Science.gov

Sample records for photonic crystal superlattices

  1. Layer-by-Layer Approach to (2+1)D Photonic Crystal Superlattice with Enhanced Crystalline Integrity.

    PubMed

    Zhang, Lijing; Xiong, Zhuo; Shan, Liang; Zheng, Lu; Wei, Tongbo; Yan, Qingfeng

    2015-10-01

    Large-area polystyrene (PS) colloidal monolayers with high mechanical strength are created by a combination of the air/water interface self-assembly and the solvent vapor annealing technique. Layer-by-layer (LBL) stacking of these colloidal monolayers leads to the formation of (2+1)D photonic crystal superlattice with enhanced crystalline integrity. By manipulating the diameter of PS spheres and the repetition period of the colloidal monolayers, flexible control in structure and stop band position of the (2+1)D photonic crystal superlattice has been realized, which may afford new opportunities for engineering photonic bandgap materials. Furthermore, an enhancement of 97.3% on light output power of a GaN-based light emitting diode is demonstrated when such a (2+1)D photonic crystal superlattice employed as a back reflector. The performance enhancement is attributed to the photonic bandgap enhancement and good angle-independence of the (2+1)D photonic crystal superlattice. PMID:26179658

  2. Photonic crystal light source

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu; Bur, James A.

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  3. Function photonic crystals

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-Yao; Zhang, Bai-Jun; Yang, Jing-Hai; Liu, Xiao-Jing; Ba, Nuo; Wu, Yi-Heng; Wang, Qing-Cai

    2011-07-01

    In this paper, we present a new kind of function photonic crystals (PCs), whose refractive index is a function of space position. Conventional PCs structure grows from two materials, A and B, with different dielectric constants εA and εB. Based on Fermat principle, we give the motion equations of light in one-dimensional, two-dimensional and three-dimensional function photonic crystals. For one-dimensional function photonic crystals, we give the dispersion relation, band gap structure and transmissivity, and compare them with conventional photonic crystals, and we find the following: (1) For the vertical and non-vertical incidence light of function photonic crystals, there are band gap structures, and for only the vertical incidence light, the conventional PCs have band gap structures. (2) By choosing various refractive index distribution functions n( z), we can obtain more wider or more narrower band gap structure than conventional photonic crystals.

  4. Two-dimensional plasma photonic crystals in dielectric barrier discharge

    SciTech Connect

    Fan Weili; Dong Lifang; Zhang Xinchun

    2010-11-15

    A series of two-dimensional plasma photonic crystals have been obtained by filaments' self-organization in atmospheric dielectric barrier discharge with two water electrodes, which undergo the transition from square to square superlattice and finally to the hexagon. The spatio-temporal behaviors of the plasma photonic crystals in nanosecond scale have been studied by optical method, which show that the plasma photonic crystal is actually an integration of different transient sublattices. The photonic band diagrams of the transverse electric (TE) mode and transverse magnetic mode for each sublattice of these plasma photonic crystals have been investigated theoretically. A wide complete band gap is formed in the hexagonal plasma photonic crystal with the TE mode. The changes of the band edge frequencies and the band gap widths in the evolvement of different structures are studied. A kind of tunable plasma photonic crystal which can be controlled both in space and time is suggested.

  5. Dispersion in photonic crystals

    NASA Astrophysics Data System (ADS)

    Witzens, Jeremy

    2005-11-01

    Investigations on the dispersive properties of photonic crystals, modified scattering in ring-resonators, monolithic integration of vertical-cavity surface-emitting lasers and advanced data processing techniques for the finite-difference time-domain method are presented. Photonic crystals are periodic mesoscopic arrays of scatterers that modify the propagation properties of electromagnetic waves in a similar way as "natural" crystals modify the properties of electrons in solid-state physics. In this thesis photonic crystals are implemented as planar photonic crystals, i.e., optically thin semiconductor films with periodic arrays of holes etched into them, with a hole-to-hole spacing of the order of the wavelength of light in the dielectric media. Photonic crystals can feature forbidden frequency ranges (the band-gaps) in which light cannot propagate. Even though most work on photonic crystals has focused on these band-gaps for application such as confinement and guiding of light, this thesis focuses on the allowed frequency regions (the photonic bands) and investigates how the propagation of light is modified by the crystal lattice. In particular the guiding of light in bulk photonic crystals in the absence of lattice defects (the self-collimation effect) and the angular steering of light in photonic crystals (the superprism effect) are investigated. The latter is used to design a planar lightwave circuit for frequency domain demultiplexion. Difficulties such as efficient insertion of light into the crystal are resolved and previously predicted limitations on the resolution are circumvented. The demultiplexer is also fabricated and characterized. Monolithic integration of vertical-cavity surface-emitting lasers by means of resonantly enhanced grating couplers is investigated. The grating coupler is designed to bend light through a ninety-degree angle and is characterized with the finite-difference time-domain method. The vertical-cavity surface-emitting lasers are

  6. Tunable electrochromic photonic crystals

    NASA Astrophysics Data System (ADS)

    Kuai, Su-Lan; Bader, Georges; Ashrit, P. V.

    2005-05-01

    Photonic crystals based on the electrochromic phenomenon have been fabricated and proposed for band gap tuning. Electrochromic tungsten trioxide (WO3) inverse opals have been fabricated by polystyrene colloidal crystal templating. The WO3 matrix was obtained through a dip-infiltrating sol-gel process, with subsequent removal of the polymer microspheres by calcination. Scanning electron micrographs confirm the ordering of the hexagonal macroporous structure. The reflection spectra show two pronounced Bragg diffraction peaks. By inserting lithium into the crystals, the first reflection peak shifts gradually toward shorter wavelength for 36 nm, while the second reflection peak shifts toward longer wavelength for about 28 nm. This should be of great interest for photonic device applications.

  7. Photonic Crystal Nanocavity Lasers

    NASA Astrophysics Data System (ADS)

    Scherer, Axel

    2001-03-01

    Two- and three-dimensional microfabricated mirrors are generally referred to as photonic bandgap (PBG) crystals, and can be lithographically constructed to match a given frequency to confine light to very small volumes.1 For mirrors matching light emission at 1550nm, the lattice parameter a should correspond to 500nm, and the radius of the holes should be 180nm. By combining the slab waveguide design from microdisk lasers with the concept of microfabricating Bragg reflectors around a 2-D Fabry-Perot structure, we arrive at the design for ultra-small sub-3 optical nanocavity photonic crystal lasers. The mode volume in these laser cavities can be as small as 2.5 cubic half wavelengths or 0.03m3, and spontaneous emission in the cavity can be very efficiently coupled into the lasing mode. This efficient coupling in turn results in significant advantages of these nanocavity lasers over devices with larger mode volumes, as high modulation speed and very low threshold power light emission are expected. If the photonic crystal is designed appropriately and is not too porous, it is also possible to efficiently guide light within the perforated slab and to minimize diffraction losses. This waveguiding within a photonic crystal provides us with an opportunity to couple light from one cavity to another, or into connecting waveguides. By creating two-dimensional photonic crystals, which are microfabricated into InGaAsP slabs, we have recently defined the smallest lasers to date. When combined with high index contrast slabs in which light can be efficiently guided, microfabricated two-dimensional photonic bandgap mirrors provide the geometries needed to confine light into extremely small volumes with high Q.1,2,3,4 Two-dimensional Fabry-Perot resonators with microfabricated mirrors are formed when defects are introduced into the periodic photonic bandgap structure. It is then possible to tune these cavities lithographically by changing the precise geometry of the microstructures

  8. Slotted photonic crystal biosensors

    NASA Astrophysics Data System (ADS)

    Scullion, Mark Gerard

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them result in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This thesis presents a new platform for optical biosensors, namely slotted photonic crystals, which engender higher sensitivities due to their ability to confine, spatially and temporally, the peak of optical mode within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. High sensitivities were observed in smaller structures than most competing devices in the literature. Initial tests with cellular material for real applications was also performed, and shown to be of promise. In addition, groundwork to make an integrated device that includes the spectrometer function was also carried out showing that slotted photonic crystals themselves can be used for on-chip wavelength specific filtering and spectroscopy, whilst gas-free microvalves for automation were also developed. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study.

  9. Hydrophobic photonic crystal fibers.

    PubMed

    Xiao, Limin; Birks, T A; Loh, W H

    2011-12-01

    We propose and demonstrate hydrophobic photonic crystal fibers (PCFs). A chemical surface treatment for making PCFs hydrophobic is introduced. This repels water from the holes of PCFs, so that their optical properties remain unchanged even when they are immersed in water. The combination of a hollow core and a water-repellent inner surface of the hydrophobic PCF provides an ultracompact dissolved-gas sensor element, which is demonstrated for the sensing of dissolved ammonia gas. PMID:22139276

  10. Slotted photonic crystal sensors.

    PubMed

    Scullion, Mark G; Krauss, Thomas F; Di Falco, Andrea

    2013-01-01

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study. PMID:23503295

  11. Slotted Photonic Crystal Sensors

    PubMed Central

    Scullion, Mark G.; Krauss, Thomas F.; Di Falco, Andrea

    2013-01-01

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study. PMID:23503295

  12. Photonic Crystal Laser Accelerator Structures

    SciTech Connect

    Cowan, Benjamin M

    2003-05-21

    Photonic crystals have great potential for use as laser-driven accelerator structures. A photonic crystal is a dielectric structure arranged in a periodic geometry. Like a crystalline solid with its electronic band structure, the modes of a photonic crystal lie in a set of allowed photonic bands. Similarly, it is possible for a photonic crystal to exhibit one or more photonic band gaps, with frequencies in the gap unable to propagate in the crystal. Thus photonic crystals can confine an optical mode in an all-dielectric structure, eliminating the need for metals and their characteristic losses at optical frequencies. We discuss several geometries of photonic crystal accelerator structures. Photonic crystal fibers (PCFs) are optical fibers which can confine a speed-of-light optical mode in vacuum. Planar structures, both two- and three-dimensional, can also confine such a mode, and have the additional advantage that they can be manufactured using common microfabrication techniques such as those used for integrated circuits. This allows for a variety of possible materials, so that dielectrics with desirable optical and radiation-hardness properties can be chosen. We discuss examples of simulated photonic crystal structures to demonstrate the scaling laws and trade-offs involved, and touch on potential fabrication processes.

  13. Natural photonic crystals

    NASA Astrophysics Data System (ADS)

    Vigneron, Jean Pol; Simonis, Priscilla

    2012-10-01

    Photonic structures appeared in nature several hundred millions years ago. In the living world, color is used for communication and this important function strongly impacts the individual chances of survival as well as the chances to reproduce. This has a statistical influence on species populations. Therefore, because they are involved in evolution, natural color-generating structures are - from some point of view - highly optimized. In this short review, a survey is presented of the development of natural photonic crystal-type structures occurring in insects, spiders, birds, fishes and other marine animals, in plants and more, from the standpoint of light-waves propagation. One-, two-, and three-dimensional structures will be reviewed with selected examples.

  14. Photonic crystal microspheres

    NASA Astrophysics Data System (ADS)

    Zhokhov, A. A.; Masalov, V. M.; Sukhinina, N. S.; Matveev, D. V.; Dolganov, P. V.; Dolganov, V. K.; Emelchenko, G. A.

    2015-11-01

    Spherical samples of photonic crystals formed by colloidal SiO2 nanoparticles were synthesized. Synthesis of microspheres from 160 nm, 200 nm and 430 nm diameter colloidal nanoparticles was performed over a wide size range, from 5 μm to 50 μm. The mechanism of formation of void microparticles exceeding 50 μm is discussed. The spectral measurements verified the association of the spectra with the peaks of selective reflection from the cubic lattice planes. The microparticle morphology is characterized by scanning electron microscopy (SEM).

  15. Optics of globular photonic crystals

    SciTech Connect

    Gorelik, V S

    2007-05-31

    The results of experimental and theoretical studies of the optical properties of globular photonic crystals - new physical objects having a crystal structure with the lattice period exceeding considerably the atomic size, are presented. As globular photonic crystals, artificial opal matrices consisting of close-packed silica globules of diameter {approx}200 nm were used. The reflection spectra of these objects characterising the parameters of photonic bands existing in these crystals in the visible spectral region are presented. The idealised models of the energy band structure of photonic crystals investigated in the review give analytic dispersion dependences for the group velocity and the effective photon mass in a globular photonic crystal. The characteristics of secondary emission excited in globular photonic crystals by monochromatic and broadband radiation are presented. The results of investigations of single-photon-excited delayed scattering of light observed in globular photonic crystals exposed to cw UV radiation and radiation from a repetitively pulsed copper vapour laser are presented. The possibilities of using globular photonic crystals as active media for lasing in different spectral regions are considered. It is proposed to use globular photonic crystals as sensitive sensors in optoelectronic devices for molecular analysis of organic and inorganic materials by the modern methods of laser spectroscopy. The results of experimental studies of spontaneous and stimulated globular scattering of light are discussed. The conditions for observing resonance and two-photon-excited delayed scattering of light are found. The possibility of accumulation and localisation of the laser radiation energy inside a globular photonic crystal is reported. (review)

  16. Photonic crystal and photonic wire device structures

    NASA Astrophysics Data System (ADS)

    De La Rue, Richard; Sorel, Marc; Johnson, Nigel; Rahman, Faiz; Ironside, Charles; Cronin, Lee; Watson, Ian; Martin, Robert; Jin, Chongjun; Pottier, Pierre; Chong, Harold; Gnan, Marco; Jugessur, Aju; Camargo, Edilson; Erwin, Grant; Md Zain, Ahmad; Ntakis, Iraklis; Hobbs, Lois; Zhang, Hua; Armenise, Mario; Ciminelli, Caterina; Coquillat, Dominique

    2005-09-01

    Photonic devices that exploit photonic crystal (PhC) principles in a planar environment continue to provide a fertile field of research. 2D PhC based channel waveguides can provide both strong confinement and controlled dispersion behaviour. In conjunction with, for instance, various electro-optic, thermo-optic and other effects, a range of device functionality is accessible in very compact PhC channel-guide devices that offer the potential for high-density integration. Low enough propagation losses are now being obtained with photonic crystal channel-guide structures that their use in real applications has become plausible. Photonic wires (PhWs) can also provide strong confinement and low propagation losses. Bragg-gratings imposed on photonic wires can provide dispersion and frequency selection in device structures that are intrinsically simpler than 2D PhC channel guides--and can compete with them under realistic conditions.

  17. Design of MWIR Type-II Superlattices for Infrared Photon Detectors

    NASA Astrophysics Data System (ADS)

    Grein, Christoph

    The Type II InAs/GaInSb and InAs/InAsSb superlattices are material systems for implementation as photodetector absorbers in infrared imaging applications. In addition to cutoff wavelengths spanning the infrared spectrum, they offer degrees of freedom in their materials design (e.g. layer thicknesses, alloy compositions, number of layers in one superlattice period) that permit the optimization of an infrared photon detector's figures of merit such as detectivity through the tuning of material properties like generation/recombination lifetimes and optical absorption. We describe efforts to obtain accurate electronic band structures of superlattice semiconductors with infrared energy gaps, and employing them to evaluate nonradiative minority carrier lifetimes. Simple device models are utilized to suggest potential performance enhancements that arise from employing superlattices as infrared absorber. We also discuss current efforts to simulate the molecular beam epitaxial growth of InAs/InAsSb superlattices to predict dominant native point defects and other growth nonidealities. Design of MWIR Type-II Superlattices for Infrared Photon Detectors.

  18. Strong localization of photonics in symmetric Fibonacci superlattices

    NASA Astrophysics Data System (ADS)

    Cheng, Y. H.; Tsao, C. W.; Chen, C. H.; Hsueh, W. J.

    2015-07-01

    Strong localization from the Fabry-Pérot-like resonances that occur in symmetric Fibonacci superlattices is presented in this study. When compared with traditional Fabry-Pérot resonators, in symmetric Fibonacci superlattices, the middle space is a variant rather than an invariant half-wavelength thickness for each resonance with different orders. In addition, the electric fields of the resonances may be located on both sides of the space layer in the superlattice, which is in contrast to those in a traditional Fabry-Pérot resonator. The electric field of the resonances is strongly localized as the generation order increases. Moreover, the group delays of these peaks increase with generation order. More strongly localized modes can be found from the symmetric Fibonacci superlattices than from the traditional Fabry-Pérot resonators, which makes the proposed structure an attractive alternative to a wide variety of optoelectronic devices.

  19. Photonic Crystal Nanolaser Biosensors

    NASA Astrophysics Data System (ADS)

    Kita, Shota; Otsuka, Shota; Hachuda, Shoji; Endo, Tatsuro; Imai, Yasunori; Nishijima, Yoshiaki; Misawa, Hiroaki; Baba, Toshihiko

    High-performance and low-cost sensors are critical devices for high-throughput analyses of bio-samples in medical diagnoses and life sciences. In this paper, we demonstrate photonic crystal nanolaser sensor, which detects the adsorption of biomolecules from the lasing wavelength shift. It is a promising device, which balances a high sensitivity, high resolution, small size, easy integration, simple setup and low cost. In particular with a nanoslot structure, it achieves a super-sensitivity in protein sensing whose detection limit is three orders of magnitude lower than that of standard surface-plasmon-resonance sensors. Our investigations indicate that the nanoslot acts as a protein condenser powered by the optical gradient force, which arises from the strong localization of laser mode in the nanoslot.

  20. Plasmon-polariton and photonic superlattices

    NASA Astrophysics Data System (ADS)

    Mejía-Salazar, J. R.; Porras-Montenegro, N.; Reyes-Gómez, E.; Cavalcanti, S. B.; Oliveira, L. E.

    2014-05-01

    We have used the transfer-matrix approach for one-dimensional Cantor photonic superlattices, and studied the plasmon-polariton modes for a multilayered system composed by alternating layers of positive and dispersive materials. Results indicate that the corresponding plasmon-polariton modes, which show up for oblique incidence, strongly depend on the Cantor step, and the plasmon-polariton subbands are associated with the number of metamaterial layers contained in the elementary cell. Moreover, we have studied the = 0 non-Bragg gap in such fractal photonic superlattices and characterized its behavior as function of the steps of the Cantor series.

  1. Generation of tunable plasma photonic crystals in meshed dielectric barrier discharge

    SciTech Connect

    Wang, Yongjie; Dong, Lifang Liu, Weibo; He, Yafeng; Li, Yonghui

    2014-07-15

    Tunable superlattice plasma photonic crystals are obtained in a meshed dielectric barrier discharge. These plasma photonic crystals are composed of thin artificial lattices and thick self-organized lattices, and can be tuned easily by adjusting the applied voltage. A plasma photonic crystal with self-organized hexagonal lattice coupled to artificial square lattice is first realized. The dispersion relations of the square sublattices with different radii, which are recorded by an intensified charge-coupled device camera, are calculated. The results show that the thick square sublattice has the higher band edge frequencies and wider band widths. Band gaps of superlattice plasma photonic crystals are actually temporal integrations of those of transient sublattices.

  2. Spherical colloidal photonic crystals.

    PubMed

    Zhao, Yuanjin; Shang, Luoran; Cheng, Yao; Gu, Zhongze

    2014-12-16

    CONSPECTUS: Colloidal photonic crystals (PhCs), periodically arranged monodisperse nanoparticles, have emerged as one of the most promising materials for light manipulation because of their photonic band gaps (PBGs), which affect photons in a manner similar to the effect of semiconductor energy band gaps on electrons. The PBGs arise due to the periodic modulation of the refractive index between the building nanoparticles and the surrounding medium in space with subwavelength period. This leads to light with certain wavelengths or frequencies located in the PBG being prohibited from propagating. Because of this special property, the fabrication and application of colloidal PhCs have attracted increasing interest from researchers. The most simple and economical method for fabrication of colloidal PhCs is the bottom-up approach of nanoparticle self-assembly. Common colloidal PhCs from this approach in nature are gem opals, which are made from the ordered assembly and deposition of spherical silica nanoparticles after years of siliceous sedimentation and compression. Besides naturally occurring opals, a variety of manmade colloidal PhCs with thin film or bulk morphology have also been developed. In principle, because of the effect of Bragg diffraction, these PhC materials show different structural colors when observed from different angles, resulting in brilliant colors and important applications. However, this angle dependence is disadvantageous for the construction of some optical materials and devices in which wide viewing angles are desired. Recently, a series of colloidal PhC materials with spherical macroscopic morphology have been created. Because of their spherical symmetry, the PBGs of spherical colloidal PhCs are independent of rotation under illumination of the surface at a fixed incident angle of the light, broadening the perspective of their applications. Based on droplet templates containing colloidal nanoparticles, these spherical colloidal PhCs can be

  3. Configurable silicon photonic crystal waveguides

    SciTech Connect

    Prorok, Stefan; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K.-Y.

    2013-12-23

    In this Letter, we demonstrate that the mode cut off of a photonic crystal waveguide can be trimmed with high accuracy by electron beam bleaching of a chromophore doped polymer cladding. Using this method, configurable waveguides are realized, which allow for spatially resolved changes of the photonic crystal's effective lattice constant as small as 7.6 pm. We show three different examples how to take advantage of configurable photonic crystal waveguides: Shifting of the complete transmission spectrum, definition of cavities with high quality factor, and tuning of existing cavities.

  4. Multicolor photonic crystal laser array

    SciTech Connect

    Wright, Jeremy B; Brener, Igal; Subramania, Ganapathi S; Wang, George T; Li, Qiming

    2015-04-28

    A multicolor photonic crystal laser array comprises pixels of monolithically grown gain sections each with a different emission center wavelength. As an example, two-dimensional surface-emitting photonic crystal lasers comprising broad gain-bandwidth III-nitride multiple quantum well axial heterostructures were fabricated using a novel top-down nanowire fabrication method. Single-mode lasing was obtained in the blue-violet spectral region with 60 nm of tuning (or 16% of the nominal center wavelength) that was determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.

  5. Configurable silicon photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Prorok, Stefan; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K.-Y.

    2013-12-01

    In this Letter, we demonstrate that the mode cut off of a photonic crystal waveguide can be trimmed with high accuracy by electron beam bleaching of a chromophore doped polymer cladding. Using this method, configurable waveguides are realized, which allow for spatially resolved changes of the photonic crystal's effective lattice constant as small as 7.6 pm. We show three different examples how to take advantage of configurable photonic crystal waveguides: Shifting of the complete transmission spectrum, definition of cavities with high quality factor, and tuning of existing cavities.

  6. Simultaneous microwave photonic and phononic band gaps in piezoelectric-piezomagnetic superlattices with three types of domains in a unit cell

    NASA Astrophysics Data System (ADS)

    Tang, Zheng-hua; Jiang, Zheng-Sheng; Chen, Tao; Lei, Da-Jun; Yan, Wen-Yan; Qiu, Feng; Huang, Jian-Quan; Deng, Hai-Ming; Yao, Min

    2016-04-01

    A novel phoxonic crystal using the piezoelectric (PMN-PT) and piezomagnetic (CoFe2O4) superlattices with three types of domains in a unit cell (PPSUC) is present, in which dual microwave photonic and phononic band gaps can be obtained simultaneously. Two categories of phononic band gaps, originating from both the Bragg scattering of acoustic waves in periodic structures at the Brillouin zone boundary and the electromagnetic wave-lattice vibration couplings near the Brillouin zone center, can be observed in the phononic band structures. The general characteristics of the microwave photonic band structures are similar to those of pure piezoelectric or piezomagnetic superlattices, with the major discrepancy being the appearance of nearly dispersionless branches within the microwave photonic band gaps, which show an extremely large group velocity delay. Thus, the properties may also be applied to compact acoustic-microwave devices.

  7. Spatial filtering with photonic crystals

    SciTech Connect

    Maigyte, Lina; Staliunas, Kestutis

    2015-03-15

    Photonic crystals are well known for their celebrated photonic band-gaps—the forbidden frequency ranges, for which the light waves cannot propagate through the structure. The frequency (or chromatic) band-gaps of photonic crystals can be utilized for frequency filtering. In analogy to the chromatic band-gaps and the frequency filtering, the angular band-gaps and the angular (spatial) filtering are also possible in photonic crystals. In this article, we review the recent advances of the spatial filtering using the photonic crystals in different propagation regimes and for different geometries. We review the most evident configuration of filtering in Bragg regime (with the back-reflection—i.e., in the configuration with band-gaps) as well as in Laue regime (with forward deflection—i.e., in the configuration without band-gaps). We explore the spatial filtering in crystals with different symmetries, including axisymmetric crystals; we discuss the role of chirping, i.e., the dependence of the longitudinal period along the structure. We also review the experimental techniques to fabricate the photonic crystals and numerical techniques to explore the spatial filtering. Finally, we discuss several implementations of such filters for intracavity spatial filtering.

  8. superlattice

    NASA Astrophysics Data System (ADS)

    Wang, Haoran; Wang, Xinnan; Li, Tao; Lee, Byeongdu

    2014-06-01

    Recently, we reported a new method to synthesize the rod-like tobacco mosaic virus (TMV) superlattice. To explore its potentials in nanolattice templating and tissue scaffolding, this work focused the viscoelasticity of the superlattice with a novel transient method via atomic force microscopy (AFM). For measuring viscoelasticity, in contrast to previous methods that assessed the oscillating response, the method proposed in this work enabled us to determine the transient response (creep or relaxation) of micro/nanobiomaterials. The mathematical model and numerical process were elaborated to extract the viscoelastic properties from the indentation data. The adhesion between the AFM tip and the sample was included in the indentation model. Through the functional equation method, the elastic solution for the indentation model was extended to the viscoelastic solution so that the time dependent force vs. displacement relation could be attained. To simplify the solving of the differential equation, a standard solid model was modified to obtain the elastic and viscoelastic components of the sample. The viscoelastic responses with different mechanical stimuli and the dynamic properties were also investigated.

  9. Experimental study of photonic crystal triangular lattices

    NASA Astrophysics Data System (ADS)

    Qin, Ruhu; Qin, Bo; Jin, Chongjun

    1999-06-01

    Triangular lattice photonic crystal behaving in the electromagnetic zones constructed from fused silica cylinders in styrofoam is fabricated. The transmission spectra of the photonic crystal with and without defects are measured. On this basis, the defect modes of photonic crystal were studied, and the potential applications of the photonic crystal are discussed.

  10. Manufacturing method of photonic crystal

    SciTech Connect

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  11. Diamond based photonic crystal microcavities.

    PubMed

    Tomljenovic-Hanic, S; Steel, M J; de Sterke, C Martijn; Salzman, J

    2006-04-17

    Diamond based technologies offer a material platform for the implementation of qubits for quantum computing. The photonic crystal architecture provides the route for a scalable and controllable implementation of high quality factor (Q) nanocavities, operating in the strong coupling regime for cavity quantum electrodynamics. Here we compute the photonic band structures and quality factors of microcavities in photonic crystal slabs in diamond, and compare the results with those of the more commonly-used silicon platform. We find that, in spite of the lower index contrast, diamond based photonic crystal microcavities can exhibit quality factors of Q=3.0x10(4), sufficient for proof of principle demonstrations in the quantum regime. PMID:19516502

  12. Photonic Design for Photovoltaics

    SciTech Connect

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  13. Incorporation of superlattice crystal layers in multijunction solar cells

    NASA Technical Reports Server (NTRS)

    Blackslee, A. E.; Mitchell, K. W.

