Photonic band gap structure simulator
Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.
2006-10-03
A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.
Photonic Band Gap structures: A new approach to accelerator cavities
Kroll, N. |; Smith, D.R.; Schultz, S.
1992-12-31
We introduce a new accelerator cavity design based on Photonic Band Gap (PGB) structures. The PGB cavity consists of a two-dimensional periodic array of high dielectric, low loss cylinders with a single removal defect, bounded on top and bottom by conducting sheets. We present the results of both numerical simulations and experimental measurements on the PGB cavity.
Soukoulis, C.M. |
1993-12-31
An overview of the theoretical and experimental efforts in obtaining a photonic band gap, a frequency band in three-dimensional dielectric structures in which electromagnetic waves are forbidden, is presented.
Photonic Crystal and Photonic Band-Gap Structures for Light Extraction and Emission Control
NASA Astrophysics Data System (ADS)
de La Rue, Richard M.
Research into photonic crystal (PhC) and photonic band-gap (PBG) structures has been motivated, from the start, by their possible use in controlling, modifying and enhancing the light emission process from high refractive index solid materials. This chapter considers the possible role of such structures when incorporated into semiconductor diode based light-emitting devices. Both light-emitting diodes (LEDs) and lasers will be considered. In order to provide a proper framework for discussion and analysis, space is devoted to the historical development of III-V semiconductor based LEDs — and to competing alternative approaches that have been demonstrated for enhanced light extraction. The possible advantages of photonic quasi-crystal (PQC) structures over regularly periodic photon crystal structures for advanced LED designs are also considered. Photonic crystal structures potentially provide major enhancements in the performance of laser diodes (LDs) — and progress towards this performance enhancement will be reviewed.
Phononic and photonic band gap structures: modelling and applications
NASA Astrophysics Data System (ADS)
Armenise, Mario N.; Campanella, Carlo E.; Ciminelli, Caterina; Dell'Olio, Francesco; Passaro, Vittorio M. N.
2010-01-01
Photonic crystals (PhCs) are artificial materials with a permittivity which is a periodic function of the position, with a period comparable to the wavelength of light. The most interesting characteristic of such materials is the presence of photonic band gaps (PBGs). PhCs have very interesting properties of light confinement and localization together with the strong reduction of the device size, orders of magnitude less than the conventional photonic devices, allowing a potential very high scale of integration. These structures possess unique characteristics enabling to operate as optical waveguides, high Q resonators, selective filters, lens or superprism. The ability to mould and guide light leads naturally to novel applications in several fields. Band gap formation in periodic structures also pertains to elastic wave propagation. Composite materials with elastic coefficients which are periodic functions of the position are named phononic crystals. They have properties similar to those of photonic crystals and corresponding applications too. By properly choosing the parameters one may obtain phononic crystals (PhnCs) with specific frequency gaps. An elastic wave, whose frequency lies within an absolute gap of a phononic crystal, will be completely reflected by it. This property allows realizing non-absorbing mirrors of elastic waves and vibration-free cavities which might be useful in high-precision mechanical systems operating in a given frequency range. Moreover, one can use elastic waves to study phenomena such as those associated with disorder, in more or less the same manner as with electromagnetic waves. The authors present in this paper an introductory survey of the basic concepts of these new technologies with particular emphasis on their main applications, together with a description of some modelling approaches.
Unfolding the band structure of non-crystalline photonic band gap materials
Tsitrin, Samuel; Williamson, Eric Paul; Amoah, Timothy; Nahal, Geev; Chan, Ho Leung; Florescu, Marian; Man, Weining
2015-01-01
Non-crystalline photonic band gap (PBG) materials have received increasing attention, and sizeable PBGs have been reported in quasi-crystalline structures and, more recently, in disordered structures. Band structure calculations for periodic structures produce accurate dispersion relations, which determine group velocities, dispersion, density of states and iso-frequency surfaces, and are used to predict a wide-range of optical phenomena including light propagation, excited-state decay rates, temporal broadening or compression of ultrashort pulses and complex refraction phenomena. However, band calculations for non-periodic structures employ large super-cells of hundreds to thousands building blocks, and provide little useful information other than the PBG central frequency and width. Using stereolithography, we construct cm-scale disordered PBG materials and perform microwave transmission measurements, as well as finite-difference time-domain (FDTD) simulations. The photonic dispersion relations are reconstructed from the measured and simulated phase data. Our results demonstrate the existence of sizeable PBGs in these disordered structures and provide detailed information of the effective band diagrams, dispersion relation, iso-frequency contours, and their angular dependence. Slow light phenomena are also observed in these structures near gap frequencies. This study introduces a powerful tool to investigate photonic properties of non-crystalline structures and provides important effective dispersion information, otherwise difficult to obtain. PMID:26289434
Unfolding the band structure of non-crystalline photonic band gap materials
NASA Astrophysics Data System (ADS)
Tsitrin, Samuel; Williamson, Eric Paul; Amoah, Timothy; Nahal, Geev; Chan, Ho Leung; Florescu, Marian; Man, Weining
2015-08-01
Non-crystalline photonic band gap (PBG) materials have received increasing attention, and sizeable PBGs have been reported in quasi-crystalline structures and, more recently, in disordered structures. Band structure calculations for periodic structures produce accurate dispersion relations, which determine group velocities, dispersion, density of states and iso-frequency surfaces, and are used to predict a wide-range of optical phenomena including light propagation, excited-state decay rates, temporal broadening or compression of ultrashort pulses and complex refraction phenomena. However, band calculations for non-periodic structures employ large super-cells of hundreds to thousands building blocks, and provide little useful information other than the PBG central frequency and width. Using stereolithography, we construct cm-scale disordered PBG materials and perform microwave transmission measurements, as well as finite-difference time-domain (FDTD) simulations. The photonic dispersion relations are reconstructed from the measured and simulated phase data. Our results demonstrate the existence of sizeable PBGs in these disordered structures and provide detailed information of the effective band diagrams, dispersion relation, iso-frequency contours, and their angular dependence. Slow light phenomena are also observed in these structures near gap frequencies. This study introduces a powerful tool to investigate photonic properties of non-crystalline structures and provides important effective dispersion information, otherwise difficult to obtain.
Unfolding the band structure of non-crystalline photonic band gap materials.
Tsitrin, Samuel; Williamson, Eric Paul; Amoah, Timothy; Nahal, Geev; Chan, Ho Leung; Florescu, Marian; Man, Weining
2015-01-01
Non-crystalline photonic band gap (PBG) materials have received increasing attention, and sizeable PBGs have been reported in quasi-crystalline structures and, more recently, in disordered structures. Band structure calculations for periodic structures produce accurate dispersion relations, which determine group velocities, dispersion, density of states and iso-frequency surfaces, and are used to predict a wide-range of optical phenomena including light propagation, excited-state decay rates, temporal broadening or compression of ultrashort pulses and complex refraction phenomena. However, band calculations for non-periodic structures employ large super-cells of hundreds to thousands building blocks, and provide little useful information other than the PBG central frequency and width. Using stereolithography, we construct cm-scale disordered PBG materials and perform microwave transmission measurements, as well as finite-difference time-domain (FDTD) simulations. The photonic dispersion relations are reconstructed from the measured and simulated phase data. Our results demonstrate the existence of sizeable PBGs in these disordered structures and provide detailed information of the effective band diagrams, dispersion relation, iso-frequency contours, and their angular dependence. Slow light phenomena are also observed in these structures near gap frequencies. This study introduces a powerful tool to investigate photonic properties of non-crystalline structures and provides important effective dispersion information, otherwise difficult to obtain. PMID:26289434
Analysis of tunable photonic band structure in an extrinsic plasma photonic crystal
NASA Astrophysics Data System (ADS)
King, Tzu-Chyang; Yang, Chih-Chiang; Hsieh, Pei-Hung; Chang, Tsung-Wen; Wu, Chien-Jang
2015-03-01
In this work, we theoretically investigate the tunable photonic band structure (PBS) for an extrinsic plasma photonic crystal (PPC). The extrinsic PPC is made of a bulk cold plasma layer which is influenced by an externally periodic static magnetic field. The PBS can be tuned by the variation of the magnitude of externally applied magnetic field. In addition, we also show that the PBS can be changed as a function of the electron density as well as the thickness variation.
Perina, Jan Jr.; Centini, Marco; Sibilia, Concita; Bertolotti, Mario; Scalora, Michael
2006-03-15
We have developed a rigorous quantum model of spontaneous parametric down-conversion in a nonlinear 1D photonic-band-gap structure based upon expansion of the field into monochromatic plane waves. The model provides a two-photon amplitude of a created photon pair. The spectra of the signal and idler fields, their intensity profiles in the time domain, as well as the coincidence-count interference pattern in a Hong-Ou-Mandel interferometer are determined both for cw and pulsed pumping regimes in terms of the two-photon amplitude. A broad range of parameters characterizing the emitted down-converted fields can be used. As an example, a structure composed of 49 layers of GaN/AlN is analyzed as a suitable source of photon pairs having high efficiency.
NASA Astrophysics Data System (ADS)
Le, Zichun; Yang, Yang; Quan, Bisheng; Wang, Weibiao; Wang, Xiaoxiao; Chi, Yongjiang; Ma, Lingfang
2005-01-01
Photonic crystals have been widely studied in the fields of physics, material science and optical information technology. In general, the standard rectangular finite difference time domain (FDTD) method is used to predict the performances of photonic crystals. It is however very time consuming and inefficient. The current authors developed a software called GCFE, which is based on a non-orthogonal FDTD method. The software can be used to predict the photonic band structures, photonic states density and transmission and/or reflection coefficients for one-dimensional to three-dimensional photonic crystals. In the present paper, the derivations of the discrete Maxwell"s equations in time-domain and space-domain and the derivation of the discrete transfer matrix in real-space domain are briefly described firstly. In addition, the design idea and the functions of GCFE version 2.0.00 are introduced. Moreover, the band structures, transmission and reflection coefficients and photonic states density for the photonic crystal with cube lattice are calculated by our GCFE software, and numerical application results are also shown.
NASA Astrophysics Data System (ADS)
Vargas, W. E.; Hernández-Jiménez, M.; Libby, E.; Azofeifa, D. E.; Solis, Á.; Barboza-Aguilar, C.
2015-09-01
Under normal illumination with non-polarized light, reflection spectra of the cuticle of golden-like and red Chrysina aurigans scarabs show a structured broad band of left-handed circularly polarized light. The polarization of the reflected light is attributed to a Bouligand-type left-handed chiral structure found through the scarab's cuticle. By considering these twisted structures as one-dimensional photonic crystals, a novel approach is developed from the dispersion relation of circularly polarized electromagnetic waves traveling through chiral media, to show how the broad band characterizing these spectra arises from an intrinsic narrow photonic band gap whose spectral position moves through visible and near-infrared wavelengths.
Gupta, Sandhya; Tuttle, Gary L.; Sigalas, Mihail; McCalmont, Jonathan S.; Ho, Kai-Ming
2001-08-14
A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.
Martinez, Luis Javier; Alija, Alfonso Rodriguez; Postigo, Pablo Aitor; Galisteo-López, J F; Galli, Matteo; Andreani, Lucio Claudio; Seassal, Christian; Viktorovitch, Pierre
2008-06-01
We investigate the change of the photonic band structure of the Suzuki-phase photonic crystal lattice when the horizontal mirror symmetry is broken by an underlying Bragg reflector. The structure consists of an InP photonic crystal slab including four InAsP quantum wells, a SiO(2) bonding layer, and a bottom high index contrast Si/SiO(2) Bragg mirror deposited on a Si wafer. Angle- and polarization-resolved photoluminescence spectroscopy has been used for measuring the photonic band structure and for investigating the coupling to a polarized plane wave in the far field. A drastic change in the k-space photonic dispersion between the structure with and without Bragg reflector is measured. An important enhancement on the photoluminescence emission up to seven times has been obtained for a nearly flat photonic band, which is characteristic of the Suzuki-phase lattice. PMID:18545565
Photonic band structures of one-dimensional photonic crystals doped with plasma
NASA Astrophysics Data System (ADS)
Guo, B.; Xie, M. Q.; Peng, L.
2012-07-01
The photonic band structures (PBSs) of oblique incidence propagation in one-dimensional plasma-doped photonic crystals (PCs) are investigated carefully. When the lattice constant of plasma-doped PCs is less than the incident wavelength, the PC becomes anisotropic. Therefore, the dielectric constant of PC is converted into a complex tensor dielectric constant. This determines the PBSs of PCs. In the present paper, one-dimensional PCs are taken as an example to study both normal and absorption PBSs. Using both the effective medium approximation and the transfer matrix method, we can derive the dispersion relation for PCs. The dependence of the plasma filling factor on the effective dielectric constant and PBSs is calculated and discussed.
X-Band Photonic Band-Gap Accelerator Structure Breakdown Experiment
Marsh, Roark A.; Shapiro, Michael A.; Temkin, Richard J.; Dolgashev, Valery A.; Laurent, Lisa L.; Lewandowski, James R.; Yeremian, A.Dian; Tantawi, Sami G.; /SLAC
2012-06-11
In order to understand the performance of photonic band-gap (PBG) structures under realistic high gradient, high power, high repetition rate operation, a PBG accelerator structure was designed and tested at X band (11.424 GHz). The structure consisted of a single test cell with matching cells before and after the structure. The design followed principles previously established in testing a series of conventional pillbox structures. The PBG structure was tested at an accelerating gradient of 65 MV/m yielding a breakdown rate of two breakdowns per hour at 60 Hz. An accelerating gradient above 110 MV/m was demonstrated at a higher breakdown rate. Significant pulsed heating occurred on the surface of the inner rods of the PBG structure, with a temperature rise of 85 K estimated when operating in 100 ns pulses at a gradient of 100 MV/m and a surface magnetic field of 890 kA/m. A temperature rise of up to 250 K was estimated for some shots. The iris surfaces, the location of peak electric field, surprisingly had no damage, but the inner rods, the location of the peak magnetic fields and a large temperature rise, had significant damage. Breakdown in accelerator structures is generally understood in terms of electric field effects. These PBG structure results highlight the unexpected role of magnetic fields in breakdown. The hypothesis is presented that the moderate level electric field on the inner rods, about 14 MV/m, is enhanced at small tips and projections caused by pulsed heating, leading to breakdown. Future PBG structures should be built to minimize pulsed surface heating and temperature rise.
Sakai, Osamu; Sakaguchi, Takui; Tachibana, Kunihide
2007-04-01
Two theoretical approaches appropriate for two-dimensional plasma photonic crystals reveal dispersions of propagating waves including photonic (electromagnetic) band gaps and multiflatbands. A modified plane-wave expansion method yields dispersions of collisional periodical plasmas, and the complex-value solution of a wave equation by a finite difference method enables us to obtain dispersions with structure effects in an individual microplasma. Periodical plasma arrays form band gaps as well as normal photonic crystals, and multiflatbands are present below the electron plasma frequency in the transverse electric field mode. Electron elastic collisions lower the top frequency of the multiflatbands but have little effect on band gap properties. The spatial gradient of the local dielectric constant resulting from an electron density profile widens the frequency region of the multiflatbands, as demonstrated by the change of surface wave distributions. Propagation properties described in dispersions including band gaps and flatbands agree with experimental observations of microplasma arrays.
Photonic Band Gap Structures as a Gateway to Nano-Photonics
FRITZ, IAN J.; GOURLEY, PAUL L.; HAMMONS, G.; HIETALA, VINCENT M.; JONES, ERIC D.; KLEM, JOHN F.; KURTZ, SHARON L.; LIN, SHAWN-YU; LYO, SUNGKWUN K.; VAWTER, GREGORY A.; WENDT, JOEL R.
1999-08-01
This LDRD project explored the fundamental physics of a new class of photonic materials, photonic bandgap structures (PBG), and examine its unique properties for the design and implementation of photonic devices on a nano-meter length scale for the control and confinement of light. The low loss, highly reflective and quantum interference nature of a PBG material makes it one of the most promising candidates for realizing an extremely high-Q resonant cavity, >10,000, for optoelectronic applications and for the exploration of novel photonic physics, such as photonic localization, tunneling and modification of spontaneous emission rate. Moreover, the photonic bandgap concept affords us with a new opportunity to design and tailor photonic properties in very much the same way we manipulate, or bandgap engineer, electronic properties through modern epitaxy.
Photonic-band-gap effects in two-dimensional polycrystalline and amorphous structures
Yang, Jin-Kyu; Noh, Heeso; Liew, Seng-Fatt; Schreck, Carl; Guy, Mikhael I.; O'Hern, Corey S.; Cao, Hui
2010-11-15
We study numerically the density of optical states (DOS) in two-dimensional photonic structures with short-range positional order and observe a transition from polycrystalline to amorphous photonic systems. In polycrystals, photonic band gaps (PBGs) are formed within individual domains, which leads to a depletion of the DOS similar to that in periodic structures. In amorphous photonic media, the domain sizes are too small to form PBGs, thus the depletion of the DOS is weakened significantly. The critical domain size that separates the polycrystalline and amorphous regimes is determined by the attenuation length of Bragg scattering, which depends not only on the degree of positional order but also the refractive-index contrast of the photonic material. Even with relatively low-refractive-index contrast, we find that modest short-range positional order in photonic structures enhances light confinement via collective scattering and interference.
Band structure of germanium carbides for direct bandgap silicon photonics
NASA Astrophysics Data System (ADS)
Stephenson, C. A.; O'Brien, W. A.; Penninger, M. W.; Schneider, W. F.; Gillett-Kunnath, M.; Zajicek, J.; Yu, K. M.; Kudrawiec, R.; Stillwell, R. A.; Wistey, M. A.
2016-08-01
Compact optical interconnects require efficient lasers and modulators compatible with silicon. Ab initio modeling of Ge1-xCx (x = 0.78%) using density functional theory with HSE06 hybrid functionals predicts a splitting of the conduction band at Γ and a strongly direct bandgap, consistent with band anticrossing. Photoreflectance of Ge0.998C0.002 shows a bandgap reduction supporting these results. Growth of Ge0.998C0.002 using tetrakis(germyl)methane as the C source shows no signs of C-C bonds, C clusters, or extended defects, suggesting highly substitutional incorporation of C. Optical gain and modulation are predicted to rival III-V materials due to a larger electron population in the direct valley, reduced intervalley scattering, suppressed Auger recombination, and increased overlap integral for a stronger fundamental optical transition.
The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique
Kevin Jerome Sutherland
2001-05-01
Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.
Parametric analysis of 2D guided-wave photonic band gap structures
NASA Astrophysics Data System (ADS)
Ciminelli, C.; Peluso, F.; Armenise, M. N.
2005-11-01
The parametric analysis of the electromagnetic properties of 2D guided wave photonic band gap structures is reported with the aim of providing a valid tool for the optimal design. The modelling approach is based on the Bloch-Floquet method. Different lattice configurations and geometrical parameters are considered. An optimum value for the ratio between the hole (or rod) radius and the lattice constant does exist and the calculation demonstrated that it is almost independent from the etching depth, only depending on the lattice type. The results are suitable for the design optimisation of photonic crystal reflectors to be used in integrated optical devices.
Parametric analysis of 2D guided-wave photonic band gap structures.
Ciminelli, C; Peluso, F; Armenise, M
2005-11-28
The parametric analysis of the electromagnetic properties of 2D guided wave photonic band gap structures is reported with the aim of providing a valid tool for the optimal design. The modelling approach is based on the Bloch-Floquet method. Different lattice configurations and geometrical parameters are considered. An optimum value for the ratio between the hole (or rod) radius and the lattice constant does exist and the calculation demonstrated that it is almost independent from the etching depth, only depending on the lattice type. The results are suitable for the design optimisation of photonic crystal reflectors to be used in integrated optical devices. PMID:19503180
NASA Astrophysics Data System (ADS)
Wang, H.; Yang, Z. Y.; Lu, Y. F.
2007-02-01
Laser-assisted chemical vapor deposition was applied in fabricating three-dimensional (3D) spherical-shell photonic band gap (PBG) structures by depositing silicon shells covering silica particles, which had been self-assembled into 3D colloidal crystals. The colloidal crystals of self-assembled silica particles were formed on silicon substrates using the isothermal heating evaporation approach. A continuous wave Nd:YAG laser (1064nm wavelength) was used to deposit silicon shells by thermally decomposing disilane gas. Periodic silicon-shell/silica-particle PBG structures were obtained. By removing the silica particles enclosed in the silicon shells using hydrofluoric acid, hollow spherical silicon-shell arrays were produced. This technique is capable of fabricating structures with complete photonic band gaps, which is predicted by simulations with the plane wave method. The techniques developed in this study have the potential to flexibly engineer the positions of the PBGs by varying both the silica particle size and the silicon-shell thickness. Ellipsometry was used to investigate the specific photonic band gaps for both structures.
Influence of structural parameters on tunable photonic band gaps modulated by liquid crystals
NASA Astrophysics Data System (ADS)
Huang, Aiqin; Zheng, Jihong; Jiang, Yanmeng; Zhou, Zengjun; Tang, Pingyu; Zhuang, Songlin
2011-10-01
Tunable photonic crystals (PCs), which are infiltrated with nematic liquid crystals (LCs), tune photonic band gap (PBG) by rotating directors of LCs when applied with the external electrical field. Using the plane wave expansion method, we simulated the PBG structure of two-dimensional tunable PCs with a triangular lattice of circular column, square column and hexagon column, respectively. When PCs are composed of LCs and different substrate materials such as germanium (Ge) and silicon (Si), the influence of structural parameters including column shape and packing ration on PBG is discussed separately. Numerical simulations show that absolute PBG can't be found at any conditions, however large tuning range of polarized wave can be achieved by rotating directors of LCs. The simulation results provide theoretical guidance for the fabrication of field-sensitive polarizer with big tunable band range.
Ozbay, Ekmel; Tuttle, Gary; Michel, Erick; Ho, Kai-Ming; Biswas, Rana; Chan, Che-Ting; Soukoulis, Costas
1995-01-01
A method for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap.
Ozbay, E.; Tuttle, G.; Michel, E.; Ho, K.M.; Biswas, R.; Chan, C.T.; Soukoulis, C.
1995-04-11
A method is disclosed for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap. 42 figures.
Nonlinear optical response of semiconductor-nanocrystals-embedded photonic band gap structure
Liao, Chen; Zhang, Huichao; Tang, Luping; Zhou, Zhiqiang; Lv, Changgui; Cui, Yiping; Zhang, Jiayu
2014-04-28
Colloidal CdSe/ZnS core/shell nanocrystals (NCs), which were dispersed in SiO{sub 2} sol, were utilized to fabricate a SiO{sub 2}:NCs/TiO{sub 2} all-dielectric photonic band gap (PBG) structure. The third-order nonlinear refractive index (n{sub 2}) of the PBG structure was nearly triple of that of the SiO{sub 2}:NCs film due to the local field enhancement in the PBG structure. The photoinduced change in refractive index (Δn) could shift the PBG band edge, so the PBG structure would show significant transmission modification, whose transmission change was ∼17 folds of that of the SiO{sub 2}:NCs film. Under excitation of a 30 GW/cm{sup 2} femtosecond laser beam, a transmission decrease of 80% was realized.
Zhang Haifeng; Liu Shaobin; Kong Xiangkun; Bian Borui; Dai Yi
2012-11-15
In this paper, an omnidirectional photonic band gap realized by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure, which is composed of homogeneous unmagnetized plasma and two kinds of isotropic dielectric, is theoretically studied by the transfer matrix method. It has been shown that such an omnidirectional photonic band gap originates from Bragg gap in contrast to zero-n gap or single negative (negative permittivity or negative permeability) gap, and it is insensitive to the incidence angle and the polarization of electromagnetic wave. From the numerical results, the frequency range and central frequency of omnidirectional photonic band gap can be tuned by the thickness and density of the plasma but cease to change with increasing Fibonacci order. The bandwidth of omnidirectional photonic band gap can be notably enlarged. Moreover, the plasma collision frequency has no effect on the bandwidth of omnidirectional photonic band gap. It is shown that such new structure Fibonacci quasiperiodic one-dimensional ternary plasma photonic crystals have a superior feature in the enhancement of frequency range of omnidirectional photonic band gap compared with the conventional ternary and conventional Fibonacci quasiperiodic ternary plasma photonic crystals.
Robust topology optimization of three-dimensional photonic-crystal band-gap structures.
Men, H; Lee, K Y K; Freund, R M; Peraire, J; Johnson, S G
2014-09-22
We perform full 3D topology optimization (in which "every voxel" of the unit cell is a degree of freedom) of photonic-crystal structures in order to find optimal omnidirectional band gaps for various symmetry groups, including fcc (including diamond), bcc, and simple-cubic lattices. Even without imposing the constraints of any fabrication process, the resulting optimal gaps are only slightly larger than previous hand designs, suggesting that current photonic crystals are nearly optimal in this respect. However, optimization can discover new structures, e.g. a new fcc structure with the same symmetry but slightly larger gap than the well known inverse opal, which may offer new degrees of freedom to future fabrication technologies. Furthermore, our band-gap optimization is an illustration of a computational approach to 3D dispersion engineering which is applicable to many other problems in optics, based on a novel semidefinite-program formulation for nonconvex eigenvalue optimization combined with other techniques such as a simple approach to impose symmetry constraints. We also demonstrate a technique for robust topology optimization, in which some uncertainty is included in each voxel and we optimize the worst-case gap, and we show that the resulting band gaps have increased robustness to systematic fabrication errors. PMID:25321732
Robust topology optimization of three-dimensional photonic-crystal band-gap structures
NASA Astrophysics Data System (ADS)
Men, H.; Lee, K. Y. K.; Freund, R. M.; Peraire, J.; Johnson, S. G.
2014-09-01
We perform full 3D topology optimization (in which "every voxel" of the unit cell is a degree of freedom) of photonic-crystal structures in order to find optimal omnidirectional band gaps for various symmetry groups, including fcc (including diamond), bcc, and simple-cubic lattices. Even without imposing the constraints of any fabrication process, the resulting optimal gaps are only slightly larger than previous hand designs, suggesting that current photonic crystals are nearly optimal in this respect. However, optimization can discover new structures, e.g. a new fcc structure with the same symmetry but slightly larger gap than the well known inverse opal, which may offer new degrees of freedom to future fabrication technologies. Furthermore, our band-gap optimization is an illustration of a computational approach to 3D dispersion engineering which is applicable to many other problems in optics, based on a novel semidefinite-program formulation for nonconvex eigenvalue optimization combined with other techniques such as a simple approach to impose symmetry constraints. We also demonstrate a technique for \\emph{robust} topology optimization, in which some uncertainty is included in each voxel and we optimize the worst-case gap, and we show that the resulting band gaps have increased robustness to systematic fabrication errors.
Structural Coloration of Colloidal Fiber by Photonic Band Gap and Resonant Mie Scattering.
Yuan, Wei; Zhou, Ning; Shi, Lei; Zhang, Ke-Qin
2015-07-01
Because structural color is fadeless and dye-free, structurally colored materials have attracted great attention in a wide variety of research fields. In this work, we report the use of a novel structural coloration strategy applied to the fabrication of colorful colloidal fibers. The nanostructured fibers with tunable structural colors were massively produced by colloidal electrospinning. Experimental results and theoretical modeling reveal that the homogeneous and noniridescent structural colors of the electrospun fibers are caused by two phenomena: reflection due to the band gap of photonic structure and Mie scattering of the colloidal spheres. Our unprecedented findings show promise in paving way for the development of revolutionary dye-free technology for the coloration of various fibers. PMID:26066732
Observation of wakefields in a beam-driven photonic band gap accelerating structure.
Conde, M.; Yusof, Z.; Power, J. G.; Jing, C.; Gao, F.; Antipov, S.; Xu, P.; Zheng, S.; Chen, H.; Tang, C.; Gai, W.; High Energy Physics; Euclid Techlabs LLC; Tsinghua Univ.
2009-12-01
Wakefield excitation has been experimentally studied in a three-cell X-band standing wave photonic band gap (PBG) accelerating structure. Major monopole (TM{sub 01}- and TM{sub 02}-like) and dipole (TM{sub 11}- and TM{sub 12}-like) modes were identified and characterized by precisely controlling the position of beam injection. The quality factor Q of the dipole modes was measured to be {approx}10 times smaller than that of the accelerating mode. A charge sweep, up to 80 nC, has been performed, equivalent to {approx} 30 MV/m accelerating field on axis. A variable delay low charge witness bunch following a high charge drive bunch was used to calibrate the gradient in the PBG structure by measuring its maximum energy gain and loss. Experimental results agree well with numerical simulations.
Exceptional Contours and Band Structure Design in Parity-Time Symmetric Photonic Crystals
NASA Astrophysics Data System (ADS)
Cerjan, Alexander; Raman, Aaswath; Fan, Shanhui
2016-05-01
We investigate the properties of two-dimensional parity-time symmetric periodic systems whose non-Hermitian periodicity is an integer multiple of the underlying Hermitian system's periodicity. This creates a natural set of degeneracies that can undergo thresholdless P T transitions. We derive a k .p perturbation theory suited to the continuous eigenvalues of such systems in terms of the modes of the underlying Hermitian system. In photonic crystals, such thresholdless P T transitions are shown to yield significant control over the band structure of the system, and can result in all-angle supercollimation, a P T -superprism effect, and unidirectional behavior.
Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure
Simakov, Evgenya I.; Arsenyev, Sergey A.; Buechler, Cynthia E.; Edwards, Randall L.; Romero, William P.; Conde, Manoel; Ha, Gwanghui; Power, John G.; Wisniewski, Eric E.; Jing, Chunguang
2016-02-10
We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic band gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. Wemore » conducted an experiment at the Argonne Wakefield Accelerator (AWA) test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Lastly, excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test.« less
Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure.
Simakov, Evgenya I; Arsenyev, Sergey A; Buechler, Cynthia E; Edwards, Randall L; Romero, William P; Conde, Manoel; Ha, Gwanghui; Power, John G; Wisniewski, Eric E; Jing, Chunguang
2016-02-12
We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic-band-gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have the potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. We conducted an experiment at the Argonne Wakefield Accelerator test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test. PMID:26918995
Periodic dielectric structure for production of photonic band gap and devices incorporating the same
Ho, Kai-Ming; Chan, Che-Ting; Soukoulis, Costas
1994-08-02
A periodic dielectric structure which is capable of producing a photonic band gap and which is capable of practical construction. The periodic structure is formed of a plurality of layers, each layer being formed of a plurality of rods separated by a given spacing. The material of the rods contrasts with the material between the rods to have a refractive index contrast of at least two. The rods in each layer are arranged with their axes parallel and at a given spacing. Adjacent layers are rotated by 90.degree., such that the axes of the rods in any given layer are perpendicular to the axes in its neighbor. Alternating layers (that is, successive layers of rods having their axes parallel such as the first and third layers) are offset such that the rods of one are about at the midpoint between the rods of the other. A four-layer periocity is thus produced, and successive layers are stacked to form a three-dimensional structure which exhibits a photonic band gap. By virtue of forming the device in layers of elongate members, it is found that the device is susceptible of practical construction.
Experimental high gradient testing of a 17.1 GHz photonic band-gap accelerator structure
NASA Astrophysics Data System (ADS)
Munroe, Brian J.; Zhang, JieXi; Xu, Haoran; Shapiro, Michael A.; Temkin, Richard J.
2016-03-01
We report the design, fabrication, and high gradient testing of a 17.1 GHz photonic band-gap (PBG) accelerator structure. Photonic band-gap (PBG) structures are promising candidates for electron accelerators capable of high-gradient operation because they have the inherent damping of high order modes required to avoid beam breakup instabilities. The 17.1 GHz PBG structure tested was a single cell structure composed of a triangular array of round copper rods of radius 1.45 mm spaced by 8.05 mm. The test assembly consisted of the test PBG cell located between conventional (pillbox) input and output cells, with input power of up to 4 MW from a klystron supplied via a TM01 mode launcher. Breakdown at high gradient was observed by diagnostics including reflected power, downstream and upstream current monitors and visible light emission. The testing procedure was first benchmarked with a conventional disc-loaded waveguide structure, which reached a gradient of 87 MV /m at a breakdown probability of 1.19 ×10-1 per pulse per meter. The PBG structure was tested with 100 ns pulses at gradient levels of less than 90 MV /m in order to limit the surface temperature rise to 120 K. The PBG structure reached up to 89 MV /m at a breakdown probability of 1.09 ×10-1 per pulse per meter. These test results show that a PBG structure can simultaneously operate at high gradients and low breakdown probability, while also providing wakefield damping.
The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique
Kevin Jerome Sutherland
2001-06-27
Over the last ten years, photonic band gap (PBG) theory and technology have become an important area of research because of the numerous possible applications ranging from high-efficiency laser diodes to optical circuitry. This research concentrates on reducing the length scale in the fabrication of layered photonic band gap structures and developing procedures to improve processing consistency. Various procedures and materials have been used in the fabrication of layered PBG structures. This research focused on an economical micro transfer molding approach to create the final PBG structure. A poly dimethylsiloxane (PDMS) rubber mold was created from a silicon substrate. It was filled with epoxy and built layer-by-layer to create a 3-D epoxy structure. This structure was infiltrated with nanoparticle titania or a titania sol-gel, then fired to remove the polymer mold, leaving a monolithic ceramic inverse of the epoxy structure. The final result was a lattice of titania rolds that resembles a face-centered tetragonal structure. The original intent of this research was to miniaturize this process to a bar size small enough to create a photonic band gap for wavelengths of visible electro-magnetic radiation. The factor limiting progress was the absence of a silicon master mold of small enough dimensions. The Iowa State Microelectronics Research Center fabricated samples with periodicities of 2.5 and 1.0 microns with the existing technology, but a sample was needed on the order of 0.3 microns or less. A 0.4 micron sample was received from Sandia National Laboratory, which was made through an electron beam lithography process, but it contained several defects. The results of the work are primarily from the 2.5 and 1.0 micron samples. Most of the work focused on changing processing variables in order to optimize the infiltration procedure for the best results. Several critical parameters were identified, ranging from the ambient conditions to the specifics of the
Accessing quadratic nonlinearities of metals through metallodielectric photonic-band-gap structures.
D'Aguanno, Giuseppe; Mattiucci, Nadia; Bloemer, Mark J; Scalora, Michael
2006-09-01
We study second harmonic generation in a metallodielectric photonic-band-gap structure made of alternating layers of silver and a generic, dispersive, linear, dielectric material. We find that under ideal conditions the conversion efficiency can be more than two orders of magnitude greater than the maximum conversion efficiency achievable in a single layer of silver. We interpret this enhancement in terms of the simultaneous availability of phase matching conditions over the structure and good field penetration into the metal layers. We also give a realistic example of a nine-period, Si3/N4Ag stack, where the backward conversion efficiency is enhanced by a factor of 50 compared to a single layer of silver. PMID:17025762
Askari, Nasim; Eslami, Esmaeil; Mirzaie, Reza
2015-11-15
The photonic band gap of obliquely incident terahertz electromagnetic waves in a one-dimensional plasma photonic crystal is studied. The periodic structure consists of lossless dielectric and inhomogeneous plasma with a parabolic density profile. The dispersion relation and the THz wave transmittance are analyzed based on the electromagnetic equations and transfer matrix method. The dependence of effective plasma frequency and photonic band gap characteristics on dielectric and plasma thickness, plasma density, and incident angle are discussed in detail. A theoretical calculation for effective plasma frequency is presented and compared with numerical results. Results of these two methods are in good agreement.
Zhang Haifeng; Liu Shaobin; Kong Xiangkun, Chenchen; Bian Borui
2013-04-15
In this paper, the properties of photonic band gaps (PBGs) for two types of three-dimensional plasma photonic crystals (PPCs) composed of isotropic dielectric and unmagnetized plasma with diamond lattices are theoretically investigated for electromagnetic waves based on a modified plane wave expansion method. The equations for type-1 structure are theoretically deduced, which depend on the diamond lattices realization (dielectric spheres immersed in plasma background). The influences of dielectric constant of dielectric, plasma collision frequency, filling factor, and plasma frequency on PBGs are investigated, respectively, and some corresponding physical explanations and the possible methods to realize the three-dimensional PPCs in experiments are also given. From the numerical results, it has been shown that not only the locations but also the gap/midgap ratios of the PBGs for two types of PPCs can be tuned by plasma frequency, filling factor, and the relative dielectric constant, respectively. However, the plasma collision frequency has no effect on the frequency ranges and gap/midgap ratios of the PBGs for two types of PPCs.
NASA Astrophysics Data System (ADS)
Zhang, Hai-Feng; Liu, Shao-Bin; Kong, Xiang-Kun; Chen-Chen; Bian, Bo-Rui
2013-04-01
In this paper, the properties of photonic band gaps (PBGs) for two types of three-dimensional plasma photonic crystals (PPCs) composed of isotropic dielectric and unmagnetized plasma with diamond lattices are theoretically investigated for electromagnetic waves based on a modified plane wave expansion method. The equations for type-1 structure are theoretically deduced, which depend on the diamond lattices realization (dielectric spheres immersed in plasma background). The influences of dielectric constant of dielectric, plasma collision frequency, filling factor, and plasma frequency on PBGs are investigated, respectively, and some corresponding physical explanations and the possible methods to realize the three-dimensional PPCs in experiments are also given. From the numerical results, it has been shown that not only the locations but also the gap/midgap ratios of the PBGs for two types of PPCs can be tuned by plasma frequency, filling factor, and the relative dielectric constant, respectively. However, the plasma collision frequency has no effect on the frequency ranges and gap/midgap ratios of the PBGs for two types of PPCs.
Becker, C; Lockau, D; Sontheimer, T; Schubert-Bischoff, P; Rudigier-Voigt, E; Bockmeyer, M; Schmidt, F; Rech, B
2012-04-01
Two-dimensional silicon nanodome arrays are prepared on large areas up to 50 cm² exhibiting photonic band structure effects in the near-infrared and visible wavelength region by downscaling a recently developed fabrication method based on nanoimprint-patterned glass, high-rate electron-beam evaporation of silicon, self-organized solid phase crystallization and wet-chemical etching. The silicon nanodomes, arranged in square lattice geometry with 300 nm lattice constant, are optically characterized by angular resolved reflection measurements, allowing the partial determination of the photonic band structure. This experimentally determined band structure agrees well with the outcome of three-dimensional optical finite-element simulations. A 16% photonic bandgap is predicted for an optimized geometry of the silicon nanodome arrays. By variation of the duration of the selective etching step, the geometry as well as the optical properties of the periodic silicon nanodome arrays can be controlled systematically. PMID:22422473
Liu, Lei; Qu, Hongwei; Liu, Yun; Zhang, Yejin; Zheng, Wanhua; Wang, Yufei; Qi, Aiyi
2014-12-08
900 nm longitudinal photonic band crystal (PBC) laser diodes with optimized epitaxial structure are fabricated. With a same calculated fundamental-mode divergence, stronger mode discrimination is achieved by a quasi-periodic index modulation in the PBC waveguide than a periodic one. Experiments show that the introduction of over 5.5 μm-thick PBC waveguide contributes to only 10% increment of the internal loss for the laser diodes. For broad area PBC lasers, output powers of 5.75 W under continuous wave test and over 10 W under quasi-continuous wave test are reported. The vertical divergence angles are 10.5° at full width at half maximum and 21.3° with 95% power content, in conformity with the simulated angles. Such device shows a prospect for high-power narrow-vertical-divergence laser emission from single diode laser and laser bar.
New method for computation of band structures in 1D photonic crystals based on the Fresnel equations
NASA Astrophysics Data System (ADS)
Roshan Entezar, S.
2013-02-01
In this paper, we present a new method for calculation of band structure in one-dimensional bilayer photonic crystals, based on the Fresnel equations. We derive a new relation to obtain the band structure without using the Floquet theorem. It is shown that this relation can be simplified under the assumption that the single-path phase-shift acquired through the individual layers of the photonic crystal be equal to ? . The results obtained by our method are compared with the ones obtained from the transfer matrix method to show that they are exactly identical.
NASA Astrophysics Data System (ADS)
González, Luz E.; Porras-Montenegro, N.
2012-01-01
In this work using the transfer-matrix formalism we study pressure, temperature and plasma frequency effects on the band structure of a 1D semiconductor photonic crystal made of alternating layers of air and GaAs. We have found that the temperature dependence of the photonic band structure is negligible, however, its noticeable changes are due mainly to the variations of the width and the dielectric constant of the layers of GaAs, caused by the applied hydrostatic pressure. On the other hand, by using the Drude's model, we have studied the effects of the hydrostatic pressure by means of the variation of the effective mass and density of the carriers in n-doped GaAs, finding firstly that increasing the amount of n-dopants in GaAs, namely, increasing the plasma frequency, the photonic band structure is shifted to regions of higher frequencies, and secondly the appearance of two regimes of the photonic band structure: one above the plasma frequency with the presence of usual Bragg gaps, and the other, below this frequency, where there are no gaps regularly distributed, with their width diminishing with the increasing of the plasma frequency as well as with the appearance of more bands, but leaving a wide frequency range in the lowest part of the spectrum without accessible photon states. Also, we have found characteristic frequencies in which the dielectric constant equals for different applied pressures, and from which to higher or lower values the photonic band structure inverts its behavior, depending on the value of the applied hydrostatic pressure. We hope this work may be taken into account for the development of new perspectives in the design of new optical devices.
Optically tuneable blue phase photonic band gaps
Liu, H.-Y.; Wang, C.-T.; Hsu, C.-Y.; Lin, T.-H.; Liu, J.-H.
2010-03-22
This study investigates an optically switchable band gap of photonic crystal that is based on an azobenzene-doped liquid crystal blue phase. The trans-cis photoisomerization of azobenzene deforms the cubic unit cell of the blue phase and shifts the photonic band gap. The fast back-isomerization of azobenzene was induced by irradiation with different wavelengths light. The crystal structure is verified using Kossel diffraction diagram. An optically addressable blue phase display, based on Bragg reflection from the photonic band gap, is also demonstrated. The tunable ranges are around red, green, and blue wavelengths and exhibit a bright saturated color.
Trevisanutto, P. E.; Sushko, Petr V.; Beck, Kenneth M.; Joly, Alan G.; Hess, Wayne P.; Shluger, Alexander L.
2009-01-29
Nanoparticles of wide-band-gap materials MgO and CaO, subjected to low-intensity ultraviolet irradiation with 266 nm (4.66 eV) photons, emit hyperthermal oxygen atoms with kinetic energies up to ~ 0.4 eV. We use ab initio embedded cluster methods to study theoretically a variety of elementary photoinduced processes at both ideal and defect-containing surfaces of these nanoparticles and develop a mechanism for the desorption process. The proposed mechanism includes multiple local photoexcitations resulting in sequential formation of localized excitons, their ionization, and further excitations. It is suggested that judicious choice of sub-band-gap photon energies can be used to selectively modify surfaces of nanomaterials.
D'Aguanno, Giuseppe; Mattiucci, Nadia; Scalora, Michael; Bloemer, Mark J
2006-08-01
In the spectral region where the refractive index of the negative index material is approximately zero, at oblique incidence, the linear transmission of a finite structure composed of alternating layers of negative and positive index materials manifests the formation of a new type of band gap with exceptionally narrow band-edge resonances. In particular, for TM-polarized (transverse magnetic) incident waves, field values that can be achieved at the band edge may be much higher compared to field values achievable in standard photonic band-gap structures. We exploit the unique properties of these band-edge resonances for applications to nonlinear frequency conversion, second-harmonic generation, in particular. The simultaneous availability of high field localization and phase matching conditions may be exploited to achieve second-harmonic conversion efficiencies far better than those achievable in conventional photonic band-gap structures. Moreover, we study the role played by absorption within the negative index material, and find that the process remains efficient even for relatively high values of the absorption coefficient. PMID:17025558
NASA Astrophysics Data System (ADS)
Rakhymzhanov, A. M.; Gueddida, A.; Alonso-Redondo, E.; Utegulov, Z. N.; Perevoznik, D.; Kurselis, K.; Chichkov, B. N.; El Boudouti, E. H.; Djafari-Rouhani, B.; Fytas, G.
2016-05-01
The phononic band diagram of a periodic square structure fabricated by femtosecond laser pulse-induced two photon polymerization is recorded by Brillouin light scattering (BLS) at hypersonic (GHz) frequencies and computed by finite element method. The theoretical calculations along the two main symmetry directions quantitatively capture the band diagrams of the air- and liquid-filled structure and moreover represent the BLS intensities. The theory helps identify the observed modes, reveals the origin of the observed bandgaps at the Brillouin zone boundaries, and unravels direction dependent effective medium behavior.
Micro-metric electronic patterning of a topological band structure using a photon beam
NASA Astrophysics Data System (ADS)
Golden, Mark; Frantzeskakis, Emmanouil; de Jong, Nick; Huang, Yingkai; Wu, Dong; Pan, Yu; de Visser, Anne; van Heumen, Erik; van Bay, Tran; Zwartsenberg, Berend; Pronk, Pieter; Varier Ramankutty, Shyama; Tytarenko, Alona; Xu, Nan; Plumb, Nick; Shi, Ming; Radovic, Milan; Varkhalov, Andrei
2015-03-01
The only states crossing EF in ideal, 3D TIs are topological surface states. Single crystals of Bi2Se3andBi2Te3 are too defective to exhibit bulk-insulating behaviour, and ARPES shows topologically trivial 2DEGs at EF in the surface region due to downward band bending. Ternary & quaternary alloys of Bi /Te /Se /Sb hold promise for obtaining bulk-insulating crystals. Here we report ARPES data from quaternary, bulk-insulating, Bi-based TIs. Shortly after cleavage in UHV, downward band bending pulls the bulk conduction band below EF, once again frustrating the ``topological only'' ambition for the Fermi surface. However, there is light at the end of the tunnel: we show that a super-band-gap photon beam generates a surface photovoltage sufficient to flatten the bands, thereby recovering the ideal, ``topological only'' situation. In our bulk-insulating quaternary TIs, this effect is local in nature, and permits the writing of arbitrary, micron-sized patterns in the topological energy landscape at the surface. Support from FOM, NWO and the EU is gratefully acknowledged.
Effect of size of silica microspheres on photonic band gap
Dhiman, N. Sharma, A. Gathania, A. K.; Singh, B. P.
2014-04-24
In present work photonic crystals of different size of silica microspheres have been fabricated. The optical properties of these developed photonic crystals have been studied using UV-visible spectroscopy. UV-visible spectroscopy shows that they have photonic band gap that can be tuned in visible and infrared regime by changing the size of silica microspheres. The photonic band gap structures of these photonic crystals have been calculated using MIT photonic band gap package. It also reveals that with the increase in size of silica microspheres the photonic band gap shifts to lower energy region.
Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals
NASA Astrophysics Data System (ADS)
Palto, S. P.; Barnik, M. I.; Geivandov, A. R.; Kasyanova, I. V.; Palto, V. S.
2015-09-01
Transmission of planar layers of cholesteric liquid crystals is studied in pulsed electric fields perpendicular to the helix axis at normal incidence of both linearly polarized and unpolarized light. Spectral and light polarization properties of the primary photonic band and the field-induced bands up to fourth order of Bragg selective reflection are studied in detail. In our experiments we have achieved an electric field strength several times higher than the theoretical values corresponding to the critical field of full helix unwinding. However, the experiments show that despite the high strength of the electric field applied the helix does not unwind, but strongly deforms, keeping its initial spatial period. Strong helix deformation results in distinct spectral band splitting, as well as very high field-induced selective reflectance that can be applied in lasers and other optoelectronic devices. Peculiarities of inducing and splitting the bands are discussed in terms of the scattering coefficient approach. All observed effects are confirmed by numerical simulations. The simulations also show that liquid crystal surface anchoring is not the factor that prevents the helix unwinding. Thus, the currently acknowledged concept of continuous helix unwinding in the electric field should be reconsidered.
Pushing the Gradient Limitations of Superconducting Photonic Band Gap Structure Cells
Simakov, Evgenya I.; Haynes, William B.; Kurennoy, Sergey S.; Shchegolkov, Dmitry; O'Hara, James F.; Olivas, Eric R.
2012-06-07
Superconducting photonic band gap resonators present us with unique means to place higher order mode couples in an accelerating cavity and efficiently extract HOMs. An SRF PBG resonator with round rods was successfully tested at LANL demonstrating operation at 15 MV/m. Gradient in the SRF PBG resonator was limited by magnetic quench. To increase the quench threshold in PBG resonators one must design the new geometry with lower surface magnetic fields and preserve the resonator's effectiveness for HOM suppression. The main objective of this research is to push the limits for the high-gradient operation of SRF PBG cavities. A NCRF PBG cavity technology is established. The proof-of-principle operation of SRF PBG cavities is demonstrated. SRF PBG resonators are effective for outcoupling HOMs. PBG technology can significantly reduce the size of SRF accelerators and increase brightness for future FELs.
NASA Astrophysics Data System (ADS)
Kim, Kwangmoo; Stroud, David
2014-03-01
We have calculated the photonic band structures of metallic inverse opals and of periodic linear chains of spherical pores in a metallic host, below a plasma frequency ωp. In both cases, we use a tight-binding approximation, assuming a Drude dielectric function for the metallic component, but without making the quasistatic approximation. The tight-binding modes are linear combinations of the single-cavity transverse magnetic (TM) modes. For the inverse-opal structures, the lowest modes are analogous to those constructed from the three degenerate atomic p-states in fcc crystals. For the linear chains, in the limit of small spheres compared to a wavelength, the results bear some qualitative resemblance to the dispersion relation for metal spheres in an insulating host, as calculated by Brongersma et al. [Phys. Rev. B 62, R16356 (2000)]. Because the electromagnetic fields of these modes decay exponentially in the metal, there are no radiative losses, in contrast to the case of arrays of metallic spheres in air. We suggest that this tight-binding approach to photonic band structures of such metallic inverse materials may be a useful approach for studying photonic crystals containing metallic components. This work was supported by KIAS, by NSF-MRSEC at OSU (DMR-0820414), and by DOE Grant No. DE-FG02-07ER46424. Computing resources were provided by OSC and by Abacus at KIAS.
Kim, Kwangmoo; Stroud, D
2013-08-26
We have calculated the photonic band structures of metallic inverse opals and of periodic linear chains of spherical pores in a metallic host, below a plasma frequency ωp. In both cases, we use a tight-binding approximation, assuming a Drude dielectric function for the metallic component, but without making the quasistatic approximation. The tight-binding modes are linear combinations of the single-cavity transverse magnetic (TM) modes. For the inverse-opal structures, the lowest modes are analogous to those constructed from the three degenerate atomic p-states in fcc crystals. For the linear chains, in the limit of small spheres compared to a wavelength, the results bear some qualitative resemblance to the dispersion relation for metal spheres in an insulating host, as calculated by Brongersma et al. [Phys. Rev. B 62, R16356 (2000)]. Because the electromagnetic fields of these modes decay exponentially in the metal, there are no radiative losses, in contrast to the case of arrays of metallic spheres in air. We suggest that this tight-binding approach to photonic band structures of such metallic inverse materials may be a useful approach for studying photonic crystals containing metallic components, even beyond the quasistatic approximation. PMID:24105532
Theoretical aspects of photonic band gap in 1D nano structure of LN: MgLN periodic layer
Sisodia, Namita
2015-06-24
By using the transfer matrix method, we have analyzed the photonic band gap properties in a periodic layer of LN:MgLN medium. The Width of alternate layers of LN and MgLN is in the range of hundred nanometers. The birefringent and ferroelectric properties of the medium (i.e ordinary, extraordinary refractive indices and electric dipole moment) is given due considerations in the formulation of photonic band gap. Effect of electronic transition dipole moment of the medium on photonic band gap is also taken into account. We find that photonic band gap can be modified by the variation in the ratio of the width of two medium. We explain our findings by obtaining numerical values and the effect on the photonic band gap due to variation in the ratio of alternate medium is shown graphically.
NASA Astrophysics Data System (ADS)
Graugnard, Elton; Gaillot, Davy P.; King, Jeffrey S.; Summers, Christopher J.
2006-04-01
We report the controllable and tunable fabrication of structurally modified non-close-packed inverse shell opals using multi-layer atomic layer deposition and present a model and simulation algorithm to calculate the structural parameters critical to fabrication. This powerful, flexible and unique technique enables opal inversion, structural modification and backfilling and was applied to the fabrication of TiO II non-close-packed inverse opals. Using successive conformal backfilling it was possible to tune the Bragg peak over 600 nm and enhance the Bragg peak width by >50%. Additionally, band structure calculations, using dielectric functions approximating the true network topology, were used to predict the optical properties during the fabrication process. 3D finite-difference-time-domain results predict experimentally achievable structures with a complete band gap as large as 7.2%. Additionally, the refractive index requirement was predicted to decrease from 3.3 in an 86% infiltrated inverse shell opal to 3.0 in an optimized non-close-packed inverse shell opal. It was also shown for these structures that the complete photonic band gap peak can be statically tuned by over 70% by increasing the backfilled thickness.
Electro-tuning of the photonic band gap in SOI-based structures infiltrated with liquid crystal
NASA Astrophysics Data System (ADS)
Tolmachev, V. A.; Grudinkin, S. A.; Zharova, J. A.; Melnikov, V. A.; Astrova, E. V.; Perova, T. S.
2008-04-01
One dimensional periodic and non-periodic silicon photonic structures have been designed and fabricated on silicon-on-insulator substrate for the investigation of the electro-tuning effect in composite system Photonic Crystal - Liquid Crystal. The reflection spectra registered for non-periodic structures demonstrate the phase polarisation shift for bands of high reflection, while for the periodic structure the shift of the photonic band gap edge was observed. Under an applied electric field in the range from 2V to 10V, the shift of the polarised reflection spectra, caused by reorientation of the LC director from planar to homeotropic alignment, has been obtained. A significant change in the refractive index close to Δn=0.2, which is a characteristic feature for LC E7, has been achieved due to LC reorientation in all structures just after LC infiltration. It was found that after switching-off the applied electric field the initial planar orientation of LC molecules is not restored. This effect is related to weak anchoring of LC molecules to the silicon side-walls which results in the transition of LC to the pseudo-isotropic alignment after the applied voltage is off. A relatively smaller (with Δn=0.07), but highly reproducible electro-tuning effect was revealed during the LC reorientation from pseudo-isotropic to homeotropic alignment. The shift of the edge of PBG by Δλ=0.16 or by Δλ/λ=1.6% in relative shift units was observed in this case. The response time estimated under applied square shaped ac pulses of various frequencies was found to be around 30 ms.
Micro-metric electronic patterning of a topological band structure using a photon beam.
Frantzeskakis, E; De Jong, N; Zwartsenberg, B; Huang, Y K; Bay, T V; Pronk, P; Van Heumen, E; Wu, D; Pan, Y; Radovic, M; Plumb, N C; Xu, N; Shi, M; De Visser, A; Golden, M S
2015-01-01
In an ideal 3D topological insulator (TI), the bulk is insulating and the surface conducting due to the existence of metallic states that are localized on the surface; these are the topological surface states. Quaternary Bi-based compounds of Bi(2-x)Sb(x)Te(3-y)Se(y) with finely-tuned bulk stoichiometries are good candidates for realizing ideal 3D TI behavior due to their bulk insulating character. However, despite its insulating bulk in transport experiments, the surface region of Bi(2-x)Sb(x)Te(3-y)Se(y) crystals cleaved in ultrahigh vacuum also exhibits occupied states originating from the bulk conduction band. This is due to adsorbate-induced downward band-bending, a phenomenon known from other Bi-based 3D TIs. Here we show, using angle-resolved photoemission, how an EUV light beam of moderate flux can be used to exclude these topologically trivial states from the Fermi level of Bi1.46Sb0.54Te1.7Se1.3 single crystals, thereby re-establishing the purely topological character of the low lying electronic states of the system. We furthermore prove that this process is highly local in nature in this bulk-insulating TI, and are thus able to imprint structures in the spatial energy landscape at the surface. We illustrate this by 'writing' micron-sized letters in the Dirac point energy of the system. PMID:26543011
Micro-metric electronic patterning of a topological band structure using a photon beam
Frantzeskakis, E.; De Jong, N.; Zwartsenberg, B.; Huang, Y. K.; Bay, T. V.; Pronk, P.; Van Heumen, E.; Wu, D.; Pan, Y.; Radovic, M.; Plumb, N. C.; Xu, N.; Shi, M.; De Visser, A.; Golden, M. S.
2015-01-01
In an ideal 3D topological insulator (TI), the bulk is insulating and the surface conducting due to the existence of metallic states that are localized on the surface; these are the topological surface states. Quaternary Bi-based compounds of Bi2−xSbxTe3−ySey with finely-tuned bulk stoichiometries are good candidates for realizing ideal 3D TI behavior due to their bulk insulating character. However, despite its insulating bulk in transport experiments, the surface region of Bi2−xSbxTe3−ySey crystals cleaved in ultrahigh vacuum also exhibits occupied states originating from the bulk conduction band. This is due to adsorbate-induced downward band-bending, a phenomenon known from other Bi-based 3D TIs. Here we show, using angle-resolved photoemission, how an EUV light beam of moderate flux can be used to exclude these topologically trivial states from the Fermi level of Bi1.46Sb0.54Te1.7Se1.3 single crystals, thereby re-establishing the purely topological character of the low lying electronic states of the system. We furthermore prove that this process is highly local in nature in this bulk-insulating TI, and are thus able to imprint structures in the spatial energy landscape at the surface. We illustrate this by ‘writing’ micron-sized letters in the Dirac point energy of the system. PMID:26543011
Micro-metric electronic patterning of a topological band structure using a photon beam
NASA Astrophysics Data System (ADS)
Frantzeskakis, E.; de Jong, N.; Zwartsenberg, B.; Huang, Y. K.; Bay, T. V.; Pronk, P.; van Heumen, E.; Wu, D.; Pan, Y.; Radovic, M.; Plumb, N. C.; Xu, N.; Shi, M.; de Visser, A.; Golden, M. S.
