Science.gov

Sample records for photosynthesis gene expression

  1. The Coordination of Gene Expression within Photosynthesis Pathway for Acclimation of C4 Energy Crop Miscanthus lutarioriparius.

    PubMed

    Xing, Shilai; Kang, Lifang; Xu, Qin; Fan, Yangyang; Liu, Wei; Zhu, Caiyun; Song, Zhihong; Wang, Qian; Yan, Juan; Li, Jianqiang; Sang, Tao

    2016-01-01

    As a promising candidate for the second-generation C4 energy crop, Miscanthus lutarioriparius has well acclimated to the water-limited and high-light Loess Plateau in China by improving photosynthesis rate and water use efficiency (WUE) compared to its native habitat along Yangtze River. Photosynthetic genes were demonstrated as one major category of the candidate genes underlying the physiological superiority. To further study how photosynthetic genes interact to improve the acclimation potential of M. lutarioriparius, population expression patterns within photosynthesis pathway were explored between one mild environment and one harsh environment. We found that 108 transcripts in assembled transcriptome of M. lutarioriparius were highly similar to genes in three Kyoto Encyclopedia of Genes and Genomes (KEGG) photosynthesis pathways of sorghum and maize. Phylogenetic analyses using sorghum, maize, rice, and Arabidopsis genes of dark reaction identified 23 orthologs and 30 paralogs of M. lutarioriparius photosynthetic genes. These genes were also clustered into two kinds of expression pattern. 87% of transcripts in dark reaction were up-regulated and all 14 chloroplast-encoded transcripts in light reaction increased degradation in the harsh environment compared to the mild environment. Moreover, 80.8% of photosynthetic transcripts were coordinated at transcription level under the two environments. Interestingly, LHCI and PSI were significantly correlated with F-ATPase and C4 cycle. Overall, this study indicates the coordinated expression between cyclic electron transport (consisting of LHCI, PSI, and ATPase) and CO2-concentrating mechanism (C4 cycle) could account for photosynthesis plasticity on M. lutarioriparius acclimation potential. PMID:26904072

  2. The Coordination of Gene Expression within Photosynthesis Pathway for Acclimation of C4 Energy Crop Miscanthus lutarioriparius

    PubMed Central

    Xing, Shilai; Kang, Lifang; Xu, Qin; Fan, Yangyang; Liu, Wei; Zhu, Caiyun; Song, Zhihong; Wang, Qian; Yan, Juan; Li, Jianqiang; Sang, Tao

    2016-01-01

    As a promising candidate for the second-generation C4 energy crop, Miscanthus lutarioriparius has well acclimated to the water-limited and high-light Loess Plateau in China by improving photosynthesis rate and water use efficiency (WUE) compared to its native habitat along Yangtze River. Photosynthetic genes were demonstrated as one major category of the candidate genes underlying the physiological superiority. To further study how photosynthetic genes interact to improve the acclimation potential of M. lutarioriparius, population expression patterns within photosynthesis pathway were explored between one mild environment and one harsh environment. We found that 108 transcripts in assembled transcriptome of M. lutarioriparius were highly similar to genes in three Kyoto Encyclopedia of Genes and Genomes (KEGG) photosynthesis pathways of sorghum and maize. Phylogenetic analyses using sorghum, maize, rice, and Arabidopsis genes of dark reaction identified 23 orthologs and 30 paralogs of M. lutarioriparius photosynthetic genes. These genes were also clustered into two kinds of expression pattern. 87% of transcripts in dark reaction were up-regulated and all 14 chloroplast-encoded transcripts in light reaction increased degradation in the harsh environment compared to the mild environment. Moreover, 80.8% of photosynthetic transcripts were coordinated at transcription level under the two environments. Interestingly, LHCI and PSI were significantly correlated with F-ATPase and C4 cycle. Overall, this study indicates the coordinated expression between cyclic electron transport (consisting of LHCI, PSI, and ATPase) and CO2-concentrating mechanism (C4 cycle) could account for photosynthesis plasticity on M. lutarioriparius acclimation potential. PMID:26904072

  3. prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides.

    PubMed Central

    Eraso, J M; Kaplan, S

    1994-01-01

    A new locus, prrA, involved in the regulation of photosynthesis gene expression in response to oxygen, has been identified in Rhodobacter sphaeroides. Inactivation of prrA results in the absence of photosynthetic spectral complexes. The prrA gene product has strong homology to response regulators associated with signal transduction in other prokaryotes. When prrA is present in multiple copies, cells produce light-harvesting complexes under aerobic growth conditions, suggesting that prrA affects photosynthesis gene expression positively in response to oxygen deprivation. Analysis of the expression of puc::lacZ fusions in wild-type and PrrA- cells revealed a substantial decrease in LacZ expression in the absence of prrA under all conditions of growth, especially when cells were grown anaerobically in the dark in the presence of dimethyl sulfoxide. Northern (RNA) and slot blot hybridizations confirmed the beta-galactoside results for puc and revealed additional positive regulation of puf, puhA, and cycA by PrrA. The effect of truncated PrrA on photosynthesis gene expression in the presence of low oxygen levels can be explained by assuming that PrrA may be effective as a multimer. PrrA was found to act on the downstream regulatory sequences (J. K. Lee and S. Kaplan, J. Bacteriol. 174:1146-1157, 1992) of the puc operon regulatory region. Finally, two spontaneous prrA mutations that abolish prrA function by changing amino acids in the amino-terminal domain of the protein were isolated. Images PMID:8282708

  4. Promotion of photosynthesis in transgenic rice over-expressing of maize C4 phosphoenolpyruvate carboxylase gene by nitric oxide donors.

    PubMed

    Chen, Pingbo; Li, Xia; Huo, Kai; Wei, Xiaodong; Dai, Chuanchao; Lv, Chuangen

    2014-03-15

    We determined the effects of exogenous nitric oxide on photosynthesis and gene expression in transgenic rice plants (PC) over-expressing the maize C4pepc gene, which encodes phosphoenolpyruvate carboxylase (PEPC). Seedlings were subjected to treatments with NO donors, an NO scavenger, phospholipase inhibitors, a Ca(2+) chelator, a Ca(2+) channel inhibitor, and a hydrogen peroxide (H2O2) inhibitor, individually and in various combinations. The NO donors significantly increased the net photosynthetic rate (PN) of PC and wild-type (WT), especially that of PC. Treatment with an NO scavenger did inhibit the PN of rice plants. The treatments with phospholipase inhibitors and a Ca(2+) chelator decreased the PN of WT and PC, and photosynthesis was more strongly inhibited in WT than in PC. Further analyses showed that the NO donors increased endogenous levels of NO and PLD activity, but decreased endogenous levels of Ca(2+) both WT and PC. However, there was a greater increase in NO in WT and a greater increase in PLD activity and Ca(2+) level in PC. The NO donors also increased both PEPC activity and pepc gene expression in PC. PEPC activity can be increased by SNP alone. But the expression of its encoding gene in PC might be regulated by SNP, together with PA and Ca(2+). PMID:24594398

  5. Deep evolutionary comparison of gene expression identifies parallel recruitment of trans-factors in two independent origins of C4 photosynthesis.

    PubMed

    Aubry, Sylvain; Kelly, Steven; Kümpers, Britta M C; Smith-Unna, Richard D; Hibberd, Julian M

    2014-06-01

    With at least 60 independent origins spanning monocotyledons and dicotyledons, the C4 photosynthetic pathway represents one of the most remarkable examples of convergent evolution. The recurrent evolution of this highly complex trait involving alterations to leaf anatomy, cell biology and biochemistry allows an increase in productivity by ∼ 50% in tropical and subtropical areas. The extent to which separate lineages of C4 plants use the same genetic networks to maintain C4 photosynthesis is unknown. We developed a new informatics framework to enable deep evolutionary comparison of gene expression in species lacking reference genomes. We exploited this to compare gene expression in species representing two independent C4 lineages (Cleome gynandra and Zea mays) whose last common ancestor diverged ∼ 140 million years ago. We define a cohort of 3,335 genes that represent conserved components of leaf and photosynthetic development in these species. Furthermore, we show that genes encoding proteins of the C4 cycle are recruited into networks defined by photosynthesis-related genes. Despite the wide evolutionary separation and independent origins of the C4 phenotype, we report that these species use homologous transcription factors to both induce C4 photosynthesis and to maintain the cell specific gene expression required for the pathway to operate. We define a core molecular signature associated with leaf and photosynthetic maturation that is likely shared by angiosperm species derived from the last common ancestor of the monocotyledons and dicotyledons. We show that deep evolutionary comparisons of gene expression can reveal novel insight into the molecular convergence of highly complex phenotypes and that parallel evolution of trans-factors underpins the repeated appearance of C4 photosynthesis. Thus, exploitation of extant natural variation associated with complex traits can be used to identify regulators. Moreover, the transcription factors that are shared by

  6. Deep Evolutionary Comparison of Gene Expression Identifies Parallel Recruitment of Trans-Factors in Two Independent Origins of C4 Photosynthesis

    PubMed Central

    Kümpers, Britta M. C.; Smith-Unna, Richard D.; Hibberd, Julian M.

    2014-01-01

    With at least 60 independent origins spanning monocotyledons and dicotyledons, the C4 photosynthetic pathway represents one of the most remarkable examples of convergent evolution. The recurrent evolution of this highly complex trait involving alterations to leaf anatomy, cell biology and biochemistry allows an increase in productivity by ∼50% in tropical and subtropical areas. The extent to which separate lineages of C4 plants use the same genetic networks to maintain C4 photosynthesis is unknown. We developed a new informatics framework to enable deep evolutionary comparison of gene expression in species lacking reference genomes. We exploited this to compare gene expression in species representing two independent C4 lineages (Cleome gynandra and Zea mays) whose last common ancestor diverged ∼140 million years ago. We define a cohort of 3,335 genes that represent conserved components of leaf and photosynthetic development in these species. Furthermore, we show that genes encoding proteins of the C4 cycle are recruited into networks defined by photosynthesis-related genes. Despite the wide evolutionary separation and independent origins of the C4 phenotype, we report that these species use homologous transcription factors to both induce C4 photosynthesis and to maintain the cell specific gene expression required for the pathway to operate. We define a core molecular signature associated with leaf and photosynthetic maturation that is likely shared by angiosperm species derived from the last common ancestor of the monocotyledons and dicotyledons. We show that deep evolutionary comparisons of gene expression can reveal novel insight into the molecular convergence of highly complex phenotypes and that parallel evolution of trans-factors underpins the repeated appearance of C4 photosynthesis. Thus, exploitation of extant natural variation associated with complex traits can be used to identify regulators. Moreover, the transcription factors that are shared by

  7. The effect of Silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress.

    PubMed

    Song, Alin; Li, Ping; Fan, Fenliang; Li, Zhaojun; Liang, Yongchao

    2014-01-01

    The main objectives of this study were to elucidate the roles of silicon (Si) in alleviating the effects of 2 mM zinc (high Zn) stress on photosynthesis and its related gene expression levels in leaves of rice (Oryza sativa L.) grown hydroponically with high-Zn stress. The results showed that photosynthetic parameters, including net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration, chlorophyll concentration and the chlorophyll fluorescence, were decreased in rice exposed to high-Zn treatment. The leaf chloroplast structure was disordered under high-Zn stress, including uneven swelling, disintegrated and missing thylakoid membranes, and decreased starch granule size and number, which, however, were all counteracted by the addition of 1.5 mM Si. Furthermore, the expression levels of Os08g02630 (PsbY), Os05g48630 (PsaH), Os07g37030 (PetC), Os03g57120 (PetH), Os09g26810 and Os04g38410 decreased in Si-deprived plants under high-Zn stress. Nevertheless, the addition of 1.5 mM Si increased the expression levels of these genes in plants under high-Zn stress at 72 h, and the expression levels were higher in Si-treated plants than in Si-deprived plants. Therefore, we conclude that Si alleviates the Zn-induced damage to photosynthesis in rice. The decline of photosynthesis in Zn-stressed rice was attributed to stomatal limitation, and Si activated and regulated some photosynthesis-related genes in response to high-Zn stress, consequently increasing photosynthesis. PMID:25426937

  8. The Effect of Silicon on Photosynthesis and Expression of Its Relevant Genes in Rice (Oryza sativa L.) under High-Zinc Stress

    PubMed Central

    Song, Alin; Li, Ping; Fan, Fenliang; Li, Zhaojun; Liang, Yongchao

    2014-01-01

    The main objectives of this study were to elucidate the roles of silicon (Si) in alleviating the effects of 2 mM zinc (high Zn) stress on photosynthesis and its related gene expression levels in leaves of rice (Oryza sativa L.) grown hydroponically with high-Zn stress. The results showed that photosynthetic parameters, including net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration, chlorophyll concentration and the chlorophyll fluorescence, were decreased in rice exposed to high-Zn treatment. The leaf chloroplast structure was disordered under high-Zn stress, including uneven swelling, disintegrated and missing thylakoid membranes, and decreased starch granule size and number, which, however, were all counteracted by the addition of 1.5 mM Si. Furthermore, the expression levels of Os08g02630 (PsbY), Os05g48630 (PsaH), Os07g37030 (PetC), Os03g57120 (PetH), Os09g26810 and Os04g38410 decreased in Si-deprived plants under high-Zn stress. Nevertheless, the addition of 1.5 mM Si increased the expression levels of these genes in plants under high-Zn stress at 72 h, and the expression levels were higher in Si-treated plants than in Si-deprived plants. Therefore, we conclude that Si alleviates the Zn-induced damage to photosynthesis in rice. The decline of photosynthesis in Zn-stressed rice was attributed to stomatal limitation, and Si activated and regulated some photosynthesis-related genes in response to high-Zn stress, consequently increasing photosynthesis. PMID:25426937

  9. Overexpression of OsSAP16 Regulates Photosynthesis and the Expression of a Broad Range of Stress Response Genes in Rice (Oryza sativa L.)

    PubMed Central

    Wang, Fei; Coe, Robert A.; Karki, Shanta; Wanchana, Samart; Thakur, Vivek; Henry, Amelia; Lin, Hsiang-Chun; Huang, Jianliang; Peng, Shaobing; Quick, William Paul

    2016-01-01

    This study set out to identify and characterize transcription factors regulating photosynthesis in rice. Screening populations of rice T-DNA activation lines led to the identification of a T-DNA mutant with an increase in intrinsic water use efficiency (iWUE) under well-watered conditions. Flanking sequence analysis showed that the T-DNA construct was located upstream of LOC_Os07g38240 (OsSAP16) encoding for a stress-associated protein (SAP). A second mutant identified with activation in the same gene exhibited the same phenotype; expression of OsSAP16 was shown to be enhanced in both lines. There were no differences in stomatal development or morphology in either of these mutants, although overexpression of OsSAP16 reduced stomatal conductance. This phenotype limited CO2 uptake and the rate of photosynthesis, which resulted in the accumulation of less biomass in the two mutants. Whole transcriptome analysis showed that overexpression of OsSAP16 led to global changes in gene expression consistent with the function of zinc-finger transcription factors. These results show that the gene is involved in modulating the response of rice to drought stress through regulation of the expression of a set of stress-associated genes. PMID:27303811

  10. Overexpression of OsSAP16 Regulates Photosynthesis and the Expression of a Broad Range of Stress Response Genes in Rice (Oryza sativa L.).

    PubMed

    Wang, Fei; Coe, Robert A; Karki, Shanta; Wanchana, Samart; Thakur, Vivek; Henry, Amelia; Lin, Hsiang-Chun; Huang, Jianliang; Peng, Shaobing; Quick, William Paul

    2016-01-01

    This study set out to identify and characterize transcription factors regulating photosynthesis in rice. Screening populations of rice T-DNA activation lines led to the identification of a T-DNA mutant with an increase in intrinsic water use efficiency (iWUE) under well-watered conditions. Flanking sequence analysis showed that the T-DNA construct was located upstream of LOC_Os07g38240 (OsSAP16) encoding for a stress-associated protein (SAP). A second mutant identified with activation in the same gene exhibited the same phenotype; expression of OsSAP16 was shown to be enhanced in both lines. There were no differences in stomatal development or morphology in either of these mutants, although overexpression of OsSAP16 reduced stomatal conductance. This phenotype limited CO2 uptake and the rate of photosynthesis, which resulted in the accumulation of less biomass in the two mutants. Whole transcriptome analysis showed that overexpression of OsSAP16 led to global changes in gene expression consistent with the function of zinc-finger transcription factors. These results show that the gene is involved in modulating the response of rice to drought stress through regulation of the expression of a set of stress-associated genes. PMID:27303811

  11. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins

    PubMed Central

    Perez-Martin, Alfonso; Michelazzo, Chiara; Torres-Ruiz, Jose M.; Flexas, Jaume; Fernández, José E.; Sebastiani, Luca; Diaz-Espejo, Antonio

    2014-01-01

    The hypothesis that aquaporins and carbonic anhydrase (CA) are involved in the regulation of stomatal (g s) and mesophyll (g m) conductance to CO2 was tested in a short-term water-stress and recovery experiment in 5-year-old olive plants (Olea europaea) growing outdoors. The evolution of leaf gas exchange, chlorophyll fluorescence, and plant water status, and a quantitative analysis of photosynthesis limitations, were followed during water stress and recovery. These variables were correlated with gene expression of the aquaporins OePIP1.1 and OePIP2.1, and stromal CA. At mild stress and at the beginning of the recovery period, stomatal limitations prevailed, while the decline in g m accounted for up to 60% of photosynthesis limitations under severe water stress. However, g m was restored to control values shortly after rewatering, facilitating the recovery of the photosynthetic rate. CA was downregulated during water stress and upregulated after recovery. The use of structural equation modelling allowed us to conclude that both OePIP1.1 and OePIP2.1 expression could explain most of the variations observed for g s and g m. CA expression also had a small but significant effect on g m in olive under water-stress conditions. PMID:24799563

  12. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins.

    PubMed

    Perez-Martin, Alfonso; Michelazzo, Chiara; Torres-Ruiz, Jose M; Flexas, Jaume; Fernández, José E; Sebastiani, Luca; Diaz-Espejo, Antonio

    2014-07-01

    The hypothesis that aquaporins and carbonic anhydrase (CA) are involved in the regulation of stomatal (g s) and mesophyll (g m) conductance to CO2 was tested in a short-term water-stress and recovery experiment in 5-year-old olive plants (Olea europaea) growing outdoors. The evolution of leaf gas exchange, chlorophyll fluorescence, and plant water status, and a quantitative analysis of photosynthesis limitations, were followed during water stress and recovery. These variables were correlated with gene expression of the aquaporins OePIP1.1 and OePIP2.1, and stromal CA. At mild stress and at the beginning of the recovery period, stomatal limitations prevailed, while the decline in g m accounted for up to 60% of photosynthesis limitations under severe water stress. However, g m was restored to control values shortly after rewatering, facilitating the recovery of the photosynthetic rate. CA was downregulated during water stress and upregulated after recovery. The use of structural equation modelling allowed us to conclude that both OePIP1.1 and OePIP2.1 expression could explain most of the variations observed for g s and g m. CA expression also had a small but significant effect on g m in olive under water-stress conditions. PMID:24799563

  13. Tomato response to legume cover crop and nitrogen: differing enhancement patterns of fruit yield, photosynthesis and gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomatoes responded to soil and residue from a hairy vetch cover crop differently on many levels than tomato response to inorganic nitrogen. Tomato fruit production, plant biomass parameters, and photosynthesis were higher in plants grown in vetch than bare soil. Tomato growth and photosynthesis metr...

  14. A Novel R2R3-MYB Transcription Factor BpMYB106 of Birch (Betula platyphylla) Confers Increased Photosynthesis and Growth Rate through Up-regulating Photosynthetic Gene Expression

    PubMed Central

    Zhou, Chenguang; Li, Chenghao

    2016-01-01

    We isolated a R2R3-MYB transcription factor BpMYB106, which regulates photosynthesis in birch (Betula platyphylla Suk.). BpMYB106 mainly expresses in the leaf and shoot tip of birch, and its protein is localized in the nucleus. We further fused isolated a 1588 bp promoter of BpMYB106 and analyzed it by PLACE, which showed some cis-acting elements related to photosynthesis. BpMYB106 promoter β-glucuronidase (GUS) reporter fusion studies gene, the result, showed the GUS reporter gene in transgenic birch with BpMYB106 promoter showed strong activities in shoot tip, cotyledon margins, and mature leaf trichomes. The overexpression of BpMYB106 in birch resulted in significantly increased trichome density, net photosynthetic rate, and growth rate as compared with the wild-type birch. RNA-Seq profiling revealed the upregulation of several photosynthesis-related genes in the photosynthesis and oxidative phosphorylation pathways in the leaves of transgenic plants. Yeast one-hybrid analysis, coupled with transient assay in tobacco, revealed that BpMYB106 binds a MYB binding site MYB2 in differentially expressed gene promoters. Thus, BpMYB106 may directly activate the expression of a range of photosynthesis related genes through interacting with the MYB2 element in their promoters. Our study demonstrating the overexpression of BpMYB106—a R2R3-MYB transcription factor—upregulates the genes of the photosynthesis and oxidative phosphorylation pathways to improve photosynthesis. PMID:27047502

  15. Parallel Recruitment of Multiple Genes into C4 Photosynthesis

    PubMed Central

    Christin, Pascal-Antoine; Boxall, Susanna F.; Gregory, Richard; Edwards, Erika J.; Hartwell, James; Osborne, Colin P.