    1980-01-01

    Superlattice layers are effective in decreasing the density of dislocations in lattice mismatched heterostructures at least four orders of magnitude. Hence it was proposed to utilize this feature of superlattices to alleviate the problems due to misfit dislocations generated in the regions between two or more photovoltaic collecting junctions. A further advantage is that the possibility is presented for using silicon as a low cost substrate as well as for the low band gap junction. In the test case, a silicon low gap cell was connected to a GaAs.7P.3 high gap cell through a connecting region containing a GaAs/GaP superlattice.

  14. Photonic crystal scene projector development

    NASA Astrophysics Data System (ADS)

    Wilson, J. A.; Burckel, B.; Caulfield, J.; Cogan, S.; Massie, M.; Lamott, R.; Snyder, D.; Rapp, R.

    2010-04-01

    This paper describes results from the Extremely High Temperature Photonic Crystal System Technology (XTEMPS) program. The XTEMPS program is developing projector technology based on photonic crystals capable of high dynamic range, multispectral emission from SWIR to LWIR, and realistic band widths. These Photonics Crystals (PhC) are fabricated from refractory materials to provide high radiance and long device lifetime. Cyan is teamed with Sandia National Laboratories, to develop photonics crystals designed for realistic scene projection systems and Nova sensors to utilize their advanced Read In Integrated Circuit (RIIC). PhC based emitters show improved in-band output power efficiency when compared to broad band "graybody" emitters due to the absence of out-of-band emission. Less electrical power is required to achieve high operating temperature, and the potential for nonequilibrium pumping exists. Both effects boost effective radiance output. Cyan has demonstrated pixel designs compatible with Nova's medium format RIIC, ensuring high apparent output temperatures, modest drive currents, and low operating voltages of less than five volts. Unit cell pixel structures with high radiative efficiency have been demonstrated, and arrays using PhC optimized for up to four spectral bands have been successfully patterned.

  15. Photonic crystal surface-emitting lasers

    SciTech Connect

    Chua, Song Liang; Lu, Ling; Soljacic, Marin

    2015-06-23

    A photonic-crystal surface-emitting laser (PCSEL) includes a gain medium electromagnetically coupled to a photonic crystal whose energy band structure exhibits a Dirac cone of linear dispersion at the center of the photonic crystal's Brillouin zone. This Dirac cone's vertex is called a Dirac point; because it is at the Brillouin zone center, it is called an accidental Dirac point. Tuning the photonic crystal's band structure (e.g., by changing the photonic crystal's dimensions or refractive index) to exhibit an accidental Dirac point increases the photonic crystal's mode spacing by orders of magnitudes and reduces or eliminates the photonic crystal's distributed in-plane feedback. Thus, the photonic crystal can act as a resonator that supports single-mode output from the PCSEL over a larger area than is possible with conventional PCSELs, which have quadratic band edge dispersion. Because output power generally scales with output area, this increase in output area results in higher possible output powers.

  16. Optical Magnetometer Incorporating Photonic Crystals

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor; Florescu, Lucia

    2007-01-01

    According to a proposal, photonic crystals would be used to greatly increase the sensitivities of optical magnetometers that are already regarded as ultrasensitive. The proposal applies, more specifically, to a state-of-the-art type of quantum coherent magnetometer that exploits the electromagnetically-induced-transparency (EIT) method for determining a small change in a magnetic field indirectly via measurement of the shift, induced by that change, in the hyperfine levels of resonant atoms exposed to the field.

  17. Topological photonic crystal with ideal Weyl points

    NASA Astrophysics Data System (ADS)

    Wang, Luyang; Jian, Shao-Kai; Yao, Hong

    Weyl points in three-dimensional photonic crystals behave as monopoles of Berry flux in momentum space. Here, based on symmetry analysis, we show that a minimal number of symmetry-related Weyl points can be realized in time-reversal invariant photonic crystals. We propose to realize these ``ideal'' Weyl points in modified double-gyroid photonic crystals, which is confirmed by our first-principle photonic band-structure calculations. Photonic crystals with ideal Weyl points are qualitatively advantageous in applications such as angular and frequency selectivity, broadband invisibility cloaking, and broadband 3D-imaging.

  18. Topological photonic crystal with equifrequency Weyl points

    NASA Astrophysics Data System (ADS)

    Wang, Luyang; Jian, Shao-Kai; Yao, Hong

    2016-06-01

    Weyl points in three-dimensional photonic crystals behave as monopoles of Berry flux in momentum space. Here, based on general symmetry analysis, we show that a minimal number of four symmetry-related (consequently equifrequency) Weyl points can be realized in time-reversal invariant photonic crystals. We further propose an experimentally feasible way to modify double-gyroid photonic crystals to realize four equifrequency Weyl points, which is explicitly confirmed by our first-principle photonic band-structure calculations. Remarkably, photonic crystals with equifrequency Weyl points are qualitatively advantageous in applications including angular selectivity, frequency selectivity, invisibility cloaking, and three-dimensional imaging.

  19. Bulk plasmon-polariton gap solitons in defective metamaterial photonic superlattices.

    PubMed

    Gómez, F Reyes; Mejía-Salazar, J R

    2015-11-01

    We show the existence of a defect mode within the plasmon-polariton gap in 1D defective photonic superlattices, composed by alternating layers of conventional dielectric (A) and negative refractive (B) material slabs with a dielectric defective layer (D), which, in the nonlinear regime, can be tuned by means of the incident field intensity. Also, we have shown that the self-induced transparency phenomena can be only observed when gap-soliton modes, coupled through the defective layer, are excited in both mirror systems around the defective slab. PMID:26512512

  20. Ligand Exchange Governs the Crystal Structures in Binary Nanocrystal Superlattices.

    PubMed

    Wei, Jingjing; Schaeffer, Nicolas; Pileni, Marie-Paule

    2015-11-25

    The surface chemistry in colloidal nanocrystals on the final crystalline structure of binary superlattices produced by self-assembly of two sets of nanocrystals is hereby demonstrated. By mixing nanocrystals having two different sizes and the same coating agent, oleylamine (OAM), the binary nanocrystal superlattices that are produced, such as NaCl, AlB2, NaZn13, and MgZn2, are well in agreement with the crystalline structures predicted by the hard-sphere model, their formation being purely driven by entropic forces. By opposition, when large and small nanocrystals are coated with two different ligands [OAM and dodecanethiol (DDT), respectively] while keeping all other experimental conditions unchanged, the final binary structures markedly change and various structures with lower packing densities, such as Cu3Au, CaB6, and quasicrystals, are observed. This effect of the nanocrystals' coating agents could also be extended to other binary systems, such as Ag-Au and CoFe2O4-Ag supracrystalline binary lattices. In order to understand this effect, a mechanism based on ligand exchange process is proposed. Ligand exchange mechanism is believed to affect the thermodynamics in the formation of binary systems composed of two sets of nanocrystals with different sizes and bearing two different coating agents. Hence, the formation of binary superlattices with lower packing densities may be favored kinetically because the required energetic penalty is smaller than that of a denser structure. PMID:26549642

  1. Cholesteric liquid crystal photonic crystal lasers and photonic devices

    NASA Astrophysics Data System (ADS)

    Zhou, Ying

    This dissertation discusses cholesteric liquid crystals (CLCs) and polymers based photonic devices including one-dimensional (1D) photonic crystal lasers and broadband circular polarizers. CLCs showing unique self-organized chiral structures have been widely used in bistable displays, flexible displays, and reflectors. However, the photonic band gap they exhibit opens a new way for generating laser light at the photonic band edge (PBE) or inside the band gap. When doped with an emissive laser dye, cholesteric liquid crystals provide distributed feedback so that mirrorless lasing is hence possible. Due to the limited surface anchoring, the thickness of gain medium and feedback length is tens of micrometers. Therefore lasing efficiency is quite limited and laser beam is highly divergent. To meet the challenges, we demonstrated several new methods to enhance the laser emission while reducing the beam divergence from a cholesteric liquid crystal laser. Enhanced laser emission is demonstrated by incorporating a single external CLC reflector as a polarization conserved reflector. Because the distributed feedback from the active layer is polarization selective, a CLC reflector preserves the original polarization of the reflected light and a further stimulated amplification ensues. As a result of virtually doubled feedback length, the output is dramatically enhanced in the same circular polarization state. Meanwhile, the laser beam divergence is dramatically reduced due to the increased cavity length from micrometer to millimeter scale. Enhanced laser emission is also demonstrated by the in-cell metallic reflector because the active layer is pumped twice. Unlike a CLC reflector, the output from a mirror-reflected CLC laser is linearly polarized as a result of coherent superposition of two orthogonal circular polarization states. The output linear polarization direction can be well controlled and fine tuned by varying the operating temperature and cell gap. Enhanced laser

  2. Photonic crystals--a step towards integrated circuits for photonics.

    PubMed

    Thylén, Lars; Qiu, Min; Anand, Srinivasan

    2004-09-20

    The field of photonic crystals has, over the past few years, received dramatically increased attention. Photonic crystals are artificially engineered structures that exhibit a periodic variation in one, two, or three dimensions of the dielectric constant, with a period of the order of the pertinent light wavelength. Such structures in three dimensions should exhibit properties similar to solid-state electronic crystals, such as bandgaps, in other words wavelength regions where light cannot propagate in any direction. By introducing defects into the periodic arrangement, the photonic crystals exhibit properties analogous to those of solid-state crystals. The basic feature of a photonic bandgap was indeed experimentally demonstrated in the beginning of the 1990s, and sparked a large interest in, and in many ways revitalized, photonics research. There are several reasons for this attention. One is that photonic crystals, in their own right, offer a proliferation of challenging research tasks, involving a multitude of disciplines, such as electromagnetic theory, nanofabrication, semi-conductor technology, materials science, biotechnology, to name a few. Another reason is given by the somewhat more down-to-earth expectations that photonics crystals will create unique opportunities for novel devices and applications, and contribute to solving some of the issues that have plagued photonics such as large physical sizes, comparatively low functionality, and high costs. Herein, we will treat some basics of photonic crystal structures and discuss the state-of-the-art in fabrication as well give some examples of devices with unique properties, due to the use of photonic crystals. We will also point out some of the problems that still remain to be solved, and give a view on where photonic crystals currently stand. PMID:15499844

  3. Frozen multipartite entanglement in photonic crystals

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Xu, Jing-Bo

    2016-06-01

    We investigate the multipartite entanglement dynamics of a many-body system consisting of N identical two-level atoms locally embedded in their own band-gap photonic crystals. It is shown that the tripartite entanglement of this photonic-crystal system can be frozen in a stationary state. We also find that a double-sudden-change phenomenon of four-partite entanglement occurs in this photonic-crystal system during the decoherence process under certain suitable conditions.

  4. Monochromatic Wannier Functions in the Theory of 2D Photonic Crystals and Photonic Crystal Fibers

    SciTech Connect

    Mazhirina, Yu. A.; Melnikov, L. A.

    2011-10-03

    The use of the monochromatic Wannier functions which have the temporal dependence as (exp(-i{omega}t)) in the theory of 2D photonic crystals and photonic crystal fibers is proposed. Corresponding equations and formulae are derived and discussed.

  5. Tunable liquid crystal photonic devices

    NASA Astrophysics Data System (ADS)

    Fan, Yun-Hsing

    2005-07-01

    Liquid crystal (LC)-based adaptive optics are important for information processing, optical interconnections, photonics, integrated optics, and optical communications due to their tunable optical properties. In this dissertation, we describe novel liquid crystal photonic devices. In Chap. 3, we demonstrate a novel electrically tunable-efficiency Fresnel lens which is devised for the first time using nanoscale PDLC. The tunable Fresnel lens is very desirable to eliminate the need of external spatial light modulator. The nanoscale LC devices are polarization independent and exhibit a fast response time. Because of the small droplet sizes, the operating voltage is higher than 100 Vrms. To lower the driving voltage, in Chap. 2 and Chap. 3, we have investigated tunable Fresnel lens using polymer-network liquid crystal (PNLC) and phase-separated composite film (PSCOF). The operating voltage is below 12 Vrms. The PNLC and PSCOF devices are polarization dependent. To overcome this shortcoming, stacking two cells with orthogonal alignment directions is a possibility. Using PNLC, we also demonstrated LC blazed grating. The diffraction efficiency of these devices is continuously controlled by the electric field. We also develop a system with continuously tunable focal length. A conventional mechanical zooming system is bulky and power hungry. In Chap. 4, we developed an electrically tunable-focus flat LC spherical lens and microlens array. A huge tunable range from 0.6 m to infinity is achieved by the applied voltage. In Chap. 5, we describe a LC microlens array whose focal length can be switched from positive to negative by the applied voltage. The fast response time feature of our LC microlens array will be very helpful in developing 3-D animated images. In Chap. 6, we demonstrate polymer network liquid crystals for switchable polarizers and optical shutters. The use of dual-frequency liquid crystal and special driving scheme leads to a sub-millisecond response time. In

  6. Direct observation of two-step crystallization in nanoparticle superlattice formation

    SciTech Connect

    Park, Jungwon; Zheng, Haimei; Lee, Won Chul; Geissler, Phillip L.; Rabani, Eran; Alivisatos, A. Paul

    2011-10-06

    Direct imaging of nanoparticle solutions by liquid phase transmission electron microscopy has enabled unique in-situ studies of nanoparticle motion and growth. In the present work, we report on real-time formation of two-dimensional nanoparticle arrays in the very low diffusive limit, where nanoparticles are mainly driven by capillary forces and solvent fluctuations. We find that superlattice formation appears to be segregated into multiple regimes. Initially, the solvent front drags the nanoparticles, condensing them into an amorphous agglomerate. Subsequently, the nanoparticle crystallization into an array is driven by local fluctuations. Following the crystallization event, superlattice growth can also occur via the addition of individual nanoparticles drawn from outlying regions by different solvent fronts. The dragging mechanism is consistent with simulations based on a coarse-grained lattice gas model at the same limit.

  7. Energy transduction in surface photonic crystals

    NASA Astrophysics Data System (ADS)

    Yang, Fuchyi

    2011-12-01

    This dissertation is a detailed investigation of the fabrication, design, characterization, and understanding of physical principles of energy transduction in surface photonic crystals which are engineered for various applications. One-dimensional photonic crystals are engineered as optically tunable reflectance filters for lambda = 632.8 nm wavelength light by incorporating azobenzene liquid crystal dye molecules into the photonic crystal structure. Optical energy is transduced to accomplish mechanical work by exciting the dye molecules into different physical configurations, leading to changes in the optical properties of the dye molecules, namely their refractive index. This mechanism is used to tune the reflection resonance of the photonic crystal filter. The spectral and temporal optical tuning response of the photonic crystal filter due to excitation light at lambda = 532 nm is characterized. Modulation of the transmitted and reflected lambda = 632.8 nm light is achieved at microsecond time response. Two-dimensional photonic crystals are also investigated as reflectance filters for lambda = 532 nm wavelength light. Both optically tunable and static reflectance filters are studied. Again, azobenzene liquid crystal molecules are incorporated into the photonic crystal to achieve optical tuning of the reflectance wavelength. In this case, the lambda = 532 nm wavelength light is used for self-modulation. That is, the light serves both to optically tune the photonic crystal filter as well as to modulate its own reflection efficiency through the photonic crystal filter. Moreover, stacking of multiple photonic crystals into a single filter is studied for both static and optically tunable photonic crystal filters. It is shown that this approach improves the performance of the photonic crystal reflectance filter by increasing its optical density and its angular tolerance at the reflection wavelength of lambda = 532 nm. Additionally, surface photonic crystals are

  8. Photonic crystal scintillators and methods of manufacture

    SciTech Connect

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  9. Femtosecond dynamics of decoupled superlattice zones in 4Hb-TaSe2 single crystals

    NASA Astrophysics Data System (ADS)

    Olaoye, O.; Erasmus, N.; Haupt, K.; Schwoerer, H.

    2016-03-01

    Strongly correlated electronic crystal systems marked by temperature-dependent phase transitions often feature an emergence of new structural periodicities, arising from an interplay between modulated electron density and periodic lattice distortion. We investigate the structural evolution of \\sqrt{13}a× \\sqrt{13}a× c superlattice clusters in 4Hb-TaSe2 single crystals on a subpicosecond and atomic resolution via femtosecond electron diffraction (FED). The superlattice clusters comprise of two six-member rings each, related by a rotational symmetry and held in position by Coulombic mode repulsion. The two six-member rings are decoupled into two possible zones, which are further decoupled into respective site-specific satellite reflections in the reciprocal space. Governed by the interlayer interactions and the electron diffraction simulation analysis, FED measurements are used to demonstrate the suppression and dynamics of the decoupled superlattice zones. The simultaneous temporal evolution of the two CDW reflection orders are assigned to the decoupled Raman-active A g and {E}2g soft phonon modes previously reported on an isomorphic crystal structure (4Hb-TaS2). It is found that the charge density wave amplitude mode dominates over the corresponding phase mode.

  10. Photonic crystal technology for terahertz system integration

    NASA Astrophysics Data System (ADS)

    Fujita, Masayuki; Nagatsuma, Tadao

    2016-04-01

    Developing terahertz integration technology is essential for practical use of terahertz electromagnetic waves (0.1-10 THz) in various applications including broadband wireless communication, spectroscopic sensing, and nondestructive imaging. In this paper, we present our recent challenges towards terahertz system integration based on photonic crystal technology such as the development of terahertz transceivers. We use photonic-crystal slabs consisting of a twodimensional lattice of air holes formed in a silicon slab to develop low loss compact terahertz components in planar structures. The demonstration of ultralow loss (< 0.1 dB/cm) waveguides and integrated transceiver devices in the 0.3 THz band shows the potential for the application of photonic crystals to terahertz integration technology. Improving the coupling efficiency between the photonic crystal waveguide and resonant tunneling diode is important to take full advantage of the ultralow loss photonic crystal waveguides.

  11. Materials science: Superlattice substitution

    NASA Astrophysics Data System (ADS)

    Vanmaekelbergh, Daniel

    2015-08-01

    What happens if some of the particles of a superlattice -- an array of identical nanoscale crystals -- are replaced with foreign ones? It emerges that the properties of superlattices can be radically altered in this way. See Letter p.450

  12. Liquid crystal orientation control in photonic liquid crystal fibers

    NASA Astrophysics Data System (ADS)

    Chychlowski, M. S.; Nowinowski-Kruszelnicki, E.; Woliński, T. R.

    2011-05-01

    Similarly to liquid crystal displays technology in photonic liquid crystal fibers (PLCFs) a molecular orientation control is a crucial issue that influences proper operation of PLCF-based devices. The paper presents two distinct configurations: planar and radial escaped orientation of the LC molecules inside capillaries as well as methods of their application to photonic liquid crystal fibers. Possibilities of LC orientation control influence both: attenuation and transmitting spectra of the PLCF The orienting method is based on creation of an additional orienting layer on the inner surface of the capillary or air hole of the photonic liquid crystal fiber. Aligning materials used in the experiment are commercially available polyimides SE1211 and SE130 which induce liquid crystal homeotropic and planar anchoring conditions. The orienting layer increase an order parameter of the liquid crystal improving propagation properties and stability of photonic liquid crystal fiber-based devices.

  13. Butterfly wing color: A photonic crystal demonstration

    NASA Astrophysics Data System (ADS)

    Proietti Zaccaria, Remo

    2016-01-01

    We have theoretically modeled the optical behavior of a natural occurring photonic crystal, as defined by the geometrical characteristics of the Teinopalpus Imperialis butterfly. In particular, following a genetic algorithm approach, we demonstrate how its wings follow a triclinic crystal geometry with a tetrahedron unit base. By performing both photonic band analysis and transmission/reflection simulations, we are able to explain the characteristic colors emerging by the butterfly wings, thus confirming their crystal form.

  14. Photonic crystal microcavity lasers and laser arrays

    NASA Astrophysics Data System (ADS)

    Cao, Jiang-Rong

    As a state-of-the-art technology, photonic crystal microcavity lasers have great potentials to resolve many semiconductor laser performance challenges, owing to their compact size, high spontaneous emission factor, and inherent advantages in dimension scalability. This thesis describes efficient numerical analyzing methods for multimode photonic crystal microcavities, including a parallel computing three-dimensional finite-difference time-domain method combined with Pade interpolation, point group projection, and vectorial Green's function method. With the help of these analyzing tools, various experimental photonic crystal microcavity devices fabricated in InGaAsP/InP based materials were studies. Room temperature optical pumped InGaAsP suspended membrane photonic crystal microcavity lasers were demonstrated. Their lithographical fine-tuning, above room temperature operations, mode identifications and polarizations were demonstrated. Room temperature continuous wave (CW) optically pumped photonic crystal microcavity lasers at diameter less than 3.2 mum were demonstrated with crystalline alpha-Al 2O3 (sapphire) as a cladding layer to the InGaAsP membrane. The far-field radiation profiles from these microcavity lasers were measured and compared with our numerical modeling predictions. Two electrical injection scenes for photonic crystal microcavity lasers were introduced, together with some preliminary results including the demonstrations of optically pumped lasing of highly doped cavities and cavities with an electrical conduction post underneath. Electrically excited photonic crystal microcavity light emitting diodes (LEDs) were also experimentally demonstrated.

  15. Guided-wave liquid-crystal photonics.

    PubMed

    Zografopoulos, D C; Asquini, R; Kriezis, E E; d'Alessandro, A; Beccherelli, R

    2012-10-01

    In this paper we review the state of the art in the field of liquid-crystal tunable guided-wave photonic devices, a unique type of fill-once, molecular-level actuated, optofluidic systems. These have recently attracted significant research interest as potential candidates for low-cost, highly functional photonic elements. We cover a full range of structures, which span from micromachined liquid-crystal on silicon devices to periodic structures and liquid-crystal infiltrated photonic crystal fibers, with focus on key-applications for photonics. Various approaches on the control of the LC molecular orientation are assessed, including electro-, thermo- and all-optical switching. Special attention is paid to practical issues regarding liquid-crystal infiltration, molecular alignment and actuation, low-power operation, as well as their integrability in chip-scale or fiber-based devices. PMID:22842818

  16. Novel photonic crystal cavities and related structures.

    SciTech Connect

    Luk, Ting Shan

    2007-11-01

    The key accomplishment of this project is to achieve a much more in-depth understanding of the thermal emission physics of metallic photonic crystal through theoretical modeling and experimental measurements. An improved transfer matrix technique was developed to enable incorporation of complex dielectric function. Together with microscopic theory describing emitter radiative and non-radiative relaxation dynamics, a non-equilibrium thermal emission model is developed. Finally, experimental methodology was developed to measure absolute emissivity of photonic crystal at high temperatures with accuracy of +/-2%. Accurate emissivity measurements allow us to validate the procedure to treat the effect of the photonic crystal substrate.

  17. Superlattice strain gage

    DOEpatents

    Noel, Bruce W.; Smith, Darryl L.; Sinha, Dipen N.

    1990-01-01

    A strain gage comprising a strained-layer superlattice crystal exhibiting piezoelectric properties is described. A substrate upon which such a strained-layer superlattice crystal has been deposited is attached to an element to be monitored for strain. A light source is focused on the superlattice crystal and the light reflected from, passed through, or emitted from the crystal is gathered and compared with previously obtained optical property data to determine the strain in the element.

  18. Superlattice strain gage

    DOEpatents

    Noel, B.W.; Smith, D.L.; Sinha, D.N.

    1988-06-28

    A strain gage comprising a strained-layer superlattice crystal exhibiting piezoelectric properties is described. A substrate upon which such a strained-layer superlattice crystal has been deposited is attached to an element to be monitored for strain. A light source is focused on the superlattice crystal and the light reflected from, passed through, or emitted from the crystal is gathered and compared with previously obtained optical property data to determine the strain in the element. 8 figs.

  19. Analysis of photon recycling using metallic photonic crystal

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Sung; Lin, Shawn-Yu; Chang, Allan S. P.; Lee, Jae-Hwang; Ho, Kai-Ming

    2007-09-01

    We investigate a photon recycling scheme using two-dimensional metallic photonic crystals made of silver to improve the energy efficiency of an incandescent light source. A theoretical framework is presented to analyze the resultant photon-recycled lighting system. Calculation results show that the system can reach a maximum luminous efficiency of 125 lm/W, which is 8 times higher than that of a bare blackbody radiation at 2800 K. The color temperature of the system is calculated to be around 3500 K or below, while the color rendering index is between 68 and 90. These results suggest that a photon-recycled incandescent light source using metallic photonic crystals can be a viable alternative future lighting solution.

  20. Multifunctional Glassy Liquid Crystal for Photonics

    SciTech Connect

    Chen,S.H.

    2004-11-05

    As an emerging class of photonic materials, morphologically stable glassy liquid crystals, were developed following a versatile molecular design approach. Glassy cholesteric liquid crystals with elevated phase-transition temperatures and capability for selective-wavelength reflection and circular polarization were synthesized via determinstic synthesis strategies. Potential applications of glassy cholesteric liquid crystals include high-performance polarizers, optical notch filters and reflectors, and circularly polarized photoluminescence. A glassy nematic liquid crystal comprising a dithienylethene core was also synthesized for the demonstration of nondestructive rewritable optical memory and photonic switching in the sollid state.

  1. Coupled External Cavity Photonic Crystal Enhanced Fluorescence

    PubMed Central

    Pokhriyal, Anusha; Lu, Meng; Ge, Chun; Cunningham, Brian T.

    2016-01-01

    We report a fundamentally new approach to enhance fluorescence in which surface adsorbed fluorophore-tagged biomolecules are excited on a photonic crystal surface that functions as a narrow bandwidth and tunable mirror of an external cavity laser. This scheme leads to ~10× increase in the electromagnetic enhancement factor compared to ordinary photonic crystal enhanced fluorescence. In our experiments, the cavity automatically tunes its lasing wavelength to the resonance wavelength of the photonic crystal, ensuring optimal on-resonance coupling even in the presence of variable device parameters and variations in the density of surface-adsorbed capture molecules. We achieve ~105× improvement in the limit of detection of a fluorophore-tagged protein compared to its detection on an unpatterned glass substrate. The enhanced fluorescence signal and easy optical alignment make cavity-coupled photonic crystals a viable approach for further reducing detection limits of optically-excited light emitters that are used in biological assays. PMID:23129575

  2. Photonic crystal: energy-related applications

    SciTech Connect

    Ye, Zhuo; Park, Joong-Mok; Constant, Kristen; Kim, Tae-Geun; Ho, Kai-Ming

    2012-06-08

    We review recent work on photonic-crystal fabrication using soft-lithography techniques. We consider applications of the resulting structures in energy-related areas such as lighting and solar-energy harvesting. In general, our aim is to introduce the reader to the concepts of photonic crystals, describe their history, development, and fabrication techniques and discuss a selection of energy-related applications.

  3. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, B.; /SLAC

    2005-09-19

    We discuss simulated photonic crystal structure designs for laser-driven particle acceleration, focusing on three-dimensional planar structures based on the so-called ''woodpile'' lattice. We demonstrate guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice and discuss the properties of this mode. We also discuss particle beam dynamics in the structure, presenting a novel method for focusing the beam. In addition we describe some potential coupling methods for the structure.

  4. Photonic crystal waveguide created by selective infiltration

    NASA Astrophysics Data System (ADS)

    Casas Bedoya, A.; Domachuk, P.; Grillet, C.; Monat, C.; Mägi, E. C.; Li, E.; Eggleton, B. J.