2015-11-01
In an ideal 3D topological insulator (TI), the bulk is insulating and the surface conducting due to the existence of metallic states that are localized on the surface; these are the topological surface states. Quaternary Bi-based compounds of Bi2-xSbxTe3-ySey with finely-tuned bulk stoichiometries are good candidates for realizing ideal 3D TI behavior due to their bulk insulating character. However, despite its insulating bulk in transport experiments, the surface region of Bi2-xSbxTe3-ySey crystals cleaved in ultrahigh vacuum also exhibits occupied states originating from the bulk conduction band. This is due to adsorbate-induced downward band-bending, a phenomenon known from other Bi-based 3D TIs. Here we show, using angle-resolved photoemission, how an EUV light beam of moderate flux can be used to exclude these topologically trivial states from the Fermi level of Bi1.46Sb0.54Te1.7Se1.3 single crystals, thereby re-establishing the purely topological character of the low lying electronic states of the system. We furthermore prove that this process is highly local in nature in this bulk-insulating TI, and are thus able to imprint structures in the spatial energy landscape at the surface. We illustrate this by ‘writing’ micron-sized letters in the Dirac point energy of the system.
Robust photonic band gap from tunable scatterers
Zhang; Lei; Wang; Zheng; Tam; Chan; Sheng
2000-03-27
We show theoretically and experimentally that photonic band gaps can be realized using metal or metal-coated spheres as building blocks. Robust photonic gaps exist in any periodic structure built from such spheres when the filling ratio of the spheres exceeds a threshold. The frequency and the size of the gaps depend on the local order rather than on the symmetry or the global long range order. Good agreement between theory and experiment is obtained in the microwave regime. Calculations show that the approach can be scaled up to optical frequencies even in the presence of absorption. PMID:11018959
Femtosecond Pulse Characterization as Applied to One-Dimensional Photonic Band Edge Structures
NASA Technical Reports Server (NTRS)
Fork, Richard L.; Gamble, Lisa J.; Diffey, William M.
1999-01-01
The ability to control the group velocity and phase of an optical pulse is important to many current active areas of research. Electronically addressable one-dimensional photonic crystals are an attractive candidate to achieve this control. This report details work done toward the characterization of photonic crystals and improvement of the characterization technique. As part of the work, the spectral dependence of the group delay imparted by a GaAs/AlAs photonic crystal was characterized. Also, a first generation an electrically addressable photonic crystal was tested for the ability to electronically control the group delay. The measurement technique, using 100 femtosecond continuum pulses was improved to yield high spectral resolution (1.7 nanometers) and concurrently with high temporal resolution (tens of femtoseconds). Conclusions and recommendations based upon the work done are also presented.
Fabrication of photonic band gap materials
Constant, Kristen; Subramania, Ganapathi S.; Biswas, Rana; Ho, Kai-Ming
2002-01-15
A method for forming a periodic dielectric structure exhibiting photonic band gap effects includes forming a slurry of a nano-crystalline ceramic dielectric or semiconductor material and monodisperse polymer microspheres, depositing a film of the slurry on a substrate, drying the film, and calcining the film to remove the polymer microspheres therefrom. The film may be cold-pressed after drying and prior to calcining. The ceramic dielectric or semiconductor material may be titania, and the polymer microspheres may be polystyrene microspheres.
Fabrication of Photonic band gap Materials
Constant, Kristen; Subramania, Ganapathi S.; Biswas, Rana; Ho, Kai-Ming
2000-01-05
A method for forming a periodic dielectric structure exhibiting photonic band gap effects includes forming a slurry of a nano-crystalline ceramic dielectric or semiconductor material and monodisperse polymer microsphere, depositing a film of the slurry on a substrate, drying the film, and calcining the film to remove the polymer microsphere there from. The film may be cold-pressed after drying and prior to calcining. The ceramic dielectric or semiconductor material may be titania, and the polymer microsphere may be polystyrenemicrosphere.
NASA Astrophysics Data System (ADS)
Yamilov, Alexey; Cao, Hui
2003-08-01
We introduce a numerical recipe for calculating the density of the resonant states of the clusters of dielectric spheres. Using truncated multipole expansions (generalized multisphere Mie solution) we obtain the scattering matrix of the problem. By introducing an infinitesimal absorption in the spheres we express the dwell time of the electromagnetic wave in terms of the elements of the scattering matrix. Using the parameters in recent light localization experiments [Phys. Rev. Lett. 87, 153901 (2001)], we demonstrate that the density of the resonant states, related to the dwell time, shows the formation of the photonic band structure in small clusters of dielectric spheres as the small as five particles. Density of resonant states of a cluster of 32 spheres exhibits a well defined structure similar to the density of electromagnetic states of the infinite photonic crystal. Our results suggest that, due to the formation of small ordered clusters, a significant modification of the density of electromagnetic states can occur in a random collection of monodisperse spheres.
Highly dispersive photonic band-gap-edge optofluidic biosensors
NASA Astrophysics Data System (ADS)
Xiao, S.; Mortensen, N. A.
2006-11-01
Highly dispersive photonic band-gap-edge optofluidic biosensors are studied theoretically. We demonstrate that these structures are strongly sensitive to the refractive index of the liquid, which is used to tune dispersion of the photonic crystal. The upper frequency band-gap edge shifts about 1.8 nm for δ n=0.002, which is quite sensitive. Results from transmission spectra agree well with those obtained from the band structure theory.
NASA Astrophysics Data System (ADS)
Arriaga, J.; Dobrzynski, L.; Djafari-Rouhani, B.
2008-09-01
One- and two-dimensional photonic crystals based on silicon with infiltrated liquid crystals are investigated in this paper. We show that the photonic band gap can be continuously tuned changing the orientation of the director of the liquid crystal. For the one-dimensional case, we considered arbitrary direction of propagation of the electromagnetic waves, and we show that it is possible to tune the photonic band gap by an adequate orientation of the liquid crystal. For the two-dimensional case and propagation in the plane of periodicity, we show that there exists no complete photonic band gap in the system for both polarizations. We consider two different configurations, square array of solid Si cylinders in liquid crystal background and a triangular array of liquid crystal cylinders surrounded by Si. We show that for the triangular array it is possible to tune the photonic band gap only for the transversal electric modes. We used the plane wave expansion method to solve the Maxwell equations for anisotropic systems.
Zhang, Hai-Feng; Ding, Guo-Wen; Li, Hai-Ming; Liu, Shao-Bin
2015-02-15
In this paper, the properties of complete photonic band gaps (CPBGs) and tunable self-collimation in two-dimensional plasma photonic crystals (2D PPCs) with a new structure in square lattices, whose dielectric fillers (GaAs) are inserted into homogeneous and nomagnetized plasma background are theoretically investigated by a modified plane wave expansion (PWE) method with a novel technique. The novel PWE method can be utilized to compute the dispersion curves of 2D PPCs with arbitrary-shaped cross section in any lattices. As a comparison, CPBGs of PPCs for four different configurations are numerically calculated. The computed results show that the proposed design has the advantages of achieving the larger CPBGs compared to the other three configurations. The influences of geometric parameters of filled unit cell and plasma frequency on the properties of CPBGs are studied in detail. The calculated results demonstrate that CPBGs of the proposed 2D PPCs can be easily engineered by changing those parameters, and the larger CPBGs also can be obtained by optimization. The self-collimation in such 2D PPCs also is discussed in theory under TM wave. The theoretical simulations reveal that the self-collimation phenomena can be found in the TM bands, and both the frequency range of self-collimation and the equifrequency surface contours can be tuned by the parameters as mentioned above. It means that the frequency range and direction of electromagnetic wave can be manipulated by designing, as it propagates in the proposed PPCs without diffraction. Those results can hold promise for designing the tunable applications based on the proposed PPCs.
Photonic Crystal Laser Accelerator Structures
Cowan, Benjamin M
2003-05-21
Photonic crystals have great potential for use as laser-driven accelerator structures. A photonic crystal is a dielectric structure arranged in a periodic geometry. Like a crystalline solid with its electronic band structure, the modes of a photonic crystal lie in a set of allowed photonic bands. Similarly, it is possible for a photonic crystal to exhibit one or more photonic band gaps, with frequencies in the gap unable to propagate in the crystal. Thus photonic crystals can confine an optical mode in an all-dielectric structure, eliminating the need for metals and their characteristic losses at optical frequencies. We discuss several geometries of photonic crystal accelerator structures. Photonic crystal fibers (PCFs) are optical fibers which can confine a speed-of-light optical mode in vacuum. Planar structures, both two- and three-dimensional, can also confine such a mode, and have the additional advantage that they can be manufactured using common microfabrication techniques such as those used for integrated circuits. This allows for a variety of possible materials, so that dielectrics with desirable optical and radiation-hardness properties can be chosen. We discuss examples of simulated photonic crystal structures to demonstrate the scaling laws and trade-offs involved, and touch on potential fabrication processes.
Phase Modulation of Photonic Band Gap Signal
Wang, Zhiguo; Gao, Mengqin; Mahesar, Abdul Rasheed; Zhang, Yanpeng
2016-01-01
We first investigate the probe transmission signal (PTS) and the four wave mixing band gap signal (FWM BGS) modulated simultaneously by the relative phase and the nonlinear phase shift in the photonic band gap (PBG) structure. The switch between the absorption enhancement of PTS and the transmission enhancement of PTS with the help of changing the relative phase and the nonlinear phase shift is obtained in inverted Y-type four level atomic system experimentally and theoretically. The corresponding switch in PTS can be used to realize all optical switches. On other hand, the relative phase and the nonlinear phase shift also play the vital role to modulate the intensity of FWM BGS reflected from the PBG structure. And it can be potentially used to realize the optical amplifier. PMID:27323849
Phase Modulation of Photonic Band Gap Signal.
Wang, Zhiguo; Gao, Mengqin; Mahesar, Abdul Rasheed; Zhang, Yanpeng
2016-01-01
We first investigate the probe transmission signal (PTS) and the four wave mixing band gap signal (FWM BGS) modulated simultaneously by the relative phase and the nonlinear phase shift in the photonic band gap (PBG) structure. The switch between the absorption enhancement of PTS and the transmission enhancement of PTS with the help of changing the relative phase and the nonlinear phase shift is obtained in inverted Y-type four level atomic system experimentally and theoretically. The corresponding switch in PTS can be used to realize all optical switches. On other hand, the relative phase and the nonlinear phase shift also play the vital role to modulate the intensity of FWM BGS reflected from the PBG structure. And it can be potentially used to realize the optical amplifier. PMID:27323849
Highly dispersive photonic band-gap prism.
Lin, S Y; Hietala, V M; Wang, L; Jones, E D
1996-11-01
We propose the concept of a photonic band-gap (PBG) prism based on two-dimensional PBG structures and realize it in the millimeter-wave spectral regime. We recognize the highly nonlinear dispersion of PBG materials near Brillouin zone edges and utilize the dispersion to achieve strong prism action. Such a PBG prism is very compact if operated in the optical regime, ~20 mm in size for lambda ~ 700 nm, and can serve as a dispersive element for building ultracompact miniature spectrometers. PMID:19881796
An Update on the DOE Early Career Project on Photonic Band Gap Accelerator Structures
Simakov, Evgenya I.; Edwards, Randall L.; Haynes, William B.; Madrid, Michael A.; Romero, Frank P.; Tajima, Tsuyoshi; Tuzel, Walter M.; Boulware , Chase H.; Grimm, Terry
2012-06-07
We performed fabrication of two SRF PBG resonators at 2.1 GHz and demonstrated their proof-of-principle operation at high gradients. Measured characteristics of the resonators were in good agreement with theoretical predictions. We demonstrated that SRF PBG cavities can be operated at 15 MV/m accelerating gradients. We completed the design and started fabrication of the 16-cell PBG accelerating structure at 11.7 GHz for wakefield testing at AWA.
Measurement of photonic band diagram in non-crystalline photonic band gap (PBG) materials
NASA Astrophysics Data System (ADS)
Man, Weining; Williamson, Eric; Hashemizad, Seyed; Yadak, Polin; Florescu, Marian
2011-03-01
Non-crystalline PBG materials have received increasing attention recently and sizeable PBGs have been reported in quasi-crystalline structures or even in disordered structures. Band calculations for periodic structures produce accurate dispersion relations in them and refraction properties at their surfaces. However, band calculations for non-periodic structures employ large super-cells of N >100 building blocks, and provide little useful information other than the PBG frequency and width. Since band is folded into N bands, within the first Brillouin zone of the supper-cell. Using stereolithography, we construct various quasi-crystalline or disordered PBG materials and perform transmission measurements. The dispersion relations of EM wave (band diagrams) are reconstructed from the measured phase data. Our experiments not only verify the existence of sizeable PBGs in these structures, but also provide detailed information of the effective band diagrams, dispersion relation, group velocity vector, and their angular dependence. Slow light phenomena are also observed in these structures near gap frequencies. This study presents a powerful tool to investigate photonic properties of non-crystalline structures and provides important dispersion information, which is otherwise impossible to obtain.
NASA Astrophysics Data System (ADS)
Lopez, Javier; Gonzalez, Luz Esther; Quinonez, Mario; Porras, Nelson; Zambrano, Gustavo; Gomez, Maria Elena
2014-03-01
Using a ferrfluid of cobalt-zinc ferrite nanoparticles Co(1 - x)ZnxFe2O4 coated with oleic acid and suspended in ethanol, we have fabricated a 2D photonic crystal (PC) by the application of an external magnetic field perpendicular to the plane of the ferrofluid. The 2D PC is made by rods of nanoparticles organized in a hexagonal structure. By means of the plane-wave expansion method, we study its photonic band structure (PBS) which depends on the effective permittivity and on the area ratio of the liquid phase. Additionaly, taking into account the Maxwell-Garnett theory we calculated the effective permittivity of the rods. We have found that the effective refractive index of the ferrofluid increases with its magnetization. Using these results we calculate the band structure of the photonic crystal at different applied magnetic fields, finding that the increase of the applied magnetic field shifts the band structure to lower frequencies with the appearance of more band gaps. Departamento de Física, Universidad del Valle, A.A. 25360, Cali, Colombia
NASA Astrophysics Data System (ADS)
Ward, A. J.; Pendry, J. B.
2000-06-01
In this paper we present an updated version of our ONYX program for calculating photonic band structures using a non-orthogonal finite difference time domain method. This new version employs the same transparent formalism as the first version with the same capabilities for calculating photonic band structures or causal Green's functions but also includes extra subroutines for the calculation of transmission and reflection coefficients. Both the electric and magnetic fields are placed onto a discrete lattice by approximating the spacial and temporal derivatives with finite differences. This results in discrete versions of Maxwell's equations which can be used to integrate the fields forwards in time. The time required for a calculation using this method scales linearly with the number of real space points used in the discretization so the technique is ideally suited to handling systems with large and complicated unit cells.
NASA Astrophysics Data System (ADS)
Zia, Shahneel; Banerjee, Anirudh
2016-05-01
This paper demonstrates a way to control spectrum tuning capability in one-dimensional (1D) ternary photonic band gap (PBG) material nano-layered structures electro-optically. It is shown that not only tuning range, but also tuning speed of tunable optical filters based on 1D ternary PBG structures can be controlled Electro-optically. This approach finds application in tuning range enhancement of 1D Ternary PBG structures and compensating temperature sensitive transmission spectrum shift in 1D Ternary PBG structures.
NASA Astrophysics Data System (ADS)
Vincenti, Maria Antonietta; Trevisi, Simona; De Sario, Marco; Petruzzelli, Vincenzo; D'Orazio, Antonella; Prudenzano, Francesco; Cioffi, Nicola; de Ceglia, Domenico; Scalora, Michael
2008-03-01
In this paper we report a numerical study of a palladium-based metallo-dielectric photonic band gap structure for the purpose of detecting H2. In particular, and as an example, we will explore applications to the diagnosis of lactose malabsorption, more commonly known as lactose intolerance condition. This pathology occurs as a result of an incomplete absorption or digestion of different substances, causing an increased spontaneous emission of H2 in human breath. Palladium is considered in order to exploit its well known ability to absorb hydrogen spontaneously. The proposed structure is particularly able to detect the lactose malabsorption level of the patient with relatively high sensitivity and rapidity.
NASA Astrophysics Data System (ADS)
Jena, S.; Tokas, R. B.; Sarkar, P.; Haque, S. Maidul; Misal, J. S.; Rao, K. D.; Thakur, S.; Sahoo, N. K.
2015-06-01
The multilayer structure of TiO2/SiO2 (11 layers) as one dimensional photonic crystal (1D PC) has been designed and then fabricated by using asymmetric bipolar pulse DC magnetron sputtering technique for omnidirectional photonic band gap. The experimentally measured photonic band gap (PBG) in the visible region is well matched with the theoretically calculated band structure (ω vs. k) diagram. The experimentally measured omnidirectional reflection band of 44 nm over the incident angle range of 0°-70° is found almost matching within the theoretically calculated band.
Del Villar, Ignacio; Matias, Ignacio; Arregui, Francisco; Claus, Richard
2003-03-10
A theoretical analysis of a fiber optical photonic band gap based tunable wavelength filter is presented. The design presented here is based on the quarter wave reflector with a liquid crystal defect layer in the middle of the structure. The filter generated by the structure is shifted in wavelength as the voltage applied to the structure is modified. Some critical parameters are analyzed: the effect of the consideration of fiber as the first layer and not the input medium in the shape of the filter, the number of layers of the structure, and the thickness of the defect layer. This last parameter determines the width of the wavelength sweep of the filter, but is limited by the creation of more defects. Some rules of practical implementation of this device are also given. PMID:19461749
Two-pattern compound photonic crystals with a large complete photonic band gap
Jia Lin; Thomas, Edwin L.
2011-09-15
We present a set of two-dimensional aperiodic structures with a large complete photonic band gap (PBG), which are named two-pattern photonic crystals. By superposing two substructures without regard to registration, we designed six new aperiodic PBG structures having a complete PBG larger than 15% for {epsilon}{sub 2}/{epsilon}{sub 1} = 11.4. The rod-honeycomb two-pattern photonic crystal provides the largest complete PBG to date. An aperiodic structure becomes the champion structure with the largest PBG. Surprisingly, the TM and TE gaps of a two-pattern photonic crystal are much less interdependent than the PBGs of conventional photonic crystals proposed before, affording interesting capabilities for us to tune the TM and TE PBGs separately. By altering the respective substructures, optical devices for different polarizations (TE, TM, or both) can readily be designed.
Photonic Band Gap resonators for high energy accelerators
Schultz, S.; Smith, D.R.; Kroll, N. |
1993-12-31
We have proposed that a new type of microwave resonator, based on Photonic Band Gap (PBG) structures, may be particularly useful for high energy accelerators. We provide an explanation of the PBG concept and present data which illustrate some of the special properties associated with such structures. Further evaluation of the utility of PBG resonators requires laboratory testing of model structures at cryogenic temperatures, and at high fields. We provide a brief discussion of our test program, which is currently in progress.
Replication technology for photonic band gap applications
NASA Astrophysics Data System (ADS)
Grigaliunas, V.; Kopustinskas, V.; Meskinis, S.; Margelevicius, M.; Mikulskas, I.; Tomasiunas, R.
2001-06-01
Replication technology was applied for photonic structure fabrication in silicon substrate. It was revealed, that thin thermoplastic polymer layers on silicon substrates may be patterned by hot embossing technique for dry etching masking. Ni mold used for plain hot embossing into polymer layers was fabricated by Ni electrochemical deposition on the reference silicon surface structure, which was obtained by direct electron beam (EB) writing and SF 6/N 2 reactive ion etching (RIE) technique. It is shown that the shape of replicated photonic structures is determined by RIE parameters.
Dual-band photon sorting plasmonic MIM metamaterial sensor
NASA Astrophysics Data System (ADS)
Jung, Young Uk; Bendoym, Igor; Golovin, Andrii B.; Crouse, David T.
2014-06-01
We propose plasmonic metal-insulator-metal (MIM) metamaterial designs for the sensing of two infrared wavelength bands, the mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) band by using a photon sorting technique. The proposed structures can capture light effectively on the metasurfaces based on coupling of free space energy to a subwavelength plasmonic mode. Photon sorting can be performed such that the incident light with a broad spectrum upon the metasurfaces can be "split" according to wavelength, channeling different spectral bands to different physical regions of the array on the surface where it is then absorbed by the insulator. Two different structures described in this work are (1) Square-type structure which consists of MIM resonators being periodically arranged to form a polarization independent sensor and (2) Meander-type structure which consists of MIM resonators being connected to form the meander shaped sensor. Mercury Cadmium Telluride (HgCdTe) posts are used as absorbing material within the MIM structure to generate free carriers and allow for collection of carrier charges. The proposed structures have compact designs and exhibit efficient light splitting and absorption for the IR spectral band. Structural and material properties, the electric field distribution and Poynting vector fields at the resonance frequencies are provided. Applications include thermal imaging, night vision systems, rifle sights, missile detection and discrimination, dual bandwidth optical filters, light trapping, and electromagnetically induced transparency.
Hypersonic modulation of light in three-dimensional photonic and phononic band-gap materials.
Akimov, A V; Tanaka, Y; Pevtsov, A B; Kaplan, S F; Golubev, V G; Tamura, S; Yakovlev, D R; Bayer, M
2008-07-18
The elastic coupling between the a-SiO2 spheres composing opal films brings forth three-dimensional periodic structures which besides a photonic stop band are predicted to also exhibit complete phononic band gaps. The influence of elastic crystal vibrations on the photonic band structure has been studied by injection of coherent hypersonic wave packets generated in a metal transducer by subpicosecond laser pulses. These studies show that light with energies close to the photonic band gap can be efficiently modulated by hypersonic waves. PMID:18764257
Band gaps of two-dimensional antiferromagnetic photonic crystal
NASA Astrophysics Data System (ADS)
Song, Yu-Ling; Ta, Jin-Xing; Wang, Xuan-Zhang
2011-07-01
In an external magnetic field, the band structure of a two-dimensional photonic crystal (PC) composed of parallel antiferromagnetic cylinders in a background dielectric is investigated with a Green's function method. The cylinders with two resonant frequencies form a square lattice and are characterized by a magnetic permeability tensor. In our numerical calculation, we find that this method allows fast convergence and is available in both the resonant and non-resonant frequency ranges. In the non-resonant range, the PC is similar in band structure to an ordinary dielectric PC. Two electromagnetic band gaps, however, appear in the resonant frequency region, and their frequency positions and widths are governed by the external field. The dependence of the electromagnetic gaps on the cylinder radius also is discussed.
Effect of disorder on photonic band gaps
NASA Astrophysics Data System (ADS)
Sigalas, M. M.; Soukoulis, C. M.; Chan, C. T.; Biswas, R.; Ho, K. M.
1999-05-01
We study the transmission of electromagnetic waves propagating in three-dimensional disordered photonic crystals that are periodic on the average with a diamond symmetry. The transmission has been calculated using the transfer matrix method. We study two different geometries for the scatterers: spheres and rods connecting nearest neighbors. We find that the gaps of the periodic structure survive to a higher amount of disorder in the rods' case than in the spheres' case. We argue that this is due to the connectivity of the rod structure that exists for any amount of disorder.
NASA Astrophysics Data System (ADS)
Fathollahi Khalkhali, T.; Bananej, A.
2016-06-01
In this study, we analyze the tunability of complete photonic band gap of square and triangular photonic crystal slabs composed of square and hexagonal air holes in anisotropic tellurium background with SiO2 as cladding material. The non-circular holes are infiltrated with liquid crystal. Using the supercell method based on plane wave expansion, we study the variation of complete band gap by changing the optical axis orientation of liquid crystal. Our numerical results show that noticeable tunability of complete photonic band gap can be obtained in both square and triangular structures with non-circular holes.
Modeling of Photonic Band Gap Crystals and Applications
Ihab Fathy El-Kady
2002-08-27
In this work, the authors have undertaken a theoretical approach to the complex problem of modeling the flow of electromagnetic waves in photonic crystals. The focus is to address the feasibility of using the exciting phenomena of photonic gaps (PBG) in actual applications. The authors start by providing analytical derivations of the computational electromagnetic methods used in their work. They also present a detailed explanation of the physics underlying each approach, as well as a comparative study of the strengths and weaknesses of each method. The Plane Wave expansion, Transfer Matrix, and Finite Difference time Domain Methods are addressed. They also introduce a new theoretical approach, the Modal Expansion Method. They then shift the attention to actual applications. They begin with a discussion of 2D photonic crystal wave guides. The structure addressed consists of a 2D hexagonal structure of air cylinders in a layered dielectric background. Comparison with the performance of a conventional guide is made, as well as suggestions for enhancing it. The studies provide an upper theoretical limit on the performance of such guides, as they assumed no crystal imperfections and non-absorbing media. Next, they study 3D metallic PBG materials at near infrared and optical wavelengths. The main objective is to study the importance of absorption in the metal and the suitability of observing photonic band gaps in such structures. They study simple cubic structures where the metallic scatters are either cubes or interconnected metallic rods. Several metals are studied (aluminum, gold, copper, and silver). The effect of topology is addressed and isolated metallic cubes are found to be less lossy than the connected rod structures. The results reveal that the best performance is obtained by choosing metals with a large negative real part of the dielectric function, together with a relatively small imaginary part. Finally, they point out a new direction in photonic crystal
Hollow-Core Photonic Band Gap Fibers for Particle Acceleration
Noble, Robert J.; Spencer, James E.; Kuhlmey, Boris T.; /Sydney U.
2011-08-19
Photonic band gap (PBG) dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM) accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency pass-bands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies in the band gap will only propagate near the defect. We describe the design of 2-D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially-made fibers, we perform a simulation analysis of the first prototype PBG fibers specifically designed to support speed-of-light TM modes.
NASA Astrophysics Data System (ADS)
Mahdy, M. R. C.; Al Sayem, Ayed; Shahriar, Arif; Shawon, Jubayer; Al-Quaderi, Golam Dastegir; Jahangir, Ifat; Matin, M. A.
2016-04-01
In this article, at first we propose a unified and compact classification of single negative electromagnetic metamaterial-based perfect transmission unit cells. The classes are named as: type-A, -B and -C unit cells. Then based on the classification, we have extended these ideas in semiconductor and graphene regimes. For type-A: Based on the idea of electromagnetic Spatial Average Single Negative bandgap, novel bandgap structures have been proposed for electron transmission in semiconductor heterostructures. For type-B: with dielectric-graphene-dielectric structure, almost all angle transparency is achieved for both polarizations of electromagnetic wave in the terahertz frequency range instead of the conventional transparency in the microwave frequency range. Finally the application of the gated dielectric-graphene-dielectric has been demonstrated for the modulation and switching purpose.
Photonic crystal and photonic wire device structures
NASA Astrophysics Data System (ADS)
De La Rue, Richard; Sorel, Marc; Johnson, Nigel; Rahman, Faiz; Ironside, Charles; Cronin, Lee; Watson, Ian; Martin, Robert; Jin, Chongjun; Pottier, Pierre; Chong, Harold; Gnan, Marco; Jugessur, Aju; Camargo, Edilson; Erwin, Grant; Md Zain, Ahmad; Ntakis, Iraklis; Hobbs, Lois; Zhang, Hua; Armenise, Mario; Ciminelli, Caterina; Coquillat, Dominique
2005-09-01
Photonic devices that exploit photonic crystal (PhC) principles in a planar environment continue to provide a fertile field of research. 2D PhC based channel waveguides can provide both strong confinement and controlled dispersion behaviour. In conjunction with, for instance, various electro-optic, thermo-optic and other effects, a range of device functionality is accessible in very compact PhC channel-guide devices that offer the potential for high-density integration. Low enough propagation losses are now being obtained with photonic crystal channel-guide structures that their use in real applications has become plausible. Photonic wires (PhWs) can also provide strong confinement and low propagation losses. Bragg-gratings imposed on photonic wires can provide dispersion and frequency selection in device structures that are intrinsically simpler than 2D PhC channel guides--and can compete with them under realistic conditions.
Quantum electrodynamics near a photonic band-gap
NASA Astrophysics Data System (ADS)
Liu, Yanbing; Houck, Andrew
Quantum electrodynamics predicts the localization of light around an atom in photonic band-gap (PBG) medium or photonic crystal. Here we report the first experimental realization of the strong coupling between a single artificial atom and an one dimensional PBG medium using superconducting circuits. In the photonic transport measurement, we observe an anomalous Lamb shift and a large band-edge avoided crossing when the artificial atom frequency is tuned across the band-edge. The persistent peak within the band-gap indicates the single photon bound state. Furthermore, we study the resonance fluorescence of this bound state, again demonstrating the breakdown of the Born-Markov approximation near the band-edge. This novel architecture can be directly generalized to study many-body quantum electrodynamics and to construct more complicated spin chain models.
NASA Astrophysics Data System (ADS)
Kim, Seong-Han; Kim, Soeun; Kee, Chul-Sik
2016-08-01
Photonic crystals composed of virtual pillars with magnetic walls are proposed. A virtual pillar with a magnetic wall can be created inside a parallel perfect electric conductor plate waveguide by introducing a circular perfect magnetic conductor patch in the upper perfect electric conductor plate of the waveguide. The virtual pillar mimics a perfect magnetic conductor pillar with a radius less than that of the circular patch because electromagnetic waves can slightly penetrate the wall. Furthermore, the photonic band structures of a triangular photonic crystal composed of virtual pillars for the transverse electromagnetic modes of the waveguide are investigated. They are very similar to those of a triangular photonic crystal composed of infinitely long perfect electric conductor cylinders for transverse magnetic modes. The similarity between the two different photonic crystals is well understood by the boundary conditions of perfect electric and magnetic conductor surfaces. A double Dirac cone at the center of the Brillouin zone is observed and thus the virtual pillar triangular photonic crystal can act a zero-refractive-index material at the Dirac point frequency.