    2013-01-01

    During the diversification of living organisms, novel adaptive traits usually evolve through the co-option of preexisting genes. However, most enzymes are encoded by gene families, whose members vary in their expression and catalytic properties. Each may therefore differ in its suitability for recruitment into a novel function. In this work, we test for the presence of such a gene recruitment bias using the example of C4 photosynthesis, a complex trait that evolved recurrently in flowering plants as a response to atmospheric CO2 depletion. We combined the analysis of complete nuclear genomes and high-throughput transcriptome data for three grass species that evolved the C4 trait independently. For five of the seven enzymes analyzed, the same gene lineage was recruited across the independent C4 origins, despite the existence of multiple copies. The analysis of a closely related C3 grass confirmed that C4 expression patterns were not present in the C3 ancestors but were acquired during the evolutionary transition to C4 photosynthesis. The significant bias in gene recruitment indicates that some genes are more suitable for a novel function, probably because the mutations they accumulated brought them closer to the characteristics required for the new function. PMID:24179135

  16. Antisense RNA Inhibition of RbcS Gene Expression Reduces Rubisco Level and Photosynthesis in the C4 Plant Flaveria bidentis.

    PubMed

    Furbank, R. T.; Chitty, J. A.; Von Caemmerer, S.; Jenkins, CLD.

    1996-07-01

    The C4 dicot Flaveria bidentis was genetically transformed with an antisense RNA construct targeted to the nuclear-encoded gene for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; RbcS). RbcS mRNA levels in leaves of transformants were reduced by as much as 80% compared to wild-type levels, and extractable enzyme activity was reduced by up to 85%. There was no significant effect of transformation with the gene construct on levels of other photosynthetic enzymes. Antisense transformants with reduced Rubisco activity exhibited a stunted phenotype. Rates of photosynthesis were reduced in air at high light and over a range of CO2 concentrations but were unaffected at low light. From these results we conclude that, as is the case in C3 plants, Rubisco activity is a major determinant of photosynthetic flux in C4 plants under high light intensities and air levels of CO2. PMID:12226324

  17. Identification and characterization of nuclear genes involved in photosynthesis in Populus

    PubMed Central

    2014-01-01

    Background The gap between the real and potential photosynthetic rate under field conditions suggests that photosynthesis could potentially be improved. Nuclear genes provide possible targets for improving photosynthetic efficiency. Hence, genome-wide identification and characterization of the nuclear genes affecting photosynthetic traits in woody plants would provide key insights on genetic regulation of photosynthesis and identify candidate processes for improvement of photosynthesis. Results Using microarray and bulked segregant analysis strategies, we identified differentially expressed nuclear genes for photosynthesis traits in a segregating population of poplar. We identified 515 differentially expressed genes in this population (FC ≥ 2 or FC ≤ 0.5, P < 0.05), 163 up-regulated and 352 down-regulated. Real-time PCR expression analysis confirmed the microarray data. Singular Enrichment Analysis identified 48 significantly enriched GO terms for molecular functions (28), biological processes (18) and cell components (2). Furthermore, we selected six candidate genes for functional examination by a single-marker association approach, which demonstrated that 20 SNPs in five candidate genes significantly associated with photosynthetic traits, and the phenotypic variance explained by each SNP ranged from 2.3% to 12.6%. This revealed that regulation of photosynthesis by the nuclear genome mainly involves transport, metabolism and response to stimulus functions. Conclusions This study provides new genome-scale strategies for the discovery of potential candidate genes affecting photosynthesis in Populus, and for identification of the functions of genes involved in regulation of photosynthesis. This work also suggests that improving photosynthetic efficiency under field conditions will require the consideration of multiple factors, such as stress responses. PMID:24673936

  18. The Expression of TaRca2-α Gene Associated with Net Photosynthesis Rate, Biomass and Grain Yield in Bread Wheat (Triticum aestivum L.) under Field Conditions.

    PubMed

    Saeed, Iqbal; Bachir, Daoura Goudia; Chen, Liang; Hu, Yin-Gang

    2016-01-01

    Improvement in activation of Rubisco by Rubisco activase can potentially enhance CO2 assimilation and photosynthetic efficiency in plants. The three homoeologous copies of TaRca2-α were identified on chromosomes 4AL, 4BS and 4DS (TaRca2-α-4AL, TaRca2-α-4BS, and TaRca2-α-4DS) in bread wheat. Expression patterns of the three copies at heading (Z55), anthesis (Z67) and grain-filling (Z73) stages were investigated through qRT-PCR analyses in a panel of 59 bread wheat genotypes and their effects on net photosynthesis rate (Pn), biomass plant-1 (BMPP) and grain yield plant-1 (GYPP) were further explored. Different but similar expression patterns were observed for the three copies of TaRca2-α at the three growth stages with highest expression at grain-filling stage. TaRca2-α-4BS expressed higher at the three stages than TaRca2-α-4AL and TaRca2-α-4DS. The 59 genotypes could be clustered into three groups as high (7 genotypes), intermediate (41 genotypes) and low (11 genotypes) expression based on the expression of the three copies of TaRca2-α at three growth stages. Significant variations (P<0.01) were observed among the three groups of bread wheat genotypes for Pn, BMPP and GYPP. Generally, the genotypes with higher TaRca2-α expression also showed higher values for Pn, BMPP and GYPP. The expressions of the three copies of TaRca2-α at heading, anthesis and grain-filling stages were positively correlated with Pn, BMPP and GYPP (P<0.01) with stronger association for TaRca2-α-4BS at grain-filling stage. These results revealed that the expression of TaRca2-α contribute substantially to Pn, BMPP and GYPP, and suggested that manipulating TaRca-α expression may efficiently improve Pn, BMPP and GYPP in bread wheat and detecting TaRca-α expression levels with emphasis on TaRca2-α-4BS may be a positive strategy for selection in improving photosynthetic efficiency and grain yield of bread wheat. PMID:27548477

  19. The Expression of TaRca2-α Gene Associated with Net Photosynthesis Rate, Biomass and Grain Yield in Bread Wheat (Triticum aestivum L.) under Field Conditions

    PubMed Central

    Saeed, Iqbal; Bachir, Daoura Goudia; Chen, Liang; Hu, Yin-Gang

    2016-01-01

    Improvement in activation of Rubisco by Rubisco activase can potentially enhance CO2 assimilation and photosynthetic efficiency in plants. The three homoeologous copies of TaRca2-α were identified on chromosomes 4AL, 4BS and 4DS (TaRca2-α-4AL, TaRca2-α-4BS, and TaRca2-α-4DS) in bread wheat. Expression patterns of the three copies at heading (Z55), anthesis (Z67) and grain-filling (Z73) stages were investigated through qRT-PCR analyses in a panel of 59 bread wheat genotypes and their effects on net photosynthesis rate (Pn), biomass plant-1 (BMPP) and grain yield plant-1 (GYPP) were further explored. Different but similar expression patterns were observed for the three copies of TaRca2-α at the three growth stages with highest expression at grain-filling stage. TaRca2-α-4BS expressed higher at the three stages than TaRca2-α-4AL and TaRca2-α-4DS. The 59 genotypes could be clustered into three groups as high (7 genotypes), intermediate (41 genotypes) and low (11 genotypes) expression based on the expression of the three copies of TaRca2-α at three growth stages. Significant variations (P<0.01) were observed among the three groups of bread wheat genotypes for Pn, BMPP and GYPP. Generally, the genotypes with higher TaRca2-α expression also showed higher values for Pn, BMPP and GYPP. The expressions of the three copies of TaRca2-α at heading, anthesis and grain-filling stages were positively correlated with Pn, BMPP and GYPP (P<0.01) with stronger association for TaRca2-α-4BS at grain-filling stage. These results revealed that the expression of TaRca2-α contribute substantially to Pn, BMPP and GYPP, and suggested that manipulating TaRca-α expression may efficiently improve Pn, BMPP and GYPP in bread wheat and detecting TaRca-α expression levels with emphasis on TaRca2-α-4BS may be a positive strategy for selection in improving photosynthetic efficiency and grain yield of bread wheat. PMID:27548477

  20. Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa.

    PubMed

    Qian, Haifeng; Yu, Shuqiong; Sun, Zhengqi; Xie, Xiucai; Liu, Weiping; Fu, Zhengwei

    2010-09-01

    Algal blooms have been increasing in prevalence all over the world, destroying ecosystems and placing other organisms at risk. Chemical remediation is one of most important methods of controlling algal bloom formation. The effects of copper sulfate, hydrogen peroxide (H(2)O(2)) and N-phenyl-2-naphthylamine on photosynthesis-related and microcystin-related gene transcription and physiological changes of Microcystis aeruginosa were analyzed. The results suggest that transcription of psaB, psbD1 and rbcL was inhibited by the three algaecides, which blocked the electron transport chain, significantly enhanced reactive oxygen species (ROS) accumulation and overwhelmed the antioxidant system. The increase in ROS destroyed pigment synthesis and membrane integrity, which inhibited or killed the algal cells. Furthermore, H(2)O(2) treatment down-regulated mcyD transcription, which indicated a decrease in the microcystin level in the cells. Our results demonstrate that H(2)O(2) has the greatest potential as an algaecide because it not only inhibits algae growth but may reduce microcystin synthesis. PMID:20566224

  1. PHOTOSYNTHESIS

    SciTech Connect

    2002-06-21

    The Gordon Research Conference (GRC)on PHOTOSYNTHESIS was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  2. Redox signaling: globalization of gene expression

    PubMed Central

    Oh, Jeong-Il; Kaplan, Samuel

    2000-01-01

    Here we show that the extent of electron flow through the cbb3 oxidase of Rhodobacter sphaeroides is inversely related to the expression levels of those photosynthesis genes that are under control of the PrrBA two-component activation system: the greater the electron flow, the stronger the inhibitory signal generated by the cbb3 oxidase to repress photosynthesis gene expression. Using site-directed mutagenesis, we show that intramolecular electron transfer within the cbb3 oxidase is involved in signal generation and transduction and this signal does not directly involve the intervention of molecular oxygen. In addition to the cbb3 oxidase, the redox state of the quinone pool controls the transcription rate of the puc operon via the AppA–PpsR antirepressor–repressor system. Together, these interacting regulatory circuits are depicted in a model that permits us to understand the regulation by oxygen and light of photosynthesis gene expression in R.sphaeroides. PMID:10944106

  3. Zinc Affects Differently Growth, Photosynthesis, Antioxidant Enzyme Activities and Phytochelatin Synthase Expression of Four Marine Diatoms

    PubMed Central

    Nguyen-Deroche, Thi Le Nhung; Caruso, Aurore; Le, Thi Trung; Bui, Trang Viet; Schoefs, Benoît; Tremblin, Gérard; Morant-Manceau, Annick

    2012-01-01

    Zinc-supplementation (20 μM) effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase), and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa). Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses. PMID:22645501

  4. Independent and Parallel Evolution of New Genes by Gene Duplication in Two Origins of C4 Photosynthesis Provides New Insight into the Mechanism of Phloem Loading in C4 Species

    PubMed Central

    Emms, David M.; Covshoff, Sarah; Hibberd, Julian M.; Kelly, Steven

    2016-01-01

    C4 photosynthesis is considered one of the most remarkable examples of evolutionary convergence in eukaryotes. However, it is unknown whether the evolution of C4 photosynthesis required the evolution of new genes. Genome-wide gene-tree species-tree reconciliation of seven monocot species that span two origins of C4 photosynthesis revealed that there was significant parallelism in the duplication and retention of genes coincident with the evolution of C4 photosynthesis in these lineages. Specifically, 21 orthologous genes were duplicated and retained independently in parallel at both C4 origins. Analysis of this gene cohort revealed that the set of parallel duplicated and retained genes is enriched for genes that are preferentially expressed in bundle sheath cells, the cell type in which photosynthesis was activated during C4 evolution. Furthermore, functional analysis of the cohort of parallel duplicated genes identified SWEET-13 as a potential key transporter in the evolution of C4 photosynthesis in grasses, and provides new insight into the mechanism of phloem loading in these C4 species. Key words: C4 photosynthesis, gene duplication, gene families, parallel evolution. PMID:27016024

  5. Coordination of plastid and nuclear gene expression.

    PubMed Central

    Gray, John C; Sullivan, James A; Wang, Jun-Hui; Jerome, Cheryl A; MacLean, Daniel

    2003-01-01

    The coordinated expression of genes distributed between the nuclear and plastid genomes is essential for the assembly of functional chloroplasts. Although the nucleus has a pre-eminent role in controlling chloroplast biogenesis, there is considerable evidence that the expression of nuclear genes encoding photosynthesis-related proteins is regulated by signals from plastids. Perturbation of several plastid-located processes, by inhibitors or in mutants, leads to decreased transcription of a set of nuclear photosynthesis-related genes. Characterization of arabidopsis gun (genomes uncoupled) mutants, which express nuclear genes in the presence of norflurazon or lincomycin, has provided evidence for two separate signalling pathways, one involving tetrapyrrole biosynthesis intermediates and the other requiring plastid protein synthesis. In addition, perturbation of photosynthetic electron transfer produces at least two different redox signals, as part of the acclimation to altered light conditions. The recognition of multiple plastid signals requires a reconsideration of the mechanisms of regulation of transcription of nuclear genes encoding photosynthesis-related proteins. PMID:12594922

  6. Systems analysis of cis-regulatory motifs in C4 photosynthesis genes using maize and rice leaf transcriptomic data during a process of de-etiolation

    PubMed Central

    Xu, Jiajia; Bräutigam, Andrea; Weber, Andreas P. M.; Zhu, Xin-Guang

    2016-01-01

    Identification of potential cis-regulatory motifs controlling the development of C4 photosynthesis is a major focus of current research. In this study, we used time-series RNA-seq data collected from etiolated maize and rice leaf tissues sampled during a de-etiolation process to systematically characterize the expression patterns of C4-related genes and to further identify potential cis elements in five different genomic regions (i.e. promoter, 5′UTR, 3′UTR, intron, and coding sequence) of C4 orthologous genes. The results demonstrate that although most of the C4 genes show similar expression patterns, a number of them, including chloroplast dicarboxylate transporter 1, aspartate aminotransferase, and triose phosphate transporter, show shifted expression patterns compared with their C3 counterparts. A number of conserved short DNA motifs between maize C4 genes and their rice orthologous genes were identified not only in the promoter, 5′UTR, 3′UTR, and coding sequences, but also in the introns of core C4 genes. We also identified cis-regulatory motifs that exist in maize C4 genes and also in genes showing similar expression patterns as maize C4 genes but that do not exist in rice C3 orthologs, suggesting a possible recruitment of pre-existing cis-elements from genes unrelated to C4 photosynthesis into C4 photosynthesis genes during C4 evolution. PMID:27436282

  7. Transcriptional Control of Photosynthesis Genes: The Evolutionarily Conserved Regulatory Mechanism in Plastid Genome Function

    PubMed Central

    Puthiyaveetil, Sujith; Ibrahim, Iskander M.; Jeličić, Branka; Tomašić, Ana; Fulgosi, Hrvoje; Allen, John F.

    2010-01-01

    Chloroplast sensor kinase (CSK) is a bacterial-type sensor histidine kinase found in chloroplasts—photosynthetic plastids—in eukaryotic plants and algae. Using a yeast two-hybrid screen, we demonstrate recognition and interactions between: CSK, plastid transcription kinase (PTK), and a bacterial-type RNA polymerase sigma factor-1 (SIG-1). CSK interacts with itself, with SIG-1, and with PTK. PTK also interacts directly with SIG-1. PTK has previously been shown to catalyze phosphorylation of plastid-encoded RNA polymerase (PEP), suppressing plastid transcription nonspecifically. Phospho-PTK is inactive as a PEP kinase. Here, we propose that phospho-CSK acts as a PTK kinase, releasing PTK repression of chloroplast transcription, while CSK also acts as a SIG-1 kinase, blocking transcription specifically at the gene promoter of chloroplast photosystem I. Oxidation of the photosynthetic electron carrier plastoquinone triggers phosphorylation of CSK, inducing chloroplast photosystem II while suppressing photosystem I. CSK places photosystem gene transcription under the control of photosynthetic electron transport. This redox signaling pathway has its origin in cyanobacteria, photosynthetic prokaryotes from which chloroplasts evolved. The persistence of this mechanism in cytoplasmic organelles of photosynthetic eukaryotes is in precise agreement with the CoRR hypothesis for the function of organellar genomes: the plastid genome and its primary gene products are Co-located for Redox Regulation. Genes are retained in plastids primarily in order for their expression to be subject to this rapid and robust redox regulatory transcriptional control mechanism, whereas plastid genes also encode genetic system components, such as some ribosomal proteins and RNAs, that exist in order to support this primary, redox regulatory control of photosynthesis genes. Plastid genome function permits adaptation of the photosynthetic apparatus to changing environmental conditions of light

  8. GENE EXPRESSION NETWORKS

    EPA Science Inventory

    "Gene expression network" is the term used to describe the interplay, simple or complex, between two or more gene products in performing a specific cellular function. Although the delineation of such networks is complicated by the existence of multiple and subtle types of intera...

  9. Metabolic Network Constrains Gene Regulation of C4 Photosynthesis: The Case of Maize

    PubMed Central

    Robaina-Estévez, Semidán; Nikoloski, Zoran

    2016-01-01

    Engineering C3 plants to increase their efficiency of carbon fixation as well as of nitrogen and water use simultaneously may be facilitated by understanding the mechanisms that underpin the C4 syndrome. Existing experimental studies have indicated that the emergence of the C4 syndrome requires co-ordination between several levels of cellular organization, from gene regulation to metabolism, across two co-operating cell systems—mesophyll and bundle sheath cells. Yet, determining the extent to which the structure of the C4 plant metabolic network may constrain gene expression remains unclear, although it will provide an important consideration in engineering C4 photosynthesis in C3 plants. Here, we utilize flux coupling analysis with the second-generation maize metabolic models to investigate the correspondence between metabolic network structure and transcriptomic phenotypes along the maize leaf gradient. The examined scenarios with publically available data from independent experiments indicate that the transcriptomic programs of the two cell types are co-ordinated, quantitatively and qualitatively, due to the presence of coupled metabolic reactions in specific metabolic pathways. Taken together, our study demonstrates that precise quantitative coupling will have to be achieved in order to ensure a successfully engineered transition from C3 to C4 crops. PMID:26903529

  10. Metabolic Network Constrains Gene Regulation of C4 Photosynthesis: The Case of Maize.

    PubMed

    Robaina-Estévez, Semidán; Nikoloski, Zoran

    2016-05-01

    Engineering C3 plants to increase their efficiency of carbon fixation as well as of nitrogen and water use simultaneously may be facilitated by understanding the mechanisms that underpin the C4 syndrome. Existing experimental studies have indicated that the emergence of the C4 syndrome requires co-ordination between several levels of cellular organization, from gene regulation to metabolism, across two co-operating cell systems-mesophyll and bundle sheath cells. Yet, determining the extent to which the structure of the C4 plant metabolic network may constrain gene expression remains unclear, although it will provide an important consideration in engineering C4 photosynthesis in C3 plants. Here, we utilize flux coupling analysis with the second-generation maize metabolic models to investigate the correspondence between metabolic network structure and transcriptomic phenotypes along the maize leaf gradient. The examined scenarios with publically available data from independent experiments indicate that the transcriptomic programs of the two cell types are co-ordinated, quantitatively and qualitatively, due to the presence of coupled metabolic reactions in specific metabolic pathways. Taken together, our study demonstrates that precise quantitative coupling will have to be achieved in order to ensure a successfully engineered transition from C3 to C4 crops. PMID:26903529

  11. Gene expression technology

    SciTech Connect

    Goeddel, D.V. )

    1990-01-01

    The articles in this volume were assemble to enable the reader to design effective strategies for the expression of cloned genes and cDNAs. More than a compilation of papers describing the multitude of techniques now available for expressing cloned genes, this volume provides a manual that should prove useful for solving the majority of expression problems one likely to encounter. The four major expression systems commonly available to most investigators are stressed: Escherichia coli, Bacillus subtilis, yeast, and mammalian cells. Each of these system has its advantages and disadvantages, details of which are found in Chapter 1 and the strategic overviews for the four major sections of the volume. The papers in each of these sections provide many suggestions on how to proceed if initial expression levels are not sufficient.

  12. Pleiotropic effect of sigE over-expression on cell morphology, photosynthesis and hydrogen production in Synechocystis sp. PCC 6803.