    2012-06-01

    The marriage of photonics and microfluidics ("optofluidics") uses the inherent mobility of fluids to reversibly tune photonic structures beyond traditional fabrication methods by infiltrating voids in said structures. Photonic crystals (PhCs) strongly control light on the wavelength scale and are well suited to optofluidic tuning because their periodic airhole microstructure is a natural candidate for housing liquids. The infiltration of a single row of holes in the PhC matrix modifies the effective refractive index allowing optical modes to be guided by the PhC bandgap. In this work we present the first experimental demonstration of a reconfigurable single mode W1 photonic crystal defect waveguide created by selective liquid infiltration. We modified a hexagonal silicon planar photonic crystal membrane by selectively filling a single row of air holes with ~300nm resolution, using high refractive index ionic liquid. The modification creates optical confinement in the infiltrated region and allows propagation of a single optical waveguide mode. We describe the challenges arising from the infiltration process and the liquid/solid surface interaction in the photonic crystal. We include a detailed comparison between analytic and numerical modeling and experimental results, and introduce a new approach to create an offset photonic crystal cavity by varying the nature of the selective infiltration process.

  5. Optical trapping apparatus, methods and applications using photonic crystal resonators

    SciTech Connect

    Erickson, David; Chen, Yih-Fan

    2015-06-16

    A plurality of photonic crystal resonator optical trapping apparatuses and a plurality optical trapping methods using the plurality of photonic crystal resonator optical trapping apparatuses include located and formed over a substrate a photonic waveguide that is coupled (i.e., either separately coupled or integrally coupled) with a photonic crystal resonator. In a particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a monocrystalline silicon (or other) photonic material absent any chemical functionalization. In another particular embodiment, the photonic waveguide and the photonic crystal resonator comprise a silicon nitride material which when actuating the photonic crystal resonator optical trapping apparatus with a 1064 nanometer resonant photonic radiation wavelength (or other resonant photonic radiation wavelength in a range from about 700 to about 1200 nanometers) provides no appreciable heating of an aqueous sample fluid that is analyzed by the photonic crystal resonator optical trapping apparatus.

  6. Controlling spontaneous emission in bioreplica photonic crystals

    NASA Astrophysics Data System (ADS)

    Jorgensen, Matthew R.; Butler, Elizabeth S.; Bartl, Michael H.

    2012-04-01

    Sophisticated methods have been created by nature to produce structure-based colors as a way to address the need of a wide variety of organisms. This pallet of available structures presents a unique opportunity for the investigation of new photonic crystal designs. Low-temperature sol-gel biotemplating methods were used to transform a single biotemplate into a variety of inorganic oxide structures. The density of optical states was calculated for a diamond-based natural photonic crystal, as well as several structures templated from it. Calculations were experimentally probed by spontaneous emission studies using time correlated single photon counting measurements.

  7. Optical mirage in graded photonic crystals

    NASA Astrophysics Data System (ADS)

    Centeno, Emmanuel; Cassagne, David; Albert, Jean Paul

    2006-04-01

    We present the concept of graded photonic crystals (GPC) and show its ability to enhance the control of light propagation. It is shown that gradual modifications of photonic crystal parameters are able to curve the path of light. This light bending which depends on the wavelength and on the incident angle is examined through parametric studies of the iso-frequency curves. We demonstrate that photonic mirages originate from the same physical principles as the usual atmospheric mirages. Two optical components based on two-dimensional GPCs presenting a super bending effect and a large beam shifting are presented.

  8. Thermal tunability of photonic bandgaps in liquid crystal filled polymer photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Wang, Doudou; Chen, Guoxiang; Wang, Lili

    2016-05-01

    A highly tunable bandgap-guiding polymer photonic crystal fiber is designed by infiltrating the cladding air holes with liquid crystal 5CB. Structural parameter dependence and thermal tunability of the photonic bandgaps, mode properties and confinement losses of the designed fiber are investigated. Bandgaps red shift as the temperature goes up. Average thermal tuning sensitivity of 30.9 nm/°C and 20.6 nm/°C is achieved around room temperature for the first and second photonic bandgap, respectively. Our results provide theoretical references for applications of polymer photonic crystal fiber in sensing and tunable fiber-optic devices.

  9. Progress in 2D photonic crystal Fano resonance photonics

    NASA Astrophysics Data System (ADS)

    Zhou, Weidong; Zhao, Deyin; Shuai, Yi-Chen; Yang, Hongjun; Chuwongin, Santhad; Chadha, Arvinder; Seo, Jung-Hun; Wang, Ken X.; Liu, Victor; Ma, Zhenqiang; Fan, Shanhui

    2014-01-01

    In contrast to a conventional symmetric Lorentzian resonance, Fano resonance is predominantly used to describe asymmetric-shaped resonances, which arise from the constructive and destructive interference of discrete resonance states with broadband continuum states. This phenomenon and the underlying mechanisms, being common and ubiquitous in many realms of physical sciences, can be found in a wide variety of nanophotonic structures and quantum systems, such as quantum dots, photonic crystals, plasmonics, and metamaterials. The asymmetric and steep dispersion of the Fano resonance profile promises applications for a wide range of photonic devices, such as optical filters, switches, sensors, broadband reflectors, lasers, detectors, slow-light and non-linear devices, etc. With advances in nanotechnology, impressive progress has been made in the emerging field of nanophotonic structures. One of the most attractive nanophotonic structures for integrated photonics is the two-dimensional photonic crystal slab (2D PCS), which can be integrated into a wide range of photonic devices. The objective of this manuscript is to provide an in depth review of the progress made in the general area of Fano resonance photonics, focusing on the photonic devices based on 2D PCS structures. General discussions are provided on the origins and characteristics of Fano resonances in 2D PCSs. A nanomembrane transfer printing fabrication technique is also reviewed, which is critical for the heterogeneous integrated Fano resonance photonics. The majority of the remaining sections review progress made on various photonic devices and structures, such as high quality factor filters, membrane reflectors, membrane lasers, detectors and sensors, as well as structures and phenomena related to Fano resonance slow light effect, nonlinearity, and optical forces in coupled PCSs. It is expected that further advances in the field will lead to more significant advances towards 3D integrated photonics, flat

  10. Liquid crystal devices for photonics applications

    NASA Astrophysics Data System (ADS)

    Chigrinov, Vladimir G.

    2007-11-01

    Liquid crystal (LC) devices for Photonics applications is a hot topic of research. Such elements begin to appear in Photonics market. Passive elements for fiber optical communication systems (DWDM components) based on LC cells can successfully compete with the other elements used for the purpose, such as micro electromechanical (MEM), thermo-optical, opto-mechanical or acousto-optical devices. Application of nematic and ferroelectric LC for high speed communication systems, producing elements that are extremely fast, stable, durable, of low loss, operable over a wide temperature range, and that require small operating voltages and extremely low power consumption. The known LC applications in fiber optics enable to produce switches, filters, attenuators, equalizers, polarization controllers, phase emulators and other fiber optical components. Good robustness due to the absence of moving parts and compatibility with VLSI technology, excellent parameters in a large photonic wavelength range, whereas the complexity of the design and the cost of the device are equivalent to regular passive matrix LC displays makes LC fiber optical devices very attractive for mass production. We have already successfully fabricated certain prototypes of the optical switches based on ferroelectric and nematic LC materials. The electrooptical modes used for the purpose included the light polarization rotation, voltage controllable diffraction and fast switching of the LC refractive index. We used the powerful software to optimize the LC modulation characteristics. Use of photo-alignment technique pioneered by us makes it possible to develop new LC fiber components. Almost all the criteria of perfect LC alignment are met in case of azo-dye layers. We have already used azo-dye materials to align LC in superthin photonic holes, curved and 3D surfaces and as cladding layers in microring silicon based resonators. The prototypes of new LC efficient Photonics devices are envisaged. Controllable

  11. Photonic crystals with active organic materials

    NASA Astrophysics Data System (ADS)

    Wu, Yeheng

    The concept of photonic crystals, which involves periodically arranged dielectrics that form a new type of material having novel photonic properties, was first proposed about two decades ago. Since then, a number of applications in photonic technology have been explored. Specifically, organic and hybrid photonic crystals are promising because of the unique advantages of the organic materials. A one-dimensional (1D) photonic crystal (multilayer) has high reflectance across a certain wavelength range. We report on studies of 1D multilayer polymer films that were fabricated using spin-coating, free film stacking, and co-extrusion techniques. For example, a stack fabricated by placing a laser dye-doped gain medium between two multilayer reflecting polymer films forms a micro-resonator laser or distributed Bragg laser. The resulting laser system is made entirely of plastic and is only several tens of micrometers in thickness. When the gain, a dye-doped medium, comprises one type of a two-type multilayer film, it results a laser exhibiting distributed feedback. At the edge of the photonic band, the group velocity becomes small and the density of photon states becomes high, which leads to laser emission. Such distributed feedback lasers were fabricated using the co-extrusion technique. The refractive indices and the photonic lattice determine the photonic band gap, which can be tuned by changing these parameters. Materials with Kerr nonlinearity exhibit a change in refractive index depending on the incident intensity of the light. To demonstrate such switching, electrochemical etching techniques on silicon wafers were used to form two-dimensional (2D) photonic crystals. By incorporating the nonlinear organic material into the 2D structure, we have made all-optical switches. The reflection of a beam from the 2D photonic crystal can be controlled by another beam because it induces a refractive index change in the active material by altering the reflection band. A mid

  12. Photon Molecules in Atomic Gases Trapped Near Photonic Crystal Waveguides

    NASA Astrophysics Data System (ADS)

    Douglas, James S.; Caneva, Tommaso; Chang, Darrick E.

    2016-07-01

    Realizing systems that support robust, controlled interactions between individual photons is an exciting frontier of nonlinear optics. To this end, one approach that has emerged recently is to leverage atomic interactions to create strong and spatially nonlocal interactions between photons. In particular, effective photonic interactions have been successfully created via interactions between atoms excited to Rydberg levels. Here, we investigate an alternative approach, in which atomic interactions arise via their common coupling to photonic crystal waveguides. This technique takes advantage of the ability to separately tailor the strength and range of interactions via the dispersion engineering of the structure itself, which can lead to qualitatively new types of phenomena. For example, much of the work on photon-photon interactions relies on the linear optical effect of electromagnetically induced transparency, in combination with the use of interactions to shift optical pulses into or out of the associated transparency window. Here, we identify a large new class of "correlated transparency windows," in which photonic states of a certain number and shape selectively propagate through the system. Through this technique, we show that molecular bound states of photon pairs can be created.

  13. Photonic quasi-crystal terahertz lasers

    PubMed Central

    Vitiello, Miriam Serena; Nobile, Michele; Ronzani, Alberto; Tredicucci, Alessandro; Castellano, Fabrizio; Talora, Valerio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles

    2014-01-01

    Quasi-crystal structures do not present a full spatial periodicity but are nevertheless constructed starting from deterministic generation rules. When made of different dielectric materials, they often possess fascinating optical properties, which lie between those of periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can support extended band-like states with pseudogaps in the energy spectrum, but lacking translational invariance, they also intrinsically feature a pattern of ‘defects’, which can give rise to critically localized modes confined in space, similar to Anderson modes in random structures. If used as laser resonators, photonic quasi-crystals open up design possibilities that are simply not possible in a conventional periodic photonic crystal. In this letter, we exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically, we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of pentagonal rotational symmetry, reaching 0.1–0.2% wall-plug efficiencies and 65 mW peak output powers with characteristic surface-emitting conical beam profiles, result of the rich quasi-crystal Fourier spectrum. PMID:25523102

  14. One-Dimensional Photonic Crystal Superprisms

    NASA Technical Reports Server (NTRS)

    Ting, David

    2005-01-01

    Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.

  15. Computational Modeling of Photonic Crystal Microcavity Single-Photon Emitters

    NASA Astrophysics Data System (ADS)

    Saulnier, Nicole A.

    Conventional cryptography is based on algorithms that are mathematically complex and difficult to solve, such as factoring large numbers. The advent of a quantum computer would render these schemes useless. As scientists work to develop a quantum computer, cryptographers are developing new schemes for unconditionally secure cryptography. Quantum key distribution has emerged as one of the potential replacements of classical cryptography. It relics on the fact that measurement of a quantum bit changes the state of the bit and undetected eavesdropping is impossible. Single polarized photons can be used as the quantum bits, such that a quantum system would in some ways mirror the classical communication scheme. The quantum key distribution system would include components that create, transmit and detect single polarized photons. The focus of this work is on the development of an efficient single-photon source. This source is comprised of a single quantum dot inside of a photonic crystal microcavity. To better understand the physics behind the device, a computational model is developed. The model uses Finite-Difference Time-Domain methods to analyze the electromagnetic field distribution in photonic crystal microcavities. It uses an 8-band k · p perturbation theory to compute the energy band structure of the epitaxially grown quantum dots. We discuss a method that combines the results of these two calculations for determining the spontaneous emission lifetime of a quantum dot in bulk material or in a microcavity. The computational models developed in this thesis are used to identify and characterize microcavities for potential use in a single-photon source. The computational tools developed are also used to investigate novel photonic crystal microcavities that incorporate 1D distributed Bragg reflectors for vertical confinement. It is found that the spontaneous emission enhancement in the quasi-3D cavities can be significantly greater than in traditional suspended slab

  16. Veselago lens by photonic hyper-crystals

    SciTech Connect

    Huang, Zun Narimanov, Evgenii E.

    2014-07-21

    Based on the recent concept of the photonic hyper-crystal—an artificial optical medium that combines the properties of hyperbolic materials and photonic crystals, we present the imaging system functioning as a Veselago lens. This planar lens shows a nearly constant negative refractive index with substantially reduced image aberrations, and can find potential applications in photolithography and hot-spots detection of silicon-based integrated circuits.

  17. Integrated photonic crystal selective emitter for thermophotovoltaics

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiguang; Yehia, Omar; Bermel, Peter

    2016-01-01

    Converting blackbody thermal radiation to electricity via thermophotovoltaics (TPV) is inherently inefficient. Photon recycling using cold-side filters offers potentially improved performance but requires extremely close spacing between the thermal emitter and the receiver, namely a high view factor. Here, we propose an alternative approach for thermal energy conversion, the use of an integrated photonic crystal selective emitter (IPSE), which combines two-dimensional photonic crystal selective emitters and filters into a single device. Finite difference time domain and current transport simulations show that IPSEs can significantly suppress sub-bandgap photons. This increases heat-to-electricity conversion for photonic crystal based emitters from 35.2 up to 41.8% at 1573 K for a GaSb photovoltaic (PV) diode with matched bandgaps of 0.7 eV. The physical basis of this enhancement is a shift from a perturbative to a nonperturbative regime, which maximized photon recycling. Furthermore, combining IPSEs with nonconductive optical waveguides eliminates a key difficulty associated with TPV: the need for precise alignment between the hot selective emitter and cool PV diode. The physical effects of both the IPSE and waveguide can be quantified in terms of an extension of the concept of an effective view factor.

  18. Ultra compact spectrometer apparatus and method using photonic crystals

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Bandara, Sumith V. (Inventor); Gunapala, Sarath D. (Inventor)

    2009-01-01

    The present invention is directed to methods of photonic crystal formation, and to methods and apparatus for using such photonic crystals, particularly in conjunction with detector arrays. Photonic crystal parameters and detector array parameters are compared to optimize the selection and orientation of a photonic crystal shape. A photonic crystal is operatively positioned relative to a plurality of light sensors. The light sensors can be separated by a pitch distance and positioned within one half of the pitch distance of an exit surface of the photonic crystals.

  19. Optical amplification enhancement in photonic crystals

    SciTech Connect

    Sapienza, R.; Leonetti, M.; Froufe-Perez, L. S.; Galisteo-Lopez, J. F.; Lopez, C.; Conti, C.

    2011-02-15

    Improving and controlling the efficiency of a gain medium is one of the most challenging problems of laser research. By measuring the gain length in an opal-based photonic crystal doped with laser dye, we demonstrate that optical amplification is more than twenty-fold enhanced along the {Gamma}-K symmetry directions of the face-centered-cubic photonic crystal. These results are theoretically explained by directional variations of the density of states, providing a quantitative connection between density of the states and light amplification.

  20. Self-assembled tunable photonic hyper-crystals

    NASA Astrophysics Data System (ADS)

    Smolyaninov, Igor; Smolyaninova, Vera; Yost, Bradley; Lahneman, David; Gresock, Thomas; Narimanov, Evgenii

    2015-03-01

    We demonstrate a novel artificial optical material, the photonic hyper-crystal, which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing. This work was supported in part by NSF Grant DMR-1104676, NSF Center for Photonic and Multiscale Nanomaterials, ARO MURI and Gordon and Berry Moore Foundation.

  1. Zero- n bar band gap in two-dimensional metamaterial photonic crystals

    NASA Astrophysics Data System (ADS)

    Mejía-Salazar, J. R.; Porras-Montenegro, N.

    2015-04-01

    We have theoretically studied metamaterial photonic crystals (PCs) composed by air and double negative (DNG) material. Numerical data were obtained by means of the finite difference time-domain (FDTD) method, with results indicating the possibility for the existence of the zero- n bar non-Bragg gap in two-dimensional metamaterial PCs, which has been previously observed only in one-dimensional photonic superlattices. Validity of the present FDTD algorithm for the study of one-dimensional metamaterial PCs is shown by comparing with results for the transmittance spectra obtained by means of the well known transfer matrix method (TMM). In the case of two-dimensional metamaterial PCs, we have calculated the photonic band structure (PBS) in the limiting case of a one-dimensional photonic superlattice and for a nearly one-dimensional PC, showing a very similar dispersion relation. Finally, we show that due to the strong electromagnetic field localization on the constitutive rods, the zero- n bar non-Bragg gap may only exist in two-dimensional systems under strict geometrical conditions.

  2. Photon statistics in scintillation crystals

    NASA Astrophysics Data System (ADS)

    Bora, Vaibhav Joga Singh

    Scintillation based gamma-ray detectors are widely used in medical imaging, high-energy physics, astronomy and national security. Scintillation gamma-ray detectors are eld-tested, relatively inexpensive, and have good detection eciency. Semi-conductor detectors are gaining popularity because of their superior capability to resolve gamma-ray energies. However, they are relatively hard to manufacture and therefore, at this time, not available in as large formats and much more expensive than scintillation gamma-ray detectors. Scintillation gamma-ray detectors consist of: a scintillator, a material that emits optical (scintillation) photons when it interacts with ionization radiation, and an optical detector that detects the emitted scintillation photons and converts them into an electrical signal. Compared to semiconductor gamma-ray detectors, scintillation gamma-ray detectors have relatively poor capability to resolve gamma-ray energies. This is in large part attributed to the "statistical limit" on the number of scintillation photons. The origin of this statistical limit is the assumption that scintillation photons are either Poisson distributed or super-Poisson distributed. This statistical limit is often dened by the Fano factor. The Fano factor of an integer-valued random process is dened as the ratio of its variance to its mean. Therefore, a Poisson process has a Fano factor of one. The classical theory of light limits the Fano factor of the number of photons to a value greater than or equal to one (Poisson case). However, the quantum theory of light allows for Fano factors to be less than one. We used two methods to look at the correlations between two detectors looking at same scintillation pulse to estimate the Fano factor of the scintillation photons. The relationship between the Fano factor and the correlation between the integral of the two signals detected was analytically derived, and the Fano factor was estimated using the measurements for SrI2:Eu, YAP

  3. Self-assembled tunable photonic hyper-crystals.

    PubMed

    Smolyaninova, Vera N; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E; Smolyaninov, Igor I

    2014-01-01

    We demonstrate a novel artificial optical material, the "photonic hyper-crystal", which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing. PMID:25027947

  4. Visible stealth materials based on photonic crystals

    NASA Astrophysics Data System (ADS)

    Yao, Guozheng; Liu, Ying

    2014-08-01

    Optical thin film can be used for invisible cloak. As a kind of low-dimension photonic crystal, it is a candidate for metamaterial with designed Σ and μ. As a coating, it is convenient to be stacked to mimic continuous changing of electromagnetic media. Anti-reflection film is suitable for matching coating between layers of media.

  5. Fabrication and Analysis of Photonic Crystals

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Korte, Kylee E.; Xia, Younan

    2007-01-01

    These laboratory experiments are designed to explore aspects of nanoscale chemistry by constructing and spectroscopically analyzing thin films of photonic crystals. Films comprised of colloidal spheres and polydimethylsiloxane exhibit diffraction-based stop bands that shift reversibly upon exposure to some common solvents. Topics covered in these…

  6. Photonic Crystal Sensors Based on Porous Silicon

    PubMed Central

    Pacholski, Claudia

    2013-01-01

    Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential. PMID:23571671

  7. Tunable one-dimensional photonic crystal slabs

    NASA Astrophysics Data System (ADS)

    Beccherelli, R.; Bellini, B.; Zografopoulos, D.; Kriezis, E.

    2007-05-01

    A 1D photonic crystal slab based on preferential etching of commercially available silicon-on-insulator wafers is presented. Compared to dry etching, anisotropic wet etching is more tolerant to errors as it is self-stopping on crystallographic {111} planes and it produces a more precise geometry with symmetries and homothetic properties, with surface roughness close to 1 nm. The resulting grooves are infiltrated by low viscosity liquid crystal having large positive optical anisotropy. The use of slanted grooves provides advantages: first of all the complete filling of slanted grooves is simplified when compared to vertical walls structures. Furthermore alignment is significantly facilitated. Indeed the liquid crystal molecules tend to align with their long axis along the submicron grooves. Therefore by forcing reorientation out of a rest position, the liquid crystal presents a choice of refractive indices to the propagating optical field. The liquid crystal behavior is simulated by a finite element method, and coupled to a finite difference time domain method. We investigate different photonic crystal configurations. Large tunability of bandgap edge for TE polarization is demonstrated when switching the liquid crystal with an applied voltage. We have also studied the use of the same device geometry as a very compact microfluidic refractometric sensor.

  8. The phonon-polariton spectrum of one-dimensional Rudin-Shapiro photonic superlattices with uniaxial polar materials

    NASA Astrophysics Data System (ADS)

    Gómez-Urrea, H. A.; Duque, C. A.; Mora-Ramos, M. E.

    2015-11-01

    The properties of the optical-phonon-associated polaritonic modes that appear under oblique light incidence in 1D superlattices made of photonic materials are studied. The investigated systems result from the periodic repetition of quasiregular Rudin-Shapiro (RS) multilayer units. It is assume that the structure consists of both passive non-dispersive layers of constant refraction index and active layers of uniaxial polar materials. In particular, we consider III-V wurtzite nitrides. The optical axis of these polaritonic materials is taken along the growth direction. Maxwell equations are solved using the transfer matrix technique for all admissible values of the incidence angle.

  9. Plasmon-polariton and ⟨n⟨ = 0 non-Bragg gaps in 1D Cantor photonic superlattices

    SciTech Connect

    Mejía-Salazar, J. R.; Porras-Montenegro, N.; Reyes-Gómez, E.; Cavalcanti, S. B.; Oliveira, L. E.

    2014-05-15

    We have used the transfer-matrix approach for one-dimensional Cantor photonic superlattices, and studied the plasmon-polariton modes for a multilayered system composed by alternating layers of positive and dispersive materials. Results indicate that the corresponding plasmon-polariton modes, which show up for oblique incidence, strongly depend on the Cantor step, and the plasmon-polariton subbands are associated with the number of metamaterial layers contained in the elementary cell. Moreover, we have studied the ⟨n⟩ = 0 non-Bragg gap in such fractal photonic superlattices and characterized its behavior as function of the steps of the Cantor series.

  10. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity.

    PubMed

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-06-21

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (M(w)/M(n) = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm(-1), which is even higher than that of the highest previously reported value (16 S cm(-1)). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost. PMID:22609947

  11. Self-assembled tunable photonic hyper-crystals

    PubMed Central

    Smolyaninova, Vera N.; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E.; Smolyaninov, Igor I.

    2014-01-01

    We demonstrate a novel artificial optical material, the “photonic hyper-crystal”, which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing. PMID:25027947

  12. Review on photonic crystal coatings for scintillators

    NASA Astrophysics Data System (ADS)

    Knapitsch, Arno; Lecoq, Paul

    2014-11-01

    The amount of light and its time distribution are key factors determining the performance of scintillators when used as radiation detectors. However most inorganic scintillators are made of heavy materials and suffer from a high index of refraction which limits light extraction efficiency. This increases the path length of the photons in the material with the consequence of higher absorption and tails in the time distribution of the extracted light. Photonic crystals are a relatively new way of conquering this light extraction problem. Basically they are a way to produce a smooth and controllable index matching between the scintillator and the output medium through the nanostructuration of a thin layer of optically transparent high index material deposited at the coupling face of the scintillator. Our review paper discusses the theory behind this approach as well as the simulation details. Furthermore the different lithography steps of the production of an actual photonic crystal sample will be explained. Measurement results of LSO scintillator pixels covered with a nanolithography machined photonic crystal surface are presented together with practical tips for the further development and improvement of this technique.

  13. The bifoil photodyne: a photonic crystal oscillator.

    PubMed

    Lugo, J E; Doti, R; Sanchez, N; de la Mora, M B; del Rio, J A; Faubert, J

    2014-01-01

    Optical tweezers is an example how to use light to generate a physical force. They have been used to levitate viruses, bacteria, cells, and sub cellular organisms. Nonetheless it would be beneficial to use such force to develop a new kind of applications. However the radiation pressure usually is small to think in moving larger objects. Currently, there is some research investigating novel photonic working principles to generate a higher force. Here, we studied theoretically and experimentally the induction of electromagnetic forces in one-dimensional photonic crystals when light impinges on the off-axis direction. The photonic structure consists of a micro-cavity like structure formed of two one-dimensional photonic crystals made of free-standing porous silicon, separated by a variable air gap and the working wavelength is 633 nm. We show experimental evidence of this force when the photonic structure is capable of making auto-oscillations and forced-oscillations. We measured peak displacements and velocities ranging from 2 up to 35 microns and 0.4 up to 2.1 mm/s with a power of 13 mW. Recent evidence showed that giant resonant light forces could induce average velocity values of 0.45 mm/s in microspheres embedded in water with 43 mW light power. PMID:24423985

  14. The bifoil photodyne: a photonic crystal oscillator

    NASA Astrophysics Data System (ADS)

    Lugo, J. E.; Doti, R.; Sanchez, N.; de La Mora, M. B.; Del Rio, J. A.; Faubert, J.

    2014-01-01

    Optical tweezers is an example how to use light to generate a physical force. They have been used to levitate viruses, bacteria, cells, and sub cellular organisms. Nonetheless it would be beneficial to use such force to develop a new kind of applications. However the radiation pressure usually is small to think in moving larger objects. Currently, there is some research investigating novel photonic working principles to generate a higher force. Here, we studied theoretically and experimentally the induction of electromagnetic forces in one-dimensional photonic crystals when light impinges on the off-axis direction. The photonic structure consists of a micro-cavity like structure formed of two one-dimensional photonic crystals made of free-standing porous silicon, separated by a variable air gap and the working wavelength is 633 nm. We show experimental evidence of this force when the photonic structure is capable of making auto-oscillations and forced-oscillations. We measured peak displacements and velocities ranging from 2 up to 35 microns and 0.4 up to 2.1 mm/s with a power of 13 mW. Recent evidence showed that giant resonant light forces could induce average velocity values of 0.45 mm/s in microspheres embedded in water with 43 mW light power.

  15. The bifoil photodyne: a photonic crystal oscillator

    PubMed Central

    Lugo, J. E.; Doti, R.; Sanchez, N.; de la Mora, M. B.; del Rio, J. A.; Faubert, J.

