Science.gov

Sample records for photonic wire geometry

  1. Photonic crystal and photonic wire device structures

    NASA Astrophysics Data System (ADS)

    De La Rue, Richard; Sorel, Marc; Johnson, Nigel; Rahman, Faiz; Ironside, Charles; Cronin, Lee; Watson, Ian; Martin, Robert; Jin, Chongjun; Pottier, Pierre; Chong, Harold; Gnan, Marco; Jugessur, Aju; Camargo, Edilson; Erwin, Grant; Md Zain, Ahmad; Ntakis, Iraklis; Hobbs, Lois; Zhang, Hua; Armenise, Mario; Ciminelli, Caterina; Coquillat, Dominique

    2005-09-01

    Photonic devices that exploit photonic crystal (PhC) principles in a planar environment continue to provide a fertile field of research. 2D PhC based channel waveguides can provide both strong confinement and controlled dispersion behaviour. In conjunction with, for instance, various electro-optic, thermo-optic and other effects, a range of device functionality is accessible in very compact PhC channel-guide devices that offer the potential for high-density integration. Low enough propagation losses are now being obtained with photonic crystal channel-guide structures that their use in real applications has become plausible. Photonic wires (PhWs) can also provide strong confinement and low propagation losses. Bragg-gratings imposed on photonic wires can provide dispersion and frequency selection in device structures that are intrinsically simpler than 2D PhC channel guides--and can compete with them under realistic conditions.

  2. Antenna coupled photonic wire lasers.

    PubMed

    Kao, Tsung-Yu; Cai, Xiaowei; Lee, Alan W M; Reno, John L; Hu, Qing

    2015-06-29

    Slope efficiency (SE) is an important performance metric for lasers. In conventional semiconductor lasers, SE can be optimized by careful designs of the facet (or the modulation for DFB lasers) dimension and surface. However, photonic wire lasers intrinsically suffer low SE due to their deep sub-wavelength emitting facets. Inspired by microwave engineering techniques, we show a novel method to extract power from wire lasers using monolithically integrated antennas. These integrated antennas significantly increase the effective radiation area, and consequently enhance the power extraction efficiency. When applied to wire lasers at THz frequency, we achieved the highest single-side slope efficiency (~450 mW/A) in pulsed mode for DFB lasers at 4 THz and a ~4x increase in output power at 3 THz compared with a similar structure without antennas. This work demonstrates the versatility of incorporating microwave engineering techniques into laser designs, enabling significant performance enhancements. PMID:26191717

  3. Wire ablation dynamics model and its application to imploding wire arrays of different geometries.

    PubMed

    Esaulov, A A; Kantsyrev, V L; Safronova, A S; Velikovich, A L; Shrestha, I K; Williamson, K M; Osborne, G C

    2012-10-01

    The paper presents an extended description of the amplified wire ablation dynamics model (WADM), which accounts in a single simulation for the processes of wire ablation and implosion of a wire array load of arbitrary geometry and wire material composition. To investigate the role of wire ablation effects, the implosions of cylindrical and planar wire array loads at the university based generators Cobra (Cornell University) and Zebra (University of Nevada, Reno) have been analyzed. The analysis of the experimental data shows that the wire mass ablation rate can be described as a function of the current through the wire and some coefficient defined by the wire material properties. The aluminum wires were found to ablate with the highest rate, while the copper ablation is the slowest one. The lower wire ablation rate results in a higher inward velocity of the ablated plasma, a higher rate of the energy coupling with the ablated plasma, and a more significant delay of implosion for a heavy load due to the ablation effects, which manifest the most in a cylindrical array configuration and almost vanish in a single-planar array configuration. The WADM is an efficient tool suited for wire array load design and optimization in wide parameter ranges, including the loads with specific properties needed for the inertial confinement fusion research and laboratory astrophysics experiments. The data output from the WADM simulation can be used to simplify the radiation magnetohydrodynamics modeling of the wire array plasma. PMID:23214697

  4. Wire ablation dynamics model and its application to imploding wire arrays of different geometries

    NASA Astrophysics Data System (ADS)

    Esaulov, A. A.; Kantsyrev, V. L.; Safronova, A. S.; Velikovich, A. L.; Shrestha, I. K.; Williamson, K. M.; Osborne, G. C.

    2012-10-01

    The paper presents an extended description of the amplified wire ablation dynamics model (WADM), which accounts in a single simulation for the processes of wire ablation and implosion of a wire array load of arbitrary geometry and wire material composition. To investigate the role of wire ablation effects, the implosions of cylindrical and planar wire array loads at the university based generators Cobra (Cornell University) and Zebra (University of Nevada, Reno) have been analyzed. The analysis of the experimental data shows that the wire mass ablation rate can be described as a function of the current through the wire and some coefficient defined by the wire material properties. The aluminum wires were found to ablate with the highest rate, while the copper ablation is the slowest one. The lower wire ablation rate results in a higher inward velocity of the ablated plasma, a higher rate of the energy coupling with the ablated plasma, and a more significant delay of implosion for a heavy load due to the ablation effects, which manifest the most in a cylindrical array configuration and almost vanish in a single-planar array configuration. The WADM is an efficient tool suited for wire array load design and optimization in wide parameter ranges, including the loads with specific properties needed for the inertial confinement fusion research and laboratory astrophysics experiments. The data output from the WADM simulation can be used to simplify the radiation magnetohydrodynamics modeling of the wire array plasma.

  5. Fast resonant target vibrating wire scanner for photon beam

    NASA Astrophysics Data System (ADS)

    Arutunian, S. G.; Chung, M.; Harutyunyan, G. S.; Margaryan, A. V.; Lazareva, E. G.; Lazarev, L. M.; Shahinyan, L. A.

    2016-02-01

    We propose a new type of wire scanner for beam profile measurements, based on the use of a vibrating wire as a scattering target. Synchronous measurements with the wire oscillation allow to detect only the signal coming from the scattering of the beam on the wire. This resonant method enables fast beam profiling in the presence of a high level of background. The developed wire scanner, called resonant target vibrating wire scanner, is applied to photon beam profiling, in which the photons reflected on the wire are measured by a fast photodiode. In addition, the proposed measurement principle is expected to monitor other types of beams as well, such as neutrons, protons, electrons, and ions.

  6. Fast resonant target vibrating wire scanner for photon beam.

    PubMed

    Arutunian, S G; Chung, M; Harutyunyan, G S; Margaryan, A V; Lazareva, E G; Lazarev, L M; Shahinyan, L A

    2016-02-01

    We propose a new type of wire scanner for beam profile measurements, based on the use of a vibrating wire as a scattering target. Synchronous measurements with the wire oscillation allow to detect only the signal coming from the scattering of the beam on the wire. This resonant method enables fast beam profiling in the presence of a high level of background. The developed wire scanner, called resonant target vibrating wire scanner, is applied to photon beam profiling, in which the photons reflected on the wire are measured by a fast photodiode. In addition, the proposed measurement principle is expected to monitor other types of beams as well, such as neutrons, protons, electrons, and ions. PMID:26931835

  7. Application of the Wire Ablation Dynamics Model to the Design and Optimization of Wire Array Loads of Complex Geometry

    SciTech Connect

    Esaulov, A. A.; Kantsyrev, V. L.; Safronova, A. S.; Williamson, K. M.; Shrestha, I.; Osborne, G. C.

    2009-01-21

    The implosion dynamics of wire array loads of complex geometry, such as nested cylindrical and planar wire arrays, is significantly affected by the uneven current distribution between the array wires, which was considered previously in the Wire Dynamics Model (WDM) simulations. The novel Wire Ablation Dynamics Model (WADM) extends the formalism of the original WDM by including the dynamics of wire ablation. The WADM simulations demonstrate that the implosions of the arrays with higher masses are more ablation dominated. The WADM simulations of the implosions dynamics of nested wire arrays have been performed for the short pulse (100 ns) and long pulse (220 ns) regimes at COBRA generator. Another factor that affects the result of the trade between the ablation and implosion time scales is the form of the current pulse, which can be very different from the classical sine-square shape. The predictions of the array implosion times by the WADM are in very good agreement with the recent experiments at the COBRA and Zebra facilities.

  8. A compact photonic crystal micro-cavity on a single-mode lithium niobate photonic wire

    NASA Astrophysics Data System (ADS)

    Cai, Lutong; Zhang, Shaomei; Hu, Hui

    2016-03-01

    The properties of the guided modes, including the single-mode conditions and the coupling of different polarized modes in the single-crystal lithium niobate photonic wires, were analyzed in detail. One-dimensional photonic crystal micro-cavities with several different patterns, which could be used as an ultra-compact optical filter, were designed and simulated in order to get high transmission at the resonant wavelength and the best preferment. The designed structure, with the whole size of 6.5 × 0.7 μm2, was fabricated on a single-mode photonic wire. A measured peak transmission of 0.34 at 1400 nm, an extinction ratio of 12.5 dB and a Q factor of 156 were obtained. The measured transmission spectrum was basically consistent with the simulation, although a slight shift of resonant wavelength occurred due to the fabrication errors.

  9. Analysis of current-voltage characteristics in the wires-to-planes geometry during corona discharge

    NASA Astrophysics Data System (ADS)

    Ait Said, Hakim; Nouri, Hamou; Zebboudj, Youcef

    2014-09-01

    The behaviour of DC corona discharge in air that is free of particulate matter with the wires-to-plane geometry was analysed in this work. The formulae I = KV (V - V0) and I = A (V - V0)m commonly used for the current-voltage characteristics were used to determine the various corona parameters for the two polarities of the corona discharge. Using curve fitting, it has been shown that the geometric factors K and A and the exponent m are strongly affected by the number n of the discharging wires. However, the corona inception voltage determined from the measurements is weakly influenced when n is small, and it remained constant for n > 5 discharging wires. As for the breakdown voltage of the discharge, it is practically independent of the number n. Furthermore, it was verified that the two formulae above can be used for both negative and positive corona in multiple wires-to-plane geometries.

  10. Impact of LOCOS techniques on photonic wire waveguides.

    PubMed

    Xiong, Yule; Ibrahim, Marc; Ye, Winnie N

    2012-10-10

    We use the LOCal oxidation of silicon (LOCOS) method as a fabrication technique to define submicrometer photonic waveguides. We attempted fabricating the wire waveguides with two different masking processes, one with a stack of pad oxide and silicon nitride layers, and the other with a single silicon nitride layer. The smallest waveguide we achieved had a cross-section profile of 280 nm×650 nm. The propagation loss of the waveguides was measured by the cut-back method, and the bending loss was measured by employing the serpentine pattern. The minimum propagation loss achieved was 8.78 dB/cm and the bending loss was 0.0089 dB/90° bend for a 5 μm bending radius. PMID:23052089

  11. The geometry effect on energy transfer rate in a coupled-quantum-wires structure

    NASA Astrophysics Data System (ADS)

    Rafee, Vahdat

    2016-03-01

    The geometry effect on energy transfer rate in a coupled cylindrical quantum wires system is investigated. The corrected random phase approximation by the zero-temperature static Hubbard correction is employed to calculate dielectric function of the system. The geometry effect on energy transfer rate is studied for statically and dynamically screened electron-electron interaction. Both the linear and nonlinear regimes correspond respectively to weak and strong external field are considered. The calculations show that increasing wire radius increases energy transfer rate in both the static and dynamic screening approximations for electron-electron interactions. Moreover, the same trend is predicted by the calculations for both the linear and nonlinear regimes.

  12. Weakly coupled molecular photonic wires: synthesis and excited-state energy-transfer dynamics.

    PubMed

    Ambroise, Arounaguiry; Kirmaier, Christine; Wagner, Richard W; Loewe, Robert S; Bocian, David F; Holten, Dewey; Lindsey, Jonathan S

    2002-05-31

    Molecular photonic wires, which absorb light and undergo excited-state energy transfer, are of interest as biomimetic models for photosynthetic light-harvesting systems and as molecular devices with potential applications in materials chemistry. We describe the stepwise synthesis of four molecular photonic wires. Each wire consists of an input unit, transmission element, and output unit. The input unit consists of a boron-dipyrrin dye or a perylene-monoimide dye (linked either at the N-imide or the C9 position); the transmission element consists of one or three zinc porphyrins affording short or long wires, respectively; and the output unit consists of a free base (Fb) porphyrin. The components in the arrays are joined in a linear architecture via diarylethyne linkers (an ethynylphenyl linker is attached to the C9-linked perylene). The wires have been examined by static absorption, static fluorescence, and time-resolved absorption spectroscopy. Each wire (with the exception of the C9-linked perylene wire) exhibits a visible absorption spectrum that is the sum of the spectra of the component parts, indicating the relatively weak electronic coupling between the components. Excitation of each wire at the wavelength where the input unit absorbs preferentially (typically 480-520 nm) results in emission almost exclusively from the Fb porphyrin. The static emission and time-resolved data indicate that the overall rate constants and quantum efficiencies for end-to-end (i.e., input to output) energy transfer are as follows: perylene-(N-imide)-linked short wire, (33 ps)(-1) and >99%; perylene-(C9)-linked short wire, (26 ps)(-1) and >99%; boron-dipyrrin-based long wire, (190 ps)(-1) and 81%; perylene-(N-imide)-linked long wire, (175 ps)(-1) and 86%. Collectively, the studies provide valuable insight into the singlet-singlet excited-state energy-transfer properties in weakly coupled molecular photonic wires. PMID:12027698

  13. Geometry effects on magnetization dynamics in circular cross-section wires

    SciTech Connect

    Sturma, M.; Toussaint, J.-C. E-mail: daria.gusakova@cea.fr; Gusakova, D. E-mail: daria.gusakova@cea.fr

    2015-06-28

    Three-dimensional magnetic memory design based on circular-cross section nanowires with modulated diameter is the emerging field of spintronics. The consequences of the mutual interaction between electron spins and local magnetic moments in such non-trivial geometries are still open to debate. This paper describes the theoretical study of domain wall dynamics within such wires subjected to spin polarized current. We used our home-made finite element software to characterize the variety of domain wall dynamical regimes observed for different constriction to wire diameter ratios d/D. Also, we studied how sizeable geometry irregularities modify the internal micromagnetic configuration and the electron spin spatial distribution in the system, the geometrical reasons underlying the additional contribution to the system's nonadiabaticity, and the specific domain wall width oscillations inherent to fully three-dimensional systems.

  14. Numerical investigation on the implosion dynamics of wire-array Z-pinches in (r, θ) geometry

    NASA Astrophysics Data System (ADS)

    Huang, Jun; Ding, Ning; Ning, Cheng; Sun, Shun-Kai; Zhang, Yang; Xiao, De-Long; Xue, Chuang

    2012-06-01

    The implosion dynamics of wire-array Z-pinches are investigated numerically in 2D (r, θ) geometry by using a resistive MHD code. It is assumed that the wires have expanded to plasmas with diameter d0, which is used as the initial condition for the consequent implosion process. In fact, the explosion process of individual wires is not included. By changing d0, the effects of the wire expansion degree on the implosion dynamics are analyzed. When d0 is larger, the current density is more concentrated at the outer side of the wires and the fraction of current flow around the wire plasmas is nearly in proportion to d0. As a result, the ablation rate of wires is increased and the implosion phase starts earlier. This conclusion agrees with the simulation works of other authors [Chittenden et al., Phys. Plasmas 11(3), 1118 (2004)]. When the array radius and initial wire plasma diameter are fixed, the increase of wire number leads to the azimuthal merge of wires during implosion. When the wires number exceed a critical value, which is related to d0, wire plasmas can merge to a continuous shell with an azimuthal perturbation in density, which depends on the initial wires number.

  15. Numerical investigation on the implosion dynamics of wire-array Z-pinches in (r, {theta}) geometry

    SciTech Connect

    Huang Jun; Ding Ning; Ning Cheng; Sun Shunkai; Zhang Yang; Xiao Delong; Xue Chuang

    2012-06-15

    The implosion dynamics of wire-array Z-pinches are investigated numerically in 2D (r, {theta}) geometry by using a resistive MHD code. It is assumed that the wires have expanded to plasmas with diameter d{sub 0}, which is used as the initial condition for the consequent implosion process. In fact, the explosion process of individual wires is not included. By changing d{sub 0}, the effects of the wire expansion degree on the implosion dynamics are analyzed. When d{sub 0} is larger, the current density is more concentrated at the outer side of the wires and the fraction of current flow around the wire plasmas is nearly in proportion to d{sub 0}. As a result, the ablation rate of wires is increased and the implosion phase starts earlier. This conclusion agrees with the simulation works of other authors [Chittenden et al., Phys. Plasmas 11(3), 1118 (2004)]. When the array radius and initial wire plasma diameter are fixed, the increase of wire number leads to the azimuthal merge of wires during implosion. When the wires number exceed a critical value, which is related to d{sub 0}, wire plasmas can merge to a continuous shell with an azimuthal perturbation in density, which depends on the initial wires number.

  16. Wiring up pre-characterized single-photon emitters by laser lithography

    PubMed Central

    Shi, Q.; Sontheimer, B.; Nikolay, N.; Schell, A. W.; Fischer, J.; Naber, A.; Benson, O.; Wegener, M.

    2016-01-01

    Future quantum optical chips will likely be hybrid in nature and include many single-photon emitters, waveguides, filters, as well as single-photon detectors. Here, we introduce a scalable optical localization-selection-lithography procedure for wiring up a large number of single-photon emitters via polymeric photonic wire bonds in three dimensions. First, we localize and characterize nitrogen vacancies in nanodiamonds inside a solid photoresist exhibiting low background fluorescence. Next, without intermediate steps and using the same optical instrument, we perform aligned three-dimensional laser lithography. As a proof of concept, we design, fabricate, and characterize three-dimensional functional waveguide elements on an optical chip. Each element consists of one single-photon emitter centered in a crossed-arc waveguide configuration, allowing for integrated optical excitation and efficient background suppression at the same time. PMID:27507165

  17. Wiring up pre-characterized single-photon emitters by laser lithography

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Sontheimer, B.; Nikolay, N.; Schell, A. W.; Fischer, J.; Naber, A.; Benson, O.; Wegener, M.

    2016-08-01

    Future quantum optical chips will likely be hybrid in nature and include many single-photon emitters, waveguides, filters, as well as single-photon detectors. Here, we introduce a scalable optical localization-selection-lithography procedure for wiring up a large number of single-photon emitters via polymeric photonic wire bonds in three dimensions. First, we localize and characterize nitrogen vacancies in nanodiamonds inside a solid photoresist exhibiting low background fluorescence. Next, without intermediate steps and using the same optical instrument, we perform aligned three-dimensional laser lithography. As a proof of concept, we design, fabricate, and characterize three-dimensional functional waveguide elements on an optical chip. Each element consists of one single-photon emitter centered in a crossed-arc waveguide configuration, allowing for integrated optical excitation and efficient background suppression at the same time.

  18. Wiring up pre-characterized single-photon emitters by laser lithography.

    PubMed

    Shi, Q; Sontheimer, B; Nikolay, N; Schell, A W; Fischer, J; Naber, A; Benson, O; Wegener, M

    2016-01-01

    Future quantum optical chips will likely be hybrid in nature and include many single-photon emitters, waveguides, filters, as well as single-photon detectors. Here, we introduce a scalable optical localization-selection-lithography procedure for wiring up a large number of single-photon emitters via polymeric photonic wire bonds in three dimensions. First, we localize and characterize nitrogen vacancies in nanodiamonds inside a solid photoresist exhibiting low background fluorescence. Next, without intermediate steps and using the same optical instrument, we perform aligned three-dimensional laser lithography. As a proof of concept, we design, fabricate, and characterize three-dimensional functional waveguide elements on an optical chip. Each element consists of one single-photon emitter centered in a crossed-arc waveguide configuration, allowing for integrated optical excitation and efficient background suppression at the same time. PMID:27507165

  19. Emergent geometries and nonlinear-wave dynamics in photon fluids

    PubMed Central

    Marino, F.; Maitland, C.; Vocke, D.; Ortolan, A.; Faccio, D.

    2016-01-01

    Nonlinear waves in defocusing media are investigated in the framework of the hydrodynamic description of light as a photon fluid. The observations are interpreted in terms of an emergent curved spacetime generated by the waves themselves, which fully determines their dynamics. The spacetime geometry emerges naturally as a result of the nonlinear interaction between the waves and the self-induced background flow. In particular, as observed in real fluids, different points of the wave profile propagate at different velocities leading to the self-steepening of the wave front and to the formation of a shock. This phenomenon can be associated to a curvature singularity of the emergent metric. Our analysis offers an alternative insight into the problem of shock formation and provides a demonstration of an analogue gravity model that goes beyond the kinematic level. PMID:27001128

  20. Emergent geometries and nonlinear-wave dynamics in photon fluids.

    PubMed

    Marino, F; Maitland, C; Vocke, D; Ortolan, A; Faccio, D

    2016-01-01

    Nonlinear waves in defocusing media are investigated in the framework of the hydrodynamic description of light as a photon fluid. The observations are interpreted in terms of an emergent curved spacetime generated by the waves themselves, which fully determines their dynamics. The spacetime geometry emerges naturally as a result of the nonlinear interaction between the waves and the self-induced background flow. In particular, as observed in real fluids, different points of the wave profile propagate at different velocities leading to the self-steepening of the wave front and to the formation of a shock. This phenomenon can be associated to a curvature singularity of the emergent metric. Our analysis offers an alternative insight into the problem of shock formation and provides a demonstration of an analogue gravity model that goes beyond the kinematic level. PMID:27001128

  1. Emergent geometries and nonlinear-wave dynamics in photon fluids

    NASA Astrophysics Data System (ADS)

    Marino, F.; Maitland, C.; Vocke, D.; Ortolan, A.; Faccio, D.

    2016-03-01

    Nonlinear waves in defocusing media are investigated in the framework of the hydrodynamic description of light as a photon fluid. The observations are interpreted in terms of an emergent curved spacetime generated by the waves themselves, which fully determines their dynamics. The spacetime geometry emerges naturally as a result of the nonlinear interaction between the waves and the self-induced background flow. In particular, as observed in real fluids, different points of the wave profile propagate at different velocities leading to the self-steepening of the wave front and to the formation of a shock. This phenomenon can be associated to a curvature singularity of the emergent metric. Our analysis offers an alternative insight into the problem of shock formation and provides a demonstration of an analogue gravity model that goes beyond the kinematic level.

  2. Microwave transmission measurements through wire array photonic crystals

    NASA Astrophysics Data System (ADS)

    Dewar, Graeme; Souther, Nathan; Johnson, Michael

    2008-03-01

    We have measured the microwave transmission between 12.4 and 18.0 GHz through wire arrays formed into two dimensional square lattices. One array made of copper wire 0.16 mm in radius consisted of five rows by 21 columns having a lattice constant of 5.15 mm. This array exhibited a pass band above 15 GHz, in good agreement with the calculated plasma frequency found from an expression for the permittivity^1 derived in the long wavelength limit. A second array was made with wire of radius 18 microns and lattice constant 0.8 mm. This array was filled with dielectric loaded with powdered magnetite. A sample of this metamaterial 5.8 mm thick and with no externally applied magnetic field exhibited a pass band above 16 GHz. Implications for creating metamaterials with a negative index of refraction from wire arrays embedded in a magnetic host will be discussed. ^1G. Dewar, in Complex Mediums III: Beyond Linear Isotropic Dielectrics, Akhlesh Lakhtakai, Graeme Dewar, Martin W. McCall, Editors, Proceedings of SPIE Vol. 4806, 156-166 (2002).

  3. Compact nanocavity with elliptical slot inside photonic wire bandgap materials including sidewalls gratings for biosensing

    NASA Astrophysics Data System (ADS)

    Daraei, Ahmadreza; Daraei, Mohammad Esmaeil

    2016-07-01

    In this paper, we introduce and propose a compact and multipurpose one-dimensional photonic crystal silicon wire nanocavity (NC) sensor in silicon-on-insulator wafers. A slot with elliptical cross section (SECS) in the center of the NC together with tapered sidewalls grating of photonic wire (PhWr) provides strongly confined photonic modes for the sensing purposes. We have examined and optimized several geometrical parameters of the PhWr and SECS NC theoretically and computationally. Using finite element method, we have operated our computational validation for the variety of designs. Our results have shown strongly confined photonic mode with high quality ( Q) factor ~1.6 × 104, small modal volume, V mod ~ 0.005( λ/ n)3, as well as high sensitivity as 530 nm/RIU simultaneously operating nearly at the telecom window. These results are promising for refractive index-based sensing, e.g., nanobiomaterials.

  4. Mirror cavity MMI coupled photonic wire resonator in SOI.

    PubMed

    Bock, Przemek J; Cheben, Pavel; Xu, Dan-Xia; Janz, Siegfried; Hall, Trevor J

    2007-10-17

    We propose a new waveguide resonator device with a mirror cavity and a multimode interference (MMI) coupler. We present simulation results for the silicon wire MMI coupler with suppressed reflections and its use as a coupling element in the resonator cavity, built on the silicon-on-insulator waveguide platform. Tapering structures used in the reflection suppression were optimized, and the wavelength dependency of a conventional MMI was compared to that of the MMI with reflection suppression. Equations relating the power transfer of the two-mirror MMI-coupled resonator and quality factor were derived. The device was also studied using finite difference time domain simulation by both pulse and continuous wave excitation. The resonator does not require bend waveguides, it has the advantages of having no bend loss and a compact layout. The resonator device has a very small footprint of 3 mum x 30 mum, and a quality factor of 516. PMID:19550662

  5. Impact of wire geometry in energy extraction from salinity differences using capacitive technology.

    PubMed

    Sales, Bruno B; Burheim, Odne S; Liu, Fei; Schaetzle, Olivier; Buisman, Cees J N; Hamelers, Hubertus V M

    2012-11-01

    Energy extraction based on capacitive Donnan potential (CDP) is a recently suggested technique for sustainable power generation. CDP combines the use of ion-exchange membranes and porous carbon electrodes to convert the Gibbs free energy of mixing sea and river water into electric work. The electrodes geometry has a relevant impact on internal resistance and overall performance in CDP. In this work, we present the first effort to use wire-shaped electrodes and its suitability for improving CDP. Analytical evaluation and electrical measurements confirm a strong nonlinear decrease in internal resistance for distances between electrodes smaller than 3 mm. We also demonstrated that we get more power per material invested when compared to traditional flat plate designs. These findings show the advantages of this design for further development of CDP into a mature technology. PMID:22962998

  6. Electron Raman scattering in semiconductor quantum well wire of cylindrical ring geometry

    NASA Astrophysics Data System (ADS)

    Re., Betancourt-Riera; Ri., Betancourt-Riera; M. Nieto Jalil, J.; Riera, R.

    2015-11-01

    We study the electron states and the differential cross section for an electron Raman scattering process in a semiconductor quantum well wire of cylindrical ring geometry. The electron Raman scattering developed here can be used to provide direct information about the electron band structures of these confinement systems. We assume that the system grows in a GaAs/Al0.35Ga0.65As matrix. The system is modeled by considering T = 0 K and also a single parabolic conduction band, which is split into a sub-band system due to the confinement. The emission spectra are discussed for different scattering configurations, and the selection rules for the processes are also studied. Singularities in the spectra are found and interpreted.

  7. InP photonic wire waveguide using InAlAs oxide cladding layer.

    PubMed

    Takenaka, Mitsuru; Nakano, Yoshiaki

    2007-06-25

    We proposed a novel InP based photonic wire waveguide with an InAlAs oxide cladding. The InGaAsP/InAlAs-oxide structure in the vertical direction provides an ultrahigh index contrast waveguide, and it allows a bend radius of a few mum with no vertical leakage loss. The InP photonic wire waveguide with a 500x300-nm rectangular channel core (refractive index n ~ 3.36) and an InAlAs oxide cladding (n ~ 2.4) was numerically analyzed using the three-dimensional time-domain beam propagation method (3D TD-BPM). We predicted that the U-bend waveguide with a 3-mum bend radius can be realized with the propagation loss of < 0.5 dB. PMID:19547173

  8. SU-E-T-558: Monte Carlo Photon Transport Simulations On GPU with Quadric Geometry

    SciTech Connect

    Chi, Y; Tian, Z; Jiang, S; Jia, X

    2015-06-15

    Purpose: Monte Carlo simulation on GPU has experienced rapid advancements over the past a few years and tremendous accelerations have been achieved. Yet existing packages were developed only in voxelized geometry. In some applications, e.g. radioactive seed modeling, simulations in more complicated geometry are needed. This abstract reports our initial efforts towards developing a quadric geometry module aiming at expanding the application scope of GPU-based MC simulations. Methods: We defined the simulation geometry consisting of a number of homogeneous bodies, each specified by its material composition and limiting surfaces characterized by quadric functions. A tree data structure was utilized to define geometric relationship between different bodies. We modified our GPU-based photon MC transport package to incorporate this geometry. Specifically, geometry parameters were loaded into GPU’s shared memory for fast access. Geometry functions were rewritten to enable the identification of the body that contains the current particle location via a fast searching algorithm based on the tree data structure. Results: We tested our package in an example problem of HDR-brachytherapy dose calculation for shielded cylinder. The dose under the quadric geometry and that under the voxelized geometry agreed in 94.2% of total voxels within 20% isodose line based on a statistical t-test (95% confidence level), where the reference dose was defined to be the one at 0.5cm away from the cylinder surface. It took 243sec to transport 100million source photons under this quadric geometry on an NVidia Titan GPU card. Compared with simulation time of 99.6sec in the voxelized geometry, including quadric geometry reduced efficiency due to the complicated geometry-related computations. Conclusion: Our GPU-based MC package has been extended to support photon transport simulation in quadric geometry. Satisfactory accuracy was observed with a reduced efficiency. Developments for charged

  9. Cost Effective Open Geometry HTS MRI System amended to BSCCO 2212 Wire for High Field Magnets

    SciTech Connect

    Kennth Marken

    2006-08-11

    The original goal of this Phase II Superconductivity Partnership Initiative project was to build and operate a prototype Magnetic Resonance Imaging (MRI) system using high temperature superconductor (HTS) coils wound from continuously processed dip-coated BSCCO 2212 tape conductor. Using dip-coated tape, the plan was for MRI magnet coils to be wound to fit an established commercial open geometry, 0.2 Tesla permanent magnet system. New electronics and imaging software for a prototype higher field superconducting system would have added significantly to the cost. However, the use of the 0.2 T platform would allow the technical feasibility and the cost issues for HTS systems to be fully established. Also it would establish the energy efficiency and savings of HTS open MRI compared with resistive and permanent magnet systems. The commercial goal was an open geometry HTS MRI running at 0.5 T and 20 K. This low field open magnet was using resistive normal metal conductor and its heat loss was rather high around 15 kolwatts. It was expected that an HTS magnet would dissipate around 1 watt, significantly reduce power consumption. The SPI team assembled to achieve this goal was led by Oxford Instruments, Superconducting Technology (OST), who developed the method of producing commercial dip coated tape. Superconductive Components Inc. (SCI), a leading US supplier of HTS powders, supported the conductor optimization through powder optimization, scaling, and cost reduction. Oxford Magnet Technology (OMT), a joint venture between Oxford Instruments and Siemens and the world’s leading supplier of MRI magnet systems, was involved to design and build the HTS MRI magnet and cryogenics. Siemens Magnetic Resonance Division, a leading developer and supplier of complete MRI imaging systems, was expected to integrate the final system and perform imaging trials. The original MRI demonstration project was ended in July 2004 by mutual consent of Oxford Instruments and Siemens. Between

  10. Radiation characteristics of selected long wire antennas as a function of geometry using computer modeling techniques

    NASA Astrophysics Data System (ADS)

    Gillespie, Robert J., Sr.

    1986-12-01

    This thesis, sponsored by the Marine Corps Development and Education Command, Quantico, Va., examines the far field patterns of five high frequency long wire antenna configurations through the use of the Numerical Electromagnetics Code (NEC). Lossy ground and the effects of variations made to these structures are considered. The resulting far field patterns are contained in the appendix. The antenna configurations vary in length from 1.87 to 17.19 wavelengths and in their height above ground from 0.103 to 0.610 wavelengths. Variations in the antennas end-regions include: the use of a ground rod or radial screen attached to the transmitter, terminating the far end of the antenna, and varying the shape of the transmitter from a small box (radio-sized) to a large (vehicle-sized) configuration. It is concluded that both the antenna height and length determine the far field geometry, and that end-region variations also impact, though to a lesser degree, on the pattern. Tables of comparative results are provided.

  11. Characteristics of low-energy ion beams extracted from a wire electrode geometry

    SciTech Connect

    Vasquez, M. Jr.; Tokumura, S.; Kasuya, T.; Maeno, S.; Wada, M.

    2012-02-15

    Beams of argon ions with energies less than 50 eV were extracted from an ion source through a wire electrode extractor geometry. A retarding potential energy analyzer (RPEA) was constructed in order to characterize the extracted ion beams. The single aperture RPEA was used to determine the ion energy distribution function, the mean ion energy and the ion beam energy spread. The multi-cusp hot cathode ion source was capable of producing a low electron temperature gas discharge to form quiescent plasmas from which ion beam energy as low as 5 eV was realized. At 50 V extraction potential and 0.1 A discharge current, the ion beam current density was around 0.37 mA/cm{sup 2} with an energy spread of 3.6 V or 6.5% of the mean ion energy. The maximum ion beam current density extracted from the source was 0.57 mA/cm{sup 2} for a 50 eV ion beam and 1.78 mA/cm{sup 2} for a 100 eV ion beam.

  12. Traceable calibration of a fibre-coupled superconducting nano-wire single photon detector using characterized synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Müller, Ingmar; Klein, Roman M.; Werner, Lutz

    2014-12-01

    Radiometric calibrations of fibre-coupled single photon detectors are experiencing growing demand, especially at the telecommunication wavelengths. In this paper, the radiometric calibration of a fibre-coupled superconducting nano-wire single photon detector at the telecom wavelength 1.55 µm by means of well-characterized synchrotron radiation is described. This substitution method is based on the unique properties of synchrotron radiation and the Metrology Light Source, the dedicated electron storage ring of the Physikalisch-Technische Bundesanstalt, and is suitable for fibre-coupled single photon detectors. The Metrology Light Source is used as a light source with a high dynamic range of the radiant power to bridge the radiometric gap occurring in the transition from radiant power measurements and the counting of photons with single photon detectors. Very low uncertainties below 2% have been achieved in the measurement of the detection efficiency of a fibre-coupled superconducting nano-wire single photon detector.

  13. Achieving effective terminal exciton delivery in quantum dot antenna-sensitized multistep DNA photonic wires.

    PubMed

    Spillmann, Christopher M; Ancona, Mario G; Buckhout-White, Susan; Algar, W Russ; Stewart, Michael H; Susumu, Kimihiro; Huston, Alan L; Goldman, Ellen R; Medintz, Igor L

    2013-08-27

    Assembling DNA-based photonic wires around semiconductor quantum dots (QDs) creates optically active hybrid architectures that exploit the unique properties of both components. DNA hybridization allows positioning of multiple, carefully arranged fluorophores that can engage in sequential energy transfer steps while the QDs provide a superior energy harvesting antenna capacity that drives a Förster resonance energy transfer (FRET) cascade through the structures. Although the first generation of these composites demonstrated four-sequential energy transfer steps across a distance >150 Å, the exciton transfer efficiency reaching the final, terminal dye was estimated to be only ~0.7% with no concomitant sensitized emission observed. Had the terminal Cy7 dye utilized in that construct provided a sensitized emission, we estimate that this would have equated to an overall end-to-end ET efficiency of ≤ 0.1%. In this report, we demonstrate that overall energy flow through a second generation hybrid architecture can be significantly improved by reengineering four key aspects of the composite structure: (1) making the initial DNA modification chemistry smaller and more facile to implement, (2) optimizing donor-acceptor dye pairings, (3) varying donor-acceptor dye spacing as a function of the Förster distance R0, and (4) increasing the number of DNA wires displayed around each central QD donor. These cumulative changes lead to a 2 orders of magnitude improvement in the exciton transfer efficiency to the final terminal dye in comparison to the first-generation construct. The overall end-to-end efficiency through the optimized, five-fluorophore/four-step cascaded energy transfer system now approaches 10%. The results are analyzed using Förster theory with various sources of randomness accounted for by averaging over ensembles of modeled constructs. Fits to the spectra suggest near-ideal behavior when the photonic wires have two sequential acceptor dyes (Cy3 and Cy3.5) and

  14. Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides.

    PubMed

    Frellsen, Louise F; Ding, Yunhong; Sigmund, Ole; Frandsen, Lars H

    2016-07-25

    We design and experimentally verify a topology optimized low-loss and broadband two-mode (de-)multiplexer, which is (de-)multiplexing the fundamental and the first-order transverse-electric modes in a silicon photonic wire. The device has a footprint of 2.6 µm x 4.22 µm and exhibits a loss <1.2 dB in a 100 nm bandwidth measured around 1570 nm. The measured cross talk is <-12 dB and the extinction ratio is >14 dB in the C-band. Furthermore, we demonstrate that the design method can be expanded to include more modes, in this case including also the second order transverse-electric mode, while maintaining functionality. PMID:27464138

  15. Polarization filter characteristics of photonic crystal fibers with square lattice and selectively filled gold wires.

    PubMed

    Zhang, Wan; Li, Shu-Guang; An, Guo-Wen; Fan, Zhen-Kai; Bao, Ya-Jie

    2014-04-10

    A novel design of Au-filled photonic crystal fiber (PCF) with square lattice has been proposed in this paper. The resonance strength of the surface plasmon mode and the impacts of structural parameters of the PCF on the polarization filter characteristics are studied through the finite element method. Numerical results show that the sizes of Au wires and the symmetry of the air holes near the fiber core have a great effect on the polarization filter characteristics. In the optimization process, it was found that the resonance strengths can reach 279.10 and 399.18  dB/cm at wavelengths of 1.02 μm and 1.55 μm, respectively, which can be applied in many polarization filter devices. PMID:24787416

  16. All-optical switching in silicon-on-insulator photonic wire nano-cavities.

    PubMed

    Belotti, Michele; Galli, Matteo; Gerace, Dario; Andreani, Lucio Claudio; Guizzetti, Giorgio; Md Zain, Ahmad R; Johnson, Nigel P; Sorel, Marc; De La Rue, Richard M

    2010-01-18

    We report on experimental demonstration of all-optical switching in a silicon-on-insulator photonic wire nanocavity operating at telecom wavelengths. The switching is performed with a control pulse energy as low as approximately 0.1 pJ on a cavity device that presents very high signal transmission, an ultra-high quality-factor, almost diffraction-limited modal volume and a footprint of only 5 microm(2). High-speed modulation of the cavity mode is achieved by means of optical injection of free carriers using a nanosecond pulsed laser. Experimental results are interpreted by means of finite-difference time-domain simulations. The possibility of using this device as a logic gate is also demonstrated. PMID:20173973

  17. Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides

    NASA Astrophysics Data System (ADS)

    Papes, Martin; Cheben, Pavel; Ye, Winnie N.; Schmid, Jens H.; Xu, Dan-Xia; Janz, Siegfried; Benedikovic, Daniel; Ramos, Carlos A.; Halir, Robert; Ortega-Moñux, Alejandro; Delâge, André; Vašinek, Vladimír.

    2015-05-01

    Fiber-chip edge couplers are extensively used in integrated optics as one of the key structures for coupling of light between planar waveguide circuits and optical fibers. In this work, a new fiber-chip edge coupler concept with large mode size for coupling to submicrometer silicon photonic wire waveguides is presented. The coupler allows direct coupling to conventional SMF-28 optical fiber and circumvents the need for lensed fibers. We demonstrate by simulations a 95% mode overlap between the mode at the chip facet and a high numerical aperture single mode optical fiber with 6 μm mode field diameter (MFD). We also demonstrate a modified design with 89% overlap between the mode at the chip facet and a standard SMF-28 fiber with 10.4 μm MFD. The coupler is designed for 220 nm silicon-oninsulator (SOI) platform. An important advantage of our coupler is that large mode size is obtained without the need to increase buried oxide (BOX) thickness, which in our design is set to 3 μm. This remarkable feature is achieved by implementing in the SiO2 upper cladding two thin high-index Si3N4 layers. The high-index layers increase the effective refractive index of the upper cladding layer near the facet and are gradually tapered out along the coupler to provide adiabatic mode transformation to the silicon wire waveguide. Simultaneously, the Si-wire waveguide is inversely tapered along the coupler. The mode overlap at the chip facet is studied using a vectorial 2D mode solver and the mode transformation along the coupler is studied by 3D Finite-Difference Time-Domain simulations. The couplers are optimized for operating with transverse electric (TE) polarization and the operating wavelength is centered at 1.55 μm.

  18. Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities

    NASA Astrophysics Data System (ADS)

    Azzini, Stefano; Grassani, Davide; Galli, Matteo; Gerace, Dario; Patrini, Maddalena; Liscidini, Marco; Velha, Philippe; Bajoni, Daniele

    2013-07-01

    We report on four-wave mixing in coupled photonic crystal nano-cavities on a silicon-on-insulator platform. Three photonic wire cavities are side-coupled to obtain three modes equally separated in energy. The structure is designed to be self-filtering, and we show that the pump is rejected by almost two orders of magnitude. We study both the stimulated and the spontaneous four-wave mixing processes: owing to the small modal volume, we find that signal and idler photons are generated with a hundred-fold increase in efficiency as compared to silicon micro-ring resonators.

  19. Role of geometry in the superfluid flow of nonlocal photon fluids

    NASA Astrophysics Data System (ADS)

    Vocke, David; Wilson, Kali; Marino, Francesco; Carusotto, Iacopo; Wright, Ewan M.; Roger, Thomas; Anderson, Brian P.; Öhberg, Patrik; Faccio, Daniele

    2016-07-01

    Recent work has unveiled a new class of optical systems that can exhibit the characteristic features of superfluidity. One such system relies on the repulsive photon-photon interaction that is mediated by a thermal optical nonlinearity and is therefore inherently nonlocal due to thermal diffusion. Here we investigate how such a nonlocal interaction, which at a first inspection would not be expected to lead to superfluid behavior, may be tailored by acting upon the geometry of the photon fluid itself. Our models and measurements show that restricting the laser profile and hence the photon fluid to a strongly elliptical geometry modifies thermal diffusion along the major beam axis and reduces the effective nonlocal interaction length by two orders of magnitude. This in turn enables the system to display a characteristic trait of superfluid flow: the nucleation of quantized vortices in the flow past an extended physical obstacle. These results are general and apply to other nonlocal fluids, such as dipolar Bose-Einstein condensates, and show that "thermal" photon superfluids provide an exciting and novel experimental environment for probing the nature of superfluidity, with applications to the study of quantum turbulence and analog gravity.

  20. SABRINA - An interactive geometry modeler for MCNP (Monte Carlo Neutron Photon)

    SciTech Connect

    West, J.T.; Murphy, J.

    1988-01-01

    SABRINA is an interactive three-dimensional geometry modeler developed to produce complicated models for the Los Alamos Monte Carlo Neutron Photon program MCNP. SABRINA produces line drawings and color-shaded drawings for a wide variety of interactive graphics terminals. It is used as a geometry preprocessor in model development and as a Monte Carlo particle-track postprocessor in the visualization of complicated particle transport problem. SABRINA is written in Fortran 77 and is based on the Los Alamos Common Graphics System, CGS. 5 refs., 2 figs.

  1. Utilizing homogenous FRET to extend molecular photonic wires beyond 30 nm (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Diaz, Sebastian A.; Buckhout-White, Susan; Ancona, Mario G.; Melinger, Joseph S.; Medintz, Igor L.

    2015-10-01

    Molecular photonic wires (MPWs) present interesting applications in energy harvesting, artificial photosynthesis, and nano-circuitry. MPWs allow the directed movement of energy at the nanoscopic level. Extending the length of the energy transfer with a minimal loss in efficiency would overcome an important hurdle in allowing MPWs to reach their potential. We investigated Homogenous Förster Resonance Energy Transfer (HomoFRET) as a means to achieve this goal. We designed a simple, self-assembled DNA nanostructure with specifically placed dyes (Alexa488-Cy3-Cy3.5-Alexa647-Cy5.5) at a distance of 3.4 nm, a separation at which energy transfer should theoretically be very high. The input of the wire was at 466 nm with an output up to 697 nm. Different structures were studied where the Cy3.5 section of the MPW was extended from one to six repeats. We found that though the efficiency cost is not null, HomoFRET can be extended up to six repeat dyes with only a 22% efficiency loss when compared to a single step system. The advantage is that these six repeats created a MPW which was 17 nm longer, almost 2.5 times the initial length. To confirm the existence of HomoFRET between the Cy3.5 repeats fluorescence lifetime and fluorescence lifetime anisotropy was measured. Under these conditions we are able to demonstrate the energy transfer over a distance of 30.4 nm, with an end-to-end efficiency of 2.0%, by utilizing a system with only five unique dyes.

  2. Low frequency magneto-impedance effects in electrode-posited multilayer [Ni80Fe20/Cu]3 on Cu-wire substrates with different sample geometry

    NASA Astrophysics Data System (ADS)

    Wicaksono, B. Anggit; Nahrun, Ahmad Asrori; Nuryani, Purnama, Budi

    2016-02-01

    Magneto-impedance (MI) multilayer [Ni80Fe20 (800 nm)/Cu (300 nm)]3 in Cu wire has been modified in its geometric shapes. The Multilayer is the result of electro-deposition with Pt (platinum) as the electrode. This study shows that the MI ratio changes to the geometry of the sample. The geometry modification increases the MI ratio of 54.35% (wire shape) amounted to 70.53% (solenoid shape); it is measured at a frequency of 100 kHz. The modification also increase the sensitivity sensor magnetic from 9.05%/mT to 12.82%/mT.

