optical communications with a single photon-counting system

    NASA Astrophysics Data System (ADS)

    Hiskett, Philip A.; Lamb, Robert A.

    2014-05-01

    This paper discusses the system engineering challenges involved with the transmission of optically encoded data through water. The scenarios of data transmission from an airborne platform to a submerged platform and data transmission from a submerged platform to another submerged platform will be discussed. A photon-counting experimental system was constructed to investigate the transmission of optical data through a 1m long tank of water. This test system incorporated a laser diode operating at a wavelength of 450nm and an optical receiver containing a shallow junction, silicon single photon avalanche diode. The optical data was transmitted through the tank containing ~100 litres of water at transmission rates equivalent to 40Mb/s. The attenuation of the optical path was increased by increasing the level of scattering of the photons using Maalox. The effects on the temporal distribution of photons in the optical pulse from adding Maalox are also discussed. The synchronisation of the transmitter and receiver clocks was investigated using reference headers appended to the encoded message signal which the receiver used to correct for timing drift. The performance of this experimental system and experimental results are discussed.

  3. On the Use of Shot Noise for Photon Counting

    NASA Astrophysics Data System (ADS)

    Zmuidzinas, Jonas

    2015-11-01

    Lieu et al. have recently claimed that it is possible to substantially improve the sensitivity of radio-astronomical observations. In essence, their proposal is to make use of the intensity of the photon shot noise as a measure of the photon arrival rate. Lieu et al. provide a detailed quantum-mechanical calculation of a proposed measurement scheme that uses two detectors and conclude that this scheme avoids the sensitivity degradation that is associated with photon bunching. If correct, this result could have a profound impact on radio astronomy. Here I present a detailed analysis of the sensitivity attainable using shot-noise measurement schemes that use either one or two detectors, and demonstrate that neither scheme can avoid the photon bunching penalty. I perform both semiclassical and fully quantum calculations of the sensitivity, obtaining consistent results, and provide a formal proof of the equivalence of these two approaches. These direct calculations are furthermore shown to be consistent with an indirect argument based on a correlation method that establishes an independent limit to the sensitivity of shot-noise measurement schemes. Furthermore, these calculations are directly applicable to the regime of interest identified by Lieu et al. Collectively, these results conclusively demonstrate that the photon-bunching sensitivity penalty applies to shot-noise measurement schemes just as it does to ordinary photon counting, in contradiction to the fundamental claim made by Lieu et al. The source of this contradiction is traced to a logical fallacy in their argument.

  4. Monitoring cellular mechanosensing using time-correlated single photon counting

    NASA Astrophysics Data System (ADS)

    Tabouillot, Tristan; Gullapalli, Ramachandra; Butler, Peter J.

    2006-10-01

    Endothelial cells (ECs) convert mechanical stimuli into chemical signaling pathways to regulate their functions and properties. It is hypothesized that perturbation of cellular structures by force is accompanied by changes in molecular dynamics. In order to address these fundamental issues in mechanosensation and transduction, we have developed a hybrid multimodal microscopy - time-correlated single photon counting (TCSPC) spectroscopy system intended to determine time- and position dependent mechanically-induced changes in the dynamics of molecules in live cells as determined from fluorescence lifetimes and autocorrelation analysis (fluorescence correlation spectroscopy). Colocalization of cell-structures and mechanically-induced changes in molecular dynamics can be done in post-processing by comparing TCSPC data with 3-D models generated from total internal reflection fluorescence (TIRF), differential interference contrast (DIC), epifluorescence, and deconvolution. We present control experiments in which the precise location of the apical cell membrane with respect to a confocal probe is assessed using information obtainable only from TCSPC. Such positional accuracy of TCSPC measurements is essential to understanding the role of the membrane in mechanotransduction. We predict that TCSPC will become a useful method to obtain high temporal and spatial resolution information on localized mechanical phenomena in living endothelial cells. Such insight into mechanotransduction phenomenon may uncover the origins of mechanically-related diseases such as atherosclerosis.

  5. High resolution decoding of Multi-Anode Microchannel Array detectors

    NASA Technical Reports Server (NTRS)

    Kasle, David B.; Morgan, Jeffrey S.

    1991-01-01

    The Multi-Anode Microchannel Array (MAMA) is a photon counting detector which utilizes a photocathode for photon to electron conversion, a microchannel plate (MCP) for signal amplification and a proximity focused anode array for position sensitivity. The detector electronics decode the position of an event through coincidence discrimination. The decoding algorithm which associates a given event with the appropriate pixel is determined by the geometry of the array. A new algorithm incorporated into a CMOS Application Specific Integrated Circuit (ASIC) decoder which improves the pixel spatial resolution is described. The new algorithm does not degrade the detector throughput and does not require any modifications to the detector tube. The standard MAMA detector has a pixel size of 25 x 25 square microns, but with the new decoder circuit the pixel size is reduced to 12.5 x 12.5 square microns. We have built the first set of decode electronics utilizing the new ASIC chips and report here on the first imaging tests of this system.

  6. Soft X-ray and extreme utraviolet quantum detection efficiency of potassium chloride photocathode layers on microchannel plates

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald H. W.; Everman, Elaine; Hull, Jeff; Vallerga, John V.; Lampton, Michael

    1988-01-01

    The quantum detection efficiency (QDE) of KCl photocathodes in the 44-1460 A range was investigated. An opaque layer of KCl, about 15,000-A-thick, was evaporated and applied the surface of a microchannel plate (MCP), and the contribution of the photocathode material in the channels (and on the interchannel web) to the QDE was measured using a Z stack MCP detector. It is shown that KCl is a relatively stable photocathode material, with the QDE equal to 30-40 percent in the EUV. At wavelengths above 200 A, the QDE is slightly better than the QDE of CsI, as reported by Siegmund et al. (1986). While the shape of the QDE curve as a function of wavelength is similar to those reported for CsI and KBr, KCl was found to lack the high QDE peak found in the curves of CsI and KBr at about 100 A. A simple QDE model is described, the predictions of which were found to agree with the measurements on the KCl photocathode.

  7. A Prototype TOF PET Detector Module Using a Micro-Channel Plate Photomultiplier Tube with Waveform Sampling

    PubMed Central

    Kim, H.; Chen, C.-T.; Frisch, H.; Tang, F.; Kao, C.-M.

    2011-01-01

    We are exploring a large area flat panel micro-channel plate photomultiplier tube (MCP PMT) under development for an application to time-of-flight positron emission tomography (TOF PET). High speed waveform sampling with transmission-lines is adopted for reading out the signal with precise time and space information with a small number of low-power channels. As a demonstration of the concept, detector modules have been built using 2″×2″ Photonis Planacon MCP PMTs (XP85022) and prototype transmission-line (TL) boards. The signals from the MCP PMT through the transmission-lines are sampled by DRS4 evaluation boards running at 5 giga-samples per second (GS/s). The event information is extracted by processing the digitized waveforms. For experimental tests, a single 3×3×10 mm3 LYSO crystal is optically coupled to each MCP PMT; the detector responses to 511 keV annihilation photon from a 22Na source are measured using the data taken in coincidence mode. As a preliminary result, we obtain a position resolution of ∼2.8 mm (0.3 mm) (FWHM) along (perpendicular to) the transmission-line, ∼309 ps (FWHM) for coincidence time resolution, and ∼14% (FWHM) of energy resolution at 511 keV. This initial result gives a promise that the large area MCP PMT is applicable to TOF PET. PMID:22347762

  8. Providing reference standards and metrology for the few photon-photon counting community

    NASA Astrophysics Data System (ADS)

    Beaumont, Andrew R.; Cheung, Jessica Y.; Chunnilall, Christopher J.; Ireland, Jane; White, Malcolm G.

    2009-10-01

    The main drivers for developing few-photon metrological techniques are the rapidly progressing field of quantum information processing, which requires the development of high-efficiency photon-counting detectors, and the wider use of photon-counting technology in biology, medical physics and nuclear physics. This paper will focus on the provision of standards for the few photon community and the development of techniques for the characterisation of photon-counting detectors. At the high-power end, microwatts, we are developing a low-power absolute radiometer as a primary standard that will be used to provide traceability over a much broader spectral range. At the few photon-photon-counting level we are developing a conventional calibration technique, which is traceable to the primary standard through a reference trap detector. This method can be used in both analogue and photon-counting modes and provides a convenient route for providing customer calibration at few-photon levels across the optical spectrum. At the photon-counting/single-photon level we are developing a technique based on correlated photons. These are produced via parametric downconversion and can be used to measure directly the detection efficiency of photon-counting detectors. A cross-validation of the correlated photon and conventional technique is reported. Finally we discuss this work in the context of an EU project, that is aimed at establishing the route towards the re-definition of the candela, the SI unit for optical radiation.

  9. Linear operating region in the ozone dial photon counting system

    NASA Technical Reports Server (NTRS)

    Andrawis, Madeleine

    1995-01-01

    Ozone is a relatively unstable molecule found in Earth's atmosphere. An ozone molecule is made up of three atoms of oxygen. Depending on where ozone resides, it can protect or harm life on Earth. High in the atmosphere, about 15 miles up, ozone acts as a shield to protect Earth's surface from the sun's harmful ultraviolet radiation. Without this shield, we would be more susceptible to skin cancer, cataracts, and impaired immune systems. Closer to Earth, in the air we breathe, ozone is a harmful pollutant that causes damage to lung tissue and plants. Since the early 1980's, airborne lidar systems have been used for making measurements of ozone. The differential absorption lidar (DIAL) technique is used in the remote measurement of O3. This system allows the O3 to be measured as function of the range in the atmosphere. Two frequency-doubled Nd:YAG lasers are used to pump tunable dye lasers. The lasers are operating at 289 nm for the DIAL on-line wavelength of O3, and the other one is operated at 300 nm for the off-line wavelength. The DIAL wavelengths are produced in sequential laser pulses with a time separation of 300 micro s. The backscattered laser energy is collected by telescopes and measured using photon counting systems. The photon counting system measures the light signal by making use of the photon nature of light. The output pulse from the Photo-Multiplier Tube (PE), caused by a photon striking the PMT photo-cathode, is amplified and passed to a pulse height discriminator. The peak value of the pulse is compared to a reference voltage (discrimination level). If the pulse amplitude exceeds the discrimination level, the discriminator generates a standard pulse which is counted by the digital counter. Non-linearity in the system is caused by the overlapping of pulses and the finite response time of the electronics. At low count rates one expects the system to register one event for each output pulse from the PMT corresponding to a photon incident upon the

  10. Position information by signal analysis in real time from resistive anode microchannel plate detector

    NASA Astrophysics Data System (ADS)

    Saha, K.; Benmaimon, R.; Prabhakaran, A.; Rappaport, M. L.; Heber, O.; Schwalm, D.; Zajfman, D.

    2016-07-01

    Resistive anode multichannel plate detectors are extensively used for imaging photons, electrons and ions. We present a method to acquire position information from such detector systems by considering simple parameters of the signals produced from the resistive anode encoder. Our technique is easy to implement and computes position in real time during experiments. Position information can be obtained using our method without the need for dedicated position analyser units.

  11. Evaluation of a photon-counting breast tomosynthesis imaging system

    NASA Astrophysics Data System (ADS)

    Maidment, Andrew D. A.; Ullberg, Christer; Lindman, Karin; Adelöw, Leif; Egerström, Johan; Eklund, Mathias; Francke, Tom; Jordung, Ulf; Kristoffersson, Tomas; Lindqvist, Lars; Marchal, Daniel; Olla, Hans; Penton, Erik; Rantanen, Juha; Solokov, Skiff; Weber, Niclas; Westerberg, Hans

    2006-03-01

    Digital breast tomosynthesis promises solutions to many of the problems associated with projection mammography, including elimination of artifactual densities due to the superposition of normal tissues and increasing the conspicuity of true lesions that would otherwise be masked by superimposed normal tissue. We have investigated tomosynthesis using a digital camera containing 48 photon counting, orientation sensitive, linear detectors which are precisely aligned with the focal spot of the x-ray source. The x-ray source and the digital detectors are scanned in a continuous motion across the object (patient), each linear detector collecting an image at a distinct angle. A preliminary assessment of tomosynthesis image quality has been performed with both qualitative and quantitative methods. Measured values of MTF and NPS appear concordant with theoretical values. The MTF in the scanning direction is dominated by scanning unsharpness and geometric factors, while the NPS is white. The MTF and NPS in the strip direction are somewhat lower than in the scan direction. The NPS of tomographic images show a slight decrease with increasing spatial frequency, related to the sampling and interpolation in the reconstruction process. A phase I clinical trial is ongoing; 9 women have been recruited. Breast positioning is comparable to other imaging systems. The visualization of breast anatomy appears to be superior to screen-film mammography, at the same average glandular dose. Examination of images reconstructed with a sub-sampled set of projection images appears to support the hypothesis that image quality is superior when more projection images are used in the reconstruction.

  12. Reduction of CMOS Image Sensor Read Noise to Enable Photon Counting

    PubMed Central

    Guidash, Michael; Ma, Jiaju; Vogelsang, Thomas; Endsley, Jay

    2016-01-01

    Recent activity in photon counting CMOS image sensors (CIS) has been directed to reduction of read noise. Many approaches and methods have been reported. This work is focused on providing sub 1 e− read noise by design and operation of the binary and small signal readout of photon counting CIS. Compensation of transfer gate feed-through was used to provide substantially reduced CDS time and source follower (SF) bandwidth. SF read noise was reduced by a factor of 3 with this method. This method can be applied broadly to CIS devices to reduce the read noise for small signals to enable use as a photon counting sensor. PMID:27070625

  13. Reduction of CMOS Image Sensor Read Noise to Enable Photon Counting.

    PubMed

    Guidash, Michael; Ma, Jiaju; Vogelsang, Thomas; Endsley, Jay

    2016-01-01

    Recent activity in photon counting CMOS image sensors (CIS) has been directed to reduction of read noise. Many approaches and methods have been reported. This work is focused on providing sub 1 e(-) read noise by design and operation of the binary and small signal readout of photon counting CIS. Compensation of transfer gate feed-through was used to provide substantially reduced CDS time and source follower (SF) bandwidth. SF read noise was reduced by a factor of 3 with this method. This method can be applied broadly to CIS devices to reduce the read noise for small signals to enable use as a photon counting sensor. PMID:27070625

  14. Droplet-based magnetic bead immunoassay using microchannel-connected multiwell plates (μCHAMPs) for the detection of amyloid beta oligomers.

    PubMed

    Park, Min Cheol; Kim, Moojong; Lim, Gun Taek; Kang, Sung Min; An, Seong Soo A; Kim, Tae Song; Kang, Ji Yoon

    2016-06-21

    Multiwell plates are regularly used in analytical research and clinical diagnosis but often require laborious washing steps and large sample or reagent volumes (typically, 100 μL per well). To overcome such drawbacks in the conventional multiwell plate, we present a novel microchannel-connected multiwell plate (μCHAMP) that can be used for automated disease biomarker detection in a small sample volume by performing droplet-based magnetic bead immunoassay inside the plate. In this μCHAMP-based immunoassay platform, small volumes (30-50 μL) of aqueous-phase working droplets are stably confined within each well by the simple microchannel structure (200-300 μm in height and 0.5-1 mm in width), and magnetic beads are exclusively transported into an adjacent droplet through the oil-filled microchannels assisted by a magnet array aligned beneath and controlled by a XY-motorized stage. Using this μCHAMP-based platform, we were able to perform parallel detection of synthetic amyloid beta (Aβ) oligomers as a model analyte for the early diagnosis of Alzheimer's disease (AD). This platform easily simplified the laborious and consumptive immunoassay procedure by achieving automated parallel immunoassay (32 assays per operation in 3-well connected 96-well plate) within 1 hour and at low sample consumption (less than 10 μL per assay) with no cumbersome manual washing step. Moreover, it could detect synthetic Aβ oligomers even below 10 pg mL(-1) concentration with a calculated detection limit of ∼3 pg mL(-1). Therefore, the μCHAMP and droplet-based magnetic bead immunoassay, with the combination of XY-motorized magnet array, would be a useful platform in the diagnosis of human disease, including AD, which requires low consumption of the patient's body fluid sample and automation of the entire immunoassay procedure for high processing capacity. PMID:27185215

  15. Evaluation of Flat Microchannel Plate Photomultipliers for Use in a Portable Air Fluorescence Detector

    NASA Astrophysics Data System (ADS)

    Benzvi, S.; Martin, J.

    2003-07-01

    Future applications of the air fluorescence technique will require robust, portable detectors, versatile enough to be deployed in remote areas with little infrastructure. One such experiment is the Gamma Ray and Neutron Decay Scan of the Galaxy (GRaNDScan), which proposes to survey the EeV sky by observation of γ and cosmic ray air showers in the southern hemisphere. To view a 30° field at or exceeding a resolution of 1° , GRaNDScan will employ a lensless Schmidt optical system, with the light-sensitive element in each detector consisting of a spherical surface of tiled photomultipliers. Currently, the BURLE 85001 micro channel plate photomultiplier (MCP PMT), a low profile device appropriate for tiling, is the primary candidate for these cameras. In this paper, we discuss the preliminary design of the GRaNDScan optics, the basic characteristics of the 85001 photomultiplier, and the suitability of this device for use in a portable air fluorescence detector.

  16. 4x4 Individually Addressable InGaAs APD Arrays Optimized for Photon Counting Applications

    NASA Technical Reports Server (NTRS)

    Gu, Y.; Wu, X.; Wu, S.; Choa, F. S.; Yan, F.; Shu, P.; Krainak, M.

    2007-01-01

    InGaAs APDs with improved photon counting characteristics were designed and fabricated and their performance improvements were observed. Following the results, a 4x4 individually addressable APD array was designed, fabricated, and results are reported.

  17. Photon counting pixel architecture for x-ray and gamma-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Goldan, Amir H.; Ng, Li; Rowlands, J. A.; Karim, Karim S.

    2007-03-01

    Photon counting is emerging as an alternative detection technique to conventional photon integration. In photon counting systems, the value of each image pixel is equal to the number of photons that are absorbed by the radiation detector. The proposed pixel architecture provides a method for energy windowing and serial readout for low-dose gamma-ray imaging. Each pixel is comprised of a radiation detector and integrated analog and digital circuitry. A prototype was developed on a printed circuit board (PCB) using discrete electronic components. In this research, we present the experimental results for the operation of the photon counting pixel with energy windowing and investigate the compromise between pixel noise level and photon count rate.

  18. The performance of photon counting imaging with a Geiger mode silicon avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Qu, Hui-Ming; Zhang, Yi-Fan; Ji, Zhong-Jie; Chen, Qian

    2013-10-01

    In principle, photon counting imaging can detect a photon. With the development of low-level-light image intensifier techniques and low-level-light detection devices, photon counting imaging can now detect photon images under extremely low illumination. Based on a Geiger mode silicon avalanche photodiode single photon counter, an experimental system for photon counting imaging was built through two-dimensional scanning of a SPAD (single photon avalanche diode) detector. The feasibility of the imaging platform was validated experimentally. Two images with different characteristics, namely, the USAF 1951 resolution test panel and the image of Lena, were chosen to evaluate the imaging performance of the experimental system. The results were compared and analysed. The imaging properties under various illumination and scanning steps were studied. The lowest illumination limit of the SPAD photon counting imaging was determined.

  19. Gluing Lidar Signals Detected in Analog-to-Digital and Photon Counting Modes

    NASA Astrophysics Data System (ADS)

    Feng, Chang-Zhong; Liu, Bing-Yi; Liu, Jin-Tao; Wu, Song-Hua

    2016-06-01

    Lidar is one of the most effective tools for atmospheric remote sensing. For a ground-based lidar system, the backscattered light usually has large dynamic range. Photon-counting mode has the capability to measure weak signal from high altitude, while Analog-to-Digital mode with better linearity is good at measuring strong signal at low altitude. In some lidar systems, atmospheric return signal is measured in both Analog-to-Digital and Photon Counting modes and combined into an entire profile by using a gluing algorithm. A method for gluing atmospheric return signal is developed and tested. For the Photon Counting signal, the saturation characteristics are analyzed to calculate the coefficients for correction. Then the Analog-to-Digital and Photon Counting signals are glued by a weighted average process. Results show the glued signal is reliable at both low and high altitudes.

  20. High-Resolution Mosaic Imaging with Multifocal, Multiphoton Photon-Counting Microscopy

    SciTech Connect

    Chandler, E.; Hoover, E.; Field, J.; Sheetz, K.; Amir, W.; Carriles, R.; Ding, S. Y.; Squier, J.

    2009-04-10

    High-resolution mosaic imaging is performed for the first time to our knowledge with a multifocal, multiphoton, photon-counting imaging system. We present a novel design consisting of a home-built femtosecond Yb-doped KGdWO{sub 4} laser with an optical multiplexer, which is coupled with a commercial Olympus IX-71 microscope frame. Photon counting is performed using single-element detectors and an inexpensive electronic demultiplexer and counters.

  1. Electronic Microchannel Plate Particle Detector Design for a CubeSat Time-of-Flight Reflectron Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Pyle, M. L.; Davidson, R.; Swenson, C.; Syrstad, E. A.

    2015-12-01

    Variations of gas density and composition in Earth's thermosphere and ionosphere are key indicators of interactions between different layers of Earth's atmosphere. The nature of interactions between neutral and ion species in the upper atmosphere is an active area of study in Heliophysics and there is much to learn about the dynamic relationship between the ionosphere and neutral thermosphere. Mass Spectrometers are among an array of instruments used to explore Earth's upper atmosphere and other space environments. Normally, these instruments are substantial in size and deployed on larger satellites. Data from these larger instruments generally provides information from a specific point in time at a single location. Studies of atmospheric density and composition with multiple locations for each time point could be performed by CubeSat swarms if proper instrumentation were available to fit CubeSat payload restrictions. The proposed miniaturized time-of-flight (TOF) mass spectrometer (MS) will have a mass resolution and range sufficient for measuring the composition of Earth's thermosphere and ionosphere while operating within the power and space constraints of a CubeSat. The capabilities of this instrument would potentially dramatically reduce the cost of future missions while simultaneously enhancing the science return. The design employs miniaturization of TOF-MS technology, including resolution refinement techniques used for larger instruments and standard concepts for TOF-MS components such as acceleration grids, a Bradbury-Nielsen wire gate, a gridless ion mirror, and microchannel plate detector (MCP). The quality of particle detection is known to have a significant impact on the instrument performance. A signal collector for an MCP detector is being designed to maximize the detection performance and enable the transmission of density and composition data back to Earth.

  2. A performance study of the micro-channel plate photomultiplier tube (MCP-PMT)

    NASA Astrophysics Data System (ADS)

    Dixon, Kahlil; Chiu, Mickey

    2013-10-01

    PHENIX, the Pioneering High Energy Nuclear Interaction Experiment at Brookhaven National Laboratory (BNL), is developing particle detectors of exceptional time resolution. These world-class detectors will serve as upgrade options for future modifications to the Phenix detector, a part of BNL's Relativistic Heavy-Ion Collider (RHIC). This summer, we worked to optimize the timing resolution of the prototypes to ten picoseconds. The completed detectors will supply researchers with valuable data in the runs following installation, data that is currently in kinematically inaccessible regions. We setup the detectors in a cosmic ray test. The prototype detector I worked with is a Photonics 85012xp micro-channel-plate photomultiplier tube (MCP-PMT). Our testing setup makes use of two scintillator paddles, to trigger on the muons, and two MCP-PMT prototypes, to determine the time resolution. Currently, we are in the process of carefully analyzing the data acquired during experimentation. It will take just a little more time to study the correlations in detections between the top and bottom detectors; however, we are confident that this will be excellent option for serious consideration for installation in the Phenix detector. This project was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Visiting Faculty Program (VFP).

  3. Invited Article: A test-facility for large-area microchannel plate detector assemblies using a pulsed sub-picosecond laser

    NASA Astrophysics Data System (ADS)

    Adams, Bernhard; Chollet, Matthieu; Elagin, Andrey; Oberla, Eric; Vostrikov, Alexander; Wetstein, Matthew; Obaid, Razib; Webster, Preston

    2013-06-01

    The Large Area Picosecond Photodetector Collaboration is developing large-area fast photodetectors with time resolution ≲10 ps and space resolution ≲1 mm based on atomic layer deposition-coated glass Micro-Channel Plates (MCPs). We have assembled a facility at Argonne National Laboratory for characterizing the performance of a wide variety of microchannel plate configurations and anode structures in configurations approaching complete detector systems. The facility consists of a pulsed Ti:Sapphire laser with a pulse duration ≈100 fs, an optical system allowing the laser to be scanned in two dimensions, and a computer-controlled data-acquisition system capable of reading out 60 channels of anode signals with a sampling rate of over 10 GS/s. The laser can scan on the surface of a sealed large-area photodetector, or can be introduced into a large vacuum chamber for tests on bare 8 in.-square MCP plates or into a smaller chamber for tests on 33-mm circular substrates. We present the experimental setup, detector calibration, data acquisition, analysis tools, and typical results demonstrating the performance of the test facility.

  4. Low-distortion resistive anodes for two-dimensional position-sensitive MCP systems. [Microchannel Plates for ion, electron and photon image sensing and conversion

    NASA Technical Reports Server (NTRS)

    Lampton, M.; Carlson, C. W.

    1979-01-01

    Microchannel plates (MCPs) are frequently used with resistive anodes to detect charged particles or photons and yield analog signals from which event positions can be decoded. The paper discusses a four-corner concave circular arc terminated resistive anode that permits theoretically distortionless encoding of Cartesian event positions into pulse charge ratios. The theory of the circular arc terminated anode is discussed along with anode design and performance. Electron beam images obtained by using such an anode are presented to confirm the usefulness of the approach.

  5. A Design of a PET Detector Using Micro-Channel Plate Photomultipliers with Transmission-Line Readout.

    PubMed

    Kim, H; Frisch, H; Chen, C-T; Genat, J-F; Tang, F; Moses, W W; Choong, W S; Kao, C-M

    2010-01-01

    A computer simulation study has been conducted to investigate the feasibility of a positron emission tomography (PET) detector design by using micro-channel plate (MCP) photomultiplier tubes (PMT) with transmission-line (TL) read-out and waveform sampling. The detector unit consisted of a 24×24 array of pixelated LSO crystals, each of which was 4×4×25 mm(3) in size, and two 102×102 mm(2) MCP-PMTs coupled to both sides of the scintillator array. The crystal (and TL) pitch was 4.25 mm and reflective medium was inserted between the crystals. The transport of the optical photons inside the scintillator were simulated by using the Geant4 package. The output pulses of the MCP-PMT/TL unit were formed by applying the measured single photo-electron response of the MCP-PMT/TL unit to each individual photon that interacts with the photo-cathode of the MCP-PMT. The waveforms of the pulses at both ends of the TL strips were measured and analyzed to produce energy and timing information for the detected event. An experimental setup was developed by employing a Photonis Planacon MCP-PMT (XP85022) and a prototype TL board for measuring the single photo-electron response of the MCP-PMT/TL. The simulation was validated by comparing the predicted output pulses to measurements obtained with a single MCP-PMT/TL coupled to an LSO crystal exposed to 511 keV gamma rays. The validated simulation was then used to investigate the performance of the proposed new detector design. Our simulation result indicates an energy resolution of ~11% at 511 keV. When using a 400-600 keV energy window, we obtain a coincidence timing resolution of ~323 ps FWHM and a coincidence detection efficiency of ~40% for normally-incident 511keV photons. For the positioning accuracy, it is determined by the pitch of the TLs (and crystals) in the direction normal to the TLs and measured to be ~2.5 mm in the direction parallel to the TLs. The energy and timing obtained at the front- and back-end of the scintillator

  6. HgCdTe APD-based linear-mode photon counting components and ladar receivers

    NASA Astrophysics Data System (ADS)

    Jack, Michael; Wehner, Justin; Edwards, John; Chapman, George; Hall, Donald N. B.; Jacobson, Shane M.

    2011-05-01

    Linear mode photon counting (LMPC) provides significant advantages in comparison with Geiger Mode (GM) Photon Counting including absence of after-pulsing, nanosecond pulse to pulse temporal resolution and robust operation in the present of high density obscurants or variable reflectivity objects. For this reason Raytheon has developed and previously reported on unique linear mode photon counting components and modules based on combining advanced APDs and advanced high gain circuits. By using HgCdTe APDs we enable Poisson number preserving photon counting. A metric of photon counting technology is dark count rate and detection probability. In this paper we report on a performance breakthrough resulting from improvement in design, process and readout operation enabling >10x reduction in dark counts rate to ~10,000 cps and >104x reduction in surface dark current enabling long 10 ms integration times. Our analysis of key dark current contributors suggest that substantial further reduction in DCR to ~ 1/sec or less can be achieved by optimizing wavelength, operating voltage and temperature.

  7. Optical cross-talk effect in a semiconductor photon-counting detector array

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Hamal, Karel; Kral, Lukas; Blazej, Josef

    2005-09-01

    Solid state single photon detectors are getting more and more attention in various areas of applied physics: optical sensors, communication, quantum key distribution, optical ranging and Lidar, time resolved spectroscopy, opaque media imaging and ballistic photon identification. Avalanche photodiodes specifically designed for single photon counting semiconductor avalanche structures have been developed on the basis of various materials: Si, Ge, GaP, GaAsP and InGaAs/InGaAsP at the Czech Technical University in Prague during the last 20 years. They have been tailored for numerous applications. Recently, there is a strong demand for the photon counting detector in a form of an array; even small arrays 10x1 or 3x3 are of great importance for users. Although the photon counting array can be manufactured, there exists a serious limitation for its performance: the optical cross-talk between individual detecting cells. This cross-talk is caused by the optical emission of the avalanche photon counting structure which accompanies the photon detection process. We have studied in detail the optical emission of the avalanche photon counting structure in the silicon shallow junction type photodiode. The timing properties, radiation pattern and spectral distribution of the emitted light have been measured for various detection structures and their different operating conditions. The ultimate limit for the cross-talk has been determined and the methods for its limitation have been proposed.

  8. Feasibility of Amorphous Selenium Based Photon Counting Detectors for Digital Breast Tomosynthesis

    SciTech Connect

    Chen, J.; O'Connor, P.; Lehnert, J., De Geronimo, G., Dolazza, E., Tousignant, O., Laperriere, L., Greenspan, J., Zhao, W.

    2009-02-27

    Amorphous selenium (a-Se) has been incorporated successfully in direct conversion flat panel x-ray detectors, and has demonstrated superior image quality in screening mammography and digital breast tomosynthesis (DBT) under energy integration mode. The present work explores the potential of a-Se for photon counting detectors in DBT. We investigated major factors contributing to the variation in the charge collected by a pixel upon absorption of each x-ray photon. These factors included x-ray photon interaction, detector geometry, charge transport, and the pulse shaping and noise properties of the photon counting readout circuit. Experimental measurements were performed on a linear array test structure constructed by evaporating an a-Se layer onto an array of 100 {mu}m pitch strip electrodes, which are connected to a 32 channel low noise photon counting integrated circuit. The measured pulse height spectrum (PHS) under polychromatic xray exposure was interpreted quantitatively using the factors identified. Based on the understanding of a-Se photon counting performance, design parameters were proposed for a 2D detector with high quantum efficiency and count rate that could meet the requirements of photon counting detector for DBT.

  9. Multichannel single-photon-counting NIR imager for coregistration with MRI

    NASA Astrophysics Data System (ADS)

    Ntziachristos, Vasilis; Ma, Xuhui; Schnall, Mitchell; Chance, Britton

    1997-12-01

    An effective way to investigate the competence of NIR Imaging is to associate NIR images with ones from other, well established modalities, such as X-ray Mammography, Tomography or Magnetic Resonance Imaging (MRI). MRI is an excellent candidate for such an approach since besides having immense sensitivity and rendering great anatomical information, it also employs non-ionizing radiation. The simultaneous acquisition of MR and NIR data may afford very precise co-registration of images and investigate the potential and limitations of the technique. In return, by establishing confidence on the NIR Tomography capability, the MR specificity may be enhanced due to the additional information content of the simultaneous examination. We have developed a 24 X 8 source-detector multi-channel NIR imager and spectrometer based on the time-correlated single photon counting technique. The instrument is capable of operating as a stand-alone modality or coupled to an MR scanner. We have tested the instrument as a breast imager with volunteers and patients in the MR examination room. We have used specially designed soft compression plates bearing the optical fibers and the MR coils. The acquisition time has been optimized to be within the time limits of a typical MR breast examination protocol. We have obtained approximately 25 dB signal to noise ratio per sec of averaging time for 6 cm breast separation and sensitivity of absorption coefficient changes, following contrast agent administration, of the order of 10-3 cm-1. Additionally we demonstrate the use of the instrument as a stand-alone motor cortex activity imager/spectrometer.