    PubMed

    Osanai, Takashi; Kuwahara, Ayuko; Iijima, Hiroko; Toyooka, Kiminori; Sato, Mayuko; Tanaka, Kan; Ikeuchi, Masahiko; Saito, Kazuki; Hirai, Masami Yokota

    2013-11-01

    Over-expression of sigE, a gene encoding an RNA polymerase sigma factor in the unicellular cyanobacterium Synechocystis sp. PCC 6803, is known to activate sugar catabolism and bioplastic production. In this study, we investigated the effects of sigE over-expression on cell morphology, photosynthesis and hydrogen production in this cyanobacterium. Transmission electron and scanning probe microscopic analyses revealed that sigE over-expression increased the cell size, possibly as a result of aberrant cell division. Over-expression of sigE reduced respiration and photosynthesis activities via changes in gene expression and chlorophyll fluorescence. Hydrogen production under micro-oxic conditions is enhanced in sigE over-expressing cells. Despite these pleiotropic phenotypes, the sigE over-expressing strain showed normal cell viability under both nitrogen-replete and nitrogen-depleted conditions. These results provide insights into the inter-relationship among metabolism, cell morphology, photosynthesis and hydrogen production in this unicellular cyanobacterium. PMID:23941239

  13. Gene expression networks.

    PubMed

    Thomas, Reuben; Portier, Christopher J

    2013-01-01

    With the advent of microarrays and next-generation biotechnologies, the use of gene expression data has become ubiquitous in biological research. One potential drawback of these data is that they are very rich in features or genes though cost considerations allow for the use of only relatively small sample sizes. A useful way of getting at biologically meaningful interpretations of the environmental or toxicological condition of interest would be to make inferences at the level of a priori defined biochemical pathways or networks of interacting genes or proteins that are known to perform certain biological functions. This chapter describes approaches taken in the literature to make such inferences at the biochemical pathway level. In addition this chapter describes approaches to create hypotheses on genes playing important roles in response to a treatment, using organism level gene coexpression or protein-protein interaction networks. Also, approaches to reverse engineer gene networks or methods that seek to identify novel interactions between genes are described. Given the relatively small sample numbers typically available, these reverse engineering approaches are generally useful in inferring interactions only among a relatively small or an order 10 number of genes. Finally, given the vast amounts of publicly available gene expression data from different sources, this chapter summarizes the important sources of these data and characteristics of these sources or databases. In line with the overall aims of this book of providing practical knowledge to a researcher interested in analyzing gene expression data from a network perspective, the chapter provides convenient publicly accessible tools for performing analyses described, and in addition describe three motivating examples taken from the published literature that illustrate some of the relevant analyses. PMID:23086841

  14. Biotic Stress Globally Down-Regulates Photosynthesis Genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Upon herbivore and pathogen attacks, plants switch from processes supporting growth and reproduction to defense by inducing a set of defense genes and down-regulating most of the nuclear encoded photosynthetic genes. To determine if this transcriptional response is universal we used transcriptome da...

  15. Phaeodactylum tricornutum photosynthesis and Thalassiosira pseudonana bio-silica formation genes nucleotide fluctuations

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Marchese, P.; Tremberger, G., Jr.; Cheung, E.; Subramaniam, R.; Sullivan, R.; Schneider, P.; Flamholz, A.; Huerta, M.; Lieberman, D.; Cheung, T.

    2008-08-01

    Diatom bioactivity has been reported to be responsible for about 20% of carbon fixation globally and together with other photosynthetic organisms, the bioactivity can be monitored via satellite ocean imaging. The bioinformatics embedded in the nucleotide fluctuations of photosynthesis and bio-silicate genes in diatoms were studied. The recently reported phosphoenolpyruvate carboxylase PEPC1 and PEPC2 C4-like photosynthesis genes in Phaeodactylum tricornutum were found to have similar fractal dimensions of about 2.01. In comparison, the green alga Chlamydomonas reinhardtii PEPC1 and PEPC2 genes have fractal dimensions of about 2.05. The PEPC CpG dinucleotide content is 8% in P. tricornutum and 10% in C. reinhardtii. Further comparison of the cell wall protein gene showed that the VSP1 gene sequence in C. reinhardtii has a fractal dimension of 2.03 and the bio-silica formation silaffin gene in Thalassiosira pseudonana has a fractal dimension of 2.01. The phosphoenolpyruvate carboxylase PPC1 and PPC2 in T. pseudonana were found to have fractal dimensions and CpG dinucleotide content similar to that of P. tricornutum. The fractal dimension of the dnaB replication helicase gene is about 1.98 for both diatoms as well as for the alga Heterosigma akashiwo. In comparison, the E. coli dnaB gene has a fractal dimension of about 2.03. Given that high fractal dimension and CpG dinucleotide content sequences have been associated with the presence of selective pressures, the relatively low fractal dimension gene sequences of the two unique properties of Earth-bound diatoms (photosynthesis and bio-silica cell wall) suggests the potential for the development of high fractal dimension sequences for adaptation in harsh environments.

  16. Expression profiling and functional analysis reveals that TOR is a key player in regulating photosynthesis and phytohormone signaling pathways in Arabidopsis

    PubMed Central

    Dong, Pan; Xiong, Fangjie; Que, Yumei; Wang, Kai; Yu, Lihua; Li, Zhengguo; Ren, Maozhi

    2015-01-01

    Target of rapamycin (TOR) acts as a master regulator to control cell growth by integrating nutrient, energy, and growth factors in all eukaryotic species. TOR plays an evolutionarily conserved role in regulating the transcription of genes associated with anabolic and catabolic processes in Arabidopsis, but little is known about the functions of TOR in photosynthesis and phytohormone signaling, which are unique features of plants. In this study, AZD8055 (AZD) was screened as the strongest active-site TOR inhibitor (asTORi) in Arabidopsis compared with TORIN1 and KU63794 (KU). Gene expression profiles were evaluated using RNA-seq after treating Arabidopsis seedlings with AZD. More than three-fold differentially expressed genes (DEGs) were identified in AZD-treated plants relative to rapamycin-treated plants in previous studies. Most of the DEGs and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in cell wall elongation, ribosome biogenesis, and cell autophagy were common to both AZD- and rapamycin-treated samples, but AZD displayed much broader and more efficient inhibition of TOR compared with rapamycin. Importantly, the suppression of TOR by AZD resulted in remodeling of the expression profile of the genes associated with photosynthesis and various phytohormones, indicating that TOR plays a crucial role in modulating photosynthesis and phytohormone signaling in Arabidopsis. These newly identified DEGs expand the understanding of TOR signaling in plants. This study elucidates the novel functions of TOR in photosynthesis and phytohormone signaling and provides a platform to study the downstream targets of TOR in Arabidopsis. PMID:26442001

  17. Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations.

    PubMed

    Fuentes, S I; Allen, D J; Ortiz-Lopez, A; Hernández, G

    2001-05-01

    Nitrogen, which is a major limiting nutrient for plant growth, is assimilated as ammonium by the concerted action of glutamine synthetase (GS) and glutamate synthase (GOGAT). GS catalyses the critical incorporation of inorganic ammonium into the amino acid glutamine. Two types of GS isozymes, located in the cytosol (GS1) and in the chloroplast (GS2) have been identified in plants. Tobacco (Nicotiana tabacum) transformants, over-expressing GS1 driven by the constitutive CaMV 35S promoter were analysed. GS in leaves of GS-5 and GS-8 plants was up-regulated, at the level of RNA and proteins. These transgenic plants had six times higher leaf GS activity than controls. Under optimum nitrogen fertilization conditions there was no effect of GS over-expression on photosynthesis or growth. However, under nitrogen starvation the GS transgenics had c. 70% higher shoot and c. 100% greater root dry weight as well as 50% more leaf area than low nitrogen controls. This was achieved by the maintenance of photosynthesis at rates indistinguishable from plants under high nitrogen, while photosynthesis in control plants was inhibited by 40-50% by nitrogen deprivation. It was demonstrated that manipulation of GS activity has the potential to maintain crop photosynthetic productivity while reducing nitrogen fertilization and the concomitant pollution. PMID:11432923

  18. Arabidopsis gene co-expression network and its functional modules

    PubMed Central

    Mao, Linyong; Van Hemert, John L; Dash, Sudhansu; Dickerson, Julie A

    2009-01-01

    Background Biological networks characterize the interactions of biomolecules at a systems-level. One important property of biological networks is the modular structure, in which nodes are densely connected with each other, but between which there are only sparse connections. In this report, we attempted to find the relationship between the network topology and formation of modular structure by comparing gene co-expression networks with random networks. The organization of gene functional modules was also investigated. Results We constructed a genome-wide Arabidopsis gene co-expression network (AGCN) by using 1094 microarrays. We then analyzed the topological properties of AGCN and partitioned the network into modules by using an efficient graph clustering algorithm. In the AGCN, 382 hub genes formed a clique, and they were densely connected only to a small subset of the network. At the module level, the network clustering results provide a systems-level understanding of the gene modules that coordinate multiple biological processes to carry out specific biological functions. For instance, the photosynthesis module in AGCN involves a very large number (> 1000) of genes which participate in various biological processes including photosynthesis, electron transport, pigment metabolism, chloroplast organization and biogenesis, cofactor metabolism, protein biosynthesis, and vitamin metabolism. The cell cycle module orchestrated the coordinated expression of hundreds of genes involved in cell cycle, DNA metabolism, and cytoskeleton organization and biogenesis. We also compared the AGCN constructed in this study with a graphical Gaussian model (GGM) based Arabidopsis gene network. The photosynthesis, protein biosynthesis, and cell cycle modules identified from the GGM network had much smaller module sizes compared with the modules found in the AGCN, respectively. Conclusion This study reveals new insight into the topological properties of biological networks. The

  19. Suppression of Tla1 gene expression for improved solar conversion efficiency and photosynthetic productivity in plants and algae

    DOEpatents

    Melis, Anastasios; Mitra, Mautusi

    2010-06-29

    The invention provides method and compositions to minimize the chlorophyll antenna size of photosynthesis by decreasing TLA1 gene expression, thereby improving solar conversion efficiencies and photosynthetic productivity in plants, e.g., green microalgae, under bright sunlight conditions.

  20. Gene Express Inc.

    PubMed

    Saccomanno, Colette F

    2006-07-01

    Gene Express, Inc. is a technology-licensing company and provider of Standardized Reverse Transcription Polymerase Chain Reaction (StaRT-PCR) services. Designed by and for clinical researchers involved in pharmaceutical, biomarker and molecular diagnostic product development, StaRT-PCR is a unique quantitative and standardized multigene expression measurement platform. StaRT-PCR meets all of the performance characteristics defined by the US FDA as required to support regulatory submissions [101,102] , and by the Clinical Laboratory Improvement Act of 1988 (CLIA) as necessary to support diagnostic testing [1] . A standardized mixture of internal standards (SMIS), manufactured in bulk, provides integrated quality control wherein each native template target gene is measured relative to a competitive template internal standard. Bulk production enables the compilation of a comprehensive standardized database from across multiple experiments, across collaborating laboratories and across the entire clinical development lifecycle of a given compound or diagnostic product. For the first time, all these data are able to be directly compared. Access to such a database can dramatically shorten the time from investigational new drug (IND) to new drug application (NDA), or save time and money by hastening a substantiated 'no-go' decision. High-throughput StaRT-PCR is conducted at the company's automated Standardized Expression Measurement (SEM) Center. Currently optimized for detection on a microcapillary electrophoretic platform, StaRT-PCR products also may be analyzed on microarray, high-performance liquid chromatography (HPLC), or matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) platforms. SEM Center services deliver standardized genomic data--data that will accelerate the application of pharmacogenomic technology to new drug and diagnostic test development and facilitate personalized medicine. PMID:16886903

  1. Effect of nonylphenol on response of physiology and photosynthesis-related gene transcription of Chlorella vulgaris.

    PubMed

    Qian, Haifeng; Pan, Xiangjie; Shi, Shutian; Yu, Shuqiong; Jiang, Haiyan; Lin, Zhifan; Fu, Zhengwei

    2011-11-01

    Nonylphenol (NP) is regarded as a kind of persistent organic pollutant which exists ubiquitously in the environment. The objective of this study was to evaluate the effects of NP on Chlorella vulgaris physiological indices and gene transcription. The results showed that NP stress inhibited algal growth in short-term bioassay. NP also decreased chlorophyll content, including chl a, chl b, and total chlorophyll. NP caused oxidant hurt by overproducing reactive oxygen species (ROS), which might destroy the overall membrane system to cause malondialdehyde content increase. NP inhibited photosynthesis-related gene transcription in C. vulgaris after 24 to 48 h exposure. The lowest transcript levels of psaB, psbA, and rbcL in C. vulgaris decreased to only 18.5%, 7%, and 4% of the control, respectively. Taken together, our results demonstrate that NP is toxic to fresh algae growth by affecting the photosynthesis-related genes transcription and overproducing ROS to disrupt cell structure in a short period. PMID:21207133

  2. Identification of Photosynthesis-Associated C4 Candidate Genes through Comparative Leaf Gradient Transcriptome in Multiple Lineages of C3 and C4 Species

    PubMed Central

    Ding, Zehong; Weissmann, Sarit; Wang, Minghui; Du, Baijuan; Huang, Lei; Wang, Lin; Tu, Xiaoyu; Zhong, Silin; Myers, Christopher; Brutnell, Thomas P.; Sun, Qi; Li, Pinghua

    2015-01-01

    Leaves of C4 crops usually have higher radiation, water and nitrogen use efficiencies compared to the C3 species. Engineering C4 traits into C3 crops has been proposed as one of the most promising ways to repeal the biomass yield ceiling. To better understand the function of C4 photosynthesis, and to identify candidate genes that are associated with the C4 pathways, a comparative transcription network analysis was conducted on leaf developmental gradients of three C4 species including maize, green foxtail and sorghum and one C3 species, rice. By combining the methods of gene co-expression and differentially co-expression networks, we identified a total of 128 C4 specific genes. Besides the classic C4 shuttle genes, a new set of genes associated with light reaction, starch and sucrose metabolism, metabolites transportation, as well as transcription regulation, were identified as involved in C4 photosynthesis. These findings will provide important insights into the differential gene regulation between C3 and C4 species, and a good genetic resource for establishing C4 pathways in C3 crops. PMID:26465154

  3. Evolution of gene expression after gene amplification.

    PubMed

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-05-01

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat-maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. PMID:25912045

  4. Evolution of Gene Expression after Gene Amplification

    PubMed Central

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-01-01

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat–maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. PMID:25912045

  5. Identification of C4 photosynthesis metabolism and regulatory-associated genes in Eleocharis vivipara by SSH.

    PubMed

    Chen, Taiyu; Ye, Rongjian; Fan, Xiaolei; Li, Xianghua; Lin, Yongjun

    2011-09-01

    This is the first effort to investigate the candidate genes involved in kranz developmental regulation and C(4) metabolic fluxes in Eleocharis vivipara, which is a leafless freshwater amphibious plant and possesses a distinct culms anatomy structure and photosynthetic pattern in contrasting environments. A terrestrial specific SSH library was constructed to investigate the genes involved in kranz anatomy developmental regulation and C(4) metabolic fluxes. A total of 73 ESTs and 56 unigenes in 384 clones were identified by array hybridization and sequencing. In total, 50 unigenes had homologous genes in the databases of rice and Arabidopsis. The real-time quantitative PCR results showed that most of the genes were accumulated in terrestrial culms and ABA-induced culms. The C(4) marker genes were stably accumulated during the culms development process in terrestrial culms. With respect to C(3) culms, C(4) photosynthesis metabolism consumed much more transporters and translocators related to ion metabolism, organic acids and carbohydrate metabolism, phosphate metabolism, amino acids metabolism, and lipids metabolism. Additionally, ten regulatory genes including five transcription factors, four receptor-like proteins, and one BURP protein were identified. These regulatory genes, which co-accumulated with the culms developmental stages, may play important roles in culms structure developmental regulation, bundle sheath chloroplast maturation, and environmental response. These results shed new light on the C(4) metabolic fluxes, environmental response, and anatomy structure developmental regulation in E. vivipara. PMID:21739352

  6. Serial analysis of gene expression.

    PubMed

    Velculescu, V E; Zhang, L; Vogelstein, B; Kinzler, K W

    1995-10-20

    The characteristics of an organism are determined by the genes expressed within it. A method was developed, called serial analysis of gene expression (SAGE), that allows the quantitative and simultaneous analysis of a large number of transcripts. To demonstrate this strategy, short diagnostic sequence tags were isolated from pancreas, concatenated, and cloned. Manual sequencing of 1000 tags revealed a gene expression pattern characteristic of pancreatic function. New pancreatic transcripts corresponding to novel tags were identified. SAGE should provide a broadly applicable means for the quantitative cataloging and comparison of expressed genes in a variety of normal, developmental, and disease states. PMID:7570003

  7. TaSCL14, a novel wheat (Triticum aestivum L.) GRAS gene, regulates plant growth, photosynthesis, tolerance to photooxidative stress, and senescence.

    PubMed

    Chen, Kunmei; Li, Hongwei; Chen, Yaofeng; Zheng, Qi; Li, Bin; Li, Zhensheng

    2015-01-20

    Rates of photosynthesis, tolerance to photooxidative stress, and senescence are all important physiological factors that affect plant development and thus agricultural productivity. GRAS proteins play essential roles in plant growth and development as well as in plant responses to biotic and abiotic stresses. So far few GRAS genes in wheat (Triticum aestivum L.) have been characterized. A previous transcriptome analysis indicated that the expression of a GRAS gene (TaSCL14) was induced by high-light stress in Xiaoyan 54 (XY54), a common wheat cultivar with strong tolerance to high-light stress. In this study, TaSCL14 gene was isolated from XY54 and mapped on chromosome 4A. TaSCL14 was expressed in various wheat organs, with high levels in stems and roots. Our results confirmed that TaSCL14 expression was indeed responsive to high-light stress. Barley stripe mosaic virus (BSMV)-based virus-induced gene silencing (VIGS) of TaSCL14 in wheat was performed to help characterize its potential functions. Silencing of TaSCL14 resulted in inhibited plant growth, decreased photosynthetic capacity, and reduced tolerance to photooxidative stress. In addition, silencing of TaSCL14 in wheat promoted leaf senescence induced by darkness. These results suggest that TaSCL14 may act as a multifunctional regulator involved in plant growth, photosynthesis, tolerance to photooxidative stress, and senescence. PMID:25619599

  8. Aberrant Gene Expression in Humans

    PubMed Central

    Yang, Ence; Ji, Guoli; Brinkmeyer-Langford, Candice L.; Cai, James J.

    2015-01-01

    Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating

  9. Method of controlling gene expression

    DOEpatents

    Peters, Norman K.; Frost, John W.; Long, Sharon R.

    1991-12-03

    A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.