  3. Simple hybrid wire-wireless fiber laser sensor by direct photonic generation of beat signal.

    PubMed

    Liu, Shengchun; Gao, Liang; Yin, Zuowei; Shi, Yuechun; Zhang, Liang; Chen, Xiangfei; Cheng, Jianchun

    2011-04-20

    Based on direct photonic generation of a beat signal, a simple hybrid wire-wireless fiber laser sensor is proposed. In the sensor, an improved multilongitudinal modes fiber laser cavity is set up by only a fiber Bragg grating, a section of erbium-doped fiber, and a broadband reflector. A photodetector is used to detect the electrical beat signal. Next, the beat signal including the sensor information can access the wireless network through the wireless transmission. At last, a frequency spectrum analyzer is used to demodulate the sensing information. With this method, the long-distance real-time monitor of the fiber sensor can be realized. The proposed technique offers a simple and cheap way for sensing information of the fiber sensor to access the wireless sensor network. An experiment was implemented to measure the strain and the corresponding root mean square deviation is about -5.7 με at 916 MHz and -3.8 με at 1713 MHz after wireless transmission. PMID:21509073

  4. Investigation of Magnetic Field Geometry in Exploding Wire Z-Pinches via Proton Deflectometry

    NASA Astrophysics Data System (ADS)

    Mariscal, Derek; Beg, Farhat; Wei, Mingsheng; Chittenden, Jeremy; Presura, Radu

    2012-10-01

    It is often difficult to determine the configuration of B-fields within z-pinch plasma systems. Typical laser probing diagnostics are limited by the critical density, and electrical diagnostics are prone to failure as well as perturbation of the system. The use of proton beams launched by high intensity lasers, and the subsequent tracking of their deflected trajectories, will enable access to field measurements in previously inaccessible plasma densities.The experimental testing of this method is performed at the Nevada Test Facility (NTF) using the 10J 0.3ps Leopard laser coupled to the 1.6MA ZEBRA pulsed power generator. MHD simulations of the z-pinch plasmas are performed with the 3D resistive MHD code, GORGON. Protons are then injected and tracked through the plasma using the 3D PIC Large Scale Plasma code in order to produce possible proton image plane data. The first computational demonstration of protons propagating through single wire and x-pinch plasmas, along with comparison to recent experimental data will be presented.

  5. Photon extremity absorbed dose and kerma conversion coefficients for calibration geometries.

    PubMed

    Veinot, K G; Hertel, N E

    2007-02-01

    Absorbed dose and dose equivalent conversion coefficients are routinely used in personnel dosimetry programs. These conversion coefficients can be applied to particle fluences or to measured air kerma values to determine appropriate operational monitoring quantities such as the ambient dose equivalent or personal dose equivalent for a specific geometry. For personnel directly handling materials, the absorbed dose to the extremities is of concern. This work presents photon conversion coefficients for two extremity calibration geometries using finger and wrist/arm phantoms described in HPS N13.32. These conversion coefficients have been calculated as a function of photon energy in terms of the kerma and the absorbed dose using Monte Carlo techniques and the calibration geometries specified in HPS N13.32. Additionally, kerma and absorbed dose conversion coefficients for commonly used x-ray spectra and calibration source fields are presented. The kerma values calculated in this work for the x-ray spectra and calibration sources compare well to those listed in HPS N13.32. The absorbed dose values, however, differ significantly for higher energy photons because charged particle equilibrium conditions have not been satisfied for the shallow depth. Thus, the air-kerma-to-dose and exposure-to-dose conversion coefficients for Cs and Co listed in HPS N13.32 overestimate the absorbed dose to the extremities. Applying the conversion coefficients listed in HPS N13.32 for Cs, for example, would result in an overestimate of absorbed dose of 62% for the finger phantom and 55% for the wrist phantom. PMID:17220720

  6. Optimised geometry to calculate dose rate conversion coefficient for external exposure to photons.

    PubMed

    Askri, B; Manai, K; Trabelsi, A; Baccari, B

    2008-01-01

    A single-parameter geometry to describe soil is achieved for Monte Carlo calculation of absorbed dose rate in air for photon emitters from natural radionuclides. This optimised geometry based on physical assumptions consists of the soil part whose emitted radiation has a given minimum probability to reach the detector. This geometry was implemented in Geant4 toolkit and a significant reduction in computation time was achieved. Simulation tests have shown that for soil represented by a cylinder of 40 m radius and 1 m deep, >98% of the calculated dose rate conversion coefficients in air at 1 m above the ground is generated by only 6% of the soil volume in the case of uniform distribution of radioactivity, and >99.2% of the calculated dose rate for an exponential distribution. When the soil is represented by the entire optimised geometry, 99% of the conversion coefficients values are reached for a soil depth of 1 m and 100% for that of approximately 2 m. PMID:17959610

  7. Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors

    SciTech Connect

    Lusche, R. Semenov, A.; Ilin, K.; Siegel, M.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Goltsman, G.; Vodolazov, D.; Hübers, H.-W.

    2014-07-28

    A thorough spectral study of the intrinsic single-photon detection efficiency in superconducting TaN and NbN nanowires with different widths has been performed. The experiment shows that the cut-off of the intrinsic detection efficiency at near-infrared wavelengths is most likely controlled by the local suppression of the barrier for vortex nucleation around the absorption site. Beyond the cut-off quasi-particle diffusion in combination with spontaneous, thermally activated vortex crossing explains the detection process. For both materials, the reciprocal cut-off wavelength scales linearly with the wire width where the scaling factor agrees with the hot-spot detection model.

  8. TART97 a coupled neutron-photon 3-D, combinatorial geometry Monte Carlo transport code

    SciTech Connect

    Cullen, D.E.

    1997-11-22

    TART97 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo transport code. This code can on any modern computer. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART97 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART97 is distributed on CD. This CD contains on- line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART97 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART97 and its data riles.

  9. Organ and effective dose coefficients for cranial and caudal irradiation geometries: photons.

    PubMed

    Veinot, K G; Eckerman, K F; Hertel, N E

    2016-02-01

    With the introduction of new recommendations of the International Commission on Radiological Protection (ICRP) in Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors and the introduction of reference sex-specific computational phantoms. Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT) and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for photon irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue kerma and absorbed doses for caudal and cranial exposures to photons ranging in energy from 10 keV to 10 GeV have been performed using the MCNP6.1 radiation transport code and the adult reference phantoms of ICRP Publication 110. As with calculations reported in ICRP 116, the effects of charged-particle transport are evident when compared with values obtained by using the kerma approximation. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above ∼30 MeV the cranial and caudal values are greater. PMID:25935016

  10. Coupled Neutron-Photon, 3-D, Combinatorial Geometry, Time Dependent, Monte Carlo Transport Code System.

    Energy Science and Technology Software Center (ESTSC)

    2013-06-24

    Version 07 TART2012 is a coupled neutron-photon Monte Carlo transport code designed to use three-dimensional (3-D) combinatorial geometry. Neutron and/or photon sources as well as neutron induced photon production can be tracked. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART2012 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared tomore » other similar codes. Use of the entire system can save you a great deal of time and energy. TART2012 extends the general utility of the code to even more areas of application than available in previous releases by concentrating on improving the physics, particularly with regard to improved treatment of neutron fission, resonance self-shielding, molecular binding, and extending input options used by the code. Several utilities are included for creating input files and displaying TART results and data. TART2012 uses the latest ENDF/B-VI, Release 8, data. New for TART2012 is the use of continuous energy neutron cross sections, in addition to its traditional multigroup cross sections. For neutron interaction, the data are derived using ENDF-ENDL2005 and include both continuous energy cross sections and 700 group neutron data derived using a combination of ENDF/B-VI, Release 8, and ENDL data. The 700 group structure extends from 10-5 eV up to 1 GeV. Presently nuclear data are only available up to 20 MeV, so that only 616 of the groups are currently used. For photon interaction, 701 point photon data were derived using the Livermore EPDL97 file. The new 701 point structure extends from 100 eV up to 1 GeV, and is currently used over this entire energy range. TART2012 completely supersedes all older versions of TART, and it is strongly recommended that one use only the most recent version of TART2012 and its data files. Check author’s homepage for related information: http

  11. Why diamond dimensions and electrode geometry are crucial for small photon beam dosimetry

    SciTech Connect

    Marsolat, F.; Tromson, D.; Tranchant, N.; Pomorski, M.; Bergonzo, P.; Bassinet, C.; Huet, C.; Buchheit, I.; Marchesi, V.; Gaudaire-Josset, S.; Lisbona, A.; Lazaro, D.; Hugon, R.

    2015-12-21

    Recent use of very small photon beams (down to 4 mm) in stereotactic radiotherapy requires new detectors to accurately determine the delivered dose. Diamond detectors have been presented in the literature as an attractive candidate for this application, due to their small detection volume and the diamond atomic number (Z = 6) which is close to water effective atomic number (Zeff ∼ 7.42). However, diamond exhibits a density 3.51 times greater than that of water and recent studies using Monte Carlo simulations have demonstrated the drawback of a high-density detector on small beam output factors. The current study focuses on geometrical parameters of diamond detector, namely, the diamond dimensions and the electrode geometry, in order to solve the dosimetric issues still observed in small photon beams with diamond detectors. To give better insights to these open questions, we have used both computational method and experimental analysis. This study highlighted that reducing diamond dimensions is crucial for small beam output factor measurements and to limit the influence of its high density. Furthermore, electrodes covering the whole diamond surface were essential for a dose rate independence of the diamond detector. The optimal dosimeter derived from this work presented small diamond dimensions of approximately 1 × 1 × 0.15 mm{sup 3}, with diamond-like-carbon electrodes covering the whole diamond surface. A dose rate independence of this diamond detector (better than 0.5% over a wide range of dose rates available on a stereotactic dedicated facility) was obtained due to the electrode geometry. Concerning the output factor measurements, a good agreement (better than 1.1%) was observed between this carbon material detector and two types of passive dosimeters (LiF microcubes and EBT2 radiochromic films) for all beam sizes except the smallest field of 0.6 × 0.6 cm{sup 2} with a deviation of 2.6%. This new study showed the high performance

  12. The effect of gravitational spin–orbit coupling on the circular photon orbit in the Schwarzschild geometry

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Yong; Xiong, Cai-Dong; Qiu, Qi; Wang, Yun-Xiang; Shi, Shuang-Jin

    2016-06-01

    The (1,\\quad 0)\\oplus (0,\\quad 1) representation of the group SL(2, C) provides a six-component spinor equivalent to the electromagnetic field tensor. By means of the (1,\\quad 0)\\oplus (0,\\quad 1) description, one can treat the photon field in curved spacetime via spin connection and the tetrad formalism, which is of great advantage to study the gravitational spin–orbit coupling of photons. Once the gravitational spin–orbit coupling is taken into account, the traditional radius of the circular photon orbit in the Schwarzschild geometry should be replaced with two different radiuses corresponding to the photons with the helicities of +/- 1, respectively. Owing to the splitting of energy levels induced by the spin–orbit coupling, photons (from Hawking radiations, say) escaping from a Schwarzschild black hole are partially polarized, provided that their initial velocities possess nonzero tangential components.

  13. A Coupled Neutron-Photon 3-D Combinatorial Geometry Monte Carlo Transport Code

    Energy Science and Technology Software Center (ESTSC)

    1998-06-12

    TART97 is a coupled neutron-photon, 3 dimensional, combinatorial geometry, time dependent Monte Carlo transport code. This code can run on any modern computer. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART97 is also incredibly fast: if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system canmore » save you a great deal of time and energy. TART 97 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART97 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART97 and ist data files.« less

  14. Convergence of shock waves generated by underwater electrical explosion of cylindrical wire arrays between different boundary geometries

    SciTech Connect

    Yanuka, D.; Zinowits, H. E.; Krasik, Ya. E.; Kozlov, M.

    2015-10-15

    The results of experiments and numerical simulations of a shock wave propagating between either conical or parabolic bounding walls are presented. The shock wave was generated by a microsecond timescale underwater electrical explosion of a cylindrical wire array supplied by a current pulse having an amplitude of ∼230 kA and a rise time of ∼1 μs. It is shown that with the same energy density deposition into the exploding wire array, the shock wave converges faster between parabolic walls, and as a result, the pressure in the vicinity of convergence is ∼2.3 times higher than in the case of conical walls. The results obtained are compared to those of earlier experiments [Antonov et al., Appl. Phys. Lett. 102, 124104 (2013)] with explosions of spherical wire arrays. It is shown that at a distance of ∼400 μm from the implosion origin the pressure obtained in the current experiments is higher than for the case of spherical wire arrays.

  15. Convergence of shock waves generated by underwater electrical explosion of cylindrical wire arrays between different boundary geometries

    NASA Astrophysics Data System (ADS)

    Yanuka, D.; Kozlov, M.; Zinowits, H. E.; Krasik, Ya. E.

    2015-10-01

    The results of experiments and numerical simulations of a shock wave propagating between either conical or parabolic bounding walls are presented. The shock wave was generated by a microsecond timescale underwater electrical explosion of a cylindrical wire array supplied by a current pulse having an amplitude of ˜230 kA and a rise time of ˜1 μs. It is shown that with the same energy density deposition into the exploding wire array, the shock wave converges faster between parabolic walls, and as a result, the pressure in the vicinity of convergence is ˜2.3 times higher than in the case of conical walls. The results obtained are compared to those of earlier experiments [Antonov et al., Appl. Phys. Lett. 102, 124104 (2013)] with explosions of spherical wire arrays. It is shown that at a distance of ˜400 μm from the implosion origin the pressure obtained in the current experiments is higher than for the case of spherical wire arrays.

  16. Electron correlations and two-photon states in polycyclic aromatic hydrocarbon molecules: A peculiar role of geometry

    SciTech Connect

    Aryanpour, Karan; Shukla, Alok; Mazumdar, Sumit

    2014-03-14

    We present numerical studies of one- and two-photon excited states ordering in a number of polycyclic aromatic hydrocarbon molecules: coronene, hexa-peri-hexabenzocoronene, and circumcoronene, all possessing D{sub 6h} point group symmetry versus ovalene with D{sub 2h} symmetry, within the Pariser-Parr-Pople model of interacting π-electrons. The calculated energies of the two-photon states as well as their relative two-photon absorption cross-sections within the interacting model are qualitatively different from single-particle descriptions. More remarkably, a peculiar role of molecular geometry is found. The consequence of electron correlations is far stronger for ovalene, where the lowest spin-singlet two-photon state is a quantum superposition of pairs of lowest spin triplet states, as in the linear polyenes. The same is not true for D{sub 6h} group hydrocarbons. Our work indicates significant covalent character, in valence bond language, of the ground state, the lowest spin triplet state and a few of the lowest two-photon states in D{sub 2h} ovalene but not in those with D{sub 6h} symmetry.

  17. Effects of system geometry and other physical factors on photon sensitivity of high-resolution positron emission tomography

    PubMed Central

    Foudray, A M K; Olcott, P D

    2013-01-01

    We are studying two new detector technologies that directly measure the three-dimensional coordinates of 511 keV photon interactions for high-resolution positron emission tomography (PET) systems designed for small animal and breast imaging. These detectors are based on (1) lutetium oxyorthosilicate (LSO) scintillation crystal arrays coupled to position-sensitive avalanche photodiodes (PSAPD) and (2) cadmium zinc telluride (CZT). The detectors have excellent measured 511 keV photon energy resolutions (≤12% FWHM for LSO-PSAPD and ≤3% for CZT) and good coincidence time resolutions (2 ns FWHM for LSO-PSAPD and 8 ns for CZT). The goal is to incorporate the detectors into systems that will achieve 1 mm3 spatial resolution (~1 mm3, uniform throughout the field of view (FOV)), with excellent contrast resolution as well. In order to realize 1 mm3 spatial resolution with high signal-to-noise ratio (SNR), it is necessary to significantly boost coincidence photon detection efficiency (referred to as photon sensitivity). To facilitate high photon sensitivity in the proposed PET system designs, the detector arrays are oriented ‘edge-on’ with respect to incoming 511 keV annihilation photons and arranged to form a compact FOV with detectors very close to, or in contact with, the subject tissues. In this paper, we used Monte Carlo simulation to study various factors that limit the photon sensitivity of a high-resolution PET system dedicated to small animal imaging. To optimize the photon sensitivity, we studied several possible system geometries for a fixed 8 cm transaxial and 8 cm axial FOV. We found that using rectangular-shaped detectors arranged into a cylindrical geometry does not yield the best photon sensitivity. This is due to the fact that forming rectangular-shaped detectors into a ring produces significant wedge-shaped inter-module gaps, through which Compton-scattered photons in the detector can escape. This effect limits the center point source photon

  18. Effects of system geometry and other physical factors on photon sensitivity of high-resolution positron emission tomography.

    PubMed

    Habte, F; Foudray, A M K; Olcott, P D; Levin, C S

    2007-07-01

    We are studying two new detector technologies that directly measure the three-dimensional coordinates of 511 keV photon interactions for high-resolution positron emission tomography (PET) systems designed for small animal and breast imaging. These detectors are based on (1) lutetium oxyorthosilicate (LSO) scintillation crystal arrays coupled to position-sensitive avalanche photodiodes (PSAPD) and (2) cadmium zinc telluride (CZT). The detectors have excellent measured 511 keV photon energy resolutions (photon detection efficiency (referred to as photon sensitivity). To facilitate high photon sensitivity in the proposed PET system designs, the detector arrays are oriented 'edge-on' with respect to incoming 511 keV annihilation photons and arranged to form a compact FOV with detectors very close to, or in contact with, the subject tissues. In this paper, we used Monte Carlo simulation to study various factors that limit the photon sensitivity of a high-resolution PET system dedicated to small animal imaging. To optimize the photon sensitivity, we studied several possible system geometries for a fixed 8 cm transaxial and 8 cm axial FOV. We found that using rectangular-shaped detectors arranged into a cylindrical geometry does not yield the best photon sensitivity. This is due to the fact that forming rectangular-shaped detectors into a ring produces significant wedge-shaped inter-module gaps, through which Compton-scattered photons in the detector can escape. This effect limits the center point source

  19. Effects of system geometry and other physical factors on photon sensitivity of high-resolution positron emission tomography

    NASA Astrophysics Data System (ADS)

    Habte, F.; Foudray, A. M. K.; Olcott, P. D.; Levin, C. S.

    2007-07-01

    We are studying two new detector technologies that directly measure the three-dimensional coordinates of 511 keV photon interactions for high-resolution positron emission tomography (PET) systems designed for small animal and breast imaging. These detectors are based on (1) lutetium oxyorthosilicate (LSO) scintillation crystal arrays coupled to position-sensitive avalanche photodiodes (PSAPD) and (2) cadmium zinc telluride (CZT). The detectors have excellent measured 511 keV photon energy resolutions (<=12% FWHM for LSO-PSAPD and <=3% for CZT) and good coincidence time resolutions (2 ns FWHM for LSO-PSAPD and 8 ns for CZT). The goal is to incorporate the detectors into systems that will achieve 1 mm3 spatial resolution (~1 mm3, uniform throughout the field of view (FOV)), with excellent contrast resolution as well. In order to realize 1 mm3 spatial resolution with high signal-to-noise ratio (SNR), it is necessary to significantly boost coincidence photon detection efficiency (referred to as photon sensitivity). To facilitate high photon sensitivity in the proposed PET system designs, the detector arrays are oriented 'edge-on' with respect to incoming 511 keV annihilation photons and arranged to form a compact FOV with detectors very close to, or in contact with, the subject tissues. In this paper, we used Monte Carlo simulation to study various factors that limit the photon sensitivity of a high-resolution PET system dedicated to small animal imaging. To optimize the photon sensitivity, we studied several possible system geometries for a fixed 8 cm transaxial and 8 cm axial FOV. We found that using rectangular-shaped detectors arranged into a cylindrical geometry does not yield the best photon sensitivity. This is due to the fact that forming rectangular-shaped detectors into a ring produces significant wedge-shaped inter-module gaps, through which Compton-scattered photons in the detector can escape. This effect limits the center point source photon sensitivity to

  20. Control of coupling in 1D photonic crystal coupled-cavity nano-wire structures via hole diameter and position variation

    NASA Astrophysics Data System (ADS)

    Zain, A. R. Md; De La Rue, R. M.

    2015-12-01

    We have successfully demonstrated close experimental control of the resonance splitting/free spectral range of a coupled micro-cavity one-dimensional photonic crystal/photonic wire device structure based on silicon-on-insulator. Clear splitting of the resonances, with FSR values ranging from 8 nm to 48 nm, was obtained through the use of different hole arrangements within the middle section of the device structures, between the coupled cavities. The results show good agreement with calculations obtained using a finite-difference time-domain simulation approach.

  1. TART98 a coupled neutron-photon 3-D, combinatorial geometry time dependent Monte Carlo Transport code

    SciTech Connect

    Cullen, D E

    1998-11-22

    TART98 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo radiation transport code. This code can run on any modern computer. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART98 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART98 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART98 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART98 and its data files.

  2. Surpassing one x-ray photon per electron in nonlinear Thomson scattering in 180 deg. geometry

    SciTech Connect

    Zhao Shihua; Lv Qingzheng; Yuan Suying; Li Yingjun

    2012-01-15

    We have obtained the general analytical expressions of harmonic radiation for Thomson scattering (TS) of arbitrary polarized laser by virtue of generalized Bessel functions and derived the extremum conditions for backscattered harmonics. Especially, for the fundamental backscattered Thomson scattering x-ray yield, we have shown that at the same conditions, the circular polarization reaches maximum while the linear case minimum. This effect is significant when a{sup 2}{>=}1. With the assumption that the x-ray photon yield of a realistic focused pulse of energy E, wavelength {lambda}, and Rayleigh range z{sub R} is equivalent to a plane wave pulse containing N{sub l} cycles via the relation N{sub l}{lambda}=pz{sub R} where the effective factor p is of order one, we applied the plane wave results to realistic laser pulses and deduced that the backscattered x-ray photon number N{sub f} per electron achieves its peak value when the average dimensionless laser intensity a{sup 2}=0.677 and is irrelevant to the value of p. Since N{sub f} and its maximum N{sub fmax} both scale with the square root of E/{lambda}, it is realizable to attain N{sub f}{>=}1 using joule-scale laser pulses while a great challenge for N{sub f}>10.

  3. Poster — Thur Eve — 35: The impact of intensity- and energy-modulated photon radiotherapy (XMRT) optimization on a variety of organ geometries

    SciTech Connect

    McGeachy, P.; Villarreal-Barajas, J. E.; Khan, R.; Zinchenko, Y.

    2014-08-15

    We previously reported on a novel, modulated in both energy and intensity; photon radiotherapy (XMRT) optimization technique. The purpose of this investigation was to test this XMRT optimization against conventional intensity modulated radiotherapy (IMRT) optimization on four different organ test geometries. All geometries mimicked clinically relevant scenarios. Both IMRT and XMRT were based on a linear programming approach where the objective function was the mean dose to healthy organs and organ-specific linear dose-point constraints were used. For IMRT, the beam energy was fixed to 6 MV while XMRT optimized in terms of both 6 and 18 MV beams. All plans consisted of a seven beam coplanar arrangement. All organ geometries were contoured on a 25cm diameter cylindrical water phantom in open source radiotherapy research software known as CERR. Solutions for both IMRT and XMRT were obtained for each geometry using a numerical solver Gurobi. Analyzing the quality of the solutions was done by comparing dose distributions and dose volume histograms calculated using CERR. For all four geometries, IMRT and XMRT solutions were comparable in terms of target coverage. For two of the geometries, IMRT provided an advantage in terms of reduced dose to the healthy structures. XMRT showed improved dose reduction to healthy organs for one geometry and a comparable dose distribution to IMRT for the remaining geometry. The inability to exploit the benefits of using multiple energies may be attributed to limited water phantom diameter and having the majority of the organs in close proximity to the transverse axis.

  4. Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit

    SciTech Connect

    Badal, Andreu; Badano, Aldo

    2009-11-15

    Purpose: It is a known fact that Monte Carlo simulations of radiation transport are computationally intensive and may require long computing times. The authors introduce a new paradigm for the acceleration of Monte Carlo simulations: The use of a graphics processing unit (GPU) as the main computing device instead of a central processing unit (CPU). Methods: A GPU-based Monte Carlo code that simulates photon transport in a voxelized geometry with the accurate physics models from PENELOPE has been developed using the CUDA programming model (NVIDIA Corporation, Santa Clara, CA). Results: An outline of the new code and a sample x-ray imaging simulation with an anthropomorphic phantom are presented. A remarkable 27-fold speed up factor was obtained using a GPU compared to a single core CPU. Conclusions: The reported results show that GPUs are currently a good alternative to CPUs for the simulation of radiation transport. Since the performance of GPUs is currently increasing at a faster pace than that of CPUs, the advantages of GPU-based software are likely to be more pronounced in the future.

  5. Ordered arrays of InGaN/GaN dot-in-a-wire nanostructures as single photon emitters

    NASA Astrophysics Data System (ADS)

    Lazić, Snežana; Chernysheva, Ekaterina; Gačević, Žarko; García-Lepetit, Noemi; van der Meulen, Herko P.; Müller, Marcus; Bertram, Frank; Veit, Peter; Christen, Jürgen; Torres-Pardo, Almudena; González Calbet, José M.; Calleja, Enrique; Calleja, José M.

    2015-03-01

    The realization of reliable single photon emitters operating at high temperature and located at predetermined positions still presents a major challenge for the development of solid-state systems for quantum light applications. We demonstrate single-photon emission from two-dimensional ordered arrays of GaN nanowires containing InGaN nanodisks. The structures were fabricated by molecular beam epitaxy on (0001) GaN-on-sapphire templates patterned with nanohole masks prepared by colloidal lithography. Low-temperature cathodoluminescence measurements reveal the spatial distribution of light emitted from a single nanowire heterostructure. The emission originating from the topmost part of the InGaN regions covers the blue-to-green spectral range and shows intense and narrow quantum dot-like photoluminescence lines. These lines exhibit an average linear polarization ratio of 92%. Photon correlation measurements show photon antibunching with a g(2)(0) values well below the 0.5 threshold for single photon emission. The antibunching rate increases linearly with the optical excitation power, extrapolating to the exciton decay rate of ~1 ns-1 at vanishing pump power. This value is comparable with the exciton lifetime measured by time-resolved photoluminescence. Fast and efficient single photon emitters with controlled spatial position and strong linear polarization are an important step towards high-speed on-chip quantum information management.

  6. Dynamical Bragg diffraction of optical pulses in photonic crystals in the Laue geometry: Diffraction-induced splitting, selective compression, and focusing of pulses

    SciTech Connect

    Skorynin, A. A. Bushuev, V. A.; Mantsyzov, B. I.

    2012-07-15

    A theory for the dynamical Bragg diffraction of a spatially confined laser pulse in a linear photonic crystal with a significant modulation of the refractive index in the Laue geometry has been developed. The diffraction-induced splitting of a spatially confined pulse into the Borrmann and anti-Borrmann pulses localized in different regions of the photonic crystal and characterized by different dispersion laws is predicted. The selective compression or focusing of one of these pulses with the simultaneous broadening or defocusing of the other pulse is shown to be possible.

  7. Fabrication and integration of micro/nano-scale optical wire circuit arrays and devices for high-speed and compact optical printed circuit board (O-PCB) and VLSI photonic applications

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Lee, S. G.; O, B. H.; Park, S. G.; Kim, K. H.; Kang, J. K.; Choi, Y. W.; Song, S. H.

    2005-09-01

    We report on the design, fabrication and integration of micro/nano-scale optical wire circuit arrays and devices for high-speed, compact, light-weight, low power optical printed circuit boards (O-PCBs) and VLSI photonic applications. The optical wires are formed in the form of waveguides by thermal embossing and ultraviolet (UV) radiated embossing of polymer materials. The photonic devices include vertically coupled surface emitting laser (VCSEL) microlasers, microlenses, 45-degree reflection couplers, directional couplers, arrayed waveguide grating structures, multimode interference (MMI) devices and photodetectors. These devices are optically interconnected and integrated for O-PCB assembly and VLSI micro/nano-photonics. The O-PCBs are to perform the functions of transporting, switching, routing and distributing optical signals on flat modular boards or substrates. We report on the result of the optical transmission performances of these assembled O-PCBs. For the design, fabrication, and VLSI integration of nano-scale photonic devices, we used photonic crystal structures and plasmonic metallic waveguide structures. We examined the bandwidth, power dissipation, thermal stability, weight, and the miniaturization and density of optical wires and the O-PCB module. Characteristics of these devices are also described.

  8. Space-time simulations of photon, lepton, ionization and nucleon trails of TGF ignition in thunderstorm electric field geometries

    NASA Astrophysics Data System (ADS)

    Connell, Paul

    2015-04-01

    The origin of high energy electrons which contribute to the Relativistic Runaway Electron Avalanche of a TGF are not precisely known, or yet observed, though the most obvious source would seem to be the products of cosmic ray showers, or electron avalanches generated in the high electric field near the tips of lightning leaders. With our new TGF simulation software package LEPTRACK we can now easily create any electric field geometry to be expected in stormclouds, any kind of electron source, and are investigating scenarios of TGF ignition, which may or may not be runaway, and in any direction - not just vertical. Vidoes, lightcurves and spectra, presenting the detailed density structure and time evolution of TGF photon, electron, neucleon and ionization trails were presented for the first time at the AGU Fall Meeting in 2014 - showing the complicated effects of changing electric field strength and air density - and the as yet unrecognized importance of the earth magnetic field in trapping electrons and positrons in the upper atmosphere at the magnetic equator - possibly giving rise to the hard tail seen in some TGF spectra observed by AGILE. We will present here an extension of this work to show the dynamics of TGF ignition scenarios of current interest - upward, downward and randomly directed - both from free electrons and from combinations of lightning leader micro-fields producing electron avalanches, which are then input to the macro-fields expected at or above thunderstorm cloudtops. We will show the spatial shape and time evolution of TGF particle structures, along with their optical and gamma ray spectra emitted, and bring to life their essential physics.

  9. A semi-analytical model for the approximation of plasmonic bands in arrays of metal wires in photonic crystal fibers.

    PubMed

    Spittel, Ron; Bartelt, Harmut; Schmidt, Markus A

    2014-05-19

    We present a highly efficient semi-analytical and straightforward-to-implement model for the determination of plasmonic band edges of metallic nanowire arrays inside photonic crystal fibers. The model relies on the approximation of the hexagonal unit cell by a circle and using particular boundary conditions, showing an accurate agreement with finite element simulations. The model reduces simulation time by a factor of 100, thus representing an efficient tool for structure design. It further allows the calculation of all relevant modes in the system by slight changes of the entries in a 4 × 4 matrix. PMID:24921296

  10. Electron transport through a quantum dot assisted by cavity photons

    NASA Astrophysics Data System (ADS)

    Abdullah, Nzar Rauf; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar

    2013-11-01

    We investigate transient transport of electrons through a single quantum dot controlled by a plunger gate. The dot is embedded in a finite wire with length Lx assumed to lie along the x-direction with a parabolic confinement in the y-direction. The quantum wire, originally with hard-wall confinement at its ends, ±Lx/2, is weakly coupled at t = 0 to left and right leads acting as external electron reservoirs. The central system, the dot and the finite wire, is strongly coupled to a single cavity photon mode. A non-Markovian density-matrix formalism is employed to take into account the full electron-photon interaction in the transient regime. In the absence of a photon cavity, a resonant current peak can be found by tuning the plunger-gate voltage to lift a many-body state of the system into the source-drain bias window. In the presence of an x-polarized photon field, additional side peaks can be found due to photon-assisted transport. By appropriately tuning the plunger-gate voltage, the electrons in the left lead are allowed to undergo coherent inelastic scattering to a two-photon state above the bias window if initially one photon was present in the cavity. However, this photon-assisted feature is suppressed in the case of a y-polarized photon field due to the anisotropy of our system caused by its geometry.

  11. Electron transport through a quantum dot assisted by cavity photons.

    PubMed

    Abdullah, Nzar Rauf; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar

    2013-11-20

    We investigate transient transport of electrons through a single quantum dot controlled by a plunger gate. The dot is embedded in a finite wire with length Lx assumed to lie along the x-direction with a parabolic confinement in the y-direction. The quantum wire, originally with hard-wall confinement at its ends, ±Lx/2, is weakly coupled at t = 0 to left and right leads acting as external electron reservoirs. The central system, the dot and the finite wire, is strongly coupled to a single cavity photon mode. A non-Markovian density-matrix formalism is employed to take into account the full electron-photon interaction in the transient regime. In the absence of a photon cavity, a resonant current peak can be found by tuning the plunger-gate voltage to lift a many-body state of the system into the source-drain bias window. In the presence of an x-polarized photon field, additional side peaks can be found due to photon-assisted transport. By appropriately tuning the plunger-gate voltage, the electrons in the left lead are allowed to undergo coherent inelastic scattering to a two-photon state above the bias window if initially one photon was present in the cavity. However, this photon-assisted feature is suppressed in the case of a y-polarized photon field due to the anisotropy of our system caused by its geometry. PMID:24132041

  12. Basic Wiring.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; And Others

    This module is the first in a series of three wiring publications; it serves as the foundation for students enrolled in a wiring program. It is a prerequisite to either "Residential Wiring" or "Commercial and Industrial Wiring." The module contains 16 instructional units that cover the following topics: occupational introduction; general safety;…

  13. Reliability of thermal conductivity measurement of liquids by using transient hot-wire, photon-correlation spectroscopy and the laser flash method

    NASA Astrophysics Data System (ADS)

    Kwon, Suyong; Lee, Joohyun; Kim, Dae Ho

    2016-05-01

    Measuring the thermal conductivity of liquids is important, but not easy, because of the complexity of and the natural convection in liquids, and reliable thermal conductivity measurements in liquids under various sample conditions is essential for data accuracy. We have introduced and developed a validation chain for measuring the thermal conductivity of liquids by using three different experimental methods: the transient hot-wire (THW), the photon correlation spectroscopy (PCS) and the laser flash (LF) methods in the temperature range from -30 to 90 °C. We checked the performance of the validation chain developed in this study by measuring the thermal conductivity of liquid toluene. We found good agreement between the thermal conductivity data obtained by using the THW, PCS and LF methods. To demonstrate the use of this validation chain for measurements of thermophysical properties in liquids, we also showed its use in measuring the specific heat of a volatile liquid, toluene which can be extracted from thermal conductivity, thermal diffusivity, and density measurements without any effects of volatilization.

  14. RCPO1 - A Monte Carlo program for solving neutron and photon transport problems in three dimensional geometry with detailed energy description and depletion capability

    SciTech Connect

    Ondis, L.A., II; Tyburski, L.J.; Moskowitz, B.S.

    2000-03-01

    The RCP01 Monte Carlo program is used to analyze many geometries of interest in nuclear design and analysis of light water moderated reactors such as the core in its pressure vessel with complex piping arrangement, fuel storage arrays, shipping and container arrangements, and neutron detector configurations. Written in FORTRAN and in use on a variety of computers, it is capable of estimating steady state neutron or photon reaction rates and neutron multiplication factors. The energy range covered in neutron calculations is that relevant to the fission process and subsequent slowing-down and thermalization, i.e., 20 MeV to 0 eV. The same energy range is covered for photon calculations.

  15. Wire Array Photovoltaics

    NASA Astrophysics Data System (ADS)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  16. ITS version 5.0 :the integrated TIGER series of coupled electron/Photon monte carlo transport codes with CAD geometry.

    SciTech Connect

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2005-09-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2) multigroup codes with adjoint transport capabilities, (3) parallel implementations of all ITS codes, (4) a general purpose geometry engine for linking with CAD or other geometry formats, and (5) the Cholla facet geometry library. Moreover, the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.

  17. Residential Wiring.

    ERIC Educational Resources Information Center

    Taylor, Mark

    The second in a series of three curriculum packages on wiring, these materials for a five-unit course were developed to prepare postsecondary students for entry-level employment in the residential wiring trade. The five units are: (1) blueprint reading and load calculations; (2) rough-in; (3) service; (4) trim out and troubleshooting; and (5) load…

  18. Wire chamber

    DOEpatents

    Atac, Muzaffer

    1989-01-01

    A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.

  19. Positioning and joining of organic single-crystalline wires

    NASA Astrophysics Data System (ADS)

    Wu, Yuchen; Feng, Jiangang; Jiang, Xiangyu; Zhang, Zhen; Wang, Xuedong; Su, Bin; Jiang, Lei

    2015-03-01

    Organic single-crystal, one-dimensional materials can effectively carry charges and/or excitons due to their highly ordered molecule packing, minimized defects and eliminated grain boundaries. Controlling the alignment/position of organic single-crystal one-dimensional architectures would allow on-demand photon/electron transport, which is a prerequisite in waveguides and other optoelectronic applications. Here we report a guided physical vapour transport technique to control the growth, alignment and positioning of organic single-crystal wires with the guidance of pillar-structured substrates. Submicrometre-wide, hundreds of micrometres long, highly aligned, organic single-crystal wire arrays are generated. Furthermore, these organic single-crystal wires can be joined within controlled angles by varying the pillar geometries. Owing to the controllable growth of organic single-crystal one-dimensional architectures, we can present proof-of-principle demonstrations utilizing joined wires to allow optical waveguide through small radii of curvature (internal angles of ~90-120°). Our methodology may open a route to control the growth of organic single-crystal one-dimensional materials with potential applications in optoelectronics.

  20. Positioning and joining of organic single-crystalline wires

    PubMed Central

    Wu, Yuchen; Feng, Jiangang; Jiang, Xiangyu; Zhang, Zhen; Wang, Xuedong; Su, Bin; Jiang, Lei

    2015-01-01

    Organic single-crystal, one-dimensional materials can effectively carry charges and/or excitons due to their highly ordered molecule packing, minimized defects and eliminated grain boundaries. Controlling the alignment/position of organic single-crystal one-dimensional architectures would allow on-demand photon/electron transport, which is a prerequisite in waveguides and other optoelectronic applications. Here we report a guided physical vapour transport technique to control the growth, alignment and positioning of organic single-crystal wires with the guidance of pillar-structured substrates. Submicrometre-wide, hundreds of micrometres long, highly aligned, organic single-crystal wire arrays are generated. Furthermore, these organic single-crystal wires can be joined within controlled angles by varying the pillar geometries. Owing to the controllable growth of organic single-crystal one-dimensional architectures, we can present proof-of-principle demonstrations utilizing joined wires to allow optical waveguide through small radii of curvature (internal angles of ~90–120°). Our methodology may open a route to control the growth of organic single-crystal one-dimensional materials with potential applications in optoelectronics. PMID:25814032

  1. Positioning and joining of organic single-crystalline wires.

    PubMed

    Wu, Yuchen; Feng, Jiangang; Jiang, Xiangyu; Zhang, Zhen; Wang, Xuedong; Su, Bin; Jiang, Lei

    2015-01-01

    Organic single-crystal, one-dimensional materials can effectively carry charges and/or excitons due to their highly ordered molecule packing, minimized defects and eliminated grain boundaries. Controlling the alignment/position of organic single-crystal one-dimensional architectures would allow on-demand photon/electron transport, which is a prerequisite in waveguides and other optoelectronic applications. Here we report a guided physical vapour transport technique to control the growth, alignment and positioning of organic single-crystal wires with the guidance of pillar-structured substrates. Submicrometre-wide, hundreds of micrometres long, highly aligned, organic single-crystal wire arrays are generated. Furthermore, these organic single-crystal wires can be joined within controlled angles by varying the pillar geometries. Owing to the controllable growth of organic single-crystal one-dimensional architectures, we can present proof-of-principle demonstrations utilizing joined wires to allow optical waveguide through small radii of curvature (internal angles of ~90-120°). Our methodology may open a route to control the growth of organic single-crystal one-dimensional materials with potential applications in optoelectronics. PMID:25814032

  2. Study of a selection of 10 historical types of dosemeter: variation of the response to Hp(10) with photon energy and geometry of exposure.

    PubMed

    Thierry-Chef, I; Pernicka, F; Marshall, M; Cardis, E; Andreo, P

    2002-01-01

    An international collaborative study of cancer risk among workers in the nuclear industry is tinder way to estimate direetly the cancer risk following protracted low-dose exposure to ionising radiation. An essential aspect of this study is the characterisation and quantification of errors in available dose estimates. One major source of errors is dosemeter response in workplace exposure conditions. Little information is available on energy and geometry response for most of the 124 different dosemeters used historically in participating facilities. Experiments were therefore set up to assess this. using 10 dosemeter types representative of those used over time. Results show that the largest errors were associated with the response of early dosemeters to low-energy photon radiation. Good response was found with modern dosemeters. even at low energy. These results are being used to estimate errors in the response for each dosemeter type, used in the participating facilities, so that these can be taken into account in the estimates of cancer risk. PMID:12408486

  3. Wire Wise.

    ERIC Educational Resources Information Center

    Swanquist, Barry

    1998-01-01

    Discusses how today's technology is encouraging schools to invest in furnishings that are adaptable to computer use and telecommunications access. Explores issues concerning modularity, wiring management, ergonomics, durability, price, and aesthetics. (GR)

  4. Neural wiring optimization.

    PubMed

    Cherniak, Christopher

    2012-01-01

    Combinatorial network optimization theory concerns minimization of connection costs among interconnected components in systems such as electronic circuits. As an organization principle, similar wiring minimization can be observed at various levels of nervous systems, invertebrate and vertebrate, including primate, from placement of the entire brain in the body down to the subcellular level of neuron arbor geometry. In some cases, the minimization appears either perfect, or as good as can be detected with current methods. One question such best-of-all-possible-brains results raise is, what is the map of such optimization, does it have a distinct neural domain? PMID:22230636

  5. No Wires.

    ERIC Educational Resources Information Center

    DeLoughry, Thomas J.

    1995-01-01

    The University of California at Santa Cruz has completed a successful test of a wireless computer network that would enable students and professors to get on line from anywhere on campus. The network, linked by radio waves, could save millions of dollars in campus wiring costs and would better meet student and faculty information needs. (MSE)

  6. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, E.D.; Hooper, F.M.; Reichenbach, M.L.

    1992-08-11

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut. 1 figure.

  7. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, Eldon D.; Hooper, Frederick M.; Reichenbach, Marvin L.

    1992-01-01

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut.

  8. A finite-difference technique for computation of electron states in core-shell quantum wires of different configurations

    NASA Astrophysics Data System (ADS)

    Deyasi, Arpan; Bhattacharyya, S.; Das, N. R.

    2014-06-01

    In this paper, electron energies in core-shell quantum wires (CSQW) of rectangular, triangular, T-shaped, H-shaped and circular geometries are numerically computed by solving a time-independent Schrödinger equation using the finite difference technique. Computation is performed for both normal and inverted structures of CSQW, taking into account Kane-type nonparabolicity, conduction band discontinuity, and effective mass mismatch at the hetero-interface. Sparse, structured Hamiltonian matrices are produced for the calculation of energy eigenvalues and intersubband transition energies. Comparative study reveals that for a given core width of normal CSQW, the eigenenergy is the highest for the triangular geometry and the lowest for the rectangular geometry. For inverted CSQW, the ground-state energy of the triangular wire decreases with increasing core width, unlike other geometries. Studies on the intersubband transition energy show that for triangular and H-shaped inverted CSQW, it varies in a direction opposite to that of other inverted structures. Suitable tailoring of wire dimensions indicates the possibility of tuning the transition energy for photonic applications.

  9. Chemically etched modulation in wire radius for wire array Z-pinch perturbation studies

    SciTech Connect

    Jones, B.; Deeney, C.; McKenney, J.L.; Garrity, J.E.; Lobley, D.K.; Martin, K.L.; Griego, A.E.; Ramacciotti, J.P.; Bland, S.N.; Lebedev, S.V.; Bott, S.C.; Ampleford, D.J.; Palmer, J.B.A.; Rapley, J.; Hall, G.

    2004-11-01

    A technique for manufacturing wires with imposed modulation in radius with axial wavelengths as short as 1 mm is presented. Extruded aluminum 5056 with 15 {mu}m diameter was masked and chemically etched to reduce the radius by {approx}20% in selected regions. Characterized by scanning electron microscopy, the modulation in radius is a step function with a {approx}10 {mu}m wide conical transition between thick and thin segments, with some pitting in etched regions. Techniques for mounting and aligning these wires in arrays for fast z-pinch experiments will be discussed. Axially mass-modulated wire arrays of this type will allow the study of seeded Rayleigh-Taylor instabilities in z pinches, corona formation, wire initiation with varying current density in the wire core, and correlation of perturbations between adjacent wires. This tool will support magnetohydrodynamics code validation in complex three-dimensional geometries, and perhaps x-ray pulse shaping.

  10. Investigations of x-ray response of single wire anode Ar-N 2 flow type gas scintillation proportional counters

    NASA Astrophysics Data System (ADS)

    Garg, S. P.; Sharma, R. C.

    1984-05-01

    The X-ray response of single wire anode gas scintillation proportional counters of two different geometries operated with argon + nitrogen gases in continuous flow has been investigated with wire anodes of diameters 25 μm to 1.7 mm. An energy resolution of 19% is obtained for 5.9 keV X-rays entering the counter perpendicular to the anode in pill-box geometry with 25 μm diameter anode. With cylindrical geometry counters energy resolutions obtained at 5.9 keV are 18%, 24% and 33% for 50 μm, 0.5 mm and 1.7 mm diameter anodes respectively. An analysis of the observed resolution shows that the contribution from photon counting statistics to the relative variance of scintillation pulses even for X-rays in Ar-N 2 single wire anode gas scintillation proportional counters is small and is not a limiting factor. The energy resolution with thicker anodes, where the contribution from the variance of the charge multiplication factor also has been minimised, is found to deteriorate mainly by the interactions in the scintillation production region. Comments are made on the possibility of improvement in energy resolution by suppression of pulses due to such interactions with the help of the pulse risetime discrimination technique.

  11. Windows: Life after Wire.

    ERIC Educational Resources Information Center

    Razwick, Jerry

    2003-01-01

    Although wired glass is extremely common in school buildings, the International Building Code adopted new standards that eliminate the use of traditional wired glass in K-12 schools, daycare centers, and athletic facilities. Wired glass breaks easily, and the wires can cause significant injuries by forming dangerous snags when the glass breaks.…

  12. Stretched Wire Mechanics

    SciTech Connect

    Bowden, Gordon; /SLAC

    2005-09-06

    Stretched wires are beginning to play an important role in the alignment of accelerators and synchrotron light sources. Stretched wires are proposed for the alignment of the 130 meter long LCLS undulator. Wire position technology has reached sub-micron resolution yet analyses of perturbations to wire straightness are hard to find. This paper considers possible deviations of stretched wire from the simple 2-dimensional catenary form.