  10. Multichannel single-photon-counting NIR imager for coregistration with MRI

    NASA Astrophysics Data System (ADS)

    Ntziachristos, Vasilis; Ma, XuHui; Schnall, Mitchell D.; Chance, Britton

    1998-01-01

    An effective way to investigate the competence of NIR Imaging is to associate NIR images with ones from other, well established modalities, such as X-ray Mammography, Tomography or Magnetic Resonance Imaging (MRI). MRI is an excellent candidate for such an approach since besides having immense sensitivity and rendering great anatomical information, it also employs non-ionizing radiation. The simultaneous acquisition of MR and NIR data may afford very precise co-registration of images and investigate the potential and limitations of the technique. In return, by establishing confidence on the NIR Tomography capability, the MR specificity may be enhanced due to the additional information content of the simultaneous examination. We have developed a 24 X 8 source-detector multi-channel NIR imager and spectrometer based on the time-correlated single photon counting technique. The instrument is capable of operating as a stand-alone modality or coupled to an MR scanner. We have tested the instrument as a breast imager with volunteers and patients in the MR examination room. We have used specially designed soft compression plates bearing the optical fibers and the MR coils. The acquisition time has been optimized to be within the time limits of a typical MR breast examination protocol. We have obtained approximately 25 dB signal to noise ratio per sec of averaging time for 6 cm breast separation and sensitivity of absorption coefficient changes, following contrast agent administration, of the order of 10-3 cm-1. Additionally we demonstrate the use of the instrument as a stand-alone motor cortex activity imager/spectrometer.

  11. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials.

    PubMed

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D; Hennessy, John J; Carver, Alexander G; Jones, Todd J; Goodsall, Timothy M; Hamden, Erika T; Suvarna, Puneet; Bulmer, J; Shahedipour-Sandvik, F; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L Douglas

    2016-01-01

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100-300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399

  12. Simulation of autocorrelation function and photon counting distribution in fluorescence fluctuation spectroscopy.

    PubMed

    Shingaryov, Igor P; Skakun, Victor V; Apanasovich, Vladimir V

    2014-01-01

    In modern fluorescence fluctuation spectroscopy, the autocorrelation function and photon counting distribution are two widely used statistical characteristics of the measured fluctuating fluorescence intensity signal. Applying special analysis methods such as fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) to these properties, it is possible to recover values of different parameters of fluorescent molecules such as the concentration, diffusion coefficient, molecular brightness, and kinetic rate constants. The development of new analysis methods is senseless without testing their validity, accuracy, and robustness. The most appropriate check of a method is its application to experimental data. However, sometimes it is more convenient and easier to verify a method on simulated data. Simulation is also useful for better understanding the processes that were modeled during the development of analysis methods. Here, we present two simulation models providing an autocorrelation function and photon counting distribution of a sequence of photon arrival times detected in fluorescence fluctuation spectroscopy. PMID:24108653

  13. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

    PubMed Central

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D.; Hennessy, John J.; Carver, Alexander G.; Jones, Todd J.; Goodsall, Timothy M.; Hamden, Erika T.; Suvarna, Puneet; Bulmer, J.; Shahedipour-Sandvik, F.; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L. Douglas

    2016-01-01

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100–300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399

  14. Photon counting imaging and polarized light encoding for secure image verification and hologam watermarking

    NASA Astrophysics Data System (ADS)

    Rajput, Sudheesh K.; Kumar, Dhirendra; Nishchal, Naveen K.

    2014-12-01

    We propose an optical image security scheme based on polarized light encoding and the photon counting technique. An input image is encoded using the concept of polarized light, which is parameterized using Stokes-Mueller formalism. The encoded image is further encrypted by applying the photon counting imaging technique to obtain a photon limited image. For decryption, the photon limited decrypted image is obtained by using a polarized light decoding scheme with the help of appropriate keys. The decrypted image has sparse representation, which contains sufficient information for verification. This photon counted decrypted image can be verified using correlation filters. The proposed encryption technique offers benefits over the double random phase encoding in that it does not require active elements such as a lens and provides flexibility in the design of encryption keys. The proposed encryption scheme has also been used for hologram watermarking. The computer simulation results for secure image verification and the hologram watermarking scheme have been presented.

  15. Low-dose performance of a whole-body research photon-counting CT scanner

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Leng, Shuai; Kappler, Steffen; Hahn, Katharina; Li, Zhoubo; Halaweish, Ahmed F.; Henning, Andre; Ritman, Erik L.; McCollough, Cynthia H.

    2016-04-01

    Photon-counting CT (PCCT) is an emerging technique that may bring new possibilities to clinical practice. Compared to conventional CT, PCCT is able to exclude electronic noise that may severely impair image quality at low photon counts. This work focused on assessing the low-dose performance of a whole-body research PCCT scanner consisting of two subsystems, one equipped with an energy-integrating detector, and the other with a photon-counting detector. Evaluation of the low-dose performance of the research PCCT scanner was achieved by comparing the noise performance of the two subsystems, with an emphasis on examining the impact of electronic noise on image quality in low-dose situations.

  16. Development and construction of the photon counting receiver for the European laser time transfer space mission

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Blazej, Josef; Kodet, Jan; Brinek, Jan

    2011-06-01

    We are presenting the work progress and recent results in the development and construction of the photon counting receiver, which is prepared for the European Laser Timing experiment in space. It is an optical link prepared in the frame of the ESA mission Atomic Clock Ensemble in Space. The ultra short laser pulses will be used to synchronize the time scales ground to space with picosecond precision. To minimize the timing biases the photon counting concept of the space born receiver was selected. The requirements put on the photon counting receiver are quite challenging in terms of the long term detection delay stability, wide operation temperature range, extremely high background photon flux and others. Recently, the bread board version of the detector has been constructed and is under extensive test in our labs. The concept and construction will be presented along with the achieved device parameters.

  17. Reconfigurable Computing As an Enabling Technology for Single-Photon-Counting Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Powell, Wesley; Hicks, Edward; Pinchinat, Maxime; Dabney, Philip; McGarry, Jan; Murray, Paul

    2003-01-01

    Single-photon-counting laser altimetry is a new measurement technique offering significant advantages in vertical resolution, reducing instrument size, mass, and power, and reducing laser complexity as compared to analog or threshold detection laser altimetry techniques. However, these improvements come at the cost of a dramatically increased requirement for onboard real-time data processing. Reconfigurable computing has been shown to offer considerable performance advantages in performing this processing. These advantages have been demonstrated on the Multi-KiloHertz Micro-Laser Altimeter (MMLA), an aircraft based single-photon-counting laser altimeter developed by NASA Goddard Space Flight Center with several potential spaceflight applications. This paper describes how reconfigurable computing technology was employed to perform MMLA data processing in real-time under realistic operating constraints, along with the results observed. This paper also expands on these prior results to identify concepts for using reconfigurable computing to enable spaceflight single-photon-counting laser altimeter instruments.

  18. Spectroscopic micro-tomography of metallic-organic composites by means of photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Pichotka, M.; Jakubek, J.; Vavrik, D.

    2015-12-01

    The presumed capabilities of photon counting detectors have aroused major expectations in several fields of research. In the field of nuclear imaging ample benefits over standard detectors are to be expected from photon counting devices. First of all a very high contrast, as has by now been verified in numerous experiments. The spectroscopic capabilities of photon counting detectors further allow material decomposition in computed tomography and therefore inherently adequate beam hardening correction. For these reasons measurement setups featuring standard X-ray tubes combined with photon counting detectors constitute a possible replacement of the much more cost intensive tomographic setups at synchrotron light-sources. The actual application of photon counting detectors in radiographic setups in recent years has been impeded by a number of practical issues, above all by restrictions in the detectors size. Currently two tomographic setups in Czech Republic feature photon counting large-area detectors (LAD) fabricated in Prague. The employed large area hybrid pixel-detector assemblies [1] consisting of 10×10/10×5 Timepix devices have a surface area of 143×143 mm2 / 143×71,5 mm2 respectively, suitable for micro-tomographic applications. In the near future LAD devices featuring the Medipix3 readout chip as well as heavy sensors (CdTe, GaAs) will become available. Data analysis is obtained by a number of in house software tools including iterative multi-energy volume reconstruction.In this paper tomographic analysis of of metallic-organic composites is employed to illustrate the capabilities of our technology. Other than successful material decomposition by spectroscopic tomography we present a method to suppress metal artefacts under certain conditions.

  19. Energy response calibration of photon-counting detectors using X-ray fluorescence: a feasibility study

    PubMed Central

    Cho, H-M; Ding, H; Ziemer, BP; Molloi, S

    2014-01-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using X-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for X-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm2 in detection area. The angular dependence of X-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded X-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of X-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of X-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic X-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the X-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory. PMID:25369288

  20. The Los Alamos Photon Counting Detector Debris Detection Project: An update

    SciTech Connect

    Ho, Cheng; Priedhorsky, W.; Baron, M.; Casperson, D.

    1995-03-01

    At Los Alamos, the authors have been pursuing a project for space debris detection using a photon counting detector with high spatial and time resolution. By exploiting the three dimensionality of the high quality data, they expect to be able to detect an orbiting object of size below 2 cm, using a moderate size telescope and state-of-the-art photon counting detector. A working tube has been used to collect skyward looking data during dusk. In this paper, they discuss the progress in the development of detector and data acquisition system. They also report on analysis and results of these data sets.

  1. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors.

    PubMed

    Dutton, Neale A W; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K

    2016-01-01

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed. PMID:27447643

  2. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors

    PubMed Central

    Dutton, Neale A. W.; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K.

    2016-01-01

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed. PMID:27447643

  3. The time-resolved imaging mode (TRIM) of the ESA photon counting detector

    NASA Astrophysics Data System (ADS)

    di Serego Alighieri, S.; Perryman, M. A. C.

    1986-01-01

    The ESA Photon Counting Detector, a scientific model for the Faint Object Camera of the Hubble Space Telescope, has a time-resolved imaging mode in which photon-counts are recorded separately for every frame (normally 30 msec long) and for every pixel (a 512 x 512 format is normally used). The system and its operation at the telescope are described, as well as some of the data reduction facilities. A discussion and sample observations are given for astronomical applications such as fast photometry of known sources, search for optical counterparts of variable sources, and image sharpening.

  4. High efficiency photon counting detectors for the FAUST Spacelab far ultraviolet astronomy payload

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Lampton, M.; Bixler, J.; Vallerga, J.; Bowyer, S.

    1987-01-01

    The performances of sealed tube microchannel-plate position sensitive detectors having transmission CsI photocathodes or opaque CsI photocathodes are compared. These devices were developed for the FAUST Spacelab payload to accomplish imaging surveys in the band between 1300 A and 1800 A. It is demonstrated that photocathode quantum efficiencies in excess of 40 percent at 1216 A have been achieved with the transmission and the opaque CsI photocathodes. The effect of the photoelectron trajectory on the spatial resolution is assessed. Spatial resolution of less than 70 microns FWHM has been obtained and is maintained up to event rates of 50,000/sec. Background rates of 0.55 events sq cm per sec have been achieved and low distortion (less than 1 percent) imaging has been demonstrated.

  5. Performance of high resolution decoding with Multi-Anode Microchannel Array detectors

    NASA Technical Reports Server (NTRS)

    Kasle, David B.; Horch, Elliott P.

    1993-01-01

    The Multi-Anode Microchannel Array (MAMA) is a microchannel plate based photon counting detector with applications in ground-based and space-based astronomy. The detector electronics decode the position of each photon event, and the decoding algorithm that associates a given event with the appropriate pixel is determined by the geometry of the anode array. The standard MAMA detector has a spatial resolution set by the anode array of 25 microns, but the MCP pore resolution exceeds this. The performance of a new algorithm that halves the pixel spacing and improves the pixel spatial resolution is described. The new algorithm does not degrade the pulse-pair resolution of the detector and does not require any modifications to the detector tube. Measurements of the detector's response demonstrate that high resolution decoding yields a 60 percent enhancement in spatial resolution. Measurements of the performance of the high resolution algorithm with a 14 micron MAMA detector are also described. The parameters that control high resolution performance are discussed. Results of the application of high resolution decoding to speckle interferometry are presented.

  6. Photoionization of Trapped Carriers in Avalanche Photodiodes to Reduce Afterpulsing During Geiger-Mode Photon Counting

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    2005-01-01

    We reduced the afterpulsing probability by a factor of five in a Geiger-mode photon-counting InGaAs avalanche photodiode by using sub-band-gap (lambda = 1.95 micron) laser diode illumination, which we believe photoionizes the trapped carriers.

  7. Photon Counting Detectors for the 1.0 - 2.0 Micron Wavelength Range

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    2004-01-01

    We describe results on the development of greater than 200 micron diameter, single-element photon-counting detectors for the 1-2 micron wavelength range. The technical goals include quantum efficiency in the range 10-70%; detector diameter greater than 200 microns; dark count rate below 100 kilo counts-per-second (cps), and maximum count rate above 10 Mcps.

  8. Characterizing time decay of bibenzyl scintillator using time correlated single photon counting.

    PubMed

    Hatarik, R; Bernstein, L A; Caggiano, J A; Carman, M L; Schneider, D H G; Zaitseva, N P; Wiedeking, M

    2012-10-01

    The time decay of several scintillation materials has been measured using the time correlated single photon counting method and a new organic crystal with a highly suppressed delayed light has been identified. Results comparing the light decay of the bibenzyl crystal with a xylene based detector, which is currently installed at National Ignition Facility will be presented. PMID:23126914

  9. Characterizing time decay of bibenzyl scintillator using time correlated single photon counting

    SciTech Connect

    Hatarik, R.; Bernstein, L. A.; Caggiano, J. A.; Carman, M. L.; Schneider, D. H. G.; Zaitseva, N. P.; Wiedeking, M.

    2012-10-15

    The time decay of several scintillation materials has been measured using the time correlated single photon counting method and a new organic crystal with a highly suppressed delayed light has been identified. Results comparing the light decay of the bibenzyl crystal with a xylene based detector, which is currently installed at National Ignition Facility will be presented.

  10. Spontaneously generated coherence in a Rb atom via photon counting statistics

    NASA Astrophysics Data System (ADS)

    Song, Zhuo; Peng, Yonggang; Sun, Zhen-Dong; Zheng, Yujun

    2016-01-01

    We study the spontaneously generated coherence (SGC) in a Rb atom by employing photon counting statistics based on the four-level Y-type model driven by a probe field and two coherent control fields. A transparency channel induced by coherent population trapping (CPT) and ultra-narrow probe absorption peaks in the presence of SGC are found.

  11. Near-infrared Single-photon-counting Detectors for Free-space Laser Receivers

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Sun, Xiaoli; Hasselbrack, William; Wu, Stewart; Waczynski, Augustyn; Miko, Laddawan

    2007-01-01

    We compare several photon-counting detector technologies for use as near-infrared timeresolved laser receivers in science instrument, communication and navigation systems. The key technologies are InGaAs(P) photocathode hybrid photomultiplier tubes and InGaAs(P) and HgCdTe avalanche photodiodes. We discuss recent experimental results and application.

  12. Investigation of linear-mode photon-counting HgCdTe APDs for astronomical observations

    NASA Astrophysics Data System (ADS)

    Bryan, Marta L.; Chapman, George; Hall, Donald N. B.; Jack, Michael D.; Jacobson, Shane M.; Wehner, Justin

    2012-07-01

    The unique linear avalanche properties of HgCdTe preserve the Poisson statistics of the incoming photons, opening up new opportunities for GHz bandwidth LADAR and space communications applications. Raytheon has developed and previously reported (1) unique linear mode photon counting arrays based on combining advanced HgCdTe linear mode APDs with their high gain SB415B readout. Their use of HgCdTe APDs preserves the Poisson statistics of the incoming photons, enabling (noiseless) photon counting. This technology is of great potential interest to infrared astronomy but requires extension of noiseless linear HgCdTe avalanching down to much lower bandwidths (100 to 0.001 Hz) with corresponding reductions in dark count rate. We have hybridized the SB415B readout to SWIR HgCdTe APDs optimized for low dark count rate and have characterized their photon counting properties at bandwidths down to 1 KHz. As bandwidth is reduced, the performance becomes limited by the intrinsic properties of the SB415B readout, particularly readout glow, stability and 1/f noise. We report the results of these measurements and the status of hybrid arrays utilizing a newly developed readout which draws on Raytheon’s astronomical readout heritage, specifically the Virgo charge integrating source follower, as a path to much lower dark count rate photon counting operation.

  13. A flat-field correction method for photon-counting-detector-based micro-CT

    NASA Astrophysics Data System (ADS)

    Park, So E.; Kim, Jae G.; Hegazy, M. A. A.; Cho, Min H.; Lee, Soo Y.

    2014-03-01

    As low-dose computed tomography becomes a hot issue in the field of clinical x-ray imaging, photon counting detectors have drawn great attention as alternative x-ray image sensors. Even though photon-counting image sensors have several advantages over the integration-type sensors, such as low noise and high DQE, they are known to be more sensitive to the various experimental conditions like temperature and electric drift. Particularly, time-varying detector response during the CT scan is troublesome in photon-counting-detector-based CTs. To overcome the time-varying behavior of the image sensor during the CT scan, we developed a flat-field correction method together with an automated scanning mechanism. We acquired the flat-field images and projection data every view alternatively. When we took the flat-field image, we moved down the imaging sample away from the field-of-view with aid of computer controlled linear positioning stage. Then, we corrected the flat-field effects view-by-view with the flat-field image taken at given view. With a CdTe photon-counting image sensor (XRI-UNO, IMATEK), we took CT images of small bugs. The CT images reconstructed with the proposed flat-field correction method were much superior to the ones reconstructed with the conventional flat-field correction method.

  14. τ-SPAD: a new red sensitive single-photon counting module

    NASA Astrophysics Data System (ADS)

    Kell, Gerald; Bülter, Andreas; Wahl, Michael; Erdmann, Rainer

    2011-05-01

    Single Photon Avalanche Diodes (SPADs) are valuable detectors in numerous photon counting applications in the fields of quantum physics, quantum communication, astronomy, metrology and biomedical analytics. They typically feature a much higher photon detection efficiency than photomultiplier tubes, most importantly in the red to near-infrared range of the spectrum. Very often SPADs are combined with Time-Correlated Single Photon Counting (TCSPC) electronics for time-resolved data acquisition and the temporal resolution ("jitter") of a SPAD is therefore one of the key parameters for selecting a detector. We show technical data and first application results from a new type of red sensitive single photon counting module ("τ-SPAD"), which is targeted at timing applications, most prominently in the area of Single Molecule Spectroscopy (SMS). The τ-SPAD photon counting module combines Laser Components' ultra-low noise VLoK silicon avalanche photodiode with specially developed quenching and readout electronics from PicoQuant. It features an extremely high photon detection efficiency of 75% at 670 nm and can be used to detect single photons over the 400 nm to 1100 nm wavelength range. The timing jitter of the output of the τ-SPAD can be as low as 350 ps, making it suitable for time-resolved fluorescence detection applications. First photon coincidence correlation measurements also show that the typical breakdown flash of SPADs is of comparably low intensity for these new SPADs.

  15. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, Joseph W.; Carrano, Anthony V.; Davidson, James C.; Koo, Jackson C.

    1998-01-01

    A hybrid slab-microchannel gel electrophoresis system. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate.

  16. Simulations of Microchannel Plate Sensitivity to <20 keV X-rays as a Function of Energy and Incident Angle

    SciTech Connect

    Kruschwitz, Craig; Wu, M.; Rochau, G. A.

    2013-06-13

    We present results of Monte Carlo simulations of microchannel plate (MCP) response to x-rays in the 250 eV to 20 keV energy range as a function of both x-ray energy and impact angle. The model is based on the model presented in Rochau et al. (2006). However, while the Rochau et al. (2006) model was two-dimensional, and their results only went to 5 keV, our results have been expanded to 20 keV, and our model has been incorporated into a three-dimensional Monte Carlo MCP model that we have developed over the past several years (Kruschwitz et al. 2011). X-ray penetration through multiple MCP pore walls is increasingly important above 5 keV. The effect of x-ray penetration through multiple pores on MCP performance was studied and is presented.

  17. Development of two-channel prototype ITER vacuum ultraviolet spectrometer with back-illuminated charge-coupled device and microchannel plate detectors

    SciTech Connect

    Seon, C. R.; Choi, S. H.; Cheon, M. S.; Pak, S.; Lee, H. G.; Biel, W.; Barnsley, R.

    2010-10-15

    A vacuum ultraviolet (VUV) spectrometer of a five-channel spectral system is designed for ITER main plasma impurity measurement. To develop and verify the system design, a two-channel prototype system is fabricated with No. 3 (14.4-31.8 nm) and No. 4 (29.0-60.0 nm) among the five channels. The optical system consists of a collimating mirror to collect the light from source to slit, two holographic diffraction gratings with toroidal geometry, and two different electronic detectors. For the test of the prototype system, a hollow cathode lamp is used as a light source. To find the appropriate detector for ITER VUV system, two kinds of detectors of the back-illuminated charge-coupled device and the microchannel plate electron multiplier are tested, and their performance has been investigated.

  18. Production of 6cm x 6cm Micro-channel Plate Based Picosecond Photodetectors with the Argonne Small Tile Processing System (STPS)

    NASA Astrophysics Data System (ADS)

    Xia, Lei; Byrum, Karen; Demarteau, Marcel; Wagner, Robert; Walters, Dean; Wang, Jingbo; Xie, Junqi; Zhao, Huyue

    2015-04-01

    Microchannel plate (MCP) based photodetectors feature fast timing, good position resolution and compact form factor. However, traditional MCP photodetectors suffer from limited charge lifetime and high cost. The LAPPD collaboration, over the years, developed Atomic Layer Deposition (ALD) coated new generation MCP's and low cost glass packaging technology. Recently, the Argonne group commissioned its small form factor tile processing system and produced the first fully processed sealed photodetectors with glass packaging, using the ALD coated MCP's. We report the design, construction and commissioning of the system, and production of the first devices. Supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences and Office of High Energy Physics under Contract DE-AC02-06CH11357.

  19. Gamma-ray detection efficiency of the microchannel plate installed as an ion detector in the low energy particle instrument onboard the GEOTAIL satellite

    SciTech Connect

    Tanaka, Y. T.; Yoshikawa, I.; Yoshioka, K.; Terasawa, T.; Saito, Y.; Mukai, T.

    2007-03-15

    A microchannel plate (MCP) assembly has been used as an ion detector in the low energy particle (LEP) instrument onboard the magnetospheric satellite GEOTAIL. Recently the MCP assembly has detected gamma rays emitted from an astronomical object and has been shown to provide unique information of gamma rays if they are intense enough. However, the detection efficiency for gamma rays was not measured before launch, and therefore we could not analyze the LEP data quantitatively. In this article, we report the gamma-ray detection efficiency of the MCP assembly. The measured efficiencies are 1.29%{+-}0.71% and 0.21%{+-}0.14% for normal incidence 60 and 662 keV gamma rays, respectively. The incident angle dependence is also presented. Our calibration is crucial to study high energy astrophysical phenomena by using the LEP.

  20. Study of the timing performance of micro-channel plate photomultiplier for use as an active layer in a shower maximum detector

    NASA Astrophysics Data System (ADS)

    Ronzhin, A.; Los, S.; Ramberg, E.; Apresyan, A.; Xie, S.; Spiropulu, M.; Kim, H.

    2015-09-01

    We continue the study of micro-channel plate photomultiplier (MCP-PMT) as the active element of a shower maximum (SM) detector. We present test beam results obtained with Photek 240 and Photonis XP85011 MCP-PMTs devices. For proton beams, we obtained a time resolution of 9.6 ps, representing a significant improvement over past results using the same time of flight system. For electron beams, the time resolution obtained for this new type of SM detector is measured to be at the level of 13 ps when we use Photek 240 as the active element of the SM. Using the Photonis XP85011 MCP-PMT as the active element of the SM, we performed time resolution measurements with pixel readout, and achieved a TR better than 30 ps, The pixel readout was observed to improve upon the TR compared to the case where the individual channels were summed.

  1. Examination of the spatial-response uniformity of a microchannel-plate detector using a pulsed high-voltage electron gun

    NASA Astrophysics Data System (ADS)

    Alumot, D.; Kroupp, E.; Fisher, A.

    2014-05-01

    In this paper we describe an alternative method to examine the spatial-response uniformity of a microchannel-plate (MCP) detector to a ~ 1 ns pulse of soft x-rays. The examination was performed by illuminating the MCP surface with energetic electrons rather than with x-rays. It is shown that the MCP features similar, yet not identical, response to pulses of soft x-ray photons or energetic electrons, making such examinations much simpler and less expensive. The building of the electron-gun system is relatively easy and inexpensive, and in addition to verifying the spatial uniformity of the response of the MCP to incoming particles and radiation, it can be used to detect damaged areas on the detector. A comparison between the results obtained using the electron-gun with those obtained using a laser-produced-plasma x-ray source, demonstrating the reliability of the method, is presented.

  2. Absolute detection efficiency of a microchannel plate detector to X rays in the 1-100 KeV energy range

    NASA Astrophysics Data System (ADS)

    Burginyon, Gary A.; Jacoby, Barry A.; Wobser, James K.; Ernst, Richard; Ancheta, Dione S.; Tirsell, Kenneth G.

    1993-02-01

    There is little information in the literature on the performance of working micro-channel plate (MCP) detectors at high x-ray energies. We have measured the absolute efficiency of a microchannel-plate-intensified, subnanosecond, one dimensional imaging x-ray detector developed at LLNL in the 1 to 100 keV range and at 1.25 MeV. The detector consists of a gold photocathode deposited on the front surface of the MCP (optimized for Ni K(subscript (alpha) ) x rays) to convert x rays to electrons, an MCP to amplify the electrons, and a fast In:CdS phosphor that converts the electron's kinetic energy to light. The phosphor is coated on a fiber-optic faceplate to transmit the light out of the vacuum system. Electrostatic focusing electrodes compress the electron current out of the MCP in one dimension while preserving spatial resolution in the other. The calibration geometry, dictated by a recent experiment, required grazing incidence x rays (15.6 degree(s)) onto the MCP detector in order to maximize deliverable current. The experiment also used a second detector made up of 0.071 in. thick BC422 plastic scintillator material from the Bicron Corporation. We compare the absolute efficiencies of these two detectors in units of optical W/cm(superscript 2) into 4 (pi) per x ray W/cm(superscript 2) incident. At 7.47 keV and 900 volts MCP bias, the MCP detector delivers approximately 1400 times more light than the scintillator detector.

  3. Investigation of energy weighting using an energy discriminating photon counting detector for breast CT

    PubMed Central

    Kalluri, Kesava S.; Mahd, Mufeed; Glick, Stephen J.

    2013-01-01

    Purpose: Breast CT is an emerging imaging technique that can portray the breast in 3D and improve visualization of important diagnostic features. Early clinical studies have suggested that breast CT has sufficient spatial and contrast resolution for accurate detection of masses and microcalcifications in the breast, reducing structural overlap that is often a limiting factor in reading mammographic images. For a number of reasons, image quality in breast CT may be improved by use of an energy resolving photon counting detector. In this study, the authors investigate the improvements in image quality obtained when using energy weighting with an energy resolving photon counting detector as compared to that with a conventional energy integrating detector. Methods: Using computer simulation, realistic CT images of multiple breast phantoms were generated. The simulation modeled a prototype breast CT system using an amorphous silicon (a-Si), CsI based energy integrating detector with different x-ray spectra, and a hypothetical, ideal CZT based photon counting detector with capability of energy discrimination. Three biological signals of interest were modeled as spherical lesions and inserted into breast phantoms; hydroxyapatite (HA) to represent microcalcification, infiltrating ductal carcinoma (IDC), and iodine enhanced infiltrating ductal carcinoma (IIDC). Signal-to-noise ratio (SNR) of these three lesions was measured from the CT reconstructions. In addition, a psychophysical study was conducted to evaluate observer performance in detecting microcalcifications embedded into a realistic anthropomorphic breast phantom. Results: In the energy range tested, improvements in SNR with a photon counting detector using energy weighting was higher (than the energy integrating detector method) by 30%–63% and 4%–34%, for HA and IDC lesions and 12%–30% (with Al filtration) and 32%–38% (with Ce filtration) for the IIDC lesion, respectively. The average area under the

  4. Investigation of energy weighting using an energy discriminating photon counting detector for breast CT

    SciTech Connect

    Kalluri, Kesava S.; Mahd, Mufeed; Glick, Stephen J.

    2013-08-15

    Purpose: Breast CT is an emerging imaging technique that can portray the breast in 3D and improve visualization of important diagnostic features. Early clinical studies have suggested that breast CT has sufficient spatial and contrast resolution for accurate detection of masses and microcalcifications in the breast, reducing structural overlap that is often a limiting factor in reading mammographic images. For a number of reasons, image quality in breast CT may be improved by use of an energy resolving photon counting detector. In this study, the authors investigate the improvements in image quality obtained when using energy weighting with an energy resolving photon counting detector as compared to that with a conventional energy integrating detector.Methods: Using computer simulation, realistic CT images of multiple breast phantoms were generated. The simulation modeled a prototype breast CT system using an amorphous silicon (a-Si), CsI based energy integrating detector with different x-ray spectra, and a hypothetical, ideal CZT based photon counting detector with capability of energy discrimination. Three biological signals of interest were modeled as spherical lesions and inserted into breast phantoms; hydroxyapatite (HA) to represent microcalcification, infiltrating ductal carcinoma (IDC), and iodine enhanced infiltrating ductal carcinoma (IIDC). Signal-to-noise ratio (SNR) of these three lesions was measured from the CT reconstructions. In addition, a psychophysical study was conducted to evaluate observer performance in detecting microcalcifications embedded into a realistic anthropomorphic breast phantom.Results: In the energy range tested, improvements in SNR with a photon counting detector using energy weighting was higher (than the energy integrating detector method) by 30%–63% and 4%–34%, for HA and IDC lesions and 12%–30% (with Al filtration) and 32%–38% (with Ce filtration) for the IIDC lesion, respectively. The average area under the receiver

  5. Material separation in x-ray CT with energy resolved photon-counting detectors

    SciTech Connect

    Wang Xiaolan; Meier, Dirk; Taguchi, Katsuyuki; Wagenaar, Douglas J.; Patt, Bradley E.; Frey, Eric C.

    2011-03-15

    Purpose: The objective of the study was to demonstrate that, in x-ray computed tomography (CT), more than two types of materials can be effectively separated with the use of an energy resolved photon-counting detector and classification methodology. Specifically, this applies to the case when contrast agents that contain K-absorption edges in the energy range of interest are present in the object. This separation is enabled via the use of recently developed energy resolved photon-counting detectors with multiple thresholds, which allow simultaneous measurements of the x-ray attenuation at multiple energies. Methods: To demonstrate this capability, we performed simulations and physical experiments using a six-threshold energy resolved photon-counting detector. We imaged mouse-sized cylindrical phantoms filled with several soft-tissue-like and bone-like materials and with iodine-based and gadolinium-based contrast agents. The linear attenuation coefficients were reconstructed for each material in each energy window and were visualized as scatter plots between pairs of energy windows. For comparison, a dual-kVp CT was also simulated using the same phantom materials. In this case, the linear attenuation coefficients at the lower kVp were plotted against those at the higher kVp. Results: In both the simulations and the physical experiments, the contrast agents were easily separable from other soft-tissue-like and bone-like materials, thanks to the availability of the attenuation coefficient measurements at more than two energies provided by the energy resolved photon-counting detector. In the simulations, the amount of separation was observed to be proportional to the concentration of the contrast agents; however, this was not observed in the physical experiments due to limitations of the real detector system. We used the angle between pairs of attenuation coefficient vectors in either the 5-D space (for non-contrast-agent materials using energy resolved photon-counting

  6. Photon counting pixel and array in amorphous silicon technology for large area digital medical imaging applications

    NASA Astrophysics Data System (ADS)

    Yazdandoost, Mohammad Y.; Shin, Kyung W.; Safavian, Nader; Taghibakhsh, Farhad; Karim, Karim S.

    2010-04-01

    A single photon counting Voltage Controlled Oscillator (VCO) based pixel architecture in amorphous silicon (a-Si) technology is reported for large area digital medical imaging. The VCO converts X-ray generated input charge into an output oscillating frequency signal. Experimental results for an in-house fabricated VCO circuit in a-Si technology are presented and external readout circuits to extract the image information from the VCO's frequency output are discussed. These readout circuits can be optimized to reduce the fixed pattern noise and fringing effects in an imaging array containing many such VCO pixels. Noise estimations, stability simulations and measurements for the fabricated VCO are presented. The reported architecture is particularly promising for large area photon counting applications (e.g. low dose fluoroscopy, dental computed tomography (CT)) due to its very low input referred electronic noise, high sensitivity and ease of fabrication in low cost a-Si technology.

  7. Experiment and modeling of scintillation photon-counting and current measurement for PMT gain stabilization

    NASA Astrophysics Data System (ADS)

    Stein, Jürgen; Kreuels, Achim; Kong, Yong; Lentering, Ralf; Ruhnau, Kai; Scherwinski, Falko; Wolf, Andreas

    2015-05-01

    Scintillation detectors with light readout are used for gamma, x-ray and particle detection. Where applicable, photon counting is principally superior to charge integration with regard to accuracy. Most scintillation detectors, however, generate a large number of photons per microsecond for a typical scintillation pulse resulting in significant amounts of pileup. This precludes the separation, and thus direct counting of single photoelectron charges. The algorithm developed and presented in this paper quantifies the coarseness of fast digitized current tracks to construct a photon count dependent, however, electron gain independent charge calculation function. Underlying photoelectrons are interpreted as noise components and retrieved by a modified statistical variance calculation. This method is verified for modeled scintillation pulses and scintillation detector data. It provides a new means for PMT gain stabilization in digital multi-channel analyzers by pulse current analysis.