  10. Gene Expression in Oligodendroglial Tumors

    PubMed Central

    Shaw, Elisabeth J.; Haylock, Brian; Husband, David; du Plessis, Daniel; Sibson, D. Ross; Warnke, Peter C.; Walker, Carol

    2010-01-01

    Background: Oligodendroglial tumors with 1p/19q loss are more likely to be chemosensitive and have longer survival than those with intact 1p/19q, but not all respond to chemotherapy, warranting investigation of the biological basis of chemosensitivity. Methods: Gene expression profiling was performed using amplified antisense RNA from 28 oligodendroglial tumors treated with chemotherapy (26 serial stereotactic biopsy, 2 resection). Expression of differentially expressed genes was validated by real-time PCR. Results: Unsupervised hierarchical clustering showed clustering of multiple samples from the same case in 14/17 cases and identified subgroups associated with tumor grade and 1p/19q status. 176 genes were differentially expressed, 164 being associated with 1p/19q loss (86% not on 1p or 19q). 94 genes differed between responders and non-responders to chemotherapy; 12 were not associated with 1p/19q loss. Significant differential expression was confirmed in 11/13 selected genes. Novel genes associated with response to therapy included SSBP2, GFRA1, FAP and RASD1. IQGAP1, INA, TGIF1, NR2F2 and MYCBP were differentially expressed in oligodendroglial tumors with 1p/19q loss. Conclusion: Gene expression profiling using serial stereotactic biopsies indicated greater homogeneity within tumors than between tumors. Genes associated with 1p/19q status or response were identified warranting further elucidation of their role in oligodendroglial tumors. PMID:20966545

  11. Chromosome assignment of four photosynthesis-related genes and their variability in wheat species.

    PubMed

    Ogihara, Y; Shimizu, H; Hasegawa, K; Tsujimoto, H; Sasakuma, T

    1994-06-01

    Copy numbers of four photosynthesis-related genes, PhyA, Ppc, RbcS and Lhcb1 (*)1, in wheat genomes were estimated by slot-blot analysis, and these genes were assigned to the chromosome arms of common wheat by Southern hybridization of DNA from an aneuploid series of the cultivar Chinese Spring. The copy number of PhyA was estimated to be one locus per haploid genome, and this gene was assigned to chromosomes 4AL, 4BS and 4DS. The Ppc gene showed a low copy number of small multigenes, and was located on the short arm of homoeologous group 3 chromosomes and the long arm of chromosomes of homoeologous group 7. RbcS consisted of a multigene family, with approximately 100 copies in the common wheat genome, and was located on the short arm of group 2 chromosomes and the long arm of group 5 chromosomes. Lhcb1 (*)1 also consisted of a multigene family with about 50 copies in common wheat. Only a limited number of restriction fragments (approximately 15%) were used to determine the locations of members of this family on the long arm of group 1 chromosomes owing to the multiplicity of DNA bands. The variability of hybridized bands with the four genes was less in polyploids, but was more in the case of multigene families. RFLP analysis of polyploid wheats and their presumed ancestors was carried out with probes of the oat PhyA gene, the maize Ppc gene, the wheat RbcS gene and the wheat Lhcb1 (*)1 gene. The RFLP patterns of common wheat most closely resembled those of T. Dicoccum (Emmer wheat), T. urartu (A genome), Ae. speltoides (S genome) and Ae. squarrosa (D genome). Diversification of genes in the wheat complex appear to have occurred mainly at the diploid level. Based on RFLP patterns, B and S genomes were clustered into two major groups. The fragment numbers per genome were reduced in proportion to the increase of ploidy level for all four genes, suggesting that some mechanism(s) might operate to restrict, and so keep to a minimum, the gene numbers in the polyploid

  12. Rootstock effects on gene expression patterns in apple tree scions.

    PubMed

    Jensen, Philip J; Rytter, Jo; Detwiler, Elizabeth A; Travis, James W; McNellis, Timothy W

    2003-11-01

    Like many fruit trees, apple trees (Malus pumila) do not reproduce true-to-type from seed. Desirable cultivars are clonally propagated by grafting onto rootstocks that can alter the characteristics of the scion. For example, the M.7 EMLA rootstock is semi-dwarfing and reduces the susceptibility of the scion to Erwinia amylovora, the causal agent of fire blight disease. In contrast, the M.9 T337 rootstock is dwarfing and does not alter fire blight susceptibility of the scion. This study represents a comprehensive comparison of gene expression patterns in scions of the 'Gala' apple cultivar grafted to either M.7 EMLA or M.9 T337. Expression was determined by cDNA-AFLP coupled with silver staining of the gels. Scions grafted to the M.9 T337 rootstock showed higher expression of a number of photosynthesis-related, transcription/translation-related, and cell division-related genes, while scions grafted to the M.7 EMLA rootstock showed increased stress-related gene expression. The observed differences in gene expression showed a remarkable correlation with physiological differences between the two graft combinations. The roles that the differentially expressed genes might play in tree stature, stress tolerance, photosynthetic activity, fire blight resistance, and other differences conferred by the two rootstocks are discussed. PMID:15010615

  13. Nuclear Neighborhoods and Gene Expression

    PubMed Central

    Zhao, Rui; Bodnar, Megan S.; Spector, David L.

    2009-01-01

    Summary The eukaryotic nucleus is a highly compartmentalized and dynamic environment. Chromosome territories are arranged non-randomly within the nucleus and numerous studies have indicated that a gene’s position in the nucleus can impact its transcriptional activity. Here, we focus on recent advances in our understanding of the influence of specific nuclear neighborhoods on gene expression or repression. Nuclear neighborhoods associated with transcriptional repression include the inner nuclear membrane/nuclear lamina and peri-nucleolar chromatin, whereas neighborhoods surrounding the nuclear pore complex, PML nuclear bodies, and nuclear speckles seem to be transcriptionally permissive. While nuclear position appears to play an important role in gene expression, it is likely to be only one piece of a flexible puzzle that incorporates numerous parameters. We are still at a very early, yet exciting stage in our journey toward deciphering the mechanism(s) that govern the permissiveness of gene expression/repression within different nuclear neighborhoods. PMID:19339170

  14. Differential Gene Expression in Glaucoma

    PubMed Central

    Jakobs, Tatjana C.

    2014-01-01

    In glaucoma, regardless of its etiology, retinal ganglion cells degenerate and eventually die. Although age and elevated intraocular pressure (IOP) are the main risk factors, there are still many mysteries in the pathogenesis of glaucoma. The advent of genome-wide microarray expression screening together with the availability of animal models of the disease has allowed analysis of differential gene expression in all parts of the eye in glaucoma. This review will outline the findings of recent genome-wide expression studies and discuss their commonalities and differences. A common finding was the differential regulation of genes involved in inflammation and immunity, including the complement system and the cytokines transforming growth factor β (TGFβ) and tumor necrosis factor α (TNFα). Other genes of interest have roles in the extracellular matrix, cell–matrix interactions and adhesion, the cell cycle, and the endothelin system. PMID:24985133

  15. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  16. Redox regulation of photosynthetic gene expression

    PubMed Central

    Queval, Guillaume; Foyer, Christine H.

    2012-01-01

    Redox chemistry and redox regulation are central to the operation of photosynthesis and respiration. However, the roles of different oxidants and antioxidants in the regulation of photosynthetic or respiratory gene expression remain poorly understood. Leaf transcriptome profiles of a range of Arabidopsis thaliana genotypes that are deficient in either hydrogen peroxide processing enzymes or in low molecular weight antioxidant were therefore compared to determine how different antioxidant systems that process hydrogen peroxide influence transcripts encoding proteins targeted to the chloroplasts or mitochondria. Less than 10 per cent overlap was observed in the transcriptome patterns of leaves that are deficient in either photorespiratory (catalase (cat)2) or chloroplastic (thylakoid ascorbate peroxidase (tapx)) hydrogen peroxide processing. Transcripts encoding photosystem II (PSII) repair cycle components were lower in glutathione-deficient leaves, as were the thylakoid NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) dehydrogenases (NDH) mRNAs. Some thylakoid NDH mRNAs were also less abundant in tAPX-deficient and ascorbate-deficient leaves. Transcripts encoding the external and internal respiratory NDHs were increased by low glutathione and low ascorbate. Regulation of transcripts encoding specific components of the photosynthetic and respiratory electron transport chains by hydrogen peroxide, ascorbate and glutathione may serve to balance non-cyclic and cyclic electron flow pathways in relation to oxidant production and reductant availability. PMID:23148274

  17. Neighboring Genes Show Correlated Evolution in Gene Expression

    PubMed Central

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  18. Gene expression during memory formation.

    PubMed

    Igaz, Lionel Muller; Bekinschtein, Pedro; Vianna, Monica M R; Izquierdo, Ivan; Medina, Jorge H

    2004-01-01

    For several decades, neuroscientists have provided many clues that point out the involvement of de novo gene expression during the formation of long-lasting forms of memory. However, information regarding the transcriptional response networks involved in memory formation has been scarce and fragmented. With the advent of genome-based technologies, combined with more classical approaches (i.e., pharmacology and biochemistry), it is now feasible to address those relevant questions--which gene products are modulated, and when that processes are necessary for the proper storage of memories--with unprecedented resolution and scale. Using one-trial inhibitory (passive) avoidance training of rats, one of the most studied tasks so far, we found two time windows of sensitivity to transcriptional and translational inhibitors infused into the hippocampus: around the time of training and 3-6 h after training. Remarkably, these periods perfectly overlap with the involvement of hippocampal cAMP/PKA (protein kinase A) signaling pathways in memory consolidation. Given the complexity of transcriptional responses in the brain, particularly those related to processing of behavioral information, it was clearly necessary to address this issue with a multi-variable, parallel-oriented approach. We used cDNA arrays to screen for candidate inhibitory avoidance learning-related genes and analyze the dynamic pattern of gene expression that emerges during memory consolidation. These include genes involved in intracellular kinase networks, synaptic function, DNA-binding and chromatin modification, transcriptional activation and repression, translation, membrane receptors, and oncogenes, among others. Our findings suggest that differential and orchestrated hippocampal gene expression is necessary in both early and late periods of long-term memory consolidation. Additionally, this kind of studies may lead to the identification and characterization of genes that are relevant for the pathogenesis

  19. Analysis of global gene expression profiles to identify differentially expressed genes critical for embryo development in Brassica rapa.

    PubMed

    Zhang, Yu; Peng, Lifang; Wu, Ya; Shen, Yanyue; Wu, Xiaoming; Wang, Jianbo

    2014-11-01

    Embryo development represents a crucial developmental period in the life cycle of flowering plants. To gain insights into the genetic programs that control embryo development in Brassica rapa L., RNA sequencing technology was used to perform transcriptome profiling analysis of B. rapa developing embryos. The results generated 42,906,229 sequence reads aligned with 32,941 genes. In total, 27,760, 28,871, 28,384, and 25,653 genes were identified from embryos at globular, heart, early cotyledon, and mature developmental stages, respectively, and analysis between stages revealed a subset of stage-specific genes. We next investigated 9,884 differentially expressed genes with more than fivefold changes in expression and false discovery rate ≤ 0.001 from three adjacent-stage comparisons; 1,514, 3,831, and 6,633 genes were detected between globular and heart stage embryo libraries, heart stage and early cotyledon stage, and early cotyledon and mature stage, respectively. Large numbers of genes related to cellular process, metabolism process, response to stimulus, and biological process were expressed during the early and middle stages of embryo development. Fatty acid biosynthesis, biosynthesis of secondary metabolites, and photosynthesis-related genes were expressed predominantly in embryos at the middle stage. Genes for lipid metabolism and storage proteins were highly expressed in the middle and late stages of embryo development. We also identified 911 transcription factor genes that show differential expression across embryo developmental stages. These results increase our understanding of the complex molecular and cellular events during embryo development in B. rapa and provide a foundation for future studies on other oilseed crops. PMID:25214014

  20. Regulation of Rubisco gene expression in C4 plants.

    PubMed

    Berry, James O; Mure, Christopher M; Yerramsetty, Pradeep

    2016-06-01

    Ribulose-1,5-bisphosphate-carboxylase/oxygenase (Rubisco) incorporates inorganic carbon into an organic form, making this chloroplastic enzyme one of the most essential factors for all life on earth. Despite its central role in photosynthesis, research into regulation of the chloroplast rbcL and nuclear RbcS genes that encode this enzyme has lagged behind other plant gene systems. A major characteristic of kranz-type C4 plants is the accumulation of Rubisco only within chloroplasts of internalized bundle sheath cells that surround the leaf vascular centers. In plants that utilize the less common single cell C4 system, Rubisco accumulates only within one type of dimorphic chloroplasts localized to a specific region of leaf chlorenchyma cells. Understanding regulatory processes that restrict Rubisco gene expression to only one cell type or chloroplast type is a major focus of C4 research. Regulatory steps may include transcriptional, post-transcriptional, and post-translational processes. PMID:27026038

  1. Gene expression profile of pulpitis.

    PubMed

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  2. Systems Biophysics of Gene Expression

    PubMed Central

    Vilar, Jose M.G.; Saiz, Leonor

    2013-01-01

    Gene expression is a process central to any form of life. It involves multiple temporal and functional scales that extend from specific protein-DNA interactions to the coordinated regulation of multiple genes in response to intracellular and extracellular changes. This diversity in scales poses fundamental challenges to the use of traditional approaches to fully understand even the simplest gene expression systems. Recent advances in computational systems biophysics have provided promising avenues to reliably integrate the molecular detail of biophysical process into the system behavior. Here, we review recent advances in the description of gene regulation as a system of biophysical processes that extend from specific protein-DNA interactions to the combinatorial assembly of nucleoprotein complexes. There is now basic mechanistic understanding on how promoters controlled by multiple, local and distal, DNA binding sites for transcription factors can actively control transcriptional noise, cell-to-cell variability, and other properties of gene regulation, including precision and flexibility of the transcriptional responses. PMID:23790365

  3. Control of Renin Gene Expression

    PubMed Central

    Glenn, Sean T.; Jones, Craig A.; Gross, Kenneth W.; Pan, Li

    2015-01-01

    Renin, as part of the renin-angiotensin system, plays a critical role in the regulation of blood pressure, electrolyte homeostasis, mammalian renal development and progression of fibrotic/hypertrophic diseases. Renin gene transcription is subject to complex developmental and tissue-specific regulation. Initial studies using the mouse As4.1 cell line, which has many characteristics of the renin-expressing juxtaglomerular cells of the kidney, have identified a proximal promoter region (−197 to −50 bp) and an enhancer (−2866 to −2625 bp) upstream of the Ren-1c gene, which are critical for renin gene expression. The proximal promoter region contains several transcription factor-binding sites including a binding site for the products of the developmental control genes Hox. The enhancer consists of at least 11 transcription factor-binding sites and is responsive to various signal transduction pathways including cAMP, retinoic acid, endothelin-1, and cytokines, all of which are known to alter renin mRNA levels. Furthermore, in vivo models have validated several of these key components found within the proximal promoter region and the enhancer as well as other key sites necessary for renin gene transcription. PMID:22576577

  4. Light-dependent expression of flg22-induced defense genes in Arabidopsis

    PubMed Central

    Sano, Satoshi; Aoyama, Mayu; Nakai, Kana; Shimotani, Koji; Yamasaki, Kanako; Sato, Masa H.; Tojo, Daisuke; Suwastika, I. Nengah; Nomura, Hironari; Shiina, Takashi

    2014-01-01

    Chloroplasts have been reported to generate retrograde immune signals that activate defense gene expression in the nucleus. However, the roles of light and photosynthesis in plant immunity remain largely elusive. In this study, we evaluated the effects of light on the expression of defense genes induced by flg22, a peptide derived from bacterial flagellins which acts as a potent elicitor in plants. Whole-transcriptome analysis of flg22-treated Arabidopsis thaliana seedlings under light and dark conditions for 30 min revealed that a number of (30%) genes strongly induced by flg22 (>4.0) require light for their rapid expression, whereas flg22-repressed genes include a significant number of genes that are down-regulated by light. Furthermore, light is responsible for the flg22-induced accumulation of salicylic acid (SA), indicating that light is indispensable for basal defense responses in plants. To elucidate the role of photosynthesis in defense, we further examined flg22-induced defense gene expression in the presence of specific inhibitors of photosynthetic electron transport: 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB). Light-dependent expression of defense genes was largely suppressed by DBMIB, but only partially suppressed by DCMU. These findings suggest that photosynthetic electron flow plays a role in controlling the light-dependent expression of flg22-inducible defense genes. PMID:25346742

  5. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression.

    PubMed

    Yu, Ying; Huang, Wengong; Chen, Hongyu; Wu, Guangwen; Yuan, Hongmei; Song, Xixia; Kang, Qinghua; Zhao, Dongsheng; Jiang, Weidong; Liu, Yan; Wu, Jianzhong; Cheng, Lili; Yao, Yubo; Guan, Fengzhi

    2014-10-01

    The salinization and alkalization of soil are widespread environmental problems, and alkaline salt stress is more destructive than neutral salt stress. Therefore, understanding the mechanism of plant tolerance to saline-alkaline stress has become a major challenge. However, little attention has been paid to the mechanism of plant alkaline salt tolerance. In this study, gene expression profiling of flax was analyzed under alkaline-salt stress (AS2), neutral salt stress (NSS) and alkaline stress (AS) by digital gene expression. Three-week-old flax seedlings were placed in 25 mM Na2CO3 (pH11.6) (AS2), 50mM NaCl (NSS) and NaOH (pH11.6) (AS) for 18 h. There were 7736, 1566 and 454 differentially expressed genes in AS2, NSS and AS compared to CK, respectively. The GO category gene enrichment analysis revealed that photosynthesis was particularly affected in AS2, carbohydrate metabolism was particularly affected in NSS, and the response to biotic stimulus was particularly affected in AS. We also analyzed the expression pattern of five categories of genes including transcription factors, signaling transduction proteins, phytohormones, reactive oxygen species proteins and transporters under these three stresses. Some key regulatory gene families involved in abiotic stress, such as WRKY, MAPKKK, ABA, PrxR and ion channels, were differentially expressed. Compared with NSS and AS, AS2 triggered more differentially expressed genes and special pathways, indicating that the mechanism of AS2 was more complex than NSS and AS. To the best of our knowledge, this was the first transcriptome analysis of flax in response to saline-alkaline stress. These data indicate that common and diverse features of saline-alkaline stress provide novel insights into the molecular mechanisms of plant saline-alkaline tolerance and offer a number of candidate genes as potential markers of tolerance to saline-alkaline stress. PMID:25058012

  6. Large-scale mRNA expression profiling in the common ice plant, Mesembryanthemum crystallinum, performing C3 photosynthesis and Crassulacean acid metabolism (CAM).

    PubMed

    Cushman, John C; Tillett, Richard L; Wood, Joshua A; Branco, Joshua M; Schlauch, Karen A

    2008-01-01

    The common ice plant (Mesembryanthemum crystallinum L.) has emerged as a useful model for molecular genetic studies of Crassulacean acid metabolism (CAM) because CAM can be induced in this species by water deficit or salinity stress. Non-redundant sequence information from expressed sequence tag data was used to fabricate a custom oligonucleotide microarray to compare large-scale mRNA expression patterns in M. crystallinum plants conducting C(3) photosynthesis versus CAM. Samples were collected every 4 h over a 24 h time period at the start of the subjective second day from plants grown under constant light and temperature conditions in order to capture variation in mRNA expression due to salinity stress and circadian clock control. Of 8455 genes, a total of 2343 genes (approximately 28%) showed a significant change as judged by analysis of variance (ANOVA) in steady-state mRNA abundance at one or more time points over the 24 h period. Of these, 858 (10%) and 599 (7%) exhibited a greater than two-fold ratio (TFR) increase or decrease in mRNA abundance, respectively. Functional categorization of these TFR genes revealed that many genes encoding products that function in CAM-related C(4) acid carboxylation/decarboxylation, glycolysis/gluconeogenesis, polysaccharide, polyol, and starch biosynthesis/degradation, protein degradation, transcriptional activation, signalling, stress response, and transport facilitation, and novel, unclassified proteins exhibited stress-induced increases in mRNA abundance. In contrast, salt stress resulted in a significant decrease in transcript abundance for genes encoding photosynthetic functions, protein synthesis, and cellular biogenesis functions. Many genes with CAM-related functions exhibited phase shifts in their putative circadian expression patterns following CAM induction. This report establishes an extensive catalogue of gene expression patterns for future investigations aimed at understanding the complex, transcriptional

  7. Gene expression throughout a vertebrate's embryogenesis

    PubMed Central

    2011-01-01

    Background Describing the patterns of gene expression during embryonic development has broadened our understanding of the processes and patterns that define morphogenesis. Yet gene expression patterns have not been described throughout vertebrate embryogenesis. This study presents statistical analyses of gene expression during all 40 developmental stages in the teleost Fundulus heteroclitus using four biological replicates per stage. Results Patterns of gene expression for 7,000 genes appear to be important as they recapitulate developmental timing. Among the 45% of genes with significant expression differences between pairs of temporally adjacent stages, significant differences in gene expression vary from as few as five to more than 660. Five adjacent stages have disproportionately more significant changes in gene expression (> 200 genes) relative to other stages: four to eight and eight to sixteen cell stages, onset of circulation, pre and post-hatch, and during complete yolk absorption. The fewest differences among adjacent stages occur during gastrulation. Yet, at stage 16, (pre-mid-gastrulation) the largest number of genes has peak expression. This stage has an over representation of genes in oxidative respiration and protein expression (ribosomes, translational genes and proteases). Unexpectedly, among all ribosomal genes, both strong positive and negative correlations occur. Similar correlated patterns of expression occur among all significant genes. Conclusions These data provide statistical support for the temporal dynamics of developmental gene expression during all stages of vertebrate development. PMID:21356103

  8. Expression of the Arabidopsis Sigma Factor SIG5 Is Photoreceptor and Photosynthesis Controlled

    PubMed Central

    Mellenthin, Marina; Ellersiek, Ulrike; Börger, Anna; Baier, Margarete

    2014-01-01

    Two collections of Arabidopsis GAL4 enhancer trap lines were screened for light-intensity dependent reporter gene activation. Line N9313 was isolated for its strong light-intensity regulation. The T-DNA element trapped distant enhancers of the SIG5 promoter, which drives expression of a sigma factor involved in regulation of chloroplast genes for photosystem II core proteins. The T-DNA insertion 715 bp upstream of the transcription initiation site splits the promoter in a distal and proximal part. Both parts are sensitive to blue and red light and depend on photosynthetic electron transport activity between photosystem II and the plastoquinone pool. The mainblue-light sensitivity is localized within a 196-bp sequence (–887 to –691 bp) in the proximal promoter region It is preferentially CRY1 and PHYB controlled. Type-I and type-II phytochromes mediate red-light sensitivity via various promoter elements spread over the proximal and distal upstream region. This work characterizes SIG5 as an anterograde control factor of chloroplast gene expression, which is controlled by chloroplast signals in a retrograde manner. PMID:27135509

  9. Gene Expression Studies in Mosquitoes

    PubMed Central

    Chen, Xlao-Guang; Mathur, Geetika; James, Anthony A.