  13. Concealed wire tracing apparatus

    DOEpatents

    Kronberg, James W.

    1994-01-01

    An apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receivers position with respect to the wiring. The receivers audible signal is strongest when the receiver is directly above the wiring and the long axis of the receivers coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring's concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest.

  14. Wire Test Grip Fixture

    NASA Technical Reports Server (NTRS)

    Burke, Christopher S.

    2011-01-01

    Wire-testing issues, such as the gripping strains imposed on the wire, play a critical role in obtaining clean data. In a standard test frame fitted with flat wedge grips, the gripping action alone creates stresses on the wire specimen that cause the wire to fail at the grip location. A new test frame, which is outfitted with a vacuum chamber, negated the use of any conventional commercially available wire test fixtures, as only 7 in. (17.8 cm) existed between the grip faces. An innovative grip fixture was designed to test thin gauge wire for a variety of applications in an existing Instron test frame outfitted with a vacuum chamber.

  15. Wire chambers revisited.

    PubMed

    Ott, R J

    1993-04-01

    Detectors used for radioisotope imaging have, historically, been based on scintillating crystal/photomultiplier combinations in various forms. From the rectilinear scanner through to modern gamma cameras and positron cameras, the basic technology has remained much the same. Efforts to overcome the limitations of this form of technology have foundered on the inability to reproduce the required sensitivity, spatial resolution and sensitive area at acceptable cost. Multiwire proportional chambers (MWPCs) have long been used as position-sensitive charged particle detectors in nuclear and high-energy physics. MWPCs are large-area gas-filled ionisation chambers in which large arrays of fine wires are used to measure the position of ionisation produced in the gas by the passage of charged particles. The important properties of MWPCs are high-spatial-resolution, large-area, high-count-rate performance at low cost. For research applications, detectors several metres square have been built and small-area detectors have a charged particle resolution of 0.4 mm at a count rate of several million per second. Modification is required to MWPCs for nuclear medicine imaging. As gamma rays or X-rays cannot be detected directly, they must be converted into photo- or Compton scatter electrons. Photon-electron conversion requires the use of high atomic number materials in the body of the chamber. Pressurised xenon is the most useful form of "gas only" photon-electron convertor and has been used successfully in a gamma camera for the detection of gamma rays at energies below 100 keV. This camera has been developed specifically for high-count-rate first-pass cardiac imaging. This high-pressure xenon gas MWPC is the key to a highly competitive system which can outperform scintillator-based systems. The count rate performance is close to a million counts per second and the intrinsic spatial resolution is better than the best scintillator-based camera. The MWPC camera produces quantitative

  16. Comparison of conversion coefficients for equivalent dose in terms of air kerma using a sitting and standing female adult voxel simulators exposure to photons in antero-posterior irradiation geometry

    NASA Astrophysics Data System (ADS)

    Cavalcante, F. R.; Galeano, D. C.; Carvalho Júnior, A. B.; Hunt, J.

    2014-02-01

    Due to the difficulty in implementing invasive techniques for calculations of dose for some exposure scenarios, computational simulators have been created to represent as realistically as possible the structures of the human body and through radiation transport simulations to obtain conversion coefficients (CCs) to estimate dose. In most published papers simulators are implemented in the standing posture and this may not describe a real scenario of exposure. In this work we developed exposure scenarios in the Visual Monte Carlo (VMC) code using a female simulator in standing and sitting postures. The simulator was irradiated in the antero-posterior (AP) geometry by a plane source of monoenergetic photons with energy from 10 keV to 2 MeV. The conversion coefficients for equivalent dose in terms of air kerma (HT/Kair) were calculated for both scenarios and compared. The results show that the percentage difference of CCs for the organs of the head and thorax was not significant (less than 5%) since the anatomic position of the organs is the same in both postures. The percentage difference is more significant to the ovaries (71% for photon energy of 20 keV), to the bladder (39% at 60 keV) and to the uterus (37% at 100 keV) due to different processes of radiation interactions in the legs of the simulator when its posture is changed. For organs and tissues that are distributed throughout the entire body, such as bone (21% at 100 keV) and muscle (30% at 80 keV) the percentage difference of CCs reflects a reduction of interaction of photons with the legs of the simulator. Therefore, the calculation of conversion coefficients using simulators in the sitting posture is relevant for a more accurate dose estimation in real exposures to radiation.

  17. Integrated photonics

    NASA Astrophysics Data System (ADS)

    Gondarenko, Alexander A.

    In 1958 the first integrated circuit was demonstrated to combine transistors, resistors, and capacitors [36]. To this date fabrication technology has been driven by the growing demand for monolithically constructed, densely packed electronic components. The exponentially shrinking device size decreased the feature dimensions from 10 microns to 32 nm and grew transistor count from 2,300 to over 2,000,000,000 in Intel's 4004 and Intel Kentsfield XE microprocessors. The benefits of micro- and nano-fabrication was not limited to just computer chips. MEMs, spintronic, microfluidics, and integrated photonics were all made possible by the ever expanding ability to form complex geometries, on a wide variety of materials, on a micron and submicron scale. This dissertation is part of an effort to design and fabricate novel integrated photonic devices compatible with standard electron beam and photo lithography and utilize a readily available material base. We aim to create devices with a decreased footprint on a chip and operate in the infrared, visible, and UV spectra. We present two general sections, the first is a theoretical effort to find the fundamental design geometries for a variety of optical problems. The second section is an experimental demonstration of techniques and devices for novel optical phenomena in an integrated package. In the theoretical section we develop and apply computational evolutionary algorithms to explore problems of light confinement, coupling, and guiding in two and three dimensional device geometries. Our general aim is to find a global limit to optimal device geometry and performance given a set of constrains. Experimentally, we demonstrate an efficient design and a fabrication process for a short development cycle of photonic devices. For the design part of the workflow, we develop a computational approach to explore device geometries with minimum initial assumptions for a variety of photonic problems. For the fabrication part of the

  18. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: 3.7 amps per wire, bundle of 15 or more wires, 70 C environment, and vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  19. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire; (2) bundle of 15 or more wires; (3) 70 C environment: and (4) vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  20. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1999-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 degree C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire (2) bundle of 15 or more wires (3) 70 C environment (4) vacuum of 10(exp -5) torr or less To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  1. Laser Wire Stripper

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASA-developed space shuttle technology is used in a laser wire stripper designed by Raytheon Company. Laser beams cut through insulation on a wire without damaging conductive metal, because laser radiation that melts plastic insulation is reflected by the metal. The laser process is fast, clean, precise and repeatable. It eliminates quality control problems and the expense of rejected wiring.

  2. Comparison of conversion coefficients for equivalent dose in terms of air kerma for photons using a male adult voxel simulator in sitting and standing posture with geometry of irradiation antero-posterior

    NASA Astrophysics Data System (ADS)

    Galeano, D. C.; Cavalcante, F. R.; Carvalho, A. B.; Hunt, J.

    2014-02-01

    The dose conversion coefficient (DCC) is important to quantify and assess effective doses associated with medical, professional and public exposures. The calculation of DCCs using anthropomorphic simulators and radiation transport codes is justified since in-vivo measurement of effective dose is extremely difficult and not practical for occupational dosimetry. DCCs have been published by the ICRP using simulators in a standing posture, which is not always applicable to all exposure scenarios, providing an inaccurate dose estimation. The aim of this work was to calculate DCCs for equivalent dose in terms of air kerma (H/Kair) using the Visual Monte Carlo (VMC) code and the VOXTISS8 adult male voxel simulator in sitting and standing postures. In both postures, the simulator was irradiated by a plane source of monoenergetic photons in antero-posterior (AP) geometry. The photon energy ranged from 15 keV to 2 MeV. The DCCs for both postures were compared and the DCCs for the standing simulator were higher. For certain organs, the difference of DCCs were more significant, as in gonads (48% higher), bladder (16% higher) and colon (11% higher). As these organs are positioned in the abdominal region, the posture of the anthropomorphic simulator modifies the form in which the radiation is transported and how the energy is deposited. It was also noted that the average percentage difference of conversion coefficients was 33% for the bone marrow, 11% for the skin, 13% for the bone surface and 31% for the muscle. For other organs, the percentage difference of the DCCs for both postures was not relevant (less than 5%) due to no anatomical changes in the organs of the head, chest and upper abdomen. We can conclude that is important to obtain DCCs using different postures from those present in the scientific literature.

  3. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  4. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  5. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  6. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  7. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  8. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  9. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  10. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  11. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  12. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  13. Thin wire pointing method

    NASA Technical Reports Server (NTRS)

    Green, G.; Mattauch, R. J. (Inventor)

    1983-01-01

    A method is described for forming sharp tips on thin wires, in particular phosphor bronze wires of diameters such as one-thousandth inch used to contact micron size Schottky barrier diodes, which enables close control of tip shape and which avoids the use of highly toxic solutions. The method includes dipping an end of a phosphor bronze wire into a dilute solution of sulfamic acid and applying a current through the wire to electrochemically etch it. The humidity in the room is controlled to a level of less than 50%, and the voltage applied between the wire and another electrode in the solutions is a half wave rectified voltage. The current through the wire is monitored, and the process is stopped when the current falls to a predetermined low level.

  14. Sintered wire annode

    DOEpatents

    Falce, Louis R.; Ives, R. Lawrence

    2007-12-25

    A plurality of high atomic number wires are sintered together to form a porous rod that is parted into porous disks which will be used as x-ray targets. A thermally conductive material is introduced into the pores of the rod, and when a stream of electrons impinges on the sintered wire target and generates x-rays, the heat generated by the impinging x-rays is removed by the thermally conductive material interspersed in the pores of the wires.

  15. Zinc wired rebar

    SciTech Connect

    Zhang, X.G.; Hwang, J.

    1997-02-01

    A novel method for corrosion protection of rebar in concrete is reported wherein it is galvanically protected by attaching a zinc wire along its length. The self-corrosion and galvanic-corrosion loss of the zinc wire is dependent on the water/cement ratio, the size of the cathode, and the concrete cover thickness. The wire acts as a sacrificial anode when the rebar embedded in concrete is exposed to corrosive environments.

  16. Concealed wire tracing apparatus

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    An apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface is disclosed. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receivers position with respect to the wiring. The receivers audible signal is strongest when the receiver is directly above the wiring and the long axis of the receivers coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring's concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest. 4 figs.

  17. Weld Wire Investigation Summary

    SciTech Connect

    Cunningham, M.A.

    1999-03-22

    After GTA welding reservoir A production/process prove-in assemblies, X-ray examination detected a lack of sidewall fusion. After examining several possible causes, it was determined that the weld wire filler metal was responsible, particularly the wire cleaning process. The final conclusion was that the filler wire must be abrasively cleaned in a particular manner to perform as required. The abrasive process was incorporated into the wire material specification, ensuring consistency for all reservoir GTA welding at AlliedSignal Federal Manufacturing and Technologies (FM and T).

  18. Wire-inhomogeneity detector

    DOEpatents

    Gibson, G.H.; Smits, R.G.; Eberhard, P.H.

    1982-08-31

    A device for uncovering imperfections in electrical conducting wire, particularly superconducting wire, by detecting variations in eddy currents. Eddy currents effect the magnetic field in a gap of an inductor, contained in a modified commercial ferrite core, through which the wire being tested is passed. A small increase or decrease in the amount of conductive material, such as copper, in a fixed cross section of wire will unbalance a bridge used to measure the impedance of the inductor, tripping a detector and sounding an alarm.

  19. 1998 wire development workshop proceedings

    SciTech Connect

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development.

  20. Molecular Geometry.

    ERIC Educational Resources Information Center

    Desseyn, H. O.; And Others

    1985-01-01

    Compares linear-nonlinear and planar-nonplanar geometry through the valence-shell electron pairs repulsion (V.S.E.P.R.), Mulliken-Walsh, and electrostatic force theories. Indicates that although the V.S.E.P.R. theory has more advantages for elementary courses, an explanation of the best features of the different theories offers students a better…

  1. VIEW SOUTHEASTBUILDING 4 NO. 1 WIRE MILL (1871) WIRE DRAWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW SOUTHEAST-BUILDING 4 NO. 1 WIRE MILL (1871) WIRE DRAWING MACHINE - John A. Roebling's Sons Company & American Steel & Wire Company, South Broad, Clark, Elmer, Mott & Hudson Streets, Trenton, Mercer County, NJ

  2. Wire deposition by a laser-induced boiling front

    NASA Astrophysics Data System (ADS)

    Torkamany, Mohammad Javad; Kaplan, Alexander F. H.; Ghaini, F. Malek; Vänskä, Mikko; Salminen, Antti; Fahlström, Karl; Hedegård, Joakim

    2015-06-01

    In laser materials processing the addition of material by wire is an option for techniques like laser welding, laser cladding or rapid prototyping. The stability of the wire deposition is strongly dependent on the wire interaction with the laser beam. For leading position wire feeding, high speed imaging was applied to study the melt transfer from the wire tip to the workpiece during keyhole welding. The observations revealed that a very stable concave processing front forms at the wire tip. A boiling front is established as an extension of the keyhole and the melt film at the front is sheared downwards by the ablation pressure of boiling. The deposition of the molten wire into the weld zone is smooth and controllable. Various wire front geometries and melt transitions are compared for different parameters. The option of laterally oscillating the laser beam is investigated and the interaction mechanism involved is discussed. Wire deposition by inducing a boiling front is explained here for the first time, which should promote future applications use of this very promising technique.

  3. Commercial and Industrial Wiring.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; Flowers, Gary

    This module is the third in a series of three wiring publications, includes additional technical knowledge and applications required for job entry in the commercial and industrial wiring trade. The module contains 15 instructional units that cover the following topics: blueprint reading and load calculations; tools and equipment; service;…

  4. 2016 MOST WIRED.

    PubMed

    Barr, Paul; Butcher, Lola; Hoppszallern, Suzanna

    2016-07-01

    This year's IT survey shows that hospitals are aggressively fighting cyber crime and looking for ways to use data to help in the transition to value-based care. Find out who made the 2016 lists of Most Wired, Most Advanced, Most Improved and Most Wired-Small and Rural. PMID:27526506

  5. The exploding wire phenomenon

    NASA Astrophysics Data System (ADS)

    Aspden, H.

    1985-02-01

    Graneau's recent interpretation of the exploding wire phenomenon as an electrodynamic effect verifying Ampère's classical formulation is questioned. Instead, it is shown that the rupturing force arising from the imbalance of the self-induced electromotive force and the ohmic potential during an explosive current surge will account for the wire breaking into several segments, as is observed.

  6. Dark Geometry

    NASA Astrophysics Data System (ADS)

    Cembranos, J. A. R.; Dobado, A.; Maroto, A. L.

    Extra-dimensional theories contain additional degrees of freedom related to the geometry of the extra space which can be interpreted as new particles. Such theories allow to reformulate most of the fundamental problems of physics from a completely different point of view. In this essay, we concentrate on the brane fluctuations which are present in brane-worlds, and how such oscillations of the own space-time geometry along curved extra dimensions can help to resolve the Universe missing mass problem. The energy scales involved in these models are low compared to the Planck scale, and this means that some of the brane fluctuations distinctive signals could be detected in future colliders and in direct or indirect dark matter searches.

  7. Water Desalination with Wires.

    PubMed

    Porada, S; Sales, B B; Hamelers, H V M; Biesheuvel, P M

    2012-06-21

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode pairs in freshwater with and in brine without an applied cell voltage, we create an ion adsorption/desorption cycle. We show experimentally how in six subsequent cycles we can reduce the salinity of 20 mM feed (brackish) water by a factor of 3, while application of a cation exchange membrane on the cathode wires makes the desalination factor increase to 4. Theoretical modeling rationalizes the experimental findings, and predicts that system performance can be significantly enhanced by material modifications. To treat large volumes of water, multiple stacks of wire pairs can be used simultaneously in a "merry-go-round" operational mode. PMID:26285717

  8. International space station wire program

    NASA Technical Reports Server (NTRS)

    May, Todd

    1995-01-01

    Hardware provider wire systems and current wire insulation issues for the International Space Station (ISS) program are discussed in this viewgraph presentation. Wire insulation issues include silicone wire contamination, Tefzel cold temperature flexibility, and Russian polyimide wire insulation. ISS is a complex program with hardware developed and managed by many countries and hundreds of contractors. Most of the obvious wire insulation issues are known by contractors and have been precluded by proper selection.

  9. Generation and Analysis of Wire Rope Digital Radiographic Images

    NASA Astrophysics Data System (ADS)

    Chakhlov, S.; Anpilogov, P.; Batranin, A.; Osipov, S.; Zhumabekova, Sh; Yadrenkin, I.

    2016-06-01

    The paper is dealt with different structures of the digital radiographic system intended for wire rope radiography. The scanning geometry of the wire rope is presented and the main stages of its digital radiographic image generation are identified herein. Correction algorithms are suggested for X-ray beam hardening. A complex internal structure of the wire rope is illustrated by its 25 mm diameter image obtained from X-ray computed tomography. The paper considers the approach to the analysis of digital radiographic image algorithms based on the closeness of certain parameters (invariants) of all unit cross-sections of the reference wire rope or its sections with the length equaling to the lay. The main invariants of wire rope radiographic images are identified and compared with its typical defects.

  10. Strain tolerant microfilamentary superconducting wire

    DOEpatents

    Finnemore, D.K.; Miller, T.A.; Ostenson, J.E.; Schwartzkopf, L.A.; Sanders, S.C.

    1993-02-23

    A strain tolerant microfilamentary wire capable of carrying superconducting currents is provided comprising a plurality of discontinuous filaments formed from a high temperature superconducting material. The discontinuous filaments have a length at least several orders of magnitude greater than the filament diameter and are sufficiently strong while in an amorphous state to withstand compaction. A normal metal is interposed between and binds the discontinuous filaments to form a normal metal matrix capable of withstanding heat treatment for converting the filaments to a superconducting state. The geometry of the filaments within the normal metal matrix provides substantial filament-to-filament overlap, and the normal metal is sufficiently thin to allow supercurrent transfer between the overlapped discontinuous filaments but is also sufficiently thick to provide strain relief to the filaments.

  11. Next Generation Wiring

    NASA Technical Reports Server (NTRS)

    Medelius, Petro; Jolley, Scott; Fitzpatrick, Lilliana; Vinje, Rubiela; Williams, Martha; Clayton, LaNetra; Roberson, Luke; Smith, Trent; Santiago-Maldonado, Edgardo

    2007-01-01

    Wiring is a major operational component on aerospace hardware that accounts for substantial weight and volumetric space. Over time wire insulation can age and fail, often leading to catastrophic events such as system failure or fire. The next generation of wiring must be reliable and sustainable over long periods of time. These features will be achieved by the development of a wire insulation capable of autonomous self-healing that mitigates failure before it reaches a catastrophic level. In order to develop a self-healing insulation material, three steps must occur. First, methods of bonding similar materials must be developed that are capable of being initiated autonomously. This process will lead to the development of a manual repair system for polyimide wire insulation. Second, ways to initiate these bonding methods that lead to materials that are similar to the primary insulation must be developed. Finally, steps one and two must be integrated to produce a material that has no residues from the process that degrades the insulating properties of the final repaired insulation. The self-healing technology, teamed with the ability to identify and locate damage, will greatly improve reliability and safety of electrical wiring of critical systems. This paper will address these topics, discuss the results of preliminary testing, and remaining development issues related to self-healing wire insulation.

  12. Orbiter Kapton wire operational requirements and experience

    NASA Technical Reports Server (NTRS)

    Peterson, R. V.

    1994-01-01

    The agenda of this presentation includes the Orbiter wire selection requirements, the Orbiter wire usage, fabrication and test requirements, typical wiring installations, Kapton wire experience, NASA Kapton wire testing, summary, and backup data.

  13. On the formation of silicon wires produced by high-energy ion irradiation

    NASA Astrophysics Data System (ADS)

    Dang, Z. Y.; Song, J.; Azimi, S.; Breese, M. B. H.; Forneris, J.; Vittone, E.

    2013-02-01

    We present a detailed study of simulated and experimentally observed factors which influence the formation of wires in p-type silicon which is irradiated with a high energy, small diameter proton beam, and subsequently electrochemically etched in dilute hydrofluoric acid. A better understanding of the variety of factors influencing wire formation enables a better control of their size, gap between adjacent wires and shape. This addresses a previous limitation in fabricating such structures, such as uncontrollable wire shape and undefined minimum gaps. Furthermore it removes limitations in their application in photonics, such as the difficulty in coupling light between adjacent waveguides, a smearing of the band gap of photonic crystals due to imperfect periodicity, and difficulty in moving the photonic band gap towards near infra-red range. Therefore, the present work allows better control in fabricating components for three dimensional silicon machining and silicon photonics using ion irradiation in conjunction with electrochemical etching.

  14. Photon-photon collisions

    SciTech Connect

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e..gamma.. scattering. Considerable work has now been accumulated on resonance production by ..gamma gamma.. collisions. Preliminary high statistics studies of the photon structure function F/sub 2//sup ..gamma../(x,Q/sup 2/) are given and comments are made on the problems that remain to be solved.

  15. Development of the Cylindrical Wire Electrical Discharge Machining Process.

    SciTech Connect

    McSpadden, SB

    2002-01-22

    Results of applying the wire Electrical Discharge Machining (EDM) process to generate precise cylindrical forms on hard, difficult-to-machine materials are presented. A precise, flexible, and corrosion-resistant underwater rotary spindle was designed and added to a conventional two-axis wire EDM machine to enable the generation of free-form cylindrical geometries. A detailed spindle error analysis identifies the major source of error at different frequency. The mathematical model for the material removal of cylindrical wire EDM process is derived. Experiments were conducted to explore the maximum material removal rate for cylindrical and 2D wire EDM of carbide and brass work-materials. Compared to the 2D wire EDM, higher maximum material removal rates may be achieved in the cylindrical wire EDM. This study also investigates the surface integrity and roundness of parts created by the cylindrical wire EDM process. For carbide parts, an arithmetic average surface roughness and roundness as low as 0.68 and 1.7 {micro}m, respectively, can be achieved. Surfaces of the cylindrical EDM parts were examined using Scanning Electron Microscopy (SEM) to identify the craters, sub-surface recast layers and heat-affected zones under various process parameters. This study has demonstrated that the cylindrical wire EDM process parameters can be adjusted to achieve either high material removal rate or good surface integrity.

  16. Dual wire weld feed proportioner

    NASA Technical Reports Server (NTRS)

    Nugent, R. E.

    1968-01-01

    Dual feed mechanism enables proportioning of two different weld feed wires during automated TIG welding to produce a weld alloy deposit of the desired composition. The wires are fed into the weld simultaneously. The relative feed rates of the wires and the wire diameters determine the weld deposit composition.

  17. Second quantization model for surface plasmon polariton in metallic nano wires

    NASA Astrophysics Data System (ADS)

    Thi Phuong Lan, Nguyen; Thi Nga, Do; Viet, Nguyen Ai

    2016-06-01

    A model of effective Hamiltonian is proposed in second quantization representation for system of surface plasmons and photon (polariton) in metallic nano wires. The dispersion relation curves of surface plasmon polariton was calculated by mean of the Bogoliubov diagonalization method. The surface plasmon photon vertexes are considered. The conditions for excitation surface plasmon, existence plasmon radiate modes, and a possible application of metallic nano wires were also discussed.

  18. Deterministic photon-emitter coupling in chiral photonic circuits

    NASA Astrophysics Data System (ADS)

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  19. Deterministic photon-emitter coupling in chiral photonic circuits.

    PubMed

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light. PMID:26214251

  20. Splicing Wires Permanently With Explosives

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Kushnick, Anne C.

    1990-01-01

    Explosive joining process developed to splice wires by enclosing and metallurgically bonding wires within copper sheets. Joints exhibit many desirable characteristics, 100-percent conductivity and strength, no heat-induced annealing, no susceptibility to corrosion in contacts between dissimilar metals, and stability at high temperature. Used to join wires to terminals, as well as to splice wires. Applicable to telecommunications industry, in which millions of small wires spliced annually.

  1. Photon-photon collisions

    SciTech Connect

    Brodsky, S.J.

    1988-07-01

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  2. The study of hard x-ray emission and electron beam generation in wire array Z-pinch and X-pinch plasmas at university-scale generators

    NASA Astrophysics Data System (ADS)

    Shrestha, Ishor Kumar

    The studies of hard x-ray (HXR) emission and electron beam generation in Z-pinch plasmas are very important for Inertial Confinement Fusion (ICF) research and HXR emission application for sources of K-shell and L-shell radiation. Energetic electron beams from Z-pinch plasmas are potentially a problem in the development of ICF. The electron beams and the accompanying HXR emission can preheat the fuel of a thermonuclear target, thereby preventing the fuel compression from reaching densities required for the ignition of a fusion reaction. The photons above 3-4 keV radiated from a Z pinch can provide detailed information about the high energy density plasmas produced at stagnation. Hence, the investigation of characteristics of hard x-rays and electron beams produced during implosions of wire array loads on university scale-generators may provide important data for future ICF, sources of K-shell and L-shell radiations and basic plasma research. This dissertation presents the results of experimental studies of HXR and electron beam generation in wire-array and X-pinch on the 1.7 MA, 100-ns current rise time Zebra generator at University of Nevada, Reno and 1-MA 100-ns current rise-time Cornell Beam Research Accelerator (COBRA) at Cornell University. The experimental study of characteristics of HXR produced by multi-planar wire arrays, compact cylindrical wire array (CCWA) and nested cylindrical wire array (NCWA) made from Al, Cu, Mo, Ag, W and Au were analyzed. The dependence of the HXR yield and power on geometry of the load, the wire material, and load mass was observed. The presence of aluminum wires in the load with the main material such as stainless steel, Cu, Mo, Ag, W or Au in combined wire array decreases HXR yield. The comparison of emission characteristics of HXR and generation of electron beams in CCWA and NCWA on both the high impedance Zebra generator and low impedance COBRA generator were investigated. Some of the "cold" K- shell spectral lines (0.7-2.3

  3. Optically defined mechanical geometry

    NASA Astrophysics Data System (ADS)

    Barasheed, Abeer Z.; Müller, Tina; Sankey, Jack C.

    2016-05-01

    In the field of optomechanics, radiation forces have provided a particularly high level of control over the frequency and dissipation of mechanical elements. Here we propose a class of optomechanical systems in which light exerts a similarly profound influence over two other fundamental parameters: geometry and mass. By applying an optical trap to one lattice site of an extended phononic crystal, we show it is possible to create a tunable, localized mechanical mode. Owing to light's simultaneous and constructive coupling with the structure's continuum of modes, we estimate that a trap power at the level of a single intracavity photon should be capable of producing a significant effect within a realistic, chip-scale device.

  4. Miniaturized Linear Wire Ion Trap Mass Analyzer.

    PubMed

    Wu, Qinghao; Li, Ailin; Tian, Yuan; Zare, Richard N; Austin, Daniel E

    2016-08-01

    We report a linear ion trap (LIT) in which the electric field is formed by fine wires held under tension and accurately positioned using holes drilled in two end plates made of plastic. The coordinates of the hole positions were optimized in simulation. The stability diagram and mass spectra using boundary ejection were compared between simulation and experiment and good agreement was found. The mass spectra from experiments show peak widths (fwhm) in units of mass-to-charge of around 0.38 Th using a scan rate of 3830 Th/s. The limits of detection are 137 ppbv and 401 ppbv for benzene and toluene, respectively. Different sizes of the wire ion trap can be easily fabricated by drilling holes in scaled positions. Other distinguishing features, such as high ion and photon transmission, low capacitance, high tolerance to mechanical and assembly error, and low weight, are discussed. PMID:27373557

  5. Optimization of electron beam crosslinking of wire and cable insulation

    NASA Astrophysics Data System (ADS)

    Zimek, Zbigniew; Przybytniak, Grażyna; Nowicki, Andrzej

    2012-09-01

    The computer simulations based on Monte Carlo (MC) method and the ModeCEB software were carried out in connection with electron beam (EB) radiation set-up for crosslinking of electric wire and cable insulation. The theoretical predictions for absorbed dose distribution in irradiated electric insulation induced by scanned EB were compared to the experimental results of irradiation that was carried out in the experimental set-up based on ILU 6 electron accelerator with electron energy 0.5-2.0 MeV. The computer simulation of the dose distributions in two-sided irradiation system by a scanned electron beam in multilayer circular objects was performed for various process parameters, namely electric wire and cable geometry (thickness of insulation layers and copper wire diameter), type of polymer insulation, electron energy, energy spread and geometry of electron beam, electric wire and cable layout in irradiation zone. The geometry of electron beam distribution in the irradiation zone was measured using CTA and PVC foil dosimeters for available electron energy range. The temperature rise of the irradiated electric wire and irradiation homogeneity were evaluated for different experimental conditions to optimize technological process parameters. The results of computer simulation are consistent with the experimental data of dose distribution evaluated by gel-fraction measurements. Such conformity indicates that ModeCEB computer simulation is reliable and sufficient for optimization absorbed dose distribution in the multi-layer circular objects irradiated with scanned electron beams.

  6. IR photodetector based on rectangular quantum wire in magnetic field

    SciTech Connect

    Jha, Nandan

    2014-04-24

    In this paper we study rectangular quantum wire based IR detector with magnetic field applied along the wires. The energy spectrum of a particle in rectangular box shows level repulsions and crossings when external magnetic field is applied. Due to this complex level dynamics, we can tune the spacing between any two levels by varying the magnetic field. This method allows user to change the detector parameters according to his/her requirements. In this paper, we numerically calculate the energy sub-band levels of the square quantum wire in constant magnetic field along the wire and quantify the possible operating wavelength range that can be obtained by varying the magnetic field. We also calculate the photon absorption probability at different magnetic fields and give the efficiency for different wavelengths if the transition is assumed between two lowest levels.

  7. Wire brush fastening device

    SciTech Connect

    Meigs, R.A.

    1993-08-31

    A fastening device is provided which is a variation on the conventional nut and bolt. The bolt has a longitudinal axis and threading helically affixed thereon along the longitudinal axis. A nut having a bore extending therethrough is provided. The bore of the nut has a greater diameter than the diameter of the bolt so the bolt can extend through the bore. An array of wire bristles are affixed within the bore so as to form a brush. The wire bristles extend inwardly from the bore and are constructed and arranged of the correct size, length and stiffness to guide the bolt within the bore and to restrain the bolt within the bore as required. A variety of applications of the wire brush nut are disclosed, including a bolt capture device and a test rig apparatus.

  8. Wire brush fastening device

    DOEpatents

    Meigs, Richard A.

    1995-01-01

    A fastening device is provided which is a variation on the conventional nut and bolt. The bolt has a longitudinal axis and threading helically affixed thereon along the longitudinal axis. A nut having a bore extending therethrough is provided. The bore of the nut has a greater diameter than the diameter of the bolt so the bolt can extend through the bore. An array of wire bristles are affixed within the bore so as to form a brush. The wire bristles extend inwardly from the bore and are constructed and arranged of the correct size, length and stiffness to guide the bolt within the bore and to restrain the bolt within the bore as required. A variety of applications of the wire brush nut are disclosed, including a bolt capture device and a test rig apparatus.

  9. Wire brush fastening device

    DOEpatents

    Meigs, R.A.

    1995-09-19

    A fastening device is provided which is a variation on the conventional nut and bolt. The bolt has a longitudinal axis and threading helically affixed thereon along the longitudinal axis. A nut having a bore extending therethrough is provided. The bore of the nut has a greater diameter than the diameter of the bolt so the bolt can extend through the bore. An array of wire bristles are affixed within the bore so as to form a brush. The wire bristles extend inwardly from the bore and are constructed and arranged of the correct size, length and stiffness to guide the bolt within the bore and to restrain the bolt within the bore as required. A variety of applications of the wire brush nut are disclosed, including a bolt capture device and a test rig apparatus. 13 figs.

  10. Dielectric coated wire antennas

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.; Newman, E. H.

    1976-01-01

    An electrically thin dielectric insulating shell on an antenna composed of electrically thin circular cylindrical wires is examined. A moment method solution is obtained, and the insulating shell is modeled by equivalent volume polarization currents. These polarization currents are related in a simple manner to the surface charge density on the wire antenna. In this way the insulating shell causes no new unknowns to be introduced, and the size of the impedance matrix is the same as for the uninsulated wires. The insulation is accounted for entirely through a modification of the symmetric impedance matrix. This modification influences the current distribution, impedance, efficiency, field patterns, and scattering properties. The theory is compared with measurement for dielectric coated antennas in air.

  11. 2. TYPICAL OVERHEAD WIRE CONSTRUCTION CURVE GUY WIRE ARRANGEMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. TYPICAL OVERHEAD WIRE CONSTRUCTION - CURVE GUY WIRE ARRANGEMENT (ABANDONED WEST LEG OF WYE AT SIXTH AVENUE AND PINE STREET) - Yakima Valley Transportation Company Interurban Railroad, Trackage, Yakima, Yakima County, WA

  12. Flying wires at Fermilab

    SciTech Connect

    Gannon, J.; Crawford, C.; Finley, D.; Flora, R.; Groves, T.; MacPherson, M.

    1989-03-01

    Transverse beam profile measurement systems called ''Flying Wires'' have been installed and made operational in the Fermilab Main Ring and Tevatron accelerators. These devices are used routinely to measure the emittance of both protons and antiprotons throughout the fill process, and for emittance growth measurements during stores. In the Tevatron, the individual transverse profiles of six proton and six antiproton bunches are obtained simultaneously, with a single pass of the wire through the beam. Essential features of the hardware, software, and system operation are explained in the rest of the paper. 3 refs., 4 figs.

  13. Synthetic Landau levels for photons

    NASA Astrophysics Data System (ADS)

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-06-01

    Synthetic photonic materials are an emerging platform for exploring the interface between microscopic quantum dynamics and macroscopic material properties. Photons experiencing a Lorentz force develop handedness, providing opportunities to study quantum Hall physics and topological quantum science. Here we present an experimental realization of a magnetic field for continuum photons. We trap optical photons in a multimode ring resonator to make a two-dimensional gas of massive bosons, and then employ a non-planar geometry to induce an image rotation on each round-trip. This results in photonic Coriolis/Lorentz and centrifugal forces and so realizes the Fock–Darwin Hamiltonian for photons in a magnetic field and harmonic trap. Using spatial- and energy-resolved spectroscopy, we track the resulting photonic eigenstates as radial trapping is reduced, finally observing a photonic Landau level at degeneracy. To circumvent the challenge of trap instability at the centrifugal limit, we constrain the photons to move on a cone. Spectroscopic probes demonstrate flat space (zero curvature) away from the cone tip. At the cone tip, we observe that spatial curvature increases the local density of states, and we measure fractional state number excess consistent with the Wen–Zee theory, providing an experimental test of this theory of electrons in both a magnetic field and curved space. This work opens the door to exploration of the interplay of geometry and topology, and in conjunction with Rydberg electromagnetically induced transparency, enables studies of photonic fractional quantum Hall fluids and direct detection of anyons.

  14. Synthetic Landau levels for photons.

    PubMed

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-06-30

    Synthetic photonic materials are an emerging platform for exploring the interface between microscopic quantum dynamics and macroscopic material properties. Photons experiencing a Lorentz force develop handedness, providing opportunities to study quantum Hall physics and topological quantum science. Here we present an experimental realization of a magnetic field for continuum photons. We trap optical photons in a multimode ring resonator to make a two-dimensional gas of massive bosons, and then employ a non-planar geometry to induce an image rotation on each round-trip. This results in photonic Coriolis/Lorentz and centrifugal forces and so realizes the Fock–Darwin Hamiltonian for photons in a magnetic field and harmonic trap. Using spatial- and energy-resolved spectroscopy, we track the resulting photonic eigenstates as radial trapping is reduced, finally observing a photonic Landau level at degeneracy. To circumvent the challenge of trap instability at the centrifugal limit, we constrain the photons to move on a cone. Spectroscopic probes demonstrate flat space (zero curvature) away from the cone tip. At the cone tip, we observe that spatial curvature increases the local density of states, and we measure fractional state number excess consistent with the Wen–Zee theory, providing an experimental test of this theory of electrons in both a magnetic field and curved space. This work opens the door to exploration of the interplay of geometry and topology, and in conjunction with Rydberg electromagnetically induced transparency, enables studies of photonic fractional quantum Hall fluids and direct detection of anyons. PMID:27281214

  15. Photonic Crystal Laser Accelerator Structures

    SciTech Connect

    Cowan, Benjamin M

    2003-05-21

    Photonic crystals have great potential for use as laser-driven accelerator structures. A photonic crystal is a dielectric structure arranged in a periodic geometry. Like a crystalline solid with its electronic band structure, the modes of a photonic crystal lie in a set of allowed photonic bands. Similarly, it is possible for a photonic crystal to exhibit one or more photonic band gaps, with frequencies in the gap unable to propagate in the crystal. Thus photonic crystals can confine an optical mode in an all-dielectric structure, eliminating the need for metals and their characteristic losses at optical frequencies. We discuss several geometries of photonic crystal accelerator structures. Photonic crystal fibers (PCFs) are optical fibers which can confine a speed-of-light optical mode in vacuum. Planar structures, both two- and three-dimensional, can also confine such a mode, and have the additional advantage that they can be manufactured using common microfabrication techniques such as those used for integrated circuits. This allows for a variety of possible materials, so that dielectrics with desirable optical and radiation-hardness properties can be chosen. We discuss examples of simulated photonic crystal structures to demonstrate the scaling laws and trade-offs involved, and touch on potential fabrication processes.

  16. Possibility to measure elastic photon-photon scattering in vacuum

    SciTech Connect

    Eriksson, Daniel; Brodin, Gert; Stenflo, Lennart; Marklund, Mattias

    2004-07-01

    Photon-photon scattering in vacuum due to the interaction with virtual electron-positron pairs is a consequence of quantum electrodynamics. A way for detecting this phenomenon has been devised based on interacting modes generated in microwave wave guides or cavities [G. Brodin, M. Marklund, and L. Stenflo, Phys. Rev. Lett. 87, 171801 (2001)]. Here we materialize these ideas, suggest a concrete cavity geometry, make quantitative estimates and propose experimental details. It is found that detection of photon-photon scattering can be within the reach of present day technology.

  17. Wiring for space applications program

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad

    1994-01-01

    The insulation testing and analysis consists of: identifying and prioritizing NASA wiring requirements; selecting candidate wiring constructions; developing test matrix and formulating test program; managing, coordinating, and conducting tests; and analyzing and documenting data, establishing guidelines and recommendations.

  18. NewsWire, 2002.

    ERIC Educational Resources Information Center

    Byrom, Elizabeth, Ed.; Bingham, Margaret, Ed.; Bowman, Gloria, Ed.; Shoemaker, Dan, Ed.

    2002-01-01

    This document presents the 3 2002 issues of the newsletter "NewsWire," (volume 5). Issue Number One focuses on collaborative Web projects. This issue begins with descriptions of four individual projects: "iEARN"; "Operation RubyThroat"; "Follow the Polar Huskies!"; and "Log in Your Animal Roadkill!" Features that follow include: "Bringing the…

  19. Basic Wiring. Second Edition.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; And Others

    This guide is designed to assist teachers conducting a foundation course to prepare students for additional courses of training for entry-level employment in either the residential or commercial and industrial wiring trades. Included in the guide are 17 instructional units and the following sections of information for teachers: guidelines in using…

  20. Improved wire chamber

    DOEpatents

    Atac, M.

    1987-05-12

    An improved gas mixture for use with proportional counter devices, such as Geiger-Mueller tubes and drift chambers. The improved gas mixture provides a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor. 2 figs.

  1. Caroviologens: Towards molecular wires

    NASA Astrophysics Data System (ADS)

    Blanchard-Desce, M.; Arrhenius, T. S.; Dvolaïtzky, M.; Kugimiya, S.-I.; Lazrak, T.; Lehn, J.-M.

    1992-07-01

    Bispyridinium conjugated polyenes of different lengths and charges have been synthesized. Since they combine the features of carotenoids and of viologens, they have been termed caroviologens. Such molecules, possessing an extended conjugated chain fitted with polar electroactive endgroups, and having a length sufficient to span a lipid membrane could function as transmembrane electron channels, i.e., as molecular wires.

  2. A World without Wires

    ERIC Educational Resources Information Center

    Panettieri, Joseph C.

    2006-01-01

    The wireless bandwagon is rolling across Mississippi, picking up a fresh load of converts and turning calamity into opportunity. Traditional wired school networks, many of which unraveled during Hurricane Katrina, are giving way to advanced wireless mesh networks that frequently include voice-over-IP (VoIP) capabilities. Vendor funding is helping…

  3. Residential Wiring. Second Edition.

    ERIC Educational Resources Information Center

    Taylor, Mark; And Others

    This guide is designed to assist teachers conducting a course to prepare students for entry-level employment in the residential wiring trade. Included in the guide are six instructional units and the following sections of information for teachers: guidelines in using the unit components; academic and workplace skills classifications and…

  4. Easily-wired toggle switch

    NASA Technical Reports Server (NTRS)

    Dean, W. T.; Stringer, E. J.

    1979-01-01

    Crimp-type connectors reduce assembly and disassembly time. With design, no switch preparation is necessary and socket contracts are crimped to wires inserted in module attached to back of toggle switch engaging pins inside module to make electrical connections. Wires are easily removed with standard detachment tool. Design can accommodate wires of any gage and as many terminals can be placed on switch as wire gage and switch dimensions will allow.

  5. Wire EDM for Refractory Materials

    NASA Technical Reports Server (NTRS)

    Zellars, G. R.; Harris, F. E.; Lowell, C. E.; Pollman, W. M.; Rys, V. J.; Wills, R. J.

    1982-01-01

    In an attempt to reduce fabrication time and costs, Wire Electrical Discharge Machine (Wire EDM) method was investigated as tool for fabricating matched blade roots and disk slots. Eight high-strength nickel-base superalloys were used. Computer-controlled Wire EDM technique provided high quality surfaces with excellent dimensional tolerances. Wire EDM method offers potential for substantial reductions in fabrication costs for "hard to machine" alloys and electrically conductive materials in specific high-precision applications.

  6. Photon-photon collisions

    SciTech Connect

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of ..cap alpha../sub s/ and ..lambda../sup ms/ from the ..gamma..*..gamma.. ..-->.. ..pi../sup 0/ form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from ..gamma gamma.. ..-->.. H anti H, reconstruction of sigma/sub ..gamma gamma../ from exclusive channels at low W/sub ..gamma gamma../, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z/sup 0/ and W/sup + -/ beams from e ..-->.. eZ/sup 0/ and e ..-->.. nu W will become important. 44 references.

  7. 1997 wire development workshop: Proceedings

    SciTech Connect

    1997-04-01

    This conference is divided into the following sections: (1) First Generation Wires I; (2) First Generation Wires II; (3) Coated conductors I; and (4) Coated conductors II. Applications of the superconducting wires include fault current limiters, superconducting motors, transformers, and power transmission lines.

  8. Production of hot-wires

    NASA Astrophysics Data System (ADS)

    Dickinson, S. C.

    1983-04-01

    Several methods for producing hot-wire probes are described. Discussion includes the manufacture of probe bodies, soldering plated wires to the prongs etching Walaston type wires, and finishing the probe. This report is written as an instruction manual for researchers who desire to produce or repair their own sensors.

  9. Corrosion and embrittlement of high-strength steel bridge wires

    NASA Astrophysics Data System (ADS)

    Vermaas, Garry Wayne

    Suspension bridge cable inspections have revealed severely corroded and broken wires in some main cables. Accelerated cyclic corrosion studies were conducted to assess the relative effect of corrosion on high-strength steel bridge wire. Galvanized and ungalvanized wire samples were corroded under various levels of sustained loads in a cabinet that cyclically applied an acidic salt spray, dry conditions, and 100% relative humidity at elevated temperature. Mass loss, hydrogen concentration, ultimate load, and elongation at failure were measured for corroded and uncorroded samples. Elongation measurements indicated a significant embrittlement of the wires that could not be explained only by the presence of absorbed hydrogen (hydrogen embrittlement). The main cause of reduction of wire elongation was found to be the surface irregularities induced by the corrosion process. The corrosion process in a high-strength steel wire was modeled and analyzed using finite element methods. Forty-one separate FEM tests were run and this data was compared to the experimental data. In addition, for the purpose of comparison, a previously developed hydrogen embrittlement model was analyzed and its validity was discussed in detail. SEM photographs of the fracture surfaces were taken and possible causes and mechanisms of fracture were suggested by observations of the fracture morphology. It was shown through this experimental and numerical research work that the geometry of the wire, determined by the amount of corrosion, pitting, and surface irregularities, controls the ultimate elongation of the wire sample, as also confirmed by the SEM analysis of the fracture surfaces. It was also shown that, using a generally accepted hydrogen embrittlement model, there is no evidence that hydrogen embrittlement is occurring, or at least that hydrogen evolution is not the controlling factor in the loss of wire's ductility.

  10. Ionization coefficient approach to modeling breakdown in nonuniform geometries.

    SciTech Connect

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Nicolaysen, Scott D.

    2003-11-01

    This report summarizes the work on breakdown modeling in nonuniform geometries by the ionization coefficient approach. Included are: (1) fits to primary and secondary ionization coefficients used in the modeling; (2) analytical test cases for sphere-to-sphere, wire-to-wire, corner, coaxial, and rod-to-plane geometries; a compilation of experimental data with source references; comparisons between code results, test case results, and experimental data. A simple criterion is proposed to differentiate between corona and spark. The effect of a dielectric surface on avalanche growth is examined by means of Monte Carlo simulations. The presence of a clean dry surface does not appear to enhance growth.

  11. WIRED — World Wide Web interactive remote event display

    NASA Astrophysics Data System (ADS)

    Ballaminut, A.; Colonello, C.; Dönszelmann, M.; van Herwijnen, E.; Köper, D.; Korhonen, J.; Litmaath, M.; Perl, J.; Theodorou, A.; Whiteson, D.; Wolff, E.