Simultaneous existence of phononic and photonic band gaps in periodic crystal slabs.
Pennec, Y; Djafari Rouhani, B; El Boudouti, E H; Li, C; El Hassouani, Y; Vasseur, J O; Papanikolaou, N; Benchabane, S; Laude, V; Martinez, A
2010-06-21
We discuss the simultaneous existence of phononic and photonic band gaps in a periodic array of holes drilled in a Si membrane. We investigate in detail both the centered square lattice and the boron nitride (BN) lattice with two atoms per unit cell which include the simple square, triangular and honeycomb lattices as particular cases. We show that complete phononic and photonic band gaps can be obtained from the honeycomb lattice as well as BN lattices close to honeycomb. Otherwise, all investigated structures present the possibility of a complete phononic gap together with a photonic band gap of a given symmetry, odd or even, depending on the geometrical parameters. PMID:20588565
Metallic photonic-band-gap filament architectures for optimized incandescent lighting
NASA Astrophysics Data System (ADS)
John, Sajeev; Wang, Rongzhou
2008-10-01
We identify an optimized three-dimensional metallic photonic-band-gap filament architecture for electrically pumped, quasithermal, visible light emission. This identification is based on extensive band structure and finite-difference time-domain calculations of metallic photonic crystals. The optimum structure consists of an inverse square-spiral photonic crystal, exhibiting a large bandwidth optical passband below the effective plasma screening frequency of the periodically structured metal. Light emission from the interior surfaces of the filament to the interior air channels occurs exclusively into the passband modes, enabling high-efficiency conversion of electrical energy into visible light.
Jena, S. Tokas, R. B.; Sarkar, P.; Thakur, S.; Sahoo, N. K.; Haque, S. Maidul; Misal, J. S.; Rao, K. D.
2015-06-24
The multilayer structure of TiO{sub 2}/SiO{sub 2} (11 layers) as one dimensional photonic crystal (1D PC) has been designed and then fabricated by using asymmetric bipolar pulse DC magnetron sputtering technique for omnidirectional photonic band gap. The experimentally measured photonic band gap (PBG) in the visible region is well matched with the theoretically calculated band structure (ω vs. k) diagram. The experimentally measured omnidirectional reflection band of 44 nm over the incident angle range of 0°-70° is found almost matching within the theoretically calculated band.
Designer disordered materials with large, complete photonic band gaps
Florescu, Marian; Torquato, Salvatore; Steinhardt, Paul J.
2009-01-01
We present designs of 2D, isotropic, disordered, photonic materials of arbitrary size with complete band gaps blocking all directions and polarizations. The designs with the largest band gaps are obtained by a constrained optimization method that starts from a hyperuniform disordered point pattern, an array of points whose number variance within a spherical sampling window grows more slowly than the volume. We argue that hyperuniformity, combined with uniform local topology and short-range geometric order, can explain how complete photonic band gaps are possible without long-range translational order. We note the ramifications for electronic and phononic band gaps in disordered materials. PMID:19918087
Recent progress on photonic band gap accelerator cavities
Smith, D.R.; Li, D.; Vier, D.C.
1997-02-01
We report on the current status of our program to apply Photonic Band Gap (PBG) concepts to produce novel high-energy, high-intensity accelerator cavities. The PBG design on which we have concentrated our initial efforts consists of a square array of metal cylinders, terminated by conducting or superconducting sheets, and surrounded by microwave absorber on the periphery of the structure. A removed cylinder from the center of the array constitutes a site defect where a localized electromagnetic mode can occur. In previous work, we have proposed that this structure could be utilized as an accelerator cavity, with advantageous properties over conventional cavity designs. In the present work, we present further studies, including MAFIA-based numerical calculations and experimental measurements, demonstrating the feasibility of using the proposed structure in a real accelerator application.
Nonlinear Bloch waves in metallic photonic band-gap filaments
Kaso, Artan; John, Sajeev
2007-11-15
We demonstrate the occurrence of nonlinear Bloch waves in metallic photonic crystals (PCs). These periodically structured filaments are characterized by an isolated optical pass band below an effective plasma gap. The pass band occurs in a frequency range where the metallic filament exhibits a negative, frequency-dependent dielectric function and absorption loss. The metallic losses are counterbalanced by gain in two models of inhomogeneously broadened nonlinear oscillators. In the first model, we consider close-packed quantum dots that fill the void regions of a two-dimensional (2D) metallic PC, and whose inhomogeneously broadened emission spectrum spans the original optical pass band of the bare filament. In the second model, we consider thin (10-50 nm) layers of inhomogeneously broadened two-level resonators, with large dipole oscillator strength, that cover the interior surfaces of 2D metallic (silver and tungsten) PCs. These may arise from localized surface plasmon resonances due to small metal particles or an otherwise rough metal surface. For simplicity, we treat electromagnetic modes with electric field perpendicular to the plane of metal periodicity. In both models, a pumping threshold of the resonators is found, above which periodic nonlinear solutions of Maxwell's equations with purely real frequency within the optical pass band emerge. These nonlinear Bloch waves exhibit a laserlike input pumping to output amplitude characteristic. For strong surface resonances, these nonlinear waves may play a role in light emission from a hot tungsten (suitably microstructured) filament.
Quantum information processing with narrow band two-photon state
NASA Astrophysics Data System (ADS)
Lu, Yajun
Application of quantum sources in communication and information processing are believed to bring a new revolution to the on-going information age. The generation of applicable quantum sources such as single photon state and two-photon state, appears to be one of the most difficult in experimental quantum optics. Spontaneous Parametric Down-Conversion (PDC) is known to generate two-photon state, but bandwidth problem makes it less applicable in quantum information processing. The aim of this work is to generate a narrow band two-photon state and apply it to quantum information processing. We start by developing a cavity enhanced PDC device to narrow the bandwidth of the two-photon state. Direct measurement of the bandwidth of the generated state has been made and the quantum theory of such a device has been investigated. An application of this narrow band two-photon state is to generate anti-bunched photons for quantum cryptography, based on the quantum interference between the two-photon state and a coherent state. The feasibility of this scheme for pulsed pump is also investigated. When applying the concept of mode locking in lasers to a two-photon state, we have mode-locked two-photon state which exhibits a comb-like correlation function and may be used for engineering of quantum states in time domain. Other applications such as demonstration of single photon nonlocality, nonlinear sign gate in quantum computation, and direct measurement of quantum beating, will also be addressed.
Pavarini, E; Andreani, L C
2002-09-01
The photonic band dispersion and density of states (DOS) are calculated for the three-dimensional (3D) hexagonal structure corresponding to a distributed Bragg reflector patterned with a 2D triangular lattice of circular holes. Results for the Si/SiO(2) and GaAs/Al(x)Ga(1-x)As systems determine the optimal parameters for which a gap in the 2D plane occurs and overlaps the 1D gap of the multilayer. The DOS is considerably reduced in correspondence with the overlap of 2D and 1D gaps. Also, the local density of states (i.e., the DOS weighted with the squared electric field at a given point) has strong variations depending on the position. Both results imply substantial changes of spontaneous emission rates and patterns for a local emitter embedded in the structure and make this system attractive for the fabrication of a 3D photonic crystal with controlled radiative properties. PMID:12366275
Photocurrent induced by two-photon excitation in ZnTeO intermediate band solar cells
NASA Astrophysics Data System (ADS)
Tanaka, Tooru; Miyabara, Masaki; Nagao, Yasuhiro; Saito, Katsuhiko; Guo, Qixin; Nishio, Mitsuhiro; Yu, Kin M.; Walukiewicz, Wladek
2013-02-01
Intermediate band (IB) solar cell structures based on ZnTeO highly mismatched alloy were examined to demonstrate a photocurrent induced by a two-photon excitation (TPE) process. Two types of the devices, with and without a blocking layer for the IB, are prepared. The device with a blocked IB exhibits small external quantum efficiency (EQE) in photon energy range in which electron transitions from valence band (VB) to IB take place, implying the electron accumulation in IB. The enhancement of EQE is observed in TPE experiments as a result of electron transition from VB to conduction band via IB.
Photonic band-edge-induced enhancement in absorption and emission
NASA Astrophysics Data System (ADS)
Ummer, Karikkuzhi Variyath; Vijaya, Ramarao
2015-01-01
An enhancement in photonic band-edge-induced absorption and emission from rhodamine-B dye doped polystyrene pseudo gap photonic crystals is studied. The band-edge-induced enhancement in absorption is achieved by selecting the incident angle of the excitation beam so that the absorption spectrum of the emitter overlaps the photonic band edge. The band-edge-induced enhancement in emission, on the other hand, is possible with and without an enhancement in band-edge-induced absorption, depending on the collection angle of emission. Through a simple set of measurements with suitably chosen angles for excitation and emission, we achieve a maximum enhancement of 70% in emission intensity with band-edge-induced effects over and above the intrinsic emission in the case of self-assembled opals. This is a comprehensive effort to interpret tunable lasing in opals as well as to predict the wavelength of lasing arising as a result of band-edge-induced distributed feedback effects.
Special purpose modes in photonic band gap fibers
Spencer, James; Noble, Robert; Campbell, Sara
2013-04-02
Photonic band gap fibers are described having one or more defects suitable for the acceleration of electrons or other charged particles. Methods and devices are described for exciting special purpose modes in the defects including laser coupling schemes as well as various fiber designs and components for facilitating excitation of desired modes. Results are also presented showing effects on modes due to modes in other defects within the fiber and due to the proximity of defects to the fiber edge. Techniques and devices are described for controlling electrons within the defect(s). Various applications for electrons or other energetic charged particles produced by such photonic band gap fibers are also described.
Band formation in coupled-resonator slow-wave structures.
Möller, Björn M; Woggon, Ulrike; Artemyev, Mikhail V
2007-12-10
Sequences of coupled-resonator optical waveguides (CROWs) have been examined as slow-wave structures. The formation of photonic bands in finite systems is studied in the frame of a coupled oscillator model. Several types of resonator size tuning in the system are evaluated in a systematical manner. We show that aperiodicities in sequences of coupled microspheres provide an additional degree of freedom for the design of photonic bands. PMID:19551030
Quantum interference of independently generated telecom-band single photons
Patel, Monika; Altepeter, Joseph B.; Huang, Yu-Ping; Oza, Neal N.; Kumar, Prem
2014-12-04
We report on high-visibility quantum interference of independently generated telecom O-band (1310 nm) single photons using standard single-mode fibers. The experimental data are shown to agree well with the results of simulations using a comprehensive quantum multimode theory without the need for any fitting parameter.
W-band active imaging by photonics-based synthesizer
NASA Astrophysics Data System (ADS)
Kanno, Atsushi; Sekine, Norihiko; Kasamatsu, Akifumi; Yamamoto, Naokatsu
2016-05-01
We demonstrate a nondestructive electromagnetic-wave imaging system with a photonics-based W-band synthe- sizer, traveling-wave tube amplifier and focal-plane transistor array in real time manner. High-power amplifier with multi-watts output will enhance the quality of obtained images under transmission and reflection imaging configurations.
Experimental Work With Photonic Band Gap Fiber: Building A Laser Electron Accelerator
Lincoln, Melissa; Ischebeck, Rasmus; Nobel, Robert; Siemann, Robert; /SLAC
2006-09-29
In the laser acceleration project E-163 at the Stanford Linear Accelerator Center, work is being done toward building a traveling wave accelerator that uses as its accelerating structure a length of photonic band gap fiber. The small scale of the optical fiber allows radiation at optical wavelengths to be used to provide the necessary accelerating energy. Optical wavelength driving energy in a small structure yields higher accelerating fields. The existence of a speed-of-light accelerating mode in a photonic band gap fiber has been calculated previously [1]. This paper presents an overview of several of the experimental challenges posed in the development of the proposed photonic band gap fiber accelerator system.
NASA Astrophysics Data System (ADS)
Priya Rose, T.; Di Gennaro, E.; Andreone, A.; Abbate, G.
2010-05-01
Photonic quasicrystals (PQCs) have neither true periodicity nor translational symmetry, however they can exhibit symmetries that are not achievable by conventional periodic structures. The arbitrarily high rotational symmetry of these materials can be practically exploited to manufacture isotropic band gap materials, which are perfectly suitable for hosting waveguides or cavities. In this work, formation and development of the photonic bandgap (PBG) in twodimensional 8-, 10- and 12-fold symmetry quasicrystalline lattices of low dielectric contrast (0.4-0.6) were measured in the microwave region and compared with the PBG properties of a conventional hexagonal crystal. Band-gap properties were also investigated by changing the direction of propagation of the incident beam inside the crystal. Various angles of incidence from 0° to 30° were used in order to investigate the isotropic nature of the band-gap.
Fabrication of Ceramic Layer-by-Layer Infrared Wavelength Photonic Band Gap Crystals
Henry Hao-Chuan Kang
2004-12-19
Photonic band gap (PBG) crystals, also known as photonic crystals, are periodic dielectric structures which form a photonic band gap that prohibit the propagation of electromagnetic (EM) waves of certain frequencies at any incident angles. Photonic crystals have several potential applications including zero-threshold semiconductor lasers, the inhibition of spontaneous emission, dielectric mirrors, and wavelength filters. If defect states are introduced in the crystals, light can be guided from one location to another or even a sharp bending of light in micron scale can be achieved. This generates the potential for optical waveguide and optical circuits, which will contribute to the improvement in the fiber-optic communications and the development of high-speed computers.
Band gap of two-dimensional fiber-air photonic crystals
NASA Astrophysics Data System (ADS)
Yang, Shu; Li, Masha
2016-04-01
A two-dimensional photonic crystal (PC) composed of textile fiber and air is initially discussed in this paper. Textile materials are so called soft materials, which are different from the previous PCs composed of rigid materials. The plain wave expansion method is used to calculate band structure of different PCs by altering component properties or structural parameters. Results show that the dielectric constant of textile fibers, fiber filling ratio and lattice arrangement are effective factors which influence PCs' band gap. Yet lattice constant and fiber diameter make inconspicuous influence on the band gap feature.
Fully confined photonic band gap and guided modes in a two-dimensional photonic crystal slab
Chow, K.C.; Lin, S.Y.; Johnson, S.G.; Villeneuve, P.R.; Joannopoulos, J.D.
1999-12-15
A new two-dimensional photonic crystal (2D PC) slab structure was created with a full three-dimensional light confinement. Guided modes with broad bandwidth and high transmission within the band gap are also observed. As an optical analog to electronic crystals, PC promises a revolution in the photonic world similar to the electronic revolution created by the electronic band gap engineering in semiconductor. 2D PC has an advantage of being easier to fabricate at optical wavelength ({lambda}) comparing with 3D PC. However, the light leakage in the vertical direction has been the main problem for using 2D PC in opto-electronic application. In this study, the authors solve this problem by combining traditional 2D PC with strong vertical index guiding between the waveguide layer (GaAs) and the cladding layer (Al{sub x}O{sub y}). A set of triangular lattice holes 2D PC's were fabricated with lattice constant a=460nm, hole diameter (d=0.6a) and waveguide layer thickness (t = 0.5a). Those parameters were chosen to maximize the TE photonic band gap (PBG) around {lambda} = 1.55{micro}m. The depth of etched holes is {approximately}0.6{micro}m and the 2{micro}m thick Al{sub x}O{sub y} cladding layer is obtained by thermal oxidation of Al{sub 0.9}Ga{sub 0.1}As. PC waveguides were also created by introducing line defects along {Gamma}K direction. The authors perform transmission measurement by coupling light to PC with 3{micro}m wide waveguides which extends {approximately}0.6mm on both sides of PC. An aspheric lens with NA = 0.4 is used to focus the collimated light from tunable diode laser into the input waveguide. Another identical lens is used to collect the transmitted light and focus to an infrared (IR) camera and a calibrated photo-detector with a beamsplitter. The Gaussian waveguide mode indicates that the signal detected by the photodetector comes only from the light interacting with PC and propagating along the waveguide. The absolute transmittance is obtained by
NASA Astrophysics Data System (ADS)
Zhou, Guangyong; Gu, Min
2007-05-01
By using the femtosecond laser induced microexplosion method, high-quality two-dimensional eightfold photonic quasicrystals have been fabricated in a solid transparent polymer material. Multiorder band gaps have been observed in a 25-layer structure with a suppression rate of up to 72% for the fundamental gap. Polarization measurements show that the photonic quasicrystal has a strong anisotropic effect, showing that the transverse electric is the favorite polarization. Fabry-Pérot cavities have been fabricated by removing the central layer of channels. Based on the cavity mode position, the order of the mode and the effective cavity size have been determined.
Optical properties of silver nanocomposites and photonic band gap - Pressure dependence
NASA Astrophysics Data System (ADS)
Ramanujam, N. R.; Wilson, K. S. Joseph
2016-06-01
We theoretically investigate the effect of photonic band gaps in one dimensional photonic crystals based on nanocomposite of silver nanoparticles. The dielectric permittivity is computed based on the pressure dependence of plasma frequency and damping constant of silver nanoparticle. It leads to the tuning of photonic band gap. We have also investigated the change in photonic band gap due to the influence of filling factor and the size of the nanoparticles. Our results provide a guideline for designing potential photonic devices.
Photonic band gap of three dimensional magnetized photonic crystal with Voigt configuration
NASA Astrophysics Data System (ADS)
Zhang, Hai-Feng; Liu, Shao-Bin; Kong, Xiang-Kun; Li, Bing-Xiang
2013-08-01
In this paper, the properties of two types of three-dimensional magnetized plasma photonic crystals (MPPCs) composed of homogeneous magnetized plasma and dielectric with simple-cubic lattices are theoretically studied by a modified plane wave expansion (PWE) method, as the magneto-optical Voigt effects of magnetized plasma are considered. The equations for type-1 structures with simple-cubic lattices (dielectric spheres immersed in magnetized plasma background), are theoretically deduced. The influences of dielectric constant of dielectric, plasma collision frequency, filling factor, the external magnetic field and plasma frequency on the properties of photonic band gaps (PBGs) for both types of MPPCs are investigated in detail, respectively, and some corresponding physical explanations are also given. The characteristics of flatbands regions are also discussed. From the numerical results, it has been shown that the PBGs of both types of three-dimensional MPPCs can be manipulated by plasma frequency, filling factor, the external magnetic field and the relative dielectric constant of dielectric, respectively. However, the plasma collision frequency has no effects on the PBGs for two types of three-dimensional MPPCs. The locations of flatbands regions can not be tuned by any parameters except for plasma frequency and the external magnetic field.
Modeling and Design of Two-Dimensional Guided-Wave Photonic Band-Gap Devices
NASA Astrophysics Data System (ADS)
Ciminelli, Caterina; Peluso, Francesco; Armenise, Mario N.
2005-02-01
The model of two-dimensional (2-D) guided-wave photonic band-gap structures based on the Bloch-Floquet theory is proposed for the first time for both infinite and finite length devices. The efficient computation of dispersion curves and field distribution is carried out in very short computer time. Both guided and radiated modes can be easily identified to give a physical insight, even in defective structures. The accuracy of the model has been tested through the design of a very compact narrow-band 2-D guided-wave photonic band-gap filter at 1.55 μm. The filter has a channel isolation of 22 dB, a large number of channel (>80) with a channel spacing of 50 GHz, and a very short length (24 μm).
Zhang Haifeng; Liu Shaobin; Kong Xiangkun
2012-12-15
In this paper, the properties of photonic band gaps and dispersion relations of one-dimensional magnetized plasma photonic crystals composed of dielectric and magnetized plasma layers with arbitrary magnetic declination are theoretically investigated for TM polarized wave based on transfer matrix method. As TM wave propagates in one-dimensional magnetized plasma photonic crystals, the electromagnetic wave can be divided into two modes due to the influence of Lorentz force. The equations for effective dielectric functions of such two modes are theoretically deduced, and the transfer matrix equation and dispersion relations for TM wave are calculated. The influences of relative dielectric constant, plasma collision frequency, incidence angle, plasma filling factor, the angle between external magnetic field and +z axis, external magnetic field and plasma frequency on transmission, and dispersion relation are investigated, respectively, and some corresponding physical explanations are also given. From the numerical results, it has been shown that plasma collision frequency cannot change the locations of photonic band gaps for both modes, and also does not affect the reflection and transmission magnitudes. The characteristics of photonic band gaps for both modes can be obviously tuned by relative dielectric constant, incidence angle, plasma filling factor, the angle between external magnetic field and +z axis, external magnetic field and plasma frequency, respectively. These results would provide theoretical instructions for designing filters, microcavities, and fibers, etc.
NASA Astrophysics Data System (ADS)
Banerjee, P.; Ganguly, S.; Pradhan, M. K.; Sharma, H. P.; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.
2016-07-01
The structure of collective bands in 113Sn, populated in the reaction 100Mo(19F,p 5 n ) at a beam energy of 105 MeV, has been studied. A new positive-parity sequence of eight states extending up to 7764.9 keV and spin (39 /2+) has been observed. The band is explained as arising from the coupling of the odd valence neutron in the g7 /2 or the d5 /2 orbital to the deformed 2p-2h proton configuration of the neighboring even-A Sn isotope. Lifetimes of six states up to an excitation energy of 9934.9 keV and spin 47 /2-belonging to a Δ I =2 intruder band have been measured for the first time, including an upper limit for the last state, from Doppler-shift-attenuation data. A moderate average quadrupole deformation β2=0.22 ±0.02 is deduced from these results for the five states up to spin 43 /2- . The transition quadrupole moments decrease with increase in rotational frequency, indicating a reduction of collectivity with spin, a feature common for terminating bands. The behavior of the kinematic and dynamic moments of inertia as a function of rotational frequency has been studied and total Routhian surface calculations have been performed in an attempt to obtain an insight into the nature of the states near termination.
NASA Astrophysics Data System (ADS)
Zhang, Hai-Feng; Liu, Shao-Bin; Li, Bing-Xiang
2016-01-01
The properties of omnidirectional photonic band gaps (OBGs) in two-dimensional plasma photonic crystals (2D PPCs) are theoretically investigated by the modified plane wave expansion method. In the simulation, we consider the off-plane incident wave vector. The configuration of 2D PPCs is the triangular lattices filled with the nonmagnetized plasma cylinders in the homogeneous and isotropic dielectric background. The calculated results show that the proposed 2D PPCs possess a flatbands region and the OBGs. Compared with the OBGs in the conventional 2D dielectric-air PCs, it can be obtained more easily and enlarged in the 2D PPCs with a similar structure. The effects of configurational parameters of the PPCs on the OBGs also are studied. The simulated results demonstrate that the locations of OBGs can be tuned easily by manipulating those parameters except for changing plasma collision frequency. The achieved OBGs can be enlarged by optimizations. The OBGs of two novel configurations of PPCs with different cross sections are computed for a comparison. Both configurations have the advantages of obtaining the larger OBGs compared with the conventional configuration, since the symmetry of 2D PPCs is broken by different sizes of periodically inserted plasma cylinders or connected by the embedded plasma cylinders with thin veins. The analysis of the results shows that the bandwidths of OBGs can be tuned by changing geometric and physical parameters of such two PPCs structures. The theoretical results may open a new scope for designing the omnidirectional reflectors or mirrors based on the 2D PPCs.
A versatile optical junction using photonic band-gap guidance and self collimation
Gupta, Man Mohan; Medhekar, Sarang
2014-09-29
We show that it is possible to design two photonic crystal (PC) structures such that an optical beam of desired wavelength gets guided within the line defect of the first structure (photonic band gap guidance) and the same beam gets guided in the second structure by self-collimation. Using two dimensional simulation of a design made of the combination of these two structures, we propose an optical junction that allows for crossing of two optical signals of same wavelength and same polarization with very low crosstalk. Moreover, the junction can be operated at number of frequencies in a wide range. Crossing of multiple beams with very low cross talk is also possible. The proposed junction should be important in future integrated photonic circuits.
High-Power Fiber Lasers Using Photonic Band Gap Materials
NASA Technical Reports Server (NTRS)
DiDomenico, Leo; Dowling, Jonathan
2005-01-01
High-power fiber lasers (HPFLs) would be made from photonic band gap (PBG) materials, according to the proposal. Such lasers would be scalable in the sense that a large number of fiber lasers could be arranged in an array or bundle and then operated in phase-locked condition to generate a superposition and highly directed high-power laser beam. It has been estimated that an average power level as high as 1,000 W per fiber could be achieved in such an array. Examples of potential applications for the proposed single-fiber lasers include welding and laser surgery. Additionally, the bundled fibers have applications in beaming power through free space for autonomous vehicles, laser weapons, free-space communications, and inducing photochemical reactions in large-scale industrial processes. The proposal has been inspired in part by recent improvements in the capabilities of single-mode fiber amplifiers and lasers to produce continuous high-power radiation. In particular, it has been found that the average output power of a single strand of a fiber laser can be increased by suitably changing the doping profile of active ions in its gain medium to optimize the spatial overlap of the electromagnetic field with the distribution of active ions. Such optimization minimizes pump power losses and increases the gain in the fiber laser system. The proposal would expand the basic concept of this type of optimization to incorporate exploitation of the properties (including, in some cases, nonlinearities) of PBG materials to obtain power levels and efficiencies higher than are now possible. Another element of the proposal is to enable pumping by concentrated sunlight. Somewhat more specifically, the proposal calls for exploitation of the properties of PBG materials to overcome a number of stubborn adverse phenomena that have impeded prior efforts to perfect HPFLs. The most relevant of those phenomena is amplified spontaneous emission (ASE), which causes saturation of gain and power
Introducing Defects in Photonic Band-Gap (PBG) Crystals
Johnson, Elliott C.; /North Dakota State U. /SLAC
2007-11-07
Photonic Band-Gap (PBG) fibers are a periodic array of optical materials arranged in a lattice called a photonic crystal. The use of PBG fibers for particle acceleration is being studied by the Advanced Accelerator Research Department (AARD) at SLAC. By introducing defects in such fibers, e.g. removing one or more capillaries from a hexagonal lattice, spatially confined modes suitable for particle acceleration may be created. The AARD has acquired several test samples of PBG fiber arrays with varying refractive index, capillary size, and length from an external vendor for testing. The PBGs were inspected with a microscope and characteristics of the capillaries including radii, spacing, and errors in construction were determined. Transmission tests were performed on these samples using a broad-range spectrophotometer. In addition, detailed E-field simulations of different PBG configurations were done using the CUDOS and RSOFT codes. Several accelerating modes for different configurations were found and studied in detail.
Isotropic properties of the photonic band gap in quasicrystals with low-index contrast
NASA Astrophysics Data System (ADS)
Priya Rose, T.; di Gennaro, E.; Abbate, G.; Andreone, A.
2011-09-01
We report on the formation and development of the photonic band gap in two-dimensional 8-, 10-, and 12-fold symmetry quasicrystalline lattices of low-index contrast. Finite-size structures made of dielectric cylindrical rods were studied and measured in the microwave region, and their properties were compared with a conventional hexagonal crystal. Band-gap characteristics were investigated by changing the direction of propagation of the incident beam inside the crystal. Various angles of incidence from 0∘ to 30∘ were used to investigate the isotropic nature of the band gap. The arbitrarily high rotational symmetry of aperiodically ordered structures could be practically exploited to manufacture isotropic band-gap materials, which are perfectly suitable for hosting waveguides or cavities.
Silvered three-dimensional polymeric photonic crystals having a large mid-infrared stop band
NASA Astrophysics Data System (ADS)
Kuebler, Stephen M.; Tal, Amir; Chen, Yun-Sheng
2007-02-01
Interest in three-dimensional (3D) metal photonic crystals (MPCs) has grown considerably given their potential applications in optics and photonics. Yet, experimental studies of such materials remain few because of the difficulties associated with fabricating 3D micron- and sub-micron-scale metallic structures. We report a route to MPCs based on metallization of 3D polymeric photonic crystals fabricated by multi-photon direct laser writing. Polymeric photonic crystals (PCs) having simple-cubic symmetry with periodicities varying from 1.6 to 3.2 microns were created using a cross-linkable acrylate pre-polymer. The resulting dielectric PCs were metallized by electroless deposition of silver. Analysis of the metallized structures in cross-section by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy shows that silver deposited conformally onto the entire micro-porous lattice. The dielectric and metallized PCs were characterized by Fourier transform infrared (FTIR) spectroscopy in the (001) direction. The polymer photonic crystals exhibit a stop band resulting in circa 60% reflectance centered at 3.2 to 6.4 microns, depending upon the lattice period, with a full-width at half-maximum (FWHM) of 500 nm. Interestingly, FTIR spectra of the metallized PCs show widened stop bands of nearly 6 microns FWHM, while the center wavelengths were red shifted and ranged from 6 to 7 microns. The appreciable broadening of the stop band due to the presence of the deposited silver is a result consistent with previously reported theoretical and experimental data for all-metallic 3D PCs. Thus, the approach described here appears suitable for fabricating 3D MPCs of many symmetries and basis sets and provides a path for integrating such structures with other micron-scale optical elements.