  8. Photon Counting System for High-Sensitivity Detection of Bioluminescence at Optical Fiber End.

    PubMed

    Iinuma, Masataka; Kadoya, Yutaka; Kuroda, Akio

    2016-01-01

    The technique of photon counting is widely used for various fields and also applicable to a high-sensitivity detection of luminescence. Thanks to recent development of single photon detectors with avalanche photodiodes (APDs), the photon counting system with an optical fiber has become powerful for a detection of bioluminescence at an optical fiber end, because it allows us to fully use the merits of compactness, simple operation, highly quantum efficiency of the APD detectors. This optical fiber-based system also has a possibility of improving the sensitivity to a local detection of Adenosine triphosphate (ATP) by high-sensitivity detection of the bioluminescence. In this chapter, we are introducing a basic concept of the optical fiber-based system and explaining how to construct and use this system. PMID:27424915

  9. Time-Correlated Photon Counting (TCPC) technique based on a photon-number-resolving photodetector

    NASA Astrophysics Data System (ADS)

    Li, Baicheng; Miao, Quanlong; Wang, Shenyuan; Hui, Debin; Zhao, Tianqi; Liang, Kun; Yang, Ru; Han, Dejun

    2016-05-01

    In this report, we present Time-Correlated Photon Counting (TCPC) technique and its applications in time-correlated Raman spectroscopy. The main difference between TCPC and existing Time-Correlated Single Photon Counting (TCSPC) is that the TCPC employs a photon-number-resolving photodetector (SiPM, silicon photomultiplier) and measures exact photon number rather than counting single photon by reducing pulse light intensity, thus high measurement speed and efficiency can be expected. A home-made Raman spectrometer has demonstrated an Instrument Response Function (IRF) ~100ps (FWHM) based on TCPC with a strip SiPM (1mm×0.05mm, containing 500 micro cells), fast and weak Raman signals was separated from slow and strong fluorescence background of bulk trinitrotoluene TNT sample. The original Raman spectrum of bulk TNT, measured by TCPC technique, is compared with the result obtained by a commercial Micro-Raman Spectrometer.

  10. 0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays.

    PubMed

    Krstajić, Nikola; Poland, Simon; Levitt, James; Walker, Richard; Erdogan, Ahmet; Ameer-Beg, Simon; Henderson, Robert K

    2015-09-15

    We present a digital architecture for fast acquisition of time correlated single photon counting (TCSPC) events from a 32×32 complementary metal oxide semiconductor (CMOS) single photon avalanche detector (SPAD) array (Megaframe) to the computer memory. Custom firmware was written to transmit event codes from 1024-TCSPC-enabled pixels for fast transfer of TCSPC events. Our 1024-channel TCSPC system is capable of acquiring up to 0.5×10(9) TCSPC events per second with 16 histogram bins spanning a 14 ns width. Other options include 320×10(6) TCSPC events per second with 256 histogram bins spanning either a 14 or 56 ns time window. We present a wide-field fluorescence microscopy setup demonstrating fast fluorescence lifetime data acquisition. To the best of our knowledge, this is the fastest direct TCSPC transfer from a single photon counting device to the computer to date. PMID:26371922

  11. Characterization of a hybrid energy-resolving photon-counting detector

    NASA Astrophysics Data System (ADS)

    Zang, A.; Pelzer, G.; Anton, G.; Ballabriga Sune, R.; Bisello, F.; Campbell, M.; Fauler, A.; Fiederle, M.; Llopart Cudie, X.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W. S.; Michel, T.

    2014-03-01

    Photon-counting detectors in medical x-ray imaging provide a higher dose efficiency than integrating detectors. Even further possibilities for imaging applications arise, if the energy of each photon counted is measured, as for example K-edge-imaging or optimizing image quality by applying energy weighting factors. In this contribution, we show results of the characterization of the Dosepix detector. This hybrid photon- counting pixel detector allows energy resolved measurements with a novel concept of energy binning included in the pixel electronics. Based on ideas of the Medipix detector family, it provides three different modes of operation: An integration mode, a photon-counting mode, and an energy-binning mode. In energy-binning mode, it is possible to set 16 energy thresholds in each pixel individually to derive a binned energy spectrum in every pixel in one acquisition. The hybrid setup allows using different sensor materials. For the measurements 300 μm Si and 1 mm CdTe were used. The detector matrix consists of 16 x 16 square pixels for CdTe (16 x 12 for Si) with a pixel pitch of 220 μm. The Dosepix was originally intended for applications in the field of radiation measurement. Therefore it is not optimized towards medical imaging. The detector concept itself still promises potential as an imaging detector. We present spectra measured in one single pixel as well as in the whole pixel matrix in energy-binning mode with a conventional x-ray tube. In addition, results concerning the count rate linearity for the different sensor materials are shown as well as measurements regarding energy resolution.

  12. Comparison of contrast enhancement methods using photon counting detector in spectral mammography

    NASA Astrophysics Data System (ADS)

    Kim, Hyemi; Park, Su-Jin; Jo, Byungdu; Kim, Dohyeon; Kim, Hee-Joung

    2016-03-01

    The photon counting detector with energy discrimination capabilities provides the spectral information and energy of each photon with single exposure. The energy-resolved photon counting detector makes it possible to improve the visualization of contrast agent by selecting the appropriate energy window. In this study, we simulated the photon counting spectral mammography system using a Monte Carlo method and compared three contrast enhancement methods (K-edge imaging, projection-based energy weighting imaging, and dual energy subtraction imaging). For the quantitative comparison, we used the homogeneous cylindrical breast phantom as a reference and the heterogeneous XCAT breast phantom. To evaluate the K-edge imaging methods, we obtained images by increasing the energy window width based on K-edge absorption energy of iodine. The iodine which has the K-edge discontinuity in the attenuation coefficient curve can be separated from the background. The projection-based energy weighting factor was defined as the difference in the transmissions between the contrast agent and the background. Each weighting factor as a function of photon energy was calculated and applied to the each energy bin. For the dual energy subtraction imaging, we acquired two images with below and above the iodine K-edge energy using single exposure. To suppress the breast tissue in high energy images, the weighting factor was applied as the ratio of the linear attenuation coefficients of the breast tissue at high and low energies. Our results demonstrated the CNR improvement of the K-edge imaging was the highest among the three methods. These imaging techniques based on the energy-resolved photon counting detector improved image quality with the spectral information.

  13. Photon-counting passive 3D image sensing and processing for automatic target recognition

    NASA Astrophysics Data System (ADS)

    Yeom, Seokwon; Javidi, Bahram; Watson, Edward

    2008-04-01

    In this paper we overview the nonlinear matched filtering for photon counting recognition with 3D passive sensing. The first and second order statistical properties of the nonlinear matched filtering can improve the recognition performance compared to the linear matched filtering. Automatic target reconstruction and recognition are addressed for partially occluded objects. The recognition performance is shown to be improved significantly in the reconstruction space. The discrimination capability is analyzed in terms of Fisher ratio (FR) and receiver operating characteristic (ROC) curves.

  14. Development of photodetectors for recording lidar signals in the photon counting and analog modes

    NASA Astrophysics Data System (ADS)

    Slesar, A. S.; Chaikovskii, A. P.; Denisov, S. V.; Korol, M. M.; Osipenko, F. P.; Balin, Yu. S.; Kokhanenko, G. P.; Penner, I. E.; Novoselov, M. M.

    2015-11-01

    A number of unified photodetector modules providing for recording lidar signals in the wavelength range from 0.26 to 1.6 μm in the modes of analog signals and photon counting are developed on the basis of photomultiplier tubes and avalanche photodiodes. The software is created for control of the photodetector modules, as well as the test bench for measuring their characteristics is designed.

  15. Update on Linear Mode Photon Counting with the HgCdTe Linear Mode Avalanche Photodiode

    NASA Technical Reports Server (NTRS)

    Beck, Jeffrey D.; Kinch, Mike; Sun, Xiaoli

    2014-01-01

    The behavior of the gain-voltage characteristic of the mid-wavelength infrared cutoff HgCdTe linear mode avalanche photodiode (e-APD) is discussed both experimentally and theoretically as a function of the width of the multiplication region. Data are shown that demonstrate a strong dependence of the gain at a given bias voltage on the width of the n- gain region. Geometrical and fundamental theoretical models are examined to explain this behavior. The geometrical model takes into account the gain-dependent optical fill factor of the cylindrical APD. The theoretical model is based on the ballistic ionization model being developed for the HgCdTe APD. It is concluded that the fundamental theoretical explanation is the dominant effect. A model is developed that combines both the geometrical and fundamental effects. The model also takes into account the effect of the varying multiplication width in the low bias region of the gain-voltage curve. It is concluded that the lower than expected gain seen in the first 2 × 8 HgCdTe linear mode photon counting APD arrays, and higher excess noise factor, was very likely due to the larger than typical multiplication region length in the photon counting APD pixel design. The implications of these effects on device photon counting performance are discussed.

  16. Development of new photon-counting detectors for single-molecule fluorescence microscopy

    PubMed Central

    Michalet, X.; Colyer, R. A.; Scalia, G.; Ingargiola, A.; Lin, R.; Millaud, J. E.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Cheng, A.; Levi, M.; Aharoni, D.; Arisaka, K.; Villa, F.; Guerrieri, F.; Panzeri, F.; Rech, I.; Gulinatti, A.; Zappa, F.; Ghioni, M.; Cova, S.

    2013-01-01

    Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level. PMID:23267185

  17. Comparison of spectral CT imaging methods based a photon-counting detector: Experimental study

    NASA Astrophysics Data System (ADS)

    Lee, Youngjin; Lee, Seungwan; Kim, Hee-Joung

    2016-04-01

    Photon-counting detectors allow spectral computed tomography (CT) imaging using energy-resolved information from a polychromatic X-ray spectrum. The spectral CT images based on the photon-counting detectors are dependent on the energy ranges defined by energy bins for image acquisition. In this study, K-edge and energy weighting imaging methods were experimentally implemented by using a spectral CT system with a cadmium zinc telluride (CZT)-based photon-counting detector. The spectral CT images were obtained by various energy bins and compared in terms of CNR improvement for investigating the effect of energy bins and the efficiency of the spectral CT imaging methods. The results showed that the spectral CT image quality was improved by using the particular energy bins, which were optimized for each spectral CT imaging method and target material. The CNR improvement was different for the spectral CT imaging methods and target materials. It can be concluded that an appropriate selection of imaging method for each target material and the optimization of energy bin can maximize the quality of spectral CT images.

  18. Improving material decomposition by spectral optimization of photon counting computed tomography

    NASA Astrophysics Data System (ADS)

    Polster, C.; Hahn, K.; Gutjahr, R.; Schöck, F.; Kappler, S.; Dietrich, O.; Flohr, T. G.

    2016-03-01

    Photon counting detectors in computed tomography facilitate measurements of spectral distributions of detected X-ray quanta in discrete energy bins. Along with the dependency on wavelength and atomic number of the mass attenuation coefficient, this information allows for reconstruction of CT images of different material bases. Decomposition of two materials is considered standard in today's dual-energy techniques. With photon-counting detectors the decomposition of more than two materials becomes achievable. Efficient detection of CT-typical X-ray spectra is a hard requirement in a clinical environment. This is fulfilled by only a few sensor materials such as CdTe or CdZnTe. In contrast to energy integrating CT-detectors, the pixel dimensions must be reduced to avoid pulse pile-up problems at clinically relevant count rates. However, reducing pixel sizes leads to increased K-escape and charge sharing effects. As a consequence, the correlation between incident and detected X-ray energy is reduced. This degradation is quantified by the detector response function. The goal of this study is to improve the achievable material decomposition by adapting the incident X-ray spectrum with respect to the properties (i.e. the detector response function) of a photon counting detector. A significant improvement of a material decomposition equivalent metric is achievable when using specific materials as X-ray pre-filtration (K-edge filtering) while maintaining the applied patient dose and image quality.

  19. The Goddard Integral Field Spectrograph at Apache Point Observatory: Current Status and Progress Towards Photon Counting

    NASA Astrophysics Data System (ADS)

    McElwain, Michael W.; Grady, Carol A.; Bally, John; Brinkmann, Jonathan V.; Bubeck, James; Gong, Qian; Hilton, George M.; Ketzeback, William F.; Lindler, Don; Llop Sayson, Jorge; Malatesta, Michael A.; Norton, Timothy; Rauscher, Bernard J.; Rothe, Johannes; Straka, Lorrie; Wilkins, Ashlee N.; Wisniewski, John P.; Woodgate, Bruce E.; York, Donald G.

    2015-01-01

    We present the current status and progress towards photon counting with the Goddard Integral Field Spectrograph (GIFS), a new instrument at the Apache Point Observatory's ARC 3.5m telescope. GIFS is a visible light imager and integral field spectrograph operating from 400-1000 nm over a 2.8' x 2.8' and 14' x 14' field of view, respectively. As an IFS, GIFS obtains over 1000 spectra simultaneously and its data reduction pipeline reconstructs them into an image cube that has 32 x 32 spatial elements and more than 200 spectral channels. The IFS mode can be applied to a wide variety of science programs including exoplanet transit spectroscopy, protostellar jets, the galactic interstellar medium probed by background quasars, Lyman-alpha emission line objects, and spectral imaging of galactic winds. An electron-multiplying CCD (EMCCD) detector enables photon counting in the high spectral resolution mode to be demonstrated at the ARC 3.5m in early 2015. The EMCCD work builds upon successful operational and characterization tests that have been conducted in the IFS laboratory at NASA Goddard. GIFS sets out to demonstrate an IFS photon-counting capability on-sky in preparation for future exoplanet direct imaging missions such as the AFTA-Coronagraph, Exo-C, and ATLAST mission concepts. This work is supported by the NASA APRA program under RTOP 10-APRA10-0103.

  20. Study of high speed quenching circuits in photon counting imaging lidar system

    NASA Astrophysics Data System (ADS)

    Zheng, Xiangyang; Ding, Yuxing; Huang, Genghua; Shu, Rong

    2015-10-01

    Detection theory of single photon avalanche diodes(SPADs),which are applied in photon counting imaging light detection and ranging(LIDAR)system, is analyzed in detail in this paper. Four types of common quenching circuits based on SPADs, namely passive quenching, active quenching, gate-control quenching, and hybrid quenching circuits are studied. Furthermore,operational principle and performance characteristics of each of these four types of quenching circuits are fully discussed. Besides, an improved hybrid quenching circuit prone to be integrated with ASIC technology is brought up. Analysis shows that this new circuit can quench and reset SPADs with high speed, meeting the demands for qualities of quenching circuits in photon counting imaging LIDAR system. Also, results of theoretical study indicate that some performance indexes like response rate, quenching speed and dead time are satisfactory. Above all, this quenching circuit is simpler in structure and its cost is much smaller compared with common quenching circuits known to us in papers published so far. As a result, the prospect of this new circuit is probably good after more efforts are taken to integrate it with photon counting imaging LIDAR.

  1. A Multispectral Photon-Counting Double Random Phase Encoding Scheme for Image Authentication

    PubMed Central

    Yi, Faliu; Moon, Inkyu; Lee, Yeon H.

    2014-01-01

    In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI) and double random phase encoding (DRPE) schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color) in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images. PMID:24854208

  2. Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies

    NASA Astrophysics Data System (ADS)

    Jeong, Tae Won; Singh, P. K.; Scullion, C.; Ahmed, H.; Kakolee, K. F.; Hadjisolomou, P.; Alejo, A.; Kar, S.; Borghesi, M.; Ter-Avetisyan, S.

    2016-08-01

    The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.

  3. Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies.

    PubMed

    Jeong, Tae Won; Singh, P K; Scullion, C; Ahmed, H; Kakolee, K F; Hadjisolomou, P; Alejo, A; Kar, S; Borghesi, M; Ter-Avetisyan, S

    2016-08-01

    The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range. PMID:27587107

  4. Development and calibration of a Thomson parabola with microchannel plate for the detection of laser-accelerated MeV ions

    NASA Astrophysics Data System (ADS)

    Harres, K.; Schollmeier, M.; Brambrink, E.; Audebert, P.; Blažević, A.; Flippo, K.; Gautier, D. C.; Geißel, M.; Hegelich, B. M.; Nürnberg, F.; Schreiber, J.; Wahl, H.; Roth, M.

    2008-09-01

    This article reports on the development and application of a Thomson parabola (TP) equipped with a (90×70) mm2 microchannel-plate (MCP) for the analysis of laser-accelerated ions, produced by a high-energy, high-intensity laser system. The MCP allows an online measurement of the produced ions in every single laser shot. An electromagnet instead of permanent magnets is used that allows the tuning of the magnetic field to adapt the field strength to the analyzed ion species and energy. We describe recent experiments at the 100 TW laser facility at the Laboratoire d'Utilization des Lasers Intenses (LULI) in Palaiseau, France, where we have observed multiple ion species and charge states with ions accelerated up to 5 MeV/u (O+6), emitted from the rear surface of a laser-irradiated 50 μm Au foil. Within the experiment the TP was calibrated for protons and for the first time conversion efficiencies of MeV protons (2-13 MeV) to primary electrons (electrons immediately generated by an ion impact onto a surface) in the MCP are presented.

  5. Development and calibration of a Thomson parabola with microchannel plate for the detection of laser-accelerated MeV ions.

    PubMed

    Harres, K; Schollmeier, M; Brambrink, E; Audebert, P; Blazević, A; Flippo, K; Gautier, D C; Geissel, M; Hegelich, B M; Nürnberg, F; Schreiber, J; Wahl, H; Roth, M

    2008-09-01

    This article reports on the development and application of a Thomson parabola (TP) equipped with a (90x70) mm(2) microchannel-plate (MCP) for the analysis of laser-accelerated ions, produced by a high-energy, high-intensity laser system. The MCP allows an online measurement of the produced ions in every single laser shot. An electromagnet instead of permanent magnets is used that allows the tuning of the magnetic field to adapt the field strength to the analyzed ion species and energy. We describe recent experiments at the 100 TW laser facility at the Laboratoire d'Utilization des Lasers Intenses (LULI) in Palaiseau, France, where we have observed multiple ion species and charge states with ions accelerated up to 5 MeV/u (O(+6)), emitted from the rear surface of a laser-irradiated 50 microm Au foil. Within the experiment the TP was calibrated for protons and for the first time conversion efficiencies of MeV protons (2-13 MeV) to primary electrons (electrons immediately generated by an ion impact onto a surface) in the MCP are presented. PMID:19044406

  6. Experimental Setup and Commissioning of a Test Facility for Gain Evaluation of Microchannel-Plate Photomultipliers in High Magnetic Field at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Bringley, Eric; Cao, Tongtong; Ilieva, Yordonka; Nadel-Turonski, Pawel; Park, Kijun; Zorn, Carl

    2014-09-01

    At the Thomas Jefferson National Accelerator Facility (JLab) a research and development project for a Detector of Internally-Reflected Cherenkov light for the upcoming Electron Ion Collider is underway. One goal is the development of a compact readout camera that can operate in high magnetic fields. Small-size photon sensors, such as Microchannel-Plate Photomultipliers (MCP-PMT), are key components of the readout. Here we present our work to set up and commission a dedicated test facility at JLab where MCP-PMT gain is evaluated in magnetic fields of up to 5 T, and to develop a test procedure and analysis software to determine the gain. We operate the setup in a single-photon mode, where a light-emitting diode delivers photons to the sensor's photocathode. The PMT spectrum is measured with a flash Analog-to-Digital converter (fADC). We model the spectrum as a sum of an exponential background and a convolution of Poisson and Gaussian distributions of the pedestal and multiple photoelectron peaks, respectively. We determine the PMT's gain from the position of the single-photoelectron peak obtained by fitting the fADC spectrum to the model. Our gain uncertainty is <10%. The facility is now established and will have a long-lasting value for sensor tests and beyond-nuclear-physics applications.

  7. Development and calibration of a Thomson parabola with microchannel plate for the detection of laser-accelerated MeV ions

    SciTech Connect

    Harres, K.; Schollmeier, M.; Nuernberg, F.; Roth, M.; Brambrink, E.; Audebert, P.; Blazevic, A.; Wahl, H.; Flippo, K.; Gautier, D. C.; Hegelich, B. M.; Geissel, M.; Schreiber, J.

    2008-09-15

    This article reports on the development and application of a Thomson parabola (TP) equipped with a (90x70) mm{sup 2} microchannel-plate (MCP) for the analysis of laser-accelerated ions, produced by a high-energy, high-intensity laser system. The MCP allows an online measurement of the produced ions in every single laser shot. An electromagnet instead of permanent magnets is used that allows the tuning of the magnetic field to adapt the field strength to the analyzed ion species and energy. We describe recent experiments at the 100 TW laser facility at the Laboratoire d'Utilization des Lasers Intenses (LULI) in Palaiseau, France, where we have observed multiple ion species and charge states with ions accelerated up to 5 MeV/u (O{sup +6}), emitted from the rear surface of a laser-irradiated 50 {mu}m Au foil. Within the experiment the TP was calibrated for protons and for the first time conversion efficiencies of MeV protons (2-13 MeV) to primary electrons (electrons immediately generated by an ion impact onto a surface) in the MCP are presented.

  8. A comparison of simulation tools for photon-counting spectral CT

    NASA Astrophysics Data System (ADS)

    Nasirudin, Radin A.; Penchev, Petar; Mei, Kai; Rummeny, Ernst J.; Fiebich, Martin; Noël, Peter B.

    2014-03-01

    Photon-counting detectors (PCD) not only have the advantage of providing spectral information but also offer high quantum efficiencies, producing high image quality in combination with a minimal amount of radiation dose. Due to the clinical unavailability of photon-counting CT, the need to evaluate different CT simulation tools for researching different applications for photon-counting systems is essential. In this work, we investigate two different methods to simulate PCD data: Monte-Carlo based simulation (MCS) and analytical based simulation (AS). The MCS is a general-purpose photon transport simulation based on EGSnrc C++ class library. The AS uses analytical forward-projection in combination with additional acquisition parameters. MCS takes into account all physical effects, but is computationally expensive (several days per CT acquisition). AS is fast (several minutes), but lacks the accurateness of MCS with regard to physical interactions. To evaluate both techniques an entrance spectra of 100kvp, a modified CTP515 module of the CatPhan 600 phantom, and a detector system with six thresholds was simulated. For evaluation the simulated projection data are decomposed via a maximum likelihood technique, and reconstructed via standard filtered-back projection (FBP). Image quality from both methods is subjectively and objectively assessed. Visually, the difference in the image quality was not significant. When further evaluated, the relative difference was below 4%. As a conclusion, both techniques offer different advantages, while at different stages of development the accelerated calculations via AS can make a significant difference. For the future one could foresee a combined method to join accuracy and speed.

  9. MicroCT with energy-resolved photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Wang, X.; Meier, D.; Mikkelsen, S.; Maehlum, G. E.; Wagenaar, D. J.; Tsui, B. M. W.; Patt, B. E.; Frey, E. C.

    2011-05-01

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with K-absorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences.

  10. MicroCT with energy-resolved photon-counting detectors.

    PubMed

    Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, B M W; Patt, B E; Frey, E C

    2011-05-01

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with K-absorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences. PMID:21464527

  11. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    PubMed Central

    Ding, Huanjun; Cho, Hyo-Min; Barber, William C.; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  12. Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements

    NASA Astrophysics Data System (ADS)

    Degnan, John J.

    2002-11-01

    We consider the optimum design of photon-counting microlaser altimeters operating from airborne and spaceborne platforms under both day and night conditions. Extremely compact, passively Q-switched microlaser transmitters produce trains of low energy pulses at multi-kHz rates and can easily generate subnanosecond pulsewidths for precise ranging. To guide the design, we have modeled the solar noise background and developed simple algorithms, based on post-detection Poisson filtering (PDPF), to optimally extract the weak altimeter signal from a high noise background during daytime operations. The advantages of photon-counting detector arrays followed by multichannel timing receivers for high resolution topographic mapping are discussed. Practical technology issues, such as detector and/or receiver dead times and their impact on signal detection and ranging accuracy and resolution, have also been considered in the analysis. The theoretical results are reinforced by data from an airborne microlaser altimeter, developed under NASA's Instrument Incubator Program. The latter instrument has operated at several kHz rates from aircraft cruise altitudes up to 6.7 km with laser pulse energies on the order of a few microjoules. The instrument has successfully recorded decimeter accuracy or better single photon returns from man-made structures, tree canopies and underlying terrain and has demonstrated shallow water bathymetry at depths to a few meters. We conclude the discussion by analyzing a photon counting instrument designed to produce, over a mission life of 3 years, a globally contiguous map of the Martian surface, with 5 m horizontal resolution and decimeter vertical accuracy, from an altitude of 300 km. The transmitter power-receive aperture product required is comparable to the Geoscience Laser Altimeter System (GLAS) but the number of individual range measurements to the surface is increased by three to four orders of magnitude. For more modest scientific goals, on a

  13. Photon-counting lidars for contiguous high resolution topographic mapping of planets and moons

    NASA Astrophysics Data System (ADS)

    Degnan, John J.

    2007-08-01

    Planetary scientists have long expressed interest in obtaining globally contiguous, high resolution (few meter horizontal, decimeter vertical) 3D topographic maps of planets and moons. For example, the goal of NASA's LIST mission, scheduled for launch in the 2016-2020 time frame, is a globally contiguous, 5 meter resolution, topographic map of the Earth. Unfortunately, achieving such a capability through a simple scaling of the laser power and/or telescope aperture from prior art NASA laser altimeters (e.g. MOLA, GLAS, and MLA) is not practical. This is especially true of laser altimeters destined for orbit about distant planets or moons where instrument mass and prime power usage is severely constrained. Photon counting receivers permit each range measurement to be made with a single received photon, even in daylight, and the surface sampling rate of an orbiting altimeter can be increased by three to four orders of magnitude by emitting the available laser photons in a high frequency train of low energy pulses instead of a low frequency train of high energy pulses typical of past spaceborne lidars. The feasibility of the photon-counting approach in the presence of a strong solar background was first successfully demonstrated from a high altitude aircraft under NASA's Instrument Incubator Program in 2001. Sigma Space Corporation has subsequently developed a second generation of scanning 3D imaging and polarimetric lidars for use in small aircraft and Unmanned Aerial Vehicles (UAV's). Future space applications include: (1) decimeter vertical resolution topographic mapping of extraterrestrial terrain from orbiters, balloons, or other aerial vehicles for determining safe landing sites; (2) monitoring the terrain in real time and increasingly higher resolution during spacecraft descent; or (3) for truly contiguous few meter resolution imaging of planetary terrain on a global scale from orbit. Targets of particular interest to NASA are the Earth, Moon, Mars, the Jovian

  14. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    SciTech Connect

    Ding, Huanjun; Cho, Hyo-Min; Molloi, Sabee; Barber, William C.; Iwanczyk, Jan S.

    2014-12-15

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  15. X-ray Photon Counting and Two-Color X-ray Imaging Using Indirect Detection

    PubMed Central

    Dierickx, Bart; Yao, Qiang; Witvrouwen, Nick; Uwaerts, Dirk; Vandewiele, Stijn; Gao, Peng

    2016-01-01

    In this paper, we report on the design and performance of a 1 cm2, 90 × 92-pixel image sensor. It is made X-ray sensitive by the use of a scintillator. Its pixels have a charge packet counting circuit topology with two channels, each realizing a different charge packet size threshold and analog domain event counting. Here, the sensor’s performance was measured in setups representative of a medical X-ray environment. Further, two-energy-level photon counting performance is demonstrated, and its capabilities and limitations are documented. We then provide an outlook on future improvements. PMID:27240362

  16. X-ray Photon Counting and Two-Color X-ray Imaging Using Indirect Detection.

    PubMed

    Dierickx, Bart; Yao, Qiang; Witvrouwen, Nick; Uwaerts, Dirk; Vandewiele, Stijn; Gao, Peng

    2016-01-01

    In this paper, we report on the design and performance of a 1 cm², 90 × 92-pixel image sensor. It is made X-ray sensitive by the use of a scintillator. Its pixels have a charge packet counting circuit topology with two channels, each realizing a different charge packet size threshold and analog domain event counting. Here, the sensor's performance was measured in setups representative of a medical X-ray environment. Further, two-energy-level photon counting performance is demonstrated, and its capabilities and limitations are documented. We then provide an outlook on future improvements. PMID:27240362

  17. Lightweight Raman spectroscope using time-correlated photon-counting detection.

    PubMed

    Meng, Zhaokai; Petrov, Georgi I; Cheng, Shuna; Jo, Javier A; Lehmann, Kevin K; Yakovlev, Vladislav V; Scully, Marlan O

    2015-10-01

    Raman spectroscopy is an important tool in understanding chemical components of various materials. However, the excessive weight and energy consumption of a conventional CCD-based Raman spectrometer forbids its applications under extreme conditions, including unmanned aircraft vehicles (UAVs) and Mars/Moon rovers. In this article, we present a highly sensitive, shot-noise-limited, and ruggedized Raman signal acquisition using a time-correlated photon-counting system. Compared with conventional Raman spectrometers, over 95% weight, 65% energy consumption, and 70% cost could be removed through this design. This technique allows space- and UAV-based Raman spectrometers to robustly perform hyperspectral Raman acquisitions without excessive energy consumption. PMID:26392538

  18. Counter Architectures for a Single Photon-Counting Pixel Detector such as Medipix3

    SciTech Connect

    Wong, W.; Ballabriga, R.; Campbell, M.; Llopart, X.; Tlustos, L.

    2007-11-26

    Medipix3 is a single photon-counting pixel readout chip whose new front-end architecture aims to eliminate the spectral distortion produced by charge diffusion in highly segmented semiconductor detectors. The chip requires area and power-efficient reconfigurable digital counters and shift registers that can be integrated with other photon-processing analog and digital circuits within the 55 {mu}mx55 {mu}m pixel area. This work proposes a configurable-depth, programmable mode digital counter for use in Medipix3.

  19. Longitudinal Bunch Pattern Measurements through Single Photon Counting at SPEAR3

    SciTech Connect

    Wang, Hongyi; /UC, San Diego

    2012-09-07

    The Stanford Synchrotron Radiation Lightsource (SSRL), a division of SLAC National Accelerator Laboratory, is a synchrotron light source that provides x-rays for experimental use. As electrons are bent in the storage ring, they emit electromagnetic radiation. There are 372 different buckets which electrons can be loaded into. Different filling patterns produce different types of x-rays. What is the bunch pattern at a given time? Which filling pattern is better? Are there any flaws to the current injection system? These questions can be answered with this single photon counting experiment.

  20. Methodological Study of a Single Photon Counting Pixel Detector at SPring-8

    SciTech Connect

    Toyokawa, H.; Suzuki, M.; Broennimann, Ch.; Eikenberry, E. F.; Henrich, B.; Huelsen, G.; Kraft, P.

    2007-01-19

    PILATUS (Pixel Apparatus for the SLS) is a challenging project to develop a large area single photon counting pixel detector for synchrotron radiation experiments. SPring-8 examined the PLATUS single module detectors in collaboration with the Paul Scherrer Institute. The PILATUS-II single module detector has a desired performance with almost zero defective pixels and a fast frame rate up to 100 Hz using a newly developed PCI readout system on a Linux-PC. The maximum counting rate achieves more than 2 x 106 X-rays/s/pixel.

  1. CCDs and photon counting devices: Applications in space and from the ground

    NASA Technical Reports Server (NTRS)

    Delamere, W. A.; Blouke, M. M.; Flores, J. S.; Frame, W. W.

    1992-01-01

    The development of the 2048 by 2048 CCD (Charge Coupled Device) for a second generation space telescope instrument has resulted in devices with very few defects, dark currents of less than 12 electrons/pixel/hour at -80 deg, readout noise levels of less than 4 electrons rms, and excellent charge transfer efficiency at signal levels of less than 10 electrons. A second generation of devices that capitalize on these characteristics have been produced and are currently in test. Faster frame transfer devices that preserve these characteristics have been designed that include tridirectional taps in the serial register. The state of the art in CCD's as photon counting detectors is reviewed.

  2. Lightweight Raman spectroscope using time-correlated photon-counting detection

    PubMed Central

    Meng, Zhaokai; Petrov, Georgi I.; Cheng, Shuna; Jo, Javier A.; Lehmann, Kevin K.; Yakovlev, Vladislav V.; Scully, Marlan O.

    2015-01-01

    Raman spectroscopy is an important tool in understanding chemical components of various materials. However, the excessive weight and energy consumption of a conventional CCD-based Raman spectrometer forbids its applications under extreme conditions, including unmanned aircraft vehicles (UAVs) and Mars/Moon rovers. In this article, we present a highly sensitive, shot-noise–limited, and ruggedized Raman signal acquisition using a time-correlated photon-counting system. Compared with conventional Raman spectrometers, over 95% weight, 65% energy consumption, and 70% cost could be removed through this design. This technique allows space- and UAV-based Raman spectrometers to robustly perform hyperspectral Raman acquisitions without excessive energy consumption. PMID:26392538

  3. Fluorescence lifetime microscopy with a time- and space-resolved single-photon counting detector

    NASA Astrophysics Data System (ADS)

    Michalet, X.; Siegmund, O. H. W.; Vallerga, J. V.; Jelinsky, P.; Pinaud, F. F.; Millaud, J. E.; Weiss, S.

    2006-10-01

    We have recently developed a wide-field photon-counting detector (the H33D detector) having high-temporal and highspatial resolutions and capable of recording up to 500,000 photons per sec. Its temporal performance has been previously characterized using solutions of fluorescent materials with different lifetimes, and its spatial resolution using sub-diffraction objects (beads and quantum dots). Here we show its application to fluorescence lifetime imaging of live cells and compare its performance to a scanning confocal TCSPC approach. With the expected improvements in photocathode sensitivity and increase in detector throughput, this technology appears as a promising alternative to the current lifetime imaging solutions.