    2014-01-01

    Optical tweezers is an example how to use light to generate a physical force. They have been used to levitate viruses, bacteria, cells, and sub cellular organisms. Nonetheless it would be beneficial to use such force to develop a new kind of applications. However the radiation pressure usually is small to think in moving larger objects. Currently, there is some research investigating novel photonic working principles to generate a higher force. Here, we studied theoretically and experimentally the induction of electromagnetic forces in one-dimensional photonic crystals when light impinges on the off-axis direction. The photonic structure consists of a micro-cavity like structure formed of two one-dimensional photonic crystals made of free-standing porous silicon, separated by a variable air gap and the working wavelength is 633 nm. We show experimental evidence of this force when the photonic structure is capable of making auto-oscillations and forced-oscillations. We measured peak displacements and velocities ranging from 2 up to 35 microns and 0.4 up to 2.1 mm/s with a power of 13 mW. Recent evidence showed that giant resonant light forces could induce average velocity values of 0.45 mm/s in microspheres embedded in water with 43 mW light power. PMID:24423985

  16. Photonic crystal slab quantum cascade detector

    SciTech Connect

    Reininger, Peter Schwarz, Benedikt; Harrer, Andreas; Zederbauer, Tobias; Detz, Hermann; Maxwell Andrews, Aaron; Gansch, Roman; Schrenk, Werner; Strasser, Gottfried

    2013-12-09

    In this Letter, we demonstrate the design, fabrication, and characterization of a photonic crystal slab quantum cascade detector (PCS-QCD). By employing a specifically designed resonant cavity, the performance of the photodetector is improved in three distinct ways. The PCS makes the QCD sensitive to surface normal incident light. It resonantly enhances the photon lifetime inside the active zone, thus increasing the photocurrent significantly. And, the construction form of the device inherently decreases the noise. Finally, we compare the characteristics of the PCS-QCD to a PCS - quantum well infrared photodetector and outline the advantages for certain fields of applications.

  17. Photonic crystals: Theory and device applications

    NASA Astrophysics Data System (ADS)

    Fan, Shanhui

    In this thesis, first-principle frequency-domain and time-domain methods are developed and applied to investigate various properties and device applications of photonic crystals. In Chapter 2, I discuss the two numerical methods used to investigate the properties of photonic crystals. The first solves Maxwell's equations in the frequency domain, while the second solves the equations in the time domain. The frequency-domain method yields the frequency, polarization, symmetry, and field distribution of every eigenmode of the system; the time-domain method allows one to determine the temporal behavior of the modes. In Chapter 3, a new class of three-dimensional photonic crystal structures is introduced that is amenable for fabrication at submicron-length scales. The structures give rise to a 3D photonic bandgap. They consist of a layered structure in which a series of cylindrical air holes are etched at normal incidence. The calculation demonstrates the existence of a gap as large as 14% of the mid-gap frequency using Si, SiO2, and air; and 23% using Si and air. In Chapter 4, the bandstructure and transmission properties of three-dimensional metallodielectric photonic crystals are presented. The metallodielectric crystals are modeled as perfect electrical conducting objects embedded in dielectric media. We investigate the face-centered-cubic (fcc) lattice, and the diamond lattice. Partial gaps are predicted in the fcc lattice, in excellent agreement with recent experiments. Complete gaps are found in a diamond lattice of isolated metal spheres. The gaps appear between the second and third bands, and their sizes can be larger than 60% when the radius of the spheres exceeds 21% of the cubic unit cell size. In Chapter 5, I investigate the properties of resonant modes which arise from the introduction of local defects in two-dimensional (2D) and 3D photonic crystals. The properties of these modes can be controlled by changing the nature and the size of the defects. The

  18. Breakdown of Bose-Einstein Distribution in Photonic Crystals

    PubMed Central

    Lo, Ping-Yuan; Xiong, Heng-Na; Zhang, Wei-Min

    2015-01-01

    In the last two decades, considerable advances have been made in the investigation of nano-photonics in photonic crystals. Previous theoretical investigations of photon dynamics were carried out at zero temperature. Here, we investigate micro/nano cavity photonics in photonic crystals at finite temperature. Due to photonic-band-gap-induced localized long-lived photon dynamics, we discover that cavity photons in photonic crystals do not obey Bose-Einstein statistical distribution. Within the photonic band gap and in the vicinity of the band edge, cavity photons combine the long-lived non-Markovain dynamics with thermal fluctuations together to form photon states that memorize the initial cavity state information. As a result, Bose-Einstein distribution is completely broken down in these regimes, even if the thermal energy is larger or much larger than the cavity detuning energy. In this investigation, a crossover phenomenon from equilibrium to nonequilibrium steady states is also revealed. PMID:25822135

  19. A plasma photonic crystal bandgap device

    NASA Astrophysics Data System (ADS)

    Wang, B.; Cappelli, M. A.

    2016-04-01

    A fully tunable plasma photonic crystal is used to control the propagation of free space electromagnetic waves in the S to X bands of the microwave spectrum. An array of discharge plasma tubes forms a simple square crystal structure with the individual plasma dielectric constant tuned through variation in the plasma density. We show, through simulations and experiments, that transverse electric mode bandgaps exist, arising from the positive and negative dielectric constant regimes of the plasma, and that the respective bandgap frequencies can be shifted through changing the dielectric constant by varying discharge current density.

  20. Focusing concave lens using photonic crystals with magnetic materials.

    PubMed

    Yang, Shieh-Yueh; Hong, Chin-Yih; Yang, Hong-Chang

    2006-04-01

    The guided modes lying in the upper gap-edge band in the photonic band structure of photonic crystals have negative values of refractive index. This feature generates many interesting optical phenomena, and some spectacular photonic devices such as focusing slabs have been developed. We report the design of a photonic-crystal, planoconcave lens for focusing incident parallel light, and theoretically analyze the chromatic aberrations for TM and TE modes. In addition to dielectric photonic crystals, the chromatic aberration of a magnetic photonic-crystal planoconcave lens was investigated because the magnetic permeability may also contribute to the periodic index contrast in photonic crystals, especially at long wavelengths. A significant difference was found in the chromatic aberration for a TM mode propagating in a dielectric than in a magnetic photonic-crystal planoconcave lens. PMID:16604781

  1. A tunable microwave plasma photonic crystal filter

    NASA Astrophysics Data System (ADS)

    Wang, B.; Cappelli, M. A.

    2015-10-01

    The integration of gaseous plasma elements into a microwave photonic crystal band gap cavity structure allows for active tuning of the device. An alumina rod array microwave photonic crystal waveguide resonator is simulated and characterized through finite difference time domain methods. A gaseous plasma element is integrated into the cavity structure and the effect of plasma density on the transmission properties of the structure is investigated. We show, through both simulations and experiments, that the permittivity of the plasma can be adjusted to shift the peak resonance to allow for both switching and tunability of transmission. The experimentally measured peak shifts in transmission are compared to those simulated and the electron density of the gaseous plasma element is calculated and compared to values determined from the measured discharge current density.

  2. "Wandering" soliton in a nonlinear photonic crystal

    NASA Astrophysics Data System (ADS)

    Lysak, T. M.; Trofimov, V. A.

    2015-12-01

    On the basis of computer simulation, we demonstrate the possibility of a new type of "wandering" solitons implementation in nonlinear periodic layered structures. "Wandering" soliton moves across the layers, repeatedly changing its direction of motion due to the reflection from the photonic crystal (PC) boundaries with the ambient medium. The initial soliton is located inside a PC and occupies several of its layers. Its profile can be found as the solution of the corresponding nonlinear eigenvalue problem. "Wandering" solitons are formed as a result of a large perturbation of the wave vector, which leads to the soliton motion across photonic crystal layers. In the process of reflection from the boundary with the ambient medium, the soliton partly penetrates into the ambient medium at a depth equal to the width of several PC layers. A slow return of light energy, which previously left the PC, can take place at this moment.

  3. Absorption enhancement in graphene photonic crystal structures.

    PubMed

    Khaleque, Abdul; Hattori, Haroldo T

    2016-04-10

    Graphene, a single layer of carbon atoms arranged in a honeycomb lattice, is attracting significant interest because of its potential applications in electronic and optoelectronic devices. Although graphene exhibits almost uniform absorption within a large wavelength range, its interaction with light is weak. In this paper, the enhancement of the optical absorption in graphene photonic crystal structures is studied: the structure is modified by introducing scatterers and mirrors. It is shown that the absorption of the graphene photonic crystal structure can be enhanced about four times (nearly 40%) with respect to initial reference absorption of 9.8%. The study can be a useful tool for investigating graphene physics in different optical settings. PMID:27139857

  4. A tunable microwave plasma photonic crystal filter

    SciTech Connect

    Wang, B.; Cappelli, M. A.

    2015-10-26

    The integration of gaseous plasma elements into a microwave photonic crystal band gap cavity structure allows for active tuning of the device. An alumina rod array microwave photonic crystal waveguide resonator is simulated and characterized through finite difference time domain methods. A gaseous plasma element is integrated into the cavity structure and the effect of plasma density on the transmission properties of the structure is investigated. We show, through both simulations and experiments, that the permittivity of the plasma can be adjusted to shift the peak resonance to allow for both switching and tunability of transmission. The experimentally measured peak shifts in transmission are compared to those simulated and the electron density of the gaseous plasma element is calculated and compared to values determined from the measured discharge current density.

  5. Transmission character of general function photonic crystals

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-Yao; Zhang, Bo-Jun; Yang, Jing-Hai; Zhang, Si-Qi; Liu, Xiao-Jing; Wang, Jing; Ba, Nuo; Hua, Zhong; Yin, Xin-Guo

    2012-08-01

    In the paper, we present a new general function photonic crystals (GFPCs), whose refractive index of medium is a arbitrary function of space position. Unlike conventional photonic crystals (PCs), whose structure grows from two mediums A and B, with different constant refractive indexes na and nb. Based on the Fermat principle, we give the motion equations of light in one-dimensional GFPCs, and calculate its transfer matrix, which is different from the conventional PCs. We choose the linearity refractive index function for two mediums A and B, and find the transmissivity of one-dimensional GFPCs can be much larger or smaller than 1 for different slope linearity refractive index functions, which are different from the transmissivity of conventional PCs (its transmissivity is in the range of 0 and 1). Otherwise, we study the effect of different incident angles, the number of periods and optical thickness on the transmissivity, and obtain some new results different from the conventional PCs.

  6. Metallic photonic crystals at optical wavelengths

    NASA Astrophysics Data System (ADS)

    El-Kady, I.; Sigalas, M. M.; Biswas, R.; Ho, K. M.; Soukoulis, C. M.

    2000-12-01

    We theoretically study three-dimensional metallic photonic-band-gap (PBG) materials at near-infrared and optical wavelengths. Our main objective is to find the importance of absorption in the metal and the suitability of observing photonic band gaps in this structure. For that reason, we study simple cubic structures and the metallic scatterers are either cubes or interconnected metallic rods. Several different metals have been studied (aluminum, gold, copper, and silver). Copper gives the smallest absorption and aluminum is more absorptive. The isolated metallic cubes are less lossy than the connected rod structures. The calculations suggest that isolated copper scatterers are very attractive candidates for the fabrication of photonic crystals at the optical wavelengths.

  7. Nonreciprocal photonic crystal add-drop filter

    SciTech Connect

    Tao, Keyu; Xiao, Jun-Jun; Yin, Xiaobo

    2014-11-24

    We present a versatile add-drop integrated photonic filter (ADF) consisting of nonreciprocal waveguides in which the propagation of light is restricted in one predetermined direction. With the bus and add/drop waveguides symmetrically coupled through a cavity, the four-port device allows each individual port to add and/or drop a signal of the same frequency. The scheme is general and we demonstrate the nonreciprocal ADF with magneto-optical photonic crystals. The filter is immune to waveguide defects, allowing straightforward implementation of multi-channel ADFs by cascading the four-port designs. The results should find applications in wavelength-division multiplexing and related integrated photonic techniques.

  8. Photonic crystal fibres in biomedical investigations

    SciTech Connect

    Skibina, Yu S; Tuchin, Valerii V; Beloglazov, V I; Shteinmaeer, G; Betge, I L; Wedell, R; Langhoff, N

    2011-04-30

    The state of the art in the field of design and study of photonic crystal fibres for biomedical applications is considered and some original results recently obtained by the authors are presented. Optical properties of the fibres that offer prospects of their wide application as biological sensors, 'labs-on-a-chip', and facilities of electromagnetic radiation control in a wide range of wavelengths aimed at designing novel biomedical instrumentation are considered (optical technologies in biophysics and medicine)

  9. Optical microfiber-based photonic crystal cavity

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Sun, Yi-zhi; Andrews, Steve; Li, Zhi-yuan; Ding, Wei

    2016-01-01

    Using a focused ion beam milling technique, we fabricate broad stop band (∼10% wide) photonic crystal (PhC) cavities in adiabatically-tapered silica fibers. Abrupt structural design of PhC mirrors efficiently reduces radiation loss, increasing the cavity finesse to ∼7.5. Further experiments and simulations verify that the remaining loss is mainly due to Ga ion implantation. Such a microfiber PhC cavity probably has potentials in many light-matter interaction applications.

  10. Switchable tunneling mode for cylindrical photonic quantum well consisting of photonic crystals containing liquid crystal

    NASA Astrophysics Data System (ADS)

    Hu, C. A.; Yang, S. L.; Yang, T. J.

    2013-06-01

    We propose a cylindrical photonic quantum well made of photonic crystals containing liquid crystals, the properties of which are theoretically calculated and investigated by the transfer matrix method in the cylindrical symmetry system. Liquid crystals are introduced into the photonic quantum well structure as tunable defect layers. When the liquid crystals are pseudo-isotropic state and the azimuthal mode order of incident waves are m=0, there were two pass-bands around certain wavelength. When the liquid crystals are homeotropic state, the reflectance of pass-band at shorter wavelength decreases from 0.75 to 0.05 in the TM mode, but the reflectance does not change in the TE mode. When mode order m=1 and the liquid crystals are pseudo-isotropic state, the reflectance of defect mode stayed the same as m=0. However, the result is reversed while the phase of liquid crystals change from pseudo-isotropic to homeotropic state. The reflectance is the same as in the TM mode, but that in the TE mode decreases substantially from 0.75 to 0.05. The application of our structure to switching device is highly potential.

  11. Radiative energy transfer in disordered photonic crystals.

    PubMed

    Erementchouk, M V; Deych, L I; Noh, H; Cao, H; Lisyansky, A A

    2009-04-29

    The difficulty of description of the radiative transfer in disordered photonic crystals arises from the necessity to consider on an equal footing the wave scattering by periodic modulations of the dielectric function and by its random inhomogeneities. We resolve this difficulty by approaching this problem from the standpoint of the general multiple scattering theory in media with an arbitrary regular profile of the dielectric function. We use the general asymptotic solution of the Bethe-Salpeter equation in order to show that for a sufficiently weak disorder the diffusion limit in disordered photonic crystals is presented by incoherent superpositions of the modes of the ideal structure with weights inversely proportional to the respective group velocities. The radiative transfer and the diffusion equations are derived as a relaxation of long scale deviations from this limiting distribution. In particular, it is shown that in general the diffusion is anisotropic unless the crystal has sufficiently rich symmetry, say, the square lattice in 2D or the cubic lattice in 3D. In this case, the diffusion is isotropic and only in this case can the effect of the disorder be characterized by a single mean free path depending on frequency. PMID:21825416

  12. Zero-n gap in one dimensional photonic crystal

    NASA Astrophysics Data System (ADS)

    Chobey, Mahesh K.; Suthar, B.

    2016-05-01

    We study a one-dimensional (1-D) photonic crystal composed of Double Positive (DPS) and Double Negative (DNG) material. This structure shows omnidirectional photonic bandgap, which is insensitive with angle of incidence and polarization. To study the effect of structural parameters on the photonic band structure, we have calculated photonic band gap at various thicknesses of DPS and DNG.

  13. Raman cooling in silicon photonic crystals

    NASA Astrophysics Data System (ADS)

    Chen, Yin-Chung; Bahl, Gaurav

    2016-03-01

    Laser cooling of solids can be achieved through various photon up-conversion processes including anti-Stokes photoluminescence and anti-Stokes light scattering. While it has been shown that cooling using photoluminescence-based methods can achieve efficiency comparable to that of thermoelectric cooling, the reliance on specific transitions of the rare-earth dopants limits material choice. Light scattering, on the other hand, occurs in all materials, and has the potential to enable cooling in most materials. We show that by engineering the photonic density of states of a material, one can suppress the Stokes process, and enhance the anti-Stokes radiation. We employ the well-known diamond-structured photonic crystal patterned in crystalline silicon to demonstrate theoretically that when operating within a high transparency regime, the net energy removal rate from phonon annihilation can overcome the optical absorption. The engineered photonic density of states can thus enable simultaneous cooling of all Raman-active phonon modes and the net cooling of the solid.

  14. Slab photonic crystals with dimer colloid bases

    SciTech Connect

    Riley, Erin K.; Liddell Watson, Chekesha M.

    2014-06-14

    The photonic band gap properties for centered rectangular monolayers of asymmetric dimers are reported. Colloids in suspension have been organized into the phase under confinement. The theoretical model is inspired by the range of asymmetric dimers synthesized via seeded emulsion polymerization and explores, in particular, the band structures as a function of degree of lobe symmetry and degree of lobe fusion. These parameters are varied incrementally from spheres to lobe-tangent dimers over morphologies yielding physically realizable particles. The work addresses the relative scarcity of theoretical studies on photonic crystal slabs with vertical variation that is consistent with colloidal self-assembly. Odd, even and polarization independent gaps in the guided modes are determined for direct slab structures. A wide range of lobe symmetry and degree of lobe fusion combinations having Brillouin zones with moderate to high isotropy support gaps between odd mode band indices 3-4 and even mode band indices 1-2 and 2-3.

  15. The polaritonic spectrum of two-dimensional photonic crystals based on uniaxial polar materials

    NASA Astrophysics Data System (ADS)

    Gómez-Urrea, H. A.; Duque, C. A.; Mora-Ramos, M. E.

    2015-11-01

    We investigate the dispersion relations of two-dimensional photonic crystals made of cylindrical rods of uniaxial polar materials that exhibit transverse phonon-polariton excitations. The rods are considered to be embedded in a dielectric background. The photonic properties are obtained with the use of the finite-difference time domain (FDTD) method and the auxiliary differential equation (ADE) technique. The anisotropy of the dielectric function is explicitly considered using an empirical approach that assigns different weights to contributions of the parallel (z) and transversal (t) polaritonic relations. The effective dielectric function is then expressed as a weighted combination of the longitudinal and transversal components: ε (ω) =αzεz (ω) +αtεt (ω) . Different sets of values of the coefficients αz and αt have been considered. The frequencies of the allowed electromagnetic modes are determined as the local maxima of the spectral analysis using a fast Fourier transform (FFT). The particular case of a square photonic crystal superlattice geometry is analyzed, and input data corresponding to phonon frequencies of wurtzite nitride semiconductors is used. It is shown that larger values of the quantity |νz,T -νt,T | are desirable if the associated dielectric anisotropy is used as a tool for tuning photonic properties in the system.

  16. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity

    NASA Astrophysics Data System (ADS)

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-05-01

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (Mw/Mn = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm-1, which is even higher than that of the highest previously reported value (16 S cm-1). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost.While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and

  17. Photonic crystal devices formed by a charged-particle beam

    DOEpatents

    Lin, Shawn-Yu; Koops, Hans W. P.

    2000-01-01

    A photonic crystal device and method. The photonic crystal device comprises a substrate with at least one photonic crystal formed thereon by a charged-particle beam deposition method. Each photonic crystal comprises a plurality of spaced elements having a composition different from the substrate, and may further include one or more impurity elements substituted for spaced elements. Embodiments of the present invention may be provided as electromagnetic wave filters, polarizers, resonators, sources, mirrors, beam directors and antennas for use at wavelengths in the range from about 0.2 to 200 microns or longer. Additionally, photonic crystal devices may be provided with one or more electromagnetic waveguides adjacent to a photonic crystal for forming integrated electromagnetic circuits for use at optical, infrared, or millimeter-wave frequencies.

  18. Macroscopic response in active nonlinear photonic crystals.

    PubMed

    Alagappan, Gandhi; John, Sajeev; Li, Er Ping

    2013-09-15

    We derive macroscopic equations of motion for the slowly varying electric field amplitude in three-dimensional active nonlinear optical nanostructures. We show that the microscopic Maxwell equations and polarization dynamics can be simplified to a macroscopic one-dimensional problem in the direction of group velocity. For a three-level active material, we derive the steady-state equations for normal mode frequency, threshold pumping, nonlinear Bloch mode amplitude, and lasing in photonic crystals. Our analytical results accurately recapture the results of exact numerical methods. PMID:24104802

  19. Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-05-01

    We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons.

  20. Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber

    PubMed Central

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-01-01

    We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons. PMID:27170160

  1. Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber.

    PubMed

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-01-01

    We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons. PMID:27170160

  2. Semitransparent Metallic Photonic Crystals: Variety of Plasmons in Inverted Opal Nano-Meshes

    NASA Astrophysics Data System (ADS)

    Zakhidov, Anvar; Baughman, Ray; Khayrullin, Ilyas; Wiley, John; Eradat, Nayer; Efros, Alex; Vardeny, Valy

    2001-03-01

    We have recently fabricated three-dimensional nano-structures by self-assembling sub-micron particles into 3-D porous superlattices, and templating them with practically any material, both electrically conductive and insulating, including carbon [1], thermoelectric semiconductors [2], polymers [3], and magnets [4]. Being photonic crystals (PCs), our superlattices possess new, unconventional properties, such as the tunable intra-gap lasing [5], anomalous coherent backscattering [6], and structural solvatochromism. Here we describe synthesis and physical properties of another class of photonic crystals, called plasmon or metallic PC. Their metallo-dielectric structure has a metallic (or plasmon) photonic band gap (PBG) in IR spectral range, and therefore shows unusual optical properties. Of particular interest is the increased transparency and reflectivity spectrum, different from that of usual bulk metal. We demonstrate that by changing the topology from a network (continuos mesh) to a cermet (discontinuous web) one can achieve tunability of reflectivity peak in IR via modulation of plasmon spectrum and the metallicity PBG [7]. The theoretical model, which takes into account 1-D plasmon, surface plasmon and effectively changed 3-D plasmon (due to low filling factor), explains the observed peaks in reflectivity, and increase of the transparency. Such semitransparent metallic nano-meshes can be used for example as electrodes for LEDs and lasers. 1. A.A. Zakhidov, et al, Science, 282 (1998) 897. 2. R.H. Baughman, et al . Proc. ICT'98 (1998) 288. 3. A.A. Zakhidov, et al., Nanostructured Materials, 12 (1999) 1089. 4. T.-B,Xu, et al, J. Appl. Phys, 88 (2000) 405. 5. L.Xu, et al, Chem. Comm., (2000) 997. 6. M.N. Shkunov, et al. Synth.Met (in press), 7. AA. Zakhidov, et al., Synthetic Metals (in press).

  3. Young's double-slit experiment in photonic crystals

    SciTech Connect

    Zhang, Lei; Koschny, Thomas; Soukoulis, Costas M.

    2012-10-01

    We present an experimental and numerical study of the transmission of a photonic crystal perforated by two sub-wavelength slits, separated by two wavelengths.The experimental near-field image of the double-slit design of the photonic crystal shows an interference pattern, which is analogous to Young’s experiment. This interference arises as a consequence of the excitation of surface states of the photonic crystals and agrees very well with the simulations.

  4. Back focal plane imaging spectroscopy of photonic crystals

    NASA Astrophysics Data System (ADS)

    Wagner, Rebecca; Heerklotz, Lars; Kortenbruck, Nikolai; Cichos, Frank

    2012-08-01

    Back focal plane imaging spectroscopy is introduced to record angle resolved emission spectra of 3-dimensional colloidal photonic crystals. The auto-fluorescence of the colloids is used to quickly map the photonic band structure up to 72 % of the solid angle of a semisphere with the help of a high numerical aperture objective. Local excitation provides spatially resolved information on the photonic crystal's optical properties. The obtained fractional density of states allows direct conclusions on the crystal's stacking faults or defects.

  5. Biomimetic Photonic Crystals based on Diatom Algae Frustules

    NASA Astrophysics Data System (ADS)

    Mishler, Jonathan; Alverson, Andrew; Herzog, Joseph

    2015-03-01

    Diatom algae are unicellular, photosynthetic microorganisms with a unique external shell known as a frustule. Frustules, which are composed of amorphous silica, exhibit a unique periodic nano-patterning, distinguishing diatoms from other types of phytoplankton. Diatoms have been studied for their distinctive optical properties due to their resemblance of photonic crystals. In this regard, diatoms are not only considered for their applications as photonic crystals, but also for their use as biomimetic templates for artificially fabricated photonic crystals. Through the examination and measurement of the physical characteristics of many scanning electron microscope (SEM) images of diatom frustules, a biomimetic photonic crystal derived from diatom frustules can be recreated and modeled with the finite element method. In this approach, the average geometries of the diatom frustules are used to recreate a 2-dimensional photonic crystal, after which the electric field distribution and optical transmission through the photonic crystal are both measured. The optical transmission is then compared to the transmission spectra of a regular hexagonal photonic crystal, revealing the effects of diatom geometry on their optical properties. Finally, the dimensions of the photonic crystal are parametrically swept, allowing for further control over the transmission of light through the photonic crystal.

  6. Engineering and characterizing light-matter interactions in photonic crystals

    NASA Astrophysics Data System (ADS)

    Brzezinski, Andrew

    Photonic crystals can affect the behavior of visible light, and other electromagnetic waves, in ways that are not possible by other means. The propagation of photons can be completely forbidden or the light can be made to follow a well-defined path. Fluorescent emission can be enhanced for some wavelengths or completely shut off for others, and it is possible to do all this simultaneously in a single structure. However, photonic crystals are very difficult to fabricate as they require precision patterning at sub-micron length scales. This fabrication difficulty has resulted in many of the potential applications for photonic crystals to currently be unrealized. Similarly, there is an abundance of opportunities to explore the workings of photonic crystals and also to develop exciting new methods for their fabrication. The content of this dissertation explores some methods for fabricating photonic crystals, including direct laser writing, interference lithography, colloidal deposition, and chemical vapor deposition. The angle-resolved characterization of photonic crystals is performed on fluorescent photonic crystals that exhibit uniquely photonic effects, which are explained with a simplified model of the electromagnetic wave-functions. Another model is shown to well-explain the emission from fluorescent photonic crystals that are not of sufficient quality to exhibit truly photonic effects. The ability to perform angle-resolved optical characterization is improved with a commercial 4-circle diffractometer. A method to determination the resulting structure of conformal deposition processes proves useful as a tool for the design, modeling, and characterization of photonic crystals. Finally, attempts are made to radically alter the emission of light from rare earth emitters embedded inside photonic crystals.