Analysing photonic structures in plants
Vignolini, Silvia; Moyroud, Edwige; Glover, Beverley J.; Steiner, Ullrich
2013-01-01
The outer layers of a range of plant tissues, including flower petals, leaves and fruits, exhibit an intriguing variation of microscopic structures. Some of these structures include ordered periodic multilayers and diffraction gratings that give rise to interesting optical appearances. The colour arising from such structures is generally brighter than pigment-based colour. Here, we describe the main types of photonic structures found in plants and discuss the experimental approaches that can be used to analyse them. These experimental approaches allow identification of the physical mechanisms producing structural colours with a high degree of confidence. PMID:23883949
Photon management structures for solar cells
NASA Astrophysics Data System (ADS)
Bläsi, Benedikt; Hauser, Hubert; Walk, Christian; Michl, Bernhard; Guttowski, Aron; Mellor, Alexander; Benick, Jan; Peters, Marius; Jüchter, Sabrina; Wellens, Christine; Kübler, Volker; Hermle, Martin; Wolf, Andreas J.
2012-06-01
Since micro- and nanostructures for photon management are of increasing importance in novel high-efficiency solar cell concepts, structuring techniques with up-scaling potential play a key role in their realization. Interference lithography and nanoimprint processes are presented as technologies for origination and replication of fine-tailored photonic structures on large areas. At first, these structure origination and replication technologies are presented in detail: With the interference pattern of two or more coherent waves, a wide variety of structures with feature sizes ranging from 100 nm to 100 μm can be generated in photoresist by interference lithography. Examples are linear gratings, crossed gratings, hexagonal structures, three dimensional photonic crystals or surface-relief diffusers. The strength of this technology is that homogeneous structures can be originated on areas of up to 1.2 x 1.2 m2. The structures in photoresist, the so-called master structures, can serve as an etching mask for a pattern transfer, as a template for infiltration with different materials or they can be replicated via electroplating and subsequent replication processes. Especially in combination with replication steps, the industrially feasible production of elaborate structures is possible. As a particularly interesting process, nanoimprint lithography (NIL) is described in detail. As a way towards industrial production, a roller NIL tool is presented. After the description of the basic technologies, three application examples for solar cells are presented with details about the design of the structures, the structuring processes, sample characterization and evaluation: (1) honeycomb structures for the front side texturization of multicrystalline silicon wafer solar cells, (2) diffractive rear side gratings for absorption enhancement in the spectral region near the band gap of silicon, and (3) plasmonic metal nanoparticle arrays manufactured by combined imprint and lift off
Photonic structures based on hybrid nanocomposites
NASA Astrophysics Data System (ADS)
Husaini, Saima
exhibits a 200% enhancement of the reflection band which is attributed to the interplay between the plasmon resonance of the silver nanoparticles and the Bloch modes of the photonic crystal. Nonlinear optical studies on this one-dimensional silver-nanocomposite-dielectric structure using z-scan measurements are conducted. These measurements indicate a three-fold enhancement in the nonlinear absorption coefficient when compared to a single film of comparable metal composite thickness.
Optimization of band gap of photonic crystals fabricated by holographic lithography
NASA Astrophysics Data System (ADS)
Yang, X.-L.; Cai, L.-Z.; Wang, Y.-R.; Feng, C.-S.; Dong, G.-Y.; Shen, X.-X.; Meng, X.-F.; Hu, Y.
2008-01-01
Generally the photonic band gap (PBG) is a multi-variable function of several parameters related to the shape and size of the dielectric columns of photonic crystals (PhCs), and a time-consuming step-by-step scanning process for each parameter has to be used to find their best combination yielding maximum PBG. In this letter, the widely used Nelder-Mead simplex algorithm is introduced to optimize these parameters simultaneously to find a larger PBG for a new kind of two-dimensional (2D) hexagonal GaAs-Air PhC. This structure can be conveniently produced by the single-exposure holographic lithography, and the specific holographic design is also systematically investigated. This study reveals that the band gaps of PhCs made by holographic lithography may be widened by introducing irregularity of the columns and lowering the symmetry of the structure.
Gerrits, Thomas; Lita, Adriana E.; Calkins, Brice; Tomlin, Nathan A.; Fox, Anna E.; Linares, Antia Lamas; Mirin, Richard P.; Nam, Sae Woo; Thomas-Peter, Nicholas; Metcalf, Benjamin J.; Spring, Justin B.; Langford, Nathan K.; Walmsley, Ian A.; Gates, James C.; Smith, Peter G. R.
2011-12-15
Integration is currently the only feasible route toward scalable photonic quantum processing devices that are sufficiently complex to be genuinely useful in computing, metrology, and simulation. Embedded on-chip detection will be critical to such devices. We demonstrate an integrated photon-number-resolving detector, operating in the telecom band at 1550 nm, employing an evanescently coupled design that allows it to be placed at arbitrary locations within a planar circuit. Up to five photons are resolved in the guided optical mode via absorption from the evanescent field into a tungsten transition-edge sensor. The detection efficiency is 7.2{+-}0.5 %. The polarization sensitivity of the detector is also demonstrated. Detailed modeling of device designs shows a clear and feasible route to reaching high detection efficiencies.
Quantum structures for multiband photon detection
NASA Astrophysics Data System (ADS)
Perera, A. G. U.
2005-09-01
The work describes multiband photon detectors based on semiconductor micro- and nano-structures. The devices considered include quantum dot, homojunction, and heterojunction structures. In the quantum dot structures, transitions are from one state to another, while free carrier absorption and internal photoemission play the dominant role in homo or heterojunction detectors. Quantum Dots-in-a-Well (DWELL) detectors can tailor the response wavelength by varying the size of the well. A tunneling Quantum Dot Infrared Photodetector (T-QDIP) could operate at room temperature by blocking the dark current except in the case of resonance. Photoexcited carriers are selectively collected from InGaAs quantum dots by resonant tunneling, while the dark current is blocked by AlGaAs/InGaAs tunneling barriers placed in the structure. A two-color infrared detector with photoresponse peaks at ~6 and ~17 μm at room temperature will be discussed. A Homojunction or HEterojunction Interfacial Workfunction Internal Photoemission (HIWIP or HEIWIP) infrared detector, formed by a doped emitter layer, and an intrinsic layer acting as the barrier followed by another highly doped contact layer, can detect near infrared (NIR) photons due to interband transitions and mid/far infrared (MIR/FIR) radiation due to intraband transitions. The threshold wavelength of the interband response depends on the band gap of the barrier material, and the MIR/FIR response due to intraband transitions can be tailored by adjusting the band offset between the emitter and the barrier. GaAs/AlGaAs will provide NIR and MIR/FIR dual band response, and with GaN/AlGaN structures the detection capability can be extended into the ultraviolet region. These detectors are useful in numerous applications such as environmental monitoring, medical diagnosis, battlefield-imaging, space astronomy applications, mine detection, and remote-sensing.
Experimental and Theoretical Studies of Photonic Band gaps in Artificial Opals
NASA Astrophysics Data System (ADS)
Wang, Lei; Yin, Ming; Arammash, Fouzi; Datta, Timir
2014-03-01
Photonic band structure and band gap were numerically computed for a number of closed packed simple cubic and Hexagonal arrangements of non-conducting spheres using ``Finite Difference Time Domain Method''. Photonic gaps were found to exist in the simple cubic overlapping spheres with index of refraction (n) >3.2. Gap increased linearly from 0.117- 0.161 (1/micron) as lattice constant decreased from 0.34 to 0.18 (micron). For less than 3.2 no gap was obtained. Also, no gaps were obtained for hexagonal packing. UV-VIS reflectivity and transmission measurements of polycrystalline bulk artificial opals of silica (SiO2) spheres, ranging from 250nm to 300nm in sphere diameter indicate a reflection peak in the 500-600 nm regimes. Consistent with photonic band gap behavior we find that reflectivity is enhanced in the same wavelength where transmission is reduced. To the best of our knowledge this is the first observation of photonic gap in the visible wave length under ambient conditions. The wave length at the reflectance peak increases with the diameter of the SiO2 spheres, and is approximately twice the diameter following Bragg reflection. DOD Award No 60177-RT-H from ARO.
Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng
2015-01-01
Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing. PMID:26349444
NASA Astrophysics Data System (ADS)
Wang, Zhiguo; Ullah, Zakir; Gao, Mengqin; Zhang, Dan; Zhang, Yiqi; Gao, Hong; Zhang, Yanpeng
2015-09-01
Optical transistor is a device used to amplify and switch optical signals. Many researchers focus on replacing current computer components with optical equivalents, resulting in an optical digital computer system processing binary data. Electronic transistor is the fundamental building block of modern electronic devices. To replace electronic components with optical ones, an equivalent optical transistor is required. Here we compare the behavior of an optical transistor with the reflection from a photonic band gap structure in an electromagnetically induced transparency medium. A control signal is used to modulate the photonic band gap structure. Power variation of the control signal is used to provide an analogy between the reflection behavior caused by modulating the photonic band gap structure and the shifting of Q-point (Operation point) as well as amplification function of optical transistor. By means of the control signal, the switching function of optical transistor has also been realized. Such experimental schemes could have potential applications in making optical diode and optical transistor used in quantum information processing.
NASA Astrophysics Data System (ADS)
Froufe-Pérez, Luis S.; Engel, Michael; Damasceno, Pablo F.; Muller, Nicolas; Haberko, Jakub; Glotzer, Sharon C.; Scheffold, Frank
2016-07-01
We study photonic band gap formation in two-dimensional high-refractive-index disordered materials where the dielectric structure is derived from packing disks in real and reciprocal space. Numerical calculations of the photonic density of states demonstrate the presence of a band gap for all polarizations in both cases. We find that the band gap width is controlled by the increase in positional correlation inducing short-range order and hyperuniformity concurrently. Our findings suggest that the optimization of short-range order, in particular the tailoring of Bragg scattering at the isotropic Brillouin zone, are of key importance for designing disordered PBG materials.
Froufe-Pérez, Luis S; Engel, Michael; Damasceno, Pablo F; Muller, Nicolas; Haberko, Jakub; Glotzer, Sharon C; Scheffold, Frank
2016-07-29
We study photonic band gap formation in two-dimensional high-refractive-index disordered materials where the dielectric structure is derived from packing disks in real and reciprocal space. Numerical calculations of the photonic density of states demonstrate the presence of a band gap for all polarizations in both cases. We find that the band gap width is controlled by the increase in positional correlation inducing short-range order and hyperuniformity concurrently. Our findings suggest that the optimization of short-range order, in particular the tailoring of Bragg scattering at the isotropic Brillouin zone, are of key importance for designing disordered PBG materials. PMID:27517772
Wide-Band Microwave Receivers Using Photonic Processing
NASA Technical Reports Server (NTRS)
Matsko, Andrey; Maleki, Lute; Itchenko, Vladimir; Yu, Nan; Strekalov, Dmitry; Savchenkov, Anatoliy
2008-01-01
In wide-band microwave receivers of a type now undergoing development, the incoming microwave signals are electronically preamplified, then frequency-up-converted to optical signals that are processed photonically before being detected. This approach differs from the traditional approach, in which incoming microwave signals are processed by purely electronic means. As used here, wide-band microwave receivers refers especially to receivers capable of reception at any frequency throughout the range from about 90 to about 300 GHz. The advantage expected to be gained by following the up-conversion-and-photonic-processing approach is the ability to overcome the limitations of currently available detectors and tunable local oscillators in the frequency range of interest. In a receiver following this approach (see figure), a preamplified incoming microwave signal is up-converted by the method described in the preceeding article. The frequency up-converter exploits the nonlinearity of the electromagnetic response of a whispering gallery mode (WGM) resonator made of LiNbO3. Up-conversion takes place by three-wave mixing in the resonator. The WGM resonator is designed and fabricated to function simultaneously as an electro-optical modulator and to exhibit resonance at the microwave and optical operating frequencies plus phase matching among the microwave and optical signals circulating in the resonator. The up-conversion is an efficient process, and the efficiency is enhanced by the combination of microwave and optical resonances. The up-converted signal is processed photonically by use of a tunable optical filter or local oscillator, and is then detected. Tunable optical filters can be made to be frequency agile and to exhibit high resonance quality factors (high Q values), thereby making it possible to utilize a variety of signal-processing modalities. Therefore, it is anticipated that when fully developed, receivers of this type will be compact and will be capable of both
Kłos, J. W. Krawczyk, M.; Dadoenkova, Yu. S.; Dadoenkova, N. N.; Lyubchanskii, I. L.
2014-05-07
We investigate the properties of a photonic-magnonic crystal, a complex multifunctional one-dimensional structure with magnonic and photonic band gaps in the GHz and PHz frequency ranges for spin waves and light, respectively. The system consists of periodically distributed dielectric magnetic slabs of yttrium iron garnet and nonmagnetic spacers with an internal structure of alternating TiO{sub 2} and SiO{sub 2} layers which form finite-size dielectric photonic crystals. We show that the spin-wave coupling between the magnetic layers, and thus the formation of the magnonic band structure, necessitates a nonzero in-plane component of the spin-wave wave vector. A more complex structure perceived by light is evidenced by the photonic miniband structure and the transmission spectra in which we have observed transmission peaks related to the repetition of the magnetic slabs in the frequency ranges corresponding to the photonic band gaps of the TiO{sub 2}/SiO{sub 2} stack. Moreover, we show that these modes split to very high sharp (a few THz wide) subpeaks in the transmittance spectra. The proposed novel multifunctional artificial crystals can have interesting applications and be used for creating common resonant cavities for spin waves and light to enhance the mutual influence between them.
Hydrogen production by Tuning the Photonic Band Gap with the Electronic Band Gap of TiO2
NASA Astrophysics Data System (ADS)
Waterhouse, G. I. N.; Wahab, A. K.; Al-Oufi, M.; Jovic, V.; Anjum, D. H.; Sun-Waterhouse, D.; Llorca, J.; Idriss, H.
2013-10-01
Tuning the photonic band gap (PBG) to the electronic band gap (EBG) of Au/TiO2 catalysts resulted in considerable enhancement of the photocatalytic water splitting to hydrogen under direct sunlight. Au/TiO2 (PBG-357 nm) photocatalyst exhibited superior photocatalytic performance under both UV and sunlight compared to the Au/TiO2 (PBG-585 nm) photocatalyst and both are higher than Au/TiO2 without the 3 dimensionally ordered macro-porous structure materials. The very high photocatalytic activity is attributed to suppression of a fraction of electron-hole recombination route due to the co-incidence of the PBG with the EBG of TiO2 These materials that maintain their activity with very small amount of sacrificial agents (down to 0.5 vol.% of ethanol) are poised to find direct applications because of their high activity, low cost of the process, simplicity and stability.
Observation of localized flat-band modes in a quasi-one-dimensional photonic rhombic lattice.
Mukherjee, Sebabrata; Thomson, Robert R
2015-12-01
We experimentally demonstrate the photonic realization of a dispersionless flat band in a quasi-one-dimensional photonic lattice fabricated by ultrafast laser inscription. In the nearest neighbor tight binding approximation, the lattice supports two dispersive and one nondispersive (flat) band. We experimentally excite superpositions of flat-band eigenmodes at the input of the photonic lattice and show the diffractionless propagation of the input states due to their infinite effective mass. In the future, the use of photonic rhombic lattices, together with the successful implementation of a synthetic gauge field, will enable the observation of Aharonov-Bohm photonic caging. PMID:26625021
Photonic crystals, light manipulation, and imaging in complex nematic structures
NASA Astrophysics Data System (ADS)
Ravnik, Miha; Å timulak, Mitja; Mur, Urban; Čančula, Miha; Čopar, Simon; Žumer, Slobodan
2016-03-01
Three selected approaches for manipulation of light by complex nematic colloidal and non-colloidal structures are presented using different own custom developed theoretical and modelling approaches. Photonic crystals bands of distorted cholesteric liquid crystal helix and of nematic colloidal opals are presented, also revealing distinct photonic modes and density of states. Light propagation along half-integer nematic disclinations is shown with changes in the light polarization of various winding numbers. As third, simulated light transmission polarization micrographs of nematic torons are shown, offering a new insight into the complex structure characterization. Finally, this work is a contribution towards using complex soft matter in optics and photonics for advanced light manipulation.
UV-VIS regime band gap in a 3-d photonic system
NASA Astrophysics Data System (ADS)
Yin, Ming; Arammash, Fouzi; Datta, Timir; Tsu, Ray
2013-03-01
Synthetic opals are self-organized bulk, close packed systems that are three-dimensionally ordered with periodicity determined by the sphere diameter. These materials have been used as templates for nano devices with novel properties. For example, in carbon inverse opals show quantum hall effect and related magneto electric responses. Inverse are also reported to show photonic band gap. It is expected that devices based on these materials will be an alternative to electronic devices. These opal specimens were hexagonal or face centered cubic crystals with silica sphere diameter ranging between 220 nm and 270nm. Here we will present results of structural and imaging studies such as SEM, AFM and XRD. In addition results of the (UV-VIS) optical behavior will be provided. The optical response will be analyzed in terms of photonic band gaps in the sub-micrometer optical and UV regime.
Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids
Man, Weining; Florescu, Marian; Williamson, Eric Paul; He, Yingquan; Hashemizad, Seyed Reza; Leung, Brian Y. C.; Liner, Devin Robert; Torquato, Salvatore; Chaikin, Paul M.; Steinhardt, Paul J.
2013-01-01
Recently, disordered photonic media and random textured surfaces have attracted increasing attention as strong light diffusers with broadband and wide-angle properties. We report the experimental realization of an isotropic complete photonic band gap (PBG) in a 2D disordered dielectric structure. This structure is designed by a constrained optimization method, which combines advantages of both isotropy due to disorder and controlled scattering properties due to low-density fluctuations (hyperuniformity) and uniform local topology. Our experiments use a modular design composed of Al2O3 walls and cylinders arranged in a hyperuniform disordered network. We observe a complete PBG in the microwave region, in good agreement with theoretical simulations, and show that the intrinsic isotropy of this unique class of PBG materials enables remarkable design freedom, including the realization of waveguides with arbitrary bending angles impossible in photonic crystals. This experimental verification of a complete PBG and realization of functional defects in this unique class of materials demonstrate their potential as building blocks for precise manipulation of photons in planar optical microcircuits and has implications for disordered acoustic and electronic band gap materials. PMID:24043795
Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids.
Man, Weining; Florescu, Marian; Williamson, Eric Paul; He, Yingquan; Hashemizad, Seyed Reza; Leung, Brian Y C; Liner, Devin Robert; Torquato, Salvatore; Chaikin, Paul M; Steinhardt, Paul J
2013-10-01
Recently, disordered photonic media and random textured surfaces have attracted increasing attention as strong light diffusers with broadband and wide-angle properties. We report the experimental realization of an isotropic complete photonic band gap (PBG) in a 2D disordered dielectric structure. This structure is designed by a constrained optimization method, which combines advantages of both isotropy due to disorder and controlled scattering properties due to low-density fluctuations (hyperuniformity) and uniform local topology. Our experiments use a modular design composed of Al2O3 walls and cylinders arranged in a hyperuniform disordered network. We observe a complete PBG in the microwave region, in good agreement with theoretical simulations, and show that the intrinsic isotropy of this unique class of PBG materials enables remarkable design freedom, including the realization of waveguides with arbitrary bending angles impossible in photonic crystals. This experimental verification of a complete PBG and realization of functional defects in this unique class of materials demonstrate their potential as building blocks for precise manipulation of photons in planar optical microcircuits and has implications for disordered acoustic and electronic band gap materials. PMID:24043795
Design and testing of photonic band gap channel-drop-filters
Shchegolkov, Dmitry; Earley, Lawrence M; Health, Cynthia E; Smirnova, Evgenya I
2009-01-01
We have designed, fabricated and tested several novel passive mm-wave spectrometers based on Photonic Band Gap (PBG) structures. Our spectrometers were designed to operate in the frequency ranges of 90-130 and 220-300 GHz. We built and tested both metallic and dielectric silicon Channel-Drop-Filter (CDF) structures at 90-130 GHz. We are currently fabricating a dielectric CDF structure to operate at 220-300 GHz. The complete recent test results for the metal version and preliminary test results for the higher frequency silicon versions will be presented at the conference.
Photonic band gap in (Pb,La)(Zr,Ti)O3 inverse opals
NASA Astrophysics Data System (ADS)
Li, Bo; Zhou, Ji; Hao, Lifeng; Hu, Wei; Zong, Ruilong; Cai, Minmin; Fu, Min; Gui, Zhilun; Li, Longtu; Li, Qi
2003-05-01
(Pb,La)(Zr,Ti)O3 (PLZT) inverse opal photonic crystals were synthesized by a process of self-assembly in combination with a sol-gel technique. In this process, PLZT precursors were infiltrated into the interstices of the opal template assembled by monodisperse submicron polystyrene spheres, and then gelled in a humid environment. Polystyrene template was removed by calcining the specimen at a final temperature of 700 °C accompanied with the crystallization of perovskite phase in PLZT inverse opal network. Scanning electron microscope images show that the inverse opals possess a fcc structure with a lattice constant of 250 nm. A wide photonic band gap in the visible range is observed from transmission spectra of the sample. Such PLZT inverse opals as photonic crystals should be of importance in device applications.
Wake-field studies on photonic band gap accelerator cavities
NASA Astrophysics Data System (ADS)
Li, Derun; Kroll, N.; Smith, D. R.; Schultz, S.
1997-03-01
We have studied the wake-field of several metal Photonic Band Gap (PBG) cavities which consist of either a square or a hexagonal array of metal cylinders, bounded on top and bottom by conducting or superconducting sheets, surrounded by placing microwave absorber at the periphery or by replacing outer rows of metal cylinders with lossy dielectric ones, or by metallic walls. A removed cylinder from the center of the array constitutes a site defect where a localized electromagnetic mode can occur. While both monopole and dipole wake-fields have been studied, we confine our attention here mainly to the dipole case. The dipole wake-field is produced by modes in the propagation bands which tend to fill the entire cavity more or less uniformly and are thus easy to damp selectively. MAFIA time domain simulation of the transverse wake-field has been compared with that of a cylindrical pill-box comparison cavity. Even without damping the wake-field of the metal PBG cavity is substantially smaller than that of the pill-box cavity and may be further reduced by increasing the size of the lattice. By introducing lossy material at the periphery we have been able to produce Q factors for the dipole modes in the 40 to 120 range without significantly degrading the accelerating mode.
The Photonic Band Gaps in the Two-Dimensional Plasma Photonic Crystals with Rhombus Lattice
NASA Astrophysics Data System (ADS)
Zhang, Kaiming; Sun, Dongsheng
2016-06-01
In this paper, under two different electromagnetic modes, the photonic band gaps (PBGs) in the two-dimensional plasma photonic crystals (PPCs) are theoretically investigated based on the plane wave expansion method. The proposed PPCs are arranged in rhombus lattices, in which the homogeneous unmagnetized plasma rods are immersed in the isotropic dielectric background. The computed results showed that PBGs can be easily tuned by the angle of rhombus lattices, and a cutoff frequency and a flatbands region can be observed under the TM and TE polarized waves, respectively. The relationships between the relative bandwidths of first PBGs and the parameters of PPCs in two such cases also are discussed. The numerical simulations showed that the PBGs can be manipulated obviously by the parameters as mentioned above. The proposed results can be used to design the waveguide and filter based on the PPCs.
All-optical dynamical Casimir effect in a three-dimensional terahertz photonic band gap
NASA Astrophysics Data System (ADS)
Hagenmüller, David
2016-06-01
We identify an architecture for the observation of all-optical dynamical Casimir effect in realistic experimental conditions. We suggest that by integrating quantum wells in a three-dimensional (3D) photonic band-gap material made out of large-scale (˜200 -μ m ) germanium logs, it is possible to achieve ultrastrong light-matter coupling at terahertz frequencies for the cyclotron transition of a two-dimensional electron gas interacting with long-lived optical modes, in which vacuum Rabi splitting is comparable to the Landau level spacing. When a short, intense electromagnetic transient of duration ˜250 fs and carrying a peak magnetic field ˜5 T is applied to the structure, the cyclotron transition can be suddenly tuned on resonance with a desired photon mode, switching on the light-matter interaction and leading to a Casimir radiation emitted parallel to the quantum well plane. The radiation spectrum consists of sharp peaks with frequencies coinciding with engineered optical modes within the 3D photonic band gap, and its characteristics are extremely robust to the nonradiative damping which can be large in our system. Furthermore, the absence of continuum with associated low-energy excitations for both electromagnetic and electronic quantum states can prevent the rapid absorption of the photon flux which is likely to occur in other proposals for all-optical dynamical Casimir effect.
Low-threshold photonic-band-edge laser using iron-nail-shaped rod array
Choi, Jae-Hyuck; No, You-Shin; Hwang, Min-Soo; Jeong, Kwang-Yong; Park, Hong-Gyu E-mail: hgpark@korea.ac.kr; Kwon, Soon-Yong; Yang, Jin-Kyu E-mail: hgpark@korea.ac.kr; Kwon, Soon-Hong
2014-03-03
We report the experimental demonstration of an optically pumped rod-type photonic-crystal band-edge laser. The structure consists of a 20 × 20 square lattice array of InGaAsP iron-nail-shaped rods. A single-mode lasing action is observed with a low threshold of ∼90 μW and a peak wavelength of 1451.5 nm at room temperature. Measurements of the polarization-resolved mode images and lasing wavelengths agree well with numerical simulations, which confirm that the observed lasing mode originates from the first Γ-point transverse-electric-like band-edge mode. We believe that this low-threshold band-edge laser will be useful for the practical implementation of nanolasers.
Waveguides in three-dimensional metallic photonic band-gap materials
Sigalas, M.M.; Biswas, R.; Ho, K.M.; Soukoulis, C.M.; Crouch, D.D.
1999-08-01
We theoretically investigate waveguide structures in three-dimensional metallic photonic band-gap (MPBG) materials. The MPBG materials used in this study consist of a three-dimensional mesh of metallic wires embedded in a dielectric. An {ital L}-shaped waveguide is created by removing part of the metallic wires. Using finite difference time domain simulations, we found that an 85{percent} transmission efficiency can be achieved through the 90{degree} bend with just three unit cell thickness MPBG structures. thinsp {copyright} {ital 1999} {ital The American Physical Society}
Inverse dispersion method for calculation of complex photonic band diagram and PT symmetry
NASA Astrophysics Data System (ADS)
Rybin, Mikhail V.; Limonov, Mikhail F.
2016-04-01
We suggest an inverse dispersion method for calculating a photonic band diagram for materials with arbitrary frequency-dependent dielectric functions. The method is able to calculate the complex wave vector for a given frequency by solving the eigenvalue problem with a non-Hermitian operator. The analogy with PT -symmetric Hamiltonians reveals that the operator corresponds to the momentum as a physical quantity, and the singularities at the band edges are related to the branch points and responses for the features on the band edges. The method is realized using a plane wave expansion technique for a two-dimensional periodic structure in the case of TE and TM polarizations. We illustrate the applicability of the method by the calculation of the photonic band diagrams of an infinite two-dimensional square lattice composed of dielectric cylinders using the measured frequency-dependent dielectric functions of different materials (amorphous hydrogenated carbon, silicon, and chalcogenide glass). We show that the method allows one to distinguish unambiguously between Bragg and Mie gaps in the spectra.
Geometric phase and entanglement of Raman photon pairs in the presence of photonic band gap
Berrada, K.; Ooi, C. H. Raymond; Abdel-Khalek, S.
2015-03-28
Robustness of the geometric phase (GP) with respect to different noise effects is a basic condition for an effective quantum computation. Here, we propose a useful quantum system with real physical parameters by studying the GP of a pair of Stokes and anti-Stokes photons, involving Raman emission processes with and without photonic band gap (PBG) effect. We show that the properties of GP are very sensitive to the change of the Rabi frequency and time, exhibiting collapse phenomenon as the time becomes significantly large. The system allows us to obtain a state which remains with zero GP for longer times. This result plays a significant role to enhance the stabilization and control of the system dynamics. Finally, we investigate the nonlocal correlation (entanglement) between the pair photons by taking into account the effect of different parameters. An interesting correlation between the GP and entanglement is observed showing that the PBG stabilizes the fluctuations in the system and makes the entanglement more robust against the change of time and frequency.
Xu, Wen; Bai, Xue; Zhu, Yongsheng; Liu, Tong; Xu, Sai; Dong, Biao; Song, Hongwei
2013-05-14
Changes in the excitation spectra of luminescent species inserted in photorefractive crystals as a function of changes in the high-order photonic band gap (PBG) have not been previously observed. In this communication, we present our results monitoring the excitation band of Eu(TTA)3(TPPO)2 inserted in the PMMA opal photonic crystals as a function of the changes in the high-order PBG of the crystals. We find shifts in the complex excitation band and changes in the integrated emission intensity that correlates with shifts in the high-order PBG through coupling to the excitation transition. PMID:23676019
NASA Astrophysics Data System (ADS)
Xu, Wen; Bai, Xue; Zhu, Yongsheng; Liu, Tong; Xu, Sai; Dong, Biao; Song, Hongwei
2013-05-01
Changes in the excitation spectra of luminescent species inserted in photorefractive crystals as a function of changes in the high-order photonic band gap (PBG) have not been previously observed. In this communication, we present our results monitoring the excitation band of Eu(TTA)3(TPPO)2 inserted in the PMMA opal photonic crystals as a function of the changes in the high-order PBG of the crystals. We find shifts in the complex excitation band and changes in the integrated emission intensity that correlates with shifts in the high-order PBG through coupling to the excitation transition.