  4. Photon counting x-ray CT with 3D holograms by CdTe line sensor

    NASA Astrophysics Data System (ADS)

    Koike, A.; Yomori, M.; Morii, H.; Neo, Y.; Aoki, T.; Mimura, H.

    2008-08-01

    The novel 3-D display system is required in the medical treatment field and non-destructive testing field. In these field, the X-ray CT system is used for obtaining 3-D information. However, there are no meaningful 3-D information in X-ray CT data, and there are also no practical 3-D display system. Therefore, in this paper, we propose an X-ray 3-D CT display system by combining a photon-counting X-ray CT system and a holographic image display system. The advantage of this system was demonstrated by comparing the holographic calculation time and recognizability of a reconstructed image.

  5. Photon counting spectral CT versus conventional CT: comparative evaluation for breast imaging application

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.; Fritz, Shannon G.

    2011-04-01

    Spectral CT systems with photon counting detectors have more advantages compared to conventional CT systems. However, clinical applications have been hampered for a long time due to the high demands of clinical systems and limitations of spectroscopic x-ray detectors. Photon counting detector technology has gained considerable improvements in the past decade, and spectral CT has become a hot topic. Several experimental spectral CT systems are under investigation. The purpose of this work was to perform the first direct, side-by-side comparison of existing spectral CT technology with a mature clinical CT system based on a conventional energy integrating detector. We have built an experimental spectral CT system whose main parameters are similar to the parameters of a clinical CT system. The system uses a spectroscopic cadmium zinc telluride (CZT) detector. The detector includes two rows of CZT pixels with 256 pixels in each row. The pixel size is 1 × 1 mm2, and the maximum count rate is 2 Mcounts/pixel/s. The spectral CT system has a magnification factor of 1.62 and the source to detector and source to image distances of 85 and 53 cm, respectively. The above parameters are similar to those of the clinical CT system, Siemens Sensation 16, used for comparison. The two systems were compared by imaging spatial resolution and contrast resolution phantoms made from acrylic cylinders with 14 cm diameters. The resolution phantom included Al wires with 0.3, 0.6, and 1 mm diameters, and 0.25 g cc-1 CaCO3 contrast. The contrast phantom included contrast elements with 1.7, 5, and 15 mg cc-1 iodine, and 1.1, 3.3, and 10 mg cc-1 gadolinium. The phantoms were imaged with the two systems using 120 kVp tube voltage and 470 mR total skin exposure. The spectral CT showed CT numbers, image noise, and spatial and contrast resolutions to be similar within 10% compared to the Siemens 16 system, and provided an average of 10% higher CNR. However, the spectral CT system had a major

  6. Imaging of small children with a prototype for photon counting tomosynthesis

    NASA Astrophysics Data System (ADS)

    del Risco Norrlid, Lilián; Fredenberg, Erik; Hemmendorff, Magnus; Jackowski, Christian; Danielsson, Mats

    2009-02-01

    We present data on a first prototype for photon counting tomosynthesis imaging of small children, which we call photoncounting tomosynthesis (PCT). A photon counting detector can completely eliminate electronic noise, which makes it ideal for tomosynthesis because of the low dose in each projection. Another advantage is that the detector allows for energy sensitivity in later versions, which will further lower the radiation dose. In-plane resolution is high and has been measured to be 5 lp/mm, at least 4 times better than in CT, while the depth resolution was significantly lower than typical CT resolution. The image SNR decreased from 30 to 10 for a detail of 10 mm depth in increasing thickness of PMMA from 10 to 80 mm. The air kerma measured for PCT was 5.2 mGy, which leads to an organ dose to the brain of approximately 0.7 mGy. This dose is 96 % lower than a typical CT dose. PCT can be appealing for pediatric imaging since young children have an increased sensitivity to radiation induced cancers. We have acquired post mortem images of a newborn with the new device and with a state-of-the-art CT and compared the diagnostic information and dose levels of the two modalities. The results are promising but more work is needed to provide input to a next generation prototype that would be suitable for clinical trials.

  7. Optical image encryption via photon-counting imaging and compressive sensing based ptychography

    NASA Astrophysics Data System (ADS)

    Rawat, Nitin; Hwang, In-Chul; Shi, Yishi; Lee, Byung-Geun

    2015-06-01

    In this study, we investigate the integration of compressive sensing (CS) and photon-counting imaging (PCI) techniques with a ptychography-based optical image encryption system. Primarily, the plaintext real-valued image is optically encrypted and recorded via a classical ptychography technique. Further, the sparse-based representations of the original encrypted complex data can be produced by combining CS and PCI techniques with the primary encrypted image. Such a combination takes an advantage of reduced encrypted samples (i.e., linearly projected random compressive complex samples and photon-counted complex samples) that can be exploited to realize optical decryption, which inherently serves as a secret key (i.e., independent to encryption phase keys) and makes an intruder attack futile. In addition to this, recording fewer encrypted samples provides a substantial bandwidth reduction in online transmission. We demonstrate that the fewer sparse-based complex samples have adequate information to realize decryption. To the best of our knowledge, this is the first report on integrating CS and PCI with conventional ptychography-based optical image encryption.

  8. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    NASA Astrophysics Data System (ADS)

    Zang, A.; Anton, G.; Ballabriga, R.; Bisello, F.; Campbell, M.; Celi, J. C.; Fauler, A.; Fiederle, M.; Jensch, M.; Kochanski, N.; Llopart, X.; Michel, N.; Mollenhauer, U.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W.; Michel, T.

    2015-04-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation was carried out to use the Dosepix detector as a kVp-meter, that means to determine the applied acceleration voltage from measured X-ray tubes spectra.

  9. Small-angle scatter tomography with a photon-counting detector array

    NASA Astrophysics Data System (ADS)

    Pang, Shuo; Zhu, Zheyuan; Wang, Ge; Cong, Wenxiang

    2016-05-01

    Small-angle x-ray scatter imaging has a high intrinsic contrast in cancer research and other applications, and provides information on molecular composition and micro-structure of the tissue. In general, the implementations of small-angle coherent scatter imaging can be divided into two main categories: direct tomography and angular dispersive computerized tomography. Based on the recent development of energy-discriminative photon-counting detector array, here we propose a computerized tomography setup based on energy-dispersive measurement with a photon-counting detector array. To show merits of the energy-dispersive approach, we have performed numerical tests with a phantom containing various tissue types, in comparison with the existing imaging approaches. The results show that with an energy resolution of ~6 keV, the energy dispersive tomography system with a broadband tabletop x-ray would outperform the angular dispersive system, which makes the x-ray small-angle scatter tomography promising for high-specificity tissue imaging.

  10. Polychromatic Iterative Statistical Material Image Reconstruction for Photon-Counting Computed Tomography.

    PubMed

    Weidinger, Thomas; Buzug, Thorsten M; Flohr, Thomas; Kappler, Steffen; Stierstorfer, Karl

    2016-01-01

    This work proposes a dedicated statistical algorithm to perform a direct reconstruction of material-decomposed images from data acquired with photon-counting detectors (PCDs) in computed tomography. It is based on local approximations (surrogates) of the negative logarithmic Poisson probability function. Exploiting the convexity of this function allows for parallel updates of all image pixels. Parallel updates can compensate for the rather slow convergence that is intrinsic to statistical algorithms. We investigate the accuracy of the algorithm for ideal photon-counting detectors. Complementarily, we apply the algorithm to simulation data of a realistic PCD with its spectral resolution limited by K-escape, charge sharing, and pulse-pileup. For data from both an ideal and realistic PCD, the proposed algorithm is able to correct beam-hardening artifacts and quantitatively determine the material fractions of the chosen basis materials. Via regularization we were able to achieve a reduction of image noise for the realistic PCD that is up to 90% lower compared to material images form a linear, image-based material decomposition using FBP images. Additionally, we find a dependence of the algorithms convergence speed on the threshold selection within the PCD. PMID:27195003

  11. MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development

    NASA Astrophysics Data System (ADS)

    Brunt, Kelly M.; Neumann, Thomas A.; Amundson, Jason M.; Kavanaugh, Jeffrey L.; Moussavi, Mahsa S.; Walsh, Kaitlin M.; Cook, William B.; Markus, Thorsten

    2016-08-01

    Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is scheduled to launch in late 2017 and will carry the Advanced Topographic Laser Altimeter System (ATLAS), which is a photon-counting laser altimeter and represents a new approach to satellite determination of surface elevation. Given the new technology of ATLAS, an airborne instrument, the Multiple Altimeter Beam Experimental Lidar (MABEL), was developed to provide data needed for satellite-algorithm development and ICESat-2 error analysis. MABEL was deployed out of Fairbanks, Alaska, in July 2014 to provide a test dataset for algorithm development in summer conditions with water-saturated snow and ice surfaces. Here we compare MABEL lidar data to in situ observations in Southeast Alaska to assess instrument performance in summer conditions and in the presence of glacier surface melt ponds and a wet snowpack. Results indicate the following: (1) based on MABEL and in situ data comparisons, the ATLAS 90 m beam-spacing strategy will provide a valid assessment of across-track slope that is consistent with shallow slopes (< 1°) of an ice-sheet interior over 50 to 150 m length scales; (2) the dense along-track sampling strategy of photon counting systems can provide crevasse detail; and (3) MABEL 532 nm wavelength light may sample both the surface and subsurface of shallow (approximately 2 m deep) supraglacial melt ponds. The data associated with crevasses and melt ponds indicate the potential ICESat-2 will have for the study of mountain and other small glaciers.

  12. High-security communication by coherence modulation at the photon-counting level.

    PubMed

    Rhodes, William T; Boughanmi, Abdellatif; Moreno, Yezid Torres

    2016-05-20

    We show that key-specified interferometer path-length difference modulation (often referred to as coherence modulation), operating in the photon-counting regime with a broadband source, can provide a quantifiably high level of physics-guaranteed security for binary signal transmission. Each signal bit is associated with many photocounts, perhaps numbering in the thousands. Of great importance, the presence of an eavesdropper can be quickly detected. We first review the operation of key-specified coherence modulation at high light levels, illustrating by means of an example its lack of security against attack. We then show, using the same example, that, through the reduction of light intensities to photon-counting levels, a high level of security can be attained. A particular attack on the system is analyzed to demonstrate the quantifiability of the scheme's security, and various remaining research issues are discussed. A potential weakness of the scheme lies in a possible vulnerability to light amplification by an attacker. PMID:27411120

  13. Physical characterization of a scanning photon counting digital mammography system based on Si-strip detectors

    SciTech Connect

    Aaslund, Magnus; Cederstroem, Bjoern; Lundqvist, Mats; Danielsson, Mats

    2007-06-15

    The physical performance of a scanning multislit full field digital mammography system was determined using basic image quality parameters. The system employs a direct detection detector comprised of linear silicon strip sensors in an edge-on geometry connected to photon counting electronics. The pixel size is 50 {mu}m and the field of view 24x26 cm{sup 2}. The performance was quantified using the presampled modulation transfer function, the normalized noise power spectrum and the detective quantum efficiency (DQE). Compared to conventional DQE methods, the scanning geometry with its intrinsic scatter rejection poses additional requirements on the measurement setup, which are investigated in this work. The DQE of the photon counting system was found to be independent of the dose level to the detector in the 7.6-206 {mu}Gy range. The peak DQE was 72% and 73% in the scan and slit direction, respectively, measured with a 28 kV W-0.5 mm Al anode-filter combination with an added 2 mm Al filtration.

  14. Small-angle scatter tomography with a photon-counting detector array.

    PubMed

    Pang, Shuo; Zhu, Zheyuan; Wang, Ge; Cong, Wenxiang

    2016-05-21

    Small-angle x-ray scatter imaging has a high intrinsic contrast in cancer research and other applications, and provides information on molecular composition and micro-structure of the tissue. In general, the implementations of small-angle coherent scatter imaging can be divided into two main categories: direct tomography and angular dispersive computerized tomography. Based on the recent development of energy-discriminative photon-counting detector array, here we propose a computerized tomography setup based on energy-dispersive measurement with a photon-counting detector array. To show merits of the energy-dispersive approach, we have performed numerical tests with a phantom containing various tissue types, in comparison with the existing imaging approaches. The results show that with an energy resolution of ~6 keV, the energy dispersive tomography system with a broadband tabletop x-ray would outperform the angular dispersive system, which makes the x-ray small-angle scatter tomography promising for high-specificity tissue imaging. PMID:27082147

  15. Polarimetric, Two-Color, Photon-Counting Laser Altimeter Measurements of Forest Canopy Structure

    NASA Technical Reports Server (NTRS)

    Harding, David J.; Dabney, Philip W.; Valett, Susan

    2011-01-01

    Laser altimeter measurements of forest stands with distinct structures and compositions have been acquired at 532 nm (green) and 1064 nm (near-infrared) wavelengths and parallel and perpendicular polarization states using the Slope Imaging Multi-polarization Photon Counting Lidar (SIMPL). The micropulse, single photon ranging measurement approach employed by SIMPL provides canopy structure measurements with high vertical and spatial resolution. Using a height distribution analysis method adapted from conventional, 1064 nm, full-waveform lidar remote sensing, the sensitivity of two parameters commonly used for above-ground biomass estimation are compared as a function of wavelength. The results for the height of median energy (HOME) and canopy cover are for the most part very similar, indicating biomass estimations using lidars operating at green and near-infrared wavelengths will yield comparable estimates. The expected detection of increasing depolarization with depth into the canopies due to volume multiple-scattering was not observed, possibly due to the small laser footprint and the small detector field of view used in the SIMPL instrument. The results of this work provide pathfinder information for NASA's ICESat-2 mission that will employ a 532 nm, micropulse, photon counting laser altimeter.

  16. A study of pile-up in integrated time-correlated single photon counting systems.

    PubMed

    Arlt, Jochen; Tyndall, David; Rae, Bruce R; Li, David D-U; Richardson, Justin A; Henderson, Robert K

    2013-10-01

    Recent demonstration of highly integrated, solid-state, time-correlated single photon counting (TCSPC) systems in CMOS technology is set to provide significant increases in performance over existing bulky, expensive hardware. Arrays of single photon single photon avalanche diode (SPAD) detectors, timing channels, and signal processing can be integrated on a single silicon chip with a degree of parallelism and computational speed that is unattainable by discrete photomultiplier tube and photon counting card solutions. New multi-channel, multi-detector TCSPC sensor architectures with greatly enhanced throughput due to minimal detector transit (dead) time or timing channel dead time are now feasible. In this paper, we study the potential for future integrated, solid-state TCSPC sensors to exceed the photon pile-up limit through analytic formula and simulation. The results are validated using a 10% fill factor SPAD array and an 8-channel, 52 ps resolution time-to-digital conversion architecture with embedded lifetime estimation. It is demonstrated that pile-up insensitive acquisition is attainable at greater than 10 times the pulse repetition rate providing over 60 dB of extended dynamic range to the TCSPC technique. Our results predict future CMOS TCSPC sensors capable of live-cell transient observations in confocal scanning microscopy, improved resolution of near-infrared optical tomography systems, and fluorescence lifetime activated cell sorting. PMID:24182099

  17. The Slope Imaging Multi-Polarization Photon-Counting Lidar: Development and Performance Results

    NASA Technical Reports Server (NTRS)

    Dabney, Phillip

    2010-01-01

    The Slope Imaging Multi-polarization Photon-counting Lidar is an airborne instrument developed to demonstrate laser altimetry measurement methods that will enable more efficient observations of topography and surface properties from space. The instrument was developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryosphere remote sensing. The SIMPL transmitter is an 11 KHz, 1064 nm, plane-polarized micropulse laser transmitter that is frequency doubled to 532 nm and split into four push-broom beams. The receiver employs single-photon, polarimetric ranging at 532 and 1064 nm using Single Photon Counting Modules in order to achieve simultaneous sampling of surface elevation, slope, roughness and depolarizing scattering properties, the latter used to differentiate surface types. Data acquired over ice-covered Lake Erie in February, 2009 are documenting SIMPL s measurement performance and capabilities, demonstrating differentiation of open water and several ice cover types. ICESat-2 will employ several of the technologies advanced by SIMPL, including micropulse, single photon ranging in a multi-beam, push-broom configuration operating at 532 nm.

  18. Photon-counting 1.0 GHz-phase-modulation fluorometer

    SciTech Connect

    Mizuno, T.; Nakao, S.; Mizutani, Y.; Iwata, T.

    2015-04-15

    We have constructed an improved version of a photon-counting phase-modulation fluorometer (PC-PMF) with a maximum modulation frequency of 1.0 GHz, where a phase domain measurement is conducted with a time-correlated single-photon-counting electronics. While the basic concept of the PC-PMF has been reported previously by one of the authors, little attention has been paid to its significance, other than its weak fluorescence measurement capability. Recently, we have recognized the importance of the PC-PMF and its potential for fluorescence lifetime measurements. One important aspect of the PC-PMF is that it enables us to perform high-speed measurements that exceed the frequency bandwidths of the photomultiplier tubes that are commonly used as fluorescence detectors. We describe the advantages of the PC-PMF and demonstrate its usefulness based on fundamental performance tests. In our new version of the PC-PMF, we have used a laser diode (LD) as an excitation light source rather than the light-emitting diode that was used in the primary version. We have also designed a simple and stable LD driver to modulate the device. Additionally, we have obtained a sinusoidal histogram waveform that has multiple cycles within a time span to be measured, which is indispensable for precise phase measurements. With focus on the fluorescence intensity and the resolution time, we have compared the performance of the PC-PMF with that of a conventional PMF using the analogue light detection method.

  19. Physical characterization of a scanning photon counting digital mammography system based on Si-strip detectors.

    PubMed

    Aslund, Magnus; Cederström, Björn; Lundqvist, Mats; Danielsson, Mats

    2007-06-01

    The physical performance of a scanning multislit full field digital mammography system was determined using basic image quality parameters. The system employs a direct detection detector comprised of linear silicon strip sensors in an edge-on geometry connected to photon counting electronics. The pixel size is 50 microm and the field of view 24 x 26 cm2. The performance was quantified using the presampled modulation transfer function, the normalized noise power spectrum and the detective quantum efficiency (DQE). Compared to conventional DQE methods, the scanning geometry with its intrinsic scatter rejection poses additional requirements on the measurement setup, which are investigated in this work. The DQE of the photon counting system was found to be independent of the dose level to the detector in the 7.6-206 microGy range. The peak DQE was 72% and 73% in the scan and slit direction, respectively, measured with a 28 kV W-0.5 mm Al anode-filter combination with an added 2 mm Al filtration. PMID:17654894

  20. Polychromatic Iterative Statistical Material Image Reconstruction for Photon-Counting Computed Tomography

    PubMed Central

    Weidinger, Thomas; Buzug, Thorsten M.; Flohr, Thomas; Kappler, Steffen; Stierstorfer, Karl

    2016-01-01

    This work proposes a dedicated statistical algorithm to perform a direct reconstruction of material-decomposed images from data acquired with photon-counting detectors (PCDs) in computed tomography. It is based on local approximations (surrogates) of the negative logarithmic Poisson probability function. Exploiting the convexity of this function allows for parallel updates of all image pixels. Parallel updates can compensate for the rather slow convergence that is intrinsic to statistical algorithms. We investigate the accuracy of the algorithm for ideal photon-counting detectors. Complementarily, we apply the algorithm to simulation data of a realistic PCD with its spectral resolution limited by K-escape, charge sharing, and pulse-pileup. For data from both an ideal and realistic PCD, the proposed algorithm is able to correct beam-hardening artifacts and quantitatively determine the material fractions of the chosen basis materials. Via regularization we were able to achieve a reduction of image noise for the realistic PCD that is up to 90% lower compared to material images form a linear, image-based material decomposition using FBP images. Additionally, we find a dependence of the algorithms convergence speed on the threshold selection within the PCD. PMID:27195003

  1. Energy-resolved CT imaging with a photon-counting silicon-strip detector

    NASA Astrophysics Data System (ADS)

    Persson, Mats; Huber, Ben; Karlsson, Staffan; Liu, Xuejin; Chen, Han; Xu, Cheng; Yveborg, Moa; Bornefalk, Hans; Danielsson, Mats

    2014-03-01

    Photon-counting detectors are promising candidates for use in the next generation of x-ray CT scanners. Among the foreseen benefits are higher spatial resolution, better trade-off between noise and dose, and energy discriminating capabilities. Silicon is an attractive detector material because of its low cost, mature manufacturing process and high hole mobility. However, it is sometimes claimed to be unsuitable for use in computed tomography because of its low absorption efficiency and high fraction of Compton scatter. The purpose of this work is to demonstrate that high-quality energy-resolved CT images can nonetheless be acquired with clinically realistic exposure parameters using a photon-counting silicon-strip detector with eight energy thresholds developed in our group. We use a single detector module, consisting of a linear array of 50 0.5 × 0.4 mm detector elements, to image a phantom in a table-top lab setup. The phantom consists of a plastic cylinder with circular inserts containing water, fat and aqueous solutions of calcium, iodine and gadolinium, in different concentrations. We use basis material decomposition to obtain water, calcium, iodine and gadolinium basis images and demonstrate that these basis images can be used to separate the different materials in the inserts. We also show results showing that the detector has potential for quantitative measurements of substance concentrations.

  2. Energy-resolved CT imaging with a photon-counting silicon-strip detector

    NASA Astrophysics Data System (ADS)

    Persson, Mats; Huber, Ben; Karlsson, Staffan; Liu, Xuejin; Chen, Han; Xu, Cheng; Yveborg, Moa; Bornefalk, Hans; Danielsson, Mats

    2014-11-01

    Photon-counting detectors are promising candidates for use in the next generation of x-ray computed tomography (CT) scanners. Among the foreseen benefits are higher spatial resolution, better trade-off between noise and dose and energy discriminating capabilities. Silicon is an attractive detector material because of its low cost, mature manufacturing process and high hole mobility. However, it is sometimes overlooked for CT applications because of its low absorption efficiency and high fraction of Compton scatter. The purpose of this work is to demonstrate that silicon is a feasible material for CT detectors by showing energy-resolved CT images acquired with an 80 kVp x-ray tube spectrum using a photon-counting silicon-strip detector with eight energy thresholds developed in our group. We use a single detector module, consisting of a linear array of 50 0.5 × 0.4 mm detector elements, to image a phantom in a table-top lab setup. The phantom consists of a plastic cylinder with circular inserts containing water, fat and aqueous solutions of calcium, iodine and gadolinium, in different concentrations. By using basis material decomposition we obtain water, calcium, iodine and gadolinium basis images and demonstrate that these basis images can be used to separate the different materials in the inserts. We also show results showing that the detector has potential for quantitative measurements of substance concentrations.

  3. Sequential data assimilation for single-molecule FRET photon-counting data

    SciTech Connect

    Matsunaga, Yasuhiro; Kidera, Akinori; Sugita, Yuji

    2015-06-07

    Data assimilation is a statistical method designed to improve the quality of numerical simulations in combination with real observations. Here, we develop a sequential data assimilation method that incorporates one-dimensional time-series data of smFRET (single-molecule Förster resonance energy transfer) photon-counting into conformational ensembles of biomolecules derived from “replicated” molecular dynamics (MD) simulations. A particle filter using a large number of “replicated” MD simulations with a likelihood function for smFRET photon-counting data is employed to screen the conformational ensembles that match the experimental data. We examine the performance of the method using emulated smFRET data and coarse-grained (CG) MD simulations of a dye-labeled polyproline-20. The method estimates the dynamics of the end-to-end distance from smFRET data as well as revealing that of latent conformational variables. The particle filter is also able to correct model parameter dependence in CG MD simulations. We discuss the applicability of the method to real experimental data for conformational dynamics of biomolecules.

  4. A study of pile-up in integrated time-correlated single photon counting systems

    NASA Astrophysics Data System (ADS)

    Arlt, Jochen; Tyndall, David; Rae, Bruce R.; Li, David D.-U.; Richardson, Justin A.; Henderson, Robert K.

    2013-10-01

    Recent demonstration of highly integrated, solid-state, time-correlated single photon counting (TCSPC) systems in CMOS technology is set to provide significant increases in performance over existing bulky, expensive hardware. Arrays of single photon single photon avalanche diode (SPAD) detectors, timing channels, and signal processing can be integrated on a single silicon chip with a degree of parallelism and computational speed that is unattainable by discrete photomultiplier tube and photon counting card solutions. New multi-channel, multi-detector TCSPC sensor architectures with greatly enhanced throughput due to minimal detector transit (dead) time or timing channel dead time are now feasible. In this paper, we study the potential for future integrated, solid-state TCSPC sensors to exceed the photon pile-up limit through analytic formula and simulation. The results are validated using a 10% fill factor SPAD array and an 8-channel, 52 ps resolution time-to-digital conversion architecture with embedded lifetime estimation. It is demonstrated that pile-up insensitive acquisition is attainable at greater than 10 times the pulse repetition rate providing over 60 dB of extended dynamic range to the TCSPC technique. Our results predict future CMOS TCSPC sensors capable of live-cell transient observations in confocal scanning microscopy, improved resolution of near-infrared optical tomography systems, and fluorescence lifetime activated cell sorting.

  5. Sequential data assimilation for single-molecule FRET photon-counting data

    NASA Astrophysics Data System (ADS)

    Matsunaga, Yasuhiro; Kidera, Akinori; Sugita, Yuji

    2015-06-01

    Data assimilation is a statistical method designed to improve the quality of numerical simulations in combination with real observations. Here, we develop a sequential data assimilation method that incorporates one-dimensional time-series data of smFRET (single-molecule Förster resonance energy transfer) photon-counting into conformational ensembles of biomolecules derived from "replicated" molecular dynamics (MD) simulations. A particle filter using a large number of "replicated" MD simulations with a likelihood function for smFRET photon-counting data is employed to screen the conformational ensembles that match the experimental data. We examine the performance of the method using emulated smFRET data and coarse-grained (CG) MD simulations of a dye-labeled polyproline-20. The method estimates the dynamics of the end-to-end distance from smFRET data as well as revealing that of latent conformational variables. The particle filter is also able to correct model parameter dependence in CG MD simulations. We discuss the applicability of the method to real experimental data for conformational dynamics of biomolecules.

  6. Design and performance of a fiber array coupled multi-channel photon counting, 3D imaging, airborne lidar system

    NASA Astrophysics Data System (ADS)

    Huang, Genghua; Shu, Rong; Hou, Libing; Li, Ming

    2014-06-01

    Photon counting lidar has an ultra-high sensitivity which can be hundreds even thousands of times higher than the linear detection lidar. It can significantly increase the system's capability of detection rang and imaging density, saving size and power consumings in airborne or space-borne applications. Based on Geiger-mode Si avalanche photodiodes (Si-APD), a prototype photon counting lidar which used 8 APDs coupled with a 1×8-pixel fiber array has been made in June, 2011. The experiments with static objects showed that the photon counting lidar could operate in strong solar background with 0.04 receiving photoelectrons on average. Limited by less counting times in moving platforms, the probability of detection and the 3D imaging density would be lower than that in static platforms. In this paper, a latest fiber array coupled multi-channel photon counting, 3D imaging, airborne lidar system is introduced. The correlation range receiver algorithm of photon counting 3D imaging is improved for airborne signal photon events extraction and noise filter. The 3D imaging experiments in the helicopter shows that the false alarm rate is less than 6×10-7, and the correct rate is better than 99.9% with 4 received photoelectrons and 0.7MHz system noise on average.

  7. Study of Static Microchannel Plate Saturation Effects for the Fast Plasma Investigation Dual Electron Spectrometers on NASA's Magnetospheric MultiScale Mission

    NASA Technical Reports Server (NTRS)

    Avanov, L. A.; Gliese, U.; Pollock, C. J.; Moore, T. E.; Chornay, D. J.; Barrie, A. C.; Kujawski, J. T.; Gershman, D. J.; Tucker, C. J.; Mariano, A.; Smith, D. L.; Jacques, A. D.

    2015-01-01

    Imaging detecting systems based on microchannel plates (MCPs) are the most common for low energy plasma measurements for both space borne and ground applications. One of the key parameters of these detection systems is the dynamic range of the MCP's response to the input fluxes of charged particles. For most applications the dynamic range of the linear response should be as wide as possible. This is especially true for the Dual Electron Spectrometers (DESs) of the Fast Plasma Investigation (FPI) on NASA's Magnetospheric MultiScale (MMS) mission because a wide range of input fluxes are expected. To make use of the full available dynamic range, it is important to understand the MCP response behavior beyond the linear regime where the MCPs start to saturate. We have performed extensive studies of this during the characterization and calibration of the DES instruments and have identified several saturation effects of the detection system. The MCP itself exhibits saturation when the channels lack the ability to replenish charge sufficiently rapidly. It is found and will be shown that the ground system can significantly impact the correct measurement of this effect. As the MCP starts to saturate, the resulting pulse height distribution (PHD) changes shape and location (with less pulse height values), which leads to truncation of the PHD by the threshold set on the detection system discriminator. Finally, the detection system pulse amplifier exhibits saturation as the input flux drives pulse rates greater than its linear response speed. All of these effects effectively change the dead time of the overall detection system and as a result can affect the quality and interpretation of the flight data. We present results of detection system saturation effects and their interaction with special emphasis on the MCP related effects.

  8. Using a superconducting tunnel junction detector to measure the secondary electron emission efficiency for a microchannel plate detector bombarded by large molecular ions

    PubMed

    Westmacott; Frank; Labov; Benner

    2000-01-01

    An energy-sensitive superconducting tunnel junction (STJ) detector was used to measure the secondary electron emission efficiency, epsilon(e), for a microchannel plate (MCP) detector bombarded by large (up to 66 kDa), slow moving (<40 km/s) molecular ions. The method used is new and provides a more direct procedure for measuring the efficiency of secondary electron emission from a surface. Both detectors were exposed simultaneously to nearly identical ion fluxes. By exposing only a small area of the MCP detector to ions, such that the area exposed was effectively the same as the size of the STJ detector, the number of ions detected with each detector were directly comparable. The STJ detector is 100% efficient for detecting ions in the energy regime investigated and therefore it can be used to measure the detection efficiency and secondary electron emission efficiency of the MCP. The results are consistent with measurements made by other groups and provide further characterization of the loss in sensitivity noted previously when MCP detectors have been used to detect high-mass ions. Individual molecular ions of mass 66 kDa with 30 keV kinetic energy were measured to have about a 5% probability of producing one or more electrons when impacting the MCP. When ion energy was reduced to 10 keV, the detection probability decreased to 1 %. The secondary electron yield was calculated from the secondary electron emission efficiency and found to scale linearly with the mass of the impinging molecular ion and to about the fourth power of ion velocity. Secondary electrons were observed for primary ion impacts >5 km/s, regardless of mass, and no evidence of a velocity (detection) threshold was observed. Copyright 2000 John Wiley & Sons, Ltd. PMID:11006596

  9. Dual energy CT with photon counting and dual source systems: comparative evaluation

    NASA Astrophysics Data System (ADS)

    Atak, Haluk; Shikhaliev, Polad M.