    2001-10-01

    WIRED ( http://wired.cern.ch/) is a framework, written in Java, to build High Energy Physics event displays that can be used across the network. To guarantee portability across all platforms, WIRED is implemented in the Java language and uses the Swing user interface component set. It can be used as a stand-alone application or as an applet inside a WWW browser. The graphical user interface allows for multiple views and for multiple controls acting on those views. A detector tree control is available to toggle the visibility of parts of the events and detector geometry. XML (Extensible Markup Language), RMI (Remote Method Invocation) and CORBA loaders can be used to load event data as well as geometry data, and to connect to FORTRAN, C, C++ and Java reconstruction programs. Non-linear and non-Cartesian projections (e.g., fisheye, ρ- φ, ρ- Z, φ- Z) provide special views to get a better understanding of events. A special Java interpreter allows physicists to write small scripts to interact with their data and its display. WIRED has grown to be a framework in use and under development in several HEP experiments (ATLAS, CHORUS, DELPHI, LHCb, BaBar, D0 and ZEUS). WIRED event displays have also proven to be useful to explain High Energy Physics to the general public. Both CERN, in its traveling exhibition and MicroCosm, and RAL, during its open days, have displays set up.

  12. Optoelectronic analysis of multijunction wire array solar cells

    NASA Astrophysics Data System (ADS)

    Turner-Evans, Daniel B.; Chen, Christopher T.; Emmer, Hal; McMahon, William E.; Atwater, Harry A.

    2013-07-01

    Wire arrays have demonstrated promising photovoltaic performance as single junction solar cells and are well suited to defect mitigation in heteroepitaxy. These attributes can combine in tandem wire array solar cells, potentially leading to high efficiencies. Here, we demonstrate initial growths of GaAs on Si0.9Ge0.1 structures and investigate III-V on Si1-xGex device design with an analytical model and optoelectronic simulations. We consider Si0.1Ge0.9 wires coated with a GaAs0.9P0.1 shell in three different geometries: conformal, hemispherical, and spherical. The analytical model indicates that efficiencies approaching 34% are achievable with high quality materials. Full field electromagnetic simulations serve to elucidate the optical loss mechanisms and demonstrate light guiding into the wire core. Simulated current-voltage curves under solar illumination reveal the impact of a varying GaAs0.9P0.1 minority carrier lifetime. Finally, defective regions at the hetero-interface are shown to have a negligible effect on device performance if highly doped so as to serve as a back surface field. Overall, the growths and the model demonstrate the feasibility of the proposed geometries and can be used to guide tandem wire array solar cell designs.

  13. Silver-sheathed multifilament wires

    NASA Astrophysics Data System (ADS)

    Wu, C. T.; Goretta, K. C.; Shi, D.; Lanagan, M. T.; Poeppel, R. B.

    1991-01-01

    The process for manufacturing Ag-sheathed multifilament superconducting wires was investigated. Bi2Sr(1.7)CaCu2O(x), Pb-doped Bi2Sr2Ca2Cu3O(x), or YBa2Cu3O(x) powders were packed into Ag tubes and swaged into long wires. Pieces were cut from each wire, packed into a second Ag tube and swaged or rolled into multifilament wires. Each wire was then sintered to produce a superconductor. Processing considerations included the sheath workability, effects of compacting and residual stresses, and heat treatment schedules. The superconducting properties of the Bi-based wires were superior to those of the YBa2Cu3O(x) wires at 4.2 K, but not at 77 K.

  14. Two-dimensional metal-glass photonic crystal

    NASA Astrophysics Data System (ADS)

    Pysz, Dariusz; Kujawa, Ireneusz; Stępień, Ryszard; Dominiak, Radosław; Pniewski, Jacek; Szoplik, Tomasz

    2007-04-01

    We present recent achievements in fabricating a two-dimensional (2D) photonic crystal in the form of a bundle of parallel micro- or nanowires embedded in glass matrix. The method is similar to that of sequential thinning used for fabrication of photonic crystal fibers. We discuss technological issues that aim at preservation of regularity of photonic crystal lattice and uniformity of wire diameters. Proper selection of a melting point of metal alloy and the range of temperatures of glass viscosity leads to reduction of regularity losses resulting from sequential processes of drawing. Measured distributions of crystal lattices, wire diameters and shapes of wires are used to simulate photonic band structure of fabricated crystals. This work is directed toward fabrication of a photonic crystal showing the negative refraction in the near infrared and visible spectral range.

  15. From wires to cosmology

    NASA Astrophysics Data System (ADS)

    Amin, Mustafa A.; Baumann, Daniel

    2016-02-01

    We provide a statistical framework for characterizing stochastic particle production in the early universe via a precise correspondence to current conduction in wires with impurities. Our approach is particularly useful when the microphysics is uncertain and the dynamics are complex, but only coarse-grained information is of interest. We study scenarios with multiple interacting fields and derive the evolution of the particle occupation numbers from a Fokker-Planck equation. At late times, the typical occupation numbers grow exponentially which is the analog of Anderson localization for disordered wires. Some statistical features of the occupation numbers show hints of universality in the limit of a large number of interactions and/or a large number of fields. For test cases, excellent agreement is found between our analytic results and numerical simulations.

  16. Dental Arch Wire

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Straightening teeth is an arduous process requiring months, often years, of applying corrective pressure by means of arch wires-better known as brace-which may have to be changed several times in the course of treatment. A new method has been developed by Dr. George Andreasen, orthodontist and dental scientist at the University of Iowa. The key is a new type of arch wire material, called Nitinol, with exceptional elasticity which helps reduce the required number of brace changes. An alloy of nickel and titanium, Nitinol was originally developed for aerospace applications by the Naval Ordnance Laboratory, now the Naval Surface Weapons Laboratory, White Oaks, Maryland. NASA subsequently conducted additional research on the properties of Nitinol and on procedures for processing the metal.

  17. Wire insulation defect detector

    NASA Technical Reports Server (NTRS)

    Greulich, Owen R. (Inventor)

    2004-01-01

    Wiring defects are located by detecting a reflected signal that is developed when an arc occurs through the defect to a nearby ground. The time between the generation of the signal and the return of the reflected signal provides an indication of the distance of the arc (and therefore the defect) from the signal source. To ensure arcing, a signal is repeated at gradually increasing voltages while the wire being tested and a nearby ground are immersed in a conductive medium. In order to ensure that the arcing occurs at an identifiable time, the signal whose reflection is to be detected is always made to reach the highest potential yet seen by the system.

  18. Wiring for aerospace applications

    NASA Technical Reports Server (NTRS)

    Christian, J. L., Jr.; Dickman, J. E.; Bercaw, R. W.; Myers, I. T.; Hammoud, A. N.; Stavnes, M.; Evans, J.

    1992-01-01

    In this paper, the authors summarize the current state of knowledge of arc propagation in aerospace power wiring and efforts by the National Aeronautics and Space Administration (NASA) towards the understanding of the arc tracking phenomena in space environments. Recommendations will be made for additional testing. A database of the performance of commonly used insulating materials will be developed to support the design of advanced high power missions, such as Space Station Freedom and Lunar/Mars Exploration.

  19. Plated wire memory subsystem

    NASA Technical Reports Server (NTRS)

    Reynolds, L.; Tweed, H.

    1972-01-01

    The work performed entailed the design, development, construction and testing of a 4000 word by 18 bit random access, NDRO plated wire memory for use in conjunction with a spacecraft imput/output unit and central processing unit. The primary design parameters, in order of importance, were high reliability, low power, volume and weight. A single memory unit, referred to as a qualification model, was delivered.

  20. Wire Array Solar Cells: Fabrication and Photoelectrochemical Studies

    NASA Astrophysics Data System (ADS)

    Spurgeon, Joshua Michael

    Despite demand for clean energy to reduce our addiction to fossil fuels, the price of these technologies relative to oil and coal has prevented their widespread implementation. Solar energy has enormous potential as a carbon-free resource but is several times the cost of coal-produced electricity, largely because photovoltaics of practical efficiency require high-quality, pure semiconductor materials. To produce current in a planar junction solar cell, an electron or hole generated deep within the material must travel all the way to the junction without recombining. Radial junction, wire array solar cells, however, have the potential to decouple the directions of light absorption and charge-carrier collection so that a semiconductor with a minority-carrier diffusion length shorter than its absorption depth (i.e., a lower quality, potentially cheaper material) can effectively produce current. The axial dimension of the wires is long enough for sufficient optical absorption while the charge-carriers are collected along the shorter radial dimension in a massively parallel array. This thesis explores the wire array solar cell design by developing potentially low-cost fabrication methods and investigating the energy-conversion properties of the arrays in photoelectrochemical cells. The concept was initially investigated with Cd(Se, Te) rod arrays; however, Si was the primary focus of wire array research because its semiconductor properties make low-quality Si an ideal candidate for improvement in a radial geometry. Fabrication routes for Si wire arrays were explored, including the vapor-liquid-solid growth of wires using SiCl4. Uniform, vertically aligned Si wires were demonstrated in a process that permits control of the wire radius, length, and spacing. A technique was developed to transfer these wire arrays into a low-cost, flexible polymer film, and grow multiple subsequent arrays using a single Si(111) substrate. Photoelectrochemical measurements on Si wire array

  1. Making Superconducting Welds between Superconducting Wires

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Eom, Byeong Ho

    2008-01-01

    A technique for making superconducting joints between wires made of dissimilar superconducting metals has been devised. The technique is especially suitable for fabrication of superconducting circuits needed to support persistent electric currents in electromagnets in diverse cryogenic applications. Examples of such electromagnets include those in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) systems and in superconducting quantum interference devices (SQUIDs). Sometimes, it is desirable to fabricate different parts of a persistent-current-supporting superconducting loop from different metals. For example, a sensory coil in a SQUID might be made of Pb, a Pb/Sn alloy, or a Cu wire plated with Pb/Sn, while the connections to the sensory coil might be made via Nb or Nb/Ti wires. Conventional wire-bonding techniques, including resistance spot welding and pressed contact, are not workable because of large differences between the hardnesses and melting temperatures of the different metals. The present technique is not subject to this limitation. The present technique involves the use (1) of a cheap, miniature, easy-to-operate, capacitor-discharging welding apparatus that has an Nb or Nb/Ti tip and operates with a continuous local flow of gaseous helium and (2) preparation of a joint in a special spark-discharge welding geometry. In a typical application, a piece of Nb foil about 25 m thick is rolled to form a tube, into which is inserted a wire that one seeks to weld to the tube (see figure). The tube can be slightly crimped for mechanical stability. Then a spark weld is made by use of the aforementioned apparatus with energy and time settings chosen to melt a small section of the niobium foil. The energy setting corresponds to the setting of a voltage to which the capacitor is charged. In an experiment, the technique was used to weld an Nb foil to a copper wire coated with a Pb/Sn soft solder, which is superconducting. The joint was evaluated as

  2. Dual wire welding torch and method

    DOEpatents

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  3. Wire detecting apparatus and method

    SciTech Connect

    Kronberg, J.W.

    1991-12-31

    This invention is comprised of an apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receiver`s position with respect to the wiring. The receiver`s audible signal is strongest when the receiver is directly above the wiring and the long axis of the receiver`s coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring`s concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest.

  4. Manually Operated Welding Wire Feeder

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor)

    2001-01-01

    A manual welding wire feeder apparatus comprising a bendable elongate metal frame with a feed roller mounted at the center thereof for rotation about an axis transverse to the longitudinal axis of the frame. The frame ends are turned up as tabs and each provided with openings in alignment with each other and the mid-width center of the roller surface. The tab openings are sized to accommodate welding wire and each extends to a side edge of the tab, both opening on the same side of the frame, whereby welding wire can be side-loaded onto the frame. On the side of the frame, opposite the roller a lock ring handle is attached tangentially and is rotatable about the attachment point and an axis perpendicular to the frame. The device is grasped in the hand normally used to hold the wire. A finger is placed through the loop ring and the frame positioned across the palm and lower fingers. The thumb is positioned atop the wire so it can be moved from the back of the frame across the roller, and towards the front. In doing so, the wire is advanced at a steady rate in axial alignment with the tab openings and roller. To accommodate different wire diameters the frame is bendable about its center in the plane of the frame axis and wire so as to keep the wire in sufficient tension against the roller and to keep the wire fixed when the frame is tilted and thumb pressure released.

  5. Metering Wheel-Wire Track Wire Boom Deployment Mechanism

    NASA Technical Reports Server (NTRS)

    Granoff, Mark S.

    2014-01-01

    The NASA MMS Spin Plane Double Probe (SDP) Deployer utilizes a helical path, rotating Metering Wheel and a spring loaded Wire "Holding" Track to pay out a "fixed end" 57 meter x 1.5 mm diameter Wire Boom stored between concentric storage cylinders. Unlike rotating spool type storage devices, the storage cylinders remain stationary, and the boom wire is uncoiled along the length of the cylinder via the rotation of the Metering Wheel. This uncoiling action avoids the need for slip-ring contacts since the ends of the wire can remain stationary. Conventional fixed electrical connectors (Micro-D type) are used to terminate to operational electronics.

  6. Nanosilicon for Photonic Applications

    NASA Astrophysics Data System (ADS)

    Ghoshal, S. K.; Mohan, Devendra; Kassa, Tadesse Tenaw; Sharma, Sunita

    This presentation is a short review of some scientific insights on the possibilities of photonic applications of nanostructured silicon (NS-Si), porous Si (p-Si) and Si nanocrystals (NC-Si), one of the most interesting problems in nano-crystallite physics. The emission mechanism of a very bright photo-luminescence (PL) band and relatively weak electro-luminescence (EL) are presently the main issue. The basic question lies in whether the emission is an extrinsic or intrinsic property of nanocrystals. It is important from a fundamental physics viewpoint because of the potential application of Si wires and quantum dots in optoelectronic devices and information technology. Nanostructuring silicon is an effective way to turn silicon into a photonic material. It is observed that low-dimensional (one and two dimensions) silicon shows light amplification, photon confinement, photon trapping as well as non-linear optical effects. There is strong evidence of light localization and gas sensing properties of such nanostructures. Future nano-technology would replace electrical with optical interconnects, which has appealing potential for higher-speed performance and immunity to signal cross talk.

  7. Geometry in Medias Res

    ERIC Educational Resources Information Center

    Cukier, Mimi; Asdourian, Tony; Thakker, Anand

    2012-01-01

    Geometry provides a natural window into what it is like to do mathematics. In the world of geometry, playful experimentation is often more fruitful than following a procedure, and logic plus a few axioms can open new worlds. Nonetheless, teaching a geometry course in a way that combines both rigor and play can be difficult. Many geometry courses…

  8. Dynamic Geometry on WWW.

    ERIC Educational Resources Information Center

    Kuntz, Gilles

    The first section of this paper on World Wide Web applications related to dynamic geometry addresses dynamic geometry and teaching, including the relationship between dynamic geometry and direct manipulation, key features of dynamic geometry environments, the importance of direct engagement of the learner using construction software for…

  9. Review of wire chamber aging

    SciTech Connect

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs.

  10. Measurement of the geometric parameters of power contact wire based on binocular stereovision

    NASA Astrophysics Data System (ADS)

    Pan, Xue-Tao; Zhang, Ya-feng; Meng, Fei

    2010-10-01

    In the electrified railway power supply system, electric locomotive obtains power from the catenary's wire through the pantograph. Under the action of the pantograph, combined with various factors such as vibration, touch current, relative sliding speed, load, etc, the contact wire will produce mechanical wear and electrical wear. Thus, in electrified railway construction and daily operations, the geometric parameters such as line height, pull value, the width of wear surface must be under real-timely and non-contact detection. On the one hand, the safe operation of electric railways will be guaranteed; on the other hand, the wire endurance will be extended, and operating costs reduced. Based on the characteristics of the worn wires' image signal, the binocular stereo vision technology was applied for measurement of contact wire geometry parameters, a mathematical model of measurement of geometric parameters was derived, and the boundaries of the wound wire abrasion-point value were extracted by means of sub-pixel edge detection method based on the LOG operator with the least-squares fitting, thus measurements of the wire geometry parameters were realized. Principles were demonstrated through simulation experiments, and the experimental results show that the detection methods presented in this paper for measuring the accuracy, efficiency and convenience, etc. are close to or superior to the traditional measurements, which has laid a good foundation for the measurement system of geometric parameters for the contact wire of the development of binocular vision.

  11. Grains and wires of d-wave superconductors

    NASA Astrophysics Data System (ADS)

    Nunner, Tamara S.; Hirschfeld, P. J.

    2006-01-01

    We investigate Andreev states in grains of d-wave superconductors and compare them with a previous analysis of d-wave quantum wires. For perfect nesting a zero-energy Andreev bound state exists for geometries containing an odd number of (110)-layers. Away from perfect nesting the Andreev resonance broadens and its resonance frequency becomes finite for small grains. With increasing system size the resonance frequency approaches zero at least when we assume a constant order parameter throughout the grain. This is contrary to (110)-wires, where the Andreev state occurs at zero energy for all wire widths. Multiple reflections from surfaces with different orientations give rise to interesting interference effects and modify the Andreev states near corners.

  12. Plated wire memory subsystem

    NASA Technical Reports Server (NTRS)

    Carpenter, K. H.

    1974-01-01

    The design, construction, and test history of a 4096 word by 18 bit random access NDRO Plated Wire Memory for use in conjunction with a spacecraft input/output and central processing unit is reported. A technical and functional description is given along with diagrams illustrating layout and systems operation. Test data is shown on the procedures and results of system level and memory stack testing, and hybrid circuit screening. A comparison of the most significant physical and performance characteristics of the memory unit versus the specified requirements is also included.

  13. Texture development in Galfenol wire

    NASA Astrophysics Data System (ADS)

    Boesenberg, A. J.; Restorff, J. B.; Wun-Fogle, M.; Sailsbury, H.; Summers, E.

    2013-05-01

    Galfenol (Fe-Ga alloy) wire fabrication provides a low cost alternative to directional solidification methods. This work evaluates the compositional dependence of the wire drawing suitability of Fe-Ga and characterizes the microstructural and magnetic properties of these wires. Wire has been produced with Ga contents between 10 at. % and 17 at. % to allow determination of the ductile to brittle transition (DTBT) in wire manufacture. Published results on chill cast bend specimens indicated that a DTBT occurs at roughly 15 at. % Ga. This DTBT was observed under tensile loading with a corresponding change in fracture behavior from transverse fracture to intergranular fracture. For improved magnetostrictive performance, higher Ga contents are desired, closer to the 17 at. % Ga evaluated in this work. Electron backscattered diffraction B-H loop and resonance measurements as a function of magnetic field (to determine modulus and coupling factor) are presented for as-drawn, furnace, and direct current (DC) annealed wire. Galfenol wire produced via traditional drawing methods is found to have a strong <110> (α) texture parallel to the drawing direction. As-drawn wire was observed to have a lower magnetic permeability and larger hysteresis than DC annealed wire. This is attributed to the presence of a large volume of crystalline defects; such as vacancies and dislocations.

  14. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury....

  15. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury....

  16. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SIGNAL SYSTEM SAFETY... of insulated wire; splice in underground wire. Insulated wire shall be protected from...

  17. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury....

  18. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury....

  19. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SIGNAL SYSTEM SAFETY... of insulated wire; splice in underground wire. Insulated wire shall be protected from...

  20. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING... wire; splice in underground wire. Insulated wire shall be protected from mechanical injury....

  1. Learning Geometry through Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Forsythe, Sue

    2007-01-01

    In this article, the author investigates effective teaching and learning of geometrical concepts using dynamic geometry software (DGS). Based from her students' reactions to her project, the author found that her students' understanding of the concepts was better than if they had learned geometry through paper-based tasks. However, mixing computer…

  2. A four-pixel single-photon pulse-position array fabricated from WSi superconducting nanowire single-photon detectors

    SciTech Connect

    Verma, V. B. Horansky, R.; Lita, A. E.; Mirin, R. P.; Nam, S. W.; Marsili, F.; Stern, J. A.; Shaw, M. D.

    2014-02-03

    We demonstrate a scalable readout scheme for an infrared single-photon pulse-position camera consisting of WSi superconducting nanowire single-photon detectors. For an N × N array, only 2 × N wires are required to obtain the position of a detection event. As a proof-of-principle, we show results from a 2 × 2 array.

  3. Two-Wire to Four-Wire Audio Converter

    NASA Technical Reports Server (NTRS)

    Talley, G. L., Jr; Seale, B. L.

    1983-01-01

    Simple circuit provides interface between normally incompatible voicecommunication lines. Circuit maintains 40 dB of isolation between input and output halves of four-wire line permitting two-wire line to be connected. Balancing potentiometer, Rg, adjusts gain of IC2 to null feed through from input to output. Adjustment is done on workbench just after assembly.

  4. Soft magnetic wires

    NASA Astrophysics Data System (ADS)

    Vázquez, M.

    2001-06-01

    An overview of the present state of the art on the preparation techniques, outstanding magnetic properties and applications of soft magnetic micro and nanowires is presented. Rapid solidification techniques (in-rotating-water quenching and drawing methods) to fabricate amorphous microwires with diameter in the range from 100 down to 1 μm are first described. Electrodeposition is also employed to prepare composite microtubes (magnetic coatings) and to fill porous membranes (diameter of the order of 0.1 μm). Magnetic behaviours of interest are related to the different hysteresis loops of samples: square-shaped loops typical of bistable behaviour, and nearly non-hysteretic loop with well-defined transverse anisotropy field. The role played by magnetic dipolar interactions in the magnetic behaviour of arrays of micro and nanowires is described. A particular analysis is done on the giant magnetoimpedance (GMI) effect in the radio and microwave frequency ranges exhibited by ultrasoft microwires. Finally, a few examples of applications are introduced for magnetostrictive and non-magnetostrictive wires, they are: “magnetoelastic pens”, micromotors; DC current-sensors based on GMI, and sharpened amorphous wire tips in spin polarised scanning tunneling microscopy.

  5. Improved superconducting magnet wire

    DOEpatents

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  6. Multicolor photonic crystal laser array

    SciTech Connect

    Wright, Jeremy B; Brener, Igal; Subramania, Ganapathi S; Wang, George T; Li, Qiming

    2015-04-28

    A multicolor photonic crystal laser array comprises pixels of monolithically grown gain sections each with a different emission center wavelength. As an example, two-dimensional surface-emitting photonic crystal lasers comprising broad gain-bandwidth III-nitride multiple quantum well axial heterostructures were fabricated using a novel top-down nanowire fabrication method. Single-mode lasing was obtained in the blue-violet spectral region with 60 nm of tuning (or 16% of the nominal center wavelength) that was determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.

  7. Topological photonics: an observation of Landau levels for optical photons

    NASA Astrophysics Data System (ADS)

    Schine, Nathan; Ryou, Albert; Sommer, Ariel; Simon, Jonathan

    Creating photonic materials with nontrivial topological characteristics has seen burgeoning interest in recent years; however, a major route to topology, a magnetic field for continuum photons, has remained elusive. We present the first experimental realization of a bulk magnetic field for optical photons. By using a non-planar ring resonator, we induce an image rotation on each round trip through the resonator. This results in a Coriolis/Lorentz force and a centrifugal anticonfining force, the latter of which is cancelled by mirror curvature. Spatial- and energy- resolved spectroscopy tracks photonic eigenstates as residual trapping is reduced, and we observe photonic Landau levels as the eigenstates become degenerate. We will discuss the conical geometry of the resulting manifold for photon dynamics and present a measurement of the local density of states that is consistent with Landau levels on a cone. While our work already demonstrates an integer quantum Hall material composed of photons, we have ensured compatibility with strong photon-photon interactions, which will allow quantum optical studies of entanglement and correlation in manybody systems including fractional quantum Hall fluids. This work was supported by DOE, DARPA, and AFOSR.

  8. Final report on development of Pulse Arrested Spark Discharge (PASD) for aging aircraft wiring application

    SciTech Connect

    Lockner, Thomas Ramsbeck; Howard, R. Kevin; Pena, Gary Edward; Schneider, Larry X.; Higgins, Matthew B.; Glover, Steven Frank

    2006-09-01

    Pulsed Arrested Spark Discharge (PASD) is a Sandia National Laboratories Patented, non-destructive wiring system diagnostic that has been developed to detect defects in aging wiring systems in the commercial aircraft fleet. PASD was previously demonstrated on relatively controlled geometry wiring such as coaxial cables and shielded twisted-pair wiring through a contract with the U.S. navy and is discussed in a Sandia National Laboratories report, SAND2001-3225 ''Pulsed Arrested Spark Discharge (PASD) Diagnostic Technique for the Location of Defects in Aging Wiring Systems''. This report describes an expansion of earlier work by applying the PASD technique to unshielded twisted-pair and discrete wire configurations commonly found in commercial aircraft. This wiring is characterized by higher impedances as well as relatively non-uniform impedance profiles that have been found to be challenging for existing aircraft wiring diagnostics. Under a three year contract let by the Federal Aviation Administration, Interagency Agreement DTFA-03-00X90019, this technology was further developed for application on aging commercial aircraft wiring systems. This report describes results of the FAA program with discussion of previous work conducted under U.S. Department of Defense funding.

  9. The Current in a Wire

    ERIC Educational Resources Information Center

    Thompson, Keith

    2009-01-01

    This little problem arose because I was frustrated with the standard electromagnetism texts, which show the magnetic field due to a current-bearing wire outside the wire [proportional to] 1/r and inside [proportional to] r. However, they never point out that the moving electrons must be influenced by the magnetic field created by the other moving…

  10. Aircraft wiring program status report

    NASA Technical Reports Server (NTRS)

    Beach, Rex

    1995-01-01

    In this Naval Air Warfare Center (NAWC) Aircraft Division status report, the general and wire and cable component activities, the systems engineering activities, the aircraft wiring lead maintenance activities, the NAVAIR/NASA interface activities, and the Base Realignment and Closure (BRAC) Commission recommendations are presented.

  11. First Wire-Free Pacemaker Approved

    MedlinePlus

    ... Wire-Free Pacemaker Approved Treats irregular heartbeat without wired leads To use the sharing features on this ... said in a news release. In traditional pacemakers, wired leads may malfunction and require the device to ...

  12. Multisublevel Magnetoquantum Conductance in Single and Coupled Double Quantum Wires

    SciTech Connect

    Lyo, Sungkwun Ken; Huang, Danhong

    2001-09-15

    We study the ballistic and diffusive magnetoquantum transport using a typical quantum point contact geometry for single and tunnel-coupled double wires that are wide (less than or similar to1 mum) in one perpendicular direction with densely populated sublevels and extremely confined in the other perpendicular (i.e., growth) direction. A general analytic solution to the Boltzmann equation is presented for multisublevel elastic scattering at low temperatures. The solution is employed to study interesting magnetic-field dependent behavior of the conductance such as a large enhancement and quantum oscillations of the conductance for various structures and field orientations. These phenomena originate from the following field-induced properties: magnetic confinement, displacement of the initial- and final-state wave functions for scattering, variation of the Fermi velocities, mass enhancement, depopulation of the sublevels and anticrossing (in double quantum wires). The magnetoconductance is strikingly different in long diffusive (or rough. dirty) wires from the quantized conductance in short ballistic (or clean) wires. Numerical results obtained for the rectangular confinement potentials in the growth direction are satisfactorily interpreted in terms of the analytic solutions based on harmonic confinement potentials. Some of the predicted features of the field-dependent diffusive and quantized conductances are consistent with recent data from GaAs/AlxGa1-xAs double quantum wires.

  13. Welding wire pressure sensor assembly

    NASA Technical Reports Server (NTRS)

    Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)

    1994-01-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  14. Welding wire pressure sensor assembly

    NASA Astrophysics Data System (ADS)

    Morris, Timothy B.; Milly, Peter F.; White, J. Kevin

    1993-05-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  15. Welding wire pressure sensor assembly

    NASA Astrophysics Data System (ADS)

    Morris, Timothy B.; Milly, Peter F., Sr.; White, J. Kevin

    1994-04-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  16. Apollo experience report: Electrical wiring subsystem

    NASA Technical Reports Server (NTRS)

    White, L. D.

    1975-01-01

    The general requirements of the electrical wiring subsystems and the problem areas and solutions that occurred during the major part of the Apollo Program are detailed in this report. The concepts and definitions of specific requirements for electrical wiring; wire-connecting devices; and wire-harness fabrication, checkout, and installation techniques are discussed. The design and development of electrical wiring and wire-connecting devices are described. Mission performance is discussed, and conclusions and recommendations for future programs are presented.

  17. Electrode carrying wire for GTAW welding

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E. (Inventor); Dyer, Gerald E. (Inventor)

    1990-01-01

    A welding torch for gas tungsten arc welding apparatus has a hollow tungsten electrode including a ceramic liner and forms the filler metal wire guide. The wire is fed through the tungsten electrode thereby reducing the size of the torch to eliminate clearance problems which exist with external wire guides. Since the wire is preheated from the tungsten more wire may be fed into the weld puddle, and the wire will not oxidize because it is always within the shielding gas.

  18. Internal wire guide for GTAW welding

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E. (Inventor); Dyer, Gerald E. (Inventor)

    1989-01-01

    A welding torch for gas tungsten arc welding apparatus has a filler metal wire guide positioned within the torch, and within the shielding gas nozzle. The wire guide is adjacent to the tungsten electrode and has a ceramic liner through which the wire is fed. This reduces the size of the torch and eliminates the outside clearance problems that exit with external wire guides. Additionally, since the wire is always within the shielding gas, oxidizing of the wire is eliminated.

  19. Combinatorial Geometry Printer Plotting.

    Energy Science and Technology Software Center (ESTSC)

    1987-01-05

    Picture generates plots of two-dimensional slices through the three-dimensional geometry described by the combinatorial geometry (CG) package used in such codes as MORSE and QAD-CG. These plots are printed on a standard line printer.

  20. Sintered wire cathode

    DOEpatents

    Falce, Louis R.; Ives, R. Lawrence

    2009-06-09

    A porous cathode structure is fabricated from a plurality of wires which are placed in proximity to each other in elevated temperature and pressure for a sintering time. The sintering process produces the porous cathode structure which may be divided into a plurality of individual porous cathodes, one of which may be placed into a dispenser cathode support which includes a cavity for containing a work function reduction material such as BaO, CaO, and Al.sub.2O.sub.3. The work function reduction material migrates through the pores of the porous cathode from a work replenishment surface adjacent to the cavity of the dispenser cathode support to an emitting cathode surface, thereby providing a dispenser cathode which has a uniform work function and therefore a uniform electron emission.

  1. General 2 charge geometries

    NASA Astrophysics Data System (ADS)

    Taylor, Marika

    2006-03-01

    Two charge BPS horizon free supergravity geometries are important in proposals for understanding black hole microstates. In this paper we construct a new class of geometries in the NS1-P system, corresponding to solitonic strings carrying fermionic as well as bosonic condensates. Such geometries are required to account for the full microscopic entropy of the NS1-P system. We then briefly discuss the properties of the corresponding geometries in the dual D1-D5 system.

  2. Geometry and Erdkinder.

    ERIC Educational Resources Information Center

    McDonald, Nathaniel J.

    2001-01-01

    Chronicles a teacher's first year teaching geometry at the Hershey Montessori Farm School in Huntsburg, Ohio. Instructional methods relied on Euclid primary readings and combined pure abstract logic with practical applications of geometry on the land. The course included geometry background imparted by Montessori elementary materials as well as…

  3. Initial investigations into the damping characteristics of wire rope vibration isolators

    NASA Technical Reports Server (NTRS)

    Cutchins, M. A.; Cochran, J. E., Jr.; Kumar, K.; Fitz-Coy, N. G.; Tinker, M. L.

    1987-01-01

    Passive dampers composed of coils of multi-strand wire rope are investigated. Analytical results range from those produced by complex NASTRAN models to those of a Coulomb damping model with variable friction force. The latter agrees well with experiment. The Coulomb model is also utilized to generate hysteresis loops. Various other models related to early experimental investigations are described. Significant closed-form static solutions for physical properties of single-and multi-strand wire ropes are developed for certain specific geometries and loading conditions. NASTRAN models concentrate on model generation and mode shapes of 2-strand and 7-strand straight wire ropes with interfacial forces.

  4. Nanoparticle Ag-enhanced textured-powder Bi-2212/Ag wire technology

    NASA Astrophysics Data System (ADS)

    Kellams, J. N.; McIntyre, P.; Pogue, N.; Vandergrifft, J.

    2015-12-01

    A new approach to the preparation of cores for Bi-2212/Ag wire is being developed. Nanoparticle Ag is homogeneously dispersed in Bi-2212 fine powder, and the mixture is uniaxially compressed to form highly textured, cold-sintered core rods. The rods can be assembled in a silver matrix, drawn to form multifilament wire, and restacked and drawn to form multifilament wire. Preliminary studies using tablet geometry demonstrate that a nonmelt heat treatment produces densification, grain growth, intergrowth among grains, and macroscopic current transport. The status of the development is reported.

  5. Preradiation studies for non-thermal Z-pinch wire load experiments on Saturn

    SciTech Connect

    Sanford, T.W.L.; Humphreys, D.R.; Poukey, J.W.; Marder, B.M.; Halbleib, J.A.; Crow, J.T.; Spielman, R.B.; Mock, R.C.

    1994-06-01

    The implosion dynamics of compact wire arrays on Saturn are explored as a function of wire mass m, wire length {ell}, wire radii R, and radial power-flow feed geometry using the ZORK code. Electron losses and the likelihood of arcing in the radial feed adjacent the wire load are analyzed using the TWOQUICK and CYLTRAN codes. The physical characteristics of the implosion and subsequent thermal radiation production are estimated using the LASNEX code in one dimension. These analyses show that compact tungsten wire arrays with parameters suggested by D. Mosher and with a 21-nH vacuum feed geometry satisfy the empirical scaling criterion I/(M/{ell}) {approximately} 2 MA/(mg/cm) of Mosher for optimizing non-thermal radiation from z pinches, generate low electron losses in the radial feeds, and generate electric fields at the insulator stack below the Charlie Martin flashover limit thereby permitting full power to be delivered to the load. Under such conditions, peak currents of {approximately}5 MA can be delivered to wire loads {approximately}20 ns before the driving voltage reverses at the insulator stack, potentially allowing the m = 0 instability to develop with the subsequent emission of non-thermal radiation as predicted by the Mosher model.

  6. Silicon Vibrating Wires at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Collin, Eddy; Filleau, Laure; Fournier, Thierry; Bunkov, Yuriy M.; Godfrin, Henri

    2008-03-01

    Nowadays microfabrication techniques originating from micro-electro nics enable to create mechanical objects of micron-size. The field of Micro-Electro-Mechanical devices (MEMs) is continuously expanding, with an amazingly broad range of applications at room temperature. Vibrating objects (torsional oscillators, vibrating wires) widely used at low temperatures to study quantum fluids, can be replaced advantageously by Silicon MEMs. In this letter we report on the study of Silicon vibrating wire devices. A goal-post structure covered with a metal layer is driven at resonance by the Laplace force acting on a current in a magnetic field, while the induced voltage arising from the cut magnetic flux allows to detect the motion. The characteristics of the resonance have been studied from 10 mK to 30 K, in vacuum and in 4He gas. In this article, we focus on the results obtained above 1.5 K, in vacuum and gas, and introduce some features observed at lower temperatures. The resonant properties can be quantitatively understood by means of simple models, from the linear regime to a highly non-linear response at strong drives. We demonstrate that the non-linearity is mostly due to the geometry of the vibrators. We also show that in our device the friction mechanisms originate in the metallic layers, and can be fully characterized. The interaction with 4He gas is fit to theory without adjustable parameters.

  7. Radiation transport in dust in disk geometry

    NASA Technical Reports Server (NTRS)

    Chun, Ming Leung

    1986-01-01

    The main objective of the research program is twofold: (1) to develop a computer code to solve the problem of scattering, absorption and emission of photons by dust grains in a dusty medium with 2 dimensional disk geometry, and (2) to study the various physical and geometrical effects of 2 dimensional radiation transport on the thermal structure and radiation field. These tasks were accomplished and are briefly summarized. The method for solving the radiation transport problem in disk geometry is a generalization of the quasi-diffusion method (QDM) previously developed by the author.

  8. WADM and radiation MHD simulations of compact multi-planar and cylindrical wire arrays at 1 MA currents

    NASA Astrophysics Data System (ADS)

    Esaulov, A. A.; Kantsyrev, V. L.; Safronova, A. S.; Williamson, K. M.; Shrestha, I.; Osborne, G. C.; Yilmaz, M. F.; Ouart, N. D.; Weller, M. E.

    2009-09-01

    The radiative performance of Z-pinches created by the imploding wire array loads is defined by the ablation and implosion dynamics of these loads. Both these processes can be effectively modeled by the Wire Ablation Dynamics Model (WADM), which extends the formalism exploited earlier for the cylindrical wire arrays to the loads of arbitrary geometries. The WADM calculates the ablation rates for each array wire and provides the important dynamic parameters, such as the specific mass and velocity of the imploding plasma, which can be used to estimate the shapes of the x-ray pre-pulse and, partially, the main x-ray burst. The applications of the WADM also extend to combined material wire array loads. The ablation and implosion dynamics of novel Prism Planar Wire Array (PPWA) and combined material (Mo/Al/Mo) Triple Planar Wire Array (TPWA) loads are discussed in detail. The combined WADM and radiation MHD simulation is applied to model the radiative performance of the precursor plasma column, created by the imploding stainless steel compact cylindrical wire array. As the radiation effects intensify with the mass accumulation at the array center, the simulation reveals the transformation of quasi-uniform precursor column into a heterogeneous plasma structure with strong density and temperature gradients. We find that radiative performance of the precursor plasma is greatly affected by the load geometry as well as by the wire material.

  9. Plasma chemistry in wire chambers

    SciTech Connect

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an {sup 55}Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed.

  10. Requirements for printed wiring boards

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In order to maintain the high standards of the NASA printed wiring programs, this publication: prescribes NASA's requirements for assuring reliable rigid printed wiring boards; describes and incorporates basic considerations necessary to assure reliable rigid printed wiring boards; establishes the supplier's responsibility to train and certify personnel; provides for supplier documentation of the fabrication and inspection procedures to be used for NASA work, including supplier innovations and changes in technology; and provides visual workmanship standards to aid those responsible for determining quality conformance to the established requirements.

  11. Photon absorptiometry

    SciTech Connect

    Velchik, M.G.

    1987-01-01

    Recently, there has been a renewed interest in the detection and treatment of osteoporosis. This paper is a review of the merits and limitations of the various noninvasive modalities currently available for the measurement of bone mineral density with special emphasis placed upon the nuclear medicine techniques of single-photon and dual-photon absorptiometry. The clinicians should come away with an understanding of the relative advantages and disadvantages of photon absorptiometry and its optimal clinical application. 49 references.

  12. Demonstrating Forces between Parallel Wires.

    ERIC Educational Resources Information Center

    Baker, Blane

    2000-01-01

    Describes a physics demonstration that dramatically illustrates the mutual repulsion (attraction) between parallel conductors using insulated copper wire, wooden dowels, a high direct current power supply, electrical tape, and an overhead projector. (WRM)

  13. Magnetic and magneto-transport behavior in variable width Ni80Fe20 flat wires

    NASA Astrophysics Data System (ADS)

    Adeyeye, A. O.; Bland, J. A. C.; Daboo, C.

    1998-09-01

    In this letter, we present the results of a comprehensive study of the magnetic and magneto-transport properties in variable width wire arrays based on Ni80Fe20 films of thickness 30-50 nm. For fixed width structures, we observe a linear dependence of the coercivity Hc on the ratio t/w of thickness (t) to the width (w) for t/w<=0.12. This result indicates that dipolar fields within each wire control the coercivity for small t/w. We have demonstrated that by carefully selecting different wire widths w1=5 μm and w2=0.5 μm (corresponding to different values of Hc) in adjacent wires and then alternating them in an array, the coercivity can be `engineered'. Measurements were also carried out as a function of the inter-wire spacing s in order to study the effects of magnetostatic interactions. Marked changes in the switching field were observed as the inter-wire spacing is varied. Magneto-optic Kerr effect (MOKE) measurements were made as a function of the orientation of the applied field relative to the axis of the wire, in order to investigate the magnetization reversal process in this new geometry. We found two distinct switching mechanisms corresponding to the two wire widths.

  14. Evaluating Thermally Damaged Polyimide Insulated Wiring (MIL-W-81381) with Ultrasound

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anastasi, Robert F.

    2002-01-01

    A series of experiments to investigate the use of ultrasound for measuring wire insulation have been conducted. Initial laboratory tests were performed on MIL-W-81381/7,/12, and /21 aviation wire, a wire that has polyimide (Kapton Registered Trademark) layers for insulation. Samples of this wiring were exposed to 370C temperatures for different periods of time to induce a range of thermal damage. For each exposure, 12 samples of each gauge (12, 16, and 20 gauges) were processed. The velocity of the lowest order axisymmetric ultrasonic guided mode, a mode that is sensitive to the geometry and stiffness of the wire conductor and insulation, was measured. The phase velocity for the 20-gauge MIL-W-81381/7 wire had a baseline value of 3023 +/- 78 m/s. After exposure to the high temperatures, the wire's phase velocity rapidly increased, and reached an asymptotic value of 3598 +/- 20 m/s after 100 hours exposure. Similar behavior was measured for the 16 gauge MIL-W-81381/21 wire and 12 gauge MIL-W-81381/12 wire which had baseline values of 3225 +/- 22 m/s and 3403 +/- 33 m/s respectively, and reached asymptotic values of 3668 +/- 19 m/s, and 3679 +/- 42 m/s respectively. These measured velocity changes represent changes of 19, 14, and 8 percent respectively for the 20, 16, and 12 gauge wires. Finally, some results for a wire with an ethylene tetrafluoroethylene insulation are reported. Qualitatively similar behaviors are noted ultrasonically.

  15. Method of manufacturing superconductor wire

    SciTech Connect

    Motowidlo, Leszek

    2014-09-16

    A method for forming Nb.sub.3Sn superconducting wire is provided. The method employs a powder-in-tube process using a high-tin intermetallic compound, such as MnSn.sub.2, for producing the Nb.sub.3Sn. The use of a high-tin intermetallic compound enables the process to perform hot extrusion without melting the high-tin intermetallic compound. Alternatively, the method may entail drawing the wire without hot extrusion.

  16. Smart Wire Grid: Resisting Expectations

    SciTech Connect

    Ramsay, Stewart; Lowe, DeJim

    2014-03-03

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  17. Smart Wire Grid: Resisting Expectations

    ScienceCinema

    Ramsay, Stewart; Lowe, DeJim

    2014-04-09

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  18. Photon Colliders

    SciTech Connect

    Gronberg, J

    2002-10-07

    A photon collider interaction region has the possibility of expanding the physics reach of a future TeV scale electron-positron collider. A survey of ongoing efforts to design the required lasers and optics to create a photon collider is presented in this paper.

  19. 30 CFR 75.701-4 - Grounding wires; capacity of wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding wires; capacity of wires. 75.701-4... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.701-4 Grounding wires; capacity of wires. Where grounding wires are used to ground metallic sheaths, armors, conduits,...

  20. 30 CFR 75.701-4 - Grounding wires; capacity of wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding wires; capacity of wires. 75.701-4... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.701-4 Grounding wires; capacity of wires. Where grounding wires are used to ground metallic sheaths, armors, conduits,...

  1. HTS Wire Development Workshop: Proceedings

    SciTech Connect

    Not Available

    1994-07-01

    The 1994 High-Temperature Superconducting Wire Development Workshop was held on February 16--17 at the St. Petersburg Hilton and Towers in St. Petersburg, Florida. The meeting was hosted by Florida Power Corporation and sponsored by the US Department of Energy`s Superconductivity Program for Electric Power Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. The meeting opened with a general discussion on the needs and benefits of superconductivity from a utility perspective, the US global competitiveness position, and an outlook on the overall prospects of wire development. The meeting then focused on four important technology areas: Wire characterization: issues and needs; technology for overcoming barriers: weak links and flux pinning; manufacturing issues for long wire lengths; and physical properties of HTS coils. Following in-depth presentations, working groups were formed in each technology area to discuss the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  2. 1 mil gold bond wire study.

    SciTech Connect

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  3. Analysis of coupling between two-dimensional photonic crystal waveguide and external waveguide

    NASA Astrophysics Data System (ADS)

    Miyai, Eiji; Okano, Makoto; Mochizuki, Masamitsu; Noda, Susumu

    2002-11-01

    Coupling between conventional wire waveguide and two-dimensional photonic crystal waveguide was analyzed by means of a three-dimensional finite difference time domain method. We evaluated the transmittance corresponding to the coupling efficiency between two waveguides. By using SiO2 clad below the wire and setting the width of the wire to be an appropriate value, we obtained single mode guiding and a coupling efficiency over 80% for the wave length around 1.55 mum.

  4. Larger sized wire arrays on 1.5 MA Z-pinch generator

    SciTech Connect

    Safronova, A. S. Kantsyrev, V. L. Weller, M. E. Shlyaptseva, V. V. Shrestha, I. K. Esaulov, A. A. Stafford, A.; Chuvatin, A. S.; Coverdale, C. A.; Jones, B.

    2014-12-15

    Experiments on the UNR Zebra generator with Load Current Multiplier (LCM) allow for implosions of larger sized wire array loads than at standard current of 1 MA. Advantages of larger sized planar wire array implosions include enhanced energy coupling to plasmas, better diagnostic access to observable plasma regions, and more complex geometries of the wire loads. The experiments with larger sized wire arrays were performed on 1.5 MA Zebra with LCM (the anode-cathode gap was 1 cm, which is half the gap used in the standard mode). In particular, larger sized multi-planar wire arrays had two outer wire planes from mid-atomic-number wires to create a global magnetic field (gmf) and plasma flow between them. A modified central plane with a few Al wires at the edges was put in the middle between outer planes to influence gmf and to create Al plasma flow in the perpendicular direction (to the outer arrays plasma flow). Such modified plane has different number of empty slots: it was increased from 6 up to 10, hence increasing the gap inside the middle plane from 4.9 to 7.7 mm, respectively. Such load configuration allows for more independent study of the flows of L-shell mid-atomic-number plasma (between the outer planes) and K-shell Al plasma (which first fills the gap between the edge wires along the middle plane) and their radiation in space and time. We demonstrate that such configuration produces higher linear radiation yield and electron temperatures as well as advantages of better diagnostics access to observable plasma regions and how the load geometry (size of the gap in the middle plane) influences K-shell Al radiation. In particular, K-shell Al radiation was delayed compared to L-shell mid-atomic-number radiation when the gap in the middle plane was large enough (when the number of empty slots was increased up to ten)

  5. Larger sized wire arrays on 1.5 MA Z-pinch generator

    NASA Astrophysics Data System (ADS)

    Safronova, A. S.; Kantsyrev, V. L.; Weller, M. E.; Shlyaptseva, V. V.; Shrestha, I. K.; Esaulov, A. A.; Stafford, A.; Chuvatin, A. S.; Coverdale, C. A.; Jones, B.