Photonic crystal structures with tunable structure color as colorimetric sensors.
Wang, Hui; Zhang, Ke-Qin
2013-01-01
Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs) to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM) by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors. PMID:23539027
Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors
Wang, Hui; Zhang, Ke-Qin
2013-01-01
Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs) to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM) by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors. PMID:23539027
Shin, Young-Min
2012-05-15
Confined propagation of guided waves through the periodically corrugated channel sandwiched between two staggered dielectric photonic-band-gap slab arrays is investigated with the band-response analysis. Numerical simulations show that longitudinally polarized evanescent waves within the band gap propagate with insertion loss of {approx}-0.2 to 1 dB (-0.05 to 0.4 dB/mm at G-band) in the hybrid band filter. This structure significantly suppresses low energy modes and higher-order-modes beyond the band-gap, including background noises, down to {approx}-45 dB. This would enable the single-mode propagation in the heavily over-moded waveguide (TEM-type), minimizing abnormal excitation probability of trapped modes. This band filter could be integrated with active and passive RF components for electron beam and optoelectronic devices.
A 250 GHz Photonic Band Gap Gyrotron Amplifier
NASA Astrophysics Data System (ADS)
Nanni, Emilio A.; Lewis, Samantha M.; Shapiro, Michael A.; Temkin, Richard J.
2012-10-01
Initial results for a high power 250 GHz gyrotron traveling wave tube (gyro-TWT) amplifier will be presented. The amplifier uses a novel photonic band gap (PBG) interaction circuit that confines the TE03-like mode for operation. Stability from oscillations in lower order modes is provided by the PBG circuit. At 26.6 kV and 0.25 A the gyro-TWT operates with peak small signal gain of 27.3 dB at 251 GHz. The instantaneous -3 dB bandwidth of the amplifier at peak gain is 0.4 GHz. The amplifier can be tuned for operation from 245-254 GHz. A peak output power of 7.5 W has been measured. Experimental results taken over a wide range of parameters, 15-30 kV and 0.25-0.5 A, show good agreement with a theoretical model in the small signal gain regime. The theoretical model incorporates cold test measurements for the transmission line, input coupler, PBG waveguide and mode converter.
Photonic-Band-Gap Traveling-Wave Gyrotron Amplifier
Nanni, E. A.; Lewis, S. M.; Shapiro, M. A.; Griffin, R. G.; Temkin, R. J.
2014-01-01
We report the experimental demonstration of a gyrotron traveling-wave-tube amplifier at 250 GHz that uses a photonic band gap (PBG) interaction circuit. The gyrotron amplifier achieved a peak small signal gain of 38 dB and 45 W output power at 247.7 GHz with an instantaneous −3 dB bandwidth of 0.4 GHz. The amplifier can be tuned for operation from 245–256 GHz. The widest instantaneous −3 dB bandwidth of 4.5 GHz centered at 253.25 GHz was observed with a gain of 24 dB. The PBG circuit provides stability from oscillations by supporting the propagation of transverse electric (TE) modes in a narrow range of frequencies, allowing for the confinement of the operating TE03-like mode while rejecting the excitation of oscillations at nearby frequencies. This experiment achieved the highest frequency of operation for a gyrotron amplifier; at present, there are no other amplifiers in this frequency range that are capable of producing either high gain or high output power. This result represents the highest gain observed above 94 GHz and the highest output power achieved above 140 GHz by any conventional-voltage vacuum electron device based amplifier. PMID:24476286
Photonic-band-gap traveling-wave gyrotron amplifier.
Nanni, E A; Lewis, S M; Shapiro, M A; Griffin, R G; Temkin, R J
2013-12-01
We report the experimental demonstration of a gyrotron traveling-wave-tube amplifier at 250 GHz that uses a photonic band gap (PBG) interaction circuit. The gyrotron amplifier achieved a peak small signal gain of 38 dB and 45 W output power at 247.7 GHz with an instantaneous -3 dB bandwidth of 0.4 GHz. The amplifier can be tuned for operation from 245-256 GHz. The widest instantaneous -3 dB bandwidth of 4.5 GHz centered at 253.25 GHz was observed with a gain of 24 dB. The PBG circuit provides stability from oscillations by supporting the propagation of transverse electric (TE) modes in a narrow range of frequencies, allowing for the confinement of the operating TE03-like mode while rejecting the excitation of oscillations at nearby frequencies. This experiment achieved the highest frequency of operation for a gyrotron amplifier; at present, there are no other amplifiers in this frequency range that are capable of producing either high gain or high output power. This result represents the highest gain observed above 94 GHz and the highest output power achieved above 140 GHz by any conventional-voltage vacuum electron device based amplifier. PMID:24476286
NASA Astrophysics Data System (ADS)
Chern, R. L.; Chang, C. Chung; Chang, Chien C.; Hwang, R. R.
2003-08-01
In this study, two fast and accurate methods of inverse iteration with multigrid acceleration are developed to compute band structures of photonic crystals of general shape. In particular, we report two-dimensional photonic crystals of silicon air with an optimal full band gap of gap-midgap ratio Δω/ωmid=0.2421, which is 30% larger than ever reported in the literature. The crystals consist of a hexagonal array of circular columns, each connected to its nearest neighbors by slender rectangular rods. A systematic study with respect to the geometric parameters of the photonic crystals was made possible with the present method in drawing a three-dimensional band-gap diagram with reasonable computing time.
Chern, R L; Chang, C Chung; Chang, Chien C; Hwang, R R
2003-08-01
In this study, two fast and accurate methods of inverse iteration with multigrid acceleration are developed to compute band structures of photonic crystals of general shape. In particular, we report two-dimensional photonic crystals of silicon air with an optimal full band gap of gap-midgap ratio Deltaomega/omega(mid)=0.2421, which is 30% larger than ever reported in the literature. The crystals consist of a hexagonal array of circular columns, each connected to its nearest neighbors by slender rectangular rods. A systematic study with respect to the geometric parameters of the photonic crystals was made possible with the present method in drawing a three-dimensional band-gap diagram with reasonable computing time. PMID:14525145
Tunable resonant structures for photonic integrated circuits
NASA Astrophysics Data System (ADS)
Ptasinski, Joanna Nina
Photonics is an evolving field allowing for optical devices to be made cost effectively using standard semiconductor fabrication techniques, which in turn enables integration with microelectronic chips. Chip scale photonics will play an increasing role in the future of communications as the demand for bandwidth and reduced power consumption per bit continues to grow. Tunable optical circuit components are one of the essential technologies in the development of photonic analogues for classical electronic devices, where tunable photonic resonant structures allow for altering of their electromagnetic spectrum and find applications in optical switching, filtering, buffering, lasers and biosensors. The scope of this work is focused on tunable resonant structures for photonic integrated circuits. Specifically, this work demonstrates active tuning of silicon photonic resonant structures using the properties of dye doped nematic liquid crystals, temperature stabilization of silicon photonics using the passive properties of liquid crystals, and the effects of low density plasma enhanced chemical vapor deposition (PECVD) claddings on ring resonator device performance.
NASA Astrophysics Data System (ADS)
Labbani, Amel; Benghalia, Abdelmadjid
2012-06-01
Using the Maxwell-Garnett theory, the evolution of the refractive index of titanium dioxide (TiO2) doped with zinc sulfide (ZnS) particles is presented. The presence of the nano-objects in the host matrix allows us to obtain a new composite material with tunable optical properties. We find that the filling factor of ZnS nanoparticles greatly alters photonic band gaps (PBGs). We have calculated also the photonic band structure for electromagnetic waves propagating in a structure consisting of ZnS rods covered with the air shell layer in 2D hexagonal and square lattices by the finite difference time domain (FDTD) method. The rods are embedded in the TiO2 background medium with a high dielectric constant. Such photonic lattices present complete photonic band gaps (CPBGs). Our results show that the existence of the air shell layer leads to larger complete photonic gaps. We believe that the present results are significant to increase the possibilities for experimentalists to realize a sizeable and larger CPBG.
Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band
Li Xiaoying; Liang Chuang; Fook Lee, Kim; Chen, Jun; Voss, Paul L.; Kumar, Prem
2006-05-15
We demonstrate an optical-fiber-based source of polarization-entangled photon pairs with improved quality and efficiency, which has been integrated with off-the-shelf telecom components and is, therefore, well suited for quantum communication applications in the 1550-nm telecom band. Polarization entanglement is produced by simultaneously pumping a loop of standard dispersion-shifted fiber with two orthogonally polarized pump pulses, one propagating in the clockwise and the other in the counterclockwise direction. We characterize this source by investigating two-photon interference between the generated signal-idler photon pairs under various conditions. The experimental parameters are carefully optimized to maximize the generated photon-pair correlation and to minimize contamination of the entangled photon pairs from extraneously scattered background photons that are produced by the pump pulses for two reasons: (i) spontaneous Raman scattering causes uncorrelated photons to be emitted in the signal and idler bands and (ii) broadening of the pump-pulse spectrum due to self-phase modulation causes pump photons to leak into the signal and idler bands. We obtain two-photon interference with visibility >90% without subtracting counts caused by the background photons (only dark counts of the detectors are subtracted), when the mean photon number in the signal (idler) channel is about 0.02/pulse, while no interference is observed in direct detection of either the signal or idler photons.
Three-dimensional periodic dielectric structures having photonic Dirac points
Bravo-Abad, Jorge; Joannopoulos, John D.; Soljacic, Marin
2015-06-02
The dielectric, three-dimensional photonic materials disclosed herein feature Dirac-like dispersion in quasi-two-dimensional systems. Embodiments include a face-centered cubic (fcc) structure formed by alternating layers of dielectric rods and dielectric slabs patterned with holes on respective triangular lattices. This fcc structure also includes a defect layer, which may comprise either dielectric rods or a dielectric slab with patterned with holes. This defect layer introduces Dirac cone dispersion into the fcc structure's photonic band structure. Examples of these fcc structures enable enhancement of the spontaneous emission coupling efficiency (the .beta.-factor) over large areas, contrary to the conventional wisdom that the .beta.-factor degrades as the system's size increases. These results enable large-area, low-threshold lasers; single-photon sources; quantum information processing devices; and energy harvesting systems.
Zhang HaiFeng; Liu Shaobin; Yang Huan; Kong Xiangkun
2013-03-15
In this paper, the magnetooptical effects in dispersive properties for two types of three-dimensional magnetized plasma photonic crystals (MPPCs) containing homogeneous dielectric and magnetized plasma with diamond lattices are theoretically investigated for electromagnetic (EM) wave based on plane wave expansion (PWE) method, as incidence EM wave vector is parallel to the external magnetic field. The equations for two types of MPPCs with diamond lattices (dielectric spheres immersed in magnetized plasma background or vice versa) are theoretically deduced. The influences of dielectric constant, plasma collision frequency, filling factor, the external magnetic field, and plasma frequency on the dispersive properties for both types of structures are studied in detail, respectively, and some corresponding physical explanations are also given. From the numerical results, it has been shown that the photonic band gaps (PBGs) for both types of MPPCs can be manipulated by plasma frequency, filling factor, the external magnetic field, and the relative dielectric constant of dielectric, respectively. Especially, the external magnetic field can enlarge the PBG for type-2 structure (plasma spheres immersed in dielectric background). However, the plasma collision frequency has no effect on the dispersive properties of two types of three-dimensional MPPCs. The locations of flatbands regions for both types of structures cannot be tuned by any parameters except for plasma frequency and the external magnetic field. The analytical results may be informative and of technical use to design the MPPCs devices.
Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors
Dey, Anup; Maiti, Biswajit; Chanda, Debasree
2014-04-14
A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k{sup →}) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg{sub 1−x}Cd{sub x}Te, and In{sub 1−x}Ga{sub x}As{sub y}P{sub 1−y} lattice matched to InP, as example of III–V compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.
NASA Astrophysics Data System (ADS)
Zhukovsky, Sergei V.; Orlov, Alexey A.; Babicheva, Viktoriia E.; Lavrinenko, Andrei V.; Sipe, J. E.
2014-07-01
We study theoretically the propagation of large-wave-vector waves (volume plasmon polaritons) in multilayer hyperbolic metamaterials with two levels of structuring. We show that when the parameters of a subwavelength metal-dielectric multilayer (substructure) are modulated (superstructured) on a larger, wavelength scale, the propagation of volume plasmon polaritons in the resulting multiscale hyperbolic metamaterials is subject to photonic-band-gap phenomena. A great degree of control over such plasmons can be exerted by varying the superstructure geometry. When this geometry is periodic, stop bands due to Bragg reflection form within the volume plasmonic band. When a cavity layer is introduced in an otherwise periodic superstructure, resonance peaks of the Fabry-Pérot nature are present within the stop bands. More complicated superstructure geometries are also considered. For example, fractal Cantor-like multiscale metamaterials are found to exhibit characteristic self-similar spectral signatures in the volume plasmonic band. Multiscale hyperbolic metamaterials are shown to be a promising platform for large-wave-vector bulk plasmonic waves, whether they are considered for use as a kind of information carrier or for far-field subwavelength imaging.
Lai, Chun-Feng; Chang, Chung-Chieh; Wang, Ming-Jye; Wu, Mau-Kuen
2013-07-01
This study exhibited the correlated color temperature (CCT)- and color-rendering index (CRI)-tuning behavior of light emission from white light-emitting diodes (WLEDs) using three-dimensional non-close-packed (3D NCP) colloidal photonic crystals (CPhCs). The CCT of approximately 5300 K (characteristic of cold WLEDs) of white light propagated through the NCP CPhCs dropped to 3000 K (characteristic of warm WLEDs) because of the photonic stop-bands based on the photonic band structures of NCP CPhCs. This study successfully developed a novel technique that introduces lower-cost CCT- and CRI-tuning cold WLEDs with a CRI of over 90 that of warm WLEDs by using 3D NCP CPhCs. PMID:24104495
NASA Astrophysics Data System (ADS)
Ward, D.; Macchiavelli, A. O.; Clark, R. M.; Cline, D.; Cromaz, M.; Deleplanque, M. A.; Diamond, R. M.; Fallon, P.; Görgen, A.; Hayes, A. B.; Lane, G. J.; Lee, I.-Y.; Nakatsukasa, T.; Schmidt, G.; Stephens, F. S.; Svensson, C. E.; Teng, R.; Vetter, K.; Wu, C. Y.
2012-12-01
Over a period of several years we have performed three separate experiments at Lawrence Berkeley National Laboratory's 88-Inch Cyclotron in which 235U (thick target) was Coulomb-excited. The program involved stand-alone experiments with Gammmasphere and with the 8pi Spectrometer using 136Xe beams at 720 MeV, and a CHICO-Gammasphere experiment with a 40Ca beam at 184 MeV. In addition to extending the known negative-parity bands to high spin, we have assigned levels in some seven positive-parity bands which are in some cases (e.g., [631]1/2, [624]7/2, and [622]5/2) strongly populated by E3 excitation. The CHICO data have been analyzed to extract E2 and E3 matrix elements from the observed yields. Additionally, many M1 matrix elements could be extracted from the γ-ray branching ratios. A number of new features have emerged, including the unexpected attenuation of magnetic transitions between states of the same Nilsson multiplet, the breakdown of Coriolis staggering at high spin, and the effect of E3 collectivity on Coriolis interactions.
Zero- n bar band gap in two-dimensional metamaterial photonic crystals
NASA Astrophysics Data System (ADS)
Mejía-Salazar, J. R.; Porras-Montenegro, N.
2015-04-01
We have theoretically studied metamaterial photonic crystals (PCs) composed by air and double negative (DNG) material. Numerical data were obtained by means of the finite difference time-domain (FDTD) method, with results indicating the possibility for the existence of the zero- n bar non-Bragg gap in two-dimensional metamaterial PCs, which has been previously observed only in one-dimensional photonic superlattices. Validity of the present FDTD algorithm for the study of one-dimensional metamaterial PCs is shown by comparing with results for the transmittance spectra obtained by means of the well known transfer matrix method (TMM). In the case of two-dimensional metamaterial PCs, we have calculated the photonic band structure (PBS) in the limiting case of a one-dimensional photonic superlattice and for a nearly one-dimensional PC, showing a very similar dispersion relation. Finally, we show that due to the strong electromagnetic field localization on the constitutive rods, the zero- n bar non-Bragg gap may only exist in two-dimensional systems under strict geometrical conditions.
Band-edge lasing and miniband lasing in 1-D dual-periodic photonic crystal
NASA Astrophysics Data System (ADS)
Ying, Cui-Feng; Zhou, Wen-Yuan; Li, Yi; Ye, Qing; Zhang, Chun-Ping; Tian, Jian-Guo
2012-06-01
Herein, we report two different dual-periodic Photonic Crystals (PCs) in dichromated gelatin emulsion which are fabricated by four-beam holography and double-exposure holography. The minibands with high Q-factors have been evidently located in both two structures. By taking into account the non-uniform distribution of material, the numerical results agree quite well with the experimental results. We also compared the band-edge lasing in single-periodic PC and miniband lasing in Moiré dual-periodic PC. Due to extremely flat dispersion and large mode volume of the miniband, high optical conversion efficiency in miniband lasing is achieved as compared with that of band-edge lasing. Such effect may provide potential applications in low-threshold lasers and ultra-sensitive fluorescent probes in biological assays.
Fabrication of ceramic layer-by-layer infrared wavelength photonic band gap crystals
NASA Astrophysics Data System (ADS)
Kang, Henry Hao-Chuan
Photonic band gap (PBG) crystals, also known as photonic crystals, are periodic dielectric structures which form a photonic band gap that prohibit the propagation of electromagnetic (EM) waves of certain frequencies at any incident angles. Photonic crystals have several potential applications including zero-threshold semiconductor lasers, the inhibiting spontaneous emission, dielectric mirrors, and wavelength filters. If defect states are introduced in the crystals, light can be guided from one location to another or even a sharp bending of light in submicron scale can be achieved. This generates the potential for optical waveguide and optical circuits, which will contribute to the improvement in the fiber-optic communications and the development of high-speed computers. The goal of this dissertation research is to explore techniques for fabricating 3D ceramic layer-by-layer (LBL) photonic crystals operating in the infrared frequency range, and to characterize the infilling materials properties that affect the fabrication process as well as the structural and optical properties of the crystals. While various approaches have been reported in literature for the fabrication of LBL structure, the uniqueness of this work ties with its cost-efficiency and relatively short process span. Besides, very few works have been reported on fabricating ceramic LBL crystals at mid-IR frequency range so far. The fabrication techniques reported here are mainly based on the concepts of microtransfer molding with the use of polydimethyl siloxane (PDMS) as molds/stamps. The infilling materials studied include titanium alkoxide precursors and aqueous suspensions of nanosize titania particles (slurries). Various infilling materials were synthesized to determine viscosities, effects on drying and firing shrinkages, effects on film surface roughness, and their moldability. Crystallization and phase transformation of the materials were also monitored using DTA, TGA and XRD. Mutilayer crystal
Quasiparticle band structure of HgSe
Rohlfing, M.; Louie, S.G.
1998-04-01
Motivated by a recent discussion about the existence of a fundamental gap in HgSe [Phys. Rev. Lett. {bold 78}, 3165 (1997)], we calculate the quasiparticle band structure of HgSe within the GW approximation for the electron self-energy. The band-structure results show that HgSe is a semimetal, which is in agreement with most experimental data. We observe a strong wave-vector dependence of the self-energy of the lowest conduction band, leading to an increased dispersion and a small effective mass. This may help to interpret recent photoemission spectroscopy measurements. {copyright} {ital 1998} {ital The American Physical Society}
NASA Astrophysics Data System (ADS)
Tang, Zheng-hua; Jiang, Zheng-Sheng; Chen, Tao; Lei, Da-Jun; Yan, Wen-Yan; Qiu, Feng; Huang, Jian-Quan; Deng, Hai-Ming; Yao, Min
2016-04-01
A novel phoxonic crystal using the piezoelectric (PMN-PT) and piezomagnetic (CoFe2O4) superlattices with three types of domains in a unit cell (PPSUC) is present, in which dual microwave photonic and phononic band gaps can be obtained simultaneously. Two categories of phononic band gaps, originating from both the Bragg scattering of acoustic waves in periodic structures at the Brillouin zone boundary and the electromagnetic wave-lattice vibration couplings near the Brillouin zone center, can be observed in the phononic band structures. The general characteristics of the microwave photonic band structures are similar to those of pure piezoelectric or piezomagnetic superlattices, with the major discrepancy being the appearance of nearly dispersionless branches within the microwave photonic band gaps, which show an extremely large group velocity delay. Thus, the properties may also be applied to compact acoustic-microwave devices.
Photonic Crystal Laser-Driven Accelerator Structures
Cowan, B.; /SLAC
2005-09-19
We discuss simulated photonic crystal structure designs for laser-driven particle acceleration, focusing on three-dimensional planar structures based on the so-called ''woodpile'' lattice. We demonstrate guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice and discuss the properties of this mode. We also discuss particle beam dynamics in the structure, presenting a novel method for focusing the beam. In addition we describe some potential coupling methods for the structure.
Fabrication of 3-D Photonic Band Gap Crystals Via Colloidal Self-Assembly
NASA Technical Reports Server (NTRS)
Subramaniam, Girija; Blank, Shannon
2005-01-01
The behavior of photons in a Photonic Crystals, PCs, is like that of electrons in a semiconductor in that, it prohibits light propagation over a band of frequencies, called Photonic Band Gap, PBG. Photons cannot exist in these band gaps like the forbidden bands of electrons. Thus, PCs lend themselves as potential candidates for devices based on the gap phenomenon. The popular research on PCs stem from their ability to confine light with minimal losses. Large scale 3-D PCs with a PBG in the visible or near infra red region will make optical transistors and sharp bent optical fibers. Efforts are directed to use PCs for information processing and it is not long before we can have optical integrated circuits in the place of electronic ones.
Field demonstration of X-band photonic antenna remoting in the Deep Space Network
NASA Technical Reports Server (NTRS)
Yao, X. S.; Lutes, G.; Logan, R. T., Jr.; Maleki, L.
1994-01-01
We designed a photonic link for antenna remoting based on our integrated system analysis. With this 12-km link, we successfully demonstrated photonic antenna-remoting capability at X-band (8.4 GHz) at one of NASA's Deep Space Stations while tracking the Magellan spacecraft.
Self-induced transparency solitary waves in a doped nonlinear photonic band gap material
NASA Astrophysics Data System (ADS)
Aközbek, Neşet; John, Sajeev
1998-09-01
We derive the properties of self-induced transparency (SIT) solitary waves in a one-dimensional periodic structure doped uniformly with resonance two-level atoms. In our model, the electromagnetic field is treated classically and the dopant atoms are described quantum mechanically. The resulting solitary waves take the form of ultrashort (picosecond) laser pulses which propagate near the band edge of the nonlinear photonic band gap (PBG) material doped with rare-earth atoms such as erbium. Solitary wave formation involves the combined effects of group velocity dispersion (GVD), nonresonant Kerr nonlinearity, and resonant interaction with dopant atoms. We derive the general Maxwell-Bloch equations for a nonlinear PBG system and then demonstrate the existence of elementary solitary wave solutions for frequencies far outside the gap where GVD effects are negligible and for frequencies near the photonic band edge where GVD effects are crucial. We find two distinct new types of propagating SIT solitary wave pulses. Far from Bragg resonance, we recapture the usual McCall-Hahn soliton with hyperbolic secant profile when the nonlinear Kerr coefficient χ(3)=0. However, when the host nonresonant Kerr coefficient is nonzero, we obtain the first new type of soliton. In this case, the optical soliton envelope function deviates from the hyperbolic secant profile and pulse propagation requires nontrivial phase modulation (chirping). We derive the dependence of the solitary wave structure on the Kerr coefficient χ(3), the resonance impurity atom density, and the detuning of the average laser frequency from the atomic transition. When the laser frequency and the atomic transition frequencies are near the photonic band edge we obtain the second type of soliton. To illustrate the second type of soliton we consider two special cases. In the first case, GVD facilitates the propagation of an unchirped SIT-gap soliton moving at a velocity fixed by the material's parameters. The soliton
NASA Astrophysics Data System (ADS)
Wang, Qiang; Xiao, Meng; Liu, Hui; Zhu, Shining; Chan, C. T.
2016-01-01
The Zak phase labels the topological property of one-dimensional Bloch bands. Here we propose a scheme and experimentally measure the Zak phase in a photonic system. The Zak phase of a bulk band is related to the topological properties of the two band gaps sandwiching this band, which in turn can be inferred from the existence or absence of an interface state. Using a reflection spectrum measurement, we determined the existence of interface states in the gaps and then obtained the Zak phases. The knowledge of Zak phases can also help us predict the existence of interface states between a metasurface and a photonic crystal. By manipulating the property of the metasurface, we can further tune the excitation frequency and the polarization of the interface state.
Generation of narrow-band hyperentangled nondegenerate paired photons.
Yan, Hui; Zhang, Shanchao; Chen, J F; Loy, M M T; Wong, G K L; Du, Shengwang
2011-01-21
We report the generation of nondegenerate narrow-bandwidth paired photons with time-frequency and polarization entanglements from laser cooled atoms. We observe the two-photon interference caused by Rabi splitting with a coherence time of about 30 ns and a visibility of 81.8% which verifies the time-frequency entanglement of the paired photons. The polarization entanglement is confirmed by polarization correlation measurements which exhibit a visibility of 89.5% and characterized by quantum-state tomography with a fidelity of 90.8%. Taking into account the transmission losses and duty cycle, we estimate that the system generates hyperentangled paired photons into opposing single-mode fibers at a rate of 320 pairs per second. PMID:21405274
Generation of Narrow-Band Hyperentangled Nondegenerate Paired Photons
NASA Astrophysics Data System (ADS)
Yan, Hui; Zhang, Shanchao; Chen, J. F.; Loy, M. M. T.; Wong, G. K. L.; Du, Shengwang
2011-01-01
We report the generation of nondegenerate narrow-bandwidth paired photons with time-frequency and polarization entanglements from laser cooled atoms. We observe the two-photon interference caused by Rabi splitting with a coherence time of about 30 ns and a visibility of 81.8% which verifies the time-frequency entanglement of the paired photons. The polarization entanglement is confirmed by polarization correlation measurements which exhibit a visibility of 89.5% and characterized by quantum-state tomography with a fidelity of 90.8%. Taking into account the transmission losses and duty cycle, we estimate that the system generates hyperentangled paired photons into opposing single-mode fibers at a rate of 320 pairs per second.
High-frequency homogenization of zero-frequency stop band photonic and phononic crystals
NASA Astrophysics Data System (ADS)
Antonakakis, T.; Craster, R. V.; Guenneau, S.
2013-10-01
We present an accurate methodology for representing the physics of waves, in periodic structures, through effective properties for a replacement bulk medium: this is valid even for media with zero-frequency stop bands and where high-frequency phenomena dominate. Since the work of Lord Rayleigh in 1892, low-frequency (or quasi-static) behaviour has been neatly encapsulated in effective anisotropic media; the various parameters come from asymptotic analysis relying upon the ratio of the array pitch to the wavelength being sufficiently small. However, such classical homogenization theories break down in the high-frequency or stop band regime whereby the wavelength to pitch ratio is of order one. Furthermore, arrays of inclusions with Dirichlet data lead to a zero-frequency stop band, with the salient consequence that classical homogenization is invalid. Higher-frequency phenomena are of significant importance in photonics (transverse magnetic waves propagating in infinite conducting parallel fibres), phononics (anti-plane shear waves propagating in isotropic elastic materials with inclusions) and platonics (flexural waves propagating in thin-elastic plates with holes). Fortunately, the recently proposed high-frequency homogenization (HFH) theory is only constrained by the knowledge of standing waves in order to asymptotically reconstruct dispersion curves and associated Floquet-Bloch eigenfields: it is capable of accurately representing zero-frequency stop band structures. The homogenized equations are partial differential equations with a dispersive anisotropic homogenized tensor that characterizes the effective medium. We apply HFH to metamaterials, exploiting the subtle features of Bloch dispersion curves such as Dirac-like cones, as well as zero and negative group velocity near stop bands in order to achieve exciting physical phenomena such as cloaking, lensing and endoscope effects. These are simulated numerically using finite elements and compared to predictions
Wave propagation in ordered, disordered, and nonlinear photonic band gap materials
Lidorikis, Elefterios
1999-12-10
Photonic band gap materials are artificial dielectric structures that give the promise of molding and controlling the flow of optical light the same way semiconductors mold and control the electric current flow. In this dissertation the author studied two areas of photonic band gap materials. The first area is focused on the properties of one-dimensional PBG materials doped with Kerr-type nonlinear material, while, the second area is focused on the mechanisms responsible for the gap formation as well as other properties of two-dimensional PBG materials. He first studied, in Chapter 2, the general adequacy of an approximate structure model in which the nonlinearity is assumed to be concentrated in equally-spaced very thin layers, or 6-functions, while the rest of the space is linear. This model had been used before, but its range of validity and the physical reasons for its limitations were not quite clear yet. He performed an extensive examination of many aspects of the model's nonlinear response and comparison against more realistic models with finite-width nonlinear layers, and found that the d-function model is quite adequate, capturing the essential features in the transmission characteristics. The author found one exception, coming from the deficiency of processing a rigid bottom band edge, i.e. the upper edge of the gaps is always independent of the refraction index contrast. This causes the model to miss-predict that there are no soliton solutions for a positive Kerr-coefficient, something known to be untrue.