    2009-01-01

    Research on gene expression in mosquitoes is motivated by both basic and applied interests. Studies of genes involved in hematophagy, reproduction, olfaction, and immune responses reveal an exquisite confluence of biological adaptations that result in these highly-successful life forms. The requirement of female mosquitoes for a bloodmeal for propagation has been exploited by a wide diversity of viral, protozoan and metazoan pathogens as part of their life cycles. Identifying genes involved in host-seeking, blood feeding and digestion, reproduction, insecticide resistance and susceptibility/refractoriness to pathogen development is expected to provide the bases for the development of novel methods to control mosquito-borne diseases. Advances in mosquito transgenesis technologies, the availability of whole genome sequence information, mass sequencing and analyses of transcriptomes and RNAi techniques will assist development of these tools as well as deepen the understanding of the underlying genetic components for biological phenomena characteristic of these insect species. PMID:19161831

  10. The Gene Expression Omnibus database

    PubMed Central

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome–protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  11. The Gene Expression Omnibus Database.

    PubMed

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome-protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  12. Classification of genes based on gene expression analysis

    NASA Astrophysics Data System (ADS)

    Angelova, M.; Myers, C.; Faith, J.

    2008-05-01

    Systems biology and bioinformatics are now major fields for productive research. DNA microarrays and other array technologies and genome sequencing have advanced to the point that it is now possible to monitor gene expression on a genomic scale. Gene expression analysis is discussed and some important clustering techniques are considered. The patterns identified in the data suggest similarities in the gene behavior, which provides useful information for the gene functionalities. We discuss measures for investigating the homogeneity of gene expression data in order to optimize the clustering process. We contribute to the knowledge of functional roles and regulation of E. coli genes by proposing a classification of these genes based on consistently correlated genes in expression data and similarities of gene expression patterns. A new visualization tool for targeted projection pursuit and dimensionality reduction of gene expression data is demonstrated.

  13. Classification of genes based on gene expression analysis

    SciTech Connect

    Angelova, M. Myers, C. Faith, J.

    2008-05-15

    Systems biology and bioinformatics are now major fields for productive research. DNA microarrays and other array technologies and genome sequencing have advanced to the point that it is now possible to monitor gene expression on a genomic scale. Gene expression analysis is discussed and some important clustering techniques are considered. The patterns identified in the data suggest similarities in the gene behavior, which provides useful information for the gene functionalities. We discuss measures for investigating the homogeneity of gene expression data in order to optimize the clustering process. We contribute to the knowledge of functional roles and regulation of E. coli genes by proposing a classification of these genes based on consistently correlated genes in expression data and similarities of gene expression patterns. A new visualization tool for targeted projection pursuit and dimensionality reduction of gene expression data is demonstrated.

  14. Identification of four soybean reference genes for gene expression normalization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene expression analysis requires the use of reference genes stably expressed independently of specific tissues or environmental conditions. Housekeeping genes (e.g., actin, tubulin, ribosomal, polyubiquitin and elongation factor 1-alpha) are commonly used as reference genes with the assumption tha...

  15. Mitochondrial RNA granules: Compartmentalizing mitochondrial gene expression.

    PubMed

    Jourdain, Alexis A; Boehm, Erik; Maundrell, Kinsey; Martinou, Jean-Claude

    2016-03-14

    In mitochondria, DNA replication, gene expression, and RNA degradation machineries coexist within a common nondelimited space, raising the question of how functional compartmentalization of gene expression is achieved. Here, we discuss the recently characterized "mitochondrial RNA granules," mitochondrial subdomains with an emerging role in the regulation of gene expression. PMID:26953349

  16. Changes in the physiology and gene expression of Microcystis aeruginosa under EGCG stress.

    PubMed

    Lu, Yaping; Wang, Jin; Yu, Yang; Shi, Limei; Kong, Fanxiang

    2014-12-01

    EGCG (Epigallocatechin-3-gallate) has an allelopathic inhibitory effect on Microcystis aeruginosa. Cellular structure, physiological and biochemical reactions and gene expression were examined to explore the mechanism of inhibition. As was shown in electron microscopy, the structure of the cell wall, cell membrane and thylakoid was disrupted by EGCG. EGCG also reduced the efficiency of photosynthesis and the electron transfer rate in M. aeruginosa cells, as was determined with a flow cytometer. Quantitative real-time PCR analysis demonstrated that gene expression of the core proteins of the photosynthesis centers PSI and PSII and ATP synthase were reduced, while the expression of the phycobilisome degradation protein A gene (nbl A) was elevated. The expression of the universal stress protein gene increased, which would enhance the adaptive capacity of Microcystis cells to polyphenols and oxidative stress. Furthermore, EGCG elevated the level of reactive oxygen species (ROS) in M. aeruginosa cells, and thus caused oxidative cellular damage. When treated with EGCG at low concentrations (10 and 40 mg L(-)(1)), the cells were able to activate defense systems to degrade the excess ROS. But at a concentration of 70 mg L(-)(1), oxidative stress exceeded tolerance limits, and the cells were severely damaged. We concluded that damage to photosynthesis and oxidative stress were the primary mechanisms for the allelopathic effect of EGCG on M. aeruginosa. PMID:25016428

  17. Environmental control of plant nuclear gene expression by chloroplast redox signals.

    PubMed

    Pfalz, Jeannette; Liebers, Monique; Hirth, Matthias; Grübler, Björn; Holtzegel, Ute; Schröter, Yvonne; Dietzel, Lars; Pfannschmidt, Thomas

    2012-01-01

    Plant photosynthesis takes place in specialized cell organelles, the chloroplasts, which perform all essential steps of this process. The proteins involved in photosynthesis are encoded by genes located on the plastid and nuclear genomes. Proper function and regulation of light harvesting and energy fixation thus requires a tight coordination of the gene expression machineries in the two genetic compartments. This is achieved by a bi-directional exchange of information between nucleus and plastids. Signals emerging from plastids report the functional and developmental state of the organelle to the nucleus and initiate distinct nuclear gene expression profiles, which trigger responses that support or improve plastid functions. Recent research indicated that this signaling is absolutely essential for plant growth and development. Reduction/oxidation (redox) signals from photosynthesis are key players in this information network since they do report functional disturbances in photosynthesis, the primary energy source of plants. Such disturbances are caused by environmental fluctuations for instance in illumination, temperature, or water availability. These environmental changes affect the linear electron flow of photosynthesis and result in changes of the redox state of the components involved [e.g., the plastoquinone (PQ) pool] or coupled to it (e.g., the thioredoxin pool). Thus, the changes in redox state directly reflect the environmental impact and serve as immediate plastidial signals to the nucleus. The triggered responses range from counterbalancing reactions within the physiological range up to severe stress responses including cell death. This review focuses on physiological redox signals from photosynthetic electron transport (PET), their relation to the environment, potential transduction pathways to the nucleus and their impact on nuclear gene expression. PMID:23181068

  18. Environmental control of plant nuclear gene expression by chloroplast redox signals

    PubMed Central

    Pfalz, Jeannette; Liebers, Monique; Hirth, Matthias; Grübler, Björn; Holtzegel, Ute; Schröter, Yvonne; Dietzel, Lars; Pfannschmidt, Thomas

    2012-01-01

    Plant photosynthesis takes place in specialized cell organelles, the chloroplasts, which perform all essential steps of this process. The proteins involved in photosynthesis are encoded by genes located on the plastid and nuclear genomes. Proper function and regulation of light harvesting and energy fixation thus requires a tight coordination of the gene expression machineries in the two genetic compartments. This is achieved by a bi-directional exchange of information between nucleus and plastids. Signals emerging from plastids report the functional and developmental state of the organelle to the nucleus and initiate distinct nuclear gene expression profiles, which trigger responses that support or improve plastid functions. Recent research indicated that this signaling is absolutely essential for plant growth and development. Reduction/oxidation (redox) signals from photosynthesis are key players in this information network since they do report functional disturbances in photosynthesis, the primary energy source of plants. Such disturbances are caused by environmental fluctuations for instance in illumination, temperature, or water availability. These environmental changes affect the linear electron flow of photosynthesis and result in changes of the redox state of the components involved [e.g., the plastoquinone (PQ) pool] or coupled to it (e.g., the thioredoxin pool). Thus, the changes in redox state directly reflect the environmental impact and serve as immediate plastidial signals to the nucleus. The triggered responses range from counterbalancing reactions within the physiological range up to severe stress responses including cell death. This review focuses on physiological redox signals from photosynthetic electron transport (PET), their relation to the environment, potential transduction pathways to the nucleus and their impact on nuclear gene expression. PMID:23181068

  19. Does inbreeding affect gene expression in birds?

    PubMed Central

    Hansson, Bengt; Naurin, Sara; Hasselquist, Dennis

    2014-01-01

    Inbreeding increases homozygosity, exposes genome-wide recessive deleterious alleles and often reduces fitness. The physiological and reproductive consequences of inbreeding may be manifested already during gene regulation, but the degree to which inbreeding influences gene expression is unknown in most organisms, including in birds. To evaluate the pattern of inbreeding-affected gene expression over the genome and in relation to sex, we performed a transcriptome-wide gene expression (10 695 genes) study of brain tissue of 10-day-old inbred and outbred, male and female zebra finches. We found significantly lower gene expression in females compared with males at Z-linked genes, confirming that dosage compensation is incomplete in female birds. However, inbreeding did not affect gene expression at autosomal or sex-linked genes, neither in males nor in females. Analyses of single genes again found a clear sex-biased expression at Z-linked genes, whereas only a single gene was significantly affected by inbreeding. The weak effect of inbreeding on gene expression in zebra finches contrasts to the situation, for example, in Drosophila where inbreeding has been found to influence gene expression more generally and at stress-related genes in particular. PMID:25232028

  20. Seasonal Effects on Gene Expression

    PubMed Central

    Goldinger, Anita; Shakhbazov, Konstantin; Henders, Anjali K.; McRae, Allan F.; Montgomery, Grant W.; Powell, Joseph E.

    2015-01-01

    Many health conditions, ranging from psychiatric disorders to cardiovascular disease, display notable seasonal variation in severity and onset. In order to understand the molecular processes underlying this phenomenon, we have examined seasonal variation in the transcriptome of 606 healthy individuals. We show that 74 transcripts associated with a 12-month seasonal cycle were enriched for processes involved in DNA repair and binding. An additional 94 transcripts demonstrated significant seasonal variability that was largely influenced by blood cell count levels. These transcripts were enriched for immune function, protein production, and specific cellular markers for lymphocytes. Accordingly, cell counts for erythrocytes, platelets, neutrophils, monocytes, and CD19 cells demonstrated significant association with a 12-month seasonal cycle. These results demonstrate that seasonal variation is an important environmental regulator of gene expression and blood cell composition. Notable changes in leukocyte counts and genes involved in immune function indicate that immune cell physiology varies throughout the year in healthy individuals. PMID:26023781

  1. MRI of Transgene Expression: Correlation to Therapeutic Gene Expression

    PubMed Central

    Ichikawa, Tomotsugu; Högemanny, Dagmar; Saeki, Yoshinaga; Tyminski, Edyta; Terada, Kinya; Weissleder, Ralph; Chiocca, E Antonio; Basilion, James P

    2002-01-01

    Abstract Magnetic resonance imaging (MRI) can provide highresolution 3D maps of structural and functional information, yet its use of mapping in vivo gene expression has only recently been explored. A potential application for this technology is to noninvasively image transgene expression. The current study explores the latter using a nonregulatable internalizing engineered transferrin receptor (ETR) whose expression can be probed for with a superparamagnetic Tf-CLIO probe. Using an HSV-based amplicon vector system for transgene delivery, we demonstrate that: 1) ETR is a sensitive MR marker gene; 2) several transgenes can be efficiently expressed from a single amplicon; 3) expression of each transgene results in functional gene product; and 4) ETR gene expression correlates with expression of therapeutic genes when the latter are contained within the same amplicon. These data, taken together, suggest that MRI of ETR expression can serve as a surrogate for measuring therapeutic transgene expression. PMID:12407446

  2. C3-C4 intermediacy in grasses: organelle enrichment and distribution, glycine decarboxylase expression, and the rise of C2 photosynthesis.

    PubMed

    Khoshravesh, Roxana; Stinson, Corey R; Stata, Matt; Busch, Florian A; Sage, Rowan F; Ludwig, Martha; Sage, Tammy L

    2016-05-01

    Photorespiratory glycine shuttling and decarboxylation in bundle sheath (BS) cells exhibited by C2 species is proposed to be the evolutionary bridge to C4 photosynthesis in eudicots. To evaluate this in grasses, we compare anatomy, cellular localization of glycine decarboxylase (GDC), and photosynthetic physiology of a suspected C2 grass, Homolepis aturensis, with these traits in known C2 grasses, Neurachne minor and Steinchisma hians, and C3 S laxum that is sister to S hians We also use publicly available genome and RNA-sequencing data to examine the evolution of GDC subunits and enhance our understanding of the evolution of BS-specific GDC expression in C2 and C4 grasses. Our results confirm the identity of H aturensis as a C2 species; GDC is confined predominantly to the organelle-enriched BS cells in H aturensis and S hians and to mestome sheath cells of N minor Phylogenetic analyses and data obtained from immunodetection of the P-subunit of GDC are consistent with the hypothesis that the BS dominant levels of GDC in C2 and C4 species are due to changes in expression of a single GLDP gene in M and BS cells. All BS mitochondria and peroxisomes and most chloroplasts in H aturensis and S hians are situated centripetally in a pattern identical to C2 eudicots. In S laxum, which has C3-like gas exchange patterns, mitochondria and peroxisomes are positioned centripetally as they are in S hians This subcellular phenotype, also present in eudicots, is posited to initiate a facilitation cascade leading to C2 and C4 photosynthesis. PMID:27073202

  3. C3–C4 intermediacy in grasses: organelle enrichment and distribution, glycine decarboxylase expression, and the rise of C2 photosynthesis

    PubMed Central

    Khoshravesh, Roxana; Stinson, Corey R.; Stata, Matt; Busch, Florian A.; Sage, Rowan F.; Ludwig, Martha; Sage, Tammy L.

    2016-01-01

    Photorespiratory glycine shuttling and decarboxylation in bundle sheath (BS) cells exhibited by C2 species is proposed to be the evolutionary bridge to C4 photosynthesis in eudicots. To evaluate this in grasses, we compare anatomy, cellular localization of glycine decarboxylase (GDC), and photosynthetic physiology of a suspected C2 grass, Homolepis aturensis, with these traits in known C2 grasses, Neurachne minor and Steinchisma hians, and C3 S. laxum that is sister to S. hians. We also use publicly available genome and RNA-sequencing data to examine the evolution of GDC subunits and enhance our understanding of the evolution of BS-specific GDC expression in C2 and C4 grasses. Our results confirm the identity of H. aturensis as a C2 species; GDC is confined predominantly to the organelle-enriched BS cells in H. aturensis and S. hians and to mestome sheath cells of N. minor. Phylogenetic analyses and data obtained from immunodetection of the P-subunit of GDC are consistent with the hypothesis that the BS dominant levels of GDC in C2 and C4 species are due to changes in expression of a single GLDP gene in M and BS cells. All BS mitochondria and peroxisomes and most chloroplasts in H. aturensis and S. hians are situated centripetally in a pattern identical to C2 eudicots. In S. laxum, which has C3-like gas exchange patterns, mitochondria and peroxisomes are positioned centripetally as they are in S. hians. This subcellular phenotype, also present in eudicots, is posited to initiate a facilitation cascade leading to C2 and C4 photosynthesis. PMID:27073202

  4. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis.

    PubMed

    Xie, Jianbo; Tian, Jiaxing; Du, Qingzhang; Chen, Jinhui; Li, Ying; Yang, Xiaohui; Li, Bailian; Zhang, Deqiang

    2016-05-01

    Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits. PMID:27091876

  5. Signal Transduction Pathways that Regulate CAB Gene Expression

    SciTech Connect

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  6. Signal Transduction Pathways that Regulate CAB Gene Expression

    SciTech Connect

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  7. Gene Expression: Sizing it all up

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic architecture appears to be a largely unexplored component of gene expression. Although surely not the end of the story, we are learning that when it comes to gene expression, size is important. We have been surprised to find that certain patterns of expression, tissue-specific versus constit...

  8. Global Analysis of Photosynthesis Transcriptional Regulatory Networks

    PubMed Central

    Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.

    2014-01-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis. PMID:25503406

  9. Global analysis of photosynthesis transcriptional regulatory networks.

    PubMed

    Imam, Saheed; Noguera, Daniel R; Donohue, Timothy J

    2014-12-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis. PMID:25503406

  10. Control of RANKL Gene Expression

    PubMed Central

    O'Brien, Charles A.

    2009-01-01

    Osteoclasts are highly specialized cells capable of degrading mineralized tissue and form at different regions of bone to meet different physiological needs, such as mobilization of calcium, modeling of bone structure, and remodeling of bone matrix. Osteoclast production is elevated in a number of pathological conditions, many of which lead to loss of bone mass. Whether normal or pathological, osteoclastogenesis strictly depends upon support from accessory cells which supply cytokines required for osteoclast differentiation. Only one of these cytokines, receptor activator of NFκB ligand (RANKL), is absolutely essential for osteoclast formation throughout life and is thus expressed by all cell types that support osteoclast differentiation. The central role of RANKL in bone resorption is highlighted by the fact that it is the basis for a new therapy to inhibit bone loss. This review will discuss mechanisms that control RANKL gene expression in different osteoclast-support cells and how the study of such mechanisms may lead to a better understanding of the cellular interactions that drive normal and pathological bone resorption. PMID:19716455

  11. Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions.

    PubMed

    Plessis, Anne; Hafemeister, Christoph; Wilkins, Olivia; Gonzaga, Zennia Jean; Meyer, Rachel Sarah; Pires, Inês; Müller, Christian; Septiningsih, Endang M; Bonneau, Richard; Purugganan, Michael

    2015-01-01

    Plants rely on transcriptional dynamics to respond to multiple climatic fluctuations and contexts in nature. We analyzed the genome-wide gene expression patterns of rice (Oryza sativa) growing in rainfed and irrigated fields during two distinct tropical seasons and determined simple linear models that relate transcriptomic variation to climatic fluctuations. These models combine multiple environmental parameters to account for patterns of expression in the field of co-expressed gene clusters. We examined the similarities of our environmental models between tropical and temperate field conditions, using previously published data. We found that field type and macroclimate had broad impacts on transcriptional responses to environmental fluctuations, especially for genes involved in photosynthesis and development. Nevertheless, variation in solar radiation and temperature at the timescale of hours had reproducible effects across environmental contexts. These results provide a basis for broad-based predictive modeling of plant gene expression in the field. PMID:26609814

  12. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2008-06-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  13. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  14. Methods for monitoring multiple gene expression

    DOEpatents

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  15. Gene expression in major depressive disorder.