    2015-12-01

    Recently, new dual energy (DE) computed tomography (CT) systems—dual source CT (DSCT) and photon counting CT (PCCT) have been introduced. Although these systems have the same clinical targets, they have major differences as they use dual and single kVp acquisitions and different x-ray detection and energy resolution concepts. The purpose of this study was theoretical and experimental comparisons of DSCT and PCCT. The DSCT Siemens Somatom Flash was modeled for simulation study. The PCCT had the same configuration as DSCT except it used a photon counting detector. The soft tissue phantoms with 20, 30, and 38 cm diameters included iodine, CaCO3, adipose, and water samples. The dose (air kerma) was 14 mGy for all studies. The low and high energy CT data were simulated at 80 kVp and 140 kVp for DSCT, and in 20-58 keV and 59-120 keV energy ranges for PCCT, respectively. The experiments used Somatom Flash DSCT system and PCCT system based on photon counting CdZnTe detector with 2  ×  256 pixel configuration and 1  ×  1 mm2 pixels size. In simulated general CT images, PCCT provided higher contrast-to-noise ratio (CNR) than DSCT with 0.4/0.8 mm Sn filters. The PCCT with K-edge filter provided higher CNR than the PCCT with a Cu filter, and DSCT with 0.4 mm Sn filter provided higher CNR than the DSCT with a 0.8 mm Sn filter. In simulated DE subtracted images, CNR of the DSCT was comparable to the PCCT with a Cu filter. However, DE PCCT with Ho a K-edge filter provided 30-40% higher CNR than the DE DSCT with 0.4/0.8 mm Sn filters. The experimental PCCT provided higher CNR in general imaging compared to the DSCT. In experimental DE subtracted images, the DSCT provided higher CNR than the PCCT with a Cu filter. However, experimental CNR with DE PCCT with K-edge filter was 15% higher than in DE DSCT, which is less than 30-40% increase predicted by the simulation study. It is concluded that ideal PCCT can provide substantial advantages over ideal

  10. Dual energy CT with photon counting and dual source systems: comparative evaluation.

    PubMed

    Atak, Haluk; Shikhaliev, Polad M

    2015-12-01

    Recently, new dual energy (DE) computed tomography (CT) systems-dual source CT (DSCT) and photon counting CT (PCCT) have been introduced. Although these systems have the same clinical targets, they have major differences as they use dual and single kVp acquisitions and different x-ray detection and energy resolution concepts. The purpose of this study was theoretical and experimental comparisons of DSCT and PCCT. The DSCT Siemens Somatom Flash was modeled for simulation study. The PCCT had the same configuration as DSCT except it used a photon counting detector. The soft tissue phantoms with 20, 30, and 38 cm diameters included iodine, CaCO3, adipose, and water samples. The dose (air kerma) was 14 mGy for all studies. The low and high energy CT data were simulated at 80 kVp and 140 kVp for DSCT, and in 20-58 keV and 59-120 keV energy ranges for PCCT, respectively. The experiments used Somatom Flash DSCT system and PCCT system based on photon counting CdZnTe detector with 2  ×  256 pixel configuration and 1  ×  1 mm(2) pixels size. In simulated general CT images, PCCT provided higher contrast-to-noise ratio (CNR) than DSCT with 0.4/0.8 mm Sn filters. The PCCT with K-edge filter provided higher CNR than the PCCT with a Cu filter, and DSCT with 0.4 mm Sn filter provided higher CNR than the DSCT with a 0.8 mm Sn filter. In simulated DE subtracted images, CNR of the DSCT was comparable to the PCCT with a Cu filter. However, DE PCCT with Ho a K-edge filter provided 30-40% higher CNR than the DE DSCT with 0.4/0.8 mm Sn filters. The experimental PCCT provided higher CNR in general imaging compared to the DSCT. In experimental DE subtracted images, the DSCT provided higher CNR than the PCCT with a Cu filter. However, experimental CNR with DE PCCT with K-edge filter was 15% higher than in DE DSCT, which is less than 30-40% increase predicted by the simulation study. It is concluded that ideal PCCT can provide substantial advantages over ideal

  11. Photon-Counting Multikilohertz Microlaser Altimeters for Airborne and Spaceborne Topographic Measurements

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2000-01-01

    We consider the optimum design of photon-counting microlaser altimeters operating from airborne and spaceborne platforms under both day and night conditions. Extremely compact Q-switched microlaser transmitters produce trains of low energy pulses at multi-kHz rates and can easily generate subnanosecond pulse-widths for precise ranging. To guide the design, we have modeled the solar noise background and developed simple algorithms, based on Post-Detection Poisson Filtering (PDPF), to optimally extract the weak altimeter signal from a high noise background during daytime operations. Practical technology issues, such as detector and/or receiver dead times, have also been considered in the analysis. We describe an airborne prototype, being developed under NASA's instrument Incubator Program, which is designed to operate at a 10 kHz rate from aircraft cruise altitudes up to 12 km with laser pulse energies on the order of a few microjoules. We also analyze a compact and power efficient system designed to operate from Mars orbit at an altitude of 300 km and sample the Martian surface at rates up to 4.3 kHz using a 1 watt laser transmitter and an 18 cm telescope. This yields a Power-Aperture Product of 0.24 W-square meter, corresponding to a value almost 4 times smaller than the Mars Orbiting Laser Altimeter (0. 88W-square meter), yet the sampling rate is roughly 400 times greater (4 kHz vs 10 Hz) Relative to conventional high power laser altimeters, advantages of photon-counting laser altimeters include: (1) a more efficient use of available laser photons providing up to two orders of magnitude greater surface sampling rates for a given laser power-telescope aperture product; (2) a simultaneous two order of magnitude reduction in the volume, cost and weight of the telescope system; (3) the unique ability to spatially resolve the source of the surface return in a photon counting mode through the use of pixellated or imaging detectors; and (4) improved vertical and

  12. Detection efficiency of microchannel plates to fluxes of high energy electrons similar to that in the Jupiter environment

    NASA Astrophysics Data System (ADS)

    Tulej, M.; Meyer, S.; Lüthi, M.; Lasi, D.; Galli, A.; Wurz, P.; Desorgher, L.; Wojczuk, K.; Karllsson, S.; Kalla, L.

    2015-10-01

    High-energy high-rate electrons were measured by a multichannel plate (MCP) detector at the PiM1 beam line of the High Intensity Proton Accelerator Facilities located at the Paul Scherrer Institute, Villigen, Switzerland. The measurements provide the absolute detection efficiency of 8.5±0.8 % for e? in the beam momenta range 17.5-345 MeV/c. The pulse height distribution determined from the measurements is close to an exponential function with negative exponent, indicating that the particles penetrated the MCP material before producing the signal somewhere inside the channel. Low charge extraction and modal gains of the MCP detector observed in this study are consistent with the proposed mechanism of the signal formation by penetrating radiation. A very similar MCP ion detector will be used in the NIM mass spectrometer of the PEP experiment currently developed for the JUICE mission of ESA to the Jupiter system, to perform measurements of the chemical composition of the exospheres of the Galilean moons.

  13. Measurement of the light-field amplitude-correlation function through joint photon-count distributions.

    NASA Technical Reports Server (NTRS)

    Furcinitti, P.; Kuppenheimer, J. D.; Narducci, L. M.; Tuft , R. A.

    1972-01-01

    When an amplitude-stabilized He-Ne laser beam is scattered by a rotating ground glass with small surface inhomogeneities, the probability density of the instantaneous scattered-wave amplitude is Gaussian. In this paper, we suggest the use of the joint photon-count probability distribution to measure the absolute value of the electric-field amplitude-correlation function for random Gaussian light fields, and report the results of an experiment in which the Gaussian field is produced by scattering a light beam through a rotating ground glass. This procedure offers an alternative to other conventional methods, such as self-beating spectroscopy and irradiance-correlation techniques. The correlation time of the scattered-field amplitude in the present experiment has been measured with an accuracy of approximately 0.8%.

  14. Linear Mode HgCdTe Avalanche Photodiodes for Photon Counting Applications

    NASA Technical Reports Server (NTRS)

    Sullivan, William, III; Beck, Jeffrey; Scritchfield, Richard; Skokan, Mark; Mitra, Pradip; Sun, Xiaoli; Abshire, James; Carpenter, Darren; Lane, Barry

    2015-01-01

    An overview of recent improvements in the understanding and maturity of linear mode photon counting with HgCdTe electron-initiated avalanche photodiodes is presented. The first HgCdTe LMPC 2x8 format array fabricated in 2011 with 64 micron pitch was a remarkable success in terms of demonstrating a high single photon signal to noise ratio of 13.7 with an excess noise factor of 1.3-1.4, a 7 ns minimum time between events, and a broad spectral response extending from 0.4 micron to 4.2 micron. The main limitations were a greater than 10x higher false event rate than expected of greater than 1 MHz, a 5-7x lower than expected APD gain, and a photon detection efficiency of only 50% when greater than 60% was expected. This paper discusses the reasons behind these limitations and the implementation of their mitigations with new results.

  15. Photon counting imaging and centroiding with an electron-bombarded CCD using single molecule localisation software

    NASA Astrophysics Data System (ADS)

    Hirvonen, Liisa M.; Barber, Matthew J.; Suhling, Klaus

    2016-06-01

    Photon event centroiding in photon counting imaging and single-molecule localisation in super-resolution fluorescence microscopy share many traits. Although photon event centroiding has traditionally been performed with simple single-iteration algorithms, we recently reported that iterative fitting algorithms originally developed for single-molecule localisation fluorescence microscopy work very well when applied to centroiding photon events imaged with an MCP-intensified CMOS camera. Here, we have applied these algorithms for centroiding of photon events from an electron-bombarded CCD (EBCCD). We find that centroiding algorithms based on iterative fitting of the photon events yield excellent results and allow fitting of overlapping photon events, a feature not reported before and an important aspect to facilitate an increased count rate and shorter acquisition times.

  16. Vision 20/20: Single photon counting x-ray detectors in medical imaging

    PubMed Central

    Taguchi, Katsuyuki; Iwanczyk, Jan S.

    2013-01-01

    Photon counting detectors (PCDs) with energy discrimination capabilities have been developed for medical x-ray computed tomography (CT) and x-ray (XR) imaging. Using detection mechanisms that are completely different from the current energy integrating detectors and measuring the material information of the object to be imaged, these PCDs have the potential not only to improve the current CT and XR images, such as dose reduction, but also to open revolutionary novel applications such as molecular CT and XR imaging. The performance of PCDs is not flawless, however, and it seems extremely challenging to develop PCDs with close to ideal characteristics. In this paper, the authors offer our vision for the future of PCD-CT and PCD-XR with the review of the current status and the prediction of (1) detector technologies, (2) imaging technologies, (3) system technologies, and (4) potential clinical benefits with PCDs. PMID:24089889

  17. Photon counting imaging and centroiding with an electron-bombarded CCD using single molecule localisation software

    PubMed Central

    Hirvonen, Liisa M.; Barber, Matthew J.; Suhling, Klaus

    2016-01-01

    Photon event centroiding in photon counting imaging and single-molecule localisation in super-resolution fluorescence microscopy share many traits. Although photon event centroiding has traditionally been performed with simple single-iteration algorithms, we recently reported that iterative fitting algorithms originally developed for single-molecule localisation fluorescence microscopy work very well when applied to centroiding photon events imaged with an MCP-intensified CMOS camera. Here, we have applied these algorithms for centroiding of photon events from an electron-bombarded CCD (EBCCD). We find that centroiding algorithms based on iterative fitting of the photon events yield excellent results and allow fitting of overlapping photon events, a feature not reported before and an important aspect to facilitate an increased count rate and shorter acquisition times. PMID:27274604

  18. On the single-photon-counting (SPC) modes of imaging using an XFEL source

    SciTech Connect

    Wang, Zhehui

    2015-12-14

    In this study, the requirements to achieve high detection efficiency (above 50%) and gigahertz (GHz) frame rate for the proposed 42-keV X-ray free-electron laser (XFEL) at Los Alamos are summarized. Direct detection scenarios using C (diamond), Si, Ge and GaAs semiconductor sensors are analyzed. Single-photon counting (SPC) mode and weak SPC mode using Si can potentially meet the efficiency and frame rate requirements and be useful to both photoelectric absorption and Compton physics as the photon energy increases. Multilayer three-dimensional (3D) detector architecture, as a possible means to realize SPC modes, is compared with the widely used two-dimensional (2D) hybrid planar electrode structure and 3D deeply entrenched electrode architecture. Demonstration of thin film cameras less than 100-μm thick with onboard thin ASICs could be an initial step to realize multilayer 3D detectors and SPC modes for XFELs.

  19. Absolute calibration of an EMCCD camera by quantum correlation, linking photon counting to the analog regime.

    PubMed

    Avella, A; Ruo-Berchera, I; Degiovanni, I P; Brida, G; Genovese, M

    2016-04-15

    We show how the same setup and procedure, exploiting spatially multimode quantum correlations, allows the absolute calibration of an electron-multiplying charge-coupled (EMCCD) camera from the analog regime down to the single-photon-counting level, just by adjusting the brightness of the quantum source. At the single-photon level, an EMCCD can be operated as an on-off detector, where quantum efficiency depends on the discriminating threshold. We develop a simple model to explain the connection of the two different regimes demonstrating that the efficiency estimated in the analog (bright) regime allows us to accurately predict the detector behavior in the photocounting regime and vice versa. This work establishes a bridge between two regions of the optical measurements that up to now have been based on completely different standards, detectors, and measurement techniques. PMID:27082359

  20. New Possibilities in Medical X-Ray Imaging with Photon Counting Pixel Detectors

    NASA Astrophysics Data System (ADS)

    Durst, J.; Bartl, P.; Guni, E.; Haas, W.; Ritter, A.; Takoukam Talla, P.; Weber, T.; Michel, T.; Anton, G.

    2010-04-01

    The new generation of X-ray photon counting pixel detectors like the Medipix2 and the Medipix3 opens a new field of applications in medical X-ray imaging. These detectors work with one or more energy windows, which makes energy information available in addition to the intensity. A detailled understanding of the detector response of such detectors is important. Results will be presented for Si and CdTe as sensor material. With this knowledge two methods called spectrum reconstruction and material reconstruction can be applied to energy resolved images in absorption radiography and computed tomography. Another new application is the measurement of the phase information in computed tomography in addition to the absorption information. The potential of phase contrast imaging will be discussed.

  1. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-09-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  2. Spectral X-Ray Diffraction using a 6 Megapixel Photon Counting Array Detector

    PubMed Central

    Muir, Ryan D.; Pogranichniy, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.

    2016-01-01

    Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging. PMID:27041789

  3. A photon-counting photodiode array detector for far ultraviolet (FUV) astronomy

    NASA Technical Reports Server (NTRS)

    Hartig, G. F.; Moos, H. W.; Pembroke, R.; Bowers, C.

    1982-01-01

    A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location.

  4. A photon-counting optical communication system for underwater data transfer

    NASA Astrophysics Data System (ADS)

    Hiskett, Philip A.; Struthers, Robert; Tatton, Roy; Lamb, Robert

    2012-09-01

    We report on the performance of a photon-counting optical communication system which was used to transmit optical data at clock rates (not detection rates) of 40Mb/s at a wavelength of 450nm. The transmitted test data patterns comprised of one page of ASCII text preceded by a pseudo-random sequence used as a timing reference pattern by the receiver. The optical data patterns were transmitted through an aquarium tank containing ~110 litres of water and were detected at the receiver by a shallow junction silicon single photon avalanche diode detector. An antacid, brand name Maalox, was introduced into the tank to increase the scattering of the optical pulses. The bit error rate and bit rate of the transmitted data were investigated for a range of Maalox concentrations. The optical attenuation and pulse distortion caused by the introduction of Maalox was also investigated.

  5. Time-Correlated Single-Photon Counting Range Profiling of Moving Objects

    NASA Astrophysics Data System (ADS)

    Hedborg, Julia; Jonsson, Per; Henriksson, Markus; Sjöqvist, Lars

    2016-06-01

    Time-correlated single-photon counting (TCSPC) is a laser radar technique that can provide range profiling with very high resolution. Range profiles of multiple surface objects and geometrical shapes are revealed using multiple laser pulses with very low pulse energy. The method relies on accurate time measurements between a laser pulse sync signal and the registration of a single-photon event of reflected photons from a target. TCSPC is a statistic method that requires an acquisition time and therefore the range profile of a non-stationary object (target) may be corrupted. Here, we present results showing that it is possible to reconstruct the range profile of a moving target and calculate the velocity of the target.

  6. Image-based spectral distortion correction for photon-counting x-ray detectors

    SciTech Connect

    Ding Huanjun; Molloi, Sabee

    2012-04-15

    Purpose: To investigate the feasibility of using an image-based method to correct for distortions induced by various artifacts in the x-ray spectrum recorded with photon-counting detectors for their application in breast computed tomography (CT). Methods: The polyenergetic incident spectrum was simulated with the tungsten anode spectral model using the interpolating polynomials (TASMIP) code and carefully calibrated to match the x-ray tube in this study. Experiments were performed on a Cadmium-Zinc-Telluride (CZT) photon-counting detector with five energy thresholds. Energy bins were adjusted to evenly distribute the recorded counts above the noise floor. BR12 phantoms of various thicknesses were used for calibration. A nonlinear function was selected to fit the count correlation between the simulated and the measured spectra in the calibration process. To evaluate the proposed spectral distortion correction method, an empirical fitting derived from the calibration process was applied on the raw images recorded for polymethyl methacrylate (PMMA) phantoms of 8.7, 48.8, and 100.0 mm. Both the corrected counts and the effective attenuation coefficient were compared to the simulated values for each of the five energy bins. The feasibility of applying the proposed method to quantitative material decomposition was tested using a dual-energy imaging technique with a three-material phantom that consisted of water, lipid, and protein. The performance of the spectral distortion correction method was quantified using the relative root-mean-square (RMS) error with respect to the expected values from simulations or areal analysis of the decomposition phantom. Results: The implementation of the proposed method reduced the relative RMS error of the output counts in the five energy bins with respect to the simulated incident counts from 23.0%, 33.0%, and 54.0% to 1.2%, 1.8%, and 7.7% for 8.7, 48.8, and 100.0 mm PMMA phantoms, respectively. The accuracy of the effective attenuation

  7. On the Single-Photon-Counting (SPC) modes of imaging using an XFEL source

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui

    2015-12-01

    The requirements to achieve high detection efficiency (above 50%) and gigahertz (GHz) frame rate for the proposed 42-keV X-ray free-electron laser (XFEL) at Los Alamos are summarized. Direct detection scenarios using C (diamond), Si, Ge and GaAs semiconductor sensors are analyzed. Single-photon counting (SPC) mode and weak SPC mode using Si can potentially meet the efficiency and frame rate requirements and be useful to both photoelectric absorption and Compton physics as the photon energy increases. Multilayer three-dimensional (3D) detector architecture, as a possible means to realize SPC modes, is compared with the widely used two-dimensional (2D) hybrid planar electrode structure and 3D deeply entrenched electrode architecture. Demonstration of thin film cameras less than 100-μm thick with onboard thin ASICs could be an initial step to realize multilayer 3D detectors and SPC modes for XFELs.

  8. Performance and capacity analysis of Poisson photon-counting based Iter-PIC OCDMA systems.

    PubMed

    Li, Lingbin; Zhou, Xiaolin; Zhang, Rong; Zhang, Dingchen; Hanzo, Lajos

    2013-11-01

    In this paper, an iterative parallel interference cancellation (Iter-PIC) technique is developed for optical code-division multiple-access (OCDMA) systems relying on shot-noise limited Poisson photon-counting reception. The novel semi-analytical tool of extrinsic information transfer (EXIT) charts is used for analysing both the bit error rate (BER) performance as well as the channel capacity of these systems and the results are verified by Monte Carlo simulations. The proposed Iter-PIC OCDMA system is capable of achieving two orders of magnitude BER improvements and a 0.1 nats of capacity improvement over the conventional chip-level OCDMA systems at a coding rate of 1/10. PMID:24216821

  9. Mu-Spec - A High Performance Ultra-Compact Photon Counting spectrometer for Space Submillimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Moseley, H.; Hsieh, W.-T.; Stevenson, T.; Wollack, E.; Brown, A.; Benford, D.; Sadleir; U-Yen, I.; Ehsan, N.; Zmuidzinas, J.; Bradford, M.

    2011-01-01

    We have designed and are testing elements of a fully integrated submillimeter spectrometer based on superconducting microstrip technology. The instrument can offer resolving power R approximately 1500, and its high frequency cutoff is set by the gap of available high performance superconductors. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using planar filter, and detected using photon counting MKID detector. This spectrometer promises to revolutionize submillimeter spectroscopy from space. It replaces instruments with the scale of 1m with a spectrometer on a 10 cm Si wafer. The reduction in mass and volume promises a much higher performance system within available resource in a space mission. We will describe the system and the performance of the components that have been fabricated and tested.

  10. In situ detection of warfarin using time-correlated single-photon counting

    SciTech Connect

    Rosengren, Annika M.; Karlsson, Bjoern C.G.; Naeslund, Inga; Andersson, Per Ola; Nicholls, Ian A.

    2011-04-01

    Highlights: {yields} Direct in situ measurement of specific isomeric forms of the anticoagulant warfarin. {yields} TCSPC spectroscopy in conjunction with synthetic Sudlow I binding site receptors. {yields} Development of sensor principle for use in clinical and environmental monitoring. -- Abstract: Here we report on a novel method for the direct in situ measurement of specific isomeric forms of the anticoagulant warfarin using time correlated single-photon counting (TCSPC) spectroscopy in conjunction with synthetic Sudlow I binding site receptors. The method is highly robust over the clinically significant concentration range, and demonstrates the potential of the binding site mimics in conjunction with the spectroscopic strategy employed here for the determination of this important pharmaceutical in clinical or even environmental samples.

  11. Four-dimensional multiphoton microscopy with time-correlated single-photon counting.

    PubMed

    Schönle, A; Glatz, M; Hell, S W

    2000-12-01

    We report on the implementation of fluorescence-lifetime imaging in multiphoton excitation microscopy that uses PC-compatible modules for time-correlated single-photon counting. Four-dimensional data stacks are produced with each pixel featuring fluorescence-decay curves that consist of as many as 4096 bins. Fluorescence lifetime(s) and their amplitude(s) are extracted by statistical methods at each pixel or in arbitrarily defined regions of interest. When employing an avalanche photodiode the width of the temporal response function is 420 ps. Although this response confines the temporal resolution to values greater than several hundreds of picoseconds, the lifetime precision is determined by the signal-to-noise ratio and can be in the range of tens of picosconds. Lifetime changes are visualized in pulsed-laser-deposited fluorescent layers as well as in cyan fluorescent proteins that transfer energy to yellow fluorescent proteins in live mammalian cells. PMID:18354639

  12. Pulse detection logic for multibin photon counting detectors: beyond the simple comparator

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2015-03-01

    Energy-discriminating, photon counting (EDPC) detectors have been proposed for CT systems for their spectral imaging capabilities, improved dose efficiency and higher spatial resolution. However, these advantages disappear at high flux because of the damaging effects of pulse pileup. From an information theoretic standpoint, spectral information is lost. The information loss is particularly high when we assume that the EDPC detector extracts information using a bank of comparators, as current EDPC detectors do. We analyze the use of alternative pulse detection logic which could preserve information in the presence of pileup. For example, the peak-only detector counts only a single event at the peak energy of multiple pulses which are piled up. We describe and evaluate five of these alternatives in simulation by numerically estimating the Cramer-Rao lower bound of the variance. At high flux, alternative mechanisms outperform comparators. In spectral imaging tasks, the variance reduction can be as high as an order of magnitude.

  13. Underwater depth imaging using time-correlated single-photon counting.

    PubMed

    Maccarone, Aurora; McCarthy, Aongus; Ren, Ximing; Warburton, Ryan E; Wallace, Andy M; Moffat, James; Petillot, Yvan; Buller, Gerald S

    2015-12-28

    A depth imaging system, based on the time-of-flight approach and the time-correlated single-photon counting (TCSPC) technique, was investigated for use in highly scattering underwater environments. The system comprised a pulsed supercontinuum laser source, a monostatic scanning transceiver, with a silicon single-photon avalanche diode (SPAD) used for detection of the returned optical signal. Depth images were acquired in the laboratory at stand-off distances of up to 8 attenuation lengths, using per-pixel acquisition times in the range 0.5 to 100 ms, at average optical powers in the range 0.8 nW to 950 μW. In parallel, a LiDAR model was developed and validated using experimental data. The model can be used to estimate the performance of the system under a variety of scattering conditions and system parameters. PMID:26832050

  14. Amorphous selenium detector utilizing a Frisch grid for photon-counting imaging applications

    NASA Astrophysics Data System (ADS)

    Goldan, A. H.; Fang, Y.; Karim, K. S.; Tousignant, O.; Mani, H.; Laperrière, L.

    2009-02-01

    Incomplete charge collection due to poor electron mobility in amorphous selenium (a-Se) results in depth-dependent signal variations. The slow signal rise-time for the portion of the induced charge due to electron-movement towards the anode and significant electron trapping cause ballistic deficit. In this paper, we investigate Frisch-grid detector design to reduce the depth dependent noise, increase the photon count-rate, and improve the spectral performance of positively biased amorphous selenium radiation detectors. In addition, we analyze the impact of using the Frisch grid detector design on x-ray sensitivity, detective quantum efficiency (DQE), modulation transfer function (MTF), and image lag of integrating-mode a-Se radiation detectors. Preliminary results based on theory are presented for emerging digital medical imaging modalities such as mammography tomosynthesis and fluoroscopy.

  15. Development of low read noise high conversion gain CMOS image sensor for photon counting level imaging

    NASA Astrophysics Data System (ADS)

    Seo, Min-Woong; Kawahito, Shoji; Kagawa, Keiichiro; Yasutomi, Keita

    2016-05-01

    A CMOS image sensor with deep sub-electron read noise and high pixel conversion gain has been developed. Its performance is recognized through image outputs from an area image sensor, confirming the capability of photoelectroncounting- level imaging. To achieve high conversion gain, the proposed pixel has special structures to reduce the parasitic capacitances around FD node. As a result, the pixel conversion gain is increased due to the optimized FD node capacitance, and the noise performance is also improved by removing two noise sources from power supply. For the first time, high contrast images from the reset-gate-less CMOS image sensor, with less than 0.3e- rms noise level, have been generated at an extremely low light level of a few electrons per pixel. In addition, the photon-counting capability of the developed CMOS imager is demonstrated by a measurement, photoelectron-counting histogram (PCH).

  16. Multifocal multiphoton excitation and time correlated single photon counting detection for 3-D fluorescence lifetime imaging.

    PubMed

    Kumar, S; Dunsby, C; De Beule, P A A; Owen, D M; Anand, U; Lanigan, P M P; Benninger, R K P; Davis, D M; Neil, M A A; Anand, P; Benham, C; Naylor, A; French, P M W

    2007-10-01

    We report a multifocal multiphoton time-correlated single photon counting (TCSPC) fluorescence lifetime imaging (FLIM) microscope system that uses a 16 channel multi-anode PMT detector. Multiphoton excitation minimizes out-of-focus photobleaching, multifocal excitation reduces non-linear in-plane photobleaching effects and TCSPC electronics provide photon-efficient detection of the fluorescence decay profile. TCSPC detection is less prone to bleaching- and movement-induced artefacts compared to wide-field time-gated or frequency-domain FLIM. This microscope is therefore capable of acquiring 3-D FLIM images at significantly increased speeds compared to single beam multiphoton microscopy and we demonstrate this with live cells expressing a GFP tagged protein. We also apply this system to time-lapse FLIM of NAD(P)H autofluorescence in single live cells and report measurements on the change in the fluorescence decay profile following the application of a known metabolic inhibitor. PMID:19550524

  17. The role of charged particles in the positive corona-generated photon count in a rod to plane air gap

    SciTech Connect

    Bian, X. M.; Wang, Y. J.; MacAlpine, J. M. K.; Chen, L.; Wang, L. M.; Guan, Z. C.; Wan, S. W.; Liu, L.

    2013-08-26

    The relationship between the calculated charged-particle densities in positive corona, the rate of streamer production, and the photon count from the corona were investigated and found to be closely related. Both the densities of electrons and positive ions peaked at 11.8 kV, near the corona inception voltage; they then fell rapidly before slowly rising again. This behavior was exactly matched by the measured photon count. The calculation of the charged-particle density in a positive corona was achieved by means of a fluid model.

  18. A photon counting and a squeezing measurement method by the exact absorption and dispersion spectrum of Λ-type Atoms.

    PubMed

    Naeimi, Ghasem; Alipour, Samira; Khademi, Siamak

    2016-01-01

    Recently, the master equations for the interaction of two-mode photons with a three-level Λ-type atom are exactly solved for the coherence terms. In this paper the exact absorption spectrum is applied for the presentation of a non-demolition photon counting method, for a few number of coupling photons, and its benefits are discussed. The exact scheme is also applied where the coupling photons are squeezed and the photon counting method is also developed for the measurement of the squeezing parameter of the coupling photons. PMID:27610321

  19. Usefulness of an energy-binned photon-counting x-ray detector for dental panoramic radiographs

    NASA Astrophysics Data System (ADS)

    Fukui, Tatsumasa; Katsumata, Akitoshi; Ogawa, Koichi; Fujiwara, Shuu

    2015-03-01

    A newly developed dental panoramic radiography system is equipped with a photon-counting semiconductor detector. This photon-counting detector acquires transparent X-ray beams by dividing them into several energy bands. We developed a method to identify dental materials in the patient's teeth by means of the X-ray energy analysis of panoramic radiographs. We tested various dental materials including gold alloy, dental amalgam, dental cement, and titanium. The results of this study suggest that X-ray energy scattergram analysis could be used to identify a range of dental materials in a patient's panoramic radiograph.

  20. Near-Infrared Single-Photon-Counting Detectors for Laser Instrument Applications at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Xiaoli, Sun; Abshire, James B.

    2005-01-01

    We discuss single-photon-counting detectors requirements for NASA remote sensing and communications systems. We present experimental measurements on several different near-infrared single-photon-counting detectors including InGaAs/InP and InGaAs/InAlAs avalanche photodiodes (APD), an InGaAsP photocathode hybrid photomultiplier (PMT) and an InGaAs photomultiplier. We present the experimental performance of prototype instruments for laser ranging, communication, and trace-gas detection that use these detectors.

  1. A burst-mode photon counting receiver with automatic channel estimation and bit rate detection

    NASA Astrophysics Data System (ADS)

    Rao, Hemonth G.; DeVoe, Catherine E.; Fletcher, Andrew S.; Gaschits, Igor D.; Hakimi, Farhad; Hamilton, Scott A.; Hardy, Nicholas D.; Ingwersen, John G.; Kaminsky, Richard D.; Moores, John D.; Scheinbart, Marvin S.; Yarnall, Timothy M.

    2016-04-01

    We demonstrate a multi-rate burst-mode photon-counting receiver for undersea communication at data rates up to 10.416 Mb/s over a 30-foot water channel. To the best of our knowledge, this is the first demonstration of burst-mode photon-counting communication. With added attenuation, the maximum link loss is 97.1 dB at λ=517 nm. In clear ocean water, this equates to link distances up to 148 meters. For λ=470 nm, the achievable link distance in clear ocean water is 450 meters. The receiver incorporates soft-decision forward error correction (FEC) based on a product code of an inner LDPC code and an outer BCH code. The FEC supports multiple code rates to achieve error-free performance. We have selected a burst-mode receiver architecture to provide robust performance with respect to unpredictable channel obstructions. The receiver is capable of on-the-fly data rate detection and adapts to changing levels of signal and background light. The receiver updates its phase alignment and channel estimates every 1.6 ms, allowing for rapid changes in water quality as well as motion between transmitter and receiver. We demonstrate on-the-fly rate detection, channel BER within 0.2 dB of theory across all data rates, and error-free performance within 1.82 dB of soft-decision capacity across all tested code rates. All signal processing is done in FPGAs and runs continuously in real time.

  2. Task-based weights for photon counting spectral x-ray imaging

    SciTech Connect

    Bornefalk, Hans

    2011-11-15

    Purpose: To develop a framework for taking the spatial frequency composition of an imaging task into account when determining optimal bin weight factors for photon counting energy sensitive x-ray systems. A second purpose of the investigation is to evaluate the possible improvement compared to using pixel based weights. Methods: The Fourier based approach of imaging performance and detectability index d' is applied to pulse height discriminating photon counting systems. The dependency of d' on the bin weight factors is made explicit, taking into account both differences in signal and noise transfer characteristics across bins and the spatial frequency dependency of interbin correlations from reabsorbed scatter. Using a simplified model of a specific silicon detector, d' values for a high and a low frequency imaging task are determined for optimal weights and compared to pixel based weights. Results: The method successfully identifies bins where a large point spread function degrades detection of high spatial frequency targets. The method is also successful in determining how to downweigh highly correlated bins. Quantitative predictions for the simplified silicon detector model indicate that improvements in the detectability index when applying task-based weights instead of pixel based weights are small for high frequency targets, but could be in excess of 10% for low frequency tasks where scatter-induced correlation otherwise degrade detectability. Conclusions: The proposed method makes the spatial frequency dependency of complex correlation structures between bins and their effect on the system detective quantum efficiency easier to analyze and allows optimizing bin weights for given imaging tasks. A potential increase in detectability of double digit percents in silicon detector systems operated at typical CT energies (100 kVp) merits further evaluation on a real system. The method is noted to be of higher relevance for silicon detectors than for cadmium (zink

  3. Cascaded-systems analyses of photon-counting x-ray detectors

    NASA Astrophysics Data System (ADS)

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A.

    2013-03-01

    Single-photon counting (SPC) x-ray imaging has the potential to improve image quality and enable new advanced energy-dependent methods. Recently, cascaded systems analysis (CSA) has been extended to the description of the detective quantum efficiency (DQE) of SPC detectors. In this article we apply the new CSA approach to the description of the DQE of hypothetical direct-conversion selenium (Sc) and cadmium zinc telluride (CdZnTc) detectors including the effects of poly-energetic x-ray spectra, stochastic conversion of x-ray energy to electron­ hole (c-h) pairs, depth-dependent collection of e-h pairs using the Hecht relation, additive electronic noise, and thresholding. Comparisons arc made to an energy-integrating model. For this simple model, with the exception of thick (1- 10 mm) Sc-bascd convertors, we found that the SPC DQE was 5-20 %greater than that of the energy­ integrating model. This trend was tnw even when additive noise was included in the SPC model and excluded from the energy-integrating model. However, the DQE of SPC detectors with poor collection efficiency (such as thick (<1 mm) Sc detectors) and high levels of additive noise can be degraded by 40-90 % for all energies and x-ray spectra considered. vVhile photon-counting approaches arc not yet ready for routine diagnostic imaging, the available DQE is equal to or higher than that of conventional energy-integrating detectors under a wide range of x-ray energies and convertor thickness. However, like energy-integrating detectors, the DQE of SPC detectors will be degraded by the combination of poor collection efficiency and high levels of additive noise.