    2014-12-01

    Experiments on the UNR Zebra generator with Load Current Multiplier (LCM) allow for implosions of larger sized wire array loads than at standard current of 1 MA. Advantages of larger sized planar wire array implosions include enhanced energy coupling to plasmas, better diagnostic access to observable plasma regions, and more complex geometries of the wire loads. The experiments with larger sized wire arrays were performed on 1.5 MA Zebra with LCM (the anode-cathode gap was 1 cm, which is half the gap used in the standard mode). In particular, larger sized multi-planar wire arrays had two outer wire planes from mid-atomic-number wires to create a global magnetic field (gmf) and plasma flow between them. A modified central plane with a few Al wires at the edges was put in the middle between outer planes to influence gmf and to create Al plasma flow in the perpendicular direction (to the outer arrays plasma flow). Such modified plane has different number of empty slots: it was increased from 6 up to 10, hence increasing the gap inside the middle plane from 4.9 to 7.7 mm, respectively. Such load configuration allows for more independent study of the flows of L-shell mid-atomic-number plasma (between the outer planes) and K-shell Al plasma (which first fills the gap between the edge wires along the middle plane) and their radiation in space and time. We demonstrate that such configuration produces higher linear radiation yield and electron temperatures as well as advantages of better diagnostics access to observable plasma regions and how the load geometry (size of the gap in the middle plane) influences K-shell Al radiation. In particular, K-shell Al radiation was delayed compared to L-shell mid-atomic-number radiation when the gap in the middle plane was large enough (when the number of empty slots was increased up to ten).

  6. Fabrication of Pd-Cr wire

    NASA Technical Reports Server (NTRS)

    Diamond, Sidney; Leach, Dennen M.

    1989-01-01

    Fabrication of Pd-13 percent Cr alloy wires is described. Melting, casting, swaging and annealing processes are discussed. Drawing to reach two diameters (0.003 inch and 0.00176 inch) of wire is described. Representative micrographs of the Pd-Cr alloy at selected stages during wire fabrication are included. The resistance of the wire was somewhat lower, by about 15 to 20 percent, than comparable wire of other alloys used for strain gages.

  7. Experimental Results for Space-Wire-D

    NASA Astrophysics Data System (ADS)

    Parkes, Steve; Gibson, David; Ferrer, Albert

    2015-09-01

    SpaceWire-D is a deterministic extension to SpaceWire that uses time-division multiplexing to schedule traffic within time-slots. It allows a single SpaceWire network to be used for both time-critical avionics control applications and asynchronous payload data-handling simultaneously using existing SpaceWire technology. In this paper we describe the services of SpaceWire-D and present experimental results for each service.

  8. Connecting to Thermocouples with Fewer Lead Wires

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2003-01-01

    A simple technique has been devised to reduce the number of lead wires needed to connect an array of thermocouples to the instruments (e.g., voltmeters) used to read their output voltages. Because thermocouple wires are usually made of expensive metal alloys, reducing the number of lead wires can effect a considerable reduction in the cost of such an array. Reducing the number of wires also reduces the number of terminals and the amount of space needed to accommodate the wires.

  9. The photon and its measurability

    NASA Astrophysics Data System (ADS)

    Dowdye, Edward H., Jr.

    2005-08-01

    ly, the photon is looked at in Euclidean Space Geometry, this time strictly under the electrodynamics of Galilean Transformations of Velocities c'=c+/-v, where the velocity c refers to that velocity with which the photon is emitted from its moving primary source which moves with velocity v relative to the laboratory frame. A non-interfering hypothetical observer, not of the real world, would note from the laboratory frame that the interference free photon moves with velocity c'. Since any measurement by a real world observer involves interference, the window, lens or mirror of the observers measuring apparatus. This paper will demonstrate that the problems in Modern Physics, involving both electro-magnetism and gravitation, have their pure classical solutions under the electrodynamics of Galilean Transformations of Velocities, while abiding strictly by the urles of Galilean Transformations and employing the classical assumptions of the rectilinear behavior of both the photon and the graviton in Euclidean Space.

  10. Mechanical properties and fracture strength of cathodically polarized prestressing wire

    SciTech Connect

    Kiszowski, S.; Hartt, W.H.

    1996-11-01

    Constant extension rate testing experiments were performed upon prestressing steel wire specimens prepared from three lots of Grade 270 and one lot of Grade 250 material for the purpose of characterizing susceptibility to environmental cracking under conditions associated with cathodic protection of prestressed concrete components and structures. Smooth, notched (six different geometries) and pitted (four different geometries) specimens were tested in air and deaerated saturated Ca(OH){sub 2}-distilled water at potentials of {minus}0.90 and {minus}1.30 v (SCE) and strength and ductility properties characterized. Relatively low strength was recorded for steel specimens at {minus}09.90 v from material for which the weight percent chromium was relatively high (0.24 w/o compared to 0.02 w/o). Under conditions that are likely to be most relevant to service, fracture load correlated with the amount by which the local wire cross section area was reduced, either from a notch or pit, and was independent of depth of the irregularity and of root radius to the extent to which these were addressed. It was concluded that it may be unsafe to apply cathodically protection to prestressing wire, even in situations where potential is maintained in the regime where hydrogen embrittlement should not occur.

  11. Influence of geometry on liquid oxygen magnetohydrodynamics

    SciTech Connect

    Boulware, Jeffrey C.; Ban, Heng; Jensen, Scott; Wassom, Steve

    2010-11-15

    Magnetic fluid actuators have performed well in industrial applications, but have a limited temperature range due to the freezing point of the carrier fluid. Liquid oxygen (LOX) presents a pure, paramagnetic fluid suitable for use in a cryogenic magnetic fluid system; therefore, it is a potential solution to increasing the thermal range of magnetic fluid technology without the need for magnetic particles. The current study presents experimental work regarding the influence of geometry on the dynamics of a LOX slug in a 1.9 mm quartz tube when pulsed by a solenoid in a closed volume. A numerical analysis calculated the optimal solenoid geometry and balanced the magnetic, damping, and pressure forces to determine optimal slug lengths. Three configurations comprised the experiment: (1) a 24-gauge wire solenoid with an optimized 2.7 cm length slug, (2) a 30-gauge wire solenoid with an optimized 1.3 cm length slug, and (3) a 30-gauge wire solenoid with a nonoptimized 2.5 cm length slug. Typically, the hydrodynamic breakdown limit is calculated and used to determine the system range; however the experiment showed that the hydrodynamic breakdown limit was never reached by the slug. This implied that, instead, the system range should factor in a probabilistic risk of failure calculated as a function of the induced pressure change from its oscillations. The experimental data were also used to establish a nondimensional relationship between the maximum displacement and initial magnetic pressure on the slug. The average initial velocity of the slug was found to be proportional to the initial magnetic pressure, Mason number, and slug length. The results of this study can be used in the design and optimization of a LOX fluid system for space or low-temperature applications. (author)

  12. Topological photonics: an observation of Landau levels for optical photons

    NASA Astrophysics Data System (ADS)

    Schine, Nathan; Ryou, Albert; Sommer, Ariel; Simon, Jonathan

    We present the first experimental realization of a bulk magnetic field for optical photons. By using a non-planar ring resonator, we induce an image rotation on each round trip through the resonator. This results in a Coriolis/Lorentz force and a centrifugal anticonfining force, the latter of which is cancelled by mirror curvature. Using a digital micromirror device to control both amplitude and phase, we inject arbitrary optical modes into our resonator. Spatial- and energy- resolved spectroscopy tracks photonic eigenstates as residual trapping is reduced, and we observe photonic Landau levels as the eigenstates become degenerate. We show that there is a conical geometry of the resulting manifold for photon dynamics and present a measurement of the local density of states that is consistent with Landau levels on a cone. While our work already demonstrates an integer quantum Hall material composed of photons, we have ensured compatibility with strong photon-photon interactions, which will allow quantum optical studies of entanglement and correlation in manybody systems including fractional quantum Hall fluids. This work was supported by DOE, DARPA, and AFOSR.

  13. Statistical signatures of photon localization

    PubMed

    Chabanov; Stoytchev; Genack

    2000-04-20

    The realization that electron localization in disordered systems (Anderson localization) is ultimately a wave phenomenon has led to the suggestion that photons could be similarly localized by disorder. This conjecture attracted wide interest because the differences between photons and electrons--in their interactions, spin statistics, and methods of injection and detection--may open a new realm of optical and microwave phenomena, and allow a detailed study of the Anderson localization transition undisturbed by the Coulomb interaction. To date, claims of three-dimensional photon localization have been based on observations of the exponential decay of the electromagnetic wave as it propagates through the disordered medium. But these reports have come under close scrutiny because of the possibility that the decay observed may be due to residual absorption, and because absorption itself may suppress localization. Here we show that the extent of photon localization can be determined by a different approach--measurement of the relative size of fluctuations of certain transmission quantities. The variance of relative fluctuations accurately reflects the extent of localization, even in the presence of absorption. Using this approach, we demonstrate photon localization in both weakly and strongly scattering quasi-one-dimensional dielectric samples and in periodic metallic wire meshes containing metallic scatterers, while ruling it out in three-dimensional mixtures of aluminium spheres. PMID:10786786

  14. The Beauty of Geometry

    ERIC Educational Resources Information Center

    Morris, Barbara H.

    2004-01-01

    This article describes a geometry project that used the beauty of stained-glass-window designs to teach middle school students about geometric figures and concepts. Three honors prealgebra teachers and a middle school mathematics gifted intervention specialist created a geometry project that covered the curriculum and also assessed students'…

  15. Geometry of multihadron production

    SciTech Connect

    Bjorken, J.D.

    1994-10-01

    This summary talk only reviews a small sample of topics featured at this symposium: Introduction; The Geometry and Geography of Phase space; Space-Time Geometry and HBT; Multiplicities, Intermittency, Correlations; Disoriented Chiral Condensate; Deep Inelastic Scattering at HERA; and Other Contributions.

  16. Want to Play Geometry?

    ERIC Educational Resources Information Center

    Kaufmann, Matthew L.; Bomer, Megan A.; Powell, Nancy Norem

    2009-01-01

    Students enter the geometry classroom with a strong concept of fairness and a sense of what it means to "play by the rules," yet many students have difficulty understanding the postulates, or rules, of geometry and their implications. Although they may never have articulated the properties of an axiomatic system, they have gained a practical…

  17. Euclidean Geometry via Programming.

    ERIC Educational Resources Information Center

    Filimonov, Rossen; Kreith, Kurt

    1992-01-01

    Describes the Plane Geometry System computer software developed at the Educational Computer Systems laboratory in Sofia, Bulgaria. The system enables students to use the concept of "algorithm" to correspond to the process of "deductive proof" in the development of plane geometry. Provides an example of the software's capability and compares it to…

  18. Geometry + Technology = Proof

    ERIC Educational Resources Information Center

    Lyublinskaya, Irina; Funsch, Dan

    2012-01-01

    Several interactive geometry software packages are available today to secondary school teachers. An example is The Geometer's Sketchpad[R] (GSP), also known as Dynamic Geometry[R] software, developed by Key Curriculum Press. This numeric based technology has been widely adopted in the last twenty years, and a vast amount of creativity has been…

  19. Imaging nanowire plasmon modes with two-photon polymerization

    SciTech Connect

    Gruber, Christian; Trügler, Andreas; Hohenester, Ulrich; Ditlbacher, Harald; Hohenau, Andreas; Krenn, Joachim R.; Hirzer, Andreas; Schmidt, Volker

    2015-02-23

    Metal nanowires sustain propagating surface plasmons that are strongly confined to the wire surface. Plasmon reflection at the wire end faces and interference lead to standing plasmon modes. We demonstrate that these modes can be imaged via two-photon (plasmon) polymerization of a thin film resist covering the wires and subsequent electron microscopy. Thereby, the plasmon wavelength and the phase shift of the nanowire mode picked up upon reflection can be directly retrieved. In general terms, polymerization imaging is a promising tool for the imaging of propagating plasmon modes from the nano- to micro-scale.

  20. Photonic Landau levels on cones

    NASA Astrophysics Data System (ADS)

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-05-01

    We present the first experimental realization of a bulk magnetic field for optical photons. By using a non-planar ring resonator, we induce an image rotation on each round trip through the resonator. This results in a Coriolis/Lorentz force and a centrifugal anticonfining force, the latter of which is cancelled by mirror curvature. Using a digital micromirror device to control both amplitude and phase, we inject arbitrary optical modes into our resonator. Spatial- and energy- resolved spectroscopy tracks photonic eigenstates as residual trapping is reduced, and we observe photonic Landau levels as the eigenstates become degenerate. We show that there is a conical geometry of the resulting manifold for photon dynamics and present a measurement of the local density of states that is consistent with Landau levels on a cone. While our work already demonstrates an integer quantum Hall material composed of photons, we have ensured compatibility with strong photon-photon interactions, which will allow quantum optical studies of entanglement and correlation in manybody systems including fractional quantum Hall fluids.

  1. Plasma arc torch with coaxial wire feed

    DOEpatents

    Hooper, Frederick M

    2002-01-01

    A plasma arc welding apparatus having a coaxial wire feed. The apparatus includes a plasma arc welding torch, a wire guide disposed coaxially inside of the plasma arc welding torch, and a hollow non-consumable electrode. The coaxial wire guide feeds non-electrified filler wire through the tip of the hollow non-consumable electrode during plasma arc welding. Non-electrified filler wires as small as 0.010 inches can be used. This invention allows precision control of the positioning and feeding of the filler wire during plasma arc welding. Since the non-electrified filler wire is fed coaxially through the center of the plasma arc torch's electrode and nozzle, the wire is automatically aimed at the optimum point in the weld zone. Therefore, there is no need for additional equipment to position and feed the filler wire from the side before or during welding.

  2. Californium Recovery from Palladium Wire

    SciTech Connect

    Burns, Jon D.

    2014-08-01

    The recovery of 252Cf from palladium-252Cf cermet wires was investigated to determine the feasibility of implementing it into the cermet wire production operation at Oak Ridge National Laboratory’s Radiochemical Engineering Development Center. The dissolution of Pd wire in 8 M HNO3 and trace amounts of HCl was studied at both ambient and elevated temperatures. These studies showed that it took days to dissolve the wire at ambient temperature and only 2 hours at 60°C. Adjusting the ratio of the volume of solvent to the mass of the wire segment showed little change in the kinetics of dissolution, which ranged from 0.176 mL/mg down to 0.019 mL/mg. A successful chromatographic separation of 153Gd, a surrogate for 252Cf, from Pd was demonstrated using AG 50x8 cation exchange resin with a bed volume of 0.5 mL and an internal diameter of 0.8 cm.

  3. Growth and characterization of horizontal GaN wires on silicon

    SciTech Connect

    Zou, Xinbo; May Lau, Kei; Lu, Xing; Lucas, Ryan; Kuech, Thomas F.; Choi, Jonathan W.; Gopalan, Padma

    2014-06-30

    We report the growth of in-plane GaN wires on silicon by metalorganic chemical vapor deposition. Triangular-shaped GaN microwires with semi-polar sidewalls are observed to grow on top of a GaN/Si template patterned with nano-porous SiO{sub 2}. With a length-to-thickness ratio ∼200, the GaN wires are well aligned along the three equivalent 〈 112{sup ¯}0 〉 directions. Micro-Raman measurements indicate negligible stress and a low defect density inside the wires. Stacking faults were found to be the only defect type in the GaN wire by cross-sectional transmission electron microscopy. The GaN wires exhibited high conductivity, and the resistivity was 20–30 mΩ cm, regardless of the wire thickness. With proper heterostructure and doping design, these highly aligned GaN wires are promising for photonic and electronic applications monolithically integrated on silicon.

  4. Photon generator

    DOEpatents

    Srinivasan-Rao, Triveni

    2002-01-01

    A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

  5. Two-dimensional magnetohydrodynamic studies of implosion modes of nested wire array z-pinches

    SciTech Connect

    Huang, Jun; Ding, Ning Xue, Chuang; Sun, Shunkai

    2014-07-15

    Implosion dynamics of nested wire arrays in (r, θ) geometry was studied with two-dimensional magnetohydrodynamic (2D MHD) simulations. Three different implosion modes are obtained by just changing the wire number of the outer array, when the other conditions, such as the initial radius, length, mass of each array, the wire number of the inner array, and the discharge voltage waveform, are fixed. Simulation results show that the effect of discrete wires, which cannot be described by the thin shell inductive model, will influence the distribution of current between the outer and inner arrays at the early stage, and the discrepancy between results from MHD and thin shell model increases with the interwire gap of the outer array.

  6. SABRINA: an interactive three-dimensional geometry-mnodeling program for MCNP

    SciTech Connect

    West, J.T. III

    1986-10-01

    SABRINA is a fully interactive three-dimensional geometry-modeling program for MCNP, a Los Alamos Monte Carlo code for neutron and photon transport. In SABRINA, a user constructs either body geometry or surface geometry models and debugs spatial descriptions for the resulting objects. This enhanced capability significantly reduces effort in constructing and debugging complicated three-dimensional geometry models for Monte Carlo analysis. 2 refs., 33 figs.

  7. Photonic Crystal Nanocavity Lasers

    NASA Astrophysics Data System (ADS)

    Scherer, Axel

    2001-03-01

    Two- and three-dimensional microfabricated mirrors are generally referred to as photonic bandgap (PBG) crystals, and can be lithographically constructed to match a given frequency to confine light to very small volumes.1 For mirrors matching light emission at 1550nm, the lattice parameter a should correspond to 500nm, and the radius of the holes should be 180nm. By combining the slab waveguide design from microdisk lasers with the concept of microfabricating Bragg reflectors around a 2-D Fabry-Perot structure, we arrive at the design for ultra-small sub-3 optical nanocavity photonic crystal lasers. The mode volume in these laser cavities can be as small as 2.5 cubic half wavelengths or 0.03m3, and spontaneous emission in the cavity can be very efficiently coupled into the lasing mode. This efficient coupling in turn results in significant advantages of these nanocavity lasers over devices with larger mode volumes, as high modulation speed and very low threshold power light emission are expected. If the photonic crystal is designed appropriately and is not too porous, it is also possible to efficiently guide light within the perforated slab and to minimize diffraction losses. This waveguiding within a photonic crystal provides us with an opportunity to couple light from one cavity to another, or into connecting waveguides. By creating two-dimensional photonic crystals, which are microfabricated into InGaAsP slabs, we have recently defined the smallest lasers to date. When combined with high index contrast slabs in which light can be efficiently guided, microfabricated two-dimensional photonic bandgap mirrors provide the geometries needed to confine light into extremely small volumes with high Q.1,2,3,4 Two-dimensional Fabry-Perot resonators with microfabricated mirrors are formed when defects are introduced into the periodic photonic bandgap structure. It is then possible to tune these cavities lithographically by changing the precise geometry of the microstructures

  8. Designing potentials by sculpturing wires

    SciTech Connect

    Della Pietra, Leonardo; Aigner, Simon; Groth, Soenke; Hagen, Christoph von; Schmiedmayer, Joerg; Bar-Joseph, Israel; Lezec, Henri J.

    2007-06-15

    Magnetic trapping potentials for atoms on atom chips are determined by the current flow in the chip wires. By modifying the shape of the conductor we can realize specialized current flow patterns and therefore microdesign the trapping potentials. We have demonstrated this by nano-machining an atom chip using the focused ion beam technique. We built a trap, a barrier, and using a Bose-Einstein Condensate as a probe we showed that by polishing the conductor edge the potential roughness on the selected wire can be reduced. Furthermore, we give different other designs and discuss the creation of a one-dimensional magnetic lattice on an atom chip.

  9. Wire Detection Algorithms for Navigation

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar; Camps, Octavia I.

    2002-01-01

    In this research we addressed the problem of obstacle detection for low altitude rotorcraft flight. In particular, the problem of detecting thin wires in the presence of image clutter and noise was studied. Wires present a serious hazard to rotorcrafts. Since they are very thin, their detection early enough so that the pilot has enough time to take evasive action is difficult, as their images can be less than one or two pixels wide. Two approaches were explored for this purpose. The first approach involved a technique for sub-pixel edge detection and subsequent post processing, in order to reduce the false alarms. After reviewing the line detection literature, an algorithm for sub-pixel edge detection proposed by Steger was identified as having good potential to solve the considered task. The algorithm was tested using a set of images synthetically generated by combining real outdoor images with computer generated wire images. The performance of the algorithm was evaluated both, at the pixel and the wire levels. It was observed that the algorithm performs well, provided that the wires are not too thin (or distant) and that some post processing is performed to remove false alarms due to clutter. The second approach involved the use of an example-based learning scheme namely, Support Vector Machines. The purpose of this approach was to explore the feasibility of an example-based learning based approach for the task of detecting wires from their images. Support Vector Machines (SVMs) have emerged as a promising pattern classification tool and have been used in various applications. It was found that this approach is not suitable for very thin wires and of course, not suitable at all for sub-pixel thick wires. High dimensionality of the data as such does not present a major problem for SVMs. However it is desirable to have a large number of training examples especially for high dimensional data. The main difficulty in using SVMs (or any other example-based learning

  10. Coexisting localized and extended optical Bloch states in a periodic deep wire array microcavity

    NASA Astrophysics Data System (ADS)

    Löchner, Franz J. F.; Mischok, Andreas; Brückner, Robert; Lyssenko, Vadim G.; Zakhidov, Alexander A.; Fröb, Hartmut; Leo, K.

    2015-09-01

    We embed periodic SiO2 wires in an organic microcavity, producing a rectangular potential by the different optical thicknesses of the active layer due to the additional SiO2 layer. By μ -photoluminescence spectroscopy, we observe the energy dispersion of the photons and obtain discrete localized below and extended Bloch states above the potential barrier, respectively, showing that electro-magnetic waves can behave like massive particles, such as electrons, in crystal lattices. We investigate the dependencies on wire width and period and use the Kronig-Penney model to describe the photon energy dispersion, including an "effective mass" of a photon propagating through a microcavity implying polarization splitting. We obtain excellent agreement between experiment, simulation and analytical calculation.

  11. Single-photon detection, truth, and misinterpretation

    NASA Astrophysics Data System (ADS)

    Berloffa, E. H.

    2013-10-01

    Within this investigation it is critically questioned, if we really can detect "single photons", respectively the response of a single quantum transition by use of modern photon detectors. In the course it is shown that avalanche photodiodes (AVDs) especially in the "Geiger" mode by virtue of its geometry (effective area) indeed can detect "single photon" events as proclaimed by the manufacturers, but they tacitly assume the bandwidth of originating visible source being not greater than ~ 2.107 [Hz]. A short excurse to solid state basic physics makes it obvious applying the adequate doping accomplishes "single photon detection". Nevertheless this does not mean there is a 1:1 correspondence between a photon emanated from the source location and that detected within the detector module. Propagation characteristics were simply overlooked during the numerous discussions about "single photon" detection. Practical examples are worked out on hand of a pin- / and a AVDphotodiode.

  12. Gingerbread-House Geometry.

    ERIC Educational Resources Information Center

    Emenaker, Charles E.

    1999-01-01

    Describes a sixth-grade interdisciplinary geometry unit based on Charles Dickens's "A Christmas Carol". Focuses on finding area, volume, and perimeter, and working with estimation, decimals, and fractions in the context of making gingerbread houses. (ASK)

  13. What Is Geometry?

    ERIC Educational Resources Information Center

    Chern, Shiing-Shen

    1990-01-01

    Discussed are the major historical developments of geometry. Euclid, Descartes, Klein's Erlanger Program, Gaus and Riemann, globalization, topology, Elie Cartan, and an application to molecular biology are included as topics. (KR)

  14. Noncommutative Geometry and Physics

    NASA Astrophysics Data System (ADS)

    Connes, Alain

    2006-11-01

    In this very short essay we shall describe a "spectral" point of view on geometry which allows to start taking into account the lessons from both renormalization and of general relativity. We shall first do that for renormalization and explain in rough outline the content of our recent collaborations with Dirk Kreimer and Matilde Marcolli leading to the universal Galois symmetry of renormalizable quantum field theories provided by the renormalization group in its cosmic Galois group incarnation. As far as general relativity is concerned, since the functional integral cannot be treated in the traditional perturbative manner, it relies heavily as a "sum over geometries" on the chosen paradigm of geometric space. This will give us the occasion to discuss, in the light of noncommutative geometry, the issue of "observables" in gravity and our joint work with Ali Chamseddine on the spectral action, with a first attempt to write down a functional integral on the space of noncommutative geometries.

  15. Proof in Transformation Geometry

    ERIC Educational Resources Information Center

    Bell, A. W.

    1971-01-01

    The first of three articles showing how inductively-obtained results in transformation geometry may be organized into a deductive system. This article discusses two approaches to enlargement (dilatation), one using coordinates and the other using synthetic methods. (MM)

  16. Generation of Fourier-transform-limited heralded single photons

    SciTech Connect

    U'Ren, Alfred B.; Jeronimo-Moreno, Yasser; Garcia-Gracia, Hipolito

    2007-02-15

    In this paper we study the spectral (temporal) properties of heralded single photon wave packets, triggered by the detection of an idler photon in the process of parametric down conversion. The generated single photons are studied within the framework of the chronocyclic Wigner function, from which the single photon spectral width and temporal duration can be computed. We derive specific conditions on the two-photon joint spectral amplitude which result in both pure and Fourier-transform-limited heralded single photons. Likewise, we present specific source geometries which lead to the fulfillment of these conditions and show that one of these geometries leads, for a given pump bandwidth, to the temporally shortest possible heralded single photon wave packets.

  17. Photonic Molecule Lasers Revisited

    NASA Astrophysics Data System (ADS)

    Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.

    2014-05-01

    Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.

  18. Common Geometry Module

    Energy Science and Technology Software Center (ESTSC)

    2005-01-01

    The Common Geometry Module (CGM) is a code library which provides geometry functionality used for mesh generation and other applications. This functionality includes that commonly found in solid modeling engines, like geometry creation, query and modification; CGM also includes capabilities not commonly found in solid modeling engines, like geometry decomposition tools and support for shared material interfaces. CGM is built upon the ACIS solid modeling engine, but also includes geometry capability developed beside and onmore » top of ACIS. CGM can be used as-is to provide geometry functionality for codes needing this capability. However, CGM can also be extended using derived classes in C++, allowing the geometric model to serve as the basis for other applications, for example mesh generation. CGM is supported on Sun Solaris, SGI, HP, IBM, DEC, Linux and Windows NT platforms. CGM also indudes support for loading ACIS models on parallel computers, using MPI-based communication. Future plans for CGM are to port it to different solid modeling engines, including Pro/Engineer or SolidWorks. CGM is being released into the public domain under an LGPL license; the ACIS-based engine is available to ACIS licensees on request.« less

  19. CMS Geometry Through 2020

    NASA Astrophysics Data System (ADS)

    Osborne, I.; Brownson, E.; Eulisse, G.; Jones, C. D.; Lange, D. J.; Sexton-Kennedy, E.

    2014-06-01

    CMS faces real challenges with upgrade of the CMS detector through 2020 and beyond. One of the challenges, from the software point of view, is managing upgrade simulations with the same software release as the 2013 scenario. We present the CMS geometry description software model, its integration with the CMS event setup and core software. The CMS geometry configuration and selection is implemented in Python. The tools collect the Python configuration fragments into a script used in CMS workflow. This flexible and automated geometry configuration allows choosing either transient or persistent version of the same scenario and specific version of the same scenario. We describe how the geometries are integrated and validated, and how we define and handle different geometry scenarios in simulation and reconstruction. We discuss how to transparently manage multiple incompatible geometries in the same software release. Several examples are shown based on current implementation assuring consistent choice of scenario conditions. The consequences and implications for multiple/different code algorithms are discussed.

  20. Anode wire aging tests with selected gases

    SciTech Connect

    Kadyk, J.; Wise, J.; Hess, D.; Williams, M. )

    1990-04-01

    As a continuation of earlier wire aging investigations, additional candidates for wire chamber gas and wire have been tested. These include the gases: argon/ethane, HRS gas, dimethyl ether, carbon dioxide/ethane, and carbon tetrafluoride/isobutane. Wires used were: gold- plated tungsten, Stablohm, Nicotin, and Stainless Steel. Measurements were made of the effects upon wire aging of impurities from plumbing materials or contamination from various types of oil. Attempts were made to induce wire aging by adding measured amounts of oxygen and halogen (methyl chloride) with negative results. In this paper, the possible role of electronegativity in the wire aging process is discussed, and measurements of electronegativity are made with several single carbon Freons, using both an electron capture detector and a wire chamber operating with dimethyl ether.

  1. Electrical wire insulation and electromagnetic coil

    DOEpatents

    Bich, George J.; Gupta, Tapan K.

    1984-01-01

    An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

  2. Quality control of microelectronic wire bonds

    NASA Technical Reports Server (NTRS)

    Thiel, R. A.; Schmidt, G. D.

    1975-01-01

    Report evaluates ultrasonic bonding of small-diameter aluminum wire joined to ceramic substrates metalized with thin-film and thick-film gold. Quick testing technique for nondestructive location of poor wire bonds is also presented.

  3. Put Your Cable Wiring to the Test.

    ERIC Educational Resources Information Center

    Day, C. William

    2001-01-01

    Discusses why schools and universities should use testing procedures in any wire bid specification for cable wiring and also know how experienced the installers are in testing and installing structured cabling systems. Key cabling terms are included. (GR)

  4. New insulation constructions for aerospace wiring applications

    NASA Technical Reports Server (NTRS)

    Slenski, George

    1994-01-01

    Outlined in this presentation is the background to insulation constructions for aerospace wiring applications, the Air Force wiring policy, the purpose and contract requirements of new insulation constructions, the test plan, and the test results.

  5. A manually set magnetic wire counter

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Magnetic storage wire counter design principles are given. Magnetic storage wire was coupled with two phase propagational driver in manual set counter shift register. Time delay between magnetic counter domain insertion and corresponding output pulse provides counting functions.

  6. Technique for stripping Teflon insulated wire

    NASA Technical Reports Server (NTRS)

    Babb, B. D.

    1967-01-01

    Cryogenic stripping of Teflon insulated wire leaves no residue and produces no physical damage. After the wire is immersed in liquid nitrogen, bent slightly, and returned to room temperature, the Teflon is removed by fingernails or flat-nosed pliers.

  7. Wire Capture Programs for Macintosh and IBM.

    ERIC Educational Resources Information Center

    Wiley, Gale

    1989-01-01

    Discusses wire capture programs (computer programs which gather and process wire services such as the Associated Press or United Press) for computer labs in journalism departments. Describes details of such programs for Macintosh, IBM, and IBM clones. (SR)

  8. Electrical Wire Insulation and Electromagnetic Coil

    SciTech Connect

    Bich, G. J.; Gupta, T. K.

    1984-01-31

    An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

  9. REACH. Residential Electrical Wiring Units.

    ERIC Educational Resources Information Center

    Ansley, Jimmy; Ennis, Mike

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of residential electrical wiring. The instructional units focus on grounded outlets, service entrance, and blueprint reading. Each unit follows a typical format…

  10. Flexible substrate for printed wiring

    NASA Technical Reports Server (NTRS)

    Asakura, M.; Yabe, K.; Tanaka, H.; Soda, A.

    1982-01-01

    A very flexible substrate for printed wiring is disclosed which is composed of a blend of phenoxy resin-polyisocyanate-brominated epoxy resin in which the equivalent ration of the functional groups is hydroxyl grouped: isocyanate group: epoxy group = 1:0.2 to 2:0.5 to 3. The product has outstanding solder resistance and is applied to metal without using adhesives.

  11. Health care's 100 most wired.

    PubMed

    Solovy, A; Serb, C

    1999-02-01

    They're wired all right, and America's 100 most techno-savvy hospitals and health systems share one more thing: a commitment to using technology to link with employees, patients, suppliers, and insurers. "We want to be a health care travel agency for our community," says one chief information officer. "And we see Internet technology as a key." PMID:10081454

  12. Regeneration: New Neurons Wire Up.

    PubMed

    Raymond, Pamela A

    2016-09-12

    Functional repair of damage in the nervous system requires re-establishment of precise patterns of synaptic connectivity. A new study shows that after selective ablation, zebrafish retinal neurons regenerate and reconstruct some, although not all, of their stereotypic wiring. PMID:27623258

  13. Fabrication of tungsten wire needles

    SciTech Connect

    Roder, A.

    1983-02-01

    Fine point needles for field emissoin are conventionally produced by electrolytically or chemically etching tungsten wire. Points formed in this manner have a typical tip radius of about 0.5 microns and a cone angle of some 30 degrees. The construction of needle matrix detector chambers has created a need for tungsten needles whose specifications are: 20 mil tungsten wire, 1.5 inch total length, 3 mm-long taper (resulting in a cone angle of about 5 degrees), and 25 micron-radius point (similar to that found on sewing needles). In the process described here for producing such needles, tungsten wire, immersed in a NaOH solution and in the presence of an electrode, is connected first to an ac voltage and then to a dc supply, to form a taper and a point on the end of the wire immersed in the solution. The process parameters described here are for needles that will meet the above specifications. Possible variations will be discussed under each approprite heading.

  14. Plated wire random access memories

    NASA Technical Reports Server (NTRS)

    Gouldin, L. D.

    1975-01-01

    A program was conducted to construct 4096-work by 18-bit random access, NDRO-plated wire memory units. The memory units were subjected to comprehensive functional and environmental tests at the end-item level to verify comformance with the specified requirements. A technical description of the unit is given, along with acceptance test data sheets.

  15. Wire-Wrap Chatter Detector

    NASA Technical Reports Server (NTRS)

    Fisch, G. Z.; Borden, T. J.

    1982-01-01

    Monitoring circuit responds to changes in resistance as little as 0.1 ohm. Has been used to detect defective wire-wrap connections during thermal and vibration tests. Defect is indicated to operator by light-emitting diode and by increase in count on a two-digit display.

  16. Ultrasonic Calibration Wire Test Phantom

    SciTech Connect

    Lehman, S K; Fisher, K A; Werve, M; Chambers, D H

    2004-09-24

    We designed and built a phantom consisting of vertical wires maintained under tension to be used as an ultrasonic test, calibration, and reconstruction object for the Lawrence Livermore National Laboratory annular array scanner. We provide a description of the phantom, present example data sets, preliminary reconstructions, example metadata, and MATLAB codes to read the data.

  17. Transport Through Carbon Nanotube Wires

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    This viewgraph presentation deals with the use of carbon nanotubes as a transport system. Contact, defects, tubular bend, phonons, and mechanical deformations all contribute to reflection within the nanotube wire. Bragg reflection, however, is native to an ideal energy transport system. Transmission resistance depends primarily on the level of energy present. Finally, the details regarding coupling between carbon nanotubes and simple metals are presented.

  18. Spatial filtering with photonic crystals

    SciTech Connect

    Maigyte, Lina; Staliunas, Kestutis

    2015-03-15

    Photonic crystals are well known for their celebrated photonic band-gaps—the forbidden frequency ranges, for which the light waves cannot propagate through the structure. The frequency (or chromatic) band-gaps of photonic crystals can be utilized for frequency filtering. In analogy to the chromatic band-gaps and the frequency filtering, the angular band-gaps and the angular (spatial) filtering are also possible in photonic crystals. In this article, we review the recent advances of the spatial filtering using the photonic crystals in different propagation regimes and for different geometries. We review the most evident configuration of filtering in Bragg regime (with the back-reflection—i.e., in the configuration with band-gaps) as well as in Laue regime (with forward deflection—i.e., in the configuration without band-gaps). We explore the spatial filtering in crystals with different symmetries, including axisymmetric crystals; we discuss the role of chirping, i.e., the dependence of the longitudinal period along the structure. We also review the experimental techniques to fabricate the photonic crystals and numerical techniques to explore the spatial filtering. Finally, we discuss several implementations of such filters for intracavity spatial filtering.

  19. Novel Wiring Technologies for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gibson, Tracy L.; Parrish, Lewis M.

    2014-01-01

    Because wire failure in aerospace vehicles could be catastrophic, smart wiring capabilities have been critical for NASA. Through the years, researchers at Kennedy Space Center (KSC) have developed technologies, expertise, and research facilities to meet this need. In addition to aerospace applications, NASA has applied its knowledge of smart wiring, including self-healing materials, to serve the aviation industry. This webinar will discuss the development efforts of several wiring technologies at KSC and provide insight into both current and future research objectives.

  20. Further Studies Of Hot-Wire Anemometry

    NASA Technical Reports Server (NTRS)

    Mckenzie, Robert; Logan, Pamela; Bershader, Daniel

    1990-01-01

    Report discusses factors affecting readings of hot-wire anemometer in turbulent supersonic boundary layer. Represents extension of work described in "Hot-Wire Anemometry Versus Laser-Induced Fluorescence" (ARC-11802). Presents theoretical analysis of responses of hot-wire probe to changes in flow; also compares measurements by hot-wire probe with measurements of same flows by laser-induced fluorescence (LIF).

  1. Different mechanical properties in Seldinger guide wires

    PubMed Central

    Schummer, Wolfram

    2015-01-01

    Background and Aims: Most central venous catheters are placed using Seldinger guide wires. EN ISO 11070 is the guideline for testing guide wire flexing performance and tensile strength, and we can safely assume that guide wires in use meet these requirements. Unfortunately, EN ISO 11070 guidelines do not reflect the clinical requirements and we continue to see mechanical failures and their associated complications. Material and Methods: This in vitro study was performed in an accredited laboratory. With regard to flexing, we: (1) Established the minimum flexing performance needed to meet clinical requirements, (2) developed flexing performance tests which mimic clinical requirement, and (3) evaluated the mechanical properties of various guide wires relative to these requirements. With regard to tensile strength, we used the testing method prescribed in ISO 11070, but did not end the test at 5 Newton (N). We continued until the guide wire was damaged, or we reached maximum tractive force. We then did a wire-to-wire comparison. We examined two basic wire constructions, monofil and core and coil. Results: Tensile strength: All wires tested, except one, met EN ISO 11070 requirements for 5 N tensile strength. The mean of the wire types tested ranged from 15.06 N to 257.76 N. Flexing performance: None of the wires kinked. The monofil had no evidence of bending. Two core/coil wires displayed minor bending (angle 1.5°). All other wires displayed bending angles between 22.5° and 43.0°. Conclusion: We recommend that: (1) Clinicians use guide wires with high-end mechanical properties, (2) EN ISO 11070 incorporate our flexing test into their testing method, raise the flexing requirement to kink-proof, (3) and raise the tensile strength requirement to a minimum of 30 N, and (3) all manufacturers and suppliers be required to display mechanical properties of all guide wire, and guide wire kits sold. PMID:26702209

  2. NEMA wire and cable standards development programs

    NASA Technical Reports Server (NTRS)

    Baird, Robert W.

    1994-01-01

    The National Electrical Manufacturers Association (NEMA) is the nation's largest trade association for manufacturers of electrical equipment. Its member companies produce components, end-use equipment and systems for the generation, transmission, distribution, control and use of electricity. The wire and cable division is presented in 6 sections: building wire and cable, fabricated conductors, flexible cords, high performance wire and cable, magnet wire, and power and control cable. Participating companies are listed.

  3. 30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Trailing cables for mobile equipment, ground wires, and ground check wires. 75.906 Section 75.906 Mineral Resources MINE SAFETY AND HEALTH..., ground wires, and ground check wires. Trailing cables for mobile equipment shall contain one or...

  4. 30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Trailing cables for mobile equipment, ground wires, and ground check wires. 75.906 Section 75.906 Mineral Resources MINE SAFETY AND HEALTH..., ground wires, and ground check wires. Trailing cables for mobile equipment shall contain one or...

  5. 30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Trailing cables for mobile equipment, ground wires, and ground check wires. 75.906 Section 75.906 Mineral Resources MINE SAFETY AND HEALTH..., ground wires, and ground check wires. Trailing cables for mobile equipment shall contain one or...

  6. 30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables for mobile equipment, ground wires, and ground check wires. 75.906 Section 75.906 Mineral Resources MINE SAFETY AND HEALTH..., ground wires, and ground check wires. Trailing cables for mobile equipment shall contain one or...

  7. 30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Trailing cables for mobile equipment, ground wires, and ground check wires. 75.906 Section 75.906 Mineral Resources MINE SAFETY AND HEALTH..., ground wires, and ground check wires. Trailing cables for mobile equipment shall contain one or...

  8. Analysis of ultra-relativistic charged particle beam and stretched wire measurement interactions with cylindrically symmetric structures

    SciTech Connect

    Deibele, C.E.

    1996-12-31

    The beam impedance and wakefield are quantities which describe the stability of charged particles in their trajectory within an accelerator. The stretched wire measurement technique is a method which estimates the beam impedance and wakefield. Definitions for the beam impedance, the wakefield, and the stretched wire measurement are presented. A pillbox resonator with circular beampipes is studied for its relatively simple profile and mode structure. Theoretical predictions and measurement data are presented for the interaction of various charged particle beams and center conductor geometries between the cavity and beampipe. Time domain predictions for the stretched wire measurement and wakefield are presented and are shown to be a linear interaction.

  9. 49 CFR 236.838 - Wire, shunt.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Wire, shunt. 236.838 Section 236.838 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Wire, shunt. A wire forming part of a shunt circuit....

  10. 30 CFR 57.12047 - Guy wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Guy wires. 57.12047 Section 57.12047 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Electricity Surface and Underground § 57.12047 Guy wires. Guy wires of...

  11. Getting "Wired" for McLuhan's Cyberculture.

    ERIC Educational Resources Information Center

    McMurdo, George

    1995-01-01

    Examines the introduction of the computing magazine, "Wired", into the United Kingdom's (UK) market. Presents conversations with the founder and editorial staff of the UK edition, and discusses the accessibility of "Wired" via the World Wide Web. Describes 10 articles from United States "Wired" back-issues and presents critiques of a utopian…

  12. 49 CFR 393.28 - Wiring systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Wiring systems. 393.28 Section 393.28 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY... NECESSARY FOR SAFE OPERATION Lamps, Reflective Devices, and Electrical Wiring § 393.28 Wiring...

  13. Home and School Technology: Wired versus Wireless.

    ERIC Educational Resources Information Center

    Van Horn, Royal

    2001-01-01

    Presents results of informal research on smart homes and appliances, structured home wiring, whole-house audio/video distribution, hybrid cable, and wireless networks. Computer network wiring is tricky to install unless all-in-one jacketed cable is used. Wireless phones help installers avoid pre-wiring problems in homes and schools. (MLH)

  14. Butterfly wing color: A photonic crystal demonstration

    NASA Astrophysics Data System (ADS)

    Proietti Zaccaria, Remo

    2016-01-01

    We have theoretically modeled the optical behavior of a natural occurring photonic crystal, as defined by the geometrical characteristics of the Teinopalpus Imperialis butterfly. In particular, following a genetic algorithm approach, we demonstrate how its wings follow a triclinic crystal geometry with a tetrahedron unit base. By performing both photonic band analysis and transmission/reflection simulations, we are able to explain the characteristic colors emerging by the butterfly wings, thus confirming their crystal form.

  15. Green photonics

    NASA Astrophysics Data System (ADS)

    Quan, Frederic

    2012-02-01

    Photonics, the broad merger of electronics with the optical sciences, encompasses such a wide swath of technology that its impact is almost universal in our everyday lives. This is a broad overview of some aspects of the industry and their contribution to the ‘green’ or environmental movement. The rationale for energy conservation is briefly discussed and the impact of photonics on our everyday lives and certain industries is described. Some opinions from industry are presented along with market estimates. References are provided to some of the most recent research in these areas.

  16. Photons Revisited

    NASA Astrophysics Data System (ADS)

    Batic, Matej; Begalli, Marcia; Han, Min Cheol; Hauf, Steffen; Hoff, Gabriela; Kim, Chan Hyeong; Kim, Han Sung; Grazia Pia, Maria; Saracco, Paolo; Weidenspointner, Georg

    2014-06-01

    A systematic review of methods and data for the Monte Carlo simulation of photon interactions is in progress: it concerns a wide set of theoretical modeling approaches and data libraries available for this purpose. Models and data libraries are assessed quantitatively with respect to an extensive collection of experimental measurements documented in the literature to determine their accuracy; this evaluation exploits rigorous statistical analysis methods. The computational performance of the associated modeling algorithms is evaluated as well. An overview of the assessment of photon interaction models and results of the experimental validation are presented.

  17. Quantum-entangled photon interferometry

    NASA Astrophysics Data System (ADS)

    Richards, Roger K.

    2004-08-01

    A two-color quantum-entangled photon source is used to produce fourth-order interference. Because the period of the interference is produced by the frequency difference of the entangled photons, problems associated with counting fringes can be avoided. This also permits measurements at a virtual wavelength, which can prevent problems associated with transmission or absorption when such a longer wavelength may be needed. The interference wavelength can be varied with a geometry change in the beam path without any change in the source wavelength. The entangled photons are produced using an argon ion laser at 351 nanometers and a type I BBO crystal. The interference is detected in coincidence using four photomultiplier tubes.