  7. Negative Refraction experiments in Photonic Crystal prisms

    NASA Astrophysics Data System (ADS)

    Vodo, Plarenta; Parimi, Patanjali. V.; Lu, Wentao. T.; di Gennaro, Emiliano; Sridhar, Srinivas

    2004-03-01

    We have experimentally demonstrated negative refraction in metallic photonic crystal (PC) prisms [1]. The refracted fields in the parallel plate waveguide (PPW) are measured by an automated dipole antenna, which scans the desired area, while the free space (FS) measurements, performed in a anechoic chamber, are measured by a rectangular X-band horn that swings in an arc in far field area. Both TE and TM excitation modes are used in FS experiments. Numerical calculations of the band structure and equi-frequency surface simulations are used to determine frequency regions of negative refraction of the triangular lattice PC. Angle of refraction determined by theoretical simulations and experimental results, are in exceptional good agreement, yielding the negative refraction index. FS and PPW refraction experimental results agree remarkably with simulations. 1. "Negative Refraction and Left-handed electromagnetism in Microwave Photonic Crystals", P.V Parimi, W.T Lu, P.Vodo J. Sokoloff and S.Sridhar, cond-mat/0306109 (2003)

  8. Multicriteria classification for photonic crystal fiber design

    NASA Astrophysics Data System (ADS)

    Sassi, Imene; Belacel, Nabil; Bouslimani, Yassine; Hamam, Habib; Attia, Rabah

    2008-06-01

    The photonic crystal fibers (PCF) are considered as the future information support for the telecommunication system. In this paper, a multicriteria method is used for the design of the PCFs with the user-defined optical proprieties. This method combines the deductive and the inductive learning and it is introduced for the first time in the field of optical fibers. These simulation tools will be optimized for PCF structures in order to optimize the parameters necessary for the improvement of the communication system performances. The multicriteria decision analysis makes it possible to evaluate the optical proprieties of PCFs by determining the effects of attenuation and distortion caused by Physics Phenomena. This decision is done by the means of a relational model preferably. As a result, this method avoids the recourse to distances and makes it possible to use quantitative and/or qualitative criteria. Moreover, it defeat some difficulties encountered when data are expressed in different units. These advantages allow the new multicriteria classification method to be employed easily to the diagnosis and to the design of photonic-crystals fibers.

  9. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin M.

    2007-08-22

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  10. Fabrication and evaluation of photonic metamaterial crystal

    NASA Astrophysics Data System (ADS)

    Tanabete, S.; Nakagawa, Y.; Okamoto, T.; Haraguchi, M.; Isu, T.; Shinomiya, G.

    2013-09-01

    Many researching efforts have been reported to seek various fundamental LC resonance structures, recently. But still the Split Ring Resonator (SRR) is the most famous and major fundamental LC-resonance structure used in the metamaterial. We employed SRR structure as the fundamental LC-resonance mechanism to fabricate photonic crystal with periodic arrangement of two different metamaterial areas composed from SRR arrays on the dielectric substrate. We developed Photonic Metamaterial Crystal (PMC) to realize the more advanced and versatile functions of the metamaterial by 1 dimensional or 2 dimensional periodic arranging of two metamaterial sections which have different dispersion properties due to the different size of SRR structures each other. In this paper, we report the fabrication process, estimation of PMC properties and some possible future application prospects, for instance the PMC waveguide structures and nonlinear properties of PMC observed as selective LC-resonant properties in Raman mapping analysis of PMC. These are quite interesting characters of PMC and the attractive applications as the PMC devices.

  11. Dielectric matrices with air cavities as a waveguide photonic crystal

    NASA Astrophysics Data System (ADS)

    Usanov, D. A.; Skripal', A. V.; Merdanov, M. K.; Gorlitskii, V. O.

    2016-02-01

    Frequency dependences of the transmission coefficient of a microwave photonic crystal that represents a structure containing alternating layers of ceramic material (Al2O3) with a relatively large number of cavities and foam plastic are studied in the presence and absence of distortions of the periodicity of a photonic structure. The frequency dependences of the transmission coefficient can be analyzed using a model of effective medium that makes it possible to consider the interaction of electromagnetic wave and photonic crystal using a transfer matrix of a 1D photonic crystal. The band character of the frequency dependence of the transmission coefficient of the photonic crystal related to the periodicity of the photonic crystal in the transverse plane for the waveguide with a standard cross section is not manifested in a certain range of material permittivities.

  12. Photonic Crystal Enhanced Fluorescence for Early Breast Cancer Biomarker Detection

    PubMed Central

    Cunningham, Brian T.; Zangar, Richard C.

    2013-01-01

    Photonic crystal surfaces offer a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics. Through the complementary processes of photonic crystal enhanced excitation and enhanced extraction, a periodic dielectric-based nanostructured surface can simultaneously increase the electric field intensity experienced by surface-bound fluorophores and increase the collection efficiency of emitted fluorescent photons. Through the ability to inexpensively fabricate photonic crystal surfaces over substantial surface areas, they are amenable to single-use applications in biological sensing, such as disease biomarker detection in serum. In this review, we will describe the motivation for implementing high-sensitivity, multiplexed biomarker detection in the context of breast cancer diagnosis. We will summarize recent efforts to improve the detection limits of such assays though the use of photonic crystal surfaces. Reduction of detection limits is driven by low autofluorescent substrates for photonic crystal fabrication, and detection instruments that take advantage of their unique features. PMID:22736539

  13. Two-dimensional metal-glass photonic crystal

    NASA Astrophysics Data System (ADS)

    Pysz, Dariusz; Kujawa, Ireneusz; Stępień, Ryszard; Dominiak, Radosław; Pniewski, Jacek; Szoplik, Tomasz

    2007-04-01

    We present recent achievements in fabricating a two-dimensional (2D) photonic crystal in the form of a bundle of parallel micro- or nanowires embedded in glass matrix. The method is similar to that of sequential thinning used for fabrication of photonic crystal fibers. We discuss technological issues that aim at preservation of regularity of photonic crystal lattice and uniformity of wire diameters. Proper selection of a melting point of metal alloy and the range of temperatures of glass viscosity leads to reduction of regularity losses resulting from sequential processes of drawing. Measured distributions of crystal lattices, wire diameters and shapes of wires are used to simulate photonic band structure of fabricated crystals. This work is directed toward fabrication of a photonic crystal showing the negative refraction in the near infrared and visible spectral range.

  14. Extended-Range Ultrarefractive 1D Photonic Crystal Prisms

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    A proposal has been made to exploit the special wavelength-dispersive characteristics of devices of the type described in One-Dimensional Photonic Crystal Superprisms (NPO-30232) NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 10a. A photonic crystal is an optical component that has a periodic structure comprising two dielectric materials with high dielectric contrast (e.g., a semiconductor and air), with geometrical feature sizes comparable to or smaller than light wavelengths of interest. Experimental superprisms have been realized as photonic crystals having three-dimensional (3D) structures comprising regions of amorphous Si alternating with regions of SiO2, fabricated in a complex process that included sputtering. A photonic crystal of the type to be exploited according to the present proposal is said to be one-dimensional (1D) because its contrasting dielectric materials would be stacked in parallel planar layers; in other words, there would be spatial periodicity in one dimension only. The processes of designing and fabricating 1D photonic crystal superprisms would be simpler and, hence, would cost less than do those for 3D photonic crystal superprisms. As in 3D structures, 1D photonic crystals may be used in applications such as wavelength-division multiplexing. In the extended-range configuration, it is also suitable for spectrometry applications. As an engineered structure or artificially engineered material, a photonic crystal can exhibit optical properties not commonly found in natural substances. Prior research had revealed several classes of photonic crystal structures for which the propagation of electromagnetic radiation is forbidden in certain frequency ranges, denoted photonic bandgaps. It had also been found that in narrow frequency bands just outside the photonic bandgaps, the angular wavelength dispersion of electromagnetic waves propagating in photonic crystal superprisms is much stronger than is the angular wavelength dispersion obtained

  15. Theoretical design of photonic crystal devices for integrated optical circuits

    NASA Astrophysics Data System (ADS)

    Mekis, Attila

    2000-12-01

    In this thesis we investigate novel photonic crystal devices that can be used as building blocks of all- optical circuits. We contrast the behavior of light in photonic crystal systems and in their traditional counterparts. We exhibit that bends in photonic crystals are able to transmit light with over 90% efficiency for large bandwidths and with 100% efficiency for specific frequencies. In contrast to traditional waveguides, bound states in photonic crystal waveguides can also exist in constrictions and above the cutoff frequency. We discuss how to lower reflections encountered when photonic crystal waveguides are terminated, both in an experimental setup as well as in numerical simulations. We show that light can be very efficiently coupled into and out of photonic crystal waveguides using tapered dielectric waveguides. In time-domain simulations of photonic crystal waveguides, spurious reflections from cell edges can be eliminated by terminating the waveguide with a Bragg reflector waveguide. We demonstrate novel lasing action in two-dimensional photonic crystal slabs with gain media, where lasing occurs at saddle points in the band structure, in contrast to one-dimensional photonic crystals. We also design a photonic crystal slab with organic gain media that has a TE-like pseudogap. We demonstrate that such a slab can support a high- Q defect mode, enabling low threshold lasing, and we discuss how the quality factor depends on the design parameters. We also propose to use two- dimensional photonic crystal slabs as directionally efficient free-space couplers. We draft methods to calculate the coupling constant both numerically and analytically, using a finite-difference time-domain method and the volume current method with a Green's function approach, respectively. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  16. A 1-D dusty plasma photonic crystal

    SciTech Connect

    Mitu, M. L.; Ticoş, C. M.; Toader, D.; Banu, N.; Scurtu, A.

    2013-09-21

    It is demonstrated numerically that a 1-D plasma crystal made of micron size cylindrical dust particles can, in principle, work as a photonic crystal for terahertz waves. The dust rods are parallel to each other and arranged in a linear string forming a periodic structure of dielectric-plasma regions. The dispersion equation is found by solving the waves equation with the boundary conditions at the dust-plasma interface and taking into account the dielectric permittivity of the dust material and plasma. The wavelength of the electromagnetic waves is in the range of a few hundred microns, close to the interparticle separation distance. The band gaps of the 1-D plasma crystal are numerically found for different types of dust materials, separation distances between the dust rods and rod diameters. The distance between levitated dust rods forming a string in rf plasma is shown experimentally to vary over a relatively wide range, from 650 μm to about 1350 μm, depending on the rf power fed into the discharge.

  17. Three-dimensional photonic crystals fabricated by simultaneous multidirectional etching

    NASA Astrophysics Data System (ADS)

    Kitano, Keisuke; Suzuki, Katsuyoshi; Ishizaki, Kenji; Noda, Susumu

    2015-04-01

    We discuss three-dimensional (3D) photonic crystals fabricated by simultaneous multidirectional plasma etching. First, we investigate a method for controlling the ion sheath used in reactive ion etching for obtaining multidirectional etching. We then discuss the fabrication tolerance from an analytical perspective. Based on our results, we demonstrate the fabrication of 3D photonic crystals with thicknesses of 1, 1.5, and 2 lattice periods in the surface-normal direction on single-crystalline silicon wafers, which show high reflectance (˜100 %) and low transmittance (-17 dB ) at optical communication wavelengths, suggesting the formation of a complete photonic band gap. We reveal that the shape of the etched holes limits the performance of 3D photonic crystals and suggest possible ways to improve the band-gap effect. Moreover, we show that 3D photonic crystals with short lattice constants show high reflectance (˜80 %) at visible to near-infrared wavelengths. By investigating the influence of absorption on the characteristics of 3D photonic crystals, we reveal that the reflectance remains as high as 94% in the photonic band-gap range even when the absorption of silicon is taken into account. We find that a unique increase of absorption occurs at several discrete wavelengths below the photonic band gap, suggesting the possibility of manipulating light absorption. These results not only simplify the fabrication of 3D photonic crystals, but also provide a basis for realizing 3D photonic nanostructures that include other materials.

  18. Photonic crystal chips for optical communications and quantum information processing

    NASA Astrophysics Data System (ADS)

    Englund, Dirk; Fushman, Ilya; Faraon, Andrei; Ellis, Bryan; Vučković, Jelena

    2008-08-01

    We discuss recent our recent progress on functional photonic crystals devices and circuits for classical and quantum information processing. For classical applications, we have demonstrated a room-temperature-operated, low threshold, nanocavity laser with pulse width in the picosecond regime; and an all-optical switch controlled with 60 fJ pulses that shows switching time on the order of tens of picoseconds. For quantum information processing, we discuss the promise of quantum networks on multifunctional photonic crystals chips. We also discuss a new coherent probing technique of quantum dots coupled to photonic crystal nanocavities and demonstrate amplitude and phase nonlinearities realized with control beams at the single photon level.

  19. Controlled coupling of photonic crystal cavities using photochromic tuning

    NASA Astrophysics Data System (ADS)

    Cai, Tao; Bose, Ranojoy; Solomon, Glenn S.; Waks, Edo

    2013-04-01

    We present a method to control the resonant coupling interaction in a coupled-cavity photonic crystal molecule by using a local and reversible photochromic tuning technique. We demonstrate the ability to tune both a two-cavity and a three-cavity photonic crystal molecule through the resonance condition by selectively tuning the individual cavities. Using this technique, we can quantitatively determine important parameters of the coupled-cavity system such as the photon tunneling rate. This method can be scaled to photonic crystal molecules with larger numbers of cavities, which provides a versatile method for studying strong interactions in coupled resonator arrays.

  20. Waveguide circuits in three-dimensional photonic crystals

    SciTech Connect

    Biswas, Rana; Christensen, C.; Muehlmeier, J.; Tuttle, G.; Ho, K.-M.

    2008-04-07

    Waveguide circuits in three-dimensional photonic crystals with complete photonic band gaps are simulated with finite difference time domain (FDTD) simulations, and compared with measurements on microwave scale photonic crystals. The transmission through waveguide bends critically depends on the photonic crystal architecture in the bend region. We have found experimentally and theoretically, a new waveguide bend configuration consisting of overlapping rods in the bend region, that performs better than the simple waveguide bend of terminated rods, especially in the higher frequency portion of the band. Efficient beam splitters with this junction geometry are also simulated.

  1. Strongly-Refractive One-Dimensional Photonic Crystal Prisms

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor)

    2004-01-01

    One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.

  2. Two-photon-induced singlet fission in rubrene single crystal

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Galstyan, Gegham; Zhang, Keke; Kloc, Christian; Sun, Handong; Soci, Cesare; Michel-Beyerle, Maria E.; Gurzadyan, Gagik G.

    2013-05-01

    The two-photon-induced singlet fission was observed in rubrene single crystal and studied by use of femtosecond pump-probe spectroscopy. The location of two-photon excited states was obtained from the nondegenerate two-photon absorption (TPA) spectrum. Time evolution of the two-photon-induced transient absorption spectra reveals the direct singlet fission from the two-photon excited states. The TPA absorption coefficient of rubrene single crystal is 52 cm/GW at 740 nm, as obtained from Z-scan measurements. Quantum chemical calculations based on time-dependent density functional theory support our experimental data.

  3. Optical nanofiber-based photonic crystal cavity.

    PubMed

    Nayak, K P; Zhang, Pengfei; Hakuta, K

    2014-01-15

    We demonstrate the fabrication of photonic crystal (PhC) cavities on optical nanofibers using femtosecond laser ablation. PhC cavities with cavity lengths varying from 0.54 to 3.43 mm are fabricated by controlling the profile of the nanocrater array formed on the nanofiber. Such PhC cavities show high transmission of 87% for a finesse of 39. For higher finesse values from 150 to 500, the transmission can still be maintained at 20%-25%. Due to the strong confinement of the field and the efficient coupling to single-mode optical fibers, such nanofiber-based PhC cavities may become an interface between quantum and classical networks. PMID:24562114

  4. Nonlinear waveguide optics and photonic crystal fibers.

    PubMed

    Knight, J C; Skryabin, D V

    2007-11-12

    Focus Serial: Frontiers of Nonlinear Optics

    Optical fibers and waveguides provide unique and distinct environments for nonlinear optics, because of the combination of high intensities, long interaction lengths, and control of the propagation constants. They are also becoming of technological importance. The topic has a long history but continues to generate rapid development, most recently through the invention of the new forms of optical fiber collectively known as photonic crystal fibers. Some of the discoveries and ideas from the new fibers look set to have lasting influence in the broader field of guided-wave nonlinear optics. In this paper we introduce some of these ideas. PMID:19550822

  5. Enhanced photoacoustic detection using photonic crystal substrate

    SciTech Connect

    Zhao, Yunfei; Liu, Kaiyang; McClelland, John; Lu, Meng

    2014-04-21

    This paper demonstrates the enhanced photoacoustic sensing of surface-bound light absorbing molecules and metal nanoparticles using a one-dimensional photonic crystal (PC) substrate. The PC structure functions as an optical resonator at the wavelength where the analyte absorption is strong. The optical resonance of the PC sensor provides an intensified evanescent field with respect to the excitation light source and results in enhanced optical absorption by surface-immobilized samples. For the analysis of a light absorbing dye deposited on the PC surface, the intensity of photoacoustic signal was enhanced by more than 10-fold in comparison to an un-patterned acrylic substrate. The technique was also applied to detect gold nanorods and exhibited more than 40 times stronger photoacoustic signals. The demonstrated approach represents a potential path towards single molecule absorption spectroscopy with greater performance and inexpensive instrumentation.

  6. Photonic crystal cavities with metallic Schottky contacts

    SciTech Connect

    Quiring, W.; Al-Hmoud, M.; Reuter, D.; Zrenner, A.; Rai, A.; Wieck, A. D.

    2015-07-27

    We report about the fabrication and analysis of high Q photonic crystal cavities with metallic Schottky-contacts. The structures are based on GaAs n-i membranes with an InGaAs quantum well in the i-region and nanostructured low ohmic metal top-gates. They are designed for photocurrent readout within the cavity and fast electric manipulations. The cavity structures are characterized by photoluminescence and photocurrent spectroscopy under resonant excitation. We find strong cavity resonances in the photocurrent spectra and surprisingly high Q-factors up to 6500. Temperature dependent photocurrent measurements in the region between 4.5 K and 310 K show an exponential enhancement of the photocurrent signal and an external quantum efficiency up to 0.26.

  7. Asymptotics for metamaterials and photonic crystals.

    PubMed

    Antonakakis, T; Craster, R V; Guenneau, S

    2013-04-01

    Metamaterial and photonic crystal structures are central to modern optics and are typically created from multiple elementary repeating cells. We demonstrate how one replaces such structures asymptotically by a continuum, and therefore by a set of equations, that captures the behaviour of potentially high-frequency waves propagating through a periodic medium. The high-frequency homogenization that we use recovers the classical homogenization coefficients in the low-frequency long-wavelength limit. The theory is specifically developed in electromagnetics for two-dimensional square lattices where every cell contains an arbitrary hole with Neumann boundary conditions at its surface and implemented numerically for cylinders and split-ring resonators. Illustrative numerical examples include lensing via all-angle negative refraction, as well as omni-directive antenna, endoscope and cloaking effects. We also highlight the importance of choosing the correct Brillouin zone and the potential of missing interesting physical effects depending upon the path chosen. PMID:23633908

  8. Suspended polymeric photonic crystals: simulation and fabrication

    NASA Astrophysics Data System (ADS)

    Rebigan, R.; Dinescu, A.; Kusko, C.; Gavrila, R.; Cristea, D.; Obreja, C.; Schiopu, P.

    2010-11-01

    In this paper we present simulation of transmission / reflection spectra of polymeric rectangular and hexagonal photonic crystals (PC) as well as the propagation of radiation in a hexagonal PC - based waveguide. The polymeric PC are periodic structures consisting in square arrays of holes configured in suspended membranes of PMMA with different diameters and pitch (100 nm diameter with 500 nm, respectively 800 nm pitch; 200 nm diameter with 500 nm pitch; 400 nm diameter with 700 nm pitch). For fabrication, we propose the bi-layer EBL technique based on simultaneous patterning of a bottom sacrificial layer (LOR 5A - Microchem Corporation) and a positive electron resist (PMMA of different molecular weights). Characterization of nanostructures was performed using SEM imaging and AFM measurements .

  9. Surface Brillouin scattering in photonic crystal fibers.

    PubMed

    Tchahame, Joël Cabrel; Beugnot, Jean-Charles; Huy, Kien Phan; Laude, Vincent; Kudlinski, Alexandre; Sylvestre, Thibaut

    2016-07-15

    We report, to the best of our knowledge, the first experimental observation of surface Brillouin scattering in silica-based photonic crystal fibers, arising from the interaction between guided light and surface acoustic waves. This was achieved using small-core and high air-filling fraction microstructured fibers that enable a strong opto-acoustic coupling near the air holes while mitigating the acoustic leakages in the microstructured cladding. It is further shown that this new type of light scattering is highly sensitive to the fiber air-hole microstructure, thus providing a passive and efficient way to control it. Our observations are confirmed through numerical simulations of the elastodynamics equation. PMID:27420512

  10. Squeezed state generation in photonic crystal microcavities.

    PubMed

    Banaee, M G; Young, Jeff F

    2008-12-01

    The feasibility of using a parametric down-conversion process to generate squeezed electromagnetic states in three dimensional photonic crystal microcavity structures is investigated for the first time. The spectrum of the squeezed light is theoretically calculated by using an open cavity quantum mechanical formalism. The cavity communicates with two main channels, which model vertical radiation losses and coupling into a single-mode waveguide respectively. The amount of squeezing is determined by the correlation functions relating the field quadratures of light coupled into the waveguide. All of the relevant model parameters are realistically estimated for structures made in Al0.3Ga0.7As, using finite-difference time-domain simulations. Squeezing up to approximately 30% below the shot noise level is predicted for 10 mW average power, 80 MHz repetition, 500 ps excitation pulses using in a [111] oriented wafer. PMID:19065230

  11. A laminar solid core photonic crystal waveguide

    NASA Astrophysics Data System (ADS)

    Willig, R. L.

    2005-11-01

    A one-dimensional model is presented to explain the physics of solid core photonic crystal fibers. The model provides a clear way to demonstrate many of the interesting characteristics of these fibers: variation of cladding index with wavelength, endlessly single-mode operation, short wavelength index limit, long wavelength index limit, and variation of these properties with the air/silica fraction. The effective index is calculated for a laminar cladding consisting of periodic layers of alternating high and low index dielectrics. The waveguide model consists of the same periodic layers surrounding a high-index core through which most of the light propagates. The light is confined by total internal reflection. The model is shown to be an accurate analogue for a more complicated two-dimensional finned dielectric waveguide.

  12. Stable planar mesoscopic photonic crystal cavities.

    PubMed

    Magno, G; Monmayrant, A; Grande, M; Lozes-Dupuy, F; Gauthier-Lafaye, O; Calò, G; Petruzzelli, V

    2014-07-15

    Mesoscopic self-collimation (MSC) in mesoscopic photonic crystals with high reflectivity is exploited to realize a novel high Q-factor cavity by means of mesoscopic PhC planar mirrors. These mirrors efficiently confine a mode inside a planar Fabry-Perot-like cavity, that results from a beam focusing effect that stabilizes the cavity even for small beam sizes, resembling the focusing behavior of curved mirrors. Moreover, they show an improved reflectivity with respect to their standard distributed Bragg reflector counterparts that allows higher compactness. A Q-factor higher than 10⁴ has been achieved for an optimized 5-period-long mirror cavity. The optimization of the Q-factor and the performances in terms of energy storage, field enhancement, and confinement are detailed. PMID:25121692

  13. Fano resonance in anodic aluminum oxide based photonic crystals

    PubMed Central

    Shang, Guo Liang; Fei, Guang Tao; Zhang, Yao; Yan, Peng; Xu, Shao Hui; Ouyang, Hao Miao; De Zhang, Li

    2014-01-01

    Anodic aluminum oxide based photonic crystals with periodic porous structure have been prepared using voltage compensation method. The as-prepared sample showed an ultra-narrow photonic bandgap. Asymmetric line-shape profiles of the photonic bandgaps have been observed, which is attributed to Fano resonance between the photonic bandgap state of photonic crystal and continuum scattering state of porous structure. And the exhibited Fano resonance shows more clearly when the sample is saturated ethanol gas than air-filled. Further theoretical analysis by transfer matrix method verified these results. These findings provide a better understanding on the nature of photonic bandgaps of photonic crystals made up of porous materials, in which the porous structures not only exist as layers of effective-refractive-index material providing Bragg scattering, but also provide a continuum light scattering state to interact with Bragg scattering state to show an asymmetric line-shape profile. PMID:24398625

  14. Superconducting Photonic Crystal with Nanostrips for Mid-Infrared Applications

    SciTech Connect

    Ooi, C. H. Raymond

    2011-03-30

    One dimensional photonic crystal with superconducting nanostrips and semiconductor materials can be tailored to have narrow bands, with either large transmission or large reflection. Based on the reflection and transmission coefficients, we study the temporal dynamics of the reflected and transmitted pulses from the finite photonic crystal. The output pulse dynamics show slow light effect around the narrow bands that can be useful for photonic technologies.

  15. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.

    PubMed

    Xing, Huihui; Li, Jun; Shi, Yang; Guo, Jinbao; Wei, Jie

    2016-04-13

    We have developed a novel thermoresponsive photonic actuator based on three-dimensional SiO2 opal photonic crystals (PCs) together with liquid crystal elastomers (LCEs). In the process of fabrication of such a photonic actuator, the LCE precursor is infiltrated into the SiO2 opal PC followed by UV light-induced photopolymerization, thereby forming the SiO2 opal PC/LCE composite film with a bilayer structure. We find that this bilayer composite film simultaneously exhibits actuation behavior as well as the photonic band gap (PBG) response to external temperature variation. When the SiO2 opal PC/LCE composite film is heated, it exhibits a considerable bending deformation, and its PBG shifts to a shorter wavelength at the same time. In addition, this actuation is quite fast, reversible, and highly repeatable. The thermoresponsive behavior of the SiO2 opal PC/LCE composite films mainly derives from the thermal-driven change of nematic order of the LCE layer which leads to the asymmetric shrinkage/expansion of the bilayer structure. These results will be of interest in designing optical actuator systems for environment-temperature detection. PMID:26996608

  16. Transient Plasma Photonic Crystals for High-Power Lasers

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Spatschek, K. H.

    2016-06-01

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.

  17. Transient Plasma Photonic Crystals for High-Power Lasers.

    PubMed

    Lehmann, G; Spatschek, K H

    2016-06-01

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible. PMID:27314721

  18. Topological modes in one-dimensional solids and photonic crystals

    NASA Astrophysics Data System (ADS)

    Atherton, Timothy J.; Butler, Celia A. M.; Taylor, Melita C.; Hooper, Ian R.; Hibbins, Alastair P.; Sambles, J. Roy; Mathur, Harsh

    2016-03-01

    It is shown theoretically that a one-dimensional crystal with time-reversal and particle-hole symmetries is characterized by a topological invariant that predicts the existence or otherwise of edge states. This is confirmed experimentally through the construction and simulation of a photonic crystal analog in the microwave regime. It is shown that the edge mode couples to modes external to the photonic crystal via a Fano resonance.

  19. Semiconductor superlattice photodetectors

    NASA Technical Reports Server (NTRS)

    Chuang, S. L.; Hess, K.; Coleman, J. J.; Leburton, J. P.

    1986-01-01

    Superlattice photodetectors were investigated. A few major physical processes in the quantum-well heterostructures related to the photon detection and electron conduction mechanisms, the field effect on the wave functions and the energy levels of the electrons, and the optical absorption with and without the photon assistance were studied.