    PubMed

    Jansen, R; Penninx, B W J H; Madar, V; Xia, K; Milaneschi, Y; Hottenga, J J; Hammerschlag, A R; Beekman, A; van der Wee, N; Smit, J H; Brooks, A I; Tischfield, J; Posthuma, D; Schoevers, R; van Grootheest, G; Willemsen, G; de Geus, E J; Boomsma, D I; Wright, F A; Zou, F; Sun, W; Sullivan, P F

    2016-03-01

    The search for genetic variants underlying major depressive disorder (MDD) has not yet provided firm leads to its underlying molecular biology. A complementary approach is to study gene expression in relation to MDD. We measured gene expression in peripheral blood from 1848 subjects from The Netherlands Study of Depression and Anxiety. Subjects were divided into current MDD (N=882), remitted MDD (N=635) and control (N=331) groups. MDD status and gene expression were measured again 2 years later in 414 subjects. The strongest gene expression differences were between the current MDD and control groups (129 genes at false-discovery rate, FDR<0.1). Gene expression differences across MDD status were largely unrelated to antidepressant use, inflammatory status and blood cell counts. Genes associated with MDD were enriched for interleukin-6 (IL-6)-signaling and natural killer (NK) cell pathways. We identified 13 gene expression clusters with specific clusters enriched for genes involved in NK cell activation (downregulated in current MDD, FDR=5.8 × 10(-5)) and IL-6 pathways (upregulated in current MDD, FDR=3.2 × 10(-3)). Longitudinal analyses largely confirmed results observed in the cross-sectional data. Comparisons of gene expression results to the Psychiatric Genomics Consortium (PGC) MDD genome-wide association study results revealed overlap with DVL3. In conclusion, multiple gene expression associations with MDD were identified and suggest a measurable impact of current MDD state on gene expression. Identified genes and gene clusters are enriched with immune pathways previously associated with the etiology of MDD, in line with the immune suppression and immune activation hypothesis of MDD. PMID:26008736

  16. Analysis of Gene Expression Patterns Using Biclustering.

    PubMed

    Roy, Swarup; Bhattacharyya, Dhruba K; Kalita, Jugal K

    2016-01-01

    Mining microarray data to unearth interesting expression profile patterns for discovery of in silico biological knowledge is an emerging area of research in computational biology. A group of functionally related genes may have similar expression patterns under a set of conditions or at some time points. Biclustering is an important data mining tool that has been successfully used to analyze gene expression data for biologically significant cluster discovery. The purpose of this chapter is to introduce interesting patterns that may be observed in expression data and discuss the role of biclustering techniques in detecting interesting functional gene groups with similar expression patterns. PMID:26350227

  17. Abiotic Stresses: Insight into Gene Regulation and Protein Expression in Photosynthetic Pathways of Plants.

    PubMed

    Nouri, Mohammad-Zaman; Moumeni, Ali; Komatsu, Setsuko

    2015-01-01

    Global warming and climate change intensified the occurrence and severity of abiotic stresses that seriously affect the growth and development of plants,especially, plant photosynthesis. The direct impact of abiotic stress on the activity of photosynthesis is disruption of all photosynthesis components such as photosystem I and II, electron transport, carbon fixation, ATP generating system and stomatal conductance. The photosynthetic system of plants reacts to the stress differently, according to the plant type, photosynthetic systems (C₃ or C₄), type of the stress, time and duration of the occurrence and several other factors. The plant responds to the stresses by a coordinate chloroplast and nuclear gene expression. Chloroplast, thylakoid membrane, and nucleus are the main targets of regulated proteins and metabolites associated with photosynthetic pathways. Rapid responses of plant cell metabolism and adaptation to photosynthetic machinery are key factors for survival of plants in a fluctuating environment. This review gives a comprehensive view of photosynthesis-related alterations at the gene and protein levels for plant adaptation or reaction in response to abiotic stress. PMID:26343644

  18. Abiotic Stresses: Insight into Gene Regulation and Protein Expression in Photosynthetic Pathways of Plants

    PubMed Central

    Nouri, Mohammad-Zaman; Moumeni, Ali; Komatsu, Setsuko

    2015-01-01

    Global warming and climate change intensified the occurrence and severity of abiotic stresses that seriously affect the growth and development of plants, especially, plant photosynthesis. The direct impact of abiotic stress on the activity of photosynthesis is disruption of all photosynthesis components such as photosystem I and II, electron transport, carbon fixation, ATP generating system and stomatal conductance. The photosynthetic system of plants reacts to the stress differently, according to the plant type, photosynthetic systems (C3 or C4), type of the stress, time and duration of the occurrence and several other factors. The plant responds to the stresses by a coordinate chloroplast and nuclear gene expression. Chloroplast, thylakoid membrane, and nucleus are the main targets of regulated proteins and metabolites associated with photosynthetic pathways. Rapid responses of plant cell metabolism and adaptation to photosynthetic machinery are key factors for survival of plants in a fluctuating environment. This review gives a comprehensive view of photosynthesis-related alterations at the gene and protein levels for plant adaptation or reaction in response to abiotic stress. PMID:26343644

  19. Xenbase: gene expression and improved integration.

    PubMed

    Bowes, Jeff B; Snyder, Kevin A; Segerdell, Erik; Jarabek, Chris J; Azam, Kenan; Zorn, Aaron M; Vize, Peter D

    2010-01-01

    Xenbase (www.xenbase.org), the model organism database for Xenopus laevis and X. (Silurana) tropicalis, is the principal centralized resource of genomic, development data and community information for Xenopus research. Recent improvements include the addition of the literature and interaction tabs to gene catalog pages. New content has been added including a section on gene expression patterns that incorporates image data from the literature, large scale screens and community submissions. Gene expression data are integrated into the gene catalog via an expression tab and is also searchable by multiple criteria using an expression search interface. The gene catalog has grown to contain over 15,000 genes. Collaboration with the European Xenopus Research Center (EXRC) has resulted in a stock center section with data on frog lines supplied by the EXRC. Numerous improvements have also been made to search and navigation. Xenbase is also the source of the Xenopus Anatomical Ontology and the clearinghouse for Xenopus gene nomenclature. PMID:19884130

  20. Comparative Transcriptome Atlases Reveal Altered Gene Expression Modules between Two Cleomaceae C3 and C4 Plant Species[C][W][OPEN

    PubMed Central

    Külahoglu, Canan; Denton, Alisandra K.; Sommer, Manuel; Maß, Janina; Schliesky, Simon; Wrobel, Thomas J.; Berckmans, Barbara; Gongora-Castillo, Elsa; Buell, C. Robin; Simon, Rüdiger; De Veylder, Lieven; Bräutigam, Andrea; Weber, Andreas P.M.

    2014-01-01

    C4 photosynthesis outperforms the ancestral C3 state in a wide range of natural and agro-ecosystems by affording higher water-use and nitrogen-use efficiencies. It therefore represents a prime target for engineering novel, high-yielding crops by introducing the trait into C3 backgrounds. However, the genetic architecture of C4 photosynthesis remains largely unknown. To define the divergence in gene expression modules between C3 and C4 photosynthesis during leaf ontogeny, we generated comprehensive transcriptome atlases of two Cleomaceae species, Gynandropsis gynandra (C4) and Tarenaya hassleriana (C3), by RNA sequencing. Overall, the gene expression profiles appear remarkably similar between the C3 and C4 species. We found that known C4 genes were recruited to photosynthesis from different expression domains in C3, including typical housekeeping gene expression patterns in various tissues as well as individual heterotrophic tissues. Furthermore, we identified a structure-related module recruited from the C3 root. Comparison of gene expression patterns with anatomy during leaf ontogeny provided insight into genetic features of Kranz anatomy. Altered expression of developmental factors and cell cycle genes is associated with a higher degree of endoreduplication in enlarged C4 bundle sheath cells. A delay in mesophyll differentiation apparent both in the leaf anatomy and the transcriptome allows for extended vein formation in the C4 leaf. PMID:25122153

  1. Gene Expression Profiling of Gastric Cancer

    PubMed Central

    Marimuthu, Arivusudar; Jacob, Harrys K.C.; Jakharia, Aniruddha; Subbannayya, Yashwanth; Keerthikumar, Shivakumar; Kashyap, Manoj Kumar; Goel, Renu; Balakrishnan, Lavanya; Dwivedi, Sutopa; Pathare, Swapnali; Dikshit, Jyoti Bajpai; Maharudraiah, Jagadeesha; Singh, Sujay; Sameer Kumar, Ghantasala S; Vijayakumar, M.; Veerendra Kumar, Kariyanakatte Veeraiah; Premalatha, Chennagiri Shrinivasamurthy; Tata, Pramila; Hariharan, Ramesh; Roa, Juan Carlos; Prasad, T.S.K; Chaerkady, Raghothama; Kumar, Rekha Vijay; Pandey, Akhilesh

    2015-01-01

    Gastric cancer is the second leading cause of cancer death worldwide, both in men and women. A genomewide gene expression analysis was carried out to identify differentially expressed genes in gastric adenocarcinoma tissues as compared to adjacent normal tissues. We used Agilent’s whole human genome oligonucleotide microarray platform representing ~41,000 genes to carry out gene expression analysis. Two-color microarray analysis was employed to directly compare the expression of genes between tumor and normal tissues. Through this approach, we identified several previously known candidate genes along with a number of novel candidate genes in gastric cancer. Testican-1 (SPOCK1) was one of the novel molecules that was 10-fold upregulated in tumors. Using tissue microarrays, we validated the expression of testican-1 by immunohistochemical staining. It was overexpressed in 56% (160/282) of the cases tested. Pathway analysis led to the identification of several networks in which SPOCK1 was among the topmost networks of interacting genes. By gene enrichment analysis, we identified several genes involved in cell adhesion and cell proliferation to be significantly upregulated while those corresponding to metabolic pathways were significantly downregulated. The differentially expressed genes identified in this study are candidate biomarkers for gastric adenoacarcinoma. PMID:27030788

  2. HOXB homeobox gene expression in cervical carcinoma.

    PubMed

    López, R; Garrido, E; Piña, P; Hidalgo, A; Lazos, M; Ochoa, R; Salcedo, M

    2006-01-01

    The homeobox (HOX) genes are a family of transcription factors that bind to specific DNA sequences in target genes regulating gene expression. Thirty-nine HOX genes have been mapped in four conserved clusters: A, B, C, and D; they act as master genes regulating the identity of body segments along the anteroposterior axis of the embryo. The role played by HOX genes in adult cell differentiation is unclear to date, but growing evidence suggests that they may play an important role in the development of cancer. To study the role played by HOX genes in cervical cancer, in the present work, we analyzed the expression of HOXB genes and the localization of their transcripts in human cervical tissues. Reverse transcription-polymerase chain reaction analysis and nonradioactive RNA in situ hybridization were used to detect HOXB expression in 11 normal cervical tissues and 17 cervical carcinomas. It was determined that HOXB1, B3, B5, B6, B7, B8, and B9 genes are expressed in normal adult cervical epithelium and squamous cervical carcinomas. Interestingly, HOXB2, HOXB4, and HOXB13 gene expression was found only in tumor tissues. Our findings suggest that the new expression of HOXB2, HOXB4, and B13 genes is involved in cervical cancer. PMID:16445654

  3. Gene expression profiling in developing human hippocampus.

    PubMed

    Zhang, Yan; Mei, Pinchao; Lou, Rong; Zhang, Michael Q; Wu, Guanyun; Qiang, Boqin; Zhang, Zhengguo; Shen, Yan

    2002-10-15

    The gene expression profile of developing human hippocampus is of particular interest and importance to neurobiologists devoted to development of the human brain and related diseases. To gain further molecular insight into the developmental and functional characteristics, we analyzed the expression profile of active genes in developing human hippocampus. Expressed sequence tags (ESTs) were selected by sequencing randomly selected clones from an original 3'-directed cDNA library of 150-day human fetal hippocampus, and a digital expression profile of 946 known genes that could be divided into 16 categories was generated. We also used for comparison 14 other expression profiles of related human neural cells/tissues, including human adult hippocampus. To yield more confidence regarding differential expression, a method was applied to attach normalized expression data to genes with a low false-positive rate (<0.05). Finally, hierarchical cluster analysis was used to exhibit related gene expression patterns. Our results are in accordance with anatomical and physiological observations made during the developmental process of the human hippocampus. Furthermore, some novel findings appeared to be unique to our results. The abundant expression of genes for cell surface components and disease-related genes drew our attention. Twenty-four genes are significantly different from adult, and 13 genes might be developing hippocampus-specific candidate genes, including wnt2b and some Alzheimer's disease-related genes. Our results could provide useful information on the ontogeny, development, and function of cells in the human hippocampus at the molecular level and underscore the utility of large-scale, parallel gene expression analyses in the study of complex biological phenomena. PMID:12271469

  4. The nature of floral signals in Arabidopsis. I. Photosynthesis and a far-red photoresponse independently regulate flowering by increasing expression of FLOWERING LOCUS T (FT)

    PubMed Central

    King, Rod W.; Hisamatsu, Tamotsu; Goldschmidt, Eliezer E.; Blundell, Cheryl

    2008-01-01

    Arabidopsis flowers in long day (LD) in response to signals transported from the photoinduced leaf to the shoot apex. These LD signals may include protein of the gene FLOWERING LOCUS T (FT) while in short day (SD) with its slower flowering, signalling may involve sucrose and gibberellin. Here, it is shown that after 5 weeks growth in SD, a single LD up-regulated leaf blade expression of FT and CONSTANS (CO) within 4–8 h, and flowers were visible within 2–3 weeks. Plants kept in SDs were still vegetative 7 weeks later. This LD response was blocked in ft-1 and a co mutant. Exposure to different LD light intensities and spectral qualities showed that two LD photoresponses are important for up-regulation of FT and for flowering. Phytochrome is effective at a low intensity from far-red (FR)-rich incandescent lamps. Independently, photosynthesis is active in an LD at a high intensity from red (R)-rich fluorescent lamps. The photosynthetic role of a single high light LD is demonstrated here by the blocking of the flowering and FT increase on removal of atmospheric CO2 or by decreasing the LD light intensity by 10-fold. These conditions also reduced leaf blade sucrose content and photosynthetic gene expression. An SD light integral matching that in a single LD was not effective for flowering, although there was reasonable FT-independent flowering after 12 SD at high light. While a single photosynthetic LD strongly amplified FT expression, the ability to respond to the LD required an additional but unidentified photoresponse. The implications of these findings for studies with mutants and for flowering in natural conditions are discussed. PMID:18836142

  5. Widespread ectopic expression of olfactory receptor genes

    PubMed Central

    Feldmesser, Ester; Olender, Tsviya; Khen, Miriam; Yanai, Itai; Ophir, Ron; Lancet, Doron

    2006-01-01

    Background Olfactory receptors (ORs) are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information. PMID:16716209

  6. Gene Expression Patterns in Ovarian Carcinomas

    PubMed Central

    Schaner, Marci E.; Ross, Douglas T.; Ciaravino, Giuseppe; Sørlie, Therese; Troyanskaya, Olga; Diehn, Maximilian; Wang, Yan C.; Duran, George E.; Sikic, Thomas L.; Caldeira, Sandra; Skomedal, Hanne; Tu, I-Ping; Hernandez-Boussard, Tina; Johnson, Steven W.; O'Dwyer, Peter J.; Fero, Michael J.; Kristensen, Gunnar B.; Børresen-Dale, Anne-Lise; Hastie, Trevor; Tibshirani, Robert; van de Rijn, Matt; Teng, Nelson N.; Longacre, Teri A.; Botstein, David; Brown, Patrick O.; Sikic, Branimir I.

    2003-01-01

    We used DNA microarrays to characterize the global gene expression patterns in surface epithelial cancers of the ovary. We identified groups of genes that distinguished the clear cell subtype from other ovarian carcinomas, grade I and II from grade III serous papillary carcinomas, and ovarian from breast carcinomas. Six clear cell carcinomas were distinguished from 36 other ovarian carcinomas (predominantly serous papillary) based on their gene expression patterns. The differences may yield insights into the worse prognosis and therapeutic resistance associated with clear cell carcinomas. A comparison of the gene expression patterns in the ovarian cancers to published data of gene expression in breast cancers revealed a large number of differentially expressed genes. We identified a group of 62 genes that correctly classified all 125 breast and ovarian cancer specimens. Among the best discriminators more highly expressed in the ovarian carcinomas were PAX8 (paired box gene 8), mesothelin, and ephrin-B1 (EFNB1). Although estrogen receptor was expressed in both the ovarian and breast cancers, genes that are coregulated with the estrogen receptor in breast cancers, including GATA-3, LIV-1, and X-box binding protein 1, did not show a similar pattern of coexpression in the ovarian cancers. PMID:12960427

  7. Gene Expression Studies in Lygus lineolaris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genes are expressed in insect cells, as in all living organisms, by transcription of DNA into RNA followed by translation of RNA into proteins. The intricate patterns of differential gene expression in time and space directly influence the development and function of every aspect of the organism. Wh...

  8. Arabidopsis gene expression patterns during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  9. Controlling expression of genes in the unicellular alga Chlamydomonas reinhardtii with a vitamin-repressible riboswitch.

    PubMed

    Ramundo, Silvia; Rochaix, Jean-David

    2015-01-01

    Chloroplast genomes of land plants and algae contain generally between 100 and 150 genes. These genes are involved in plastid gene expression and photosynthesis and in various other tasks. The function of some chloroplast genes is still unknown and some of them appear to be essential for growth and survival. Repressible and reversible expression systems are highly desirable for functional and biochemical characterization of these genes. We have developed a genetic tool that allows one to regulate the expression of any coding sequence in the chloroplast genome of the unicellular alga Chlamydomonas reinhardtii. Our system is based on vitamin-regulated expression of the nucleus-encoded chloroplast Nac2 protein, which is specifically required for the expression of any plastid gene fused to the psbD 5'UTR. With this approach, expression of the Nac2 gene in the nucleus and, in turn, that of the chosen chloroplast gene artificially driven by the psbD 5'UTR, is controlled by the MetE promoter and Thi4 riboswitch, which can be inactivated in a reversible way by supplying vitamin B12 and thiamine to the growth medium, respectively. This system opens interesting possibilities for studying the assembly and turnover of chloroplast multiprotein complexes such as the photosystems, the ribosome, and the RNA polymerase. It also provides a way to overcome the toxicity often associated with the expression of proteins of biotechnological interest in the chloroplast. PMID:25605390

  10. Gene expression profile analysis in astaxanthin-induced Haematococcus pluvialis using a cDNA microarray.

    PubMed

    Eom, Hyunsuk; Lee, Choul-Gyun; Jin, EonSeon

    2006-05-01

    The unicellular green alga Haematococcus pluvialis (Volvocales) is known for the ketocarotenoid astaxanthin (3, 3'-dihydroxy-beta, beta-carotene-4, 4'-dione) accumulation, which is induced under unfavorable culture conditions. In this work, we used cDNA microarray analysis to screen differentially expressed genes in H. pluvialis under astaxanthin-inductive culture conditions, such as combination of cell exposure to high irradiance and nutrient deprivation. Among the 965 genes in the cDNA array, there are 144 genes exhibiting differential expression (twofold changes) under these conditions. A significant decrease in the expression of photosynthesis-related genes was shown in astaxanthin-accumulating cells (red cells). Defense- or stress-related genes and signal transduction genes were also induced in the red cells. A comparison of microarray and real-time PCR analysis showed good correlation between the differentially expressed genes by the two methods. Our results indicate that the cDNA microarray approach, as employed in this work, can be relied upon and used to monitor gene expression profiles in H. pluvialis. In addition, the genes that were differentially expressed during astaxanthin induction are suitable candidates for further study and can be used as tools for dissecting the molecular mechanism of this unique pigment accumulation process in the green alga H. pluvialis. PMID:16320067

  11. Regulatory hotspots are associated with plant gene expression under varying soil phosphorus supply in Brassica rapa.

    PubMed

    Hammond, John P; Mayes, Sean; Bowen, Helen C; Graham, Neil S; Hayden, Rory M; Love, Christopher G; Spracklen, William P; Wang, Jun; Welham, Sue J; White, Philip J; King, Graham J; Broadley, Martin R

    2011-07-01

    Gene expression is a quantitative trait that can be mapped genetically in structured populations to identify expression quantitative trait loci (eQTL). Genes and regulatory networks underlying complex traits can subsequently be inferred. Using a recently released genome sequence, we have defined cis- and trans-eQTL and their environmental response to low phosphorus (P) availability within a complex plant genome and found hotspots of trans-eQTL within the genome. Interval mapping, using P supply as a covariate, revealed 18,876 eQTL. trans-eQTL hotspots occurred on chromosomes A06 and A01 within Brassica rapa; these were enriched with P metabolism-related Gene Ontology terms (A06) as well as chloroplast- and photosynthesis-related terms (A01). We have also attributed heritability components to measures of gene expression across environments, allowing the identification of novel gene expression markers and gene expression changes associated with low P availability. Informative gene expression markers were used to map eQTL and P use efficiency-related QTL. Genes responsive to P supply had large environmental and heritable variance components. Regulatory loci and genes associated with P use efficiency identified through eQTL analysis are potential targets for further characterization and may have potential for crop improvement. PMID:21527424

  12. Gearbox gene expression and growth rate.

    PubMed

    Aldea, M; Garrido, T; Tormo, A

    1993-07-01

    Regulation of gene expression in prokaryotic cells usually takes place at the level of transcription initiation. Different forms of RNA polymerase recognizing specific promoters are engaged in the control of many prokaryotic regulons. This also seems to be the case for some Escherichia coli genes that are induced at low growth rates and by nutrient starvation. Their gene products are synthesized at levels inversely proportional to growth rate, and this mode of regulation has been termed gearbox gene expression. This kind of growth-rate modulation is exerted by specific transcriptional initiation signals, the gearbox promoters, and some of them depend on a putative new σ factor (RpoS). Gearbox promoters drive expression of morphogenetic and cell division genes at constant levels per cell and cycle to meet the demands of cell division and septum formation. A mechanism is proposed that could sense the growth rate of the cell to alter gene expression by the action of specific σ factors. PMID:24420108

  13. Quality measures for gene expression biclusters.

    PubMed

    Pontes, Beatriz; Girldez, Ral; Aguilar-Ruiz, Jess S

    2015-01-01

    An noticeable number of biclustering approaches have been proposed proposed for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. In this context, recognizing groups of co-expressed or co-regulated genes, that is, genes which follow a similar expression pattern, is one of the main objectives. Due to the problem complexity, heuristic searches are usually used instead of exhaustive algorithms. Furthermore, most of biclustering approaches use a measure or cost function that determines the quality of biclusters. Having a suitable quality metric for bicluster is a critical aspect, not only for guiding the search, but also for establishing a comparison criteria among the results obtained by different biclustering techniques. In this paper, we analyse a large number of existing approaches to quality measures for gene expression biclusters, as well as we present a comparative study of them based on their capability to recognize different expression patterns in biclusters. PMID:25763839

  14. Quality Measures for Gene Expression Biclusters

    PubMed Central

    Pontes, Beatriz; Girldez, Ral; Aguilar-Ruiz, Jess S.