  18. Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Arya, Mahendra; Khandekar, Sameer; Pratap, Dheeraj; Ramakrishna, S. Anantha

    2015-10-01

    Past decades have seen active research in enhancement of boiling heat transfer by surface modifications. Favorable surface modifications are expected to enhance boiling efficiency. Several interrelated mechanisms such as capillarity, surface energy alteration, wettability, cavity geometry, wetting transitions, geometrical features of surface morphology, etc., are responsible for change in the boiling behavior of modified surfaces. Not much work is available on pool boiling at low pressures on microscale/nanoscale geometries; low pressure boiling is attractive in many applications wherein low operating temperatures are desired for a particular working fluid. In this background, an experimental setup was designed and developed to investigate the pool boiling performance of water on (a) plain aluminum micro wire (99.999 % pure) and, (b) nano-porous alumina structured aluminum micro wire, both having diameter of 250 µm, under sub-atmospheric pressure. Nano-structuring on the plain wire surface was achieved via anodization. Two samples, A and B of anodized wires, differing by the degree of anodization were tested. The heater length scale (wire diameter) was much smaller than the capillary length scale. Pool boiling characteristics of water were investigated at three different sub-atmospheric pressures of 73, 123 and 199 mbar (corresponding to T sat = 40, 50 and 60 °C). First, the boiling characteristics of plain wire were measured. It was noticed that at sub-atmospheric pressures, boiling heat transfer performance for plain wire was quite low due to the increased bubble sizes and low nucleation site density. Subsequently, boiling performance of nano-structured wires (both Sample A and Sample B) was compared with plain wire and it was noted that boiling heat transfer for the former was considerably enhanced as compared to the plain wire. This enhancement is attributed to increased nucleation site density, change in wettability and possibly due to enhanced pore scale

  19. Frequency response in short thermocouple wires

    NASA Technical Reports Server (NTRS)

    Forney, L. J.; Meeks, E. L.; Ma, J.; Fralick, G. C.

    1992-01-01

    Theoretical expressions are derived for the steady state frequency response of a thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for a nonuniform wire with unequal material properties and wire diameters across the junction. The amplitude ratio at low frequency omega approaches 0 agrees with the results of Scadron and Warshawsky (1952) for a steady state temperature distribution. Moreover, the frequency response for a nonuniform wire in the limit of infinite length l approaches infinity is shown to reduce to a simple expression that is analogous to the classic first order solution for a thermocouple wire with uniform properties. Theoretical expressions are also derived for the steady state frequency response of a supported thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a supported one material wire and a two material wire with unequal material properties across the junction. For the case of a one material supported wire, an exact solution is derived which compares favorably with an approximate expression that only matches temperatures at the support junction. Moreover, for the case of a two material supported wire, an analytical expression is derived that closely correlates numerical results. Experimental measurements are made for the steady state frequency response of a supported thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a supported one material wire (type K) and a two material wire (type T) with unequal material properties across the junction. The data for the amplitude ratio and phase angle are correlated to within 10 pct. with the theoretical predictions of Forney and Fralick (1991). This is accomplished by choosing a natural frequency omega sub n for the wire data to correlate the first order response at large gas temperature frequencies. It is found that a large bead size, however, will increase the amplitude ratio at

  20. Non-destructive X-ray examination of weft knitted wire structures

    NASA Astrophysics Data System (ADS)

    Obermann, M.; Ellouz, M.; Aumann, S.; Martens, Y.; Bartelt, P.; Klöcker, M.; Kordisch, T.; Ehrmann, A.; Weber, M. O.

    2016-07-01

    Conductive yarns or wires are often integrated in smart textiles to enable data or energy transmission. In woven fabrics, these conductive parts are fixed at defined positions and thus protected from external loads. Knitted fabrics, however, have relatively loose structures, resulting in higher impacts of possible mechanical forces on the individual yarns. Hence, metallic wires with smaller diameters in particular are prone to break when integrated in knitted fabrics. In a recent project, wires of various materials including copper, silver and nickel with diameters varying between 0.05 mm and 0.23 mm were knitted in combination with textile yarns. Hand flat knitting machines of appropriate gauges were used to produce different structures. On these samples, non-destructive examinations, using an industrial X-ray system Seifert x|cube (225 kV) equipped with a minifocus X-ray tube, were carried out, directly after knitting as well as after different mechanical treatments (tensile, burst, and washing tests). In this way, structural changes of the stitch geometry could be visualized before failure. In this paper, the loop geometries in the knitted fabrics are depicted depending on knitted structures, wire properties and the applied mechanical load. Consequently, it is shown which metallic wires and yarns are most suitable to be integrated into knitted smart textiles.

  1. Strain and Texture in Al-Interconnect Wires Measured by X-Ray Microbeam Diffraction

    SciTech Connect

    Budai, J.D.; Chung, J.-S.; Ice, G.E.; Larson, B.C.; Lowe, W.P.; Tamura, N.; Tischler, J.Z.; Williams, E.L.; Yoon, M.

    1999-04-05

    The local strain and texture in Al interconnect wires have been investigated using white and monochromatic x-ray microbeams on the MHATTCAT undulator beam line at the Advanced Photon Source. Intergrain and intragrain orientations were obtained with ~0.01 degree sensitivity using white beam measurements on wide Al pads (~100 Mu-m) and thin (2 Mu-m) Al wires. Orientation changes of up to 1 degree were found within individual grains of the (111) textured Al interconnects. Deviatoric strain measurements indicate small intragranular strain variations, but intergranular strain variations were found to be quite large.

  2. Cloud geometry effects on atmospheric solar absorption

    SciTech Connect

    Fu, Q.; Cribb, M.C.; Barker, H.W.; Krueger, S.K.; Grossman, A.

    2000-04-15

    A 3D broadband solar radiative transfer scheme is formulated by integrating a Monte Carlo photon transport algorithm with the Fu-Liou radiation model. It is applied to fields of tropical mesoscale convective clouds and subtropical marine boundary layer clouds that were generated by a 2D cloud-resolving model. The effects of cloud geometry on the radiative energy budget are examined by comparing the full-resolution Monte Carlo results with those from the independent column approximation (ICA) that applies the plane-parallel radiation model to each column. For the tropical convective cloud system, it is found that cloud geometry effects always enhance atmospheric solar absorption regardless of solar zenith angle. In a large horizontal domain (512 km), differences in domain-averaged atmospheric absorption between the Monte Carlo and the ICA are less than 4 W m{sup {minus}2} in the daytime. However, for a smaller domain (e.g., 75 km) containing a cluster of deep convective towers, domain-averaged absorption can be enhanced by more than 20 W m{sup {minus}2}. For a subtropical marine boundary layer cloud system during the stratus-to-cumulus transition, calculations show that the ICA works very well for domain-averaged fluxes of the stratocumulus cloud fields even for a very small domain (4.8 km). For the trade cumulus cloud field, the effects of cloud sides and horizontal transport of photons become more significant. Calculations have also been made for both cloud systems including black carbon aerosol and a water vapor continuum. It is found that cloud geometry produces no discernible effects on the absorption enhancement due to the black carbon aerosol and water vapor continuum. The current study indicates that the atmospheric absorption enhancement due to cloud-related 3D photon transport is small. This enhancement could not explain the excess absorption suggested by recent studies.

  3. The nucleation mechanism of wire explosion

    NASA Astrophysics Data System (ADS)

    Tkachenko, S. I.; Vorob'ev, V. S.; Malyshenko, S. P.

    2004-02-01

    This study deals with the nucleation mechanism of electric explosion of wires allowing estimation of wire parameters at the start of the explosion for a wide range of experimental conditions. We analyse the dependence of the limit value of the energy deposited during the initial resistive phase of heating of the wire on the parameters of the wire and circuit as well as the size distribution of metal particles formed on electrical explosion of the wire. We discuss the correspondence of these results with previously published experimental data.

  4. Radial pn Junction, Wire Array Solar Cells

    NASA Astrophysics Data System (ADS)

    Kayes, Brendan Melville

    Radial pn junctions are potentially of interest in photovoltaics as a way to decouple light absorption from minority carrier collection. In a traditional planar design these occur in the same dimension, and this sets a lower limit on absorber material quality, as cells must both be thick enough to effectively absorb the solar spectrum while also having minority-carrier diffusion lengths long enough to allow for efficient collection of the photo-generated carriers. Therefore, highly efficient photovoltaic devices currently require highly pure materials and expensive processing techniques, while low cost devices generally operate at relatively low efficiency. The radial pn junction design sets the direction of light absorption perpendicular to the direction of minority-carrier transport, allowing the cell to be thick enough for effective light absorption, while also providing a short pathway for carrier collection. This is achieved by increasing the junction area, in order to decrease the path length any photogenerated minority carrier must travel, to be less than its minority carrier diffusion length. Realizing this geometry in an array of semiconducting wires, by for example depositing a single-crystalline inorganic semiconducting absorber layer at high deposition rates from the gas phase by the vapor-liquid-solid (VLS) mechanism, allows for a "bottom up" approach to device fabrication, which can in principle dramatically reduce the materials costs associated with a cell.

  5. Geometry and Cloaking Devices

    NASA Astrophysics Data System (ADS)

    Ochiai, T.; Nacher, J. C.

    2011-09-01

    Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.

  6. Students Discovering Spherical Geometry Using Dynamic Geometry Software

    ERIC Educational Resources Information Center

    Guven, Bulent; Karatas, Ilhan

    2009-01-01

    Dynamic geometry software (DGS) such as Cabri and Geometers' Sketchpad has been regularly used worldwide for teaching and learning Euclidean geometry for a long time. The DGS with its inductive nature allows students to learn Euclidean geometry via explorations. However, with respect to non-Euclidean geometries, do we need to introduce them to…

  7. Study of exploding Al wire plasmas using X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Pikuz, Sergey A.; Shelkovenko, Tatiana A.; Hoyt, Cad L.; Cahill, Adam D.; Hammer, David A.

    2012-10-01

    X-ray absorption spectroscopy is a powerful diagnostic technique useful for determining the charge state, temperature and density of plasmas under a wide range of conditions and situations. Our particular interest was the study of the core-corona system generated in electrically exploded wires and wire array Z-pinches. Two wide-bandwidth spectrographs with flat and concave cylindrically bent KAP crystals, and high-resolution spectrographs with spherically bent quartz crystals have been used on the XP and COBRA pulsers at Cornell University. The hybrid X-pinch was used as the continuum x-ray source in the photon energy range of interest for absorption spectroscopy with exploding Al wire experiments. This source is capable of producing broadband continuum x-ray pulses with micron source size and 100 ps duration. Absorption spectra of single exploded Al wires and 2 - 4 wire arrays were recorded with high spatial resolution. The parameters of the dense wire core plasmas and the ablating plasma streams were estimated under different experimental conditions. New spectral features in absorption spectra were observed.

  8. Electromagnetic scattering by a straight thin wire

    NASA Technical Reports Server (NTRS)

    Shamansky, Harry T.; Dominek, Allen K.; Peters, Leon, Jr.

    1989-01-01

    The traveling-wave energy, which multiply diffracts on a straight thin wire, is represented as a sum of terms, each with a distinct physical meaning, that can be individually examined in the time domain. Expressions for each scattering mechanism on a straight thin wire are cast in the form of four basic electromagnetic wave concepts: diffraction, attachment, launch, and reflection. Using the basic mechanisms from P. Ya. Ufimtsev (1962), each of the scattering mechanisms is included into the total scattered field for the straight thin wire. Scattering as a function of angle and frequency is then compared to the moment-method solution. These analytic expressions are then extended to a lossy wire with a simple approximate modification using the propagation velocity on the wire as derived from the Sommerfeld wave on a straight lossy wire. Both the perfectly conducting and lossy wire solutions are compared to moment-method results, and excellent agreement is found. As is common with asymptotic solutions, when the electrical length of wire is smaller than 0.2 lambda the results lose accuracy. The expressions modified to approximate the scattering for the lossy thin wire yield excellent agreement even for lossy wires where the wire radius is on the order of skin depth.

  9. SpaceWire Data Handling Demonstration System

    NASA Astrophysics Data System (ADS)

    Mills, S.; Parkes, S. M.; O'Gribin, N.

    2007-08-01

    The SpaceWire standard was published in 2003 with the aim of providing a standard for onboard communications, defining the physical and data link layers of an interconnection, in order to improve reusability, reliability and to reduce the cost of mission development. The many benefits which it provides mean that it has already been used in a number of missions, both in Europe and throughout the world. Recent work by the SpaceWire community has included the development of higher level protocols for SpaceWire, such as the Remote Memory Access Protocol (RMAP) which can be used for many purposes, including the configuration of SpaceWire devices. Although SpaceWire has become very popular, the various ways in which it can be used are still being discovered, as are the most efficient ways to use it. At the same time, some in the space industry are not even aware of SpaceWire's existence. This paper describes the SpaceWire Data Handling Demonstration System that has been developed by the University of Dundee. This system simulates an onboard data handling network based on SpaceWire. It uses RMAP for all communication, and so demonstrates how SpaceWire and standardised higher level protocols can be used onboard a spacecraft. The system is not only a good advert for those who are unfamiliar with the benefits of SpaceWire, it is also a useful tool for those using SpaceWire to test ideas.

  10. Magnetization reversal modes in fourfold Co nano-wire systems

    NASA Astrophysics Data System (ADS)

    Blachowicz, T.; Ehrmann, A.

    2015-09-01

    Magnetic nano-wire systems are, as well as other patterned magnetic structures, of special interest for novel applications, such as magnetic storage media. In these systems, the coupling between neighbouring magnetic units is most important for the magnetization reversal process of the complete system, leading to a variety of magnetization reversal mechanisms. This article examines the influence of the magnetic material on hysteresis loop shape, coercive field, and magnetization reversal modes. While iron nano-wire systems exhibit flat or one-step hysteresis loops, systems consisting of cobalt nano-wires show hysteresis loops with several longitudinal steps and transverse peaks, correlated to a rich spectrum of magnetization reversal mechanisms. We show that changing the material parameters while the system geometry stays identical can lead to completely different hysteresis loops and reversal modes. Thus, especially for finding magnetic nano-systems which can be used as quaternary or even higher-order storage devices, it is rational to test several materials for the planned systems. Apparently, new materials may lead to novel and unexpected behaviour - and can thus result in novel functionalities.

  11. NASA wiring for space applications program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman

    1995-01-01

    An overview of the NASA Wiring for Space Applications Program and its relationship to NASA's space technology enterprise is given in viewgraph format. The mission of the space technology enterprise is to pioneer, with industry, the development and use of space technology to secure national economic competitiveness, promote industrial growth, and to support space missions. The objectives of the NASA Wiring for Space Applications Program is to improve the safety, performance, and reliability of wiring systems for space applications and to develop improved wiring technologies for NASA flight programs and commercial applications. Wiring system failures in space and commercial applications have shown the need for arc track resistant wiring constructions. A matrix of tests performed versus wiring constructions is presented. Preliminary data indicate the performance of the Tensolite and Filotex hybrid constructions are the best of the various candidates.

  12. Wire Crimp Connectors Verification using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp connections is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp connector and wire is shown to correlate with the results of a destructive pull test, which previously has been used to assess crimp wire junction quality. Various crimp junction pathologies (missing wire strands, incorrect wire gauge, incomplete wire insertion in connector) are ultrasonically tested, and their results are correlated with pull tests. Results show that the ultrasonic measurement technique consistently (as evidenced with pull-testing data) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying the technique while wire crimps are installed is also presented.

  13. High Tc superconductors - Composite wire fabrication

    NASA Astrophysics Data System (ADS)

    Jin, S.; Sherwood, R. C.; van Dover, R. B.; Tiefel, T. H.; Johnson, D. W., Jr.

    1987-07-01

    The fabrication of fine-wire, composite superconductors consisting of a high-conductivity normal metal shell, such as Ag or Cu/Ni/Au, and a superconducting core of Ba2YCu3O oxide is described. The functions of the normal metal shell and the importance of using the proper diffusion barrier metals are discussed. A resistivity-temperature curve for the composite wire Ag/Ba2YCu3O7 is examined, and the compound inside the finished wire is analyzed using X-ray diffraction. It is observed that the zero-field critical current density of the wire at 77 K is about 175 A/sq cm and the superconducting core is continuous and retains phase composition after wire drawing and heat treatment. The supplying of oxygen to the core of the long wire during heat treatments is studied. The data reveal that it is possible to process ceramic superconductors into a desirable composite wire form.

  14. Sintered wire cesium dispenser photocathode

    DOEpatents

    Montgomery, Eric J; Ives, R. Lawrence; Falce, Louis R

    2014-03-04

    A photoelectric cathode has a work function lowering material such as cesium placed into an enclosure which couples a thermal energy from a heater to the work function lowering material. The enclosure directs the work function lowering material in vapor form through a low diffusion layer, through a free space layer, and through a uniform porosity layer, one side of which also forms a photoelectric cathode surface. The low diffusion layer may be formed from sintered powdered metal, such as tungsten, and the uniform porosity layer may be formed from wires which are sintered together to form pores between the wires which are continuous from the a back surface to a front surface which is also the photoelectric surface.

  15. Parallel wire cable static load testing

    NASA Astrophysics Data System (ADS)

    Velasco Gil, Isabella C.

    This report is the result of two evaluations for the analysis of parallel wire cables. The purpose of the first assessment was to evaluate the stiffness and strength of parallel wire cables. For the methodology, three test setups were executed utilizing single wires, seven wire parallel cables, and 100 wire parallel cables as specimens. The parallel wire cables were connected with molted zinc to their sockets. The cables were manufactured by Wilolamb Construction. The results indicate that the single, seven, and 100 wire specimens had similar performance in yield stress, yield strain, modulus, and ultimate strain. However, the amount of strain decreased as the number of wires increased. Because the mechanical properties of the multi wires specimens had not significant difference, it is suggested that the zinc sockets had insignificant impact on their performance. Comparing these results to a previous test executed for parallel wire cables, there were significant differences on the ultimate capacity. It is assumed that the fabrication method of the cables were different. The second evaluation had two purposes. First, it was intended to compare the results of the single wire test from OSU to the single wire test results from Sherry Laboratories. From the analysis, it was found that the ultimate and yield loads were similar between both laboratories procedures, but their strength capacity and ultimate strain were different. It was observed that the Sherry Lab used a different method to compute the mechanical properties of the wire and that the measurement of the elongation was different to the procedures from OSU. Second, the secondary analysis was to evaluate if there is any significant difference between wires sanded at the mid-length of the specimen and wires that were not sanded. From this analysis it was observed that there was no difference between the sanded and non-sanded wires, which indicated that cross-section reduction should not be necessary for the

  16. Non-local susceptibility of the wire medium in the spatial domain considering material boundaries

    NASA Astrophysics Data System (ADS)

    Hanson, George W.; Silveirinha, Mário G.; Burghignoli, Paolo; Yakovlev, Alexander B.

    2013-08-01

    We show that the non-local susceptibility \\bar{\\boldsymbol{\\chi}}\\left (\\mathbf{r},\\mathbf{r}^{\\prime }\\right ) for a non-translationally invariant homogenized wire medium is, modulo a constant, given by a simple Green function related to the material geometry. We also show that two previous methods for solving wave interaction problems for bounded wire media (wave expansion method and transport equation) are equivalent to each other, and to a third method involving particle reflection at the boundary. We discuss the importance of the dead layer or virtual interface, and find it to be analogous to the excitonic semiconductor case. Several examples are provided to clarify the material.

  17. Pin Wire Coating Trip Report

    SciTech Connect

    Spellman, G P

    2004-03-18

    A meeting to discuss the current pin wire coating problems was held at the Reynolds plant in Los Angeles on 2MAR04. The attendance list for Reynolds personnel is attached. there was an initial presentation which gave a brief history and the current status of pin wire coating at Reynolds. There was a presentation by Lori Primus on the requirements and issues for the coating. There was a presentation by Jim Smith of LANL on the chemistry and to some extent process development done to date. There was a long session covering what steps should be taken in the short term and, to a lesser extent, the long term. The coating currently being used is a blend of two polymers, polyethersulfone and polyparabanic acid (PPA) and some TiO2 filler. This system was accepted and put into production when the pin wire coating was outsourced to another company in 1974. When that company no longer was interested, the wire coating was brought in-house to Reynolds. At that time polyparabanic acid was actually a commercial product available from Exxon under the trade name Tradlon. However, it appears that the material used at Reynolds was synthesized locally. Also, it appears that a single large batch was synthesized in that time period and used up to 1997 when the supply ran out. The reason for the inclusion of TiO2 is not known although it does act as a rheological thickener. However, a more controlled thickening can be obtained with materials such as fumed silica. This material would have less likelihood of causing point imperfections in the coatings. Also, the mixing technique being used for all stages of the process is a relatively low shear ball mill process and the author recommends a high shear process such as a three roll paint mill, at least for the final mixing. Since solvent is added to the powder at Reynolds, it may be that they need to have the paint mill there.

  18. Reduced-Wiring Tactile Sensor

    NASA Technical Reports Server (NTRS)

    Ohm, Timothy R.

    1991-01-01

    Proposed tactile sensor on robot finger puts out multiplexed analog signals transmitted to control computer on fewer wires than needed to transmit equivalent digital signals. Analog output represents data on contact area of object being gripped, on position of object, and on direction and rate of slippage if any. Consists of chains of normally open switches and resistors on surface of finger. Each resistance double preceding resistance in each chain. Constant-current sources supply power to chains.

  19. The Helen of Geometry

    ERIC Educational Resources Information Center

    Martin, John

    2010-01-01

    The cycloid has been called the Helen of Geometry, not only because of its beautiful properties but also because of the quarrels it provoked between famous mathematicians of the 17th century. This article surveys the history of the cycloid and its importance in the development of the calculus.

  20. The Geometry of Viruses.

    ERIC Educational Resources Information Center

    Case, Christine L.

    1991-01-01

    Presented is an activity in which students make models of viruses, which allows them to visualize the shape of these microorganisms. Included are some background on viruses, the biology and geometry of viruses, directions for building viruses, a comparison of cells and viruses, and questions for students. (KR)

  1. Gravity is Geometry.

    ERIC Educational Resources Information Center

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  2. Sliding vane geometry turbines

    DOEpatents

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  3. Making Solid Geometry Solid.

    ERIC Educational Resources Information Center

    Hartz, Viggo

    1981-01-01

    Allowing students to use a polystyrene cutter to fashion their own three-dimensional models is suggested as a means of allowing individuals to experience problems and develop ideas related to solid geometry. A list of ideas that can lead to mathematical discovery is provided. (MP)

  4. Fractal geometry of music.

    PubMed Central

    Hsü, K J; Hsü, A J

    1990-01-01

    Music critics have compared Bach's music to the precision of mathematics. What "mathematics" and what "precision" are the questions for a curious scientist. The purpose of this short note is to suggest that the mathematics is, at least in part, Mandelbrot's fractal geometry and the precision is the deviation from a log-log linear plot. PMID:11607061

  5. Geometry and physics

    PubMed Central

    Atiyah, Michael; Dijkgraaf, Robbert; Hitchin, Nigel

    2010-01-01

    We review the remarkably fruitful interactions between mathematics and quantum physics in the past decades, pointing out some general trends and highlighting several examples, such as the counting of curves in algebraic geometry, invariants of knots and four-dimensional topology. PMID:20123740

  6. GEOMETRY, TENTATIVE GUIDES.

    ERIC Educational Resources Information Center

    KLIER, KATHERINE M.

    PRESENTED IS A FUSED COURSE IN PLANE, SOLID, AND COORDINATE GEOMETRY. ELEMENTARY SET THEORY, LOGIC, AND THE PRINCIPLE OF SEPARATION PROVIDE UNIFYING THREADS THROUGHOUT THE TEXT. THE TWO CURRICULUM GUIDES HAVE BEEN PREPARED FOR USE WITH TWO DIFFERENT TEXTS. EITHER CURRICULUM GUIDE MAY BE USED DEPENDING UPON THE CHOICE OF THE TEACHER AND THE NEEDS…

  7. Geometry of spinor regularization

    NASA Technical Reports Server (NTRS)

    Hestenes, D.; Lounesto, P.

    1983-01-01

    The Kustaanheimo theory of spinor regularization is given a new formulation in terms of geometric algebra. The Kustaanheimo-Stiefel matrix and its subsidiary condition are put in a spinor form directly related to the geometry of the orbit in physical space. A physically significant alternative to the KS subsidiary condition is discussed. Derivations are carried out without using coordinates.

  8. Listening to Geometry

    ERIC Educational Resources Information Center

    Cooper, Brett D.; Barger, Rita

    2009-01-01

    The many connections between music and mathematics are well known. The length of a plucked string determines its tone, the time signature of a piece of music is a ratio, and note durations are measured in fractions. One connection commonly overlooked is that between music and geometry--specifically, geometric transformations, including…

  9. Photon Collider Physics with Real Photon Beams

    SciTech Connect

    Gronberg, J; Asztalos, S

    2005-11-03

    Photon-photon interactions have been an important probe into fundamental particle physics. Until recently, the only way to produce photon-photon collisions was parasitically in the collision of charged particles. Recent advances in short-pulse laser technology have made it possible to consider producing high intensity, tightly focused beams of real photons through Compton scattering. A linear e{sup +}e{sup -} collider could thus be transformed into a photon-photon collider with the addition of high power lasers. In this paper they show that it is possible to make a competitive photon-photon collider experiment using the currently mothballed Stanford Linear Collider. This would produce photon-photon collisions in the GeV energy range which would allow the discovery and study of exotic heavy mesons with spin states of zero and two.

  10. Geometry of PDE's. IV

    NASA Astrophysics Data System (ADS)

    Prástaro, Agostino

    2008-02-01

    Following our previous results on this subject [R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(I): Webs on PDE's and integral bordism groups. The general theory, Adv. Math. Sci. Appl. 17 (2007) 239-266; R.P. Agarwal, A. Prástaro, Geometry of PDE's. III(II): Webs on PDE's and integral bordism groups. Applications to Riemannian geometry PDE's, Adv. Math. Sci. Appl. 17 (2007) 267-285; A. Prástaro, Geometry of PDE's and Mechanics, World Scientific, Singapore, 1996; A. Prástaro, Quantum and integral (co)bordism in partial differential equations, Acta Appl. Math. (5) (3) (1998) 243-302; A. Prástaro, (Co)bordism groups in PDE's, Acta Appl. Math. 59 (2) (1999) 111-201; A. Prástaro, Quantized Partial Differential Equations, World Scientific Publishing Co, Singapore, 2004, 500 pp.; A. Prástaro, Geometry of PDE's. I: Integral bordism groups in PDE's, J. Math. Anal. Appl. 319 (2006) 547-566; A. Prástaro, Geometry of PDE's. II: Variational PDE's and integral bordism groups, J. Math. Anal. Appl. 321 (2006) 930-948; A. Prástaro, Th.M. Rassias, Ulam stability in geometry of PDE's, Nonlinear Funct. Anal. Appl. 8 (2) (2003) 259-278; I. Stakgold, Boundary Value Problems of Mathematical Physics, I, The MacMillan Company, New York, 1967; I. Stakgold, Boundary Value Problems of Mathematical Physics, II, Collier-MacMillan, Canada, Ltd, Toronto, Ontario, 1968], integral bordism groups of the Navier-Stokes equation are calculated for smooth, singular and weak solutions, respectively. Then a characterization of global solutions is made on this ground. Enough conditions to assure existence of global smooth solutions are given and related to nullity of integral characteristic numbers of the boundaries. Stability of global solutions are related to some characteristic numbers of the space-like Cauchy dataE Global solutions of variational problems constrained by (NS) are classified by means of suitable integral bordism groups too.

  11. Photonic crystal planar waveguide devices exploiting the thermo-optic effect (Keynote Paper)

    NASA Astrophysics Data System (ADS)

    De La Rue, Richard M.; Chong, Harold; Camargo, Edilson; Ciminelli, Caterina; Armenise, Mario

    2005-07-01

    Photonic crystal devices are now being produced for a variety of functions-and the need to provide thermal control of the behaviour suggests the use of thermo-optic effects. It has emerged that thermo-optic effects can provide useful modulation, switching and tuning capability. Future trends indicate fast, low-power, thermo-optically operated photonic crystal and photonic wire devices-and the possibility of simultaneous athermal characteristics.

  12. An introduction to Minkowski geometries

    NASA Astrophysics Data System (ADS)

    Farnsworth, David L.

    2016-07-01

    The fundamental ideas of Minkowski geometries are presented. Learning about Minkowski geometries can sharpen our students' understanding of concepts such as distance measurement. Many of its ideas are important and accessible to undergraduate students. Following a brief overview, distance and orthogonality in Minkowski geometries are thoroughly discussed and many illustrative examples and applications are supplied. Suggestions for further study of these geometries are given. Indeed, Minkowski geometries are an excellent source of topics for undergraduate research and independent study.

  13. Method and apparatus for laying wire arrays

    DOEpatents

    Horowitz, Seymour M.; Nesbitt, Dale D.

    1986-01-01

    Wire arrays (11) having a continuous wire (12) which is formed into a predetermined pattern and adhered to a backing material or substrate (13) are fabricated by applying adhesive material (16a, 16b) along opposite edge portions (17, 18) of the substrate, positioning a row of winding spools (21) along each of the edge portions and repeatedly extending the wire between and around successive spools at the opposite edge portions. The wound wire is then traveled along each spool toward the substrate and into contact with the adhesive. The spools are then removed and a coating of hardenable material (54) is applied to secure the wound wire to the substrate. Tension in the wire is relieved prior to contact of the wire with the adhesive and a small amount of slack is introduced into the wire before the final coating step. Mechanism (32) is provided for lifting the spools away from the substrate without disturbing the wound wire. The method and apparatus enable manufacture of precisely configured wire arrays without complex or costly equipment and do not require structural alterations in the substrate for the purpose of accommodating to fabrication equipment.

  14. Analysis of Conical Wire Array Z-Pinch Stability with a Center Wire

    SciTech Connect

    Martinez, D.; Presura, R.; Wright, S.; Plechaty, C.; Neff, S.; Wanex, L.; Ampleford, D. J.

    2009-01-21

    Adding a center wire on the axis of a conical wire array produces conditions suitable for studying shear flow stabilization of the Z-pinch. The conical wire array produces and axial plasma flow while the center wire introduces a radial variation of the axial velocity. Experiments of this array configuration were preformed on the 1 MA Zebra Z-pinch generator and showed stabilization of the kink instability when a center wire was present. Comparison with equivalent cylindrical wire arrays indicates that the shear flow stabilization plays a role in the stabilization of the kink instability.

  15. Thermal energy scavenger (rotating wire modules)

    SciTech Connect

    Hochstein, P.A.; Milton, H.W.; Pringle, W.L.

    1980-11-04

    A thermal energy scavenger assembly is is described including a plurality of temperature-sensitive wires made of material which exhibits shape memory due to a thermoelastic, martensitic phase transformation. The wires are placed in tension between fixed and movable plates which are, in turn, supported by a pair of wheels which are rotatably supported by a housing for rotation about a central axis. A pair of upper and lower cams are fixed to the housing and cam followers react with the respective cams. Each cam transmits forces through a pair of hydraulic pistons. One of the pistons is connected to a movable plate to which one end of the wires are connected whereby a stress is applied to the wires to strain the wires during a first phase and whereby the cam responds to the unstraining of the wires during a second phase. A housing defines fluid compartments through which hot and cold fluid passes and flows radially through the wires whereby the wires become unstrained and shorten in length when subjected to the hot fluid for causing a reaction between the cam followers and the cams to effect rotation of the wheels about the central axis of the assembly, which rotation of the wheels is extracted through beveled gearing. The wires are grouped into a plurality of independent modules with each module having a movable plate, a fixed plate and the associated hydraulic pistons and cam follower. The hydraulic pistons and cam follower of a module are disposed at ends of the wires opposite from the ends of the wires at which the same components of the next adjacent modules are disposed so that the cam followers of alternate modules react with one of the cams and the remaining cam followers of the remaining modules react with the other cam. There is also included stress limiting means in the form of coil springs associated with alternate ends of the wires for limiting the stress or strain in the wires.

  16. Geometry-related magnetic interference patterns in long SNS Josephson junctions

    NASA Astrophysics Data System (ADS)

    Chiodi, F.; Ferrier, M.; Guéron, S.; Cuevas, J. C.; Montambaux, G.; Fortuna, F.; Kasumov, A.; Bouchiat, H.

    2012-08-01

    We have measured the critical current dependence on the magnetic flux of two long SNS junctions differing by the normal wire geometry. The samples are made by a Au wire connected to W contacts, via focused ion beam assisted deposition. We could tune the magnetic pattern from the monotonic Gaussian-like decay of a quasi-one-dimensional (1D) normal wire to the Fraunhofer-like pattern of a square normal wire. We explain the monotonic limit with a semiclassical 1D model, and we fit both field dependencies with numerical simulations of the two-dimensional Usadel equations. Furthermore, we observe both integer and fractional Shapiro steps. The magnetic flux dependence of the integer steps reproduces as expected that of the critical current Ic, while fractional steps decay slower with the flux than Ic.

  17. Photonic Bandgap (PBG) Shielding Technology

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.

    2007-01-01

    Photonic Bandgap (PBG) shielding technology is a new approach to designing electromagnetic shielding materials for mitigating Electromagnetic Interference (EM!) with small, light-weight shielding materials. It focuses on ground planes of printed wiring boards (PWBs), rather than on components. Modem PSG materials also are emerging based on planar materials, in place of earlier, bulkier, 3-dimensional PBG structures. Planar PBG designs especially show great promise in mitigating and suppressing EMI and crosstalk for aerospace designs, such as needed for NASA's Constellation Program, for returning humans to the moon and for use by our first human visitors traveling to and from Mars. Photonic Bandgap (PBG) materials are also known as artificial dielectrics, meta-materials, and photonic crystals. General PBG materials are fundamentally periodic slow-wave structures in I, 2, or 3 dimensions. By adjusting the choice of structure periodicities in terms of size and recurring structure spacings, multiple scatterings of surface waves can be created that act as a forbidden energy gap (i.e., a range of frequencies) over which nominally-conductive metallic conductors cease to be a conductor and become dielectrics. Equivalently, PBG materials can be regarded as giving rise to forbidden energy gaps in metals without chemical doping, analogous to electron bandgap properties that previously gave rise to the modem semiconductor industry 60 years ago. Electromagnetic waves cannot propagate over bandgap regions that are created with PBG materials, that is, over frequencies for which a bandgap is artificially created through introducing periodic defects

  18. A Vibrating Wire System For Quadrupole Fiducialization

    SciTech Connect

    Wolf, Zachary

    2010-12-13

    A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization step of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our method

  19. Physics and geometry

    NASA Astrophysics Data System (ADS)

    Souriau, Jean-Marie

    1983-01-01

    Differential geometry, the contemporary heir of the infinitesimal calculus of the 17th century, appears today as the most appropriate language for the description of physical reality. This holds at every level: The concept of “connexion,” for instance, is used in the construction of models of the universe as well as in the description of the interior of the proton. Nothing is apparently more contrary to the wisdom of physicists; all the same, “it works.” The pages that follow show the conceptual role played by this geometry in some examples—without entering into technical details. In order to achieve this, we shall often have to abandon the complete mathematical rigor and even full definitions; however, we shall be able to give a precise description of the connection of ideas thanks to some elements of group theory.

  20. Puzzle geometry and rigidity

    NASA Astrophysics Data System (ADS)

    Smania, Daniel

    2007-07-01

    We describe a new and robust method to prove rigidity results in complex dynamics. The new ingredient is the geometry of the critical puzzle pieces: under control of geometry and ``complex bounds'', two generalized polynomial-like maps which admit a topological conjugacy, quasiconformal outside the filled-in Julia set, are indeed quasiconformally conjugate. The proof uses a new abstract removability-type result for quasiconformal maps, following ideas of Heinonen and Koskela and of Kallunki and Koskela, optimized for applications in complex dynamics. We prove, as the first application of this new method, that, for even criticalities distinct from two, the period two cycle of the Fibonacci renormalization operator is hyperbolic with 1 -dimensional unstable manifold.

  1. Failures of information geometry

    NASA Astrophysics Data System (ADS)

    Skilling, John

    2015-01-01

    Information H is a unique relationship between probabilities, based on the property of independence which is central to scientific methodology. Information Geometry makes the tempting but fallacious assumption that a local metric (conventionally based on information) can be used to endow the space of probability distributions with a preferred global Riemannian metric. No such global metric can conform to H, which is "from-to" asymmetric whereas geometrical length is by definition symmetric. Accordingly, any Riemannian metric will contradict the required structure of the very distributions which are supposedly being triangulated. It follows that probabilities do not form a metric space. We give counter-examples in which alternative formulations of information, and the use of information geometry, lead to unacceptable results.

  2. Cylindrical geometry hall thruster

    DOEpatents

    Raitses, Yevgeny; Fisch, Nathaniel J.

    2002-01-01

    An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.

  3. Three dimensional silicon photonic crystals fabricated by two photon phase mask lithography.

    SciTech Connect

    Wiltzius, P.; Braun, P. V.; Liao, H.; Brzezinski, A.; Chen, Y. C.; Nelson, E.; Shir, D.; Rogers, J. A.; Bogart, Katherine Huderle Andersen

    2008-08-01

    We describe the fabrication of silicon three dimensional photonic crystals using polymer templates defined by a single step, two-photon exposure through a layer of photopolymer with relief molded on its surface. The resulting crystals exhibit high structural quality over large areas, displaying geometries consistent with calculation. Spectroscopic measurements of transmission and reflection through the silicon and polymer structures reveal excellent optical properties, approaching properties predicted by simulations that assume ideal layouts.

  4. Freezing in confined geometries

    NASA Technical Reports Server (NTRS)

    Sokol, P. E.; Ma, W. J.; Herwig, K. W.; Snow, W. M.; Wang, Y.; Koplik, Joel; Banavar, Jayanth R.

    1992-01-01

    Results of detailed structural studies, using elastic neutron scattering, of the freezing of liquid O2 and D2 in porous vycor glass, are presented. The experimental studies have been complemented by computer simulations of the dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls. Results point to a new simple physical interpretation of freezing in confined geometries.

  5. Tensile deformation of NiTi wires.

    PubMed

    Gall, Ken; Tyber, Jeff; Brice, Valerie; Frick, Carl P; Maier, Hans J; Morgan, Neil

    2005-12-15

    We examine the structure and properties of cold drawn Ti-50.1 at % Ni and Ti-50.9 at % Ni shape memory alloy wires. Wires with both compositions possess a strong <111> fiber texture in the wire drawing direction, a grain size on the order of micrometers, and a high dislocation density. The more Ni rich wires contain fine second phase precipitates, while the wires with lower Ni content are relatively free of precipitates. The wire stress-strain response depends strongly on composition through operant deformation mechanisms, and cannot be explained based solely on measured differences in the transformation temperatures. We provide fundamental connections between the material structure, deformation mechanisms, and resulting stress-strain responses. The results help clarify some inconsistencies and common misconceptions in the literature. Ramifications on materials selection and design for emerging biomedical applications of NiTi shape memory alloys are discussed. PMID:16138359

  6. Integral geometry and holography

    DOE PAGESBeta

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Sully, James

    2015-10-27

    We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS3/CFT2 correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulkmore » curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS3 whose kinematic space is two-dimensional de Sitter space.« less

  7. Emergent Complex Network Geometry

    NASA Astrophysics Data System (ADS)

    Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra

    2015-05-01

    Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems.

  8. Emergent Complex Network Geometry

    PubMed Central

    Wu, Zhihao; Menichetti, Giulia; Rahmede, Christoph; Bianconi, Ginestra

    2015-01-01

    Networks are mathematical structures that are universally used to describe a large variety of complex systems such as the brain or the Internet. Characterizing the geometrical properties of these networks has become increasingly relevant for routing problems, inference and data mining. In real growing networks, topological, structural and geometrical properties emerge spontaneously from their dynamical rules. Nevertheless we still miss a model in which networks develop an emergent complex geometry. Here we show that a single two parameter network model, the growing geometrical network, can generate complex network geometries with non-trivial distribution of curvatures, combining exponential growth and small-world properties with finite spectral dimensionality. In one limit, the non-equilibrium dynamical rules of these networks can generate scale-free networks with clustering and communities, in another limit planar random geometries with non-trivial modularity. Finally we find that these properties of the geometrical growing networks are present in a large set of real networks describing biological, social and technological systems. PMID:25985280

  9. Integral geometry and holography

    SciTech Connect

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Sully, James

    2015-10-27

    We present a mathematical framework which underlies the connection between information theory and the bulk spacetime in the AdS3/CFT2 correspondence. A key concept is kinematic space: an auxiliary Lorentzian geometry whose metric is defined in terms of conditional mutual informations and which organizes the entanglement pattern of a CFT state. When the field theory has a holographic dual obeying the Ryu-Takayanagi proposal, kinematic space has a direct geometric meaning: it is the space of bulk geodesics studied in integral geometry. Lengths of bulk curves are computed by kinematic volumes, giving a precise entropic interpretation of the length of any bulk curve. We explain how basic geometric concepts -- points, distances and angles -- are reflected in kinematic space, allowing one to reconstruct a large class of spatial bulk geometries from boundary entanglement entropies. In this way, kinematic space translates between information theoretic and geometric descriptions of a CFT state. As an example, we discuss in detail the static slice of AdS3 whose kinematic space is two-dimensional de Sitter space.

  10. First-principles study of the geometry of Ag nanowires growing on a self-assembled Bi nanoline

    NASA Astrophysics Data System (ADS)

    Koga, H.; Ohno, T.

    2007-09-01

    Epitaxial Ag nanowires on a self-assembled Bi nanoline on the Si(001) surface are examined for their geometry and energetic stability at the level of the generalized-gradient approximation. The orientations examined are Ag(001)[100], Ag(110)[100], Ag(111)[110], and Ag(001)[110], where the indices refer to the plane and the direction parallel to the Si(001) surface and the Bi nanoline, respectively. The wires are found to have mostly bulklike structure, except that Ag(001) monolayers undergo extensive reconstruction. The calculated electronic band structure indicates that the Ag wires are metallic wires. Particularly stable among the wires are the Ag(111) wires, having a coincident site lattice interface with the Bi nanoline. The energetic stability generally improves with thickness, indicating that Ag grows through three-dimensional nucleation on the Bi nanoline.

  11. Wire Whip Keeps Spray Nozzle Clean

    NASA Technical Reports Server (NTRS)

    Carroll, H. R.

    1982-01-01

    Air-turbine-driven wire whip is clamped near spray-gun mount. When spray gun is installed, wire whip is in position to remove foam buildup from nozzle face. Two lengths of wire 1 to 2 inches long and about 0.03 inch in thickness are used. Foam spray would be prevented from accumulating on nozzle face by increasing purge flow and cutting vortex-generating grooves inside cap and on nozzle flats.

  12. Space Shuttle Columbia Aging Wiring Failure Analysis

    NASA Technical Reports Server (NTRS)

    McDaniels, Steven J.

    2005-01-01

    A Space Shuttle Columbia main engine controller 14 AWG wire short circuited during the launch of STS-93. Post-flight examination divulged that the wire had electrically arced against the head of a nearby bolt. More extensive inspection revealed additional damage to the subject wire, and to other wires as well from the mid-body of Columbia. The shorted wire was to have been constructed from nickel-plated copper conductors surrounded by the polyimide insulation Kapton, top-coated with an aromatic polyimide resin. The wires were analyzed via scanning electron microscope (SEM), energy dispersive X-Ray spectroscopy (EDX), and electron spectroscopy for chemical analysis (ESCA); differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were performed on the polyimide. Exemplar testing under laboratory conditions was performed to replicate the mechanical damage characteristics evident on the failed wires. The exemplar testing included a step test, where, as the name implies, a person stepped on a simulated wire bundle that rested upon a bolt head. Likewise, a shear test that forced a bolt head and a torque tip against a wire was performed to attempt to damage the insulation and conductor. Additionally, a vibration test was performed to determine if a wire bundle would abrade when vibrated against the head of a bolt. Also, an abrasion test was undertaken to determine if the polyimide of the wire could be damaged by rubbing against convolex helical tubing. Finally, an impact test was performed to ascertain if the use of the tubing would protect the wire from the strike of a foreign object.

  13. Radiofrequency Wire Recanalization of Chronically Thrombosed TIPS.

    PubMed

    Majdalany, Bill S; Elliott, Eric D; Michaels, Anthony J; Hanje, A James; Saad, Wael E A

    2016-07-01

    Radiofrequency (RF) guide wires have been applied to cardiac interventions, recanalization of central venous thromboses, and to cross biliary occlusions. Herein, the use of a RF wire technique to revise chronically occluded transjugular intrahepatic portosystemic shunts (TIPS) is described. In both cases, conventional TIPS revision techniques failed to revise the chronically thrombosed TIPS. RF wire recanalization was successfully performed through each of the chronically thrombosed TIPS, demonstrating initial safety and feasibility in this application. PMID:26902703

  14. Nondestructive Evaluation of Aircraft and Spacecraft Wiring

    NASA Technical Reports Server (NTRS)

    White, John E.; Tucholski, Edward J.; Green, Robert E., Jr.

    2004-01-01

    Spacecraft, and especially aircraft, often fry well past their original design lives and, therefore, the need to develop nondestructive evaluation procedures for inspection of vital structures in these craft is extremely important. One of the more recent problems is the degradation of wiring and wiring insulation. The present paper describes several nondestructive characterization methods which afford the possibility to detect wiring and insulation degradation in-situ prior to major problems with the safety of aircraft and spacecraft.

  15. Wrapped Wire Detects Rupture Of Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Hunt, James B.

    1990-01-01

    Simple, inexpensive technique helps protect against damage caused by continuing operation of equipment after rupture or burnout of pressure vessel. Wire wrapped over area on outside of vessel where breakthrough most likely. If wall breaks or burns, so does wire. Current passing through wire ceases, triggering cutoff mechanism stopping flow in vessel to prevent further damage. Applied in other situations in which pipes or vessels fail due to overpressure, overheating, or corrosion.

  16. Wire frame to MOVIE. BYU transfer program

    SciTech Connect

    Robbins, D.; Byers, L.D.; Benner, M.S.

    1982-12-01

    At SNLA, the primary computer-aided drafting tool is the Applicon Graphics System (AGS). The data base for mechanical parts on the AGS is a wire frame model. This report summarizes a method of adding surface information to the wire frame and passing this information up stream to MOVIE.BYU which is on a VAX computer and is used to produce shaded graphics pictures of the AGS wire frame model on a RAMTEK 9400 display terminal.

  17. Bubble reconstruction method for wire-mesh sensors measurements

    NASA Astrophysics Data System (ADS)

    Mukin, Roman V.