  20. Coupling light in photonic crystal waveguides: A review

    NASA Astrophysics Data System (ADS)

    Dutta, Hemant Sankar; Goyal, Amit Kumar; Srivastava, Varun; Pal, Suchandan

    2016-07-01

    Submicron scale structures with high index contrast are key to compact structures for realizing photonic integrated structures. Ultra-compact optical devices in silicon-on-insulator (SOI) substrates serve compatibility with semiconductor fabrication technology leading to reduction of cost and mass production. Photonic crystal structures possess immense potential for realizing various compact optical devices. However, coupling light to photonic crystal waveguide structures is crucial in order to achieve strong transmission and wider bandwidth of signal. Widening of bandwidth will increase potential for various applications and high transmission will make easy signal detection at the output. In this paper, the techniques reported so far for coupling light in photonic crystal waveguides have been reviewed and analyzed so that a comprehensive guide for an efficient coupling to photonic crystal waveguides can be made possible.

  1. Crystallization of spin superlattices with pressure and field in the layered magnet SrCu2(BO3)2

    PubMed Central

    Haravifard, S.; Graf, D.; Feiguin, A. E.; Batista, C. D.; Lang, J. C.; Silevitch, D. M.; Srajer, G.; Gaulin, B. D.; Dabkowska, H. A.; Rosenbaum, T. F.

    2016-01-01

    An exact mapping between quantum spins and boson gases provides fresh approaches to the creation of quantum condensates and crystals. Here we report on magnetization measurements on the dimerized quantum magnet SrCu2(BO3)2 at cryogenic temperatures and through a quantum-phase transition that demonstrate the emergence of fractionally filled bosonic crystals in mesoscopic patterns, specified by a sequence of magnetization plateaus. We apply tens of Teslas of magnetic field to tune the density of bosons and gigapascals of hydrostatic pressure to regulate the underlying interactions. Simulations help parse the balance between energy and geometry in the emergent spin superlattices. The magnetic crystallites are the end result of a progression from a direct product of singlet states in each short dimer at zero field to preferred filling fractions of spin-triplet bosons in each dimer at large magnetic field, enriching the known possibilities for collective states in both quantum spin and atomic systems. PMID:27320787

  2. Crystallization of spin superlattices with pressure and field in the layered magnet SrCu2(BO3)2.

    PubMed

    Haravifard, S; Graf, D; Feiguin, A E; Batista, C D; Lang, J C; Silevitch, D M; Srajer, G; Gaulin, B D; Dabkowska, H A; Rosenbaum, T F

    2016-01-01

    An exact mapping between quantum spins and boson gases provides fresh approaches to the creation of quantum condensates and crystals. Here we report on magnetization measurements on the dimerized quantum magnet SrCu2(BO3)2 at cryogenic temperatures and through a quantum-phase transition that demonstrate the emergence of fractionally filled bosonic crystals in mesoscopic patterns, specified by a sequence of magnetization plateaus. We apply tens of Teslas of magnetic field to tune the density of bosons and gigapascals of hydrostatic pressure to regulate the underlying interactions. Simulations help parse the balance between energy and geometry in the emergent spin superlattices. The magnetic crystallites are the end result of a progression from a direct product of singlet states in each short dimer at zero field to preferred filling fractions of spin-triplet bosons in each dimer at large magnetic field, enriching the known possibilities for collective states in both quantum spin and atomic systems. PMID:27320787

  3. Crystallization of spin superlattices with pressure and field in the layered magnet SrCu2(BO3)2

    NASA Astrophysics Data System (ADS)

    Haravifard, S.; Graf, D.; Feiguin, A. E.; Batista, C. D.; Lang, J. C.; Silevitch, D. M.; Srajer, G.; Gaulin, B. D.; Dabkowska, H. A.; Rosenbaum, T. F.

    2016-06-01

    An exact mapping between quantum spins and boson gases provides fresh approaches to the creation of quantum condensates and crystals. Here we report on magnetization measurements on the dimerized quantum magnet SrCu2(BO3)2 at cryogenic temperatures and through a quantum-phase transition that demonstrate the emergence of fractionally filled bosonic crystals in mesoscopic patterns, specified by a sequence of magnetization plateaus. We apply tens of Teslas of magnetic field to tune the density of bosons and gigapascals of hydrostatic pressure to regulate the underlying interactions. Simulations help parse the balance between energy and geometry in the emergent spin superlattices. The magnetic crystallites are the end result of a progression from a direct product of singlet states in each short dimer at zero field to preferred filling fractions of spin-triplet bosons in each dimer at large magnetic field, enriching the known possibilities for collective states in both quantum spin and atomic systems.

  4. Three dimensional reflectance properties of superconductor-dielectric photonic crystal

    NASA Astrophysics Data System (ADS)

    Pandey, G. N.; Pandey, J. P.; Pandey, U. K.; Sancheti, Bhagyashree; Ojha, S. P.

    2016-05-01

    In this present communication, we have studied the optical properties of Photonics Crystals with super conducting constituent using the TMM method for a stratified medium. We also studied the three dimensional reflectance property of superconductor-dielectric photonic crystal at different temperature and thickness. From above study we show that the superconductor-dielectric photonic crystal may be used as broad band reflector and omnidirectional reflector at low temperature below to the critical temperature. Such property may be applied to make of the reflector which can be used in low temperature region.

  5. Three-Dimensional Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, B.; /SLAC

    2006-09-07

    We discuss simulated photonic crystal structure designs for laser-driven particle acceleration, focusing on three-dimensional planar structures based on the so-called ''woodpile'' lattice. We describe guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice and discuss the properties of this mode, including particle beam dynamics and potential coupling methods for the structure. We also discuss possible materials and power sources for this structure and their effects on performance parameters, as well as possible manufacturing techniques and the required tolerances. In addition we describe the computational technique and possible improvements in numerical modeling that would aid development of photonic crystal structures.

  6. Recent progress and novel applications of photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Arismar Cerqueira, S., Jr.

    2010-02-01

    Photonic crystal fibers present a wavelength-scale periodic microstructure running along their length. Their core and two-dimensional photonic crystal might be based on varied geometries and materials, enabling light guidance due to different propagation mechanisms in an extremely large wavelength range, extending to the terahertz regions. As a result, these fibers have revolutionized the optical fiber technology by means of creating new degrees of freedom in the fiber design, fabrication and applicability. This report aims to provide a detailed statement on the recent progress and novel potential applications of photonic crystal fibers.

  7. Quantitative modeling of fluorescent emission in photonic crystals

    NASA Astrophysics Data System (ADS)

    Gutmann, Johannes; Zappe, Hans; Goldschmidt, Jan Christoph

    2013-11-01

    Photonic crystals affect the photon emission of embedded emitters due to an altered local density of photon states (LDOS). We review the calculation of the LDOS from eigenmodes in photonic crystals and propose a rate equation model for fluorescent emitters to determine the changes in emission induced by the LDOS. We show how to calculate the modifications of three experimentally accessible characteristics: emission spectrum (spectral redistribution), emitter quantum yield, and fluorescence lifetime. As an example, we present numerical results for the emission of the dye Rhodamine B inside an opal photonic crystal. For such photonic crystals with small permittivity contrast, the LDOS is only weakly modified, resulting in rather small changes. We point out that in experiments, however, usually only part of the emitted light is detected, which can have a very different spectral distribution (e.g., due to a photonic band gap in the direction of detection). We demonstrate the calculation of this detected spectrum for a typical measurement setup. With this reasoning, we explain the previously not fully understood experimental observation that strong spectral modifications occurred, while at the same time only small changes in lifetime were found. With our approach, the mentioned effects can be quantitatively calculated for fluorescent emitters in any photonic crystal.

  8. Photonic crystal structures for efficent localization or extraction of light

    NASA Astrophysics Data System (ADS)

    Vuckovic, Jelena

    Three-dimensional (3D) photonic crystals offer the opportunity of light manipulation in all directions in space, but they are very difficult to fabricate. On the other hand, planar photonic crystals are much simpler to make, but they exhibit only a "quasi-3D" confinement, resulting from the combined action of 2D photonic crystal and internal reflection. The imperfect confinement in the third dimension produces some unwanted out-of-plane loss, which is usually a limiting factor in performance of these structures. This thesis proposes how to fully take advantage of the relatively simple fabrication of planar photonic crystals, by addressing a problem of loss-reduction. One of the greatest challenges in photonics is a construction of optical microcavities with small mode volumes and large quality factors, for efficient localization of light. Beside standard applications of these structures (such as lasers or filters), they can potentially be used for cavity QED experiments, or as building blocks for quantum networks. This work also presents the design and fabrication of optical microcavities based on planar photonic crystals, with mode volumes of the order of one half of cubic wavelength of light (measured in material) and with Q factors predicted to be even larger than 10 4. In addition to photonic crystals fabricated in semiconductors, we also address interesting properties of metallic photonic crystals and present our theoretical and experimental work on using them to improve the output of light emissive devices. Feature sizes of structures presented here are below those achievable by photolithography. Therefore, a high resolution lithography is necessary for their fabrication. The presently used e-beam writing techniques suffer from limitations in speed and wafer throughput, and they represent a huge obstacle to commercialization of photonic crystals. Our preliminary work on electron beam projection lithography, the technique that could provide us with the speed

  9. Photochemistry in photonic crystal fiber nanoreactors.

    PubMed

    Chen, Jocelyn S Y; Euser, Tijmen G; Farrer, Nicola J; Sadler, Peter J; Scharrer, Michael; Russell, Philip St J

    2010-05-17

    We report the use of a liquid-filled hollow-core photonic crystal fiber (PCF) as a highly controlled photochemical reactor. Hollow-core PCFs have several major advantages over conventional sample cells: the sample volume per optical path length is very small (2.8 nL cm(-1) in the fiber used), long optical path lengths are possible as a result of very low intrinsic waveguide loss, and furthermore the light travels in a diffractionless single mode with a constant transverse intensity profile. As a proof of principle, the (very low) quantum yield of the photochemical conversion of vitamin B(12), cyanocobalamin (CNCbl) to hydroxocobalamin ([H(2)OCbl](+)) in aqueous solution was measured for several pH values from 2.5 to 7.5. The dynamics of the actively induced reaction were monitored in real-time by broadband absorption spectroscopy. The PCF nanoreactor required ten thousand times less sample volume compared to conventional techniques. Furthermore, the enhanced sensitivity and optical pump intensity implied that even systems with very small quantum yields can be measured very quickly--in our experiments one thousand times faster than in a conventional cuvette. PMID:20391563

  10. Optics in Microstructured and Photonic Crystal Fibers

    NASA Astrophysics Data System (ADS)

    Knight, J. C.

    2008-10-01

    The development of optical fibers with two-dimensional patterns of air holes running down their length has reinvigorated research in the field of fiber optics. It has greatly—and fundamentally—broadened the range of specialty optical fibers, by demonstrating that optical fibers can be more "special" than previously thought. Fibers with air cores have made it possible to deliver energetic femtosecond-scale optical pulses, transform limited, as solitons, using single-mode fiber. Other fibers with anomalous dispersion at visible wavelengths have spawned a new generation of single-mode optical supercontinuum sources, spanning visible and near-infrared wavelengths and based on compact pump sources. A third example is in the field of fiber lasers, where the use of photonic crystal fiber concepts has led to a new hybrid laser technology, in which the very high numerical aperture available sing air holes have enabled fibers so short they are more naturally held straight than bent. This paper describes some of the basic physics and technology behind these developments, illustrated with some of the impressive demonstrations of the past 18 months.

  11. Topological Z2 Gapless Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Xie, Biye; Wang, Zidan

    Topological properties of electronic materials with gapless band structure such as Topological Semimetals(TSMs) and Topological Metals(TMs) have drew lots of attention to both theoretical and experimental physicists recently. Although theoretical prediction of TSMs and TMs have been done well, experimental study of them is quite difficult to perform due to the fact that it is very difficult to control and design certain electronic materials. However, since the topological properties stem from the geometric feature, we can study them in Photonic Crystals(PhCs) which are much easy to be controlled and designed. Here we study 2-dimension PhCs consisting of gyrotropic materials with hexagonal structure. In the Brillouin corner, the dispersion relation has gapless points which are similar to Dirac Cones in electronic materials. We firstly derive the effective Hamiltonian of this system and show that if certain perturbation is added to this effective Hamiltonian, this system belongs to AII class according to Altland and Zirbauer topological classification and is described by a Z2 topological charge. Finally we also propose a way to detect this Z2 topological charge using momentum space Aharonov-Bohm interferometer which is firstly proposed by L.Duca and T.Li,etc.

  12. Tunable complete photonic band gap in anisotropic photonic crystal slabs with non-circular air holes using liquid crystals

    NASA Astrophysics Data System (ADS)

    Fathollahi Khalkhali, T.; Bananej, A.

    2016-06-01

    In this study, we analyze the tunability of complete photonic band gap of square and triangular photonic crystal slabs composed of square and hexagonal air holes in anisotropic tellurium background with SiO2 as cladding material. The non-circular holes are infiltrated with liquid crystal. Using the supercell method based on plane wave expansion, we study the variation of complete band gap by changing the optical axis orientation of liquid crystal. Our numerical results show that noticeable tunability of complete photonic band gap can be obtained in both square and triangular structures with non-circular holes.

  13. Two-pattern compound photonic crystals with a large complete photonic band gap

    SciTech Connect

    Jia Lin; Thomas, Edwin L.

    2011-09-15

    We present a set of two-dimensional aperiodic structures with a large complete photonic band gap (PBG), which are named two-pattern photonic crystals. By superposing two substructures without regard to registration, we designed six new aperiodic PBG structures having a complete PBG larger than 15% for {epsilon}{sub 2}/{epsilon}{sub 1} = 11.4. The rod-honeycomb two-pattern photonic crystal provides the largest complete PBG to date. An aperiodic structure becomes the champion structure with the largest PBG. Surprisingly, the TM and TE gaps of a two-pattern photonic crystal are much less interdependent than the PBGs of conventional photonic crystals proposed before, affording interesting capabilities for us to tune the TM and TE PBGs separately. By altering the respective substructures, optical devices for different polarizations (TE, TM, or both) can readily be designed.

  14. Photonic Crystal and Photonic Band-Gap Structures for Light Extraction and Emission Control

    NASA Astrophysics Data System (ADS)

    de La Rue, Richard M.

    Research into photonic crystal (PhC) and photonic band-gap (PBG) structures has been motivated, from the start, by their possible use in controlling, modifying and enhancing the light emission process from high refractive index solid materials. This chapter considers the possible role of such structures when incorporated into semiconductor diode based light-emitting devices. Both light-emitting diodes (LEDs) and lasers will be considered. In order to provide a proper framework for discussion and analysis, space is devoted to the historical development of III-V semiconductor based LEDs — and to competing alternative approaches that have been demonstrated for enhanced light extraction. The possible advantages of photonic quasi-crystal (PQC) structures over regularly periodic photon crystal structures for advanced LED designs are also considered. Photonic crystal structures potentially provide major enhancements in the performance of laser diodes (LDs) — and progress towards this performance enhancement will be reviewed.

  15. Pendellösung effect in photonic crystals

    NASA Astrophysics Data System (ADS)

    Savo, S.; di Gennaro, E.; Miletto, C.; Andreone, A.; Dardano, P.; Moretti, L.; Mocella, V.

    2008-06-01

    At the exit surface of a photonic crystal, the intensity of the diffracted wave can be periodically modulated, showing a maximum in the "positive" (forward diffracted) or in the "negative" (diffracted) direction, depending on the slab thickness. This thickness dependence is a direct result of the so-called Pendellosung phenomenon, consisting of the periodic exchange inside the crystal of the energy between direct and diffracted beams. We report the experimental observation of this effect in the microwave region at about 14 GHz by irradiating 2D photonic crystal slabs of different thickness and detecting the intensity distribution of the electromagnetic field at the exit surface and inside the crystal itself.

  16. Photonic crystals for improving light absorption in organic solar cells

    SciTech Connect

    Duché, D. Le Rouzo, J.; Masclaux, C.; Gourgon, C.

    2015-02-07

    We theoretically and experimentally study the structuration of organic solar cells in the shape of photonic crystal slabs. By taking advantage of the optical properties of photonic crystals slabs, we show the possibility to couple Bloch modes with very low group velocities in the active layer of the cells. These Bloch modes, also called slow Bloch modes (SBMs), allow increasing the lifetime of photons within the active layer. Finally, we present experimental demonstration performed by using nanoimprint to directly pattern the standard poly-3-hexylthiophène:[6,6]-phenyl-C61-butiryc acid methyl ester organic semiconductor blend in thin film form in the shape of a photonic crystal able to couple SBMs. In agreement with the model, optical characterizations will demonstrate significant photonic absorption gains.

  17. Imaging of Protein Crystals with Two-Photon Microscopy

    SciTech Connect

    Padayatti, Pius; Palczewska, Grazyna; Sun, Wenyu; Palczewski, Krzysztof; Salom, David

    2012-05-02

    Second-order nonlinear optical imaging of chiral crystals (SONICC), which portrays second-harmonic generation (SHG) by noncentrosymmetric crystals, is emerging as a powerful imaging technique for protein crystals in media opaque to visible light because of its high signal-to-noise ratio. Here we report the incorporation of both SONICC and two-photon excited fluorescence (TPEF) into one imaging system that allows visualization of crystals as small as 10 {mu}m in their longest dimension. Using this system, we then documented an inverse correlation between the level of symmetry in examined crystals and the intensity of their SHG. Moreover, because of blue-green TPEF exhibited by most tested protein crystals, we also could identify and image SHG-silent protein crystals. Our experimental data suggest that the TPEF in protein crystals is mainly caused by the oxidation of tryptophan residues. Additionally, we found that unspecific fluorescent dyes are able to bind to lysozyme crystals and enhance their detection by TPEF. We finally confirmed that the observed fluorescence was generated by a two-photon rather than a three-photon process. The capability for imaging small protein crystals in turbid or opaque media with nondamaging infrared light in a single system makes the combination of SHG and intrinsic visible TPEF a powerful tool for nondestructive protein crystal identification and characterization during crystallization trials.

  18. Imaging of protein crystals with two–photon microscopy†

    PubMed Central

    Padayatti, Pius; Palczewska, Grazyna; Sun, Wenyu; Palczewski, Krzysztof; Salom, David

    2012-01-01

    Second–order non–linear optical imaging of chiral crystals (SONICC), that portrays second harmonic generation (SHG) by non–centrosymmetric crystals, is emerging as a powerful imaging technique for protein crystals in media opaque to visible light because of its high signal–to–noise ratio. Here we report the incorporation of both SONICC and two–photon excited fluorescence (TPEF) into one imaging system that allows visualization of crystals as small as ~10 μm in their longest dimension. Using this system, we then documented an inverse correlation between the level of symmetry in examined crystals and the intensity of their SHG. Moreover, because of blue-green TPEF exhibited by most tested protein crystals, we also could identify and image SHG–silent protein crystals. Our experimental data suggests that the TPEF in protein crystals is mainly caused by the oxidation of tryptophan residues. Additionally, we found that unspecific fluorescent dyes are able to bind to lysozyme crystals and enhance their detection by TPFE. We finally confirmed that the observed fluorescence was generated by a two-photon rather than a three-photon process. The capability for imaging small protein crystals in turbid or opaque media with non–damaging infrared light in a single system, makes the combination of SHG and intrinsic visible TPEF a powerful tool for non–destructive protein crystal identification and characterization during crystallization trials. PMID:22324807

  19. The research on a photonic-crystal fiber sensor

    NASA Astrophysics Data System (ADS)

    Peng, Yong; Cheng, Yi

    2009-07-01

    To study the photonic-crystal fiber applied in the chemical sensor, the photonic-crystal fiber was used as transmission medium. With Sol-Gel method, we selective coated thin film containing fluorescent probe in the photonic-crystal fiber core, then attained an excellent photonic-crystal fiber acetylcholinesterase sensor. The sensor could be applied in biological / chemical research, clinical medicine, environmental protection, food inspection, biochemical preventive war field and so on. In organophosphorus pesticide residue testing, the experimental results indicated that the linear measurement range could arrive to 1×10-9~ 1×10-3 mol/L, moreover the detection limit is 1×10-10 mol/L.

  20. Enhanced spontaneous Raman scattering using a photonic crystal fiber

    SciTech Connect

    Buric, M.P.; Falk, J.; Chen, K.; Woodruff, S.D.

    2008-07-22

    The output power from spontaneous gas-phase Raman scattering is enhanced using a hollow-core photonic crystal fiber for the gas cell and Stokes light collector, yielding >100 times enhancement over a free-space configuration.

  1. Enhanced Spontaneous Raman Scattering using a Photonic Crystal Fiber

    SciTech Connect

    M.P. Buric; J. Fal; K. Chen; S. Woodruff1

    2007-10-01

    The output power from spontaneous gas-phase Raman scattering is enhanced using a hollow-core photonic crystal fiber for the gas cell and Stokes light collector, yielding >100 times enhancement over a free-space configuration.

  2. Photonic-crystal time-domain simulations using Wannier functions.

    PubMed

    Blum, Christian; Wolff, Christian; Busch, Kurt

    2011-01-15

    We present a Wannier-function-based time-domain method for photonic-crystal integrated optical circuits. In contrast to other approaches, this method allows one to trade CPU time against memory consumption and therefore is particularly well suited for the treatment of large-scale systems. As an illustration, we apply the method to the design of a photonic-crystal-based sensor, which utilizes a dual Mach-Zehnder-Fano interferometer. PMID:21263535

  3. Use of a photonic crystal for optical amplifier gain control

    DOEpatents

    Lin, Shawn-Yu; Fleming, James G.; El-Kady, Ihab

    2006-07-18

    An optical amplifier having a uniform gain profile uses a photonic crystal to tune the density-of-states of a gain medium so as to modify the light emission rate between atomic states. The density-of-states of the gain medium is tuned by selecting the size, shape, dielectric constant, and spacing of a plurality of microcavity defects in the photonic crystal. The optical amplifier is particularly useful for the regeneration of DWDM signals in long optical fibers.

  4. Measurements of HB photonic crystal fibers with low temperature sensitivity

    NASA Astrophysics Data System (ADS)

    Makara, Mariusz; Wojcik, Jan; Mergo, Pawel; Klimek, Jacek; Skorupski, Krzysztof; Kopeć, Jarosław

    2008-06-01

    We report on experimental studies of phase and group modal birefringence vs. temperature in two highly birefringent (HB) photonic crystal fibers, in which birefringence is caused by filling factor asymmetry. The sensitivity measurements were carried out at two wavelengths 633 and 834 nm. Our results show that temperature sensitivity in the HB photonic crystal fibers is two orders smaller then in traditional HB fibers. Simultaneously, our results exhibit weak dependence of group modal birefringence on temperature.

  5. Two-photon absorption in Hg 2Cl 2 crystals

    NASA Astrophysics Data System (ADS)

    Pelant, I.; Ambrož, M.; Hála, J.; Kohlová, V.; Barta, Č.

    1985-01-01

    Violet luminescence (396 nm) of Hg 2Cl 2 single crystals was observed under excitation of green light (∼ 500 nm) of a pulsed dye laser at liquid helium temperature. The effect is interpreted as due to the two-photon absorption process. The two-photon excitation spectrum of the luminescence was measured in the wavelength range 475-530 nm. Possible mechanisms of the two-photon transition are outlined.

  6. Hypersonic crystal band gaps in Ni/Cu superlattice nanowire arrays

    NASA Astrophysics Data System (ADS)

    Hu, Jia-Guang; Shen, Tie

    2016-03-01

    The hexagonal and tetragonal ordered arrays were prepared by Ni/Cu superlattice nanowires on the porous anodic alumina membrane template, and their phonon band structures were calculated by using the plane wave expansion method. Numerical results show that the hypersonic band gaps can be acquired by adjusting the structural parameters. Along the different wave-vector directions, the width and position of band gap would vary. If the nanowires'filling fraction is increased continuously, the width of the first band gap firstly increases and then decreases within a certain range. The height of superlattice nanowire elementary unit can only affect the width of band gap within a quite narrow range. When the height of elementary unit remains unchanged, the decrease of the Cu-component ratio can contribute to the formation of a wider band gap. Additionally, the wide band gap is more easily formed in tetragonal structure than in hexagonal structure.

  7. Theoretical study of interfacial damping in perpendicular anisotropy superlattices along multiple crystal orientations

    NASA Astrophysics Data System (ADS)

    Qu, T.; Victora, R. H.

    2016-06-01

    Damping, representing the loss of magnetic energy from the electrons to the lattice through the spin-orbit interaction, is calculated for Co/Pt and Co/Pd superlattices grown along the (001), (111), and (011) orientations. The damping consists of two contributions: interfacial and, usually, bulk. The interfacial damping shows dependence on the superlattice orientation. The origin of the interfacial damping is due to both the distorted electronic states at the interface and the spin-orbit interaction in the weakly polarized nonmagnetic Pt/Pd layers deposited on Co layers. The density of states around the Fermi level provides the spin-flip channels and closely correlates with the damping value. The damping shows asymmetry in the two transverse directions of the spin for spins at most angles. The damping for out-of-plane magnetization can be as much as 1.7 times larger than that of in-plane magnetization.

  8. Polarisation singularities in photonic crystals for an on-chip spin-photon interface

    NASA Astrophysics Data System (ADS)

    Beggs, Daryl M.; Young, Andrew B.; Thijssen, Arthur C. T.; Oulton, Ruth

    2015-03-01

    Integrated quantum photonic chips are a leading contender for future quantum technologies, which aim to use the entanglement and superposition properties of quantum physics to speed up the manipulation of data. Quantum information may be stored and transmitted in photons, which make excellent flying qubits. Photons suffer little from decoherence, and single qubit gates performed by changing photon phase, are straightforward. Less straightforward is the ability to create two qubit gates, where one photon is used to switch another's state; inherently difficult due to the extremely small interaction cross-section between photons. The required deterministic two-qubit interactions will likely need a hybrid scheme with the ``flying'' photonic qubit interacting with a ``static'' matter qubit. Here we present the design of a photonic crystal waveguide structure that can couple electron-spin to photon path, thus providing an interface between a static and a flying qubit. We will show that the complex polarization properties inherent in the photonic crystal eigenmodes supports polarization singularities - positions in the electric field vector where one of the parameters describing the local polarization ellipse is singular - and that these singularities are ideal for a range of quantum information applications. In particular, we will show that by placing a quantum dot at one of these singularities, the electron-spin becomes correlated with the photon emission direction, creating an in-plane spin-photon interface that can transfer quantum information from static to flying qubits.

  9. Alignment of crystal orientations of the multi-domain photonic crystals in Parides sesostris wing scales.

    PubMed

    Yoshioka, S; Fujita, H; Kinoshita, S; Matsuhana, B

    2014-03-01

    It is known that the wing scales of the emerald-patched cattleheart butterfly, Parides sesostris, contain gyroid-type photonic crystals, which produce a green structural colour. However, the photonic crystal is not a single crystal that spreads over the entire scale, but it is separated into many small domains with different crystal orientations. As a photonic crystal generally has band gaps at different frequencies depending on the direction of light propagation, it seems mysterious that the scale is observed to be uniformly green under an optical microscope despite the multi-domain structure. In this study, we have carefully investigated the structure of the wing scale and discovered that the crystal orientations of different domains are not perfectly random, but there is a preferred crystal orientation that is aligned along the surface normal of the scale. This finding suggests that there is an additional factor during the developmental process of the microstructure that regulates the crystal orientation. PMID:24352678

  10. Alignment of crystal orientations of the multi-domain photonic crystals in Parides sesostris wing scales

    PubMed Central

    Yoshioka, S.; Fujita, H.; Kinoshita, S.; Matsuhana, B.