Nonreciprocal microwave band-gap structures.
Belov, P A; Tretyakov, S A; Viitanen, A J
2002-07-01
An electrically controlled nonreciprocal electromagnetic band-gap material is proposed and studied. The new material is a periodic three-dimensional regular lattice of small magnetized ferrite spheres. In this paper, we consider plane electromagnetic waves in this medium and design an analytical model for the material parameters. An analytical solution for plane-wave reflection from a planar interface is also presented. In the proposed material, a new electrically controlled stop band appears for one of the two circularly polarized eigenwaves in a frequency band around the ferrimagnetic resonance frequency. This frequency can be well below the usual lattice band gap, which allows the realization of rather compact structures. The main properties of the material are outlined. PMID:12241501
Analysis of plasma-magnetic photonic crystal with a tunable band gap
Mehdian, H.; Mohammadzahery, Z.; Hasanbeigi, A.
2013-04-15
In this paper, electromagnetic wave propagation through the one-dimensional plasma-magnetic photonic crystal in the presence of external magnetic field has been analyzed. The dispersion relation, transmission and reflection coefficients have been obtained by using the transfer matrix method. It is investigated how photonic band gap of photonic crystals will be tuned when both dielectric function {epsilon} and magnetic permeability {mu} of the constitutive materials, depend on applied magnetic field. This is shown by one dimensional photonic crystals consisting of plasma and ferrite material layers stacked alternately.
Two-photon photoemission from a copper cathode in an X -band photoinjector
NASA Astrophysics Data System (ADS)
Li, H.; Limborg-Deprey, C.; Adolphsen, C.; McCormick, D.; Dunning, M.; Jobe, K.; Raubenheimer, T.; Vrielink, A.; Vecchione, T.; Wang, F.; Weathersby, S.
2016-02-01
This paper presents two-photon photoemission from a copper cathode in an X -band photoinjector. We experimentally verified that the electron bunch charge from photoemission out of a copper cathode scales with laser intensity (I) square for 400 nm wavelength photons. We compare this two-photon photoemission process with the single photon process at 266 nm. Despite the high reflectivity (R ) of the copper surface for 400 nm photons (R =0.48 ) and higher thermal energy of photoelectrons (two-photon at 200 nm) compared to 266 nm photoelectrons, the quantum efficiency of the two-photon photoemission process (400 nm) exceeds the single-photon process (266 nm) when the incident laser intensity is above 300 GW /cm2 . At the same laser pulse energy (E ) and other experimental conditions, emitted charge scales inversely with the laser pulse duration. A thermal emittance of 2.7 mm-mrad per mm root mean square (rms) was measured on our cathode which exceeds by sixty percent larger compared to the theoretical predictions, but this discrepancy is similar to previous experimental thermal emittance on copper cathodes with 266 nm photons. The damage of the cathode surface of our first-generation X -band gun from both rf breakdowns and laser impacts mostly explains this result. Using a 400 nm laser can substantially simplify the photoinjector system, and make it an alternative solution for compact pulsed electron sources.
Band structure engineering in organic semiconductors.
Schwarze, Martin; Tress, Wolfgang; Beyer, Beatrice; Gao, Feng; Scholz, Reinhard; Poelking, Carl; Ortstein, Katrin; Günther, Alrun A; Kasemann, Daniel; Andrienko, Denis; Leo, Karl
2016-06-17
A key breakthrough in modern electronics was the introduction of band structure engineering, the design of almost arbitrary electronic potential structures by alloying different semiconductors to continuously tune the band gap and band-edge energies. Implementation of this approach in organic semiconductors has been hindered by strong localization of the electronic states in these materials. We show that the influence of so far largely ignored long-range Coulomb interactions provides a workaround. Photoelectron spectroscopy confirms that the ionization energies of crystalline organic semiconductors can be continuously tuned over a wide range by blending them with their halogenated derivatives. Correspondingly, the photovoltaic gap and open-circuit voltage of organic solar cells can be continuously tuned by the blending ratio of these donors. PMID:27313043
NASA Astrophysics Data System (ADS)
Xu, Lin; Wang, Hai-Xiao; Xu, Ya-Dong; Chen, Huan-Yang; Jiang, Jian-Hua
2016-08-01
A simple core-shell two-dimensional photonic crystal is studied where the triangle lattice symmetry and $C_{6v}$ rotation symmetry leads to rich physics in the study of accidental degeneracy's in photonic bands. We systematically evaluate different types of accidental nodal points, depending on the dispersions around them and their topological properties, when the geometry and permittivity are continuously changed. These accidental nodal points can be the critical states lying between a topological phase and a normal phase and are thus important for the study of topological photonic states. In time-reversal systems, this leads to the photonic quantum spin Hall insulator where the spin is defined upon the orbital angular momentum for transverse-magnetic polarization. We study the topological phase transition as well as the properties of the edge and bulk states and their application potentials in optics.
Efficient photon extraction from a quantum dot in a broad-band planar cavity antenna
Ma, Yong Kremer, Peter E.; Gerardot, Brian D.
2014-01-14
We analyse the extraction of photons emitted from single InAs quantum dots embedded in planar microcavities. The structures are designed to achieve broad-band operation and high-collection efficiency from a device requiring straightforward fabrication, even with electrical contacts. The designs consist of a quantum dot in a GaAs membrane with asymmetric top and bottom mirrors and a top-side solid immersion lens (SIL). Four separate cases are considered in our design: a GaAs membrane only (case 1), GaAs membrane with a glass SIL on top (case 2), a GaAs membrane with a glass SIL on top and a back mirror consisting of Au (case 3), a GaAs membrane with a glass SIL on top of a distribute Bragg reflector mirror and Au back mirror (case 4). Both finite difference time domain and analytical simulations are used to calculate the electric field, power density, and far-field radiation pattern. For optimized structures (case 4), we obtain significant extraction efficiencies (>50%) with modest Purcell enhancements (∼20%) and a large spectral full-width-half-maximum (>100 nm). The high-extraction efficiency, broad-band operation, and facile fabrication make the proposed structures promising for realistic quantum dot devices.
Efficient photon extraction from a quantum dot in a broad-band planar cavity antenna
NASA Astrophysics Data System (ADS)
Ma, Yong; Kremer, Peter E.; Gerardot, Brian D.
2014-01-01
We analyse the extraction of photons emitted from single InAs quantum dots embedded in planar microcavities. The structures are designed to achieve broad-band operation and high-collection efficiency from a device requiring straightforward fabrication, even with electrical contacts. The designs consist of a quantum dot in a GaAs membrane with asymmetric top and bottom mirrors and a top-side solid immersion lens (SIL). Four separate cases are considered in our design: a GaAs membrane only (case 1), GaAs membrane with a glass SIL on top (case 2), a GaAs membrane with a glass SIL on top and a back mirror consisting of Au (case 3), a GaAs membrane with a glass SIL on top of a distribute Bragg reflector mirror and Au back mirror (case 4). Both finite difference time domain and analytical simulations are used to calculate the electric field, power density, and far-field radiation pattern. For optimized structures (case 4), we obtain significant extraction efficiencies (>50%) with modest Purcell enhancements (˜20%) and a large spectral full-width-half-maximum (>100 nm). The high-extraction efficiency, broad-band operation, and facile fabrication make the proposed structures promising for realistic quantum dot devices.
Fabrication of ten-fold photonic quasicrystalline structures
Sun, XiaoHong Wu, YuLong; Liu, Wen; Liu, Wei; Han, Juan; Jiang, Lei
2015-05-15
Compared to periodic crystals, quasicrystals have higher point group symmetry and are more favorable in achieving complete band-gaps. In this report, a top-cut prism interferometer is designed to fabricate ten-fold photonic quasicrystalline structures. By optimizing the exposing conditions and material characteristics, appropriate quasicrystals have been obtained in the SU8 photoresist films. Atomic Force Microscopy and laser diffraction are used to characterize the fabricated structures. The measurement results show the consistence between the theoretical design and experiments. This will provide guidance for the large-area and fast production of ten-fold quasicrystalline structures with high quality.
NASA Astrophysics Data System (ADS)
Funk, O.; Pfeilsticker, K.
2003-03-01
This paper addresses the statistics underlying cloudy sky radiative transfer (RT) by inspection of the distribution of the path lengths of solar photons. Recent studies indicate that this approach is promising, since it might reveal characteristics about the diffusion process underlying atmospheric radiative transfer (Pfeilsticker, 1999). Moreover, it uses an observable that is directly related to the atmospheric absorption and, therefore, of climatic relevance. However, these studies are based largely on the accuracy of the measurement of the photon path length distribution (PPD). This paper presents a refined analysis method based on high resolution spectroscopy of the oxygen A-band. The method is validated by Monte Carlo simulation atmospheric spectra. Additionally, a new method to measure the effective optical thickness of cloud layers, based on fitting the measured differential transmissions with a 1-dimensional (discrete ordinate) RT model, is presented. These methods are applied to measurements conducted during the cloud radar inter-comparison campaign CLARE’98, which supplied detailed cloud structure information, required for the further analysis. For some exemplary cases, measured path length distributions and optical thicknesses are presented and backed by detailed RT model calculations. For all cases, reasonable PPDs can be retrieved and the effects of the vertical cloud structure are found. The inferred cloud optical thicknesses are in agreement with liquid water path measurements.
2D photonic crystal complete band gap search using a cyclic cellular automaton refination
NASA Astrophysics Data System (ADS)
González-García, R.; Castañón, G.; Hernández-Figueroa, H. E.
2014-11-01
We present a refination method based on a cyclic cellular automaton (CCA) that simulates a crystallization-like process, aided with a heuristic evolutionary method called differential evolution (DE) used to perform an ordered search of full photonic band gaps (FPBGs) in a 2D photonic crystal (PC). The solution is proposed as a combinatorial optimization of the elements in a binary array. These elements represent the existence or absence of a dielectric material surrounded by air, thus representing a general geometry whose search space is defined by the number of elements in such array. A block-iterative frequency-domain method was used to compute the FPBGs on a PC, when present. DE has proved to be useful in combinatorial problems and we also present an implementation feature that takes advantage of the periodic nature of PCs to enhance the convergence of this algorithm. Finally, we used this methodology to find a PC structure with a 19% bandgap-to-midgap ratio without requiring previous information of suboptimal configurations and we made a statistical study of how it is affected by disorder in the borders of the structure compared with a previous work that uses a genetic algorithm.
Tuning of full band gap in anisotropic photonic crystal slabs using a liquid crystal
NASA Astrophysics Data System (ADS)
Khalkhali, T. Fathollahi; Rezaei, B.; Ramezani, A. H.
2012-11-01
We analyze the tunability of full band gap in photonic crystal slabs created by square and triangular lattices of air holes in anisotropic tellurium background, considering that the regions above and below the slab are occupied by SiO2 and the holes are infiltrated with liquid crystals. Using the supercell method based on plane wave expansion, we study the variation of full band gap by changing the optical axis orientation of liquid crystal. Our results demonstrate the existence and remarkable tunability of full band gap in both square and triangular lattices, largest band gap and tunability being obtained for the triangular lattice.
A super narrow band filter based on silicon 2D photonic crystal resonator and reflectors
NASA Astrophysics Data System (ADS)
Wang, Yuanyuan; Chen, Deyuan; Zhang, Gang; Wang, Juebin; Tao, Shangbin
2016-03-01
In this paper, a novel structure of super narrow band filter based on two-dimensional square lattice photonic crystals of silicon rods in air for 1.5 um communication is proposed and studied. COMSOL Multiphysics4.3b software is used to simulate the optical behavior of the filter. The filter consists of one point-defect-based resonator and two line-defect-based reflectors. The resonance frequency, transmission coefficient and quality factor are investigated by varying the parameters of the structure. In design, a silicon rod is removed to form the resonator; for the rows of rods above and below the resonator, a part of the rods are removed to form the reflectors. By optimizing the parameters of the filter, the quality factor and transmission coefficient of the filter at the resonance frequency of 2e14 Hz can reach 1330 and 0.953, respectively. The super narrow band filter can be integrated into optical circuit for its micron size. Also, it can be used for wavelength selection and noise filtering of optical amplifier in future communication application.
Energy transfer from Rhodamine-B to Oxazine-170 in the presence of photonic stop band
NASA Astrophysics Data System (ADS)
Kedia, Sunita; Sinha, Sucharita
2015-03-01
Photonic crystals can effectively suppress spontaneous emission of embedded emitter in the direction were photonic stop band overlaps emission band of emitter. This property of PhC has been successfully exploited to enhance energy transfer from a donor Rhodamine-B dye to an acceptor Oxazine-170 dye by inhibiting the fluorescence emission of donor in a controlled manner. Self-assembled PhC were synthesized using RhB dye doped polystyrene microspheres subsequently infiltrated with O-170 dye molecules dissolved in ethanol. An angle dependent enhancement of emission intensity of acceptor via energy transfer in photonic crystal environment was observed. These results were compared with observations made on a dye mixture solution of the same two dyes. Restricted number of available modes in photonic crystal inhibited de-excitation of donor thereby enabling efficient transfer of energy from excited donor to acceptor dye molecules.
Free-Standing Photonic Crystal Films with Gradient Structural Colors.
Ding, Haibo; Liu, Cihui; Ye, Baofen; Fu, Fanfan; Wang, Huan; Zhao, Yuanjin; Gu, Zhongze
2016-03-23
Hydrogel colloidal crystal composite materials have a demonstrated value in responsive photonic crystals (PhCs) via controllable stimuli. Although they have been successfully exploited to generate a gradient of color distribution, the soft hydrogels have limitations in terms of stability and storage caused by dependence on environment. Here, we present a practical strategy to fabricate free-standing PhC films with a stable gradient of structural colors using binary polymer networks. A colloidal crystal hydrogel film was prepared for this purpose, with continuously varying photonic band gaps corresponding to the gradient of the press. Then, a second polymer network was used to lock the inside non-close-packed PhC structures and color distribution of the hydrogel film. It was demonstrated that our strategy could bring about a solution to the angle-dependent structural colors of the PhC films by coating the surface with special microstructures. PMID:26962967
Zero-coupling-gap degenerate band edge resonators in silicon photonics.
Burr, Justin R; Reano, Ronald M
2015-11-30
Resonances near regular photonic band edges are limited by quality factors that scale only to the third power of the number of periods. In contrast, resonances near degenerate photonic band edges can scale to the fifth power of the number periods, yielding a route to significant device miniaturization. For applications in silicon integrated photonics, we present the design and analysis of zero-coupling-gap degenerate band edge resonators. Complex band diagrams are computed for the unit cell with periodic boundary conditions that convey characteristics of propagating and evanescent modes. Dispersion features of the band diagram are used to describe changes in resonance scaling in finite length resonators. Resonators with non-zero and zero coupling gap are compared. Analysis of quality factor and resonance frequency indicates significant reduction in the number of periods required to observe fifth power scaling when degenerate band edge resonators are realized with zero-coupling-gap. High transmission is achieved by optimizing the waveguide feed to the resonator. Compact band edge cavities with large optical field distribution are envisioned for light emitters, switches, and sensors. PMID:26698725
Xu, Lin; Wang, Hai-Xiao; Xu, Ya-Dong; Chen, Huan-Yang; Jiang, Jian-Hua
2016-08-01
A simple core-shell two-dimensional photonic crystal is studied where the triangular lattice symmetry and the C_{6} point group symmetry give rich physics in accidental touching points of photonic bands. We systematically evaluate different types of accidental nodal points at the Brillouin zone center for transverse-magnetic harmonic modes when the geometry and permittivity of the core-shell material are continuously tuned. The accidental nodal points can have different dispersions and topological properties (i.e., Berry phases). These accidental nodal points can be the critical states lying between a topological phase and a normal phase of the photonic crystal. They are thus very important for the study of topological photonic states. We show that, without breaking time-reversal symmetry, by tuning the geometry of the core-shell material, a phase transition into the photonic quantum spin Hall insulator can be achieved. Here the "spin" is defined as the orbital angular momentum of a photon. We study the topological phase transition as well as the properties of the edge and bulk states and their application potentials in optics. PMID:27505772
Rahman, Mohammad Mahbubur; Marsal, Lluis F; Pallarès, Josep; Ferré-Borrull, Josep
2013-12-26
A distributed Bragg reflector based on nanoporous anodic alumina was fabricated using an innovative cyclic anodization voltage approach, which resulted in an in-depth modulation of the pore geometry and the refractive index. The effect of a pore-widening wet-etching step on the structure's photonic stop-band properties was studied. From transmittance measurements, it was shown that by changing the pore-widening time it is possible to modulate the photonic stop band in the range of visible to near infrared. With the help of a theoretical model, we were able to obtain information about the evolution with the pore widening of the material effective refractive indexes. This opens the possibility of obtaining several optoelectronic devices based on nanoporous anodic alumina. PMID:24283602
Two-photon absorption cross section measurement in the gamma band system of nitric oxide
Burris, J.F. Jr.
1982-01-01
A dye laser with a single longitudinal mode and very stable spatial mode structure has been constructed. With this laser system a four-wave mixing experiment was done in the gamma bands of nitric oxide using two photon resonance. Another four-wave mixing experiment was done in nitrogen using coherent anti-Stokes Raman scattering (CARS) and the two signals ratioed. Using accurately known values of the Raman scattering cross section, the third order susceptibility in NO was determined without needing to know the spatial and temporal properties of the dye lasers. From this susceptibility, the two photon absorption cross section was calculated with the explicit dependence of sigma/sup (2)/ upon X/sup (3)/ shown. For the R/sub 22/ + S/sub 12/(J'' = 9 1/2) (A/sup 2/..sigma..+(v' = 0) -- X/sup 2/..pi..(v'' = 0)) line, sigma/sup (2)/ = (1.0 +/- 0.6) x 10/sup -38/cm/sup 4/g(2/sub 1/-Vertical Barsub f/ is the normalized lineshape. Branching ratios for the A/sup 2/..sigma..+(v' = n) ..-->.. X/sup 2/..omega..(v'' = n)(n = o,...9) transitions of NO were also measured, Franck-Condon factors calculated and the lifetime of the A state determined.
Threshold for formation of atom-photon bound states in a coherent photonic band-gap reservoir
NASA Astrophysics Data System (ADS)
Wu, Yunan; Wang, Jing; Zhang, Hanzhuang
2016-05-01
We study the threshold for the formation of atom-photon bound (APB) states from a two-level atom embedded in a coherent photonic band-gap (PBG) reservoir. It is shown that the embedded position of the atom plays an important role in the threshold. By varying the atomic embedded position, a part of formation range of APB states can be moved from inside to outside the band gap. The direct link between the steady-state entanglement and APB states is also investigated. We show that the values of entanglement between reservoir modes reflect the amount of bounded energy caused by APB states. The feasible experimental systems for verifying the above phenomena are discussed. Our results provide a clear clue on how to form and control APB states in PBG materials.
Low-voltage tunable photonics devices: grove on thin porous structures containing liquid crystals
NASA Astrophysics Data System (ADS)
Criante, Luigino; Moretti, Luca; Scotognella, Francesco
2013-09-01
In this study we demonstrate the fabrication of one-dimensional porous multilayer photonic crystals made by metal oxide nanoparticles. We show the infiltration of these porous structures with a liquid crystal via a very simple method, resulting in a red shift of the photonic band gap due to increase of the effective refractive index of the medium. Taking advantage of structure thickness of only few micrometers, we have observed a blue shift of the photonic band gap owing the non-linear response of the liquid crystals by applying a very low external electric voltage, i.e. 8 V. The experimental observation of electric voltage tuning on the transmission spectrum has been corroborated by transfer matrix method simulations, by taking into account the non-linear optical properties of the liquid crystal. In this framework, we propose how the optical properties of these structure can be accurately predicted by our simulation software in terms of diffraction efficiency, of photonic band gap position when the porous photonic crystals is doped with a liquid crystal, of modulation of the photonic band gap position (electro-optic tuning) in the presence of applied voltage. According with results carried out by the custom simulation software it is possible to control the optical proprieties of the photonics crystal in very thin structures. Furthermore, the presented device could be very interesting for applications where high sensitivity sensor and selective color tunability is needed with the use of cheap and low voltage power supplies.
Complex banded structures in directional solidification processes.
Korzhenevskii, A L; Rozas, R E; Horbach, J
2016-01-27
A combination of theory and numerical simulation is used to investigate impurity superstructures that form in rapid directional solidification (RDS) processes in the presence of a temperature gradient and a pulling velocity with an oscillatory component. Based on a capillary wave model, we show that the RDS processes are associated with a rich morphology of banded structures, including frequency locking and the transition to chaos. PMID:26704726
Magnon band structure of periodic composites
NASA Astrophysics Data System (ADS)
Vasseur, J. O.; Dobrzynski, L.; Djafari-Rouhani, B.; Puszkarski, H.
1996-07-01
innodata J. O. VASSEUR et al. MAGNON BAND STRUCTURE OF PERIODIC COMPOSITES We calculate the spin-wave spectra of two-dimensional composite materials consisting of periodic square arrays of parallel cylinders made of a ferromagnetic material embedded in a ferromagnetic background. Each material is described by its spontaneous magnetization MS and exchange constant A. An external static magnetic field is applied along the direction of the cylinders and both ferromagnetic materials are assumed to be magnetized parallel to this magnetic field. We consider the spin-waves propagation in the plane perpendicular to the cylinders. We reveal the existence of gaps in the magnon band structure of composite systems such as the periodic array of Fe cylinders in an EuO matrix. We investigate the existence of these gaps in relation to the physical parameters of the materials involved. We also study the influence of the lattice parameter (i.e., the square array periodicity) and the effect of the filling fraction of the cylinders on the magnon band structure.
Designing of Metallic Photonic Structures and Applications
Yong-Sung Kim
2006-08-09
In this thesis our main interest has been to investigate metallic photonic crystal and its applications. We explained how to solve a periodic photonic structure with transfer matrix method and when and how to use modal expansion method. Two different coating methods were introduced, modifying a photonic structure's intrinsic optical properties and rigorous calculation results are presented. Two applications of metallic photonic structures are introduced. For thermal emitter, we showed how to design and find optimal structure. For conversion efficiency increasing filter, we calculated its efficiency and the way to design it. We presented the relation between emitting light spectrum and absorption and showed the material and structural dependency of the absorption spectrum. By choosing a proper base material and structural parameters, we can design a selective emitter at a certain region we are interested in. We have developed a theoretical model to analyze a blackbody filament enclosed by a metallic mesh which can increase the efficiency of converting a blackbody radiation to visible light. With this model we found that a square lattice metallic mesh enclosing a filament might increase the efficiency of incandescent lighting sources. Filling fraction and thickness dependency were examined and presented. Combining these two parameters is essential to achieve the maximum output result.
The band-gap enhanced photovoltaic structure
NASA Astrophysics Data System (ADS)
Tessler, Nir
2016-05-01
We critically examine the recently suggested structure that was postulated to potentially add 50% to the photo-conversion efficiency of organic solar cells. We find that the structure could be realized using stepwise increase in the gap as long as the steps are not above 0.1 eV. We also show that the charge extraction is not compromised due to an interplay between the contact's space charge and the energy level modification, which result in a flat energy band at the extracting contact.
Asahi, S.; Teranishi, H.; Kasamatsu, N.; Kada, T.; Kaizu, T.; Kita, T.
2014-08-14
We investigated the effects of an increase in the barrier height on the enhancement of the efficiency of two-step photo-excitation in InAs quantum dot (QD) solar cells with a dot-in-well structure. Thermal carrier escape of electrons pumped in QD states was drastically reduced by sandwiching InAs/GaAs QDs with a high potential barrier of Al{sub 0.3}Ga{sub 0.7}As. The thermal activation energy increased with the introduction of the barrier. The high potential barrier caused suppression of thermal carrier escape and helped realize a high electron density in the QD states. We observed efficient two-step photon absorption as a result of the high occupancy of the QD states at room temperature.
Zhang, Hai-Feng E-mail: lsb@nuaa.edu.cn; Liu, Shao-Bin E-mail: lsb@nuaa.edu.cn; Jiang, Yu-Chi
2014-09-15
In this paper, the tunable all-angle negative refraction and photonic band gaps (PBGs) in two types of two-dimensional (2D) plasma photonic crystals (PPCs) composed of homogeneous plasma and dielectric (GaAs) with square-like Archimedean lattices (ladybug and bathroom lattices) for TM wave are theoretically investigated based on a modified plane wave expansion method. The type-1 structure is dielectric rods immersed in the plasma background, and the complementary structure is named as type-2 PPCs. Theoretical simulations demonstrate that the both types of PPCs with square-like Archimedean lattices have some advantages in obtaining the higher cut-off frequency, the larger PBGs, more number of PBGs, and the relative bandwidths compared to the conventional square lattices as the filling factor or radius of inserted rods is same. The influences of plasma frequency and radius of inserted rod on the properties of PBGs for both types of PPCs also are discussed in detail. The calculated results show that PBGs can be manipulated by the parameters as mentioned above. The possibilities of all-angle negative refraction in such two types of PPCs at low bands also are discussed. Our calculations reveal that the all-angle negative phenomena can be observed in the first two TM bands, and the frequency range of all-angle negative refraction can be tuned by changing plasma frequency. Those properties can be used to design the optical switching and sensor.
NASA Astrophysics Data System (ADS)
Zhang, Hai-Feng; Liu, Shao-Bin; Jiang, Yu-Chi
2014-09-01
In this paper, the tunable all-angle negative refraction and photonic band gaps (PBGs) in two types of two-dimensional (2D) plasma photonic crystals (PPCs) composed of homogeneous plasma and dielectric (GaAs) with square-like Archimedean lattices (ladybug and bathroom lattices) for TM wave are theoretically investigated based on a modified plane wave expansion method. The type-1 structure is dielectric rods immersed in the plasma background, and the complementary structure is named as type-2 PPCs. Theoretical simulations demonstrate that the both types of PPCs with square-like Archimedean lattices have some advantages in obtaining the higher cut-off frequency, the larger PBGs, more number of PBGs, and the relative bandwidths compared to the conventional square lattices as the filling factor or radius of inserted rods is same. The influences of plasma frequency and radius of inserted rod on the properties of PBGs for both types of PPCs also are discussed in detail. The calculated results show that PBGs can be manipulated by the parameters as mentioned above. The possibilities of all-angle negative refraction in such two types of PPCs at low bands also are discussed. Our calculations reveal that the all-angle negative phenomena can be observed in the first two TM bands, and the frequency range of all-angle negative refraction can be tuned by changing plasma frequency. Those properties can be used to design the optical switching and sensor.
Research on Shore-Ship Photonic Link Performance for Two- Frequency-Band Signals
NASA Astrophysics Data System (ADS)
Zuo, Yanqin; Cong, Bo
2016-02-01
Ka and Ku bands links for shore-ship communications suffer limited bandwidth and high loss. In this paper, photonics-based links are proposed and modeled. The principle of phase modulation (PM) is elaborated and analyzed. It is showed that PM can effectively suppress high-order inter-modulation distortion (IMD), reduce the insert loss and improve the reliability of the system.
Planar Defect Modes Excited at the Band Edge of Three-dimensional Photonic Crystals
NASA Astrophysics Data System (ADS)
Iida, Masaru; Tani, Masahiko; Sakai, Kiyomi; Watanabe, Masayoshi; Kitahara, Hideaki; Tohme, Takuya; Wada Takeda, Mitsuo
2004-09-01
We experimentally and numerically studied planar defect modes excited at band-edge resonant mode frequencies in three-dimensional photonic crystals. We identified the observed peaks as the defect modes using the spectrum calculated at the defect layer. The spectrum also clarifies the difference between these modes and ordinary band-edge resonant modes. The calculated spatial distribution of the electric field in the defect modes shows that the defect modes have a characteristic field concentration in the band-edge resonant mode.
Air and dielectric bands photonic crystal microringresonator for refractive index sensing.
Urbonas, Darius; Balčytis, Armandas; Vaškevičius, Konstantinas; Gabalis, Martynas; Petruškevičius, Raimondas
2016-08-01
We present the experimental and numerical analysis of a microring resonator with an integrated one-dimensional photonic crystal fabricated on a silicon-on-insulator platform and show its applicability in bulk refractive index sensing. The photonic crystal is formed by periodically patterned, partially etched cylindrical perforations, whose induced photonic bandgap is narrower than the range of measurable wavelengths (1520-1620 nm). Of particular interest is that the microring operates in both air and dielectric bands, and the sensitivities of the resonances on both edges of the bandgap were investigated. We showed that a higher field localization inside the volume of the perforations for the air band mode leads to an increase in sensitivity. PMID:27472642
Band structure of doubly-odd nuclei around mass 130
Higashiyama, Koji; Yoshinaga, Naotaka
2011-05-06
Nuclear structure of the doublet bands in the doubly-odd nuclei with mass A{approx}130 is studied in terms of a pair-truncated shell model. The model reproduces quite well the energy levels of the doublet bands and the electromagnetic transitions. The analysis of the electromagnetic transitions reveals new band structure of the doublet bands.