    2016-08-01

    A new algorithm is presented for post-processing of void fraction measurements with wire-mesh sensors, particularly for identifying and reconstructing bubble surfaces in a two-phase flow. This method is a combination of the bubble recognition algorithm presented in Prasser (Nuclear Eng Des 237(15):1608, 2007) and Poisson surface reconstruction algorithm developed in Kazhdan et al. (Poisson surface reconstruction. In: Proceedings of the fourth eurographics symposium on geometry processing 7, 2006). To verify the proposed technique, a comparison was done of the reconstructed individual bubble shapes with those obtained numerically in Sato and Ničeno (Int J Numer Methods Fluids 70(4):441, 2012). Using the difference between reconstructed and referenced bubble shapes, the accuracy of the proposed algorithm was estimated. At the next step, the algorithm was applied to void fraction measurements performed in Ylönen (High-resolution flow structure measurements in a rod bundle (Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 20961, 2013) by means of wire-mesh sensors in a rod bundle geometry. The reconstructed bubble shape yields bubble surface area and volume, hence its Sauter diameter d_{32} as well. Sauter diameter is proved to be more suitable for bubbles size characterization compared to volumetric diameter d_{30}, proved capable to capture the bi-disperse bubble size distribution in the flow. The effect of a spacer grid was studied as well: For the given spacer grid and considered flow rates, bubble size frequency distribution is obtained almost at the same position for all cases, approximately at d_{32} = 3.5 mm. This finding can be related to the specific geometry of the spacer grid or the air injection device applied in the experiments, or even to more fundamental properties of the bubble breakup and coagulation processes. In addition, an application of the new algorithm for reconstruction of a large air-water interface in a tube bundle is

  18. Development of the Axial Instability in Low Wire Number Wire Array Z-Pinches

    SciTech Connect

    Knapp, P. F.; Bell, K. S.; Blesener, I. C.; Chalenski, D. A.; Douglass, J. D.; Greenly, J. B.; Martin, M. R.; McBride, R. D.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Kusse, B. R.; Hall, G. N.

    2009-01-21

    We are investigating the development of the axial instability, a modulation of the size of the coronal plasma that develops around each wire in wire-array Z-pinches. The modulation is a result of nonuniform ablation of material from the relatively cold wire core. It has long been known that the wavelength of this modulation is constant late in time and, since it is unique to different materials, it has come to be known as the fundamental mode. In these experiments we imaged individual wires with laser shadowgraphy early in time primarily in low wire number, large wire diameter aluminum arrays for ease of viewing. We Observe the development of this modulation from the time of initiation of coronal plasma, obtaining its dominant wavelength and amplitude growth as a function of time. We also studied the instability on coiled wires, which modify the wire ablation mechanism and completely suppress the fundamental mode[Hall2008]. time is discussed.

  19. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SAFETY, INCLUDING... Testing Maintenance Standards § 234.241 Protection of insulated wire; splice in underground...

  20. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SAFETY, INCLUDING... Testing Maintenance Standards § 234.241 Protection of insulated wire; splice in underground...

  1. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GRADE CROSSING SAFETY, INCLUDING... Testing Maintenance Standards § 234.241 Protection of insulated wire; splice in underground...

  2. Photonic Nanojets

    PubMed Central

    Heifetz, Alexander; Kong, Soon-Cheol; Sahakian, Alan V.; Taflove, Allen; Backman, Vadim

    2009-01-01

    This paper reviews the substantial body of literature emerging since 2004 concerning photonic nanojets. The photonic nanojet is a narrow, high-intensity, non-evanescent light beam that can propagate over a distance longer than the wavelength λ after emerging from the shadow-side surface of an illuminated lossless dielectric microcylinder or microsphere of diameter larger than λ. The nanojet’s minimum beamwidth can be smaller than the classical diffraction limit, in fact as small as ~λ/3 for microspheres. It is a nonresonant phenomenon appearing for a wide range of diameters of the microcylinder or microsphere if the refractive index contrast relative to the background is less than about 2:1. Importantly, inserting within a nanojet a nanoparticle of diameter dν perturbs the far-field backscattered power of the illuminated microsphere by an amount that varies as dν3 for a fixed λ. This perturbation is much slower than the dν6 dependence of Rayleigh scattering for the same nanoparticle, if isolated. This leads to a situation where, for example, the measured far-field backscattered power of a 3-μm diameter microsphere could double if a 30-nm diameter nanoparticle were inserted into the nanojet emerging from the microsphere, despite the nanoparticle having only 1/10,000th the cross-section area of the microsphere. In effect, the nanojet serves to project the presence of the nanoparticle to the far field. These properties combine to afford potentially important applications of photonic nanojets for detecting and manipulating nanoscale objects, subdiffraction-resolution nanopatterning and nanolithography, low-loss waveguiding, and ultrahigh-density optical storage. PMID:19946614

  3. Four-terminal resistances in mesoscopic networks of metallic wires: Weak localisation and correlations

    NASA Astrophysics Data System (ADS)

    Texier, Christophe; Montambaux, Gilles

    2016-01-01

    We consider the electronic transport in multi-terminal mesoscopic networks of weakly disordered metallic wires. After a brief description of the classical transport, we analyse the weak localisation (WL) correction to the four-terminal resistances, which involves an integration of the Cooperon over the wires with proper weights. We provide an interpretation of these weights in terms of classical transport properties. We illustrate the formalism on examples and show that weak localisation to four-terminal conductances may become large in some situations. In a second part, we study the correlations of four-terminal resistances and show that integration of Diffuson and Cooperon inside the network involves the same weights as the WL. The formulae are applied to multiconnected wire geometries.

  4. Identification of the current path for a conductive molecular wire on a tripodal platform.

    PubMed

    Karimi, M A; Bahoosh, S G; Valášek, M; Bürkle, M; Mayor, M; Pauly, F; Scheer, E

    2016-05-19

    We present the chemical synthesis as well as charge transport measurements and calculations for a new tripodal platform based on a rigid 9,9'-spirobifluorene equipped with a phenylene-ethynylene wire. The transport experiments are performed with the help of the low-temperature mechanically controlled break junction technique with gold electrodes. By combining experimental and theoretical investigations of elastic and inelastic charge transport, we show that the current proceeds through the designated molecular wire and identify a binding geometry that is compatible with the experimental observations. The conductive molecular wire on the platform features a well-defined and relatively high conductance of the order of 10(-3)G0 despite the length of the current path of more than 1.7 nm, demonstrating that this platform is suitable to incorporate functional units like molecular switches or sensors. PMID:27163116

  5. Charged particle tracking through electrostatic wire meshes using the finite element method

    NASA Astrophysics Data System (ADS)

    Devlin, L. J.; Karamyshev, O.; Welsch, C. P.

    2016-06-01

    Wire meshes are used across many disciplines to accelerate and focus charged particles, however, analytical solutions are non-exact and few codes exist which simulate the exact fields around a mesh with physical sizes. A tracking code based in Matlab-Simulink using field maps generated using finite element software has been developed which tracks electrons or ions through electrostatic wire meshes. The fields around such a geometry are presented as an analytical expression using several basic assumptions, however, it is apparent that computational calculations are required to obtain realistic values of electric potential and fields, particularly when multiple wire meshes are deployed. The tracking code is flexible in that any quantitatively describable particle distribution can be used for both electrons and ions as well as other benefits such as ease of export to other programs for analysis. The code is made freely available and physical examples are highlighted where this code could be beneficial for different applications.

  6. Reprint of: Four-terminal resistances in mesoscopic networks of metallic wires: Weak localisation and correlations

    NASA Astrophysics Data System (ADS)

    Texier, Christophe; Montambaux, Gilles

    2016-08-01

    We consider the electronic transport in multi-terminal mesoscopic networks of weakly disordered metallic wires. After a brief description of the classical transport, we analyse the weak localisation (WL) correction to the four-terminal resistances, which involves an integration of the Cooperon over the wires with proper weights. We provide an interpretation of these weights in terms of classical transport properties. We illustrate the formalism on examples and show that weak localisation to four-terminal conductances may become large in some situations. In a second part, we study the correlations of four-terminal resistances and show that integration of Diffuson and Cooperon inside the network involves the same weights as the WL. The formulae are applied to multiconnected wire geometries.

  7. Copper Nano- and Micro Wires Electrodeposited in Etched Cellulose Nitrate and Makrofol KG Nuclear Track Detector

    NASA Astrophysics Data System (ADS)

    Jooybari, B. Shakeri; Afarideh, H.; Lamehi-Racti, M.; Moghimi, R.; Ghergherehchi, M.

    Cellulose Nitrate and Makrofol KG nuclear track detector foils of 96 μm and 20 μm thicknesses were irradiated with 238U ions (kinetic energy 17.7 MeV/u, fluence 105 ion/cm2) and 208Pd (kinetic energy 14.0MeV/u, fluence 105 ion/cm2), respectively. By etching of damage trail caused by the ion, templates containing conical pore were prepared. By electrochemical deposition of copper in homemade design electrolytic cell, conical wires were obtained. The electric current recorded during electrodeposition reflects the geometry of the pore. The lengths of wires were 96 μm and 20 μm, corresponding to the thickness of membranes. X-Ray Diffraction analysis indicated that texture and orientation of Cu wire were polycrystalline.

  8. Wired

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    Every American grade school and library ought to have free access to the Internet, and universities and institutions ought to have better access, according to the Clinton Administration.In an October 10 speech in Knoxville, Tennessee, President Clinton proposed that all of the nation's 100,000 public schools and 9,000 libraries receive a two-tiered E-rate (education rate) for access to Internet services. All schools and libraries should receive basic connections for free, as well as deep discounts on video conferencing and highspeed connections (with prices influenced by how much the school can afford to pay). The basic connections (and part of the cost of the more sophisticated connections) would be paid from a special federal fund that currently provides below-cost phone service to households in poor and rural areas. That fund is currently drawn from fees assessed on local and long-distance telephone providers; the Clinton Administration would have cable operators and cellular service providers contribute as well. Companies that provide Internet services would be paid at the best available commercial rate.

  9. Wired.

    ERIC Educational Resources Information Center

    Conklin, Aaron R.

    1998-01-01

    Discusses technology's impact on scoreboard design: the development of the light-emitting diode (LED) display. How the LED system works is explained, as are the advantages and disadvantages of LED compared with incandescent lamp boards. Final comments address deciding on materials for scoreboard casings. (GR)

  10. Photon calorimeter

    DOEpatents

    Chow, Tze-Show

    1988-04-22

    A photon calorimeter is provided that comprises a laminar substrate that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating, that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions, are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly. 4 figs.

  11. Photon Calorimeter

    DOEpatents

    Chow, Tze-Show

    1989-01-01

    A photon calorimeter (20, 40) is provided that comprises a laminar substrate (10, 22, 42) that is uniform in density and homogeneous in atomic composition. A plasma-sprayed coating (28, 48, 52), that is generally uniform in density and homogeneous in atomic composition within the proximity of planes that are parallel to the surfaces of the substrate, is applied to either one or both sides of the laminar substrate. The plasma-sprayed coatings may be very efficiently spectrally tailored in atomic number. Thermocouple measuring junctions (30, 50, 54) are positioned within the plasma-sprayed coatings. The calorimeter is rugged, inexpensive, and equilibrates in temperature very rapidly.

  12. Superconducting-wire fabrication. Final report

    SciTech Connect

    Glad, W.E.; Chase, G.G.

    1990-05-01

    Experiments were done leading to the fabrication of high-temperature superconducting composite wire. Bulk superconductor was characterized by using optical microscopy, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. The chemical compatibility of superconducting materials with a number of metal sheathing candidates was tested, with silver offering the best compatibility. Wire was fabricated by drawing 0.250-inch-diameter silver tubing packed with superconducting powder. Single core wires were drawn to 0.037-inch diameter. The best critical current performance (660 A/cm2) for leaded bismuth 2-2-2-3 material was achieved by flattening single-core wire before heat treatment.

  13. Effect of an Axial Wire on Conical Wire Array Z-Pinch Radiation

    SciTech Connect

    Presura, R.; Martinez, D.; Wright, S.; Plechaty, C.; Neff, S.; Wanex, L.; Ampleford, D. J.

    2009-01-21

    Adding a wire on the axis of wire arrays significantly affects the x-ray emission of the conical arrays, and much less that of the cylindrical ones. The radiation of the conical wire arrays increases with the thickness of the central wire, surpassing that of the equivalent cylindrical arrays. Significant energy is emitted early on, around the time of the conical shock formation, before the pinch stagnation.

  14. Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM

    SciTech Connect

    Ding, Ning Zhang, Yang Xiao, Delong Wu, Jiming Huang, Jun Yin, Li Sun, Shunkai Xue, Chuang Dai, Zihuan Ning, Cheng Shu, Xiaojian Wang, Jianguo Li, Hua

    2014-12-15

    Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosion phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the “Qiangguang I” facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire

  15. Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM

    NASA Astrophysics Data System (ADS)

    Ding, Ning; Zhang, Yang; Xiao, Delong; Wu, Jiming; Huang, Jun; Yin, Li; Sun, Shunkai; Xue, Chuang; Dai, Zihuan; Ning, Cheng; Shu, Xiaojian; Wang, Jianguo; Li, Hua

    2014-12-01

    Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosion phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the "Qiangguang I" facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire

  16. 47 CFR 76.804 - Disposition of home run wiring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an...

  17. 47 CFR 76.804 - Disposition of home run wiring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an...

  18. 47 CFR 76.804 - Disposition of home run wiring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an...

  19. 46 CFR 129.340 - Cable and wiring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Power Sources and Distribution Systems § 129.340 Cable and wiring. (a) If individual wires, rather than... tank, unless it supplies power to equipment in the tank; and (9) Have sheathing or wire insulation...) Cable and wire in power and lighting circuits must be #14 AWG or larger. Cable and wire in control...

  20. Processing A Printed Wiring Board By Single Bath Electrodeposition

    DOEpatents

    Meltzer, Michael P.; Steffani, Christopher P.; Gonfiotti, Ray A.

    2003-04-15

    A method of processing a printed wiring board by single bath electrodeposition. Initial processing steps are implemented on the printed wiring board. Copper is plated on the printed wiring board from a bath containing nickel and copper. Nickel is plated on the printed wiring board from the bath containing nickel and copper and final processing steps are implemented on the printed wiring board.

  1. Processing a printed wiring board by single bath electrodeposition

    DOEpatents

    Meltzer, Michael P.; Steffani, Christopher P.; Gonfiotti, Ray A.

    2010-12-07

    A method of processing a printed wiring board. Initial processing steps are implemented on the printed wiring board. Copper is plated on the printed wiring board from a bath containing nickel and copper. Nickel is plated on the printed wiring board from a bath containing nickel and copper and final processing steps are implemented on the printed wiring board.

  2. Identification of the current path for a conductive molecular wire on a tripodal platform

    NASA Astrophysics Data System (ADS)

    Karimi, M. A.; Bahoosh, S. G.; Valášek, M.; Bürkle, M.; Mayor, M.; Pauly, F.; Scheer, E.

    2016-05-01

    We present the chemical synthesis as well as charge transport measurements and calculations for a new tripodal platform based on a rigid 9,9'-spirobifluorene equipped with a phenylene-ethynylene wire. The transport experiments are performed with the help of the low-temperature mechanically controlled break junction technique with gold electrodes. By combining experimental and theoretical investigations of elastic and inelastic charge transport, we show that the current proceeds through the designated molecular wire and identify a binding geometry that is compatible with the experimental observations. The conductive molecular wire on the platform features a well-defined and relatively high conductance of the order of 10-3G0 despite the length of the current path of more than 1.7 nm, demonstrating that this platform is suitable to incorporate functional units like molecular switches or sensors.We present the chemical synthesis as well as charge transport measurements and calculations for a new tripodal platform based on a rigid 9,9'-spirobifluorene equipped with a phenylene-ethynylene wire. The transport experiments are performed with the help of the low-temperature mechanically controlled break junction technique with gold electrodes. By combining experimental and theoretical investigations of elastic and inelastic charge transport, we show that the current proceeds through the designated molecular wire and identify a binding geometry that is compatible with the experimental observations. The conductive molecular wire on the platform features a well-defined and relatively high conductance of the order of 10-3G0 despite the length of the current path of more than 1.7 nm, demonstrating that this platform is suitable to incorporate functional units like molecular switches or sensors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08708b

  3. Eigen function and corresponding eigen values of charge carriers in V-grooves quantum wires with variable width

    NASA Astrophysics Data System (ADS)

    Zaheri, Ali Hossein Mohammad

    2016-06-01

    In this work, we have calculated analytically the energy spectra of electrons and holes in V-grooves quantum wires. To modify wire structure, we have used the equations which suggested in the work of Inoshita et al. We introduce a new effective potential scheme which is applicable and matchable with actual interface geometry of this groove of ridge quantum wires. By applying this effective potential and considering a suitable transformed coordinate that allows the decoupling of the two-dimensional wave functions, we have calculated eigen values of the charge carriers in three states as well as the wave functions. We found that by increasing the curvature at the top of quantum wire (b) the energy eigen value decreases. Our results are in good agreement with the earlier investigations.

  4. Tuning a Tetrahertz Wire Laser

    NASA Technical Reports Server (NTRS)

    Qin, Qi; Williams, Benjamin S.; Kumar, Sushil; Reno, John L.; Hu, Qing

    2009-01-01

    Tunable terahertz lasers are desirable in applications in sensing and spectroscopy because many biochemical species have strong spectral fingerprints at terahertz frequencies. Conventionally, the frequency of a laser is tuned in a similar manner to a stringed musical instrument, in which pitch is varied by changing the length of the string (the longitudinal component of the wave vector) and/ or its tension (the refractive index). However, such methods are difficult to implement in terahertz semiconductor lasers because of their poor outcoupling efficiencies. Here, we demonstrate a novel tuning mechanism based on a unique 'wire laser' device for which the transverse dimension w is much much less than lambda. Placing a movable object close to the wire laser manipulates a large fraction of the waveguided mode propagating outside the cavity, thereby tuning its resonant frequency. Continuous single-mode redshift and blueshift tuning is demonstrated for the same device by using either a dielectric or metallic movable object. In combination, this enables a frequency tuning of approximately equal to 137 GHz (3.6%) from a single laser device at approximately equal to 3.8 THz.

  5. Axial x-ray backlighting of wire-array Z-pinches using X pinches

    NASA Astrophysics Data System (ADS)

    Blesener, I. C.; Greenly, J. B.; Pikuz, S. A.; Shelkovenko, T. A.; Vishniakou, S.; Hammer, D. A.; Kusse, B. R.

    2009-12-01

    For the first time, a geometry has been developed to allow for an axial imaging system for wire-array Z-pinch experiments that produce high-resolution x-ray images. The new geometry required a significant redesign of the electrode hardware. Calibrated areal density measurements of the Z-pinch plasma including wire cores, coronal plasma, streaming plasma, and the precursor were obtained. The system used eight-wire molybdenum (Mo) X pinches in series with and directly below the Z-pinch axis to provide micron-scale x-rays sources for point-projection radiography. The images formed on the x-ray sensitive film had a 15 mm diameter field of view at the center height of the array and a magnification of about 7.5:1. Titanium (Ti) filters in front of the film transmitted radiation in the spectral range of 3-5 keV. For calibration, a separate film with the same thickness Ti filter was placed the same distance from the X pinch. This film had an unobstructed path that bypasses the Z-pinch but included step wedges for calibration of the Z-pinch plasma. The step wedges had thicknesses of tungsten (W) ranging from 0.015 to 1.1 μm to obtain areal density measurements of the W plasma from the wire-array. Images had subnanosecond temporal resolution and about 10 μm spatial resolution.

  6. Fabrication and characterisation of photonic nanowires

    NASA Astrophysics Data System (ADS)

    McCarthy, Joseph; Whelan, Áine M.; Davies, Gemma-Louise; Byrne, Fiona; Conroy, Jennifer; Volkov, Yuri; Gun'ko, Yurii K.

    2008-08-01

    In recent years the application of nano-porous templates, such as anodic alumina and PTFE, in the production of cylindrical nanostructures has been vast. In our work we used porous alumina membranes to produce luminescent nanowires from polystyrene and silica. The silica wires were fabricated by infiltration of a TEOS derived sol-gel into 200 nm diameter porous alumina membranes with vacuum assistance followed by annealing at 400 °C. Polystyrene luminescent, magnetic nanowires have been fabricated using a similar technique. The wires were studied by optical, confocal and transmission electron microscopy. Silica nanowires demonstrated a broad luminescence spectrum due to interstitial carbon defect emission. Polystyrene nanowires have demonstrated strong emission and interesting magnetic behaviour. Both polystyrene and silica maghemite loaded nanowires show alignment to an external magnetic field. We believe that these silica and polystyrene nanowires might find potential applications in photonics, bio-sensing and biological imaging.

  7. Program EPICP: Electron photon interaction code, photon test module. Version 94.2

    SciTech Connect

    Cullen, D.E.

    1994-09-01

    The computer code EPICP performs Monte Carlo photon transport calculations in a simple one zone cylindrical detector. Results include deposition within the detector, transmission, reflection and lateral leakage from the detector, as well as events and energy deposition as a function of the depth into the detector. EPICP is part of the EPIC (Electron Photon Interaction Code) system. EPICP is designed to perform both normal transport calculations and diagnostic calculations involving only photons, with the objective of developing optimum algorithms for later use in EPIC. The EPIC system includes other modules that are designed to develop optimum algorithms for later use in EPIC; this includes electron and positron transport (EPICE), neutron transport (EPICN), charged particle transport (EPICC), geometry (EPICG), source sampling (EPICS). This is a modular system that once optimized can be linked together to consider a wide variety of particles, geometries, sources, etc. By design EPICP only considers photon transport. In particular it does not consider electron transport so that later EPICP and EPICE can be used to quantitatively evaluate the importance of electron transport when starting from photon sources. In this report I will merely mention where we expect the results to significantly differ from those obtained considering only photon transport from that obtained using coupled electron-photon transport.

  8. Graded geometry and Poisson reduction

    SciTech Connect

    Cattaneo, A. S.; Zambon, M.

    2009-02-02

    The main result extends the Marsden-Ratiu reduction theorem in Poisson geometry, and is proven by means of graded geometry. In this note we provide the background material about graded geometry necessary for the proof. Further, we provide an alternative algebraic proof for the main result.

  9. Geometry Career Unit: Junior High.

    ERIC Educational Resources Information Center

    Jensen, Daniel

    The guide, the product of an exemplary career education program for junior high school students, was developed to show how geometry can be applied to real-life career-oriented areas and to bring a practical approach to the teaching of geometry. It is designed to show how some of the theorems or postulates in geometry are used in different careers.…

  10. Geometry: Grades 10-12.

    ERIC Educational Resources Information Center

    Instructional Objectives Exchange, Los Angeles, CA.

    Behavioral objectives, each accompanied by six sample test items, for secondary school geometry are presented. Objectives were determined by surveying the most widely used secondary school geometry textbooks, and cover 14 major categories of geometry, with sections on set theory and introductory trigonometry. Answers are provided. Categories…

  11. Computer-Aided Geometry Modeling

    NASA Technical Reports Server (NTRS)

    Shoosmith, J. N. (Compiler); Fulton, R. E. (Compiler)

    1984-01-01

    Techniques in computer-aided geometry modeling and their application are addressed. Mathematical modeling, solid geometry models, management of geometric data, development of geometry standards, and interactive and graphic procedures are discussed. The applications include aeronautical and aerospace structures design, fluid flow modeling, and gas turbine design.

  12. Polarimeter for high energy photons

    NASA Astrophysics Data System (ADS)

    Wojtsekhowski, Bogdan; Vlahovic, Branislav; Tedeschi, David; Danagulian, Samuel; Litvienko, Vladimir; Pinayev, Igor

    1999-11-01

    The physics program at TJNAF includes fundamental experiments with polarized photon beam in few GeV energy range. Development of the Polarimeter for use in Hall B experiments is the subject of present abstract. We have proposed to take advantage of the recent progress in silicon micro strip detectors for measurement of the geometry and angle correlation in electron positron pair production from an amorphous converter. A detailed analysis of the setup including MC simulation shows an experimental asymmetry σ_allel/σ_⊥ ~ 1.7 in a wide range of the photon energies. This asymmetry value is confirmed by our experimental results obtained using 100 percent polarized 40 MeV γ rays at Duke FEL.

  13. Geometry of Quantum States

    NASA Astrophysics Data System (ADS)

    Bengtsson, Ingemar; Zyczkowski, Karol

    2006-05-01

    Quantum information theory is at the frontiers of physics, mathematics and information science, offering a variety of solutions that are impossible using classical theory. This book provides an introduction to the key concepts used in processing quantum information and reveals that quantum mechanics is a generalisation of classical probability theory. After a gentle introduction to the necessary mathematics the authors describe the geometry of quantum state spaces. Focusing on finite dimensional Hilbert spaces, they discuss the statistical distance measures and entropies used in quantum theory. The final part of the book is devoted to quantum entanglement - a non-intuitive phenomenon discovered by Schrödinger, which has become a key resource for quantum computation. This richly-illustrated book is useful to a broad audience of graduates and researchers interested in quantum information theory. Exercises follow each chapter, with hints and answers supplied. The first book to focus on the geometry of quantum states Stresses the similarities and differences between classical and quantum theory Uses a non-technical style and numerous figures to make the book accessible to non-specialists

  14. Uniform transport performance of a 100 m-class multifilament MgB2 wire fabricated by an internal Mg diffusion process

    NASA Astrophysics Data System (ADS)

    Wang, Dongliang; Xu, Da; Zhang, Xianping; Yao, Chao; Yuan, Pusheng; Ma, Yanwei; Oguro, Hidetoshi; Awaji, Satoshi; Watanabe, Kazuo

    2016-06-01

    A 100 m long six-filament MgB2 wire was successfully fabricated using an internal magnesium diffusion (IMD) process. We investigated the transport properties and the uniformity of this long multifilament IMD wire. The MgB2 layer and the sub-filament region are regular, and the J c values have a fairly homogenous distribution throughout the wire, suggesting that there were no obvious defects along the length of the wire. The uniformity problem of long multifilament IMD MgB2 wires can be mitigated by optimizing the starting composite parameters, multifilament geometry, fabricating process and annealing conditions. A layer J c as high as 1.2 × 105 A cm‑2 at 4.2 K and 8 T was obtained, which was comparable with the highest reported value for a short multifilament IMD wire. The transport layer J c, non-barrier J c and J e values are independent of the wire diameter. In addition, the analysis of the stress–strain characteristics and the n value of the IMD wire is also presented. These results indicate that the long multifilament IMD-processed MgB2 superconducting wire is suitable for practical applications.

  15. Tevatron direct photon results.

    SciTech Connect

    Kuhlmann, S.

    1999-09-21

    Tevatron direct photon results since DIS98 are reviewed. Two new CDF measurements are discussed, the Run Ib inclusive photon cross section and the photon + Muon cross section. Comparisons with the latest NLO QCD calculations are presented.

  16. Improved Superconducting Wire for Wind Generators: Superconducting Wires for Direct-Drive Wind Generators

    SciTech Connect

    2012-01-01

    REACT Project: Brookhaven National Laboratory will develop a low-cost superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. Brookhaven National Laboratory will develop a high-performance superconducting wire that can handle significantly more electrical current, and will demonstrate an advanced manufacturing process that has the potential to yield a several-fold reduction in wire costs while using a using negligible amount of rare earth material. This design has the potential to make a wind turbine generator lighter, more powerful, and more efficient, particularly for offshore applications.

  17. 30 CFR 56.12047 - Guy wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Guy wires. 56.12047 Section 56.12047 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56.12047 Guy wires....

  18. 30 CFR 56.12047 - Guy wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Guy wires. 56.12047 Section 56.12047 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56.12047 Guy wires....

  19. Lansce Wire Scanning Diagnostics Device Mechanical Design

    SciTech Connect

    Rodriguez Esparza, Sergio; Batygin, Yuri K.; Gilpatrick, John D.; Gruchalla, Michael E.; Maestas, Alfred J.; Pillai, Chandra; Raybun, Joseph L.; Sattler, F. D.; Sedillo, James Daniel; Smith, Brian G.

    2011-01-01

    The Accelerator Operations & Technology Division at Los Alamos National Laboratory operates a linear particle accelerator which utilizes 110 wire scanning diagnostics devices to gain position and intensity information of the proton beam. In the upcoming LANSCE improvements, 51 of these wire scanners are to be replaced with a new design, up-to-date technology and off-the-shelf components. This document outlines the requirements for the mechanical design of the LANSCE wire scanner and presents the recently developed linac wire scanner prototype. Additionally, this document presents the design modifications that have been implemented into the fabrication and assembly of this first linac wire scanner prototype. Also, this document will present the design for the second, third, and fourth wire scanner prototypes being developed. Prototypes 2 and 3 belong to a different section of the particle accelerator and therefore have slightly different design specifications. Prototype 4 is a modification of a previously used wire scanner in our facility. Lastly, the paper concludes with a plan for future work on the wire scanner development.

  20. LANSCE-R WIRE-SCANNER SYSTEM

    SciTech Connect

    Gruchalla, Michael E.

    2011-01-01

    The National Instruments cRIO platform is used for the new LANSCE-R wire-scanner systems. All wire-scanner electronics are integrated into a single BiRa BiRIO 4U cRIO chassis specifically designed for the cRIO crate and all interface electronics. The BiRIO chassis, actuator and LabVIEW VIs provide a complete wire-scanner system integrated with EPICS. The new wire-scanner chassis includes an 8-slot cRIO crate with Virtex-5 LX 110 FPGA and Power-PC real-time controller, the LANL-developed cRIO 2-axis wire-sensor analog interface module (AFE), NI9222 cRIO 4-channel 16-bit digitizer, cRIO resolver demodulator, cRIO event receiver, front-panel touch panel display, motor driver, and all necessary software, interface wiring, connectors and ancillary components. This wirescanner system provides a complete, turn-key, 2-axis wire-scanner system including 2-channel low-noise sensewire interface with variable DC wire bias and wireintegrity monitor, 16-bit signal digitizers, actuator motor drive and control, actuator position sensing, limit-switch interfaces, event receiver, LabVIEW and EPICS interface, and both remote operation and full stand-alone operation using the touch panel.

  1. Welding torch and wire feed manipulator

    NASA Technical Reports Server (NTRS)

    Williams, R. T.

    1967-01-01

    Welding torch and wire feed manipulator increase capability for performing automatic welding operations. The manipulator rotates on its horizontal axis to avoid obstacles as they approach the torch. The initial individual attitudes of the torch and wire guide are set with respect to the general configuration of the part.

  2. Superconducting wire with improved strain characteristics

    DOEpatents

    Luhman, Thomas; Klamut, Carl J.; Suenaga, Masaki; Welch, David

    1982-01-01

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improves the strain characteristics of the wire.

  3. Superconducting wire with improved strain characteristics

    DOEpatents

    Luhman, T.; Klamut, C.J.; Suenaga, M.; Welch, D.

    1979-12-19

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improve the strain characteristics of the wire.

  4. Superconducting wire with improved strain characteristics

    DOEpatents

    Luhman, Thomas; Klamut, Carl J.; Suenaga, Masaki; Welch, David

    1982-01-01

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improve the strain characteristics of the wire.

  5. Wire-Guide Manipulator For Automated Welding

    NASA Technical Reports Server (NTRS)

    Morris, Tim; White, Kevin; Gordon, Steve; Emerich, Dave; Richardson, Dave; Faulkner, Mike; Stafford, Dave; Mccutcheon, Kim; Neal, Ken; Milly, Pete

    1994-01-01

    Compact motor drive positions guide for welding filler wire. Drive part of automated wire feeder in partly or fully automated welding system. Drive unit contains three parallel subunits. Rotations of lead screws in three subunits coordinated to obtain desired motions in three degrees of freedom. Suitable for both variable-polarity plasma arc welding and gas/tungsten arc welding.

  6. Flywheel system using wire-wound rotor

    DOEpatents

    Chiao, Edward Young; Bender, Donald Arthur; Means, Andrew E.; Snyder, Philip K.

    2016-06-07

    A flywheel is described having a rotor constructed of wire wound onto a central form. The wire is prestressed, thus mitigating stresses that occur during operation. In another aspect, the flywheel incorporates a low-loss motor using electrically non-conducting permanent magnets.

  7. Glidden's Patent Application for Barbed Wire.

    ERIC Educational Resources Information Center

    Ray, Emily; Schamel, Wynell

    1997-01-01

    Describes a series of teaching activities to be used in conjunction with a reproduction of Joseph Glidden's patent for barbed wire fencing. These include document analysis, creative interpretation, and personal experience. Presents a brief history of the social and economic effects of the introduction of barbed wire to the West. (MJP)

  8. Microfabricated wire arrays for Z-pinch.

    SciTech Connect

    Spahn, Olga Blum; Rowen, Adam M.; Cich, Michael Joseph; Peake, Gregory Merwin; Arrington, Christian L.; Nash, Thomas J.; Klem, John Frederick; Romero, Dustin Heinz

    2008-10-01

    Microfabrication methods have been applied to the fabrication of wire arrays suitable for use in Z. Self-curling GaAs/AlGaAs supports were fabricated as an initial route to make small wire arrays (4mm diameter). A strain relief structure that could be integrated with the wire was designed to allow displacements of the anode/cathode connections in Z. Electroplated gold wire arrays with integrated anode/cathode bus connections were found to be sufficiently robust to allow direct handling. Platinum and copper plating processes were also investigated. A process to fabricate wire arrays on any substrate with wire thickness up to 35 microns was developed. Methods to handle and mount these arrays were developed. Fabrication of wire arrays of 20mm diameter was demonstrated, and the path to 40mm array fabrication is clear. With some final investment to show array mounting into Z hardware, the entire process to produce a microfabricated wire array will have been demonstrated.

  9. Add-On Shielding for Unshielded Wire

    NASA Technical Reports Server (NTRS)

    Koenig, J. C.; Billitti, J. W.; Tallon, J. M.

    1983-01-01

    Fabrication sequence used to produce compact shields slipped into place from free ends of wires already soldered into connectors at other ends. Single shields are formed into harnesses by connecting grounding jumpers. Technique is especially useful for small diameter wire attached to microminiature connectors.

  10. Twisted Pair Of Insulated Wires Senses Moisture

    NASA Technical Reports Server (NTRS)

    Laue, Eric G.; Stephens, James B.

    1989-01-01

    Sensitivity of electronic moisture sensor to low levels of moisture increased by new electrode configuration. Moisture-sensing circuit described in "Low-Cost Humidity Sensor" (NPO-16544). New twisted pair of wires takes place of flat-plate capacitor in circuit. Configuration allows for thermal expansion and contraction of polymer while maintaining nearly constant area of contact between polymer and wires.

  11. Wire ageing with the TEA photocathode

    SciTech Connect

    Va`vra, J.

    1996-06-01

    Recently several RICH protypes successfully tested a gaseous TEA photocathode. However, its wire ageing behavior is unknown. In principle, TEA is a more strongly bonded molecule than TMAE, and, as a result, one would expect better wire ageing behavior. This paper explores this question.

  12. SpaceWire Architectures: Present and Future

    NASA Technical Reports Server (NTRS)

    Rakow, Glen Parker

    2006-01-01

    A viewgraph presentation on current and future spacewire architectures is shown. The topics include: 1) Current Spacewire Architectures: Swift Data Flow; 2) Current SpaceWire Architectures : LRO Data Flow; 3) Current Spacewire Architectures: JWST Data Flow; 4) Current SpaceWire Architectures; 5) Traditional Systems; 6) Future Systems; 7) Advantages; and 8) System Engineer Toolkit.

  13. Long-Wearing Wire Guide For Welding Torch

    NASA Technical Reports Server (NTRS)

    Gutow, David A.; Burley, Richard K.; Gilbert, Jeffrey L.; Fogel, Irving

    1992-01-01

    Insert for wire-guide tube on tungsten/inert-gas welding apparatus extends life of guide tube and increases accuracy of weld. Hardened insert resists wear by sliding tungsten wire. Chamfer guides wire into insert.

  14. 47 CFR 76.804 - Disposition of home run wiring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... wiring. The incumbent provider that has elected to abandon its home run wiring may remove its amplifiers... amplifiers or other active devices used in the wiring if an equivalent replacement can easily be...

  15. 47 CFR 76.804 - Disposition of home run wiring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... wiring. The incumbent provider that has elected to abandon its home run wiring may remove its amplifiers... amplifiers or other active devices used in the wiring if an equivalent replacement can easily be...

  16. VIEW NORTHEASTLEFTBUILDING 9 NO 3 WIRE MILL (1876) RIGHTBUILDING 4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW NORTHEAST-LEFT-BUILDING 9 NO 3 WIRE MILL (1876) RIGHT-BUILDING 4 NO 1 WIRE MILL (1871) - John A. Roebling's Sons Company & American Steel & Wire Company, South Broad, Clark, Elmer, Mott & Hudson Streets, Trenton, Mercer County, NJ

  17. VIEW WESTLEFTNO 1 WIRE MILL BUILDING 4 (1871) RIGHTNO 3 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW WEST-LEFT-NO 1 WIRE MILL BUILDING 4 (1871) RIGHT-NO 3 WIRE MILL BUILDING 9 (1876) - John A. Roebling's Sons Company & American Steel & Wire Company, South Broad, Clark, Elmer, Mott & Hudson Streets, Trenton, Mercer County, NJ

  18. Wiring harnesses documented by punched-card technique

    NASA Technical Reports Server (NTRS)

    Hicks, W. W.; Kloezeman, W. G.

    1970-01-01

    Cards representing a connector are punched, sorted, and then used to printout wiring documentation for that connector. When wiring changes are made, new cards are punched and the wiring documentation is reprinted to reflect the latest configuration.

  19. Fabrication and Characterization of Melt-Extracted Co-Based Amorphous Wires

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Xing, Dawei; Wang, Xiaodong; Sun, Jianfei

    2011-04-01

    Amorphous Co68.15Fe4.35Si12.25B15.25 wires with smooth surface and circular cross section were fabricated by melt extraction technology using a copper wheel with a knife-edge cross section angle of 60 deg. The effect of some process parameters such as wheel circumference velocity, molten alloy feed rate, and temperature on the geometry and weight, i.e., melt extracted layer thickness, of wire was examined carefully. An optimum process parameter to produce high-quality circular wires was presented. A high resolution CCD video camera recorder was used to monitor the changing of the surface shape of molten alloy contacting the wheel tip under different conditions. It was found that the mechanism of the wire formation during the optimum process condition was controlled by the momentum mechanism, while in the low wheel speed region, heat transfer turned out to be a dominant factor. Some characteristics of the circular wires such as amorphous nature and tensile strength were also studied.

  20. Formation of extended directional breakdown channels produced by a copper wire exploding in the atmosphere

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.; Pletnev, N. V.

    2013-12-01

    Experimental data for switching initiated by the electrical breakdown of air gaps up to 1.9 m long with an arbitrary geometry that are produced by an exploding copper wire 90 μm in diameter are presented. At an initial voltage of 11 kV, the stored energy equals 100-2100 J. Two channel formation conditions are possible: explosion of a wire without electrical breakdown and electrical breakdown in a channel produced by an exploding wire with a delay (current pause) no longer than 250 μs. Current and voltage waveforms across the discharge gap, as well as the resistivity values, under the electrical breakdown conditions are shown. Mechanisms and conditions for streamer initiation at a mean electric field strength in the discharge gap of 5.3-17.0 kV/m are discussed. The geometrical dimensions of plasma objects in the forming channel, the run of the electrical current under breakdown, and the formation mechanism of wire explosion products are found from color microphotographs. The formation mechanism of large aerosols in the form of tiny spherical copper and copper oxide (CuO, Cu2O) particles under wire explosion conditions is discussed.

  1. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications

    SciTech Connect

    Kelzenberg, Michael D.; Boettcher, Shannon W.; Petykiewicz, Jan A.; Turner-Evans, Daniel B.; Putnam, Morgan C.; Warren, Emily L.; Spurgeon, Joshua M.; Briggs, Ryan M.; Lewis, Nathan S.; Atwater, Harry A.

    2010-02-14

    Si wire arrays are a promising architecture for solar-energy-harvesting applications, and may offer a mechanically flexible alternative to Si wafers for photovoltaics. To achieve competitive conversion efficiencies, the wires must absorb sunlight over a broad range of wavelengths and incidence angles, despite occupying only a modest fraction of the array’s volume. Here, we show that arrays having less than 5% areal fraction of wires can achieve up to 96% peak absorption, and that they can absorb up to 85% of day-integrated, above-bandgap direct sunlight. In fact, these arrays show enhanced near-infrared absorption, which allows their overall sunlight absorption to exceed the ray-optics light-trapping absorption limit18 for an equivalent volume of randomly textured planar Si, over a broad range of incidence angles. We furthermore demonstrate that the light absorbed by Si wire arrays can be collected with a peak external quantum efficiency of 0.89, and that they show broadband, near-unity internal quantum efficiency for carrier collection through a radial semiconductor/liquid junction at the surface of each wire. The observed absorption enhancement and collection efficiency enable a cell geometry that not only uses 1/100th the material of traditional wafer-based devices, but also may offer increased photovoltaic efficiency owing to an effective optical concentration of up to 20 times.

  2. Controlling electromagnetic fields at boundaries of arbitrary geometries

    NASA Astrophysics Data System (ADS)

    Teo, Jonathon Yi Han; Wong, Liang Jie; Molardi, Carlo; Genevet, Patrice

    2016-08-01

    Rapid developments in the emerging field of stretchable and conformable photonics necessitate analytical expressions for boundary conditions at metasurfaces of arbitrary geometries. Here, we introduce the concept of conformal boundary optics: a design theory that determines the optical response for designer input and output fields at such interfaces. Given any object, we can realize coatings to achieve exotic effects like optical illusions and anomalous diffraction behavior. This approach is relevant to a broad range of applications from conventional refractive optics to the design of the next-generation of wearable optical components. This concept can be generalized to other fields of research where designer interfaces with nontrivial geometries are encountered.

  3. Direct simulation of turbulent swept flow over a wire in a channel.

    SciTech Connect

    Ranjan, R.; Pantano, C.; Fischer, P.; Mathematics and Computer Science; Univ. of Illinois

    2010-05-25

    Turbulent swept flow over a cylindrical wire placed on a wall of a channel is investigated using direct numerical simulations. This geometry is a model of the flow through the wire-wrapped fuel pins, the heat exchanger, typical of many nuclear reactor designs. Mean flow along and across the wire axis is imposed, leading to the formation of separated flow regions. The Reynolds number based on the bulk velocity along the wire axis direction and the channel half height is 5400 and four cases are simulated with different flowrates across the wire. This configuration is topologically similar to backward-facing steps or slots with swept flow, except that the dominant flow is along the obstacle axis in the present study and the crossflow is smaller than the axial flow, i.e. the sweep angle is large. Mean velocities, turbulence statistics, wall shear stress and instantaneous flow structures are investigated. Particular attention is devoted to the statistics of the shear stress on the walls of the channel and the wire in the recirculation zone. The flow around the mean reattachment region, at the termination of the recirculating bubble, does not exhibit the typical decay of the mean shear stress observed in classical backward-facing step flows owing to the presence of a strong axial flow. The evolution of the mean wall shear stress angle after reattachment indicates that the flow recovers towards equilibrium at a rather slow rate, which decreases with sweep angle. Finally, the database is analysed to estimate resolution requirements, in particular around the recirculation zones, for large-eddy simulations. This has implications in more complete geometrical models of a wire-wrapped assembly, involving hundreds of fuel pins, where only turbulence modelling can be afforded computationally.

  4. Resonance formation in photon-photon collisions

    SciTech Connect

    Gidal, G.

    1988-08-01

    Recent experimental progress on resonance formation in photon-photon collisions is reviewed with particular emphasis on the pseudoscalar and tensor nonents and on the ..gamma gamma..* production of spin-one resonances. 37 refs., 17 figs., 5 tabs.

  5. Physics at high energy photon photon colliders

    SciTech Connect

    Chanowitz, M.S.

    1994-06-01

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking.

  6. Unusual Conductance in Cumulene Molecular Wires

    NASA Astrophysics Data System (ADS)

    Prasongkit, Jariyanee; Grigoriev, Anton; Wendin, Göran; Ahuja, Rajeev

    2009-03-01

    We report current-voltage curves and conductance of cumulene molecular wire suspended between Au(111) surfaces via thiolate bonds with full self-consistent ab initio calculation under external bias. The conductance of cumulene wires shows oscillatory behavior depending on the number of carbon atoms. Among all conjugated oligomers, we find that odd-number cumulene wires yield the highest conductance and present ballistic-like transport behavior. The reason has been traced to two factors: high density of state at the Fermi level, and the alignment of molecular orbital closed to Fermi level. Since the conductance depends weakly on applied bias, and the current voltage characteristic is linear under bias region -0.9 to 0.9 V, odd-number cumulene wire is a possible candidate as a near- perfect, ballistic one-dimensional molecular wire.

  7. Improved method of preparing composite superconducting wire

    DOEpatents

    Verhoeven, J.D.; Gibson, E.D.; Finnemore, D.K.; Ostenson, J.E.; Schmidt, F.A.; Owen, C.V.

    1979-10-17

    An improved method of preparing composite multifilament superconducting wire of Nb/sub 3/Sn in a copper matrix eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb/sub 3/Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting.

  8. Method of preparing composite superconducting wire

    DOEpatents

    Verhoeven, John D.; Gibson, Edwin D.; Finnemore, Douglas K.; Ostenson, Jerome E.; Schmidt, Frederick A.; Owen, Charles V.

    1985-08-06

    An improved method of preparing composite multifilament superconducting wire of Nb.sub.3 Sn in a copper matrix which eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb.sub.3 Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting.

  9. Realization of a Strained Atomic Wire Superlattice.

    PubMed

    Song, Inkyung; Goh, Jung Suk; Lee, Sung-Hoon; Jung, Sung Won; Shin, Jin Sung; Yamane, Hiroyuki; Kosugi, Nobuhiro; Yeom, Han Woong

    2015-11-24

    A superlattice of strained Au-Si atomic wires is successfully fabricated on a Si surface. Au atoms are known to incorporate into the stepped Si(111) surface to form a Au-Si atomic wire array with both one-dimensional (1D) metallic and antiferromagnetic atomic chains. At a reduced density of Au, we find a regular array of Au-Si wires in alternation with pristine Si nanoterraces. Pristine Si nanoterraces impose a strain on the neighboring Au-Si wires, which modifies both the band structure of metallic chains and the magnetic property of spin chains. This is an ultimate 1D version of a strained-layer superlattice of semiconductors, defining a direction toward the fine engineering of self-assembled atomic-scale wires. PMID:26446292

  10. Wire and Cable Cold Bending Test

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony

    2010-01-01

    One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.