    2015-01-01

    An noticeable number of biclustering approaches have been proposed proposed for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. In this context, recognizing groups of co-expressed or co-regulated genes, that is, genes which follow a similar expression pattern, is one of the main objectives. Due to the problem complexity, heuristic searches are usually used instead of exhaustive algorithms. Furthermore, most of biclustering approaches use a measure or cost function that determines the quality of biclusters. Having a suitable quality metric for bicluster is a critical aspect, not only for guiding the search, but also for establishing a comparison criteria among the results obtained by different biclustering techniques. In this paper, we analyse a large number of existing approaches to quality measures for gene expression biclusters, as well as we present a comparative study of them based on their capability to recognize different expression patterns in biclusters. PMID:25763839

  15. Aplysia californica neurons express microinjected neuropeptide genes.

    PubMed Central

    DesGroseillers, L; Cowan, D; Miles, M; Sweet, A; Scheller, R H

    1987-01-01

    Neuropeptide genes are expressed in specific subsets of large polyploid neurons in Aplysia californica. We have defined the transcription initiation sites of three of these neuropeptide genes (the R14, L11, and ELH genes) and determined the nucleotide sequence of the promoter regions. The genes contain the usual eucaryotic promoter signals as well as other structures of potential regulatory importance, including inverted and direct repeats. The L11 and ELH genes, which are otherwise unrelated, have homology in the promoter regions, while the R14 promoter was distinct. When cloned plasmids were microinjected into Aplysia neurons in organ culture, transitions between supercoiled, relaxed circular, and linear DNAs occurred along with ligation into high-molecular-weight species. About 20% of the microinjected neurons expressed the genes. The promoter region of the R14 gene functioned in expression of the microinjected DNA in all cells studied. When both additional 5' and 3' sequences were included, the gene was specifically expressed only in R14, suggesting that the specificity of expression is generated by a multicomponent repression system. Finally, the R14 peptide could be expressed in L11, demonstrating that it is possible to alter the transmitter phenotype of these neurons by introduction of cloned genes. Images PMID:3670293

  16. Methodological Limitations in Determining Astrocytic Gene Expression

    PubMed Central

    Peng, Liang; Guo, Chuang; Wang, Tao; Li, Baoman; Gu, Li; Wang, Zhanyou

    2013-01-01

    Traditionally, astrocytic mRNA and protein expression are studied by in situ hybridization (ISH) and immunohistochemically. This led to the concept that astrocytes lack aralar, a component of the malate-aspartate-shuttle. At least similar aralar mRNA and protein expression in astrocytes and neurons isolated by fluorescence-assisted cell sorting (FACS) reversed this opinion. Demonstration of expression of other astrocytic genes may also be erroneous. Literature data based on morphological methods were therefore compared with mRNA expression in cells obtained by recently developed methods for determination of cell-specific gene expression. All Na,K-ATPase-α subunits were demonstrated by immunohistochemistry (IHC), but there are problems with the cotransporter NKCC1. Glutamate and GABA transporter gene expression was well determined immunohistochemically. The same applies to expression of many genes of glucose metabolism, whereas a single study based on findings in bacterial artificial chromosome (BAC) transgenic animals showed very low astrocytic expression of hexokinase. Gene expression of the equilibrative nucleoside transporters ENT1 and ENT2 was recognized by ISH, but ENT3 was not. The same applies to the concentrative transporters CNT2 and CNT3. All were clearly expressed in FACS-isolated cells, followed by biochemical analysis. ENT3 was enriched in astrocytes. Expression of many nucleoside transporter genes were shown by microarray analysis, whereas other important genes were not. Results in cultured astrocytes resembled those obtained by FACS. These findings call for reappraisal of cellular nucleoside transporter expression. FACS cell yield is small. Further development of cell separation methods to render methods more easily available and less animal and cost consuming and parallel studies of astrocytic mRNA and protein expression by ISH/IHC and other methods are necessary, but new methods also need to be thoroughly checked. PMID:24324456

  17. Gene Expression Noise, Fitness Landscapes, and Evolution

    NASA Astrophysics Data System (ADS)

    Charlebois, Daniel

    The stochastic (or noisy) process of gene expression can have fitness consequences for living organisms. For example, gene expression noise facilitates the development of drug resistance by increasing the time scale at which beneficial phenotypic states can be maintained. The present work investigates the relationship between gene expression noise and the fitness landscape. By incorporating the costs and benefits of gene expression, we track how the fluctuation magnitude and timescale of expression noise evolve in simulations of cell populations under stress. We find that properties of expression noise evolve to maximize fitness on the fitness landscape, and that low levels of expression noise emerge when the fitness benefits of gene expression exceed the fitness costs (and that high levels of noise emerge when the costs of expression exceed the benefits). The findings from our theoretical/computational work offer new hypotheses on the development of drug resistance, some of which are now being investigated in evolution experiments in our laboratory using well-characterized synthetic gene regulatory networks in budding yeast. Nserc Postdoctoral Fellowship (Grant No. PDF-453977-2014).

  18. A comparative gene expression database for invertebrates

    PubMed Central

    2011-01-01

    Background As whole genome and transcriptome sequencing gets cheaper and faster, a great number of 'exotic' animal models are emerging, rapidly adding valuable data to the ever-expanding Evo-Devo field. All these new organisms serve as a fantastic resource for the research community, but the sheer amount of data, some published, some not, makes detailed comparison of gene expression patterns very difficult to summarize - a problem sometimes even noticeable within a single lab. The need to merge existing data with new information in an organized manner that is publicly available to the research community is now more necessary than ever. Description In order to offer a homogenous way of storing and handling gene expression patterns from a variety of organisms, we have developed the first web-based comparative gene expression database for invertebrates that allows species-specific as well as cross-species gene expression comparisons. The database can be queried by gene name, developmental stage and/or expression domains. Conclusions This database provides a unique tool for the Evo-Devo research community that allows the retrieval, analysis and comparison of gene expression patterns within or among species. In addition, this database enables a quick identification of putative syn-expression groups that can be used to initiate, among other things, gene regulatory network (GRN) projects. PMID:21861937

  19. Differential placental gene expression in severe preeclampsia.

    PubMed

    Sitras, V; Paulssen, R H; Grønaas, H; Leirvik, J; Hanssen, T A; Vårtun, A; Acharya, G

    2009-05-01

    We investigated the global placental gene expression profile in severe preeclampsia. Twenty-one women were randomly selected from 50 participants with uncomplicated pregnancies to match 21 patients with severe preeclampsia. A 30K Human Genome Survey Microarray v.2.0 (Applied Biosystems) was used to evaluate the gene expression profile. After RNA isolation, five preeclamptic placentas were excluded due to poor RNA quality. The series composed of 37 hybridizations in a one-channel detection system of chemiluminescence emitted by the microarrays. An empirical Bayes analysis was applied to find differentially expressed genes. In preeclamptic placentas 213 genes were significantly (fold-change>or=2 and pexpressed genes were associated with Alzheimer disease, angiogenesis, Notch-, TGFbeta- and VEGF-signalling pathways. Sixteen genes best discriminated preeclamptic from normal placentas. Comparison between early- (<34 weeks) and late-onset preeclampsia showed 168 differentially expressed genes with oxidative stress, inflammation, and endothelin signalling pathways mainly involved in early-onset disease. Validation of the microarray results was performed by RT-PCR, quantitative urine hCG measurement and placental histopathologic examination. In summary, placental gene expression is altered in preeclampsia and we provide a comprehensive list of the differentially expressed genes. Placental gene expression is different between early- and late-onset preeclampsia, suggesting differences in pathophysiology. PMID:19249095

  20. Nucleosome repositioning underlies dynamic gene expression.

    PubMed

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions. PMID:26966245

  1. Gene expression profiling of flag leaves at the booting stage in the japonica hybrid rice Huayou14 and its parental lines by microarray.

    PubMed

    Huangwei, Chu; Fuan, Niu; Can, Cheng; Jihua, Zhou; Xinqi, Wang; Xiaojin, Luo; Qin, Yuan; Liming, Cao

    2015-09-01

    Gene expression profiling using microarray has contributed significantly to heterosis studies. Using the Affymetrix rice genome array, we investigated gene expression profiles in the flag leaves of the japonica hybrid rice Huayou14 and its parental cultivars Shen9A and Fan14 at the booting stage. A total of 2057 genes differentially expressed (fold change ≥2 or ≤0.5) between Huayou14 and its parents were identified. Functional classification of the differentially expressed genes by Gene Ontology (GO) analysis indicated the differentially expressed genes were significantly enriched in photosynthesis-related cellular component categories (e.g. photosystem Ⅰ, chloroplast membrane and chloroplast envelope), and biological process categories (e.g. chlorophyll catabolic, chlorophyll biosynthetic and carotenoid biosynthetic processes). These results suggest that the changes in the photosynthetic ability of the japonica hybrid rice Huayou14 may be related to heterosis. Metabolic pathway analysis indicated that differentially expressed genes were significantly enriched in photosynthesis-antenna proteins and starch and sucrose metabolic pathways, instead of photosynthesis and carbon fixation pathways as reported previously. These results suggest that different genes or metabolic pathways might contribute to the heterosis of different hybrid combinations. PMID:26399533

  2. Secondary metabolite gene expression and interplay of bacterial functions in a tropical freshwater cyanobacterial bloom

    PubMed Central

    Penn, Kevin; Wang, Jia; Fernando, Samodha C; Thompson, Janelle R

    2014-01-01

    Cyanobacterial harmful algal blooms (cyanoHABs) appear to be increasing in frequency on a global scale. The Cyanobacteria in blooms can produce toxic secondary metabolites that make freshwater dangerous for drinking and recreation. To characterize microbial activities in a cyanoHAB, transcripts from a eutrophic freshwater reservoir in Singapore were sequenced for six samples collected over one day-night period. Transcripts from the Cyanobacterium Microcystis dominated all samples and were accompanied by at least 533 genera primarily from the Cyanobacteria, Proteobacteria, Bacteroidetes and Actinobacteria. Within the Microcystis population, abundant transcripts were from genes for buoyancy, photosynthesis and synthesis of the toxin microviridin, suggesting that these are necessary for competitive dominance in the Reservoir. During the day, Microcystis transcripts were enriched in photosynthesis and energy metabolism while at night enriched pathways included DNA replication and repair and toxin biosynthesis. Microcystis was the dominant source of transcripts from polyketide and non-ribosomal peptide synthase (PKS and NRPS, respectively) gene clusters. Unexpectedly, expression of all PKS/NRPS gene clusters, including for the toxins microcystin and aeruginosin, occurred throughout the day-night cycle. The most highly expressed PKS/NRPS gene cluster from Microcystis is not associated with any known product. The four most abundant phyla in the reservoir were enriched in different functions, including photosynthesis (Cyanobacteria), breakdown of complex organic molecules (Proteobacteria), glycan metabolism (Bacteroidetes) and breakdown of plant carbohydrates, such as cellobiose (Actinobacteria). These results provide the first estimate of secondary metabolite gene expression, functional partitioning and functional interplay in a freshwater cyanoHAB. PMID:24646695

  3. Secondary metabolite gene expression and interplay of bacterial functions in a tropical freshwater cyanobacterial bloom.

    PubMed

    Penn, Kevin; Wang, Jia; Fernando, Samodha C; Thompson, Janelle R

    2014-09-01

    Cyanobacterial harmful algal blooms (cyanoHABs) appear to be increasing in frequency on a global scale. The Cyanobacteria in blooms can produce toxic secondary metabolites that make freshwater dangerous for drinking and recreation. To characterize microbial activities in a cyanoHAB, transcripts from a eutrophic freshwater reservoir in Singapore were sequenced for six samples collected over one day-night period. Transcripts from the Cyanobacterium Microcystis dominated all samples and were accompanied by at least 533 genera primarily from the Cyanobacteria, Proteobacteria, Bacteroidetes and Actinobacteria. Within the Microcystis population, abundant transcripts were from genes for buoyancy, photosynthesis and synthesis of the toxin microviridin, suggesting that these are necessary for competitive dominance in the Reservoir. During the day, Microcystis transcripts were enriched in photosynthesis and energy metabolism while at night enriched pathways included DNA replication and repair and toxin biosynthesis. Microcystis was the dominant source of transcripts from polyketide and non-ribosomal peptide synthase (PKS and NRPS, respectively) gene clusters. Unexpectedly, expression of all PKS/NRPS gene clusters, including for the toxins microcystin and aeruginosin, occurred throughout the day-night cycle. The most highly expressed PKS/NRPS gene cluster from Microcystis is not associated with any known product. The four most abundant phyla in the reservoir were enriched in different functions, including photosynthesis (Cyanobacteria), breakdown of complex organic molecules (Proteobacteria), glycan metabolism (Bacteroidetes) and breakdown of plant carbohydrates, such as cellobiose (Actinobacteria). These results provide the first estimate of secondary metabolite gene expression, functional partitioning and functional interplay in a freshwater cyanoHAB. PMID:24646695

  4. Transcriptional regulation of secretin gene expression.

    PubMed

    Nishitani, J; Rindi, G; Lopez, M J; Upchurch, B H; Leiter, A B

    1995-01-01

    Expression of the gene encoding the hormone secretin is restricted to a specific enteroendocrine cell type and to beta-cells in developing pancreatic islets. To characterize regulatory elements in the secretin gene responsible for its expression in secretin-producing cells, we used a series of reporter genes for transient expression assays in transfection studies carried out in secretin-producing islet cell lines. Analysis of the transcriptional activity of deletion mutants identified a positive cis regulatory domain between 174 and 53 base pairs upstream from the transcriptional initiation site which was required for secretin gene expression in secretin-producing HIT insulinoma cells. Within this enhancer were sequences resembling two binding sites for the transcription factor Sp1, as well as a consensus sequence for binding to helix-loop-helix proteins. Analysis of these three elements by site-directed mutagenesis suggests that each is important for full transcriptional activity. The role of proximal enhancer sequences in directing secretin gene expression to appropriate tissues is further supported by studies in transgenic mice revealing that 1.6 kilobases of the secretin gene 5' flanking sequence were sufficient to direct the expression of either human growth hormone or simian virus 40 large T-antigen reporter genes to all major secretin-producing tissues. PMID:8774991

  5. Sexual differences of imprinted genes' expression levels.

    PubMed

    Faisal, Mohammad; Kim, Hana; Kim, Joomyeong

    2014-01-01

    In mammals, genomic imprinting has evolved as a dosage-controlling mechanism for a subset of genes that play critical roles in their unusual reproduction scheme involving viviparity and placentation. As such, many imprinted genes are highly expressed in sex-specific reproductive organs. In the current study, we sought to test whether imprinted genes are differentially expressed between the two sexes. According to the results, the expression levels of the following genes differ between the two sexes of mice: Peg3, Zim1, Igf2, H19 and Zac1. The expression levels of these imprinted genes are usually greater in males than in females. This bias is most obvious in the developing brains of 14.5-dpc embryos, but also detected in the brains of postnatal-stage mice. However, this sexual bias is not obvious in 10.5-dpc embryos, a developmental stage before the sexual differentiation. Thus, the sexual bias observed in the imprinted genes is most likely attributable by gonadal hormones rather than by sex chromosome complement. Overall, the results indicate that several imprinted genes are sexually different in terms of their expression levels, and further suggest that the transcriptional regulation of these imprinted genes may be influenced by unknown mechanisms associated with sexual differentiation. PMID:24125951

  6. High expression hampers horizontal gene transfer.

    PubMed

    Park, Chungoo; Zhang, Jianzhi

    2012-01-01

    Horizontal gene transfer (HGT), the movement of genetic material from one species to another, is a common phenomenon in prokaryotic evolution. Although the rate of HGT is known to vary among genes, our understanding of the cause of this variation, currently summarized by two rules, is far from complete. The first rule states that informational genes, which are involved in DNA replication, transcription, and translation, have lower transferabilities than operational genes. The second rule asserts that protein interactivity negatively impacts gene transferability. Here, we hypothesize that high expression hampers HGT, because the fitness cost of an HGT to the recipient, arising from the 1) energy expenditure in transcription and translation, 2) cytotoxic protein misfolding, 3) reduction in cellular translational efficiency, 4) detrimental protein misinteraction, and 5) disturbance of the optimal protein concentration or cell physiology, increases with the expression level of the transferred gene. To test this hypothesis, we examined laboratory and natural HGTs to Escherichia coli. We observed lower transferabilities of more highly expressed genes, even after controlling the confounding factors from the two established rules and the genic GC content. Furthermore, expression level predicts gene transferability better than all other factors examined. We also confirmed the significant negative impact of gene expression on the rate of HGTs to 127 of 133 genomes of eubacteria and archaebacteria. Together, these findings establish the gene expression level as a major determinant of horizontal gene transferability. They also suggest that most successful HGTs are initially slightly deleterious, fixed because of their negligibly low costs rather than high benefits to the recipient. PMID:22436996

  7. Gene expression in periodontal tissues following treatment

    PubMed Central

    Beikler, Thomas; Peters, Ulrike; Prior, Karola; Eisenacher, Martin; Flemmig, Thomas F

    2008-01-01

    Background In periodontitis, treatment aimed at controlling the periodontal biofilm infection results in a resolution of the clinical and histological signs of inflammation. Although the cell types found in periodontal tissues following treatment have been well described, information on gene expression is limited to few candidate genes. Therefore, the aim of the study was to determine the expression profiles of immune and inflammatory genes in periodontal tissues from sites with severe chronic periodontitis following periodontal therapy in order to identify genes involved in tissue homeostasis. Gingival biopsies from 12 patients with severe chronic periodontitis were taken six to eight weeks following non-surgical periodontal therapy, and from 11 healthy controls. As internal standard, RNA of an immortalized human keratinocyte line (HaCaT) was used. Total RNA was subjected to gene expression profiling using a commercially available microarray system focusing on inflammation-related genes. Post-hoc confirmation of selected genes was done by Realtime-PCR. Results Out of the 136 genes analyzed, the 5% most strongly expressed genes compared to healthy controls were Interleukin-12A (IL-12A), Versican (CSPG-2), Matrixmetalloproteinase-1 (MMP-1), Down syndrome critical region protein-1 (DSCR-1), Macrophage inflammatory protein-2β (Cxcl-3), Inhibitor of apoptosis protein-1 (BIRC-1), Cluster of differentiation antigen 38 (CD38), Regulator of G-protein signalling-1 (RGS-1), and Finkel-Biskis-Jinkins murine osteosarcoma virus oncogene (C-FOS); the 5% least strongly expressed genes were Receptor-interacting Serine/Threonine Kinase-2 (RIP-2), Complement component 3 (C3), Prostaglandin-endoperoxide synthase-2 (COX-2), Interleukin-8 (IL-8), Endothelin-1 (EDN-1), Plasminogen activator inhibitor type-2 (PAI-2), Matrix-metalloproteinase-14 (MMP-14), and Interferon regulating factor-7 (IRF-7). Conclusion Gene expression profiles found in periodontal tissues following therapy

  8. Gene expression homeostasis and chromosome architecture

    PubMed Central

    Seshasayee, Aswin Sai Narain

    2014-01-01

    In rapidly growing populations of bacterial cells, including those of the model organism Escherichia coli, genes essential for growth - such as those involved in protein synthesis - are expressed at high levels; this is in contrast to many horizontally-acquired genes, which are maintained at low transcriptional levels.1 This balance in gene expression states between 2 distinct classes of genes is established by a galaxy of transcriptional regulators, including the so-called nucleoid associated proteins (NAP) that contribute to shaping the chromosome.2 Besides these active players in gene regulation, it is not too far-fetched to anticipate that genome organization in terms of how genes are arranged on the chromosome,3 which is the result of long-drawn transactions among genome rearrangement processes and selection, and the manner in which it is structured inside the cell, plays a role in establishing this balance. A recent study from our group has contributed to the literature investigating the interplay between global transcriptional regulators and genome organization in establishing gene expression homeostasis.4 In particular, we address a triangle of functional interactions among genome organization, gene expression homeostasis and horizontal gene transfer. PMID:25997086

  9. Candidate reference genes for gene expression studies in water lily.

    PubMed

    Luo, Huolin; Chen, Sumei; Wan, Hongjian; Chen, Fadi; Gu, Chunsun; Liu, Zhaolei

    2010-09-01

    The selection of an appropriate reference gene(s) is a prerequisite for the proper interpretation of quantitative Real-Time polymerase chain reaction data. We report the evaluation of eight candidate reference genes across various tissues and treatments in the water lily by the two software packages geNorm and NormFinder. Across all samples, clathrin adaptor complexes medium subunit (AP47) and actin 11 (ACT11) emerged as the most suitable reference genes. Across different tissues, ACT11 and elongation factor 1-alpha (EF1alpha) exhibited a stable expression pattern. ACT11 and AP47 also stably expressed in roots subjected to various treatments, but in the leaves of the same plants the most stably expressed genes were ubiquitin-conjugating enzyme 16 (UBC16) and ACT11. PMID:20452325

  10. Selenite transiently represses transcription of photosynthesis-related genes in potato leaves.

    PubMed

    Poggi, Valeria; Del Vescovo, Valerio; Di Sanza, Claudio; Negri, Rodolfo; Hochkoeppler, Alejandro

    2008-01-01

    A striking response of potato leaves to aspersion with selenite was observed at the transcriptional level by means of cDNA microarrays analysis. This response is characterized by a general transient repression of genes coding for components of photosynthetic systems and of other light-regulated genes. In particular, maximal repression was observed 8 h after selenite aspersion, while 24 h after the treatment a complete recovery of normal transcriptional levels was detected. Another general feature of the transcriptional response to selenite is represented by the transcriptional induction of genes related to amino acid metabolism, and to stress defense; interestingly, two genes coding for glutathione S-transferases were found early-induced upon selenite treatment. PMID:17846914

  11. Dynamic modeling of gene expression data

    NASA Technical Reports Server (NTRS)

    Holter, N. S.; Maritan, A.; Cieplak, M.; Fedoroff, N. V.; Banavar, J. R.