  4. Direct measurement by single photon counting of lipid hydroperoxides in human plasma and lipoproteins.

    PubMed

    Zamburlini, A; Maiorino, M; Barbera, P; Roveri, A; Ursini, F

    1995-11-20

    A single photon counting procedure for measuring lipid hydroperoxides in human plasma or LDL-VLDL, escaping from extraction and chromatography, is described. This appears to be a relevant procedure because the recovery of phospholipid hydroperoxides from plasma is a critical point which, in our hands, was limited and poorly reproducible. The sample is added to a reaction mixture containing luminol, hemin, and Triton X-100 in an alkaline buffer, the photon emission is recorded, and the data are processed using the monoexponential decay of the photon emission rate. The measurement is applied to (a) plasma passed through a "desalting" cartridge to eliminate the small water-soluble antioxidants which inhibit the chemiluminescent process or (b) apo-B-containing lipoproteins (LDL-VLDL) isolated by heparin-Sepharose affinity chromatography. The content of lipid hydroperoxides is calculated using an internal calibration with palmitoyllinoleoylphosphatidylcholine hydroperoxide. This procedure, based on a single photon counting technology, was adopted to produce reliable results using samples from which inhibitors of the photon emission process have not been completely eliminated. The specificity of the signal for lipid hydroperoxides was validated by its complete disappearance following incubation of the sample with glutathione and phospholipid-hydroperoxide glutathione peroxidase (EC 1.11.1.12), the sole enzyme specific for all classes of lipid hydroperoxides in lipoproteins. The interassay variability was < 10%. The results indicated that the concentration of lipid hydroperoxides in the plasma of 20 healthy subjects was 353 +/- 78 nM. In different subjects, LDL-VLDL accounted for 40-80% of the lipid hydroperoxides in plasma. PMID:8600817

  5. SWAD: inherent photon counting performance of amorphous selenium multi-well avalanche detector

    NASA Astrophysics Data System (ADS)

    Stavro, Jann; Goldan, Amir H.; Zhao, Wei

    2016-03-01

    Photon counting detectors (PCDs) have the potential to improve x-ray imaging, however they are still hindered by several performance limitations and high production cost. By using amorphous Selenium (a-Se) the cost of PCDs can be significantly reduced compared to crystalline materials and enable large area detector fabrication. To overcome the problem of low carrier mobility and low charge conversion gain in a-Se, we are developing a novel direct conversion a- Se field-Shaping multi-Well Avalanche Detector (SWAD). SWAD circumvents the charge transport limitation by using a Frisch grid built within the readout circuit, reducing charge collection time to ~200 ns. Field shaping permits depth independent avalanche gain in wells, resulting in total conversion gain that is comparable to Si and CdTe. In the present work we investigate the effects of charge sharing and energy loss to understand the inherent photon counting performance for SWAD at x-ray energies used in breast imaging applications (20-50keV). The energy deposition profile for each interacting x-ray was determined with Monte Carlo simulation. For the energy ranges we are interested in, photoelectric interaction dominates, with a k-fluorescence yield of approximately 60%. Using a monoenergetic 45 keV beam incident on a target pixel in 400um of a-Se, our results show that only 20.42 % and 22.4 % of primary interacting photons have kfluorescence emissions which escape the target pixel for 100um and 85um pixel sizes respectively, demonstrating SWAD's potential for high spatial resolution applications.

  6. A dynamic attenuator improves spectral imaging with energy-discriminating, photon counting detectors.

    PubMed

    Hsieh, Scott S; Pelc, Norbert J

    2015-03-01

    Energy-discriminating, photon counting (EDPC) detectors have high potential in spectral imaging applications but exhibit degraded performance when the incident count rate approaches or exceeds the characteristic count rate of the detector. In order to reduce the requirements on the detector, we explore the strategy of modulating the X-ray flux field using a recently proposed dynamic, piecewise-linear attenuator. A previous paper studied this modulation for photon counting detectors but did not explore the impact on spectral applications. In this work, we modeled detection with a bipolar triangular pulse shape (Taguchi et al., 2011) and estimated the Cramer-Rao lower bound (CRLB) of the variance of material selective and equivalent monoenergetic images, assuming deterministic errors at high flux could be corrected. We compared different materials for the dynamic attenuator and found that rare earth elements, such as erbium, outperformed previously proposed materials such as iron in spectral imaging. The redistribution of flux reduces the variance or dose, consistent with previous studies on benefits with conventional detectors. Numerical simulations based on DICOM datasets were used to assess the impact of the dynamic attenuator for detectors with several different characteristic count rates. The dynamic attenuator reduced the peak incident count rate by a factor of 4 in the thorax and 44 in the pelvis, and a 10 Mcps/mm (2) EDPC detector with dynamic attenuator provided generally superior image quality to a 100 Mcps/mm (2) detector with reference bowtie filter for the same dose. The improvement is more pronounced in the material images. PMID:25265628

  7. Size distribution of linear and helical polymers in actin solution analyzed by photon counting histogram.

    PubMed

    Terada, Naofumi; Shimozawa, Togo; Ishiwata, Shin'ichi; Funatsu, Takashi

    2007-03-15

    Actin is a ubiquitous protein that is a major component of the cytoskeleton, playing an important role in muscle contraction and cell motility. At steady state, actin monomers and filaments (F-actin) coexist, and actin subunits continuously attach and detach at the filament ends. However, the size distribution of actin oligomers in F-actin solution has never been clarified. In this study, we investigated the size distribution of actin oligomers using photon-counting histograms. For this purpose, actin was labeled with a fluorescent dye, and the emitted photons were detected by confocal optics (the detection volume was of femtoliter (fL) order). Photon-counting histograms were analyzed to obtain the number distribution of actin oligomers in the detection area from their brightness, assuming that the brightness of an oligomer was proportional to the number of protomers. We found that the major populations at physiological ionic strength were 1-5mers. For data analysis, we successfully applied the theory of linear and helical aggregations of macromolecules. The model postulates three states of actin, i.e., monomers, linear polymers, and helical polymers. Here we obtained three parameters: the equilibrium constants for polymerization of linear polymers, K(l)=(5.2 +/- 1.1) x 10(6) M(-1), and helical polymers, K(h)=(1.6 +/- 0.5) x 10(7) M(-1); and the ratio of helical to linear trimers, gamma = (3.6 +/- 2.3) x 10(-2). The excess free energy of transforming a linear trimer to a helical trimer, which is assumed to be a nucleus for helical polymers, was calculated to be 2.0 kcal/mol. These analyses demonstrate that the oligomeric phase at steady state is predominantly composed of linear 1-5mers, and the transition from linear to helical polymers occurs on the level of 5-7mers. PMID:17172301

  8. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, J.W.; Carrano, A.V.; Davidson, J.C.; Koo, J.C.

    1998-05-05

    A hybrid slab-microchannel gel electrophoresis system is described. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate. 4 figs.

  9. SU-F-18C-05: Characterization of a Silicon Strip Photon-Counting Detector in the Presence of Compton Scatter: A Simulation Study

    SciTech Connect

    Ziemer, B; Ding, H; Cho, H

    2014-06-15

    Purpose: To investigate the effect of Compton scatter on detection efficiency and charge-sharing for a Si strip photon-counting detector as a function of pixel pitch, slice thickness and total pixel length. Methods: A CT imaging system employing a silicon photon-counting detector was implemented using the GATE Monte Carlo package. A focal spot size of 300 µm, magnification of 1.33, and pixel pitches of 0.1 and 0.5mm were initially investigated. A 60 kVp spectrum with 3 mm Al filter was used and energy spectral degradation based on a prototype detector was simulated. To study charge-sharing, a single pixel was illuminated, and the detector response in neighboring pixels was investigated. A longitudinally semiinfinite detector was simulated to optimize the quantum detection efficiency of the imaging system as a function of pixel pitch, slice thickness and depth of interaction. A 2.5 mm thick tungsten plate with a 0.01 mm by 1.5 mm slit was implemented to calculate the modulation transfer function (MTF) from projection-based images. A threshold of 15 keV was implemented in the detector simulation. The preliminary charge sharing investigation results considered only scattering effects and the detector electronics related factors were neglected. Results: Using a 15 keV threshold, 1% of the pixel charge migrated into neighboring pixels with a pixel size of 0.1×0.1 mm{sup 2}. The quantum detection efficiency was 77%, 84%, 87% and 89% for 15 mm, 22.5 mm, 30 mm, and 45 mm length silicon detector pixels, respectively. For a pixel pitch of 0.1 mm, the spatial frequency at 10% of the maximum MTF was found to be 5.2 lp/mm. This agreed with an experimental MTF measurement of 5.3 lp/mm with a similar detector configuration. Conclusion: Using optimized design parameters, Si strip photon-counting detectors can offer high detection efficiency and spatial resolution even in the presence of Compton scatter.

  10. T-load microchannel array and fabrication method

    DOEpatents

    Swierkowski, Stefan P.

    2000-01-01

    A three-dimensional (3-D) T-load for planar microchannel arrays for electrophoresis, for example, which enables sample injection directly onto a plane perpendicular to the microchannels' axis, at their ends. This is accomplished by forming input wells that extend beyond the ends of the microchannel thereby eliminating the right angle connection from the input well into the end of the microchannel. In addition, the T-load input well eases the placement of electrode in or adjacent the well and thus enables very efficient reproducible electrokinetic (ek) injection. The T-load input well eliminates the prior input well/microchannel alignment concerns, since the input well can be drilled after the top and bottom microchannel plates are bonded together. The T-load input well may extend partially or entirely through the bottom microchannel plate which enables more efficient gel and solution flushing, and also enables placement of multiple electrodes to assist in the ek sample injection.

  11. New Method for Accurate Calibration of Micro-Channel Plate based Detection Systems and its use in the Fast Plasma Investigation of NASA's Magnetospheric MultiScale Mission

    NASA Astrophysics Data System (ADS)

    Gliese, U.; Avanov, L. A.; Barrie, A.; Kujawski, J. T.; Mariano, A. J.; Tucker, C. J.; Chornay, D. J.; Cao, N. T.; Zeuch, M.; Pollock, C. J.; Jacques, A. D.

    2013-12-01

    The Fast Plasma Investigation (FPI) of the NASA Magnetospheric MultiScale (MMS) mission employs 16 Dual Electron Spectrometers (DESs) and 16 Dual Ion Spectrometers (DISs) with 4 of each type on each of 4 spacecraft to enable fast (30ms for electrons; 150ms for ions) and spatially differentiated measurements of full the 3D particle velocity distributions. This approach presents a new and challenging aspect to the calibration and operation of these instruments on ground and in flight. The response uniformity and reliability of their calibration and the approach to handling any temporal evolution of these calibrated characteristics all assume enhanced importance in this application, where we attempt to understand the meaning of particle distributions within the ion and electron diffusion regions. Traditionally, the micro-channel plate (MCP) based detection systems for electrostatic particle spectrometers have been calibrated by setting a fixed detection threshold and, subsequently, measuring a detection system count rate plateau curve to determine the MCP voltage that ensures the count rate has reached a constant value independent of further variation in the MCP voltage. This is achieved when most of the MCP pulse height distribution (PHD) is located at higher values (larger pulses) than the detection amplifier threshold. This method is adequate in single-channel detection systems and in multi-channel detection systems with very low crosstalk between channels. However, in dense multi-channel systems, it can be inadequate. Furthermore, it fails to fully and individually characterize each of the fundamental parameters of the detection system. We present a new detection system calibration method that enables accurate and repeatable measurement and calibration of MCP gain, MCP efficiency, signal loss due to variation in gain and efficiency, crosstalk from effects both above and below the MCP, noise margin, and stability margin in one single measurement. The fundamental

  12. The Slope Imaging Multi-polarization Photon-counting Lidar: an Advanced Technology Airborne Laser Altimeter

    NASA Astrophysics Data System (ADS)

    Dabney, P.; Harding, D. J.; Huss, T.; Valett, S.; Yu, A. W.; Zheng, Y.

    2009-12-01

    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) is an airborne laser altimeter developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryopshere remote sensing. The SIMPL instrument incorporates a variety of advanced technologies in order to demonstrate measurement approaches of potential benefit for improved airborne laser swath mapping and spaceflight laser altimeter missions. SIMPL incorporates beam splitting, single-photon ranging and polarimetry technologies at green and near-infrared wavelengths in order to achieve simultaneous sampling of surface elevation, slope, roughness and scattering properties, the latter used to differentiate surface types. The transmitter is a 1 nsec pulse width, 11 kHz, 1064 nm microchip laser, frequency doubled to 532 nm and split into four plane-polarized beams using birefringent calcite crystal in order to maintain co-alignment of the two colors. The 16 channel receiver splits the received energy for each beam into the two colors and each color is split into energy parallel and perpendicular to the transmit polarization plane thereby proving a measure of backscatter depolarization. The depolarization ratio is sensitive to the proportions of specular reflection and surface and volume scattering, and is a function of wavelength. The ratio can differentiate, for example, water, young translucent ice, older granular ice and snow. The solar background count rate is controlled by spatial filtering using a pinhole array and by spectral filtering using temperature-controlled narrow bandwidth filters. The receiver is fiber coupled to 16 Single Photon Counting Modules (SPCMs). To avoid range biases due to the long dead time of these detectors the probability of detection per laser fire on each channel is controlled to be below 30%, using mechanical irises and flight altitude. Event timers with 0.1 nsec resolution in combination the narrow transmit pulse yields single

  13. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector

    NASA Astrophysics Data System (ADS)

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2014-09-01

    Dual-energy computed tomography (CT) techniques have been used to decompose materials and characterize tissues according to their physical and chemical compositions. However, these techniques are hampered by the limitations of conventional x-ray detectors operated in charge integrating mode. Energy-resolved photon-counting detectors provide spectral information from polychromatic x-rays using multiple energy thresholds. These detectors allow simultaneous acquisition of data in different energy ranges without spectral overlap, resulting in more efficient material decomposition and quantification for dual-energy CT. In this study, a pre-reconstruction dual-energy CT technique based on volume conservation was proposed for three-material decomposition. The technique was combined with iterative reconstruction algorithms by using a ray-driven projector in order to improve the quality of decomposition images and reduce radiation dose. A spectral CT system equipped with a CZT-based photon-counting detector was used to implement the proposed dual-energy CT technique. We obtained dual-energy images of calibration and three-material phantoms consisting of low atomic number materials from the optimal energy bins determined by Monte Carlo simulations. The material decomposition process was accomplished by both the proposed and post-reconstruction dual-energy CT techniques. Linear regression and normalized root-mean-square error (NRMSE) analyses were performed to evaluate the quantitative accuracy of decomposition images. The calibration accuracy of the proposed dual-energy CT technique was higher than that of the post-reconstruction dual-energy CT technique, with fitted slopes of 0.97-1.01 and NRMSEs of 0.20-4.50% for all basis materials. In the three-material phantom study, the proposed dual-energy CT technique decreased the NRMSEs of measured volume fractions by factors of 0.17-0.28 compared to the post-reconstruction dual-energy CT technique. It was concluded that the

  14. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector.

    PubMed

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2014-09-21

    Dual-energy computed tomography (CT) techniques have been used to decompose materials and characterize tissues according to their physical and chemical compositions. However, these techniques are hampered by the limitations of conventional x-ray detectors operated in charge integrating mode. Energy-resolved photon-counting detectors provide spectral information from polychromatic x-rays using multiple energy thresholds. These detectors allow simultaneous acquisition of data in different energy ranges without spectral overlap, resulting in more efficient material decomposition and quantification for dual-energy CT. In this study, a pre-reconstruction dual-energy CT technique based on volume conservation was proposed for three-material decomposition. The technique was combined with iterative reconstruction algorithms by using a ray-driven projector in order to improve the quality of decomposition images and reduce radiation dose. A spectral CT system equipped with a CZT-based photon-counting detector was used to implement the proposed dual-energy CT technique. We obtained dual-energy images of calibration and three-material phantoms consisting of low atomic number materials from the optimal energy bins determined by Monte Carlo simulations. The material decomposition process was accomplished by both the proposed and post-reconstruction dual-energy CT techniques. Linear regression and normalized root-mean-square error (NRMSE) analyses were performed to evaluate the quantitative accuracy of decomposition images. The calibration accuracy of the proposed dual-energy CT technique was higher than that of the post-reconstruction dual-energy CT technique, with fitted slopes of 0.97-1.01 and NRMSEs of 0.20-4.50% for all basis materials. In the three-material phantom study, the proposed dual-energy CT technique decreased the NRMSEs of measured volume fractions by factors of 0.17-0.28 compared to the post-reconstruction dual-energy CT technique. It was concluded that the

  15. Photon-counting CT: modeling and compensating of spectral distortion effects

    NASA Astrophysics Data System (ADS)

    Cammin, Jochen; Kappler, Steffen; Weidinger, Thomas; Taguchi, Katsuyuki

    2015-03-01

    Spectral computed tomography (CT) with photon-counting detectors (PCDs) has the potential to substantially advance diagnostic CT imaging by reducing image noise and dose to the patient, by improving contrast and tissue specificity, and by enabling molecular and functional imaging. However, the current PCD technology is limited by two main factors: imperfect energy measurement (spectral response effects, SR) and count rate non-linearity (pulse pileup effects, PP, due to detector deadtimes) resulting in image artifacts and quantitative inaccuracies for material specification. These limitations can be lifted with image reconstruction algorithms that compensate for both SR and PP. A prerequisite for this approach is an accurate model of the count losses and spectral distortions in the PCD. In earlier work we developed a cascaded SR-PP model and evaluated it using a physical PCD. In this paper we show the robustness of our approach by modifying the cascaded SR-PP model for a faster PCD with smaller pixels and a different pulse shape. We compare paralyzable and non-paralyzable detector models. First, the SR-PP model is evaluated at low and high count rates using two sets of attenuators. Then, the accuracy of the compensation is evaluated by estimating the thicknesses of three basis functions.

  16. Photon-counting chirped amplitude modulation lidar using a smart premixing method.

    PubMed

    Zhang, Zijing; Zhang, Jianlong; Wu, Long; Zhang, Yong; Zhao, Yuan; Su, Jianzhong

    2013-11-01

    We proposed a new premixing method for photon-counting chirped amplitude modulation lidar (PCCAML). Earlier studies used the counting results of the returned signal detected by a Geiger mode avalanche photodiode detector (Gm-APD) to mix with the reference signal, called the postmixing method. We use an alternative method known as the premixing method, in which the reference signal is used to directly modulate the sampling gate width of the Gm-APD, and the mixing of the returned signal and the reference signal is completed before the Gm-APD. This premixing method is more flexible and may perform better than the postmixing method in terms of signal-to-noise ratio by cutting down a separated mixer commonly used in the postmixing lidar system. Furthermore, this premixing method lowers the demand for the sampling frequency of the Gm-APD. It allows the use of a much wider modulation bandwidth to improve the range accuracy and resolution. To the best of our knowledge, this is the first report to use the premixing method in the PCCAML system, which will benefit future lidar applications. PMID:24177101

  17. The RELAXd project: Development of four-side tilable photon-counting imagers

    NASA Astrophysics Data System (ADS)

    Vykydal, Zdenek; Visschers, Jan; Tezcan, Deniz Sabuncuoglu; De Munck, Koen; Borgers, Tom; Ruythooren, Wouter; De Moor, Piet

    2008-06-01

    The feasibility of using photon-counting imaging techniques with X-rays, neutrons or other types of radiation for many applications in materials analysis and bio-medical sciences has already been well demonstrated. A hybrid imager consisting of an appropriate sensor chip flip-chipped on top of a Medipix2 readout ASIC is an example of such a device. It can count single X-ray photons, without any noise or dark current, at high fluxes (several Gigaphotons per cm 2 per second). The limiting factors for more widespread usage of these devices in bio-medical applications (e.g. mammography or small animal imaging) are the small size of the active area (about 2 cm 2 per chip) and the low frame rate. The aim of the RELAXd project (high REsolution Large Area X-ray Detector) is to develop a high frame-rate, fully 3D-integrated microsystem, consisting of four Medipix2 readout chips bump-bonded to one silicon sensor chip forming the basic building module. This paper presents the first results of this task focusing on the used wafer-level postprocessing technologies which are needed to achieve the 3D architecture, required for four-side tiling.

  18. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef

    2016-05-01

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now.

  19. The LAMBDA photon-counting pixel detector and high-Z sensor development

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Smoljanin, S.; Struth, B.; Hirsemann, H.; Fauler, A.; Fiederle, M.; Tolbanov, O.; Zarubin, A.; Tyazhev, A.; Shelkov, G.; Graafsma, H.

    2014-12-01

    Many X-ray experiments at third-generation synchrotrons benefit from using single-photon-counting detectors, due to their high signal-to-noise ratio and potential for high-speed measurements. LAMBDA (Large Area Medipix3-Based Detector Array) is a pixel detector system based on the Medipix3 readout chip. It combines the features of Medipix3, such as a small pixel size of 55 μm and flexible functionality, with a large tileable module design consisting of 12 chips (1536 × 512 pixels) and a high-speed readout system capable of running at 2000 frames per second. To enable high-speed experiments with hard X-rays, the LAMBDA system has been combined with different high-Z sensor materials. Room-temperature systems using GaAs and CdTe systems have been produced and tested with X-ray tubes and at synchrotron beamlines. Both detector materials show nonuniformities in their raw image response, but the pixel yield is high and the uniformity can be improved by flat-field correction, particularly in the case of GaAs. High-frame-rate experiments show that useful information can be gained on millisecond timescales in synchrotron experiments with these sensors.

  20. Reconstruction of time-correlated single-photon counting range profiles of moving objects

    NASA Astrophysics Data System (ADS)

    Jonsson, Per; Hedborg, Julia; Henriksson, Markus; Sjöqvist, Lars

    2015-10-01

    Time-correlated single-photon counting (TCSPC) is a laser radar technique that can provide range profiling with subcentimetre range resolution. The method relies on accurate time measurements between a laser pulse sync signal and the registration of a single-photon detection of photons reflected from an object. The measurement is performed multiple times and a histogram of arrival times is computed to gain information about surfaces at different distances within the field of view of the laser radar. TCSPC is a statistic method that requires an integration time and therefore the range profile of a non-stationary object (target) will be corrupted. However, by dividing the measurement into time intervals much shorter than the total acquisition time and cross correlating the histogram from each time interval it is possible calculate how the target has moved relative to the first time interval. The distance as a function of time was fitted to a polynomic function. This result was used to calculate a distance correction of every single detection event and the equivalent stationary histogram was reconstructed. Series of measurements on the objects with constant or non-linear velocities up to 0.5 m/s were performed and compared with stationary measurements. The results show that it is possible to reconstruct range profiles of moving objects with this technique. Reconstruction of the signal requires no prior information of the original range profile and the instantaneous and average velocities of the object can be calculated.

  1. On the single-photon-counting (SPC) modes of imaging using an XFEL source

    DOE PAGESBeta

    Wang, Zhehui

    2015-12-14

    In this study, the requirements to achieve high detection efficiency (above 50%) and gigahertz (GHz) frame rate for the proposed 42-keV X-ray free-electron laser (XFEL) at Los Alamos are summarized. Direct detection scenarios using C (diamond), Si, Ge and GaAs semiconductor sensors are analyzed. Single-photon counting (SPC) mode and weak SPC mode using Si can potentially meet the efficiency and frame rate requirements and be useful to both photoelectric absorption and Compton physics as the photon energy increases. Multilayer three-dimensional (3D) detector architecture, as a possible means to realize SPC modes, is compared with the widely used two-dimensional (2D) hybridmore » planar electrode structure and 3D deeply entrenched electrode architecture. Demonstration of thin film cameras less than 100-μm thick with onboard thin ASICs could be an initial step to realize multilayer 3D detectors and SPC modes for XFELs.« less

  2. Si-strip photon counting detectors for contrast-enhanced spectral mammography

    NASA Astrophysics Data System (ADS)

    Chen, Buxin; Reiser, Ingrid; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasi; Chen, Chin-Tu; Iwanczyk, Jan S.; Barber, William C.

    2015-08-01

    We report on the development of silicon strip detectors for energy-resolved clinical mammography. Typically, X-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a-Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting Si strip detectors. The required performance for mammography in terms of the output count rate, spatial resolution, and dynamic range must be obtained with sufficient field of view for the application, thus requiring the tiling of pixel arrays and particular scanning techniques. Room temperature Si strip detector, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the X-ray energy ranges of the application. We present our methods and results from the optimization of Si-strip detectors for contrast enhanced spectral mammography. We describe the method being developed for quantifying iodine contrast using the energy-resolved detector with fixed thresholds. We demonstrate the feasibility of the method by scanning an iodine phantom with clinically relevant contrast levels.

  3. Image-based Material Decomposition with a General Volume Constraint for Photon-Counting CT

    PubMed Central

    Li, Zhoubo; Leng, Shuai; Yu, Lifeng; Yu, Zhicong; McCollough, Cynthia H.

    2015-01-01

    Photon-counting CT (PCCT) potentially offers both improved dose efficiency and material decomposition capabilities relative to CT systems using energy integrating detectors. With respect to material decomposition, both projection-based and image-based methods have been proposed, most of which require accurate a priori information regarding the shape of the x-ray spectra and the response of the detectors. Additionally, projection-based methods require access to projection data. These data can be difficult to obtain, since spectra, detector response, and projection data formats are proprietary information. Further, some published image-based, 3-material decomposition methods require a volume conservation assumption, which is often violated in solutions. We have developed an image-based material decomposition method that can overcome those limitations. We introduced a general condition on volume constraint that does not require the volume to be conserved in a mixture. An empirical calibration can be performed with various concentrations of basis materials. The material decomposition method was applied to images acquired from a prototype whole-body PCCT scanner. The results showed good agreement between the estimation and known mass concentration values. Factors affecting the performance of material decomposition, such as energy threshold configuration and volume conservation constraint, were also investigated. Changes in accuracy of the mass concentration estimates were demonstrated for four different energy configurations and when volume conservation was assumed. PMID:26229220

  4. Practical energy response estimation of photon counting detectors for spectral X-ray imaging

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Goo; Lee, Jongha; Sung, Younghun; Lee, SeongDeok

    2010-04-01

    Spectral X-ray imaging is a promising technique to drastically improve the diagnostic quality of radiography and computed tomography (CT), since it enables material decomposition and/or identification based on the energy dependency of material-specific X-ray attenuation. Unlike the charge-integration based X-ray detectors, photon counting X-ray detectors (PCXDs) can discriminate the energies of incident X-ray photons and thereby multi-energy images can be obtained in single exposure. However, the measured data are not accurate since the spectra of incident X-rays are distorted according to the energy response function (ERF) of a PCXD. Thus ERF should be properly estimated in advance for accurate spectral imaging. This paper presents a simple method for ERF estimation based on a polychromatic X-ray source that is widely used for medical imaging. The method consists of three steps: source spectra measurement, detector spectra reconstruction, and ERF inverse estimation. Real spectra of an X-ray tube are first measured at all kVs by using an X-ray spectrometer. The corresponding detector spectra are obtained by threshold scans. The ERF is then estimated by solving the inverse problem. Simulations are conducted to demonstrate the concept of the proposed method.

  5. A Quantification Method for Breast Tissue Thickness and Iodine Concentration Using Photon-Counting Detector.

    PubMed

    Han, Seokmin

    2015-10-01

    The purpose of contrast-enhanced digital mammography (CEDM) is to facilitate detection and characterization of the lesions in the breast using intravenous injection of an iodinated contrast agent. CEDM produces iodine images with gray levels proportional to iodine concentration at each pixel, which can be considered as quantification of iodine. While dual-energy CEDM requires an accurate knowledge of the thickness of compressed breast for the quantification, it is known that the accuracy of the built-in thickness measurement is not satisfactory. Triple-energy CEDM, which can provide a third image, can alleviate the limitation of dual-energy CEDM. If triple exposure technique is applied, it can lead to increased risk of motion artifact. An energy-resolving photon-counting detector (PCD) that can acquire multispectral X-ray images can reduce the risk of motion artifact. In this research, an easily implementable method for iodine quantification in breast imaging was suggested, and it was applied to the images of breast phantom with various iodine concentrations. The iodine concentrations in breast phantom simulate lesions filled with different iodine concentrations in the breast. The result shows that the proposed method can quantify the iodine concentrations in breast phantom accurately. PMID:25708894

  6. Estimation of signal and noise for a whole-body photon counting research CT system

    NASA Astrophysics Data System (ADS)

    Li, Zhoubo; Leng, Shuai; Yu, Zhicong; Kappler, Steffen; McCollough, Cynthia H.

    2016-03-01

    Photon-counting CT (PCCT) may yield potential value for many clinical applications due to its relative immunity to electronic noise, increased geometric efficiency relative to current scintillating detectors, and the ability to resolve energy information about the detected photons. However, there are a large number of parameters that require optimization, particularly the energy thresholds configuration. Fast and accurate estimation of signal and noise in PCCT can benefit the optimization of acquisition parameters for specific diagnostic tasks. Based on the acquisition parameters and detector response of our research PCCT system, we derived mathematical models for both signal and noise. The signal model took the tube spectrum, beam filtration, object attenuation, water beam hardening, and detector response into account. The noise model considered the relationship between noise and radiation dose, as well as the propagation of noise as threshold data are subtracted to yield energy bin data. To determine the absolute noise value, a noise look-up table (LUT) was acquired using a limited number of calibration scans. The noise estimation algorithm then used the noise LUT to estimate noise for scans with a variety of combination of energy thresholds, dose levels, and object attenuation. Validation of the estimation algorithms was performed on our whole-body research PCCT system using semianthropomorphic water phantoms and solutions of calcium and iodine. The algorithms achieved accurate estimation of signal and noise for a variety of scanning parameter combinations. The proposed method can be used to optimize energy thresholds configuration for many clinical applications of PCCT.

  7. On Approaching the Ultimate Limits of Communication Using a Photon-Counting Detector

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris I.; Moision, Bruce E.; Dolinar, Samuel J.; Birnbaum, Kevin M.; Divsalar, Dariush

    2012-01-01

    Coherent states achieve the Holevo capacity of a pure-loss channel when paired with an optimal measurement, but a physical realization of this measurement scheme is as of yet unknown, and it is also likely to be of high complexity. In this paper, we focus on the photon-counting measurement and study the photon and dimensional efficiencies attainable with modulations over classical- and nonclassical-state alphabets. We analyze two binary modulation architectures that improve upon the dimensional versus photon efficiency tradeoff achievable with the state-of-the-art coherent-state on-off keying modulation. We show that at high photon efficiency these architectures achieve an efficiency tradeoff that differs from the best possible tradeoff--determined by the Holevo capacity--by only a constant factor. The first architecture we analyze is a coherent-state transmitter that relies on feedback from the receiver to control the transmitted energy. The second architecture uses a single-photon number-state source.

  8. Progress on the Use of Combined Analog and Photon Counting Detection for Raman Lidar

    NASA Technical Reports Server (NTRS)

    Newsom, Rob; Turner, Dave; Clayton, Marian; Ferrare, Richard

    2008-01-01

    The Atmospheric Radiation Measurement (ARM) program Raman Lidar (CARL) was upgraded in 2004 with a new data system that provides simultaneous measurements of both the photomultiplier analog output voltage and photon counts. The so-called merge value added procedure (VAP) was developed to combine the analog and count-rate signals into a single signal with improved dynamic range. Earlier versions of this VAP tended to cause unacceptably large biases in the water vapor mixing ratio during the daytime as a result of improper matching between the analog and count-rate signals in the presence of elevated solar background levels. We recently identified several problems and tested a modified version of the merge VAP by comparing profiles of water vapor mixing ratio derived from CARL with simultaneous sonde data over a six month period. We show that the modified merge VAP significantly reduces the daytime bias, and results in mean differences that are within approximately 1% for both nighttime and daytime measurements.

  9. Approaching the Ultimate Limits of Communication Efficiency with a Photon-Counting Detector

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris; Moision, Bruce; Dolinar, Samuel J.; Birnbaum, Kevin M.; Divsalar, Dariush

    2012-01-01

    Coherent states achieve the Holevo capacity of a pure-loss channel when paired with an optimal measurement, but a physical realization of this measurement is as of yet unknown, and it is also likely to be of high complexity. In this paper, we focus on the photon-counting measurement and study the photon and dimensional efficiencies attainable with modulations over classical- and nonclassical-state alphabets. We first review the state-of-the-art coherent on-off-keying (OOK) with a photoncounting measurement, illustrating its asymptotic inefficiency relative to the Holevo limit. We show that a commonly made Poisson approximation in thermal noise leads to unbounded photon information efficiencies, violating the conjectured Holevo limit. We analyze two binary-modulation architectures that improve upon the dimensional versus photon efficiency tradeoff achievable with conventional OOK. We show that at high photon efficiency these architectures achieve an efficiency tradeoff that differs from the best possible tradeoff--determined by the Holevo capacity--by only a constant factor. The first architecture we analyze is a coherent-state transmitter that relies on feedback from the receiver to control the transmitted energy. The second architecture uses a single-photon number-state source.