Light reflector, amplifier, and splitter based on gain-assisted photonic band gaps
NASA Astrophysics Data System (ADS)
Zhang, Yan; Liu, Yi-Mou; Zheng, Tai-Yu; Wu, Jin-Hui
2016-07-01
We study both the steady and the dynamic optical response of cold atoms trapped in an optical lattice and driven to the three-level Λ configuration. These atoms are found to exhibit gain without population inversion when an incoherent pump is applied to activate spontaneously generated coherence. Gain-assisted double photonic band gaps characterized by reflectivities over 100% then grow up near the probe resonance due to the periodic distribution of the atomic density. These band gaps along with the neighboring allowed bands of transmissivities over 100% can be tuned by modulating the control field in amplitude, frequency, and, especially, phase. Consequently it is viable to realize a reflector, an amplifier, or a splitter when a weak incident light pulse is totally reflected in the photonic band gaps, totally transmitted in the allowed bands, or equally reflected and transmitted in the intersecting regions. Our results have potential applications in all-optical networks with respect to fabricating dynamically switchable devices for manipulating photon flows at low-light levels.
A photonic crystal waveguide with silicon on insulator in the near-infrared band
NASA Astrophysics Data System (ADS)
Tang, Hai-Xia; Zuo, Yu-Hua; Yu, Jin-Zhong; Wang, Qi-Ming
2007-07-01
A two-dimensional (2D) photonic crystal waveguide in the Γ-K direction with triangular lattice on a silicon-on-insulator (SOI) substrate in the near-infrared band is fabricated by the combination of electron beam lithography and inductively coupled plasma etching. Its transmission characteristics are analysed from the stimulated band diagram by the effective index and the 2D plane wave expansion (PWE) methods. In the experiment, the transmission band edge in a longer wavelength of the photonic crystal waveguide is about 1590 nm, which is in good qualitative agreement with the simulated value. However, there is a disagreement between the experimental and the simulated results when the wavelength ranges from 1607 to 1630 nm, which can be considered as due to the unpolarized source used in the transmission measurement.
NASA Astrophysics Data System (ADS)
Gates, B.; Lu, Y.; Li, Z. Y.; Xia, Y.
Photonic crystals with stop bands located in the visible region have been fabricated by crystallizing monodispersed spherical colloids (made of polystyrene or silica) into cubic-close-packed lattices within specially designed packing cells. These crystals were oriented with their (111) planes parallel to their solid supports, and the number of these planes could be conveniently controlled from 13 to 127 layers by varying the thickness of packing cells. In accordance, the stop-band attenuation of these crystals monotonically increased from 1 to 21 dB. Our transmission spectral measurements indicated that there exists a non-linear dependence between the stop-band attenuation and the total number of (111) planes, and this dependence could be quantitatively simulated using the dynamic light scattering model or the photonic analogy to KKR method. The colloidal crystals presented here should find use as components in fabricating optical devices that include sensors, mirrors, filters, switches and waveguides.
Absorption enhancement in graphene photonic crystal structures.
Khaleque, Abdul; Hattori, Haroldo T
2016-04-10
Graphene, a single layer of carbon atoms arranged in a honeycomb lattice, is attracting significant interest because of its potential applications in electronic and optoelectronic devices. Although graphene exhibits almost uniform absorption within a large wavelength range, its interaction with light is weak. In this paper, the enhancement of the optical absorption in graphene photonic crystal structures is studied: the structure is modified by introducing scatterers and mirrors. It is shown that the absorption of the graphene photonic crystal structure can be enhanced about four times (nearly 40%) with respect to initial reference absorption of 9.8%. The study can be a useful tool for investigating graphene physics in different optical settings. PMID:27139857
Photonic Crystal Laser-Driven Accelerator Structures
Cowan, Benjamin M.
2007-08-22
Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.
Spittel, Ron; Bartelt, Harmut; Schmidt, Markus A
2014-05-19
We present a highly efficient semi-analytical and straightforward-to-implement model for the determination of plasmonic band edges of metallic nanowire arrays inside photonic crystal fibers. The model relies on the approximation of the hexagonal unit cell by a circle and using particular boundary conditions, showing an accurate agreement with finite element simulations. The model reduces simulation time by a factor of 100, thus representing an efficient tool for structure design. It further allows the calculation of all relevant modes in the system by slight changes of the entries in a 4 × 4 matrix. PMID:24921296
Photonic density of states of two-dimensional quasicrystalline photonic structures
NASA Astrophysics Data System (ADS)
Jia, Lin; Bita, Ion; Thomas, Edwin L.
2011-08-01
A large photonic band gap (PBG) is highly favorable for photonic crystal devices. One of the most important goals of PBG materials research is identifying structural design strategies for maximizing the gap size. We provide a comprehensive analysis of the PBG properties of two-dimensional (2D) quasicrystals (QCs), where rotational symmetry, dielectric fill factor, and structural morphology were varied systematically in order to identify correlations between structure and PBG width at a given dielectric contrast (13:1, Si:air). The transverse electric (TE) and transverse magnetic (TM) PBGs of 12 types of QCs are investigated (588 structures). We discovered a 12mm QC with a 56.5% TE PBG, the largest reported TE PBG for an aperiodic crystal to date. We also report here a QC morphology comprising “throwing star”-like dielectric domains, with near-circular air cores and interconnecting veins emanating radially around the core. This interesting morphology leads to a complete PBG of ˜20% , which is the largest reported complete PBG for aperiodic crystals.
Elucidating the stop bands of structurally colored systems through recursion
NASA Astrophysics Data System (ADS)
Amir, Ariel; Vukusic, Peter
2013-04-01
Interference is the source of some of the spectacular colors of animals and plants in nature. In some of these systems, the physical structure consists of an ordered array of layers with alternating high and low refractive indices. This periodicity leads to an optical band structure that is analogous to the electronic band structure encountered in semiconductor physics: specific bands of wavelengths (the stop bands) are perfectly reflected. Here, we present a minimal model for optical band structure in a periodic multilayer structure and solve it using recursion relations. The stop bands emerge in the limit of an infinite number of layers by finding the fixed point of the recursion. We compare to experimental data for various beetles, whose optical structure resembles the proposed model. Thus, using only the phenomenon of interference and the idea of recursion, we are able to elucidate the concept of band structure in the context of the experimentally observed high reflectance and iridescent appearance of structurally colored beetles.
Directing fluorescence with plasmonic and photonic structures.
Dutta Choudhury, Sharmistha; Badugu, Ramachandram; Lakowicz, Joseph R
2015-08-18
Fluorescence technology pervades all areas of chemical and biological sciences. In recent years, it is being realized that traditional fluorescence can be enriched in many ways by harnessing the power of plasmonic or photonic structures that have remarkable abilities to mold the flow of optical energy. Conventional fluorescence is omnidirectional in nature, which makes it difficult to capture the entire emission. Suitably designed emission directivity can improve collection efficiency and is desirable for many fluorescence-based applications like sensing, imaging, single molecule spectroscopy, and optical communication. By incorporating fluorophores in plasmonic or photonic substrates, it is possible to tailor the optical environment surrounding the fluorophores and to modify the spatial distribution of emission. This promising approach works on the principle of near-field interaction of fluorescence with spectrally overlapping optical modes present in the substrates. In this Account, we present our studies on directional emission with different kinds of planar metallic, dielectric, and hybrid structures. In metal-dielectric substrates, the coupling of fluorescence with surface plasmons leads to directional surface-plasmon-coupled emission with characteristic dispersion and polarization properties. In one-dimensional photonic crystals (1DPC), fluorophores can interact with Bloch surface waves, giving rise to sharply directional Bloch surface wave-coupled emission. The interaction of fluorescence with Fabry-Pérot-like modes in metal-dielectric-metal substrates and with Tamm states in plasmonic-photonic hybrid substrates provides beaming emission normal to the substrate surface. These interesting features are explained in the context of reflectivity dispersion diagrams, which provide a complete picture of the mode profiles and the corresponding coupled emission patterns. Other than planar substrates, specially fabricated plasmonic nanoantennas also have tremendous
Partial Wave Analysis of Coupled Photonic Structures
NASA Technical Reports Server (NTRS)
Fuller, Kirk A.; Smith, David D.; Curreri, Peter A. (Technical Monitor)
2002-01-01
The very high quality factors sustained by microcavity optical resonators are relevant to applications in wavelength filtering, routing, switching, modulation, and multiplexing/demultiplexing. Increases in the density of photonic elements require that attention be paid to how electromagnetic (EM) coupling modifies their optical properties. This is especially true when cavity resonances are involved, in which case, their characteristics may be fundamentally altered. Understanding the optical properties of microcavities that are near or in contact with photonic elements---such as other microcavities, nanostructures, couplers, and substrates---can be expected to advance our understanding of the roles that these structures may play in VLSI photonics, biosensors and similar device technologies. Wc present results from recent theoretical studies of the effects of inter- and intracavity coupling on optical resonances in compound spherical particles. Concentrically stratified spheres and bispheres constituted from homogeneous and stratified spheres are subjects of this investigation. A new formulation is introduced for the absorption of light in an arbitrary layer of a multilayered sphere, which is based on multiple reflections of the spherical partial waves of the Lorenz-Mie solution for scattering by a sphere. Absorption efficiencies, which can be used to profile cavity resonances and to infer fluorescence yields or the onset of nonlinear optical processes in the microcavities, are presented. Splitting of resonances in these multisphere systems is paid particular attention, and consequences for photonic device development and possible performance enhancements through carefully designed architectures that exploit EM coupling are considered.
Rotational band structure in 32Mg
NASA Astrophysics Data System (ADS)
Crawford, H. L.; Fallon, P.; Macchiavelli, A. O.; Poves, A.; Bader, V. M.; Bazin, D.; Bowry, M.; Campbell, C. M.; Carpenter, M. P.; Clark, R. M.; Cromaz, M.; Gade, A.; Ideguchi, E.; Iwasaki, H.; Langer, C.; Lee, I. Y.; Loelius, C.; Lunderberg, E.; Morse, C.; Richard, A. L.; Rissanen, J.; Smalley, D.; Stroberg, S. R.; Weisshaar, D.; Whitmore, K.; Wiens, A.; Williams, S. J.; Wimmer, K.; Yamamato, T.
2016-03-01
There is significant evidence supporting the existence of deformed ground states within the neutron-rich N ≈20 neon, sodium, and magnesium isotopes that make up what is commonly called the "island of inversion." However, the rotational band structures, which are a characteristic fingerprint of a rigid nonspherical shape, have yet to be observed. In this work, we report on a measurement and analysis of the yrast (lowest lying) rotational band in 32Mg up to spin I =6+ produced in a two-step projectile fragmentation reaction and observed using the state-of-the-art γ -ray tracking detector array, GRETINA (γ -ray energy tracking in-beam nuclear array). Large-scale shell-model calculations using the SDPF-U-MIX effective interaction show excellent agreement with the new data. Moreover, a theoretical analysis of the spectrum of rotational states as a function of the pairing gap, together with cranked-shell-model calculations, provides intriguing evidence for a reduction in pairing correlations with increased angular momentum, also in line with the shell-model results.
Rotational Band Structure in 32Mg
NASA Astrophysics Data System (ADS)
Crawford, Heather; NSCL E11029 Collaboration Team
2016-03-01
There is significant evidence supporting the existence of deformed ground states within the neutron-rich N =20 neon, sodium, and magnesium isotopes that make up what is commonly called the ``Island of Inversion''. However, rotational band structures, a characteristic fingerprint of a rigid non-spherical shape, have yet to be observed. We report on a measurement and analysis of the yrast (lowest lying) rotational band in 32Mg up to spin I = 6+, produced in a two-step projectile fragmentation reaction and observed using the state-of-the-art γ-ray tracking detector array, GRETINA. Large-scale shell model calculations using the SDPF-U-MIX effective interaction show excellent agreement with the new data. Moreover, a theoretical analysis of the spectrum of rotational states as a function of the pairing gap, together with cranked shell model calculations, provides intriguing evidence for a reduction in pairing correlations with increased angular momentum, also in line with the shell-model results. This material is based upon work supported by the U.S. DOE, Office of Science, NP Office under Contract No. DE-AC02-05CH11231 (LBNL). GRETINA was funded by the U.S. DOE Office of Science. Operation of the array at NSCL was supported by NSF.
Dual-band bandpass tunable microwave photonic filter based on stimulated Brillouin scattering
NASA Astrophysics Data System (ADS)
Li, Jia-qi; Xiao, Yong-chuan; Dong, Wei; Zhang, Xin-dong
2016-07-01
A dual-band bandpass microwave photonic filter (MPF) based on stimulated Brillouin scattering (SBS) is theoretically analyzed and experimentally demonstrated. Two separated tunable laser sources (TLSs) are employed to generate two passbands by implementing phase modulation to amplitude modulation conversion by using SBS induced sideband amplification. The center frequencies of both passbands can be independently tuned ranging from 1 GHz to 19 GHz. High resolution with 3 dB bandwidth less than 30 MHz and large out-of-band rejection about 40 dB under 25 mW optical pump power are achieved.
Photonic Generation of Dual-Band Power-Efficient Millimeter-Wave UWB Signals
NASA Astrophysics Data System (ADS)
Xiang, Peng; Guo, Hao; Chen, Dalei; Zhou, Hua
2015-05-01
Ultra-wideband (UWB) technology has attracted great interest because it can provide a promising solution of future radar and short-range broadband wireless communications. The generation of millimeter-wave UWB signals using photonic approaches can reduce the high cost of the millimeter-wave electrical circuits. Moreover, it is well compatible with fiber transmission, which can effectively extend its signal coverage. In this paper, a novel approach to the photonic generation of millimeter-wave UWB signals with dual-band operation consideration is proposed. The proposed scheme can simultaneously generate millimeter-wave UWB signals in both 24 GHz and 60 GHz millimeter band, and can efficiently exploit the spectrum limit allowed by the FCC mask by using the linear combination pulse design concept. A model describing the proposed system is developed and the generation of 24/60 GHz millimeter-wave UWB signals is demonstrated via computer simulations.
Spatially graded TiO₂-SiO₂ Bragg reflector with rainbow-colored photonic band gap.
Singh, Dhruv Pratap; Lee, Seung Hee; Choi, Il Yong; Kim, Jong Kyu
2015-06-29
A simple single-step method to fabricate spatially graded TiO2-SiO2 Bragg stack with rainbow colored photonic band gap is presented. The gradation in thickness of the Bragg stack was accomplished with a modified glancing angle deposition (GLAD) technique with dynamic shadow enabled by a block attached to one edge of the rotating substrate. A linear gradation in thickness over a distance of about 17 mm resulted in a brilliant colorful rainbow pattern. Interestingly, the photonic band gap position can be changed across the whole visible wavelength range by linearly translating the graded Bragg stack over a large area substrate. The spatially graded Bragg stack may find potential applications in the tunable optical devices, such as optical filters, reflection gratings, and lasers. PMID:26191764
Segmental structure in banded mongoose calls.
Fitch, W Tecumseh
2012-01-01
In complex animal vocalizations, such as bird or whale song, a great variety of songs can be produced via rearrangements of a smaller set of 'syllables', known as 'phonological syntax' or 'phonocoding' However, food or alarm calls, which function as referential signals, were previously thought to lack such combinatorial structure. A new study of calls in the banded mongoose Mungos mungo provides the first evidence of phonocoding at the level of single calls. The first portion of the call provides cues to the identity of the caller, and the second part encodes its current activity. This provides the first example known in animals of something akin to the consonants and vowels of human speech. PMID:23206277
Segmental structure in banded mongoose calls
2012-01-01
In complex animal vocalizations, such as bird or whale song, a great variety of songs can be produced via rearrangements of a smaller set of 'syllables', known as 'phonological syntax' or 'phonocoding' However, food or alarm calls, which function as referential signals, were previously thought to lack such combinatorial structure. A new study of calls in the banded mongoose Mungos mungo provides the first evidence of phonocoding at the level of single calls. The first portion of the call provides cues to the identity of the caller, and the second part encodes its current activity. This provides the first example known in animals of something akin to the consonants and vowels of human speech. See research article http://www.biomedcentral.com/1741-7007/10/97 PMID:23206277
Guidance in Kagome-like photonic crystal fibres I: analysis of an ideal fibre structure.
Chen, Lei; Pearce, Greg J; Birks, Timothy A; Bird, David M
2011-03-28
Propagation of light in a square-lattice hollow-core photonic crystal fibre is analysed as a model of guidance in a class of photonic crystal fibres that exhibit broad-band guidance without photonic bandgaps. A scalar governing equation is used and analytic solutions based on transfer matrices are developed for the full set of modes. It is found that an exponentially localised fundamental mode exists for a wide range of frequencies. These analytic solutions of an idealised structure will form the basis for analysis of guidance in a realistic structure in a following paper. PMID:21451720
High brightness photonic band crystal semiconductor lasers in the passive mode locking regime
Rosales, R.; Kalosha, V. P.; Miah, M. J.; Bimberg, D.; Posilović, K.; Pohl, J.; Weyers, M.
2014-10-20
High brightness photonic band crystal lasers in the passive mode locking regime are presented. Optical pulses with peak power of 3 W and peak brightness of about 180 MW cm{sup −2} sr{sup −1} are obtained on a 5 GHz device exhibiting 15 ps pulses and a very low beam divergence in both the vertical and horizontal directions.
A Theoretical Structure of High School Concert Band Performance
ERIC Educational Resources Information Center
Bergee, Martin J.
2015-01-01
This study used exploratory (EFA) and confirmatory factor analysis (CFA) to verify a theoretical structure for high school concert band performance and to test that structure for viability, generality, and invariance. A total of 101 university students enrolled in two different bands rated two high school band performances (a "first"…
5 CFR 9701.321 - Structure of bands.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 5 Administrative Personnel 3 2012-01-01 2012-01-01 false Structure of bands. 9701.321 Section 9701.321 Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM... Structure of bands. (a) DHS may, after coordination with OPM, establish ranges of basic pay for bands,...
Precision X-Band Linac Technologies for Nuclear Photonics Gamma-Ray Sources
Hartemann, F V; Albert, F; Anderson, S G; Bayramian, A J; Cross, R R; Ebbers, C A; Gibson, D J; Houck, T L; Marsh, R A; Messerly, M J; Siders, C W; McNabb, D P; Barty, C J; Adolphsen, C E; Chu, T S; Jongewaard, E N; Tantawi, S G; Vlieks, A E; Wang, F; Wang, J W; Raubenheimer, T O; Ighigeanu, D; Toma, M; Cutoiu, D
2011-08-31
Nuclear photonics is an emerging field of research requiring new tools, including high spectral brightness, tunable gamma-ray sources; high photon energy, ultrahigh-resolution crystal spectrometers; and novel detectors. This presentation focuses on the precision linac technology required for Compton scattering gamma-ray light sources, and on the optimization of the laser and electron beam pulse format to achieve unprecedented spectral brightness. Within this context, high-gradient X-band technology will be shown to offer optimal performance in a compact package, when used in conjunction with the appropriate pulse format, and photocathode illumination and interaction laser technologies. The nascent field of nuclear photonics is enabled by the recent maturation of new technologies, including high-gradient X-band electron acceleration, robust fiber laser systems, and hyper-dispersion CPA. Recent work has been performed at LLNL to demonstrate isotope-specific detection of shielded materials via NRF using a tunable, quasi-monochromatic Compton scattering gamma-ray source operating between 0.2 MeV and 0.9 MeV photon energy. This technique is called Fluorescence Imaging in the Nuclear Domain with Energetic Radiation (or FINDER). This work has, among other things, demonstrated the detection of {sup 7}Li shielded by Pb, utilizing gamma rays generated by a linac-driven, laser-based Compton scattering gamma-ray source developed at LLNL. Within this context, a new facility is currently under construction at LLNL, with the goal of generating tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range, at a repetition rate of 120 Hz, and with a peak brightness in the 10{sup 20} photons/(s x mm{sup 2} x mrad{sup 2} x 0.1% bw).
Achieving Higher Energies via Passively Driven X-band Structures
NASA Astrophysics Data System (ADS)
Sipahi, Taylan; Sipahi, Nihan; Milton, Stephen; Biedron, Sandra
2014-03-01
Due to their higher intrinsic shunt impedance X-band accelerating structures significant gradients with relatively modest input powers, and this can lead to more compact particle accelerators. At the Colorado State University Accelerator Laboratory (CSUAL) we would like to adapt this technology to our 1.3 GHz L-band accelerator system using a passively driven 11.7 GHz traveling wave X-band configuration that capitalizes on the high shunt impedances achievable in X-band accelerating structures in order to increase our overall beam energy in a manner that does not require investment in an expensive, custom, high-power X-band klystron system. Here we provide the design details of the X-band structures that will allow us to achieve our goal of reaching the maximum practical net potential across the X-band accelerating structure while driven solely by the beam from the L-band system.
Photonic band-gap modulation of blue phase liquid crystal (Presentation Recording)
NASA Astrophysics Data System (ADS)
Lin, Tsung-Hsien
2015-10-01
Blue phase liquid crystals (BPLCs) are self-assembled 3D photonic crystals exhibiting high susceptibility to external stimuli. Two methods for the photonic bandgap tuning of BPs were demonstrated in this work. Introducing a chiral azobenzene into a cholesteric liquid crystal could formulate a photoresponsive BPLC. Under violet irradiation, the azo dye experiences trans-cis isomerization, which leads to lattice swelling as well as phase transition in different stages of the process. Ultrawide reversible tuning of the BP photonic bandgap from ultraviolet to near infrared has been achieved. The tuning is reversible and nonvolatile. We will then demonstract the electric field-induced bandgap tuning in polymer-stabilized BPLCs. Under different BPLCs material preparation conditions, both red-shift and broadening of the photonic bandgaps have been achieved respectively. The stop band can be shifted over 100 nm. The bandwidth can be expanded from ~ 30 nm to ~ 250 nm covering nearly the full visible range. It is believed that the developed approaches could strongly promote the use of BPLC in photonic applications.
NASA Astrophysics Data System (ADS)
Amri, R.; Sahel, S.; Manaa, C.; Bouaziz, L.; Gamra, D.; Lejeune, M.; Clin, M.; Zellama, K.; Bouchriha, H.
2016-08-01
Hybrid One-dimensional photonic crystal coated from a mixture of an organic compound (HMDSO) and oxygen (O2) is elaborated by PECVD technique. The originality of the method consists in obtaining layers of different permittivity with the same gas mixture, but with different flow. The change in flow is optimized to obtain organic/inorganic layers of good quality with high and low refractive index of 2.1 and 1.4 corresponding respectively to HMDSO and SiO2 materials as assigned by IR measurement. Evidence of the photonic band gap is obtained by measuring the transmissions and reflections spectra which show that it appears only after 13 periods with a width of 325 nm corresponding to energy 3.8 eV. We have also introduced a defect in this photonic structure by changing the thickness of central layer, and observed the presence of a frequency mode corresponding to this defect. Our results are interpreted by using a theoretical model based on transfer matrix wich well reproduced the experimental data.
Photoswitching properties of photonic band gap materials containing azo-polymer liquid crystal
NASA Astrophysics Data System (ADS)
Moritsugu, Masaki; Shirota, Tomomi; Kubo, Shoichi; Kim, Sun-nam; Ogata, Tomonari; Nonaka, Takamasa; Sato, Osamu; Kurihara, Seiji
2008-08-01
Photochemically tunable photonic band gap materials were prepared by infiltration of liquid crystal polymers having azobenzene groups into voids of SiO2 inverse opal films. Linearly polarized light irradiation resulted in transformation from a random to an anisotropic molecular orientation of azobenzene side chains in the voids of the SiO2 inverse opal film, leading to the reversible and stable shift of the reflection band to longer wavelength more than 15 nm. In order to improve switching properties, we used copolymers with azobenzene monomer and tolane monomer, which indicate higher birefringence, as infiltration materials into the voids. The azo-tolane copolymers were found to show the higher birefringence than azobenzene homopolymers by the linearly polarized light irradiation. Thus, the reflection band of the SiO2 inverse opal film infiltrated with the azo-tolane copolymers was shifted to long wavelength region more than 55 nm by the irradiation of linearly polarized light.
One-photon band gap engineering of borate glass doped with ZnO for photonics applications
Abdel-Baki, Manal; Abdel-Wahab, Fathy A.; El-Diasty, Fouad
2012-04-01
Lithium tungsten borate glass of the composition (0.56-x)B{sub 2}O{sub 3}-0.4Li{sub 2}O-xZnO-0.04WO{sub 3} (0 {<=}x{<=} 0.1 mol. %) is prepared for photonics applications. The glass is doped with ZnO to tune the glass absorption characteristics in a wide spectrum range (200-2500 nm). Chemical bond approach, including chemical structure, electronegativity, bond ionicity, nearest-neighbor coordination, and other chemical bonding aspect, is used to analyze and to explain the obtained glass properties such as: transmittance, absorption, electronic structure parameters (bandgap, Fermi level, and Urbach exciton-phonon coupling), Wannier free excitons excitation (applying Elliott's model), and two-photon absorption coefficient as a result of replacement of B{sub 2}O{sub 3} by ZnO.
One-photon band gap engineering of borate glass doped with ZnO for photonics applications
NASA Astrophysics Data System (ADS)
Abdel-Baki, Manal; Abdel-Wahab, Fathy A.; El-Diasty, Fouad
2012-04-01
Lithium tungsten borate glass of the composition (0.56-x)B2O3-0.4Li2O-xZnO-0.04WO3 (0 ≤ x ≤ 0.1 mol. %) is prepared for photonics applications. The glass is doped with ZnO to tune the glass absorption characteristics in a wide spectrum range (200-2500 nm). Chemical bond approach, including chemical structure, electronegativity, bond ionicity, nearest-neighbor coordination, and other chemical bonding aspect, is used to analyze and to explain the obtained glass properties such as: transmittance, absorption, electronic structure parameters (bandgap, Fermi level, and Urbach exciton-phonon coupling), Wannier free excitons excitation (applying Elliott's model), and two-photon absorption coefficient as a result of replacement of B2O3 by ZnO.
Optically decomposed near-band-edge structure and excitonic transitions in Ga2S3
Ho, Ching-Hwa; Chen, Hsin-Hung
2014-01-01
The band-edge structure and band gap are key parameters for a functional chalcogenide semiconductor to its applications in optoelectronics, nanoelectronics, and photonics devices. Here, we firstly demonstrate the complete study of experimental band-edge structure and excitonic transitions of monoclinic digallium trisulfide (Ga2S3) using photoluminescence (PL), thermoreflectance (TR), and optical absorption measurements at low and room temperatures. According to the experimental results of optical measurements, three band-edge transitions of EA = 3.052 eV, EB = 3.240 eV, and EC = 3.328 eV are respectively determined and they are proven to construct the main band-edge structure of Ga2S3. Distinctly optical-anisotropic behaviors by orientation- and polarization-dependent TR measurements are, respectively, relevant to distinguish the origins of the EA, EB, and EC transitions. The results indicated that the three band-edge transitions are coming from different origins. Low-temperature PL results show defect emissions, bound-exciton and free-exciton luminescences in the radiation spectra of Ga2S3. The below-band-edge transitions are respectively characterized. On the basis of experimental analyses, the optical property of near-band-edge structure and excitonic transitions in the monoclinic Ga2S3 crystal is revealed. PMID:25142550
Investigations of the Band Structure and Morphology of Nanostructured Surfaces
NASA Astrophysics Data System (ADS)
Knox, Kevin R.
2011-12-01
In this dissertation, I examine the electronic structure of two very different types of two-dimensional systems: valence band electrons in single layer graphene and electronic states created at the vacuum interface of single crystal copper surfaces. The characteristics of both electronic systems depend intimately on the morphology of the surfaces they inhabit. Thus, in addition to discussing the respective band structures of these systems, a significant portion of this dissertation will be devoted to measurements of the surface morphology of these systems. Free-standing exfoliated monolayer graphene is an ultra-thin flexible membrane and, as such, is known to exhibit large out-of-plane deformation due to substrate and adsorbate interaction as well as thermal vibrations and, possibly, intrinsic buckling. Such crystal deformation is known to limit mobility and increase local chemical reactivity. Additionally, deformations present a measurement challenge to researchers wishing to determine the band structure by angle-resolved photoemission since they limit electron coherence in such measurements. In this dissertation, I present low energy electron microscopy and micro probe diffraction measurements, which are used to image and characterize corrugation in SiO2-supported and suspended exfoliated graphene at nanometer length scales. Diffraction line-shape analysis reveals quantitative differences in surface roughness on length scales below 20 nm which depend on film thickness and interaction with the substrate. Corrugation decreases with increasing film thickness, reflecting the increased stiffness of multilayer films. Specifically, single-layer graphene shows a markedly larger short range roughness than multilayer graphene. Due to the absence of interactions with the substrate, suspended graphene displays a smoother morphology and texture than supported graphene. A specific feature of suspended single-layer films is the dependence of corrugation on both adsorbate load