  11. Wiring Damage Analyses for STS OV-103

    NASA Technical Reports Server (NTRS)

    Thomas, Walter, III

    2006-01-01

    This study investigated the Shuttle Program s belief that Space Transportation System (STS) wiring damage occurrences are random, that is, a constant occurrence rate. Using Problem Reporting and Corrective Action (PRACA)-derived data for STS Space Shuttle OV-103, wiring damage was observed to increase over the vehicle s life. Causal factors could include wiring physical deterioration, maintenance and inspection induced damage, and inspection process changes resulting in more damage events being reported. Induced damage effects cannot be resolved with existent data. Growth analysis (using Crow-AMSAA, or CA) resolved maintenance/inspection effects (e.g., heightened awareness) on all wire damages and indicated an overall increase since Challenger Return-to-Flight (RTF). An increasing failure or occurrence rate per flight cycle was seen for each wire damage mode; these (individual) rates were not affected by inspection process effects, within statistical error.

  12. The aging of wire chambers filled with dimethyl ether: wire and construction materials and freon impurities

    NASA Astrophysics Data System (ADS)

    Jibaly, Mohammed; Majewski, Stan; Chrusch, Peter; Wojcik, Randolph; Sauli, Fabio; Gaudaen, Jan

    1989-11-01

    This is a complete summary of our study of the aging of different types of wire chambers, with a variety of construction materials and wires, filled with dimethyl ether (DME) of varying degrees of purity. The resistive Nicotin and Stablohm wires were corroded by DME, producing fast aging. The moderately resistive stainless steel wires were able to withstand extended irradiation (up to 1 C/cm) in high-purity DME without any apparent damage; and gold-plated tungsten and molybdenum wires exhibited a comparable behavior. Many construction materials were tested and recommendations are thus reached as to what kinds of materials are safe in building DME-operated wire chambers. Among many different Freon and hydrocarbon impurities detected in DME by means of gas chromatography (GC), Freon-11 was found to be mostly responsible for the aging, even with noncorrosive stainless steel or gold-plated wires. The availability and feasibility of obtaining Freon-free DME is reported as well.

  13. Anisotropy of radiation emitted from planar wire arrays

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. L.; Chuvatin, A. S.; Esaulov, A. A.; Safronova, A. S.; Rudakov, L. I.; Velikovich, A.; Williamson, K. M.; Osborne, G. C.; Shrestha, I. K.; Weller, M. E.; Shlyaptseva, V. V.

    2013-07-01

    The planar wire array (PWA) is a promising load for new multi-source inertial confinement fusion (ICF) hohlraums [B. Jones et al., Phys. Rev. Lett. 104, 125001 (2010)]. The hohlraum radiation symmetry is an important issue for ICF. It was found that extreme ultraviolet and sub-keV photon emission from PWAs may have considerable anisotropy in the load azimuthal plane. This experimental result is obtained on the UNR 1-1.7 MA Zebra generator. The time-dependent anisotropy effect is detected. This feature is studied in 2D numerical simulations and can be explained by initial anisotropy of implosion of those non-cylindrical loads radiating essentially as surface sources in sub-keV quanta and also by radiation absorption in cold magnetized plasma tails forming in the direction of magnetic compression.

  14. Anisotropy of radiation emitted from planar wire arrays

    SciTech Connect

    Kantsyrev, V. L.; Esaulov, A. A.; Safronova, A. S.; Williamson, K. M.; Osborne, G. C.; Shrestha, I. K.; Weller, M. E.; Shlyaptseva, V. V.; Chuvatin, A. S.; Rudakov, L. I.; Velikovich, A.

    2013-07-15

    The planar wire array (PWA) is a promising load for new multi-source inertial confinement fusion (ICF) hohlraums [B. Jones et al., Phys. Rev. Lett. 104, 125001 (2010)]. The hohlraum radiation symmetry is an important issue for ICF. It was found that extreme ultraviolet and sub-keV photon emission from PWAs may have considerable anisotropy in the load azimuthal plane. This experimental result is obtained on the UNR 1–1.7 MA Zebra generator. The time-dependent anisotropy effect is detected. This feature is studied in 2D numerical simulations and can be explained by initial anisotropy of implosion of those non-cylindrical loads radiating essentially as surface sources in sub-keV quanta and also by radiation absorption in cold magnetized plasma tails forming in the direction of magnetic compression.

  15. Waveguide circuits in three-dimensional photonic crystals

    SciTech Connect

    Biswas, Rana; Christensen, C.; Muehlmeier, J.; Tuttle, G.; Ho, K.-M.

    2008-04-07

    Waveguide circuits in three-dimensional photonic crystals with complete photonic band gaps are simulated with finite difference time domain (FDTD) simulations, and compared with measurements on microwave scale photonic crystals. The transmission through waveguide bends critically depends on the photonic crystal architecture in the bend region. We have found experimentally and theoretically, a new waveguide bend configuration consisting of overlapping rods in the bend region, that performs better than the simple waveguide bend of terminated rods, especially in the higher frequency portion of the band. Efficient beam splitters with this junction geometry are also simulated.

  16. Novel Calibration System with Sparse Wires for CMB Polarization Receivers

    NASA Astrophysics Data System (ADS)

    Tajima, O.; Nguyen, H.; Bischoff, C.; Brizius, A.; Buder, I.; Kusaka, A.

    2012-06-01

    A curl competent (also known as B-modes) in the cosmic microwave background (CMB) polarization is a smoking gun signature of the inflationary universe. To achieve better sensitivity to this faint signal, CMB polarization experiments aim to maximize the number of detector elements, resulting in a large focal plane receiver. Detector calibration of the polarization response becomes essential. It is extremely useful to be able to calibrate "simultaneously" all detectors on the large focal plane. We developed a novel calibration system that rotates a large "sparse" grid of metal wires, in front of and fully covering the field of view of the focal plane receiver. Polarized radiation is created via the reflection of ambient temperature photons from the wire surface. Since the detector has a finite beam size, the observed signal is convolved with the beam property. The intensity of the of the calibrator is reasonable (a few Kelvin or less) compared to sky temperature for typical observing conditions (˜10 K). The system played a successful role for receiver calibration of QUIET, a CMB polarization experiment located in the Atacama desert in Chile. The successful performance revealed that this system is applicable to other experiments based on different technologies, e.g. TES bolometers.

  17. 49 CFR 236.76 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with signal apparatus. 236.76 Section 236.76 Transportation Other Regulations Relating to... wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or otherwise so... apparatus. Inspections and Tests; All Systems...

  18. 49 CFR 236.76 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... with signal apparatus. 236.76 Section 236.76 Transportation Other Regulations Relating to... wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or otherwise so... apparatus. Inspections and Tests; All Systems...

  19. 500 kV shield wires; Sectionalize or ground everywhere

    SciTech Connect

    Tuominen, M.W. )

    1992-01-01

    The primary purpose of shield wires on transmission lines in lightning protection. Development of fiber-optic shied wires added communications capabilities. Schemes for adapting fiber-optic shield wires to sectionalized shield wire designs remain untested. It is a present policy to segment and insulate 500 kV shield wires. Computer modeling and supportive field measurements have revealed a characteristic distribution of grounded tower voltage versus distance for long lines. The intent of this paper is to report these results plus predict the outcome of grounding shield wires on transmission lines already in place. Shield wires are often called overhead ground wires and abbreviated OHGW.

  20. Critique of information geometry

    SciTech Connect

    Skilling, John

    2014-12-05

    As applied to probability, information geometry fails because probability distributions do not form a metric space. Probability theory rests on a compelling foundation of elementary symmetries, which also support information (aka minus entropy, Kullback-Leibler) H(p;q) as the unique measure of divergence from source probability distribution q to destination p. Because the only compatible connective H is from≠to asymmetric, H(p;q)≠H(q;p), there can be no compatible geometrical distance (which would necessarily be from=to symmetric). Hence there is no distance relationship compatible with the structure of probability theory. Metrics g and densities sqrt(det(g)) interpreted as prior probabilities follow from the definition of distance, and must fail likewise. Various metrics and corresponding priors have been proposed, Fisher's being the most popular, but all must behave unacceptably. This is illustrated with simple counter-examples.

  1. Geometry from Gauge Theory

    NASA Astrophysics Data System (ADS)

    Correa, Diego H.; Silva, Guillermo A.

    2008-07-01

    We discuss how geometrical and topological aspects of certain 1/2-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents.

  2. Geometry from Gauge Theory

    SciTech Connect

    Correa, Diego H.; Silva, Guillermo A.

    2008-07-28

    We discuss how geometrical and topological aspects of certain (1/2)-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents.

  3. Critique of information geometry

    NASA Astrophysics Data System (ADS)

    Skilling, John

    2014-12-01

    As applied to probability, information geometry fails because probability distributions do not form a metric space. Probability theory rests on a compelling foundation of elementary symmetries, which also support information (aka minus entropy, Kullback-Leibler) H(p;q) as the unique measure of divergence from source probability distribution q to destination p. Because the only compatible connective H is from≠to asymmetric, H(p;q)≠H(q;p), there can be no compatible geometrical distance (which would necessarily be from=to symmetric). Hence there is no distance relationship compatible with the structure of probability theory. Metrics g and densities sqrt(det(g)) interpreted as prior probabilities follow from the definition of distance, and must fail likewise. Various metrics and corresponding priors have been proposed, Fisher's being the most popular, but all must behave unacceptably. This is illustrated with simple counter-examples.

  4. Exclusive photon-photon processes

    SciTech Connect

    Brodsky, S.J.

    1997-07-01

    Exclusive gamma gamma right arrow hadron pairs are among the most fundamental processes in QCD, providing a detailed examination of Compton scattering in the crossed channel. In the high momentum transfer domain (s, t, large, Theta cm for t/s fixed), these processes can be computed from first principles in QCD, yielding important information on the nature of the QCD coupling data and the form of hadron distribution amplitudes. Similarly, the transition form factors gamma star gamma, gamma star gamma right arrow pi(o), Eta (0), Eta`, Eta(c)... provide rigorous tests of QCD and definitive determinations of the meson distribution amplitudes Phi H(x,Q). We show that the assumption of a frozen coupling at low momentum transfers can explain the observed scaling of two-photon exclusive processes.

  5. In Situ Electrochemical Deposition of Microscopic Wires

    NASA Technical Reports Server (NTRS)

    Yun, Minhee; Myung, Nosang; Vasquez, Richard

    2005-01-01

    A method of fabrication of wires having micron and submicron dimensions is built around electrochemical deposition of the wires in their final positions between electrodes in integrated circuits or other devices in which the wires are to be used. Heretofore, nanowires have been fabricated by a variety of techniques characterized by low degrees of controllability and low throughput rates, and it has been necessary to align and electrically connect the wires in their final positions by use of sophisticated equipment in expensive and tedious post-growth assembly processes. The present method is more economical, offers higher yields, enables control of wire widths, and eliminates the need for post-growth assembly. The wires fabricated by this method could be used as simple electrical conductors or as transducers in sensors. Depending upon electrodeposition conditions and the compositions of the electroplating solutions in specific applications, the wires could be made of metals, alloys, metal oxides, semiconductors, or electrically conductive polymers. In this method, one uses fabrication processes that are standard in the semiconductor industry. These include cleaning, dry etching, low-pressure chemical vapor deposition, lithography, dielectric deposition, electron-beam lithography, and metallization processes as well as the electrochemical deposition process used to form the wires. In a typical case of fabrication of a circuit that includes electrodes between which microscopic wires are to be formed on a silicon substrate, the fabrication processes follow a standard sequence until just before the fabrication of the microscopic wires. Then, by use of a thermal SiO-deposition technique, the electrodes and the substrate surface areas in the gaps between them are covered with SiO. Next, the SiO is electron-beam patterned, then reactive-ion etched to form channels having specified widths (typically about 1 m or less) that define the widths of the wires to be formed. Drops

  6. Method for producing strain tolerant multifilamentary oxide superconducting wire

    DOEpatents

    Finnemore, D.K.; Miller, T.A.; Ostenson, J.E.; Schwartzkopf, L.A.; Sanders, S.C.

    1994-07-19

    A strain tolerant multifilamentary wire capable of carrying superconducting currents is provided comprising a plurality of discontinuous filaments formed from a high temperature superconducting material. The discontinuous filaments have a length at least several orders of magnitude greater than the filament diameter and are sufficiently strong while in an amorphous state to withstand compaction. A normal metal is interposed between and binds the discontinuous filaments to form a normal metal matrix capable of withstanding heat treatment for converting the filaments to a superconducting state. The geometry of the filaments within the normal metal matrix provides substantial filament-to-filament overlap, and the normal metal is sufficiently thin to allow supercurrent transfer between the overlapped discontinuous filaments but is also sufficiently thick to provide strain relief to the filaments. 6 figs.

  7. Method for producing strain tolerant multifilamentary oxide superconducting wire

    DOEpatents

    Finnemore, Douglas K.; Miller, Theodore A.; Ostenson, Jerome E.; Schwartzkopf, Louis A.; Sanders, Steven C.

    1994-07-19

    A strain tolerant multifilamentary wire capable of carrying superconducting currents is provided comprising a plurality of discontinuous filaments formed from a high temperature superconducting material. The discontinuous filaments have a length at least several orders of magnitude greater than the filament diameter and are sufficiently strong while in an amorphous state to withstand compaction. A normal metal is interposed between and binds the discontinuous filaments to form a normal metal matrix capable of withstanding heat treatment for converting the filaments to a superconducting state. The geometry of the filaments within the normal metal matrix provides substantial filament-to-filament overlap, and the normal metal is sufficiently thin to allow supercurrent transfer between the overlapped discontinuous filaments but is also sufficiently thick to provide strain relief to the filaments.

  8. Modeling parameterized geometry in GPU-based Monte Carlo particle transport simulation for radiotherapy.

    PubMed

    Chi, Yujie; Tian, Zhen; Jia, Xun

    2016-08-01

    Monte Carlo (MC) particle transport simulation on a graphics-processing unit (GPU) platform has been extensively studied recently due to the efficiency advantage achieved via massive parallelization. Almost all of the existing GPU-based MC packages were developed for voxelized geometry. This limited application scope of these packages. The purpose of this paper is to develop a module to model parametric geometry and integrate it in GPU-based MC simulations. In our module, each continuous region was defined by its bounding surfaces that were parameterized by quadratic functions. Particle navigation functions in this geometry were developed. The module was incorporated to two previously developed GPU-based MC packages and was tested in two example problems: (1) low energy photon transport simulation in a brachytherapy case with a shielded cylinder applicator and (2) MeV coupled photon/electron transport simulation in a phantom containing several inserts of different shapes. In both cases, the calculated dose distributions agreed well with those calculated in the corresponding voxelized geometry. The averaged dose differences were 1.03% and 0.29%, respectively. We also used the developed package to perform simulations of a Varian VS 2000 brachytherapy source and generated a phase-space file. The computation time under the parameterized geometry depended on the memory location storing the geometry data. When the data was stored in GPU's shared memory, the highest computational speed was achieved. Incorporation of parameterized geometry yielded a computation time that was ~3 times of that in the corresponding voxelized geometry. We also developed a strategy to use an auxiliary index array to reduce frequency of geometry calculations and hence improve efficiency. With this strategy, the computational time ranged in 1.75-2.03 times of the voxelized geometry for coupled photon/electron transport depending on the voxel dimension of the auxiliary index array, and in 0

  9. Modeling parameterized geometry in GPU-based Monte Carlo particle transport simulation for radiotherapy

    NASA Astrophysics Data System (ADS)

    Chi, Yujie; Tian, Zhen; Jia, Xun

    2016-08-01

    Monte Carlo (MC) particle transport simulation on a graphics-processing unit (GPU) platform has been extensively studied recently due to the efficiency advantage achieved via massive parallelization. Almost all of the existing GPU-based MC packages were developed for voxelized geometry. This limited application scope of these packages. The purpose of this paper is to develop a module to model parametric geometry and integrate it in GPU-based MC simulations. In our module, each continuous region was defined by its bounding surfaces that were parameterized by quadratic functions. Particle navigation functions in this geometry were developed. The module was incorporated to two previously developed GPU-based MC packages and was tested in two example problems: (1) low energy photon transport simulation in a brachytherapy case with a shielded cylinder applicator and (2) MeV coupled photon/electron transport simulation in a phantom containing several inserts of different shapes. In both cases, the calculated dose distributions agreed well with those calculated in the corresponding voxelized geometry. The averaged dose differences were 1.03% and 0.29%, respectively. We also used the developed package to perform simulations of a Varian VS 2000 brachytherapy source and generated a phase-space file. The computation time under the parameterized geometry depended on the memory location storing the geometry data. When the data was stored in GPU’s shared memory, the highest computational speed was achieved. Incorporation of parameterized geometry yielded a computation time that was ~3 times of that in the corresponding voxelized geometry. We also developed a strategy to use an auxiliary index array to reduce frequency of geometry calculations and hence improve efficiency. With this strategy, the computational time ranged in 1.75–2.03 times of the voxelized geometry for coupled photon/electron transport depending on the voxel dimension of the auxiliary index array, and in 0

  10. Transport in selectively magnetically doped topological insulator wires

    NASA Astrophysics Data System (ADS)

    Acero, Sergio; Brey, Luis; Herrera, William J.; Yeyati, Alfredo Levy

    2015-12-01

    We study the electronic and transport properties of a topological insulator nanowire including selective magnetic doping of its surfaces. We use a model which is appropriate to describe materials like Bi2Se3 within a k .p approximation and consider nanowires with a rectangular geometry. Within this model the magnetic doping at the (111) surfaces induces a Zeeman field which opens a gap at the Dirac cones corresponding to the surface states. For obtaining the transport properties in a two terminal configuration we use a recursive Green's function method based on a tight-binding model which is obtained by discretizing the original continuous model. For the case of uniform magnetization of two opposite nanowire (111) surfaces we show that the conductance can switch from a quantized value of e2/h (when the magnetizations are equal) to a very small value (when they are opposite). We also analyze the case of nonuniform magnetizations in which the Zeeman field on the two opposite surfaces change sign at the middle of the wire. For this case we find that conduction by resonant tunneling through a chiral state bound at the middle of the wire is possible. The resonant level position can be tuned by imposing an Aharonov-Bohm flux through the nanowire cross section.

  11. Photon-Photon Interactions via Rydberg Blockade

    SciTech Connect

    Gorshkov, Alexey V.; Otterbach, Johannes; Fleischhauer, Michael; Pohl, Thomas; Lukin, Mikhail D.

    2011-09-23

    We develop the theory of light propagation under the conditions of electromagnetically induced transparency in systems involving strongly interacting Rydberg states. Taking into account the quantum nature and the spatial propagation of light, we analyze interactions involving few-photon pulses. We show that this system can be used for the generation of nonclassical states of light including trains of single photons with an avoided volume between them, for implementing photon-photon gates, as well as for studying many-body phenomena with strongly correlated photons.

  12. Design and optimization of photolithography friendly photonic components

    NASA Astrophysics Data System (ADS)

    Pond, James; Wang, Xu; Flueckiger, Jonas; Reid, Adam; Niegemann, Jens; Liu, Amy; Chrostowski, Lukas

    2016-03-01

    Silicon photonics is a scalable, cost-effective technology for the production of photonic integrated circuits (PICs). The emergence of silicon photonics as a dominant technology for PICs is largely because it leverages decades of investment in design and fabrication technologies for electronic integrated circuits. However, the lithography requirements for photonic and electronic components are importantly different: geometries are generally curved; sidewall roughness is critically important; and, while the feature sizes are generally much larger, photonic device performance can be extraordinarily sensitive to the precise final geometry. For example, rounding of 90 degree corners in y-branches or multimode interferometers can have a dramatic impact on performance. The use of optical proximity correction (OPC) can greatly reduce these problems but does not eliminate them altogether. The designer is therefore faced with the problem of potentially optimizing a component using highly accurate numerical simulations that cannot be manufactured to the desired geometry, leading to a discrepancy between desired and actual performance. To solve this problem, we present a method for designing and optimizing photonic components that are lithography friendly so that the simulated geometry can be readily manufactured. As an example, we consider the case of waveguide Bragg gratings which are particularly challenging to manufacture by lithography.

  13. Biomimetic Photonic Crystals based on Diatom Algae Frustules

    NASA Astrophysics Data System (ADS)

    Mishler, Jonathan; Alverson, Andrew; Herzog, Joseph

    2015-03-01

    Diatom algae are unicellular, photosynthetic microorganisms with a unique external shell known as a frustule. Frustules, which are composed of amorphous silica, exhibit a unique periodic nano-patterning, distinguishing diatoms from other types of phytoplankton. Diatoms have been studied for their distinctive optical properties due to their resemblance of photonic crystals. In this regard, diatoms are not only considered for their applications as photonic crystals, but also for their use as biomimetic templates for artificially fabricated photonic crystals. Through the examination and measurement of the physical characteristics of many scanning electron microscope (SEM) images of diatom frustules, a biomimetic photonic crystal derived from diatom frustules can be recreated and modeled with the finite element method. In this approach, the average geometries of the diatom frustules are used to recreate a 2-dimensional photonic crystal, after which the electric field distribution and optical transmission through the photonic crystal are both measured. The optical transmission is then compared to the transmission spectra of a regular hexagonal photonic crystal, revealing the effects of diatom geometry on their optical properties. Finally, the dimensions of the photonic crystal are parametrically swept, allowing for further control over the transmission of light through the photonic crystal.

  14. Development of a precision wire feeder for small-diameter wire

    SciTech Connect

    Brandon, E.D.

    1995-03-01

    At Sandia National Laboratories in Albuquerque, the author designed and fabricated a precision wire feeder to be used with high energy density (electron beam and laser beam) welding for weld joints where filler wire might be needed to fill a gap or to adjust the chemical composition so that a crack-free weld could be made. The wire feeder incorporates a 25,000 step-per-revolution motor to power a urethane-coated drive roll. A microprocessor-based controller provides precise control of the motor and allows both continuous and pulsed feeding of the wire. A unidirectional 0.75-in.-dia ball bearing is used to press the wire against the drive roll. A slight constant backward tension is maintained on the wire spool by a Bodine torque motor. A Teflon tube is used to guide the wire from the drive roll to the vicinity of the weld, where a hypodermic needle is used to aim the wire into the weld pool. The operation of the wire feeder was demonstrated by feeding a 10-mil-dia, Type 304 stainless steel wire into a variety of CO{sub 2} laser beam welds. The resulting welds are smooth and continuous, and the welds are considered to be completely satisfactory for a variety of applications.

  15. LANSCE wire scanning diagnostics device mechanical design

    SciTech Connect

    Rodriguez Esparza, Sergio

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) is one of the major experimental science facilities at the Los Alamos National Laboratory (LANL). The core of LANSCE's work lies in the operation of a powerful linear accelerator, which accelerates protons up to 84% the speed oflight. These protons are used for a variety of purposes, including materials testing, weapons research and isotopes production. To assist in guiding the proton beam, a series of over one hundred wire scanners are used to measure the beam profile at various locations along the half-mile length of the particle accelerator. A wire scanner is an electro-mechanical device that moves a set of wires through a particle beam and measures the secondary emissions from the resulting beam-wire interaction to obtain beam intensity information. When supplemented with data from a position sensor, this information is used to determine the cross-sectional profile of the beam. This measurement allows beam operators to adjust parameters such as acceleration, beam steering, and focus to ensure that the beam reaches its destination as effectively as possible. Some of the current wire scanners are nearly forty years old and are becoming obsolete. The problem with current wire scanners comes in the difficulty of maintenance and reliability. The designs of these wire scanners vary making it difficult to keep spare parts that would work on all designs. Also many of the components are custom built or out-dated technology and are no longer in production.

  16. Wire Crimp Termination Verification Using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Perey, Daniel F.; Cramer, K. Elliott; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp termination and wire is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. Various crimp junction pathologies such as undercrimping, missing wire strands, incomplete wire insertion, partial insulation removal, and incorrect wire gauge are ultrasonically tested, and their results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently (as evidenced with destructive testing) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. Finally, an approach for application to multipin indenter type crimps will be discussed.

  17. Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector

    SciTech Connect

    Heath, Robert M. Tanner, Michael G.; Casaburi, Alessandro; Hadfield, Robert H.; Webster, Mark G.; San Emeterio Alvarez, Lara; Jiang, Weitao; Barber, Zoe H.; Warburton, Richard J.

    2014-02-10

    The device physics of parallel-wire superconducting nanowire single photon detectors is based on a cascade process. Using nano-optical techniques and a parallel wire device with spatially separate pixels, we explicitly demonstrate the single- and multi-photon triggering regimes. We develop a model for describing efficiency of a detector operating in the arm-trigger regime. We investigate the timing response of the detector when illuminating a single pixel and two pixels. We see a change in the active area of the detector between the two regimes and find the two-pixel trigger regime to have a faster timing response than the one-pixel regime.

  18. Tracing photon transmission in dye-doped DNA-CTMA optical nanofibers.

    PubMed

    Long, Weihong; Zou, Weiwen; Li, Xing; Jiang, Wenning; Li, Xinwan; Chen, Jianping

    2014-03-24

    We experimentally demonstrate the novel phenomena of photoluminescence (PL) and fluorescence resonance energy transfer (FRET) assisted three-color PL separating in DNA optical nanofibers consisting of the stretched and connected DNA-cetyltrimethyl ammonium wires. The PL experiments are performed to comparatively trace photon transmission between single dye-doped DNA-CTMA optical nanofiber and PMMA optical nanofiber. A cascade FRET including DNA minor groove binder and DNA intercalators is used to further trace photon transmission inside DNA-CTMA wire. These experimental results will help to intrigue the new applications of DNA-CTMA as molecular waveguide in optobioelectronics area. PMID:24663973

  19. In-Situ Wire Damage Detection System

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Tate, Lanetra; Smith, Trent; Gibson, Tracy; Medelius, Pedro; Jolley, Scott

    2012-01-01

    An In-Situ Wire Damage Detection System (ISWDDS) has been developed that is capable of detecting damage to a wire insulation, or a wire conductor, or to both. The system will allow for realtime, continuous monitoring of wiring health/integrity and reduce the number of false negatives and false positives while being smaller, lighter in weight, and more robust than current systems. The technology allows for improved safety and significant reduction in maintenance hours for aircraft, space vehicles, satellites, and other critical high-performance wiring systems for industries such as energy production and mining. The integrated ISWDDS is comprised of two main components: (1) a wire with an innermost core conductor, an inner insulation film, a conductive layer or inherently conductive polymer (ICP) covering the inner insulation film, an outermost insulation jacket; and (2) smart connectors and electronics capable of producing and detecting electronic signals, and a central processing unit (CPU) for data collection and analysis. The wire is constructed by applying the inner insulation films to the conductor, followed by the outer insulation jacket. The conductive layer or ICP is on the outer surface of the inner insulation film. One or more wires are connected to the CPU using the smart connectors, and up to 64 wires can be monitored in real-time. The ISWDDS uses time domain reflectometry for damage detection. A fast-risetime pulse is injected into either the core conductor or conductive layer and referenced against the other conductor, producing transmission line behavior. If either conductor is damaged, then the signal is reflected. By knowing the speed of propagation of the pulse, and the time it takes to reflect, one can calculate the distance to and location of the damage.

  20. Failure analysis of explanted sternal wires.

    PubMed

    Shih, Chun-Ming; Su, Yea-Yang; Lin, Shing-Jong; Shih, Chun-Che

    2005-05-01

    To classify and understand the mechanisms of surface damages and fracture mechanisms of sternal wires, explanted stainless steel sternal wires were collected from patients with sternal dehiscence following open-heart surgery. Surface alterations and fractured ends of sternal wires were examined and analyzed. Eighty fractured wires extracted from 25 patients from January 1999 to December 2003, with mean implantation interval of 55+/-149 days (range 5-729 days) after cardiac surgery, were studied by various techniques. The extracted wires were cleaned and the fibrotic tissues were removed. Irregularities and fractured ends were assayed by a scanning electron microscopy. After stereomicroscopy and documentation, the explants were cleaned with 1% sodium hypochlorite to remove the blood and tissues and was followed by cleaned with deionized water and alcohol. The explants were examined by stereomicroscopy, and irregularities on surface and fracture surfaces of sternal wires were assayed by scanning electron microscopy, energy dispersive X-ray analysis (EDAX) and X-ray mapping. The explants with surrounding fibrotic tissue were stained and examined with stereomicroscopy and transmission electronic microscopy. Corrosion pits were found on the surface of explanted sternal wires. EDAX and X-ray mapping examinations revealed diminution of nickel concentration in the severely corroded pits on sternal wires. A feature of transgranular cracking was observed for stress corrosion cracking and striation character for typical corrosion fatigue was also identified. TEM examination of tissue showed the metallic particles in phagolysosomes of macrophages inside the surrounding sternal tissue. The synergic effect of hostile environment and the stress could be the precursors of failures for sternal wires. PMID:15576179

  1. Planetary Image Geometry Library

    NASA Technical Reports Server (NTRS)

    Deen, Robert C.; Pariser, Oleg

    2010-01-01

    The Planetary Image Geometry (PIG) library is a multi-mission library used for projecting images (EDRs, or Experiment Data Records) and managing their geometry for in-situ missions. A collection of models describes cameras and their articulation, allowing application programs such as mosaickers, terrain generators, and pointing correction tools to be written in a multi-mission manner, without any knowledge of parameters specific to the supported missions. Camera model objects allow transformation of image coordinates to and from view vectors in XYZ space. Pointing models, specific to each mission, describe how to orient the camera models based on telemetry or other information. Surface models describe the surface in general terms. Coordinate system objects manage the various coordinate systems involved in most missions. File objects manage access to metadata (labels, including telemetry information) in the input EDRs and RDRs (Reduced Data Records). Label models manage metadata information in output files. Site objects keep track of different locations where the spacecraft might be at a given time. Radiometry models allow correction of radiometry for an image. Mission objects contain basic mission parameters. Pointing adjustment ("nav") files allow pointing to be corrected. The object-oriented structure (C++) makes it easy to subclass just the pieces of the library that are truly mission-specific. Typically, this involves just the pointing model and coordinate systems, and parts of the file model. Once the library was developed (initially for Mars Polar Lander, MPL), adding new missions ranged from two days to a few months, resulting in significant cost savings as compared to rewriting all the application programs for each mission. Currently supported missions include Mars Pathfinder (MPF), MPL, Mars Exploration Rover (MER), Phoenix, and Mars Science Lab (MSL). Applications based on this library create the majority of operational image RDRs for those missions. A

  2. Copper Wire Bonding Concerns and Best Practices

    NASA Astrophysics Data System (ADS)

    Chauhan, Preeti; Zhong, Z. W.; Pecht, Michael

    2013-08-01

    Copper wire bonding of microelectronic parts has developed as a means to cut the costs of using the more mature technology of gold wire bonding. However, with this new technology, changes in the bonding processes as well as bonding metallurgy can affect product reliability. This paper discusses the challenges associated with copper wire bonding and the solutions that the industry has been implementing. The paper also provides information to enable customers to conduct qualification and reliability tests on microelectronic packages to facilitate adoption in their target applications.

  3. Transient scattering from a thin arbitrary wire

    NASA Astrophysics Data System (ADS)

    Mohan, S. Ananda; Rao, Sadasiva M.

    1988-08-01

    The conjugate gradient (CG) method is applied to solve the problem of transient scattering from a thin arbitrary wire. The method is simple, efficient, and yields more accurate results than the marching-on-in-time procedure. Numerical examples for the case of a bent wire, a wire with discontinuous radii, and a circular loop are presented to highlight the advantages of this procedure. It is concluded that the occurrence of late-time oscillations may not be due to the accumulation of truncation of roundoff errors. These oscillations may be attributed to the insufficient sampling of the structure.

  4. Transport in partially equilibrated inhomogeneous quantum wires.

    SciTech Connect

    Levchenko, A.; Micklitz, T.; Rech, J.; Matveev, K. A.; Materials Science Division; Freie Univ. Berlin; Centre de Physique Theorique

    2010-01-01

    We study transport properties of weakly interacting one-dimensional electron systems including on an equal footing thermal equilibration due to three-particle collisions and the effects of large-scale inhomogeneities. We show that equilibration in an inhomogeneous quantum wire is characterized by the competition of interaction processes which reduce the electrons total momentum and such which change the number of right- and left-moving electrons. We find that the combined effect of interactions and inhomogeneities can dramatically increase the resistance of the wire. In addition, we find that the interactions strongly affect the thermoelectric properties of inhomogeneous wires and calculate their thermal conductance, thermopower, and Peltier coefficient.

  5. Pulse speed on a plucked wire

    NASA Astrophysics Data System (ADS)

    Odekirk, Tristan; Slaton, William V.

    2012-04-01

    This paper serves to update an elegant experiment published in The Physics Teacher to measure the speed of a pulse on a taut metal wire. Unfortunately, commercially available units2 that serve the same purpose are priced outside the range of most high school or college physics teaching laboratories. Wakeland et al. show how an affordable adaptation of the traditional standing wave apparatus using taut metal wire and horseshoe magnets can be used to measure the speed of a pulse by using an oscilloscope to measure an induced voltage in the wire as the pulse transverses the middle of the magnets, which are a known distance apart.

  6. Wire-rope emplacement of diagnostics systems

    SciTech Connect

    Burden, W.L.

    1982-05-07

    The study reported here was initiated to determine if, with the Cable Downhole System (CDS) currently under development, there is an advantage to using continuous wire rope to lower the emplacement package to the bottom of the hole. A baseline design using two wire ropes as well as several alternatives are discussed in this report. It was concluded that the advantages of the wire-rope emplacement system do not justify the cost of converting to such a system, especially for LLNL's maximum emplacement package weights.

  7. Fabrication of FFTF fuel pin wire wrap

    SciTech Connect

    Epperson, E.M.

    1980-06-01

    Lateral spacing between FFTF fuel pins is required to provide a passageway for the sodium coolant to flow over each pin to remove heat generated by the fission process. This spacing is provided by wrapping each fuel pin with type 316 stainless steel wire. This wire has a 1.435mm (0.0565 in.) to 1.448mm (0.0570 in.) diameter, contains 17 +- 2% cold work and was fabricated and tested to exacting RDT Standards. About 500 kg (1100 lbs) or 39 Km (24 miles) of fuel pin wrap wire is used in each core loading. Fabrication procedures and quality assurance tests are described.

  8. Detectors Ensure Function, Safety of Aircraft Wiring

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Pedro Medelius waited patiently in his lab at Kennedy Space Center. He had just received word that a colleague was bringing over a cable from a Space Shuttle solid rocket booster to test Medelius new invention. Medelius was calm until his colleague arrived, with about 30 other people. "Talk about testing under pressure," says Medelius. "There were people there from the Navy, the Air Force, and the Federal Aviation Administration." After the group s arrival, Medelius took a deep breath and connected his Standing Wave Reflectometer (SWR) to the cable. He wiggled the cable around, and the display showed a fault (a short or open circuit in wire) about an inch and a half inside the connector on the cable. His colleague questioned the results, because he had already checked that area on the cable. Medelius used the SWR to check again but got the same result. "That is when we took the cable apart and looked inside," Medelius says. "Lo and behold, that was exactly where the fault was." The impetus for Medelius new wire inspection technology came about in 1999 when one of the space shuttles lost power due to a fault somewhere in its more than 200 miles of electrical wiring. "The backup circuit was activated and prevented a major dysfunction, but nevertheless, there was a problem with the wiring," Medelius describes. Even though technicians used a device called a multimeter to measure the electrical current to find which wire had a fault, it could not pinpoint exactly where on the wire the fault was located. For that, technicians had to visually inspect the wire. "Sometimes they would have to remove the whole wire assembly and visually inspect every single wire. It was a very tedious operation because the wires are behind cabinets. They go all over the place in the shuttle," says Medelius. "NASA needed an instrument capable of telling them exactly where the faults were occurring." To meet NASA s needs for a highly precise device to inspect electrical power bundles, wires

  9. Colloidally deposited nanoparticle wires for biophysical detection

    NASA Astrophysics Data System (ADS)

    Shen, Sophie C.; Liu, Wen-Tao; Diao, Jia-Jie

    2015-12-01

    Among the techniques developed to prepare nanoparticle wires for multiple applications, the colloidal deposition method at interface has been regarded as cost-efficient and eco-friendly, and hence has attracted an increasing amount of research attention. In this report, the recent developments in preparing nanoparticle wires and integrated nanoparticle wire arrays using this technique have been reviewed. Furthermore, we have also discussed the application of these nanoparticle structures in detecting chemical and biological molecules. Project supported by the Fundamental Research Funds for the Central Universities through Xi’an Jiaotong University and the National Key Basic Research Program of China (Grant No. 2015CB856304).

  10. Unmodulated spin chains as universal quantum wires

    SciTech Connect

    Wojcik, Antoni; Kurzynski, Pawel; Grudka, Andrzej; Luczak, Tomasz; Gdala, Tomasz; Bednarska, Malgorzata

    2005-09-15

    We study a quantum state transfer between two qubits interacting with the ends of a quantum wire consisting of linearly arranged spins coupled by an excitation conserving, time-independent Hamiltonian. We show that, if we control the coupling between the source and the destination qubits and the ends of the wire, the evolution of the system can lead to an almost perfect transfer even in the case in which all nearest-neighbour couplings between the internal spins of the wire are equal.

  11. Filter line wiring designs in aircraft

    NASA Astrophysics Data System (ADS)

    Rowe, Richard M.

    1990-10-01

    The paper presents a harness design using a filter-line wire technology and appropriate termination methods to help meet high-energy radiated electromagnetic field (HERF) requirements for protection against the adverse effects of EMI on electrical and avionic systems. Filter-line interconnect harnessing systems discussed consist of high-performance wires and cables; when properly wired they suppress conducted and radiated EMI above 100 MHz. Filter-line termination devices include backshell adapters, braid splicers, and shield terminators providing 360-degree low-impedance terminations and enhancing maintainability of the system.

  12. Space Station Freedom secondary power wiring requirements

    NASA Technical Reports Server (NTRS)

    Sawyer, C. R.

    1994-01-01

    Secondary power is produced by DDCU's (direct current to direct current converter units) and routed to and through secondary power distribution assemblies (SPDA's) to loads or tertiary distribution assemblies. This presentation outlines requirements of Space Station Freedom (SSF) EEE (electrical, electronic, and electromechanical) parts wire and the approved electrical wire and cable. The SSF PDRD (Program Definition and Requirements Document) language problems and resolution are reviewed. The cable routing to and from the SPDA's is presented as diagrams and the wire recommendations and characteristics are given.

  13. Optimization of Micromachined Photon Devices

    SciTech Connect

    Datskos, P.G.; Datskou, I.; Evans, B.M., III; Rajic, S.

    1999-07-18

    The Oak Ridge National Laboratory has been instrumental in developing ultraprecision technologies for the fabrication of optical devices. We are currently extending our ultraprecision capabilities to the design, fabrication, and testing of micro-optics and MEMS devices. Techniques have been developed in our lab for fabricating micro-devices using single point diamond turning and ion milling. The devices we fabricated can be used in micro-scale interferometry, micro-positioners, micro-mirrors, and chemical sensors. In this paper, we focus on the optimization of microstructure performance using finite element analysis and the experimental validation of those results. We also discuss the fabrication of such structures and the optical testing of the devices. The performance is simulated using finite element analysis to optimize geometric and material parameters. The parameters we studied include bimaterial coating thickness effects; device length, width, and thickness effects, as well as changes in the geometry itself. This optimization results in increased sensitivity of these structures to absorbed incoming energy, which is important for photon detection or micro-mirror actuation. We have investigated and tested multiple geometries. The devices were fabricated using focused ion beam milling, and their response was measured using a chopped photon source and laser triangulation techniques. Our results are presented and discussed.

  14. Terahertz wireless communications based on photonics technologies.

    PubMed

    Nagatsuma, Tadao; Horiguchi, Shogo; Minamikata, Yusuke; Yoshimizu, Yasuyuki; Hisatake, Shintaro; Kuwano, Shigeru; Yoshimoto, Naoto; Terada, Jun; Takahashi, Hiroyuki

    2013-10-01

    There has been an increasing interest in the application of terahertz (THz) waves to broadband wireless communications. In particular, use of frequencies above 275 GHz is one of the strong concerns among radio scientists and engineers, because these frequency bands have not yet been allocated at specific active services, and there is a possibility to employ extremely large bandwidths for ultra-broadband wireless communications. Introduction of photonics technologies for signal generation, modulation and detection is effective not only to enhance the bandwidth and/or the data rate, but also to combine fiber-optic (wired) and wireless networks. This paper reviews recent progress in THz wireless communications using telecom-based photonics technologies towards 100 Gbit/s. PMID:24104286

  15. GSFC's Multi-Wire Gas Proportional Counter

    NASA Astrophysics Data System (ADS)

    Serlemitsos, Peter J.

    2013-01-01

    The Goddard X-ray group made its appearance in 1964 as a one person (Elihu Boldt) appendage to the well established cosmic ray group, then headed by Frank MacDonald. This discipline proximity was crucial because it meant superb technical support from the start, which allowed the fledging group to quickly advance toward directions of choice. When I became the 2nd member of the group in 1966, the new discipline still relied on bulky gas counters, stacked to make up a usable detection area. Slim opportunities existed for timing or spectral inferences. Elihu's strong interest in pursuing the reported diffuse cosmic radiation had to be set aside, as improving this situation appeared to be years away. Cosmic ray researchers had long used charged particle timing techniques for cleaning up their data, but those appeared irrelevant for our purposes because of the large, background generating, mass of the gas containment vessels and the slow drift in the counter gas of the charge from photon interaction sites to the counter anode. We had to deal with these realities in whatever choices we made for our future instruments. The multi-wire gas proportional counter emerged from our still small group in the late1960s, demonstrating on several rocket and balloon flights a greatly reduced detector background, improved event timing and adequate resolution for addressing key spectral features. Three of these detectors, flown in 1975 on NASA's 8th orbiting solar observatory, were successfully used for some 3 years to conduct non dispersive, 1-10 keV spectroscopy on many galactic and extragalactic sources, including several clusters of galaxies. In 1977 we flew a set of larger detectors on the first of NASA's High Energy Astrophysical Observatories (HEAO). These were specifically designed for the study of the X-ray background. Finally, the largest instruments of this family were flown in 1995 by our group on NASA's Rossi X-ray Timing Explorer, RXTE, which observed over a remarkable 16

  16. Photon induced L3 vacancy alignment at tuned photon energies

    NASA Astrophysics Data System (ADS)

    Bansal, Himani; Kaur, Gurpreet; Tiwari, Manoj K.; Mittal, Raj

    2016-04-01

    Photon induced L3 X-ray measurements for Lα/Lℓ cross-section ratios in elements, 66 ⩽ Z ⩽ 83, at tuned photon energies on synchrotron Beamline-16 at Indus-2, India have been used to study the effect of Coster-Kronig (CK) transitions and photon energies on alignment of L3 vacancies. Certainty and reliability of the measurements were checked from comparison of measured Lα and Lℓ fluorescence cross-sections at E1 excitation with available theoretical/empirical/experimental values that required additional measurements for source, geometry and efficiency factor S0GɛLα/ℓ in the used set-up. Fall/rise trend of the ratios with energy for different Z's was found to resemble the off/on-set pattern of CK transitions as pointed out by Bambynek et al. and Campbell. Evaluated alignment parameter A2 values are very much within the limits, 0.05

  17. Information geometry of Bayesian statistics

    NASA Astrophysics Data System (ADS)

    Matsuzoe, Hiroshi

    2015-01-01

    A survey of geometry of Bayesian statistics is given. From the viewpoint of differential geometry, a prior distribution in Bayesian statistics is regarded as a volume element on a statistical model. In this paper, properties of Bayesian estimators are studied by applying equiaffine structures of statistical manifolds. In addition, geometry of anomalous statistics is also studied. Deformed expectations and deformed independeces are important in anomalous statistics. After summarizing geometry of such deformed structues, a generalization of maximum likelihood method is given. A suitable weight on a parameter space is important in Bayesian statistics, whereas a suitable weight on a sample space is important in anomalous statistics.

  18. Strongly-Refractive One-Dimensional Photonic Crystal Prisms

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor)

    2004-01-01

    One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.

  19. Electrocatalytic monitoring of peptidic proton-wires.

    PubMed

    Dorčák, V; Kabeláč, M; Kroutil, O; Bednářová, K; Vacek, J

    2016-08-01

    The transfer of protons or proton donor/acceptor abilities is an important phenomenon in many biomolecular systems. One example is the recently proposed peptidic proton-wires (H-wires), but the ability of these His-containing peptides to transfer protons has only been studied at the theoretical level so far. Here, for the first time the proton transfer ability of peptidic H-wires is examined experimentally in an adsorbed state using an approach based on a label-free electrocatalytic reaction. The experimental findings are complemented by theoretical calculations at the ab initio level in a vacuum and in an implicit solvent. Experimental and theoretical results indicated Ala3(His-Ala2)6 to be a high proton-affinity peptidic H-wire model. The methodology presented here could be used for the further investigation of the proton-exchange chemistry of other biologically or technologically important macromolecules. PMID:27353221

  20. t matrix of metallic wire structures

    SciTech Connect

    Zhan, T. R. Chui, S. T.

    2014-04-14

    To study the electromagnetic resonance and scattering properties of complex structures of which metallic wire structures are constituents within multiple scattering theory, the t matrix of individual structures is needed. We have recently developed a rigorous and numerically efficient equivalent circuit theory in which retardation effects are taken into account for metallic wire structures. Here, we show how the t matrix can be calculated analytically within this theory. We illustrate our method with the example of split ring resonators. The density of states and cross sections for scattering and absorption are calculated, which are shown to be remarkably enhanced at resonant frequencies. The t matrix serves as the basic building block to evaluate the interaction of wire structures within the framework of multiple scattering theory. This will open the door to efficient design and optimization of assembly of wire structures.