    2014-01-01

    It is known that the wing scales of the emerald-patched cattleheart butterfly, Parides sesostris, contain gyroid-type photonic crystals, which produce a green structural colour. However, the photonic crystal is not a single crystal that spreads over the entire scale, but it is separated into many small domains with different crystal orientations. As a photonic crystal generally has band gaps at different frequencies depending on the direction of light propagation, it seems mysterious that the scale is observed to be uniformly green under an optical microscope despite the multi-domain structure. In this study, we have carefully investigated the structure of the wing scale and discovered that the crystal orientations of different domains are not perfectly random, but there is a preferred crystal orientation that is aligned along the surface normal of the scale. This finding suggests that there is an additional factor during the developmental process of the microstructure that regulates the crystal orientation. PMID:24352678

  11. Photonic crystals, light manipulation, and imaging in complex nematic structures

    NASA Astrophysics Data System (ADS)

    Ravnik, Miha; Å timulak, Mitja; Mur, Urban; Čančula, Miha; Čopar, Simon; Žumer, Slobodan

    2016-03-01

    Three selected approaches for manipulation of light by complex nematic colloidal and non-colloidal structures are presented using different own custom developed theoretical and modelling approaches. Photonic crystals bands of distorted cholesteric liquid crystal helix and of nematic colloidal opals are presented, also revealing distinct photonic modes and density of states. Light propagation along half-integer nematic disclinations is shown with changes in the light polarization of various winding numbers. As third, simulated light transmission polarization micrographs of nematic torons are shown, offering a new insight into the complex structure characterization. Finally, this work is a contribution towards using complex soft matter in optics and photonics for advanced light manipulation.

  12. Chalcogenide glass-based three-dimensional photonic crystals

    NASA Astrophysics Data System (ADS)

    Feigel, A.; Kotler, Z.; Sfez, B.; Arsh, A.; Klebanov, M.; Lyubin, V.

    2000-11-01

    AsSeTe chalcogenide glasses are materials that are photosensitive and have a large refractive index. These properties make these glasses particularly suitable for the fabrication of photonic crystals. We present a way to build three-dimensional photonic structures from chalcogenide glasses using vapor deposition and direct holographic writing. We show that this technique is intrinsically self-aligned, providing a simple way to build layer-by-layer photonic crystals and a four-layer structure demonstrating the principle of the technique.

  13. Controllable light diffraction in woodpile photonic crystals filled with liquid crystal

    SciTech Connect

    Ho, Chih-Hua; Zeng, Hao; Wiersma, Diederik S.; Cheng, Yu-Chieh; Maigyte, Lina; Trull, Jose; Cojocaru, Crina; Staliunas, Kestutis

    2015-01-12

    An approach to switching between different patterns of light beams transmitted through the woodpile photonic crystals filled with liquid crystals is proposed. The phase transition between the nematic and isotropic liquid crystal states leads to an observable variation of the spatial pattern transmitted through the photonic structure. The transmission profiles in the nematic phase also show polarization sensibility due to refractive index dependence on the field polarization. The experimental results are consistent with a numerical calculation by Finite Difference Time Domain method.

  14. Manipulating light propagation and emission using photonic crystals

    SciTech Connect

    Nair, Rajesh V.; Jagatap, B. N.

    2014-03-31

    We discuss the synthesis and characterization of self-assembled photonic crystals using polymer colloids having sub-micron diameters. The angle resolved optical reflectivity measurements indicate the hybridization between stop gaps in the multiple Bragg diffraction regimes. Each diffraction resonances in the multiple Bragg diffraction regimes are assigned to respective crystal planes. We also discuss laser-induced studies of spontaneous emission in self-assembled photonic crystals having Rhodamine-B dye doped colloids. Our experimental results reveal more than 51% inhibition in emission intensity within the stop gap as compared to a proper reference sample.

  15. Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography.

    SciTech Connect

    Wiltzius, P.; Braun, P. V.; Liao, H.; Brzezinski, A.; Chen, Y. C.; Nelson, E.; Shir, D.; Rogers, J. A.; Bogart, Katherine Huderle Andersen

    2008-08-01

    We describe the fabrication of silicon three dimensional photonic crystals using polymer templates defined by a single step, two-photon exposure through a layer of photopolymer with relief molded on its surface. The resulting crystals exhibit high structural quality over large areas, displaying geometries consistent with calculation. Spectroscopic measurements of transmission and reflection through the silicon and polymer structures reveal excellent optical properties, approaching properties predicted by simulations that assume ideal layouts.

  16. Photon Cascade from a Single Crystal Phase Nanowire Quantum Dot.

    PubMed

    Bouwes Bavinck, Maaike; Jöns, Klaus D; Zieliński, Michal; Patriarche, Gilles; Harmand, Jean-Christophe; Akopian, Nika; Zwiller, Val

    2016-02-10

    We report the first comprehensive experimental and theoretical study of the optical properties of single crystal phase quantum dots in InP nanowires. Crystal phase quantum dots are defined by a transition in the crystallographic lattice between zinc blende and wurtzite segments and therefore offer unprecedented potential to be controlled with atomic layer accuracy without random alloying. We show for the first time that crystal phase quantum dots are a source of pure single-photons and cascaded photon-pairs from type II transitions with excellent optical properties in terms of intensity and line width. We notice that the emission spectra consist often of two peaks close in energy, which we explain with a comprehensive theory showing that the symmetry of the system plays a crucial role for the hole levels forming hybridized orbitals. Our results state that crystal phase quantum dots have promising quantum optical properties for single photon application and quantum optics. PMID:26806321

  17. Tunable optical anisotropy in three-dimensional photonic crystals

    SciTech Connect

    Che Ming; Li Zhiyuan; Liu Rongjuan

    2007-08-15

    Artificial optical birefringence can be realized in three-dimensional photonic crystals with a uniaxial structural symmetry: e.g., woodpile photonic crystals with a tetragonal lattice structure in the long-wavelength limit. The ordinary and extraordinary indices of refraction are determined from calculation of the reflection coefficient for a plane wave incident on the surface of a semi-infinite photonic crystal at different angles. We find that the anisotropy can be widely tuned by simply changing the width and thickness of the dielectric rod. A large relative negative anisotropy over 33% is found. A transition from positive anisotropy to negative anisotropy can be readily achieved. At certain parameters, a structurally anisotropic nanostructure can behave like an optically isotropic medium. Our study opens a window to use artificial nanostructures to create an arbitrary optical anisotropy that is not possible in natural crystals.

  18. Gigahertz Modulation of a Photonic Crystal Cavity

    NASA Astrophysics Data System (ADS)

    Ali, Aaron Karim Taylor

    Photonic crystal (PtC) cavities are an increasingly important way to create all optical methods to control optical data. Not only must the data be controlled, but interfacing it with high frequency electrical signals is particularly interesting especially if this occurs in the 1.55microm telecom band. We present an experiment that uses Rayleigh surface acoustic waves (SAWs) to modulate the frequency of the guided mode of an L3-cavity PtC created on a silicon slab. This work has the potential to interface optical and electrical signals via a mechanical strain wave operating at gigahertz frequencies. Defects are carefully designed into a triangular lattice PtC to realize a waveguide coupled optical cavity. The cavity can be experimentally accessed through grating couplers excited by polarized light at 10° incidence from normal. The optical components are fabricated on a silicon-on-insulator platform, with light confined to the silicon slab region. Through transmission experiments, the L3 cavity was found to have a narrow resonance characterized by a Lorentzian distribution. A quality factor of 165 centered at 6255cm --1 (1.599microm) was measured. Aluminum interdigitated transducers (IDTs) were fabricated through a lithography liftoff process. Their ability to create SAWs requires a piezoelectric medium. As silicon does not have this property, growth of a thin ZnO film was required. The transducers were measured using a network analyzer and were found to produce Rayleigh SAWs at a frequency of 179MHz and a wavelength of 24microm. The acoustic energy traveled 70microm to the target optical device. The L3 cavity has dimensions of around 4microm a side - less than 1/2 a SAW wavelength. Modulation of the L3 PtC resonant frequency was monitored through a repeat of the transmission experiment but with RF excitation of the IDTs at the SAW frequency. A broadening of the transmission spectrum was expected. Unfortunately no change in the fitting parameters could be measured

  19. Controlling single-photon transport with three-level quantum dots in photonic crystals

    NASA Astrophysics Data System (ADS)

    Yan, Cong-Hua; Jia, Wen-Zhi; Wei, Lian-Fu

    2014-03-01

    We investigate how to control single-photon transport along the photonic crystal waveguide with the recent experimentally demonstrated artificial atoms [i.e., Λ-type quantum dots (QDs)] [S. G. Carter et al., Nat. Photon. 7, 329 (2013), 10.1038/nphoton.2013.41] in an all-optical way. Adopting full quantum theory in real space, we analytically calculate the transport coefficients of single photons scattered by a Λ-type QD embedded in single- and two-mode photonic crystal cavities (PCCs), respectively. Our numerical results clearly show that the photonic transmission properties can be exactly manipulated by adjusting the coupling strengths of waveguide-cavity and QD-cavity interactions. Specifically, for the PCC with two degenerate orthogonal polarization modes coupled to a Λ-type QD with two degenerate ground states, we find that the photonic transmission spectra show three Rabi-splitting dips and the present system could serve as single-photon polarization beam splitters. The feasibility of our proposal with the current photonic crystal technique is also discussed.

  20. Fabrication and characterization of three-dimensional infrared photonic crystals

    NASA Astrophysics Data System (ADS)

    Zavieh, Lisa

    It has been predicted theoretically that photonic crystals can be used to control the propagation of light through dielectric media for wavelengths extending beyond the microwave to include the infrared and the visible. Fabrication of 3-D photonic crystals with a bandgap in the near infrared or visible would have application in the design of a new class of photonic devices that include optical mirrors, waveguides, and cavity resonators. Demonstrations of 3-D photonic crystals have been limited primarily to the microwave and infrared wavelength regimes because of the constraints imposed by the nanometer scale dimensions required for operation in the visible. This thesis presents a novel method of fabricating a simple cubic photonic crystal which potentially can be tailored to operate at any wavelength. Fabrication was broken down into several processing steps, each of which was investigated independently. Design of Experiment (DOE) was used in a parametric study to optimize dry etching conditions by which GaAs/AlxGa1--x As multilayer structures were etched with anisotropic profile and rapid etch rate. Also, the etching properties of diffusion controlled wet lateral etching of buried AlxGa1--xAs layers in hydrofluoric acid solutions (HF) were investigated. Using the results obtained from the etching studies, both dry and wet etching techniques were employed to fabricate the simple-cubic photonic structure. Following fabrication, the photonic crystal was characterized at normal angles and oblique incidence using Fourier transform infrared spectroscopy (FTIR). The experimental results show strong correlation to theoretically predicted values. The simplicity of the process and positive results indicate that it may be possible to scale down the structure to obtain an photonic band lattice with a bandgap of 1.55 mum.

  1. Photonic Crystals: A view of the future

    NASA Astrophysics Data System (ADS)

    Norris, David J.

    2007-03-01

    Despite intense research efforts, no three-dimensional materials with a photonic bandgap for visible wavelengths have yet been fabricated. A new self-assembly strategy lays out the route towards the realization of this dream.

  2. Thermally tunable ferroelectric thin film photonic crystals.

    SciTech Connect

    Lin, P. T.; Wessels, B. W.; Imre, A.; Ocola, L. E.; Northwestern Univ.

    2008-01-01

    Thermally tunable PhCs are fabricated from ferroelectric thin films. Photonic band structure and temperature dependent diffraction are calculated by FDTD. 50% intensity modulation is demonstrated experimentally. This device has potential in active ultra-compact optical circuits.

  3. 3D holographic polymer photonic crystal for superprism application

    NASA Astrophysics Data System (ADS)

    Chen, Jiaqi; Jiang, Wei; Chen, Xiaonan; Wang, Li; Zhang, Sasa; Chen, Ray T.

    2007-02-01

    Photonic crystal based superprism offers a new way to design new optical components for beam steering and DWDM application. 3D photonic crystals are especially attractive as they could offer more control of the light beam based on the needs. A polygonal prism based holographic fabrication method has been demonstrated for a three-dimensional face-centered-cubic (FCC)-type submicron polymer photonic crystal using SU8 as the photo-sensitive material. Therefore antivibration equipment and complicated optical alignment system are not needed and the requirement for the coherence of the laser source is relaxed compared with the traditional holographic setup. By changing the top-cut prism structure, the polarization of the laser beam, the exposure and development conditions we can achieve different kinds of triclinic or orthorhombic photonic crystals on demand. Special fabrication treatments have been introduced to ensure the survivability of the fabricated large area (cm2) nano-structures. Scanning electron microscopy and diffraction results proved the good uniformity of the fabricated structures. With the proper design of the refraction prism we have achieved a partial bandgap for S+C band (1460-1565nm) in the [111] direction. The transmission and reflection spectra obtained by Fourier transform infrared spectroscopy (FTIR) are in good agreement with simulated band structure. The superprism effects around 1550nm wavelength for the fabricated 3D polymer photonic crystal have been theoretically calculated and such effects can be used for beam steering purpose.

  4. Slow light in nonlinear photonic crystal coupled-cavity waveguides

    NASA Astrophysics Data System (ADS)

    Zhu, Na; Wang, Yige; Ren, Qingqing; Zhu, Li; Yuan, Minmin; An, Guimin

    2014-04-01

    Nonlinear photonic crystals can be formed by inserting Kerr-type nonlinear dielectric rods into perfect photonic crystals. Based on nonlinear photonic crystal, nonlinear photonic crystal coupled-cavity waveguide is constructed and its slow light properties are studied by using the Plane Wave expansion Method (PWM). Both single-defect coupled cavity and two-defect coupled cavity are proposed to optimize slow light properties. The result shows that using single-defect coupled cavity in waveguide is beneficial to obtain larger Normalized Delay-Bandwidth Product (NDBP) but it contributes little to decrease the group velocity of light and enlarging Q factor and delay time; While using two-defect cavity in waveguide can efficiently reduce the group velocity of light and enlarge Q factor and delay time. Compared to normal structures, our new designed nonlinear photonic crystal coupled cavity waveguide owns group velocity that is three magnitudes smaller than the vacuum speed of light. Delay time is of magnitude order of 10 ns and Q factor is of magnitude order of 1000, it means less loss and higher ability of storing energy.

  5. Tunable negative-index photonic crystals using colloidal magnetic fluids

    NASA Astrophysics Data System (ADS)

    Geng, Tao; Wang, Xin; Wang, Yan; Dong, Xiang-Mei

    2015-12-01

    The model of using colloidal magnetic fluid to build tunable negative-index photonic crystal is established. The effective permittivity ɛe and permeability μe of the two-dimensional photonic crystal are investigated in detail. For transverse magnetic polarization, both ɛe and μe exhibit a Lorentz-type anomalous dispersion, leading to a region where ɛe and μe are simultaneously negative. Then, considering a practical case, in which the thickness of photonic crystal is finite, the band structures for odd modes are calculated by the plane wave expansion method and the finite-difference time-domain method. The results suggest that reducing the external magnetic field strength or slab thickness will weaken the periodic modulation strength of the photonic crystal. Simulation results prove that the negative-index can be tuned by varying the external magnetic field strength or the slab thickness. The work presented in this paper gives a guideline for realizing the flat photonic crystal lens with tunable properties at optical frequencies, which may have potential applications in tunable near-field imaging systems. Project supported by the National Basic Research Program of China (Grant No. 2015CB352001), the Shanghai Rising-Star Program, China (Grant No. 12QA1402300), the China Scholarship Council (CSC) Program, and the Basic Research Program of Shanghai, China (Grant No. 14ZR1428500).

  6. Dispersive photonic crystals from the plane wave method

    NASA Astrophysics Data System (ADS)

    Guevara-Cabrera, E.; Palomino-Ovando, M. A.; Flores-Desirena, B.; Gaspar-Armenta, J. A.

    2016-03-01

    Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap-midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap-midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.

  7. Phenomenological study of binding in optically trapped photonic crystals

    NASA Astrophysics Data System (ADS)

    Maystre, D.; Vincent, P.

    2007-08-01

    We describe a phenomenological theory of the phenomenon of binding observed both experimentally and numerically when particles are trapped by an interference system in order to make a structure close to a photonic crystal. This theory leads to a very simple conclusion, which links the binding phenomenon to the bottom of the lowest bandgap of the trapped crystal in a given direction. The phenomenological theory allows one to calculate the period of the trapped crystal by using numerical tools on dispersion diagrams of photonic crystals. It emerges that the agreement of our theory with our rigorous numerical results given in a previous paper [J. Opt A8, 1059 (2006)] is better than 2% on the crystal period. Furthermore, it is shown that in two-dimensional problems and s polarization, all the optical forces derive from a scalar potential.

  8. Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices

    SciTech Connect

    Ross, Michael B.; Ku, Jessie C.; Vaccarezza, Victoria M.; Schatz, George C.; Mirkin , Chad A.

    2015-08-28

    The nanoscale manipulation of matter allows properties to be created in a material that would be difficult or even impossible to achieve in the bulk state. Progress towards such functional nanoscale architectures requires the development of methods to precisely locate nanoscale objects in three dimensions and for the formation of rigorous structure–function relationships across multiple size regimes (beginning from the nanoscale). Here, we use DNA as a programmable ligand to show that two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up. The superlattices can transition from exhibiting the properties of the constituent plasmonic nanoparticles to adopting the photonic properties defined by the mesoscale crystal (here a rhombic dodecahedron) by controlling the spacing between the gold nanoparticle building blocks. Furthermore, we develop a generally applicable theoretical framework that illustrates how crystal habit can be a design consideration for controlling far-field extinction and light confinement in plasmonic metamaterial superlattices.

  9. Nonorthogonal FDTD simulations for photonic band structures, states density, and transmission/reflection of photonic crystals

    NASA Astrophysics Data System (ADS)

    Le, Zichun; Yang, Yang; Quan, Bisheng; Wang, Weibiao; Wang, Xiaoxiao; Chi, Yongjiang; Ma, Lingfang

    2005-01-01

    Photonic crystals have been widely studied in the fields of physics, material science and optical information technology. In general, the standard rectangular finite difference time domain (FDTD) method is used to predict the performances of photonic crystals. It is however very time consuming and inefficient. The current authors developed a software called GCFE, which is based on a non-orthogonal FDTD method. The software can be used to predict the photonic band structures, photonic states density and transmission and/or reflection coefficients for one-dimensional to three-dimensional photonic crystals. In the present paper, the derivations of the discrete Maxwell"s equations in time-domain and space-domain and the derivation of the discrete transfer matrix in real-space domain are briefly described firstly. In addition, the design idea and the functions of GCFE version 2.0.00 are introduced. Moreover, the band structures, transmission and reflection coefficients and photonic states density for the photonic crystal with cube lattice are calculated by our GCFE software, and numerical application results are also shown.

  10. Photonic crystals composed of virtual pillars with magnetic walls: Photonic band gaps and double Dirac cones

    NASA Astrophysics Data System (ADS)

    Kim, Seong-Han; Kim, Soeun; Kee, Chul-Sik

    2016-08-01

    Photonic crystals composed of virtual pillars with magnetic walls are proposed. A virtual pillar with a magnetic wall can be created inside a parallel perfect electric conductor plate waveguide by introducing a circular perfect magnetic conductor patch in the upper perfect electric conductor plate of the waveguide. The virtual pillar mimics a perfect magnetic conductor pillar with a radius less than that of the circular patch because electromagnetic waves can slightly penetrate the wall. Furthermore, the photonic band structures of a triangular photonic crystal composed of virtual pillars for the transverse electromagnetic modes of the waveguide are investigated. They are very similar to those of a triangular photonic crystal composed of infinitely long perfect electric conductor cylinders for transverse magnetic modes. The similarity between the two different photonic crystals is well understood by the boundary conditions of perfect electric and magnetic conductor surfaces. A double Dirac cone at the center of the Brillouin zone is observed and thus the virtual pillar triangular photonic crystal can act a zero-refractive-index material at the Dirac point frequency.

  11. Photonic-crystal-based all-optical NOT logic gate.

    PubMed

    Singh, Brahm Raj; Rawal, Swati

    2015-12-01

    In the present paper, we have utilized the concept of photonic crystals for the implementation of an optical NOT gate inverter. The designed structure has a hexagonal arrangement of silicon rods in air substrate. The logic function is based on the phenomenon of the existence of the photonic bandgap and resulting guided modes in defect photonic crystal waveguides. We have plotted the transmission, extinction ratio, and tolerance analysis graphs for the structure, and it has been observed that the maximum output is obtained for a telecom wavelength of 1.554 μm. Dispersion curves are obtained using the plane wave expansion method, and the transmission is simulated using the finite element method. The proposed structure is applicable for photonic integrated circuits due to its simple structure and clear operating principle. PMID:26831380

  12. Preparation, structural, and calorimetric characterization of bicomponent metallic photonic crystals

    NASA Astrophysics Data System (ADS)

    Kozlov, M. E.; Murthy, N. S.; Udod, I.; Khayrullin, I. I.; Baughman, R. H.; Zakhidov, A. A.

    2007-03-01

    We report preparation and characterization of novel bicomponent metal-based photonic crystals having submicron three-dimensional (3D) periodicity. Fabricated photonic crystals include SiO2 sphere lattices infiltrated interstitially with metals, carbon inverse lattices filled with metal or metal alloy spheres, Sb inverse lattices, and Sb inverse lattices filled with Bi spheres. Starting from a face centered SiO2 lattice template, these materials were obtained by sequences of either templating and template extraction or templating, template extraction, and retemplating. Surprising high fidelity was obtained for all templating and template extraction steps. Scanning electron microscopy (SEM), small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) were used to characterize the structure and the effects of the structure on calorimetric properties. To the best of our knowledge, SAXS data on metallic photonic crystals were collected for first time.

  13. Tuning and Freezing Disorder in Photonic Crystals using Percolation Lithography

    NASA Astrophysics Data System (ADS)

    Burgess, Ian B.; Abedzadeh, Navid; Kay, Theresa M.; Shneidman, Anna V.; Cranshaw, Derek J.; Lončar, Marko; Aizenberg, Joanna

    2016-01-01

    Although common in biological systems, synthetic self-assembly routes to complex 3D photonic structures with tailored degrees of disorder remain elusive. Here we show how liquids can be used to finely control disorder in porous 3D photonic crystals, leading to complex and hierarchical geometries. In these optofluidic crystals, dynamically tunable disorder is superimposed onto the periodic optical structure through partial wetting or evaporation. In both cases, macroscopic symmetry breaking is driven by subtle sub-wavelength variations in the pore geometry. These variations direct site-selective infiltration of liquids through capillary interactions. Incorporating cross-linkable resins into our liquids, we developed methods to freeze in place the filling patterns at arbitrary degrees of partial wetting and intermediate stages of drying. These percolation lithography techniques produced permanent photonic structures with adjustable disorder. By coupling strong changes in optical properties to subtle differences in fluid behavior, optofluidic crystals may also prove useful in rapid analysis of liquids.

  14. Photonic crystal fiber long-period gratings for biochemical sensing

    NASA Astrophysics Data System (ADS)

    Rindorf, Lars; Jensen, Jesper B.; Dufva, Martin; Hagsholm Pedersen, Lars; Høiby, Poul Erik; Bang, Ole

    2006-09-01

    We present experimental results showing that long-period gratings in photonic crystal fibers can be used as sensitive biochemical sensors. A layer of biomolecules was immobilized on the sides of the holes of the photonic crystal fiber and by observing the shift in the resonant wavelength of a long-period grating it was possible to measure the thickness of the layer. The long-period gratings were inscribed in a large-mode area silica photonic crystal fiber with a CO2 laser. The thicknesses of a monolayer of poly-L-lysine and double-stranded DNA was measured using the device. We find that the grating has a sensitivity of approximately 1.4nm/1nm in terms of the shift in resonance wavelength in nm per nm thickness of biomolecule layer.

  15. Excitation enhancement and extraction enhancement with photonic crystals

    SciTech Connect

    Shapira, Ofer; Soljacic, Marin; Zhen, Bo; Chua, Song-Liang; Lee, Jeongwon; Joannopoulos, John

    2015-03-03

    Disclosed herein is a system for stimulating emission from at least one an emitter, such as a quantum dot or organic molecule, on the surface of a photonic crystal comprising a patterned dielectric substrate. Embodiments of this system include a laser or other source that illuminates the emitter and the photonic crystal, which is characterized by an energy band structure exhibiting a Fano resonance, from a first angle so as to stimulate the emission from the emitter at a second angle. The coupling between the photonic crystal and the emitter may result in spectral and angular enhancement of the emission through excitation and extraction enhancement. These enhancement mechanisms also reduce the emitter's lasing threshold. For instance, these enhancement mechanisms enable lasing of a 100 nm thick layer of diluted organic molecules solution with reduced threshold intensity. This reduction in lasing threshold enables more efficient organic light emitting devices and more sensitive molecular sensing.

  16. Compact Couplers for Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin; Lin, M.C.; Schwartz, Brian; Byer, Robert; McGuinness, Christopher; Colby, Eric; England, Robert; Noble, Robert; Spencer, James; /SLAC

    2012-07-02

    Photonic crystal waveguides are promising candidates for laser-driven accelerator structures because of their ability to confine a speed-of-light mode in an all-dielectric structure. Because of the difference between the group velocity of the waveguide mode and the particle bunch velocity, fields must be coupled into the accelerating waveguide at frequent intervals. Therefore efficient, compact couplers are critical to overall accelerator efficiency. We present designs and simulations of high-efficiency coupling to the accelerating mode in a three-dimensional photonic crystal waveguide from a waveguide adjoining it at 90{sup o}. We discuss details of the computation and the resulting transmission. We include some background on the accelerator structure and photonic crystal-based optical acceleration in general.

  17. Optical modulator based on coupled photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Serafimovich, Pavel G.; Kazanskiy, Nikolay L.

    2016-07-01

    We propose and numerically investigate an optical signal modulator based on two-photonic crystal nanobeam cavities coupled through a waveguide. The suggested modulator shifts the resonant frequency over a scalable range. We design a compact optical modulator based on photonic crystal nanobeams cavities that exhibits high stability to manufacturing. Photonic crystal waveguide tuning in the low-intensity region of the resonant mode is demonstrated. The advantages of the suggested approach over the single-resonator optical modulator approaches include the possibilities to shift the modulator frequency over a scalable range that depends on switching energy level and to effectively electrically tune the device in the low-intensity region of the resonant mode.

  18. Parametric Simulations of Slanted 1D Photonic Crystal Sensors

    NASA Astrophysics Data System (ADS)

    Breuer-Weil, Aaron; Almasoud, Naif Nasser; Abbasi, Badaruddin; Yetisen, Ali K.; Yun, Seok-Hyun; Butt, Haider

    2016-03-01

    Photonic crystals and band gap materials act as manipulators of light and have a plethora of applications. They are made up of stacks of alternating dielectric constants. This article shows the simulations of an inclined, one dimensional and tuneble photonic crystal, using numerical finite element methods. The photonic crystal was made up of silver nanoparticles embedded in a hydrogel matrix and it has the ability to change and recover its periodicity. A series of factors concerning the geometry of the lattice were tested in order to analyze the efficiency, performance and optimize the properties of the optical sensor. These factors range from the size of the nanoparticles and their density within the stacks, to observing the effect of diffraction angle in readouts.