  10. Optimal fine ϕ-slicing for single-photon-counting pixel detectors

    PubMed Central

    Mueller, Marcus; Wang, Meitian; Schulze-Briese, Clemens

    2012-01-01

    The data-collection parameters used in a macromolecular diffraction experiment have a strong impact on data quality. A careful choice of parameters leads to better data and can make the difference between success and failure in phasing attempts, and will also result in a more accurate atomic model. The selection of parameters has to account for the application of the data in various phasing methods or high-resolution refinement. Furthermore, experimental factors such as crystal characteristics, available experiment time and the properties of the X-ray source and detector have to be considered. For many years, CCD detectors have been the prevalent type of detectors used in macromolecular crystallography. Recently, hybrid pixel X-ray detectors that operate in single-photon-counting mode have become available. These detectors have fundamentally different characteristics compared with CCD detectors and different data-collection strategies should be applied. Fine ϕ-slicing is a strategy that is particularly well suited to hybrid pixel detectors because of the fast readout time and the absence of readout noise. A large number of data sets were systematically collected from crystals of four different proteins in order to investigate the benefit of fine ϕ-­slicing on data quality with a noise-free detector. The results show that fine ϕ-slicing can substantially improve scaling statistics and anomalous signal provided that the rotation angle is comparable to half the crystal mosaicity. PMID:22194332

  11. Spectral response compensation for photon-counting clinical x-ray CT using sinogram restoration

    NASA Astrophysics Data System (ADS)

    Srivastava, Somesh; Cammin, Jochen; Fung, George S. K.; Tsui, Benjamin M. W.; Taguchi, Katsuyuki

    2012-03-01

    The x-ray spectrum recorded by a photon-counting x-ray detector (PCXD) is distorted due to the following physical effects which are independent of the count rate: finite energy-resolution, Compton scattering, charge-sharing, and Kescape. If left uncompensated, the spectral response (SR) of a PCXD due to the above effects will result in image artifacts and inaccurate material decomposition. We propose a new SR compensation (SRC) algorithm using the sinogram restoration approach. The two main contributions of our proposed algorithm are: (1) our algorithm uses an efficient conjugate gradient method in which the first and second derivatives of the cost functions are directly calculated analytically, whereas a slower optimization method that requires numerous function evaluations was used in other work; (2) our algorithm guarantees convergence by combining the non-linear conjugate gradient method with line searches that satisfy Wolfe conditions, whereas the algorithm in other work is not backed by theorems from optimization theory to guarantee convergence. In this study, we validate the performance of the proposed algorithm using computer simulations. The bias was reduced to zero from 11%, and image artifacts were removed from the reconstructed images. Quantitative K-edge imaging in possible only when SR compensation is done.

  12. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability.

    PubMed

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef

    2016-05-01

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now. PMID:27250477

  13. Initial results from a prototype whole-body photon-counting computed tomography system

    NASA Astrophysics Data System (ADS)

    Yu, Z.; Leng, S.; Jorgensen, S. M.; Li, Z.; Gutjahr, R.; Chen, B.; Duan, X.; Halaweish, A. F.; Yu, L.; Ritman, E. L.; McCollough, C. H.

    2015-03-01

    X-ray computed tomography (CT) with energy-discriminating capabilities presents exciting opportunities for increased dose efficiency and improved material decomposition analyses. However, due to constraints imposed by the inability of photon-counting detectors (PCD) to respond accurately at high photon flux, to date there has been no clinical application of PCD-CT. Recently, our lab installed a research prototype system consisting of two x-ray sources and two corresponding detectors, one using an energy-integrating detector (EID) and the other using a PCD. In this work, we report the first third-party evaluation of this prototype CT system using both phantoms and a cadaver head. The phantom studies demonstrated several promising characteristics of the PCD sub-system, including improved longitudinal spatial resolution and reduced beam hardening artifacts, relative to the EID sub-system. More importantly, we found that the PCD sub-system offers excellent pulse pileup control in cases of x-ray flux up to 550 mA at 140 kV, which corresponds to approximately 2.5×1011 photons per cm2 per second. In an anthropomorphic phantom and a cadaver head, the PCD sub-system provided image quality comparable to the EID sub-system for the same dose level. Our results demonstrate the potential of the prototype system to produce clinically-acceptable images in vivo.

  14. Solid-state image sensor with focal-plane digital photon-counting pixel array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)

    1995-01-01

    A photosensitive layer such as a-Si for a UV/visible wavelength band is provided for low light level imaging with at least a separate CMOS amplifier directly connected to each PIN photodetector diode to provide a focal-plane array of NxN pixels, and preferably a separate photon-counting CMOS circuit directly connected to each CMOS amplifier, although one row of counters may be time shared for reading out the photon flux rate of each diode in the array, together with a buffer memory for storing all rows of the NxN image frame before transfer to suitable storage. All CMOS circuitry is preferably fabricated in the same silicon layer as the PIN photodetector diode for a monolithic structure, but when the wavelength band of interest requires photosensitive material different from silicon, the focal-plane array may be fabricated separately on a different semiconductor layer bump-bonded or otherwise bonded for a virtually monolithic structure with one free terminal of each diode directly connected to the input terminal of its CMOS amplifier and digital counter for integration of the photon flux rate at each photodetector of the array.

  15. Evaluation of models of spectral distortions in photon-counting detectors for computed tomography.

    PubMed

    Cammin, Jochen; Kappler, Steffen; Weidinger, Thomas; Taguchi, Katsuyuki

    2016-04-01

    A semi-analytical model describing spectral distortions in photon-counting detectors (PCDs) for clinical computed tomography was evaluated using simulated data. The distortions were due to count rate-independent spectral response effects and count rate-dependent pulse-pileup effects and the model predicted both the mean count rates and the spectral shape. The model parameters were calculated using calibration data. The model was evaluated by comparing the predicted x-ray spectra to Monte Carlo simulations of a PCD at various count rates. The data-model agreement expressed as weighted coefficient of variation [Formula: see text] was better than [Formula: see text] for dead time losses up to 28% and [Formula: see text] or smaller for dead time losses up to 69%. The accuracy of the model was also tested for the purpose of material decomposition by estimating material thicknesses from simulated projection data. The estimated attenuator thicknesses generally agreed with the true values within one standard deviation of the statistical uncertainty obtained from multiple noise realizations. PMID:27213165

  16. Maximum Likelihood Time-of-Arrival Estimation of Optical Pulses via Photon-Counting Photodetectors

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris I.; Moision, Bruce E.

    2010-01-01

    Many optical imaging, ranging, and communications systems rely on the estimation of the arrival time of an optical pulse. Recently, such systems have been increasingly employing photon-counting photodetector technology, which changes the statistics of the observed photocurrent. This requires time-of-arrival estimators to be developed and their performances characterized. The statistics of the output of an ideal photodetector, which are well modeled as a Poisson point process, were considered. An analytical model was developed for the mean-square error of the maximum likelihood (ML) estimator, demonstrating two phenomena that cause deviations from the minimum achievable error at low signal power. An approximation was derived to the threshold at which the ML estimator essentially fails to provide better than a random guess of the pulse arrival time. Comparing the analytic model performance predictions to those obtained via simulations, it was verified that the model accurately predicts the ML performance over all regimes considered. There is little prior art that attempts to understand the fundamental limitations to time-of-arrival estimation from Poisson statistics. This work establishes both a simple mathematical description of the error behavior, and the associated physical processes that yield this behavior. Previous work on mean-square error characterization for ML estimators has predominantly focused on additive Gaussian noise. This work demonstrates that the discrete nature of the Poisson noise process leads to a distinctly different error behavior.

  17. Time-to-digital converter card for multichannel time-resolved single-photon counting applications

    NASA Astrophysics Data System (ADS)

    Tamborini, Davide; Portaluppi, Davide; Tisa, Simone; Tosi, Alberto

    2015-03-01

    We present a high performance Time-to-Digital Converter (TDC) card that provides 10 ps timing resolution and 20 ps (rms) timing precision with a programmable full-scale-range from 160 ns to 10 μs. Differential Non-Linearity (DNL) is better than 1.3% LSB (rms) and Integral Non-Linearity (INL) is 5 ps rms. Thanks to the low power consumption (400 mW) and the compact size (78 mm x 28 mm x 10 mm), this card is the building block for developing compact multichannel time-resolved instrumentation for Time-Correlated Single-Photon Counting (TCSPC). The TDC-card outputs the time measurement results together with the rates of START and STOP signals and the number of valid TDC conversions. These additional information are needed by many TCSPC-based applications, such as: Fluorescence Lifetime Imaging (FLIM), Time-of-Flight (TOF) ranging measurements, time-resolved Positron Emission Tomography (PET), single-molecule spectroscopy, Fluorescence Correlation Spectroscopy (FCS), Diffuse Optical Tomography (DOT), Optical Time-Domain Reflectometry (OTDR), quantum optics, etc.

  18. Characterization of Si-PIN radiation detector with photon counting mode CMOS readout front-end

    NASA Astrophysics Data System (ADS)

    Jeon, Sungchae; Huh, Young; Jin, Seongoh; Park, Jongduk; Lee, Jae Yun; Kang, Bo Sun; Cho, Gyuseong

    2007-06-01

    An X-ray pixel detector with photon counting technique for digital X-ray imaging was designed and developed. Si detector was fabricated starting from 5 in., FZ-refined, 620 μm-thick, <1 1 1> oriented, n-typed silicon wafer with high resistivity of 6000-12,000 Ω cm. Readout front-end, which consists of the preamplifier, comparator, and bias circuits including the band-gap reference circuits, was designed and fabricated using 0.25 μm-triple-well CMOS standard process. In detector, the several types of guard-ring structures were tested. The biased p-type guard ring showed more reasonable results in the leakage current and breakdown voltage. The experimental results for the readout chip prove that its functionality is correctly operated up to 100 mV, 2.5 M events/s. In radiation experiment under irradiation of 60Co at dose rate 10 krad/h the measurement indicate that the band gap reference generator (BGR) circuits work up to 240 krad and the maximum variation of output voltage is 0.4% (peak-to-peak) of operational voltage at the range of 0-240 krad. It cannot lead to any critical problem for use in its operation.

  19. Photon counting detector for space debris laser tracking and lunar laser ranging

    NASA Astrophysics Data System (ADS)

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef; Kirchner, Georg; Koidl, Franz

    2014-08-01

    We are reporting on a design, construction and performance of solid state photon counting detector package which has been designed for laser tracking of space debris. The detector has been optimized for top photon detection efficiency and detection delay stability. The active area of the commercially available avalanche photodiode manufactured on Si (SAP500 supplied by Laser Components, Inc.) is circular with a diameter of 500 μm. The newly designed control circuit enables to operate the detection sensor at a broad range of biases 5-50 V above its breakdown voltage of 125 V. This permits to select a right trade-off between photon detection efficiency, timing resolution and dark count rate. The photon detection efficiency exceeds 70% at the wavelength of 532 nm. This is the highest photon detection efficiency ever reported for such a device. The timing properties of the detector have been investigated in detail. The timing resolution is better than 80 ps r.m.s, the detection delay is stable within units of picoseconds over several hours of operation. The detection delay stability in a sense of time deviation of 800 fs has been achieved. The temperature change of the detection delay is 0.5 ps/K. The detector has been tested as an echo signal detector in laser tracking of space debris at the satellite laser station in Graz, Austria. Its application in lunar laser ranging is under consideration by several laser stations.

  20. Photon Counting Imaging with an Electron-Bombarded Pixel Image Sensor

    PubMed Central

    Hirvonen, Liisa M.; Suhling, Klaus

    2016-01-01

    Electron-bombarded pixel image sensors, where a single photoelectron is accelerated directly into a CCD or CMOS sensor, allow wide-field imaging at extremely low light levels as they are sensitive enough to detect single photons. This technology allows the detection of up to hundreds or thousands of photon events per frame, depending on the sensor size, and photon event centroiding can be employed to recover resolution lost in the detection process. Unlike photon events from electron-multiplying sensors, the photon events from electron-bombarded sensors have a narrow, acceleration-voltage-dependent pulse height distribution. Thus a gain voltage sweep during exposure in an electron-bombarded sensor could allow photon arrival time determination from the pulse height with sub-frame exposure time resolution. We give a brief overview of our work with electron-bombarded pixel image sensor technology and recent developments in this field for single photon counting imaging, and examples of some applications. PMID:27136556

  1. Low noise, free running, high rate photon counting for space communication and ranging

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Krainak, Michael A.; Yang, Guangning; Sun, Xiaoli; Merritt, Scott

    2016-05-01

    communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies (>50%) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their space communication and ranging performances using both the 2 detected photon threshold and coincidence methods.

  2. Photon Counting Imaging with an Electron-Bombarded Pixel Image Sensor.

    PubMed

    Hirvonen, Liisa M; Suhling, Klaus

    2016-01-01

    Electron-bombarded pixel image sensors, where a single photoelectron is accelerated directly into a CCD or CMOS sensor, allow wide-field imaging at extremely low light levels as they are sensitive enough to detect single photons. This technology allows the detection of up to hundreds or thousands of photon events per frame, depending on the sensor size, and photon event centroiding can be employed to recover resolution lost in the detection process. Unlike photon events from electron-multiplying sensors, the photon events from electron-bombarded sensors have a narrow, acceleration-voltage-dependent pulse height distribution. Thus a gain voltage sweep during exposure in an electron-bombarded sensor could allow photon arrival time determination from the pulse height with sub-frame exposure time resolution. We give a brief overview of our work with electron-bombarded pixel image sensor technology and recent developments in this field for single photon counting imaging, and examples of some applications. PMID:27136556

  3. Metabolic imaging in microregions of tumors and normal tissues with bioluminescence and photon counting

    SciTech Connect

    Mueller-Klieser, W.; Walenta, S.; Paschen, W.; Kallinowski, F.; Vaupel, P.

    1988-08-03

    A method has been developed for metabolic imaging on a microscopic level in tumors, tumor spheroids, and normal tissues. The technique makes it possible to determine the spatial distribution of glucose, lactate, and ATP in absolute terms at similar locations within tissues or cell aggregates. The substrate distributions are registered in serial cryostat sections from tissue cryobiopsies or from frozen spheroids with the use of bioluminescence reactions. The light emission is measured directly by a special imaging photon counting system enabling on-line image analysis. The technique has been applied to human breast cancer xenografts, to spheroids originating from a human colon adenocarcinoma, and to skeletal rat muscle. Preliminary data obtained indicate that heterogeneities in the substrate distributions measured are much more pronounced in tumors than in normal tissue. There was no obvious correlation among the three quantities measured at similar locations within the tissues. The distribution of ATP corresponded well with the histological structure of larger spheroids; values were low in the necrotic center and high in the viable rim of these cell aggregates.

  4. Count rate performance of a silicon-strip detector for photon-counting spectral CT

    NASA Astrophysics Data System (ADS)

    Liu, X.; Grönberg, F.; Sjölin, M.; Karlsson, S.; Danielsson, M.

    2016-08-01

    A silicon-strip detector is developed for spectral computed tomography. The detector operates in photon-counting mode and allows pulse-height discrimination with 8 adjustable energy bins. In this work, we evaluate the count-rate performance of the detector in a clinical CT environment. The output counts of the detector are measured for x-ray tube currents up to 500 mA at 120 kV tube voltage, which produces a maximum photon flux of 485 Mphotons/s/mm2 for the unattenuated beam. The corresponding maximum count-rate loss of the detector is around 30% and there are no saturation effects. A near linear relationship between the input and output count rates can be observed up to 90 Mcps/mm2, at which point only 3% of the input counts are lost. This means that the loss in the diagnostically relevant count-rate region is negligible. A semi-nonparalyzable dead-time model is used to describe the count-rate performance of the detector, which shows a good agreement with the measured data. The nonparalyzable dead time τn for 150 evaluated detector elements is estimated to be 20.2±5.2 ns.

  5. Material decomposition and virtual non-contrast imaging in photon counting computed tomography: an animal study

    NASA Astrophysics Data System (ADS)

    Gutjahr, R.; Polster, C.; Kappler, S.; Pietsch, H.; Jost, G.; Hahn, K.; Schöck, F.; Sedlmair, M.; Allmendinger, T.; Schmidt, B.; Krauss, B.; Flohr, T. G.

    2016-03-01

    The energy resolving capabilities of Photon Counting Detectors (PCD) in Computed Tomography (CT) facilitate energy-sensitive measurements. The provided image-information can be processed with Dual Energy and Multi Energy algorithms. A research PCD-CT firstly allows acquiring images with a close to clinical configuration of both the X-ray tube and the CT-detector. In this study, two algorithms (Material Decomposition and Virtual Non-Contrast-imaging (VNC)) are applied on a data set acquired from an anesthetized rabbit scanned using the PCD-CT system. Two contrast agents (CA) are applied: A gadolinium (Gd) based CA used to enhance contrasts for vascular imaging, and xenon (Xe) and air as a CA used to evaluate local ventilation of the animal's lung. Four different images are generated: a) A VNC image, suppressing any traces of the injected Gd imitating a native scan, b) a VNC image with a Gd-image as an overlay, where contrast enhancements in the vascular system are highlighted using colored labels, c) another VNC image with a Xe-image as an overlay, and d) a 3D rendered image of the animal's lung, filled with Xe, indicating local ventilation characteristics. All images are generated from two images based on energy bin information. It is shown that a modified version of a commercially available dual energy software framework is capable of providing images with diagnostic value obtained from the research PCD-CT system.

  6. Dissipative particle dynamics simulation of multiphase fluid flow in microchannels and microchannel networks

    NASA Astrophysics Data System (ADS)

    Liu, Moubin; Meakin, Paul; Huang, Hai

    2007-03-01

    Multiphase fluid motion in microchannels and microchannel networks involves complicated fluid dynamics and is fundamentally important to diverse practical engineering applications such as ink-jet printing, DNA and protein micro-/nano-arraying, and fabrication of particles and capsules for controlled release of medicines. This paper presented the simulations of multiphase fluid motion in microchannels and microchannel networks using a modified dissipative particle dynamics method that employs a new conservative particle-particle interaction combining short-range repulsive and long-range attractive interactions to simulate multiphase systems. This new conservative particle-particle interaction allows the behavior of multiphase systems consisting of gases, liquids, and solids to be simulated. Three numerical examples that are closely related to engineering applications were simulated. These examples involve multiple fluid motions in (i) a simple microchannel within two parallel plates; (ii) an inverted Y-shaped microchannel junction consisting of a vertical channel that divides into two branch channels with the same aperture; and (iii) a microchannel network. The numerical results obtained by using DPD agreed well with those from other sources, and clearly demonstrated the potential value of this DPD method for modeling and analyzing multiphase flow in microchannels and microchannel networks.

  7. Spectral X-Ray CT Image Reconstruction with a Combination of Energy-Integrating and Photon-Counting Detectors.

    PubMed

    Yang, Qingsong; Cong, Wenxiang; Xi, Yan; Wang, Ge

    2016-01-01

    The purpose of this paper is to develop an algorithm for hybrid spectral computed tomography (CT) which combines energy-integrating and photon-counting detectors. While the energy-integrating scan is global, the photon-counting scan can have a local field of view (FOV). The algorithm synthesizes both spectral data and energy-integrating data. Low rank and sparsity prior is used for spectral CT reconstruction. An initial estimation is obtained from the projection data based on physical principles of x-ray interaction with the matter, which provides a more accurate Taylor expansion than previous work and can guarantee the convergence of the algorithm. Numerical simulation with clinical CT images are performed. The proposed algorithm produces very good spectral features outside the FOV when no K-edge material exists. Exterior reconstruction of K-edge material can be partially achieved. PMID:27171153

  8. Spectral X-Ray CT Image Reconstruction with a Combination of Energy-Integrating and Photon-Counting Detectors

    PubMed Central

    Yang, Qingsong; Cong, Wenxiang; Xi, Yan; Wang, Ge

    2016-01-01

    The purpose of this paper is to develop an algorithm for hybrid spectral computed tomography (CT) which combines energy-integrating and photon-counting detectors. While the energy-integrating scan is global, the photon-counting scan can have a local field of view (FOV). The algorithm synthesizes both spectral data and energy-integrating data. Low rank and sparsity prior is used for spectral CT reconstruction. An initial estimation is obtained from the projection data based on physical principles of x-ray interaction with the matter, which provides a more accurate Taylor expansion than previous work and can guarantee the convergence of the algorithm. Numerical simulation with clinical CT images are performed. The proposed algorithm produces very good spectral features outside the FOV when no K-edge material exists. Exterior reconstruction of K-edge material can be partially achieved. PMID:27171153

  9. Operation of a Single-Photon-Counting X-Ray Charge-Coupled Device Camera Spectrometer in a Petawatt Environment

    SciTech Connect

    Stoeckl, C.; Theobald, W.; Sangster, T.C.; Key, M.H.; Patel, P.; Zhang, B.B.; Clarke, R.; Karsch, S.; Norreys, P.

    2004-10-12

    The use of a single-photon-counting x-ray CCD (charge-coupled device) camera as an x-ray spectrometer is a well-established technique in ultrashort-pulse laser experiments. In single-photon-counting mode, the pixel value of each readout pixel is proportional to the energy deposited from the incident x-ray photon. For photons below 100 keV, a significant fraction of the events deposits all the energy in a single pixel. A histogram of the pixel readout values gives a good approximation of the x-ray spectrum. This technique requires almost no alignment, but it is very sensitive to signal-to-background issues, especially in a high-energy petawatt environment.

  10. Optimization of beam quality for photon-counting spectral computed tomography in head imaging: simulation study.

    PubMed

    Chen, Han; Xu, Cheng; Persson, Mats; Danielsson, Mats

    2015-10-01

    Head computed tomography (CT) plays an important role in the comprehensive evaluation of acute stroke. Photon-counting spectral detectors, as promising candidates for use in the next generation of x-ray CT systems, allow for assigning more weight to low-energy x-rays that generally contain more contrast information. Most importantly, the spectral information can be utilized to decompose the original set of energy-selective images into several basis function images that are inherently free of beam-hardening artifacts, a potential advantage for further improving the diagnosis accuracy. We are developing a photon-counting spectral detector for CT applications. The purpose of this work is to determine the optimal beam quality for material decomposition in two head imaging cases: nonenhanced imaging and K-edge imaging. A cylindrical brain tissue of 16-cm diameter, coated by a 6-mm-thick bone layer and 2-mm-thick skin layer, was used as a head phantom. The imaging target was a 5-mm-thick blood vessel centered in the head phantom. In K-edge imaging, two contrast agents, iodine and gadolinium, with the same concentration ([Formula: see text]) were studied. Three parameters that affect beam quality were evaluated: kVp settings (50 to 130 kVp), filter materials ([Formula: see text] to 83), and filter thicknesses [0 to 2 half-value layer (HVL)]. The image qualities resulting from the varying x-ray beams were compared in terms of two figures of merit (FOMs): squared signal-difference-to-noise ratio normalized by brain dose ([Formula: see text]) and that normalized by skin dose ([Formula: see text]). For nonenhanced imaging, the results show that the use of the 120-kVp spectrum filtered by 2 HVL copper ([Formula: see text]) provides the best performance in both FOMs. When iodine is used in K-edge imaging, the optimal filter is 2 HVL iodine ([Formula: see text]) and the optimal kVps are 60 kVp in terms of [Formula: see text] and 75 kVp in terms of [Formula: see text]. A

  11. Scalable time-correlated photon counting system with multiple independent input channels.

    PubMed

    Wahl, Michael; Rahn, Hans-Jürgen; Röhlicke, Tino; Kell, Gerald; Nettels, Daniel; Hillger, Frank; Schuler, Ben; Erdmann, Rainer

    2008-12-01

    Time-correlated single photon counting continues to gain importance in a wide range of applications. Most prominently, it is used for time-resolved fluorescence measurements with sensitivity down to the single molecule level. While the primary goal of the method used to be the determination of fluorescence lifetimes upon optical excitation by short light pulses, recent modifications and refinements of instrumentation and methodology allow for the recovery of much more information from the detected photons, and enable entirely new applications. This is achieved most successfully by continuously recording individually detected photons with their arrival time and detection channel information (time tagging), thus avoiding premature data reduction and concomitant loss of information. An important property of the instrumentation used is the number of detection channels and the way they interrelate. Here we present a new instrument architecture that allows scalability in terms of the number of input channels while all channels are synchronized to picoseconds of relative timing and yet operate independent of each other. This is achieved by means of a modular design with independent crystal-locked time digitizers and a central processing unit for sorting and processing of the timing data. The modules communicate through high speed serial links supporting the full throughput rate of the time digitizers. Event processing is implemented in programmable logic, permitting classical histogramming, as well as time tagging of individual photons and their temporally ordered streaming to the host computer. Based on the time-ordered event data, any algorithms and methods for the analysis of fluorescence dynamics can be implemented not only in postprocessing but also in real time. Results from recently emerging single molecule applications are presented to demonstrate the capabilities of the instrument. PMID:19123551

  12. Contrast-enhanced spectral mammography with a photon-counting detector

    SciTech Connect

    Fredenberg, Erik; Hemmendorff, Magnus; Cederstroem, Bjoern; Aaslund, Magnus; Danielsson, Mats

    2010-05-15

    Purpose: Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. The authors have investigated a photon-counting spectral imaging system with two energy bins for contrast-enhanced mammography. System optimization and the potential benefit compared to conventional non-energy-resolved absorption imaging was studied. Methods: A framework for system characterization was set up that included quantum and anatomical noise and a theoretical model of the system was benchmarked to phantom measurements. Results: Optimal combination of the energy-resolved images corresponded approximately to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging in the phantom study. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, yielded only a minute improvement. In a simulation of a clinically more realistic case, spectral imaging was predicted to perform approximately 30% better than absorption imaging for an average glandularity breast with an average level of anatomical noise. For dense breast tissue and a high level of anatomical noise, however, a rise in detectability by a factor of 6 was predicted. Another {approx}70%-90% improvement was found to be within reach for an optimized system. Conclusions: Contrast-enhanced spectral mammography is feasible and beneficial with the current system, and there is room for additional improvements. Inclusion of anatomical noise is essential for optimizing spectral imaging systems.

  13. A high resolution laser ranging system based on time-correlated single-photon counting technology

    NASA Astrophysics Data System (ADS)

    Yang, Yixin; Wang, Huanqin; Huang, Zhe; Cao, Yangyang; Gui, Huaqiao

    2014-12-01

    Laser ranging has become an important method for both distance measurements and acquisition of threedimensional (3D) images. In this paper, a laser ranging system based on Time-Correlated Single-Photon Counting technology (TCSPC) is developed. A Geiger-mode avalanche photodiode (G-APD), which has the ability of detecting single-photon events, is used to capture the weak light scattered from the long-range target. In order to improve the ranging resolution of TCSPC based measurement system, a high repetition frequency of subnanosecond narrow pulse generator circuit based on the avalanche effect of RF-BJT is designed and applied as the light source. Moreover, some optimized optical light designs have been done to improve the system signal to noise rate (SNR), including using a special aspherical lens as projecting lens, adopting a telephoto camera lens with small view angle and short depth of field before detector. Experimental tests for evaluation of the laser raging system performance are described. As a means of echo signal analysis, three different algorithms have been introduced, in which the cross-correlation algorithm was demonstrated to be the most effective algorithm to determining the round trip time to a target, even based on histograms with a significant amount of background noise photons. It was found that centimeter ranging resolution can be achieved thanks to the use of Time-to-Digital Converter (TDC) with picosecond resolution and the Cross-Correlation algorithm. The proposed laser ranging system has advantages of high range resolution, short response time and simple structure, which was potential applications for 3D object recognition, computer vision, reverse engineering and virtual reality.

  14. The role of x-ray Swank factor in energy-resolving photon-counting imaging

    SciTech Connect

    Tanguay, Jesse; Kim, Ho Kyung; Cunningham, Ian. A.

    2010-12-15

    Purpose: Energy-resolved x-ray imaging has the potential to improve contrast-to-noise ratio by measuring the energy of each interacting photon and applying optimal weighting factors. The success of energy-resolving photon-counting (EPC) detectors relies on the ability of an x-ray detector to accurately measure the energy of each interacting photon. However, the escape of characteristic emissions and Compton scatter degrades spectral information. This article makes the theoretical connection between accuracy and imprecision in energy measurements with the x-ray Swank factor for a-Se, Si, CdZnTe, and HgI{sub 2}-based detectors. Methods: For a detector that implements adaptive binning to sum all elements in which x-ray energy is deposited for a single interaction, energy imprecision is shown to depend on the Swank factor for a large element with x rays incident at the center. The response function for each converter material is determined using Monte Carlo methods and used to determine energy accuracy, Swank factor, and relative energy imprecision in photon-energy measurements. Results: For each material, at energies below the respective K edges, accuracy is close to unity and imprecision is only a few percent. Above the K-edge energies, characteristic emission results in a drop in accuracy and precision that depends on escape probability. In Si, and to some extent a-Se, Compton-scatter escape also degrades energy precision with increasing energy. The influence of converter thickness on energy accuracy and imprecision is modest for low-Z materials but becomes important when using high-Z materials at energies greater than the K-edge energies. Conclusions: Accuracy and precision in energy measurements by EPC detectors are determined largely by the energy-dependent x-ray Swank factor. Modest decreases in the Swank factor (5%-15%) result in large increases in relative imprecision (30%-40%).

  15. Indirect-detection single-photon-counting x-ray detector for breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Kaercher, Joerg; Durst, Roger

    2016-03-01

    X-ray mammography is a crucial screening tool for early identification of breast cancer. However, the overlap of anatomical features present in projection images often complicates the task of correctly identifying suspicious masses. As a result, there has been increasing interest in acquisition of volumetric information through digital breast tomosynthesis (DBT) which, compared to mammography, offers the advantage of depth information. Since DBT requires acquisition of many projection images, it is desirable that the noise in each projection image be dominated by the statistical noise of the incident x-ray quanta and not by the additive noise of the imaging system (referred to as quantum-limited imaging) and that the cumulative dose be as low as possible (e.g., no more than for a mammogram). Unfortunately, the electronic noise (~2000 electrons) present in current DBT systems based on active matrix, flat-panel imagers (AMFPIs) is still relatively high compared with modest x-ray gain of the a-Se and CsI:Tl x-ray converters often used. To overcome the modest signal-to-noise ratio (SNR) limitations of current DBT systems, we have developed a large-area x-ray imaging detector with the combination of an extremely low noise (~20 electrons) active-pixel CMOS and a specially designed high resolution scintillator. The high sensitivity and low noise of such system provides better SNR by at least an order of magnitude than current state-of-art AMFPI systems and enables x-ray indirect-detection single photon counting (SPC) at mammographic energies with the potential of dose reduction.

  16. 8-channel acquisition system for time-correlated single-photon counting

    NASA Astrophysics Data System (ADS)

    Antonioli, S.; Miari, L.; Cuccato, A.; Crotti, M.; Rech, I.; Ghioni, M.

    2013-06-01

    Nowadays, an increasing number of applications require high-performance analytical instruments capable to detect the temporal trend of weak and fast light signals with picosecond time resolution. The Time-Correlated Single-Photon Counting (TCSPC) technique is currently one of the preferable solutions when such critical optical signals have to be analyzed and it is fully exploited in biomedical and chemical research fields, as well as in security and space applications. Recent progress in the field of single-photon detector arrays is pushing research towards the development of high performance multichannel TCSPC systems, opening the way to modern time-resolved multi-dimensional optical analysis. In this paper we describe a new 8-channel high-performance TCSPC acquisition system, designed to be compact and versatile, to be used in modern TCSPC measurement setups. We designed a novel integrated circuit including a multichannel Time-to-Amplitude Converter with variable full-scale range, a D/A converter, and a parallel adder stage. The latter is used to adapt each converter output to the input dynamic range of a commercial 8-channel Analog-to-Digital Converter, while the integrated DAC implements the dithering technique with as small as possible area occupation. The use of this monolithic circuit made the design of a scalable system of very small dimensions (95 × 40 mm) and low power consumption (6 W) possible. Data acquired from the TCSPC measurement are digitally processed and stored inside an FPGA (Field-Programmable Gate Array), while a USB transceiver allows real-time transmission of up to eight TCSPC histograms to a remote PC. Eventually, the experimental results demonstrate that the acquisition system performs TCSPC measurements with high conversion rate (up to 5 MHz/channel), extremely low differential nonlinearity (<0.04 peak-to-peak of the time bin width), high time resolution (down to 20 ps Full-Width Half-Maximum), and very low crosstalk between channels.

  17. Photon counting CT of the liver with dual-contrast enhancement

    NASA Astrophysics Data System (ADS)

    Muenzel, Daniela; Proksa, Roland; Daerr, Heiner; Fingerle, Alexander A.; Pfeiffer, Franz; Rummeny, Ernst J.; Noël, Peter B.

    2016-03-01

    The diagnostic quality of photon counting computed tomography (PCCT) is one the unexplored areas in medical imaging; at the same time, it seems to offer the opportunity as a fast and highly sensitive diagnostic tool. Today, conventional computed tomography (CT) is the standard imaging technique for diagnostic evaluation of the parenchyma of the liver. However, considerations on radiation dose are still an important factor in CT liver imaging, especially with regard to multi-phase contrast enhanced CT. In this work we report on a feasibility study for multi-contrast PCCT for simultaneous liver imaging at different contrast phases. PCCT images of the liver were simulated for a contrast-enhanced examination performed with two different contrast agents (CA), iodine (CA 1) and gadolinium (CA 2). PCCT image acquisition was performed at the time point with portal venous contrast distribution of CA 1 and arterial contrast phase for CA 2. Therefore, a contrast injection protocol was planned with sequential injection of CA 1 and CA 2 to provide a time dependent difference in contrast distribution of both CAs in the vessels and parenchyma of the liver. Native, arterial, and portal venous contrast enhanced images have been calculated based on the spectral separation of PCCT. In simulated PCCT images, we were able to differentiate between the tissue enhancement of CA 1 and CA 2. The distribution of both CA within the parenchyma of the liver was illustrated with perfusion maps for CA 1 and CA 2. In addition, virtual noncontrast enhanced image were calculated. In conclusion, multi-phase PCCT imaging of the liver based on a single scan is a novel approach for spectral PCCT imaging, offering detailed contrast information in a single scan volume and a significant reduction of radiation dose.