  19. Parametric Simulations of Slanted 1D Photonic Crystal Sensors.

    PubMed

    Breuer-Weil, Aaron; Almasoud, Naif Nasser; Abbasi, Badaruddin; Yetisen, Ali K; Yun, Seok-Hyun; Butt, Haider

    2016-12-01

    Photonic crystals and band gap materials act as manipulators of light and have a plethora of applications. They are made up of stacks of alternating dielectric constants. This article shows the simulations of an inclined, one dimensional and tuneble photonic crystal, using numerical finite element methods. The photonic crystal was made up of silver nanoparticles embedded in a hydrogel matrix and it has the ability to change and recover its periodicity. A series of factors concerning the geometry of the lattice were tested in order to analyze the efficiency, performance and optimize the properties of the optical sensor. These factors range from the size of the nanoparticles and their density within the stacks, to observing the effect of diffraction angle in readouts. PMID:27000025

  20. Tuning and Freezing Disorder in Photonic Crystals using Percolation Lithography

    PubMed Central

    Burgess, Ian B.; Abedzadeh, Navid; Kay, Theresa M.; Shneidman, Anna V.; Cranshaw, Derek J.; Lončar, Marko; Aizenberg, Joanna

    2016-01-01

    Although common in biological systems, synthetic self-assembly routes to complex 3D photonic structures with tailored degrees of disorder remain elusive. Here we show how liquids can be used to finely control disorder in porous 3D photonic crystals, leading to complex and hierarchical geometries. In these optofluidic crystals, dynamically tunable disorder is superimposed onto the periodic optical structure through partial wetting or evaporation. In both cases, macroscopic symmetry breaking is driven by subtle sub-wavelength variations in the pore geometry. These variations direct site-selective infiltration of liquids through capillary interactions. Incorporating cross-linkable resins into our liquids, we developed methods to freeze in place the filling patterns at arbitrary degrees of partial wetting and intermediate stages of drying. These percolation lithography techniques produced permanent photonic structures with adjustable disorder. By coupling strong changes in optical properties to subtle differences in fluid behavior, optofluidic crystals may also prove useful in rapid analysis of liquids. PMID:26790372

  1. High-Q silicon carbide photonic-crystal cavities

    NASA Astrophysics Data System (ADS)

    Lee, Jonathan Y.; Lu, Xiyuan; Lin, Qiang

    2015-01-01

    We demonstrate one-dimensional photonic-crystal nanobeam cavities in amorphous silicon carbide. The fundamental mode exhibits intrinsic optical quality factor as high as 7.69 × 104 with mode volume ˜ 0.60 ( λ / n ) 3 at wavelength 1.5 μm. A corresponding Purcell factor value of ˜104 is the highest reported to date in silicon carbide optical cavities. The device exhibits great potential for integrated nonlinear photonics and cavity nano-optomechanics.

  2. Enhanced live cell imaging via photonic crystal enhanced fluorescence microscopy.

    PubMed

    Chen, Weili; Long, Kenneth D; Yu, Hojeong; Tan, Yafang; Choi, Ji Sun; Harley, Brendan A; Cunningham, Brian T

    2014-11-21

    We demonstrate photonic crystal enhanced fluorescence (PCEF) microscopy as a surface-specific fluorescence imaging technique to study the adhesion of live cells by visualizing variations in cell-substrate gap distance. This approach utilizes a photonic crystal surface incorporated into a standard microscope slide as the substrate for cell adhesion, and a microscope integrated with a custom illumination source as the detection instrument. When illuminated with a monochromatic light source, angle-specific optical resonances supported by the photonic crystal enable efficient excitation of surface-confined and amplified electromagnetic fields when excited at an on-resonance condition, while no field enhancement occurs when the same photonic crystal is illuminated in an off-resonance state. By mapping the fluorescence enhancement factor for fluorophore-tagged cellular components between on- and off-resonance states and comparing the results to numerical calculations, the vertical distance of labelled cellular components from the photonic crystal substrate can be estimated, providing critical and quantitative information regarding the spatial distribution of the specific components of cells attaching to a surface. As an initial demonstration of the concept, 3T3 fibroblast cells were grown on fibronectin-coated photonic crystals with fluorophore-labelled plasma membrane or nucleus. We demonstrate that PCEF microscopy is capable of providing information about the spatial distribution of cell-surface interactions at the single-cell level that is not available from other existing forms of microscopy, and that the approach is amenable to large fields of view, without the need for coupling prisms, coupling fluids, or special microscope objectives. PMID:25265458

  3. Enhanced live cell imaging via photonic crystal enhanced fluorescence microscopy†

    PubMed Central

    Chen, Weili; Long, Kenneth D.; Yu, Hojeong; Tan, Yafang; Choi, Ji Sun; Harley, Brendan A.; Cunningham, Brian T.

    2014-01-01

    We demonstrate photonic crystal enhanced fluorescence (PCEF) microscopy as a surface-specific fluorescence imaging technique to study the adhesion of live cells by visualizing variations in cell-substrate gap distance. This approach utilizes a photonic crystal surface incorporated into a standard microscope slide as the substrate for cell adhesion, and a microscope integrated with a custom illumination source as the detection instrument. When illuminated with a monochromatic light source, angle-specific optical resonances supported by the photonic crystal enable efficient excitation of surface-confined and amplified electromagnetic fields when excited at an on-resonance condition, while no field enhancement occurs when the same photonic crystal is illuminated in an off-resonance state. By mapping the fluorescence enhancement factor for fluorophore-tagged cellular components between on- and off-resonance states and comparing the results to numerical calculations, the vertical distance of labelled cellular components from the photonic crystal substrate can be estimated, providing critical and quantitative information regarding the spatial distribution of the specific components of cells attaching to a surface. As an initial demonstration of the concept, 3T3 fibroblast cells were grown on fibronectin-coated photonic crystals with fluorophore-labelled plasma membrane or nucleus. We demonstrate that PCEF microscopy is capable of providing information about the spatial distribution of cell-surface interactions at the single-cell level that is not available from other existing forms of microscopy, and that the approach is amenable to large fields of view, without the need for coupling prisms, coupling fluids, or special microscope objectives. PMID:25265458

  4. Photonic crystals from multiply-coated spheres

    NASA Astrophysics Data System (ADS)

    Chan, Che Ting

    2000-03-01

    We show theoretically and experimentally that photonic band gaps can be realized using metal or metal-coated spheres as building blocks. Robust photonic gaps exist in any periodic structure built from such spheres when the filling ratio of the spheres exceeds a threshold, and they are not sensitive to the symmetry or the global long range order, with stacking faults cause almost no degradation. Good agreement between theory and experiment is obtained in the microwave regime. The gaps persist even in a random packing of such spheres. Calculations show that the approach can be scaled up to IR and optical frequencies.

  5. Confinement effects on Brillouin scattering in semiconductor nanowire photonic crystal

    NASA Astrophysics Data System (ADS)

    Mante, Pierre-Adrien; Anttu, Nicklas; Zhang, Wei; Wallentin, Jesper; Chen, I.-Ju; Lehmann, Sebastian; Heurlin, Magnus; Borgström, Magnus T.; Pistol, Mats-Erik; Yartsev, Arkady

    2016-07-01

    Scattering of photons by phonons, or Brillouin scattering, enables manipulation and control of light and has led to revolutionary applications, from slow light to saser and cooling of micromechanical resonators. Recently, enhanced light and sound interaction has been demonstrated in waveguides. However, the design of the waveguide geometry tunes and alters the phonon and photon dispersion simultaneously. Here we investigate, through femtosecond pump-probe spectroscopy and theoretical modeling, the light and sound interaction in a bottom-up fabricated vertical nanowire photonic crystal. In such a system, the phonon dispersion can be tuned by varying the geometry of the constituent nanowires. In contrast, the placement of the nanowires in the photonic crystal can be used for tuning optical array modes, without altering the phonon dispersion. We demonstrate the forward and backward scattering, by acoustic phonons in the nanowires, of (1) such optical array modes and (2) guided modes of the constituent nanowires. Furthermore, our results reveal an enhanced interaction of array modes with phonons that we attribute to the specific scattering mechanism. Our results enable the design of a photonic crystal with separately tailored photon and phonon dispersion for Brillouin scattering. We anticipate these advances to be a starting point for enhanced control of light at the nanoscale.

  6. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    SciTech Connect

    See, Gloria G.; Xu, Lu; Nuzzo, Ralph G.; Sutanto, Erick; Alleyne, Andrew G.; Cunningham, Brian T.

    2015-08-03

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure.

  7. Absorption and emission properties of photonic crystals and metamaterials

    SciTech Connect

    Peng, Lili

    2007-08-03

    We study the emission and absorption properties of photonic crystals and metamaterials using Comsol Multiphysics and Ansoft HFSS as simulation tools. We calculate the emission properties of metallic designs using drude model and the results illustrate that an appropriate termination of the surface of the metallic structure can significantly increase the absorption and therefore the thermal emissivity. We investigate the spontaneous emission rate modifications that occur for emitters inside two-dimensional photonic crystals and find the isotropic and directional emissions with respect to different frequencies as we have expected.

  8. Polarization-independent waveguiding with annular photonic crystals.

    PubMed

    Cicek, Ahmet; Ulug, Bulent

    2009-09-28

    A linear waveguide in an annular photonic crystal composed of a square array of annular dielectric rods in air is demonstrated to guide transverse electric and transverse magnetic modes simultaneously. Overlapping of the guided bands in the full band gap of the photonic crystal is shown to be achieved through an appropriate set of geometric parameters. Results of Finite-Difference Time-Domain simulations to demonstrate polarization-independent waveguiding with low loss and wavelength-order confinement are presented. Transmission through a 90 degrees bend is also demonstrated. PMID:19907629

  9. Crystallization of spin superlattices with pressure and field in the layered magnet SrCu2(BO3)2

    DOE PAGESBeta

    Haravifard, S.; Graf, D.; Feiguin, A. E.; Batista, C. D.; Lang, J. C.; Silevitch, D. M.; Srajer, G.; Gaulin, B. D.; Dabkowska, H. A.; Rosenbaum, T. F.

    2016-06-20

    An exact mapping between quantum spins and boson gases provides fresh approaches to the creation of quantum condensates and crystals. Here we report on magnetization measurements on the dimerized quantum magnet SrCu2(BO3)2 at cryogenic temperatures and through a quantum-phase transition that demonstrate the emergence of fractionally filled bosonic crystals in mesoscopic patterns, specified by a sequence of magnetization plateaus. We apply tens of Teslas of magnetic field to tune the density of bosons and gigapascals of hydrostatic pressure to regulate the underlying interactions. Simulations help parse the balance between energy and geometry in the emergent spin superlattices. In conclusion, themore » magnetic crystallites are the end result of a progression from a direct product of singlet states in each short dimer at zero field to preferred filling fractions of spin-triplet bosons in each dimer at large magnetic field, enriching the known possibilities for collective states in both quantum spin and atomic systems.« less

  10. Direct fiber-coupled single photon source based on a photonic crystal waveguide

    SciTech Connect

    Ahn, Byeong-Hyeon Lee, Chang-Min; Lim, Hee-Jin; Schlereth, Thomas W.; Kamp, Martin; Höfling, Sven; Lee, Yong-Hee

    2015-08-24

    A single photon source plays a key role in quantum applications such as quantum computers and quantum communications. Epitaxially grown quantum dots are one of the promising platforms to implement a good single photon source. However, it is challenging to realize an efficient single photon source based on semiconductor materials due to their high refractive index. Here we demonstrate a direct fiber coupled single photon source with high collection efficiency by employing a photonic crystal (PhC) waveguide and a tapered micro-fiber. To confirm the single photon nature, the second-order correlation function g{sup (2)}(τ) is measured with a Hanbury Brown-Twiss setup. The measured g{sup (2)}(0) value is 0.15, and we can estimate 24% direct collection efficiency from a quantum dot to the fiber.

  11. Three-dimensional metallic photonic crystals with optical bandgaps.

    PubMed

    Vasilantonakis, Nikos; Terzaki, Konstantina; Sakellari, Ioanna; Purlys, Vytautas; Gray, David; Soukoulis, Costas M; Vamvakaki, Maria; Kafesaki, Maria; Farsari, Maria

    2012-02-21

    The fabrication of fully three-dimensional photonic crystals with a bandgap at optical wavelengths is demonstrated by way of direct femtosecond laser writing of an organic-inorganic hybrid material with metal-binding moieties, and selective silver coating using electroless plating. The crystals have 600-nm intralayer periodicity and sub-100 nm features, and they exhibit well-defined diffraction patterns. PMID:22278944

  12. Improving image quality and stability of two-dimensional photonic crystal slab by changing surface structure of the photonic crystal

    NASA Astrophysics Data System (ADS)

    Zhu, Zhao-Jie; Liu, Peng-Fang; Tong, Yuan-Wei

    2016-03-01

    The propagation of electromagnetic (EM) waves in two-dimensional hexagon-lattice photonic crystals (PCs) is investigated through dispersion characteristics analysis and numerical simulation of field pattern. The full width at half maximum (FWHM) of the image reach 0.37λ which is much smaller than 0.5λ by changing surface structure of the photonic crystal, and the variance of FWHM of image focused by the changed slab seems to be less than the variance of FWHM of image focused by the original slab with the changing of source position.

  13. Dual concentric crystal low energy photon detector

    DOEpatents

    Guilmette, R.A.

    A photon detector for biological samples includes a block of NaI(T1) having a hole containing a thin walled cylinder of CsI(T1). At least three photo multiplier tubes are evenly spaced around the parameter of the block. Biological samples are placed within the hole, and emissions which are sensed by at least two of the photo multipliers from only the NaI(T1) detector are counted.

  14. Photonic crystal with left-handed components

    NASA Astrophysics Data System (ADS)

    Markoš, Peter

    2016-02-01

    We show that the periodic array of left-handed cylinders possesses a rich spectrum of guided modes when the negative permeability of cylinders equals exactly to minus value of permeability of embedding media. These resonances strongly influence propagation of electromagnetic waves through photonic structures made from left-handed materials. A series of Fano resonances excited by incident wave destroys the band frequency spectrum of square array of left-handed cylinders and increases considerably the absorption of transmitted waves.

  15. Silicon photonic crystal thermal emitter at near-infrared wavelengths.

    PubMed

    O'Regan, Bryan J; Wang, Yue; Krauss, Thomas F

    2015-01-01

    Controlling thermal emission with resonant photonic nanostructures has recently attracted much attention. Most of the work has concentrated on the mid-infrared wavelength range and/or was based on metallic nanostructures. Here, we demonstrate the experimental operation of a resonant thermal emitter operating in the near-infrared (≈1.5 μm) wavelength range. The emitter is based on a doped silicon photonic crystal consisting of a two dimensional square array of holes and using silicon-on-insulator technology with a device-layer thickness of 220 nm. The device is resistively heated by passing current through the photonic crystal membrane. At a temperature of ≈1100 K, we observe relatively sharp emission peaks with a Q factor around 18. A support structure system is implemented in order to achieve a large area suspended photonic crystal thermal emitter and electrical injection. The device demonstrates that weak absorption together with photonic resonances can be used as a wavelength-selection mechanism for thermal emitters, both for the enhancement and the suppression of emission. PMID:26293111

  16. Tunable photonic structures based on silicon and liquid crystals

    NASA Astrophysics Data System (ADS)

    Perova, Tatiana S.; Tolmachev, Vladimir A.; Astrova, Ekaterina V.

    2008-01-01

    This paper is focused on the design, fabrication and characterization of the conventional and tunable photonic devices based on grooved silicon, serving as one-dimensional (1D) photonic crystal. The advantages of these photonic structures are as follows: the large refractive index contrast, in-plane moulding of the light flow, the possibility to fabricate a composite photonic structures by filling the grooves with a different compounds and compatibility with current semiconductor processing techniques. The optical properties of grooved Si structures were simulated using a transfer matrix method and gap map method and have been verified experimentally using FTIR microscopy. The air spaces in the basic silicon-air matrices were infiltrated with nematic liquid crystal E7. It is shown that the optical properties of the obtained composite 1D photonic crystals can be tuned by means of electro- and thermo-optical effects. Such a structures suit well for the various elements of the integrated optics and can serve as a building blocks for optical interconnects.

  17. Silicon photonic crystal thermal emitter at near-infrared wavelengths

    PubMed Central

    O’Regan, Bryan J.; Wang, Yue; Krauss, Thomas F.

    2015-01-01

    Controlling thermal emission with resonant photonic nanostructures has recently attracted much attention. Most of the work has concentrated on the mid-infrared wavelength range and/or was based on metallic nanostructures. Here, we demonstrate the experimental operation of a resonant thermal emitter operating in the near-infrared (≈1.5 μm) wavelength range. The emitter is based on a doped silicon photonic crystal consisting of a two dimensional square array of holes and using silicon-on-insulator technology with a device-layer thickness of 220 nm. The device is resistively heated by passing current through the photonic crystal membrane. At a temperature of ≈1100 K, we observe relatively sharp emission peaks with a Q factor around 18. A support structure system is implemented in order to achieve a large area suspended photonic crystal thermal emitter and electrical injection. The device demonstrates that weak absorption together with photonic resonances can be used as a wavelength-selection mechanism for thermal emitters, both for the enhancement and the suppression of emission. PMID:26293111

  18. Analysis of tunable photonic band structure in an extrinsic plasma photonic crystal

    NASA Astrophysics Data System (ADS)

    King, Tzu-Chyang; Yang, Chih-Chiang; Hsieh, Pei-Hung; Chang, Tsung-Wen; Wu, Chien-Jang

    2015-03-01

    In this work, we theoretically investigate the tunable photonic band structure (PBS) for an extrinsic plasma photonic crystal (PPC). The extrinsic PPC is made of a bulk cold plasma layer which is influenced by an externally periodic static magnetic field. The PBS can be tuned by the variation of the magnitude of externally applied magnetic field. In addition, we also show that the PBS can be changed as a function of the electron density as well as the thickness variation.

  19. Ultrafast optics in dispersion-flattened photonic crystal fiber

    SciTech Connect

    Reeves, W. H.; Knight, J. C.; Russell, P. S. J.; Skryabin, D. V.; Omenetto, F. G.; Efimov, A. V.; Taylor, Antoinette J.,

    2002-01-01

    llOfs pulses at 1550nm wavelength were launched in to various ultra flattened dispersion photonic crystal fibers. For output powers of around 100mW spectral components were generated in a range greater than 350-22OOnm.

  20. Hollow core photonic crystal fiber based viscometer with Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Horan, L. E.; Ruth, A. A.; Garcia Gunning, F. C.

    2012-12-01

    The velocity of a liquid flowing through the core of a hollow core photonic crystal fiber (driven by capillary forces) is used for the determination of a liquid's viscosity, using volumes of less than 10 nl. The simple optical technique used is based on the change in propagation characteristics of the fiber as it fills with the liquid of interest via capillary action, monitored by a laser source. Furthermore, the liquid filled hollow core photonic crystal fiber is then used as a vessel to collect Raman scattering from the sample to determine the molecular fingerprint of the liquid under study. This approach has a wide variety of indicative uses in cases where nano-liter samples are necessary. We use 10-12 cm lengths of hollow core photonic crystal fibers to determine the viscosity and Raman spectra of small volumes of two types of monosaccharides diluted in a phosphate buffer solution to demonstrate the principle. The observed Raman signal is strongest when only the core of the hollow core photonic crystal fiber is filled, and gradually decays as the rest of the fiber fills with the sample.

  1. Transverse magnetic field impact on waveguide modes of photonic crystals.

    PubMed

    Sylgacheva, Daria; Khokhlov, Nikolai; Kalish, Andrey; Dagesyan, Sarkis; Prokopov, Anatoly; Shaposhnikov, Alexandr; Berzhansky, Vladimir; Nur-E-Alam, Mohammad; Vasiliev, Mikhail; Alameh, Kamal; Belotelov, Vladimir

    2016-08-15

    This Letter presents a theoretical and experimental study of waveguide modes of one-dimensional magneto-photonic crystals magnetized in the in-plane direction. It is shown that the propagation constants of the TM waveguide modes are sensitive to the transverse magnetization and the spectrum of the transverse magneto-optical Kerr effect has resonant features at mode excitation frequencies. Two types of structures are considered: a non-magnetic photonic crystal with an additional magnetic layer on top and a magneto-photonic crystal with a magnetic layer within each period. We found that the magneto-optical non-reciprocity effect is greater in the first case: it has a magnitude of δ∼10-4, while the second structure type demonstrates δ∼10-5 only, due to the higher asymmetry of the claddings of the magnetic layer. Experimental observations show resonant features in the optical and magneto-optical Kerr effect spectra. The measured dispersion properties are in good agreement with the theoretical predictions. An amplitude of light intensity modulation of up to 2.5% was observed for waveguide mode excitation within the magnetic top layer of the non-magnetic photonic crystal structure. The presented theoretical approach may be utilized for the design of magneto-optical sensors and modulators requiring pre-determined spectral features. PMID:27519096

  2. Vector–vortex solitons in nonlinear photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Salgueiro, José R.

    2016-07-01

    In this article, I study a system of two incoherently coupled components in a nonlinear Kerr-type photonic crystal fiber presenting angular momentum in one or both components. I classify the different families of solutions and study their bifurcations in the power dispersion diagram. Finally, I analyze the stability of the different nonlinear modes by means of numerical simulations.

  3. Ultraflat supercontinuum generation in soft-glass photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Miret, J. J.; Silvestre, E.; Andrés, P.

    2009-05-01

    We recognize some photonic-crystal-fiber structures, made up of soft glass, that generate ultrawide (over an octave), very smooth and highly coherent supercontinuum spectrum when illuminated with femtosecond pulsed light around 1.55 μm. The design of soft-glass microstructured fiber geometry with nearly ultraflattened, positive and low dispersion is crucial to accomplish the above goals.

  4. Multicolor fluorescence enhancement from a photonics crystal surface

    PubMed Central

    Pokhriyal, A.; Lu, M.; Huang, C. S.; Schulz, S.; Cunningham, B. T.

    2010-01-01

    A photonic crystal substrate exhibiting resonant enhancement of multiple fluorophores has been demonstrated. The device, fabricated uniformly from plastic materials over a ∼3×5 in.2 surface area by nanoreplica molding, utilizes two distinct resonant modes to enhance electric field stimulation of a dye excited by a λ=632.8 nm laser (cyanine-5) and a dye excited by a λ=532 nm laser (cyanine-3). Resonant coupling of the laser excitation to the photonic crystal surface is obtained for each wavelength at a distinct incident angle. Compared to detection of a dye-labeled protein on an ordinary glass surface, the photonic crystal surface exhibited a 32× increase in fluorescent signal intensity for cyanine-5 conjugated streptavidin labeling, while a 25× increase was obtained for cyanine-3 conjugated streptavidin labeling. The photonic crystal is capable of amplifying the output of any fluorescent dye with an excitation wavelength in the 532 nm<λ<633 nm range by selection of an appropriate incident angle. The device is designed for biological assays that utilize multiple fluorescent dyes within a single imaged area, such as gene expression microarrays. PMID:20957067

  5. Multicolor fluorescence enhancement from a photonics crystal surface

    NASA Astrophysics Data System (ADS)

    Pokhriyal, A.; Lu, M.; Huang, C. S.; Schulz, S.; Cunningham, B. T.

    2010-09-01

    A photonic crystal substrate exhibiting resonant enhancement of multiple fluorophores has been demonstrated. The device, fabricated uniformly from plastic materials over a ˜3×5 in.2 surface area by nanoreplica molding, utilizes two distinct resonant modes to enhance electric field stimulation of a dye excited by a λ =632.8 nm laser (cyanine-5) and a dye excited by a λ =532 nm laser (cyanine-3). Resonant coupling of the laser excitation to the photonic crystal surface is obtained for each wavelength at a distinct incident angle. Compared to detection of a dye-labeled protein on an ordinary glass surface, the photonic crystal surface exhibited a 32× increase in fluorescent signal intensity for cyanine-5 conjugated streptavidin labeling, while a 25× increase was obtained for cyanine-3 conjugated streptavidin labeling. The photonic crystal is capable of amplifying the output of any fluorescent dye with an excitation wavelength in the 532 nm<λ<633 nm range by selection of an appropriate incident angle. The device is designed for biological assays that utilize multiple fluorescent dyes within a single imaged area, such as gene expression microarrays.

  6. Hollow core photonic crystal fiber based viscometer with Raman spectroscopy.

    PubMed

    Horan, L E; Ruth, A A; Gunning, F C Garcia

    2012-12-14

    The velocity of a liquid flowing through the core of a hollow core photonic crystal fiber (driven by capillary forces) is used for the determination of a liquid's viscosity, using volumes of less than 10 nl. The simple optical technique used is based on the change in propagation characteristics of the fiber as it fills with the liquid of interest via capillary action, monitored by a laser source. Furthermore, the liquid filled hollow core photonic crystal fiber is then used as a vessel to collect Raman scattering from the sample to determine the molecular fingerprint of the liquid under study. This approach has a wide variety of indicative uses in cases where nano-liter samples are necessary. We use 10-12 cm lengths of hollow core photonic crystal fibers to determine the viscosity and Raman spectra of small volumes of two types of monosaccharides diluted in a phosphate buffer solution to demonstrate the principle. The observed Raman signal is strongest when only the core of the hollow core photonic crystal fiber is filled, and gradually decays as the rest of the fiber fills with the sample. PMID:23249014

  7. Design and modeling of a photonic crystal fiber gas sensor.

    PubMed

    Hoo, Yeuk L; Jin, Wei; Shi, Chunzheng; Ho, Hoi L; Wang, Dong N; Ruan, Shuang C

    2003-06-20

    We report the modeling results of an all-fiber gas detector that uses photonic crystal fiber (PCF). The relative sensitivity of the PCF as a function of the fiber parameters is calculated. Gas-diffusion dynamics that affect the sensor response time is investigated theoretically and experimentally. A practical PCF sensor aiming for high sensitivity gas detection is proposed. PMID:12833952

  8. [INVITED] New perspectives in photonic crystal fibre sensors

    NASA Astrophysics Data System (ADS)

    Villatoro, Joel; Zubia, Joseba

    2016-04-01

    In this paper we analyse the recent advances on sensors based on photonic crystal fibres(PCFs) and discuss their advantages and disadvantages. Some innovative approaches to overcome the main limitations of PCF sensors are also analysed. In addition, we discuss some opportunities and challenges in PCF sensing for the coming years.

  9. Three dimensional reflectance properties of plasma dielectric photonic crystal

    NASA Astrophysics Data System (ADS)

    Pandey, G. N.; Pandey, J. P.; Mishra, A. K.; Ojha, S. P.

    2016-05-01

    In this present communication, we study the three dimentionalomni-directional reflection bands in Plasma Photonic Crystals (PPC), having alternate regions of plasma-dielectric. We have calculated the reflectivity of the proposed structure at the various angles of incidence for both polarizations (TE - & TM) in three dimensions.

  10. Reflection properties of one dimensional plasma photonic crystal

    NASA Astrophysics Data System (ADS)

    Kumar, Arun; Khundrakpam, Pinky; Sharma, Priyanka

    2013-06-01

    In this paper band structure and reflection properties of on one-dimensional plasma photonic crystal (PPC) containing alternate layers of dielectric and micro-plasma have been presented. For the purpose of computation, transfer matrix method has been used. It is found that width of the forbidden band gap(s) can be increased by increasing the thickness of plasma layers.