  18. Development of mammography system using CdTe photon counting detector for the exposure dose reduction

    NASA Astrophysics Data System (ADS)

    Maruyama, Sho; Niwa, Naoko; Yamazaki, Misaki; Yamakawa, Tsutomu; Nagano, Tatsuya; Kodera, Yoshie

    2014-03-01

    We propose a new mammography system using a cadmium telluride (CdTe) photon-counting detector for exposure dose reduction. In contrast to conventional mammography, this system uses high-energy X-rays. This study evaluates the usefulness of this system in terms of the absorbed dose distribution and contrast-to-noise ratio (CNR) at acrylic step using a Monte Carlo simulation. In addition, we created a prototype system that uses a CdTe detector and automatic movement stage. For various conditions, we measured the properties and evaluated the quality of images produced by the system. The simulation result for a tube voltage of 40 kV and tungsten/barium (W/Ba) as a target/filter shows that the surface dose was reduced more than 60% compared to that under conventional conditions. The CNR of our proposal system also became higher than that under conventional conditions. The point at which the CNRs coincide for 4 cm polymethyl methacrylate (PMMA) at the 2-mm-thick step corresponds to a dose reduction of 30%, and these differences increased with increasing phantom thickness. To improve the image quality, we determined the problematic aspects of the scanning system. The results of this study indicate that, by using a higher X-ray energy than in conventional mammography, it is possible to obtain a significant exposure dose reduction without loss of image quality. Further, the image quality of the prototype system can be improved by optimizing the balance between the shift-and-add operation and the output of the X-ray tube. In future work, we will further examine these improvement points.

  19. Estimation of signal and noise for a whole-body photon counting research CT system

    PubMed Central

    Li, Zhoubo; Leng, Shuai; Yu, Zhicong; Kappler, Stephen; McCollough, Cynthia H.

    2016-01-01

    Photon-counting CT (PCCT) may yield potential value for many clinical applications due to its relative immunity to electronic noise, increased geometric efficiency relative to current scintillating detectors, and the ability to resolve energy information about the detected photons. However, there are a large number of parameters that require optimization, particularly the energy thresholds configurations. Fast and accurate estimation of signal and noise in PCCT can benefit the optimization of acquisition parameters for specific diagnostic tasks. Based on the acquisition parameters and detector response of our research PCCT system, we derived mathematical models for both signal and noise. The signal model took the tube spectrum, beam filtration, object attenuation, water beam hardening, and detector response into account. The noise model considered the relationship between noise and radiation dose, as well as the propagation of noise as threshold data are subtracted to yield energy bin data. To determine the absolute noise value, a noise look-up table (LUT) was acquired using a limited number of calibration scans. The noise estimation algorithm then used the noise LUT to estimate noise for scans with a variety of combination of energy thresholds, dose levels, and object attenuation. Validation of the estimation algorithms was performed on our whole-body research PCCT system using semi-anthropomorphic water phantoms and solutions of calcium and iodine. The algorithms achieved accurate estimation of signal and noise for a variety of scanning parameter combinations. The proposed method can be used to optimize energy thresholds configuration for many clinical applications of PCCT. PMID:27346908

  20. Estimating ROI activity concentration with photon-processing and photon-counting SPECT imaging systems

    NASA Astrophysics Data System (ADS)

    Jha, Abhinav K.; Frey, Eric C.

    2015-03-01

    Recently a new class of imaging systems, referred to as photon-processing (PP) systems, are being developed that uses real-time maximum-likelihood (ML) methods to estimate multiple attributes per detected photon and store these attributes in a list format. PP systems could have a number of potential advantages compared to systems that bin photons based on attributes such as energy, projection angle, and position, referred to as photon-counting (PC) systems. For example, PP systems do not suffer from binning-related information loss and provide the potential to extract information from attributes such as energy deposited by the detected photon. To quantify the effects of this advantage on task performance, objective evaluation studies are required. We performed this study in the context of quantitative 2-dimensional single-photon emission computed tomography (SPECT) imaging with the end task of estimating the mean activity concentration within a region of interest (ROI). We first theoretically outline the effect of null space on estimating the mean activity concentration, and argue that due to this effect, PP systems could have better estimation performance compared to PC systems with noise-free data. To evaluate the performance of PP and PC systems with noisy data, we developed a singular value decomposition (SVD)-based analytic method to estimate the activity concentration from PP systems. Using simulations, we studied the accuracy and precision of this technique in estimating the activity concentration. We used this framework to objectively compare PP and PC systems on the activity concentration estimation task. We investigated the effects of varying the size of the ROI and varying the number of bins for the attribute corresponding to the angular orientation of the detector in a continuously rotating SPECT system. The results indicate that in several cases, PP systems offer improved estimation performance compared to PC systems.

  1. Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Beck, Jeffrey D.; Scritchfield, Richard; Mitra, Pradip; Sullivan, William W.; Gleckler, Anthony D.; Strittmatter, Robert; Martin, Robert J.

    2014-08-01

    A linear mode photon counting focal plane array using HgCdTe mid-wave infrared (MWIR) cutoff electron initiated avalanche photodiodes (e-APDs) has been designed, fabricated, and characterized. The broad spectral range (0.4 to 4.3 μm) is unique among photon counters, making this a "first of its kind" system spanning the visible to the MWIR. The low excess noise [F(M)≈1] of the e-APDs allows for robust photon detection while operating at a stable linear avalanche gain in the range of 500-1000. The readout integrated circuit (ROIC) design included a very high gain-bandwidth product resistive transimpedance amplifier (3×1013 Ω-Hz) and a 4 ns output digital pulse width comparator. The ROIC had 16 high-bandwidth analogs and 16 low-voltage differential signaling digital outputs. The 2×8 array was integrated into an LN2 Dewar with a custom leadless chip carrier and daughter board design that preserved high-bandwidth analog and digital signal integrity. The 2×8 e-APD arrays were fabricated on 4.3 μm cutoff HgCdTe and operated at 84 K. The measured dark currents were approximately 1 pA at 13 V bias where the measured avalanche photodiode gain was 500. This translates to a predicted dark current induced dark count rate of less than 20 KHz. Single photon detection was achieved with a photon pulse signal-to-noise ratio of 13.7 above the amplifier noise floor. A photon detection efficiency of 50% was measured at a photon background limited false event rate of about 1 MHz. The measured jitter was in the range of 550-800 ps. The demonstrated minimum time between distinguishable events was less than 10 ns.

  2. Detective quantum efficiency of photon-counting x-ray detectors

    SciTech Connect

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A.

    2015-01-15

    Purpose: Single-photon-counting (SPC) x-ray imaging has the potential to improve image quality and enable novel energy-dependent imaging methods. Similar to conventional detectors, optimizing image SPC quality will require systems that produce the highest possible detective quantum efficiency (DQE). This paper builds on the cascaded-systems analysis (CSA) framework to develop a comprehensive description of the DQE of SPC detectors that implement adaptive binning. Methods: The DQE of SPC systems can be described using the CSA approach by propagating the probability density function (PDF) of the number of image-forming quanta through simple quantum processes. New relationships are developed to describe PDF transfer through serial and parallel cascades to accommodate scatter reabsorption. Results are applied to hypothetical silicon and selenium-based flat-panel SPC detectors including the effects of reabsorption of characteristic/scatter photons from photoelectric and Compton interactions, stochastic conversion of x-ray energy to secondary quanta, depth-dependent charge collection, and electronic noise. Results are compared with a Monte Carlo study. Results: Depth-dependent collection efficiency can result in substantial broadening of photopeaks that in turn may result in reduced DQE at lower x-ray energies (20–45 keV). Double-counting interaction events caused by reabsorption of characteristic/scatter photons may result in falsely inflated image signal-to-noise ratio and potential overestimation of the DQE. Conclusions: The CSA approach is extended to describe signal and noise propagation through photoelectric and Compton interactions in SPC detectors, including the effects of escape and reabsorption of emission/scatter photons. High-performance SPC systems can be achieved but only for certain combinations of secondary conversion gain, depth-dependent collection efficiency, electronic noise, and reabsorption characteristics.

  3. Performance of in-pixel circuits for photon counting arrays (PCAs) based on polycrystalline silicon TFTs.

    PubMed

    Liang, Albert K; Koniczek, Martin; Antonuk, Larry E; El-Mohri, Youcef; Zhao, Qihua; Street, Robert A; Lu, Jeng Ping

    2016-03-01

    Photon counting arrays (PCAs), defined as pixelated imagers which measure the absorbed energy of x-ray photons individually and record this information digitally, are of increasing clinical interest. A number of PCA prototypes with a 1 mm pixel-to-pixel pitch have recently been fabricated with polycrystalline silicon (poly-Si)-a thin-film technology capable of creating monolithic imagers of a size commensurate with human anatomy. In this study, analog and digital simulation frameworks were developed to provide insight into the influence of individual poly-Si transistors on pixel circuit performance-information that is not readily available through empirical means. The simulation frameworks were used to characterize the circuit designs employed in the prototypes. The analog framework, which determines the noise produced by individual transistors, was used to estimate energy resolution, as well as to identify which transistors contribute the most noise. The digital framework, which analyzes how well circuits function in the presence of significant variations in transistor properties, was used to estimate how fast a circuit can produce an output (referred to as output count rate). In addition, an algorithm was developed and used to estimate the minimum pixel pitch that could be achieved for the pixel circuits of the current prototypes. The simulation frameworks predict that the analog component of the PCA prototypes could have energy resolution as low as 8.9% full width at half maximum (FWHM) at 70 keV; and the digital components should work well even in the presence of significant thin-film transistor (TFT) variations, with the fastest component having output count rates as high as 3 MHz. Finally, based on conceivable improvements in the underlying fabrication process, the algorithm predicts that the 1 mm pitch of the current PCA prototypes could be reduced significantly, potentially to between ~240 and 290 μm. PMID:26878107

  4. Improvement of the visibility for x-ray phase contrast imaging using photon counting detector

    NASA Astrophysics Data System (ADS)

    Sano, S.; Tanabe, K.; Yoshimuta, T.; Kimura, K.; Shirai, T.; Doki, T.; Horiba, A.; Sato, T.

    2016-03-01

    In the case of employing Talbot interferometer to the medical imaging, a practical X-ray tube should be combined with the interferometer. Practical x-ray tubes radiate continuous X-rays and the interference intensity (so-called visibility) becomes worse because of the wide spectrum of continuous X-rays. In order to achieve high visibility, we have estimated the visibility improvement effect using the photon counting detector (PCD). The detected spectra using a 2D imaging PCD are distorted due to charge sharing and pileup, which would make visibility worse. First, we have made a model for Monte-Calro calculation to calculate the distorted spectra and point spread function (PSF) for the charge sharing. The calculation model is based on the summation of the monochromatic response function which is the detected charge on the interested pixel for one photon injection. Distortion of spectra was calculated taking into account the charge sharing effect and pulse pileup. Then we have obtained an estimation result of the visibility improvement effect using the PCD of CdTe. The visibilities of the energy integrating detector (EID) of CdTe and the PCD are calculated and compared, where the Talbot interferometer type is a fringe scanning using phase grating and absorption grating. Visibility of the EID is 36% and that of PCD is 60% without pileup effect. In high dose rate condition, the CNR decreasing ratio is remarkable. The visibility decreasing effect and quantum noise increasing effect are correlated and the both effect worsen the CNR.

  5. Portable, Photon-Counting Cameras for Observing Occultations, Eclipses, and Transits

    NASA Astrophysics Data System (ADS)

    Gulbis, A. A. S.; Elliot, J. L.; Person, M. J.; Babcock, B. A.; Pasachoff, J. M.; Souza, S. P.

    2005-08-01

    Occultations, eclipses, and transits can produce data of the highest spatial resolution for any Earth-based observing method and are thus used to determine planetary diameters and probe atmospheric profiles. Observing these events requires precise geographic and temporal information. For occultations, the size of the shadow on the Earth is a function of the occulting body's size and distance. This shadow is significantly smaller than the Earth's angular diameter for objects in which we are particularly interested (Triton, Pluto, Charon, and Kuiper belt objects). Therefore, instruments capable of traveling to a predicted shadow path increase the opportunities for observing events. Having multiple systems is also beneficial, since multiple chords must be observed to derive a body's shape. We have constructed four portable observing systems (POETS; Portable Occultation Eclipse and Transit Systems), which can be transported as carry-on luggage and attached to portable or fixed telescopes. The cameras have E2V CCD97 sensors: a 512 x 512 array of 16 micron pixels, back illuminated, with > 90% QE. The CCDs are thermoelectrically cooled to ˜80 degrees C in air. Readout modes are 1, 3, 5 and 10 MHz, with a maximum data rate of 32 full frames per second. Binning and subframes increase the rate to a few hundred frames per second. The lowest achievable read noise in conventional mode is approximately 6 electrons. One of the two amplifiers employs electron multiplying gain, which effectively reduces the read noise to sub-electron levels and allows the cameras to be used for counting photons. Event timing is done using a state-of-the-art GPS receiver to trigger images. We present details of the systems, an analysis of the use of photon counting in the field of small body occultations, and sample occultation data. Funding for this work is provided by NASA Planetary Astronomy grants NNG04GE48G, NNG04GF25G, and NNH04ZSS001N.

  6. Spectral CT of the extremities with a silicon strip photon counting detector

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Zbijewski, W.; Stayman, J. W.; Xu, J.; Taguchi, K.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Photon counting x-ray detectors (PCXDs) are an important emerging technology for spectral imaging and material differentiation with numerous potential applications in diagnostic imaging. We report development of a Si-strip PCXD system originally developed for mammography with potential application to spectral CT of musculoskeletal extremities, including challenges associated with sparse sampling, spectral calibration, and optimization for higher energy x-ray beams. Methods: A bench-top CT system was developed incorporating a Si-strip PCXD, fixed anode x-ray source, and rotational and translational motions to execute complex acquisition trajectories. Trajectories involving rotation and translation combined with iterative reconstruction were investigated, including single and multiple axial scans and longitudinal helical scans. The system was calibrated to provide accurate spectral separation in dual-energy three-material decomposition of soft-tissue, bone, and iodine. Image quality and decomposition accuracy were assessed in experiments using a phantom with pairs of bone and iodine inserts (3, 5, 15 and 20 mm) and an anthropomorphic wrist. Results: The designed trajectories improved the sampling distribution from 56% minimum sampling of voxels to 75%. Use of iterative reconstruction (viz., penalized likelihood with edge preserving regularization) in combination with such trajectories resulted in a very low level of artifacts in images of the wrist. For large bone or iodine inserts (>5 mm diameter), the error in the estimated material concentration was <16% for (50 mg/mL) bone and <8% for (5 mg/mL) iodine with strong regularization. For smaller inserts, errors of 20-40% were observed and motivate improved methods for spectral calibration and optimization of the edge-preserving regularizer. Conclusion: Use of PCXDs for three-material decomposition in joint imaging proved feasible through a combination of rotation-translation acquisition trajectories and

  7. 8-Channel acquisition system for Time-Correlated Single-Photon Counting.

    PubMed

    Antonioli, S; Miari, L; Cuccato, A; Crotti, M; Rech, I; Ghioni, M

    2013-06-01

    Nowadays, an increasing number of applications require high-performance analytical instruments capable to detect the temporal trend of weak and fast light signals with picosecond time resolution. The Time-Correlated Single-Photon Counting (TCSPC) technique is currently one of the preferable solutions when such critical optical signals have to be analyzed and it is fully exploited in biomedical and chemical research fields, as well as in security and space applications. Recent progress in the field of single-photon detector arrays is pushing research towards the development of high performance multichannel TCSPC systems, opening the way to modern time-resolved multi-dimensional optical analysis. In this paper we describe a new 8-channel high-performance TCSPC acquisition system, designed to be compact and versatile, to be used in modern TCSPC measurement setups. We designed a novel integrated circuit including a multichannel Time-to-Amplitude Converter with variable full-scale range, a D∕A converter, and a parallel adder stage. The latter is used to adapt each converter output to the input dynamic range of a commercial 8-channel Analog-to-Digital Converter, while the integrated DAC implements the dithering technique with as small as possible area occupation. The use of this monolithic circuit made the design of a scalable system of very small dimensions (95 × 40 mm) and low power consumption (6 W) possible. Data acquired from the TCSPC measurement are digitally processed and stored inside an FPGA (Field-Programmable Gate Array), while a USB transceiver allows real-time transmission of up to eight TCSPC histograms to a remote PC. Eventually, the experimental results demonstrate that the acquisition system performs TCSPC measurements with high conversion rate (up to 5 MHz/channel), extremely low differential nonlinearity (<0.04 peak-to-peak of the time bin width), high time resolution (down to 20 ps Full-Width Half-Maximum), and very low crosstalk between channels

  8. A unified statistical framework for material decomposition using multienergy photon counting x-ray detectors

    SciTech Connect

    Choi, Jiyoung; Kang, Dong-Goo; Kang, Sunghoon; Sung, Younghun; Ye, Jong Chul

    2013-09-15

    Purpose: Material decomposition using multienergy photon counting x-ray detectors (PCXD) has been an active research area over the past few years. Even with some success, the problem of optimal energy selection and three material decomposition including malignant tissue is still on going research topic, and more systematic studies are required. This paper aims to address this in a unified statistical framework in a mammographic environment.Methods: A unified statistical framework for energy level optimization and decomposition of three materials is proposed. In particular, an energy level optimization algorithm is derived using the theory of the minimum variance unbiased estimator, and an iterative algorithm is proposed for material composition as well as system parameter estimation under the unified statistical estimation framework. To verify the performance of the proposed algorithm, the authors performed simulation studies as well as real experiments using physical breast phantom and ex vivo breast specimen. Quantitative comparisons using various performance measures were conducted, and qualitative performance evaluations for ex vivo breast specimen were also performed by comparing the ground-truth malignant tissue areas identified by radiologists.Results: Both simulation and real experiments confirmed that the optimized energy bins by the proposed method allow better material decomposition quality. Moreover, for the specimen thickness estimation errors up to 2 mm, the proposed method provides good reconstruction results in both simulation and real ex vivo breast phantom experiments compared to existing methods.Conclusions: The proposed statistical framework of PCXD has been successfully applied for the energy optimization and decomposition of three material in a mammographic environment. Experimental results using the physical breast phantom and ex vivo specimen support the practicality of the proposed algorithm.

  9. Performance of in-pixel circuits for photon counting arrays (PCAs) based on polycrystalline silicon TFTs

    NASA Astrophysics Data System (ADS)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Street, Robert A.; Lu, Jeng Ping

    2016-03-01

    Photon counting arrays (PCAs), defined as pixelated imagers which measure the absorbed energy of x-ray photons individually and record this information digitally, are of increasing clinical interest. A number of PCA prototypes with a 1 mm pixel-to-pixel pitch have recently been fabricated with polycrystalline silicon (poly-Si)—a thin-film technology capable of creating monolithic imagers of a size commensurate with human anatomy. In this study, analog and digital simulation frameworks were developed to provide insight into the influence of individual poly-Si transistors on pixel circuit performance—information that is not readily available through empirical means. The simulation frameworks were used to characterize the circuit designs employed in the prototypes. The analog framework, which determines the noise produced by individual transistors, was used to estimate energy resolution, as well as to identify which transistors contribute the most noise. The digital framework, which analyzes how well circuits function in the presence of significant variations in transistor properties, was used to estimate how fast a circuit can produce an output (referred to as output count rate). In addition, an algorithm was developed and used to estimate the minimum pixel pitch that could be achieved for the pixel circuits of the current prototypes. The simulation frameworks predict that the analog component of the PCA prototypes could have energy resolution as low as 8.9% full width at half maximum (FWHM) at 70 keV; and the digital components should work well even in the presence of significant thin-film transistor (TFT) variations, with the fastest component having output count rates as high as 3 MHz. Finally, based on conceivable improvements in the underlying fabrication process, the algorithm predicts that the 1 mm pitch of the current PCA prototypes could be reduced significantly, potentially to between ~240 and 290 μm.

  10. Elemental analysis with a full-field X-ray fluorescence microscope and a CCD photon-counting system.

    PubMed

    Ohigashi, Takuji; Watanabe, Norio; Yokosuka, Hiroki; Aota, Tatsuya; Takano, Hidekazu; Takeuchi, Akihisa; Aoki, Sadao

    2002-05-01

    The first result is presented of an X-ray fluorescence microscope with a Wolter mirror in combination with a CCD camera used as an energy-resolved two-dimensional detector in photon-counting mode. Two-dimensional elemental maps of metallic wires, such as Fe, Co, Ni and Cu, and inclusions of a synthesized diamond could be obtained with an energy resolution of 350 eV. PMID:11972365

  11. Photon-counting gamma camera based on columnar CsI(Tl) optically coupled to a back-illuminated CCD

    PubMed Central

    Miller, Brian W.; Barber, H. Bradford; Barrett, Harrison H.; Chen, Liying; Taylor, Sean J.

    2010-01-01

    Recent advances have been made in a new class of CCD-based, single-photon-counting gamma-ray detectors which offer sub-100 μm intrinsic resolutions.1–7 These detectors show great promise in small-animal SPECT and molecular imaging and exist in a variety of configurations. Typically, a columnar CsI(Tl) scintillator or a radiography screen (Gd2O2S:Tb) is imaged onto the CCD. Gamma-ray interactions are seen as clusters of signal spread over multiple pixels. When the detector is operated in a charge-integration mode, signal spread across pixels results in spatial-resolution degradation. However, if the detector is operated in photon-counting mode, the gamma-ray interaction position can be estimated using either Anger (centroid) estimation or maximum-likelihood position estimation resulting in a substantial improvement in spatial resolution.2 Due to the low-light-level nature of the scintillation process, CCD-based gamma cameras implement an amplification stage in the CCD via electron multiplying (EMCCDs)8–10 or via an image intensifier prior to the optical path.1 We have applied ideas and techniques from previous systems to our high-resolution LumiSPECT detector.11, 12 LumiSPECT is a dual-modality optical/SPECT small-animal imaging system which was originally designed to operate in charge-integration mode. It employs a cryogenically cooled, high-quantum-efficiency, back-illuminated large-format CCD and operates in single-photon-counting mode without any intermediate amplification process. Operating in photon-counting mode, the detector has an intrinsic spatial resolution of 64 μm compared to 134 μm in integrating mode. PMID:20890397

  12. SU-E-I-77: A Noise Reduction Technique for Energy-Resolved Photon-Counting Detectors

    SciTech Connect

    Lam Ng, A; Ding, H; Cho, H; Molloi, S

    2014-06-01

    Purpose: Finding the optimal energy threshold setting for an energy-resolved photon-counting detector has an important impact on the maximization of contrast-to-noise-ratio (CNR). We introduce a noise reduction method to enhance CNR by reducing the noise in each energy bin without altering the average gray levels in the projection and image domains. Methods: We simulated a four bin energy-resolved photon-counting detector based on Si with a 10 mm depth of interaction. TASMIP algorithm was used to simulate a spectrum of 65 kVp with 2.7 mm Al filter. A 13 mm PMMA phantom with hydroxyapatite and iodine at different concentrations (100, 200 and 300 mg/ml for HA, and 2, 4, and 8 mg/ml for Iodine) was used. Projection-based and Image-based energy weighting methods were used to generate weighted images. A reference low noise image was used for noise reduction purposes. A Gaussian-like weighting function which computes the similarity between pixels of interest was calculated from the reference image and implemented on a pixel by pixel basis for the noisy images. Results: CNR improvement compared to different methods (Charge-Integrated, Photon-Counting and Energy-Weighting) and after noise reduction was highly task-dependent. The CNR improvement with respect to the Charge-Integrated CNR for hydroxyapatite and iodine were 1.8 and 1.5, respectively. In each of the energy bins, the noise was reduced by approximately factor of two without altering their respective average gray levels. Conclusion: The proposed noise reduction technique for energy-resolved photon-counting detectors can significantly reduce image noise. This technique can be used as a compliment to the current energy-weighting methods in CNR optimization.

  13. Temporal binning of time-correlated single photon counting data improves exponential decay fits and imaging speed

    PubMed Central

    Walsh, Alex J.; Sharick, Joe T.; Skala, Melissa C.; Beier, Hope T.

    2016-01-01

    Time-correlated single photon counting (TCSPC) enables acquisition of fluorescence lifetime decays with high temporal resolution within the fluorescence decay. However, many thousands of photons per pixel are required for accurate lifetime decay curve representation, instrument response deconvolution, and lifetime estimation, particularly for two-component lifetimes. TCSPC imaging speed is inherently limited due to the single photon per laser pulse nature and low fluorescence event efficiencies (<10%) required to reduce bias towards short lifetimes. Here, simulated fluorescence lifetime decays are analyzed by SPCImage and SLIM Curve software to determine the limiting lifetime parameters and photon requirements of fluorescence lifetime decays that can be accurately fit. Data analysis techniques to improve fitting accuracy for low photon count data were evaluated. Temporal binning of the decays from 256 time bins to 42 time bins significantly (p<0.0001) improved fit accuracy in SPCImage and enabled accurate fits with low photon counts (as low as 700 photons/decay), a 6-fold reduction in required photons and therefore improvement in imaging speed. Additionally, reducing the number of free parameters in the fitting algorithm by fixing the lifetimes to known values significantly reduced the lifetime component error from 27.3% to 3.2% in SPCImage (p<0.0001) and from 50.6% to 4.2% in SLIM Curve (p<0.0001). Analysis of nicotinamide adenine dinucleotide–lactate dehydrogenase (NADH-LDH) solutions confirmed temporal binning of TCSPC data and a reduced number of free parameters improves exponential decay fit accuracy in SPCImage. Altogether, temporal binning (in SPCImage) and reduced free parameters are data analysis techniques that enable accurate lifetime estimation from low photon count data and enable TCSPC imaging speeds up to 6x and 300x faster, respectively, than traditional TCSPC analysis. PMID:27446663

  14. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    NASA Astrophysics Data System (ADS)

    Kumpová, I.; Vavřík, D.; Fíla, T.; Koudelka, P.; Jandejsek, I.; Jakůbek, J.; Kytýř, D.; Zlámal, P.; Vopálenský, M.; Gantar, A.

    2016-02-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical simulations.

  15. Initial steps toward the realization of large area arrays of single photon counting pixels based on polycrystalline silicon TFTs

    NASA Astrophysics Data System (ADS)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Jiang, Hao; Street, Robert A.; Lu, Jeng Ping

    2014-03-01

    The thin-film semiconductor processing methods that enabled creation of inexpensive liquid crystal displays based on amorphous silicon transistors for cell phones and televisions, as well as desktop, laptop and mobile computers, also facilitated the development of devices that have become ubiquitous in medical x-ray imaging environments. These devices, called active matrix flat-panel imagers (AMFPIs), measure the integrated signal generated by incident X rays and offer detection areas as large as ~43×43 cm2. In recent years, there has been growing interest in medical x-ray imagers that record information from X ray photons on an individual basis. However, such photon counting devices have generally been based on crystalline silicon, a material not inherently suited to the cost-effective manufacture of monolithic devices of a size comparable to that of AMFPIs. Motivated by these considerations, we have developed an initial set of small area prototype arrays using thin-film processing methods and polycrystalline silicon transistors. These prototypes were developed in the spirit of exploring the possibility of creating large area arrays offering single photon counting capabilities and, to our knowledge, are the first photon counting arrays fabricated using thin film techniques. In this paper, the architecture of the prototype pixels is presented and considerations that influenced the design of the pixel circuits, including amplifier noise, TFT performance variations, and minimum feature size, are discussed.

  16. Development and analysis of a photon-counting three-dimensional imaging laser detection and ranging (LADAR) system.

    PubMed

    Oh, Min Seok; Kong, Hong Jin; Kim, Tae Hoon; Jo, Sung Eun; Kim, Byung Wook; Park, Dong Jo

    2011-05-01

    In this paper, a photon-counting three-dimensional imaging laser detection and ranging (LADAR) system that uses a Geiger-mode avalanche photodiode (GAPD) of relatively short dead time (45 ns) is described. A passively Q-switched microchip laser is used as a laser source and a compact peripheral component interconnect system, which includes a time-to-digital converter (TDC), is set up for fast signal processing. The combination of a GAPD with short dead time and a TDC with a multistop function enables the system to operate in a single-hit or a multihit mode during the acquisition of time-of-flight data. The software for the three-dimensional visualization and an algorithm for the removal of noise are developed. For the photon-counting LADAR system, we establish a theoretical model of target-detection and false-alarm probabilities in both the single-hit and multihit modes with a Poisson statistic; this model provides the prediction of the performance of the system and a technique for the acquisition of a noise image with a GAPD. Both the noise image and the three-dimensional image of a scene acquired by the photon-counting LADAR system during the day are presented. PMID:21532685

  17. Characterization of a photon counting EMCCD for space-based high contrast imaging spectroscopy of extrasolar planets

    NASA Astrophysics Data System (ADS)

    Wilkins, Ashlee N.; McElwain, Michael W.; Norton, Timothy J.; Rauscher, Bernie J.; Rothe, Johannes F.; Malatesta, Michael; Hilton, George M.; Bubeck, James R.; Grady, Carol A.; Lindler, Don J.

    2014-07-01

    We present the progress of characterization of a low-noise, photon counting Electron Multiplying Charged Coupled Device (EMCCD) operating in optical wavelengths and demonstrate possible solutions to the problems of Clock-Induced Charge (CIC) and other trapped charge through sub-bandgap illumination. Such a detector will be vital to the feasibility of future space-based direct imaging and spectroscopy missions for exoplanet characterization, and is scheduled to y on-board the AFTA-WFIRST mission. The 512×512 EMCCD is an e2v detector housed and clocked by a Nüvü Cameras controller. Through a multiplication gain register, this detector produces as many as 5000 electrons for a single, incident-photon-induced photoelectron produced in the detector, enabling single photon counting operation with read noise and dark current orders of magnitude below that of standard CCDs. With the extremely high contrasts (Earth-to-Sun flux ratio is ~ 10-10) and extremely faint targets (an Earth analog would measure 28th - 30th magnitude or fainter), a photon-counting EMCCD is absolutely necessary to measure the signatures of habitability on an Earth-like exoplanet within the timescale of a mission's lifetime, and we discuss the concept of operations for an EMCCD making such measurements.

  18. Energy Calibration of a CdTe Photon Counting Spectral Detector with Consideration of its Non-Convergent Behavior

    PubMed Central

    Lee, Jeong Seok; Kang, Dong-Goo; Jin, Seung Oh; Kim, Insoo; Lee, Soo Yeol

    2016-01-01

    Fast and accurate energy calibration of photon counting spectral detectors (PCSDs) is essential for their biomedical applications to identify and characterize bio-components or contrast agents in tissues. Using the x-ray tube voltage as a reference for energy calibration is known to be an efficient method, but there has been no consideration in the energy calibration of non-convergent behavior of PCSDs. We observed that a single pixel mode (SPM) CdTe PCSD based on Medipix-2 shows some non-convergent behaviors in turning off the detector elements when a high enough threshold is applied to the comparator that produces a binary photon count pulse. More specifically, the detector elements are supposed to stop producing photon count pulses once the threshold reaches a point of the highest photon energy determined by the tube voltage. However, as the x-ray exposure time increases, the threshold giving 50% of off pixels also increases without converging to a point. We established a method to take account of the non-convergent behavior in the energy calibration. With the threshold-to-photon energy mapping function established by the proposed method, we could better identify iodine component in a phantom consisting of iodine and other components. PMID:27077856

  19. A hybrid Monte Carlo model for the energy response functions of X-ray photon counting detectors

    NASA Astrophysics Data System (ADS)

    Wu, Dufan; Xu, Xiaofei; Zhang, Li; Wang, Sen

    2016-09-01

    In photon counting computed tomography (CT), it is vital to know the energy response functions of the detector for noise estimation and system optimization. Empirical methods lack flexibility and Monte Carlo simulations require too much knowledge of the detector. In this paper, we proposed a hybrid Monte Carlo model for the energy response functions of photon counting detectors in X-ray medical applications. GEANT4 was used to model the energy deposition of X-rays in the detector. Then numerical models were used to describe the process of charge sharing, anti-charge sharing and spectral broadening, which were too complicated to be included in the Monte Carlo model. Several free parameters were introduced in the numerical models, and they could be calibrated from experimental measurements such as X-ray fluorescence from metal elements. The method was used to model the energy response function of an XCounter Flite X1 photon counting detector. The parameters of the model were calibrated with fluorescence measurements. The model was further tested against measured spectrums of a VJ X-ray source to validate its feasibility and accuracy.

  20. Energy Calibration of a CdTe Photon Counting Spectral Detector with Consideration of its Non-Convergent Behavior.

    PubMed

    Lee, Jeong Seok; Kang, Dong-Goo; Jin, Seung Oh; Kim, Insoo; Lee, Soo Yeol

    2016-01-01

    Fast and accurate energy calibration of photon counting spectral detectors (PCSDs) is essential for their biomedical applications to identify and characterize bio-components or contrast agents in tissues. Using the x-ray tube voltage as a reference for energy calibration is known to be an efficient method, but there has been no consideration in the energy calibration of non-convergent behavior of PCSDs. We observed that a single pixel mode (SPM) CdTe PCSD based on Medipix-2 shows some non-convergent behaviors in turning off the detector elements when a high enough threshold is applied to the comparator that produces a binary photon count pulse. More specifically, the detector elements are supposed to stop producing photon count pulses once the threshold reaches a point of the highest photon energy determined by the tube voltage. However, as the x-ray exposure time increases, the threshold giving 50% of off pixels also increases without converging to a point. We established a method to take account of the non-convergent behavior in the energy calibration. With the threshold-to-photon energy mapping function established by the proposed method, we could better identify iodine component in a phantom consisting of iodine and other components. PMID:27077856