    2001-01-01

    We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small.

  12. Dynamic modeling of gene expression data

    PubMed Central

    Holter, Neal S.; Maritan, Amos; Cieplak, Marek; Fedoroff, Nina V.; Banavar, Jayanth R.

    2001-01-01

    We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small. PMID:11172013

  13. Nucleosomal promoter variation generates gene expression noise

    PubMed Central

    Brown, Christopher R.; Boeger, Hinrich

    2014-01-01

    Gene product molecule numbers fluctuate over time and between cells, confounding deterministic expectations. The molecular origins of this noise of gene expression remain unknown. Recent EM analysis of single PHO5 gene molecules of yeast indicated that promoter molecules stochastically assume alternative nucleosome configurations at steady state, including the fully nucleosomal and nucleosome-free configuration. Given that distinct configurations are unequally conducive to transcription, the nucleosomal variation of promoter molecules may constitute a source of gene expression noise. This notion, however, implies an untested conjecture, namely that the nucleosomal variation arises de novo or intrinsically (i.e., that it cannot be explained as the result of the promoter’s deterministic response to variation in its molecular surroundings). Here, we show—by microscopically analyzing the nucleosome configurations of two juxtaposed physically linked PHO5 promoter copies—that the configurational variation, indeed, is intrinsically stochastic and thus, a cause of gene expression noise rather than its effect. PMID:25468975

  14. A Novel, Photosynthesis-Associated Thioredoxin-Like Gene: Final Technical Report

    SciTech Connect

    Collier, Jackie, L

    2005-09-13

    Many aspects of the biosynthesis and physiological regulation of the photosynthetic apparatus of plants, algae and cyanobacteria remain to be understood, and are likely to involve yet-unidentified proteins that carry out oxidation/reduction (redox) reactions. TxlA from Synechococcus sp. strain PCC 7942 and its homologues from other cyanobacteria and plants, including Sll1980 from the cyanobacterium Synechocystis sp. strain PCC 6803, are likely to be among these proteins. In fact, the homologue of TxlA in the plant Arabidopsis thaliana, HCF164, may be required for synthesis of the cytochrome b6f complex that transfers electrons between the two photosynthetic reaction centers. TxlAs share an N-terminal hydrophobic domain, a central thioredoxin-like domain, and a unique C-terminal hydrophilic domain. Plant and algal TxlAs are nuclear-encoded and have an additional N-terminal domain that targets them to the chloroplast. We have found that the common N-terminal domain of TxlA anchors it to a membrane, probably the thylakoid (photosynthetic) membrane (where HCF164 is also localized, with its thioredoxin-like domain in the thylakoid lumen). We have also found that the thioredoxin-like domain is likely to assume the conformation typical of thioredoxins and possesses thioredoxin-like redox activity in vitro, and that the C-terminal domain is important to the structure and function of the thioredoxin-like domain both in vivo and in vitro. These data show that TxlAs have the cellular location and enzymatic activity expected of a protein involved in the biosynthesis of redox components or redox regulation of the photosynthetic apparatus. We were unable to inactivate the thioredoxin-like domain of TxlA in either PCC 7942 or PCC 6803, under either photosynthetic or heterotrophic growth conditions. We also found that expression of antisense txlA mRNA from an IPTG-regulated promoter in PCC 7942 was lethal, most likely because it effectively inactivated txlA by ''RNA silencing

  15. Amino acid regulation of gene expression.

    PubMed Central

    Fafournoux, P; Bruhat, A; Jousse, C

    2000-01-01

    The impact of nutrients on gene expression in mammals has become an important area of research. Nevertheless, the current understanding of the amino acid-dependent control of gene expression is limited. Because amino acids have multiple and important functions, their homoeostasis has to be finely maintained. However, amino-acidaemia can be affected by certain nutritional conditions or various forms of stress. It follows that mammals have to adjust several of their physiological functions involved in the adaptation to amino acid availability by regulating the expression of numerous genes. The aim of the present review is to examine the role of amino acids in regulating mammalian gene expression and protein turnover. It has been reported that some genes involved in the control of growth or amino acid metabolism are regulated by amino acid availability. For instance, limitation of several amino acids greatly increases the expression of the genes encoding insulin-like growth factor binding protein-1, CHOP (C/EBP homologous protein, where C/EBP is CCAAT/enhancer binding protein) and asparagine synthetase. Elevated mRNA levels result from both an increase in the rate of transcription and an increase in mRNA stability. Several observations suggest that the amino acid regulation of gene expression observed in mammalian cells and the general control process described in yeast share common features. Moreover, amino acid response elements have been characterized in the promoters of the CHOP and asparagine synthetase genes. Taken together, the results discussed in the present review demonstrate that amino acids, by themselves, can, in concert with hormones, play an important role in the control of gene expression. PMID:10998343

  16. Efficient ectopic gene expression targeting chick mesoderm.

    PubMed

    Oberg, Kerby C; Pira, Charmaine U; Revelli, Jean-Pierre; Ratz, Beate; Aguilar-Cordova, Estuardo; Eichele, Gregor

    2002-07-01

    The chick model has been instrumental in illuminating genes that regulate early vertebrate development and pattern formation. Targeted ectopic gene expression is critical to dissect further the complicated gene interactions that are involved. In an effort to develop a consistent method to ectopically introduce and focally express genes in chick mesoderm, we evaluated and optimized several gene delivery methods, including implantation of 293 cells laden with viral vectors, direct adenoviral injection, and electroporation (EP). We targeted the mesoderm of chick wing buds between stages 19 and 21 (Hamburger and Hamilton stages) and used beta-galactosidase and green fluorescent protein (GFP) to document gene transfer. Expression constructs using the cytomegalovirus (CMV) promoter, the beta-actin promoter, and vectors with an internal ribosomal entry sequence linked to GFP (IRES-GFP) were also compared. After gene transfer, we monitored expression for up to 3 days. The functionality of ectopic expression was demonstrated with constructs containing the coding sequences for Shh, a secreted signaling protein, or Hoxb-8, a transcription factor, both of which can induce digit duplication when ectopically expressed in anterior limb mesoderm. We identified several factors that enhance mesodermal gene transfer. First, the use of a vector with the beta-actin promoter coupled to the 69% fragment of the bovine papilloma virus yielded superior mesodermal expression both by markers and functional results when compared with several CMV-driven vectors. Second, we found the use of mineral oil to be an important adjuvant for EP and direct viral injection to localize and contain vector within the mesoderm at the injection site. Lastly, although ectopic expression could be achieved with all three methods, we favored EP confined to the mesoderm with insulated microelectrodes (confined microelectroporation- CMEP), because vector construction is rapid, the method is efficient, and results

  17. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis

    PubMed Central

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  18. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    PubMed

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  19. Homeobox genes expressed during echinoderm arm regeneration.

    PubMed

    Ben Khadra, Yousra; Said, Khaled; Thorndyke, Michael; Martinez, Pedro

    2014-04-01

    Regeneration in echinoderms has proved to be more amenable to study in the laboratory than the more classical vertebrate models, since the smaller genome size and the absence of multiple orthologs for different genes in echinoderms simplify the analysis of gene function during regeneration. In order to understand the role of homeobox-containing genes during arm regeneration in echinoderms, we isolated the complement of genes belonging to the Hox class that are expressed during this process in two major echinoderm groups: asteroids (Echinaster sepositus and Asterias rubens) and ophiuroids (Amphiura filiformis), both of which show an extraordinary capacity for regeneration. By exploiting the sequence conservation of the homeobox, putative orthologs of several Hox genes belonging to the anterior, medial, and posterior groups were isolated. We also report the isolation of a few Hox-like genes expressed in the same systems. PMID:24309817

  20. Reading Genomes and Controlling Gene Expression

    NASA Astrophysics Data System (ADS)

    Libchaber, Albert

    2000-03-01

    Molecular recognition of DNA sequences is achieved by DNA hybridization of complementary sequences. We present various scenarios for optimization, leading to microarrays and global measurement. Gene expression can be controlled using gene constructs immobilized on a template with micron scale temperature heaters. We will discuss and present results on protein microarrays.

  1. Polyunsaturated fatty acids and gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose of review. This review focuses on the effect(s) of n-3 polyunsaturated fatty acids (PUFA) on gene transcription as determined from data generated using cDNA microarrays. Introduced within the past decade, this methodology allows detection of the expression of thousands of genes simultaneo...

  2. Gene expression in rat brain.

    PubMed

    Milner, R J; Sutcliffe, J G

    1983-08-25

    191 randomly selected cDNA clones prepared from rat brain cytoplasmic poly (A)+ RNA were screened by Northern blot hybridization to rat brain, liver and kidney RNA to determine the tissue distribution, abundance and size of the corresponding brain mRNA. 18% hybridized to mRNAs each present equally in the three tissues, 26% to mRNAs differentially expressed in the tissues, and 30% to mRNAs present only in the brain. An additional 26% of the clones failed to detect mRNA in the three tissues at an abundance level of about 0.01%, but did contain rat cDNA as demonstrated by Southern blotting; this class probably represents rare mRNAs expressed in only some brain cells. Therefore, most mRNA expressed in brain is either specific to brain or otherwise displays regulation. Rarer mRNA species tend to be larger than the more abundant species, and tend to be brain specific; the rarest, specific mRNAs average 5000 nucleotides in length. Ten percent of the clones hybridize to multiple mRNAs, some of which are expressed from small multigenic families. From these data we estimate that there are probably at most 30,000 distinct mRNA species expressed in the rat brain, the majority of which are uniquely expressed in the brain. PMID:6193485

  3. Control of gene expression in trypanosomes.

    PubMed Central

    Vanhamme, L; Pays, E

    1995-01-01

    Trypanosomes are protozoan agents of major parasitic diseases such as Chagas' disease in South America and sleeping sickness of humans and nagana disease of cattle in Africa. They are transmitted to mammalian hosts by specific insect vectors. Their life cycle consists of a succession of differentiation and growth phases requiring regulated gene expression to adapt to the changing extracellular environment. Typical of such stage-specific expression is that of the major surface antigens of Trypanosoma brucei, procyclin in the procyclic (insect) form and the variant surface glycoprotein (VSG) in the bloodstream (mammalian) form. In trypanosomes, the regulation of gene expression is effected mainly at posttranscriptional levels, since primary transcription of most of the genes occurs in long polycistronic units and is constitutive. The transcripts are processed by transsplicing and polyadenylation under the influence of intergenic polypyrimidine tracts. These events show some developmental regulation. Untranslated sequences of the mRNAs seem to play a prominent role in the stage-specific control of individual gene expression, through a modulation of mRNA abundance. The VSG and procyclin transcription units exhibit particular features that are probably related to the need for a high level of expression. The promoters and RNA polymerase driving the expression of these units resemble those of the ribosomal genes. Their mutually exclusive expression is ensured by controls operating at several levels, including RNA elongation. Antigenic variation in the bloodstream is achieved through DNA rearrangements or alternative activation of the telomeric VSG gene expression sites. Recent discoveries, such as the existence of a novel nucleotide in telomeric DNA and the generation of point mutations in VSG genes, have shed new light on the mechanisms and consequences of antigenic variation. PMID:7603410

  4. Application of multidisciplinary analysis to gene expression.

    SciTech Connect

    Wang, Xuefel; Kang, Huining; Fields, Chris; Cowie, Jim R.; Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy; Mosquera-Caro, Monica P.; Xu, Yuexian; Martin, Shawn Bryan; Helman, Paul; Andries, Erik; Ar, Kerem; Potter, Jeffrey; Willman, Cheryl L.; Murphy, Maurice H.

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  5. Phytochrome-regulated Gene Expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of all genes involved in the phytochrome (phy)-mediated responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth and development. This article highlights and integrates the central findings of two recent compre...

  6. Expression profiles of sugarcane under drought conditions: Variation in gene regulation

    PubMed Central

    de Andrade, Júlio César Farias; Terto, Jackeline; Silva, José Vieira; Almeida, Cícero

    2015-01-01

    Abstract Drought is a major factor in decreased sugarcane productivity because of the resulting morphophysiological effects that it causes. Gene expression studies that have examined the influence of water stress in sugarcane have yielded divergent results, indicating the absence of a fixed pattern of changes in gene expression. In this work, we investigated the expression profiles of 12 genes in the leaves of a drought-tolerant genotype (RB72910) of sugarcane and compared the results with those of other studies. The genotype was subjected to 80–100% water availability (control condition) and 0–20% water availability (simulated drought). To analyze the physiological status, the SPAD index, Fv/Fm ratio, net photosynthesis (A), stomatal conductance (g s) and stomatal transpiration (E) were measured. Total RNA was extracted from leaves and the expression of SAMDC, ZmPIP2-1 protein, ZmTIP4-2 protein, WIP protein, LTP protein, histone H3, DNAj, ferredoxin I, β-tubulin, photosystem I, gene 1 and gene 2 was analyzed by quantitative real-time PCR (RT-PCR). Important differences in the expression profiles of these genes were observed when compared with other genotypes, suggesting that complex defense mechanisms are activated in response to water stress. However, there was no recognizable pattern for the changes in expression of the different proteins associated with tolerance to drought stress. PMID:26537606

  7. Improving Photosynthesis

    PubMed Central

    Evans, John R.

    2013-01-01

    Photosynthesis is the basis of plant growth, and improving photosynthesis can contribute toward greater food security in the coming decades as world population increases. Multiple targets have been identified that could be manipulated to increase crop photosynthesis. The most important target is Rubisco because it catalyses both carboxylation and oxygenation reactions and the majority of responses of photosynthesis to light, CO2, and temperature are reflected in its kinetic properties. Oxygenase activity can be reduced either by concentrating CO2 around Rubisco or by modifying the kinetic properties of Rubisco. The C4 photosynthetic pathway is a CO2-concentrating mechanism that generally enables C4 plants to achieve greater efficiency in their use of light, nitrogen, and water than C3 plants. To capitalize on these advantages, attempts have been made to engineer the C4 pathway into C3 rice (Oryza sativa). A simpler approach is to transfer bicarbonate transporters from cyanobacteria into chloroplasts and prevent CO2 leakage. Recent technological breakthroughs now allow higher plant Rubisco to be engineered and assembled successfully in planta. Novel amino acid sequences can be introduced that have been impossible to reach via normal evolution, potentially enlarging the range of kinetic properties and breaking free from the constraints associated with covariation that have been observed between certain kinetic parameters. Capturing the promise of improved photosynthesis in greater yield potential will require continued efforts to improve carbon allocation within the plant as well as to maintain grain quality and resistance to disease and lodging. PMID:23812345

  8. Improving photosynthesis.

    PubMed

    Evans, John R

    2013-08-01

    Photosynthesis is the basis of plant growth, and improving photosynthesis can contribute toward greater food security in the coming decades as world population increases. Multiple targets have been identified that could be manipulated to increase crop photosynthesis. The most important target is Rubisco because it catalyses both carboxylation and oxygenation reactions and the majority of responses of photosynthesis to light, CO₂, and temperature are reflected in its kinetic properties. Oxygenase activity can be reduced either by concentrating CO₂ around Rubisco or by modifying the kinetic properties of Rubisco. The C₄ photosynthetic pathway is a CO₂-concentrating mechanism that generally enables C₄ plants to achieve greater efficiency in their use of light, nitrogen, and water than C₃ plants. To capitalize on these advantages, attempts have been made to engineer the C₄ pathway into C₃ rice (Oryza sativa). A simpler approach is to transfer bicarbonate transporters from cyanobacteria into chloroplasts and prevent CO₂ leakage. Recent technological breakthroughs now allow higher plant Rubisco to be engineered and assembled successfully in planta. Novel amino acid sequences can be introduced that have been impossible to reach via normal evolution, potentially enlarging the range of kinetic properties and breaking free from the constraints associated with covariation that have been observed between certain kinetic parameters. Capturing the promise of improved photosynthesis in greater yield potential will require continued efforts to improve carbon allocation within the plant as well as to maintain grain quality and resistance to disease and lodging. PMID:23812345

  9. Regulation of immunoglobulin gene rearrangement and expression.

    PubMed

    Taussig, M J; Sims, M J; Krawinkel, U

    1989-05-01

    The molecular genetic events leading to Ig expression and their control formed the topic of a recent EMBO workshop. This report by Michael Taussig, Martin Sims and Ulrich Krawinkel discusses contributions dealing with genes expressed in early pre-B cells, the mechanism of rearrangement, aberrant rearrangements seen in B cells of SCID mice, the feedback control of rearrangement as studied in transgenic mice, the control of Ig expression at the transcriptional and post-transcriptional levels, and class switching. PMID:2787158

  10. Heterelogous Expression of Plant Genes

    PubMed Central

    Yesilirmak, Filiz; Sayers, Zehra

    2009-01-01

    Heterologous expression allows the production of plant proteins in an organism which is simpler than the natural source. This technology is widely used for large-scale purification of plant proteins from microorganisms for biochemical and biophysical analyses. Additionally expression in well-defined model organisms provides insights into the functions of proteins in complex pathways. The present review gives an overview of recombinant plant protein production methods using bacteria, yeast, insect cells, and Xenopus laevis oocytes and discusses the advantages of each system for functional studies and protein characterization. PMID:19672459

  11. Introduction to the Gene Expression Analysis.

    PubMed

    Segundo-Val, Ignacio San; Sanz-Lozano, Catalina S

    2016-01-01

    In 1941, Beadle and Tatum published experiments that would explain the basis of the central dogma of molecular biology, whereby the DNA through an intermediate molecule, called RNA, results proteins that perform the functions in cells. Currently, biomedical research attempts to explain the mechanisms by which develops a particular disease, for this reason, gene expression studies have proven to be a great resource. Strictly, the term "gene expression" comprises from the gene activation until the mature protein is located in its corresponding compartment to perform its function and contribute to the expression of the phenotype of cell.The expression studies are directed to detect and quantify messenger RNA (mRNA) levels of a specific gene. The development of the RNA-based gene expression studies began with the Northern Blot by Alwine et al. in 1977. In 1969, Gall and Pardue and John et al. independently developed the in situ hybridization, but this technique was not employed to detect mRNA until 1986 by Coghlan. Today, many of the techniques for quantification of RNA are deprecated because other new techniques provide more information. Currently the most widely used techniques are qPCR, expression microarrays, and RNAseq for the transcriptome analysis. In this chapter, these techniques will be reviewed. PMID:27300529

  12. Tracking Difference in Gene Expression in a Time-Course Experiment Using Gene Set Enrichment Analysis

    PubMed Central

    Wong, Pui Shan; Tanaka, Michihiro; Sunaga, Yoshihiko; Tanaka, Masayoshi; Taniguchi, Takeaki; Yoshino, Tomoko; Tanaka, Tsuyoshi; Fujibuchi, Wataru; Aburatani, Sachiyo

    2014-01-01

    Fistulifera sp. strain JPCC DA0580 is a newly sequenced pennate diatom that is capable of simultaneously growing and accumulating lipids. This is a unique trait, not found in other related microalgae so far. It is able to accumulate between 40 to 60% of its cell weight in lipids, making it a strong candidate for the production of biofuel. To investigate this characteristic, we used RNA-Seq data gathered at four different times while Fistulifera sp. strain JPCC DA0580 was grown in oil accumulating and non-oil accumulating conditions. We then adapted gene set enrichment analysis (GSEA) to investigate the relationship between the difference in gene expression of 7,822 genes and metabolic functions in our data. We utilized information in the KEGG pathway database to create the gene sets and changed GSEA to use re-sampling so that data from the different time points could be included in the analysis. Our GSEA method identified photosynthesis, lipid synthesis and amino acid synthesis related pathways as processes that play a significant role in oil production and growth in Fistulifera sp. strain JPCC DA0580. In addition to GSEA, we visualized the results by creating a network of compounds and reactions, and plotted the expression data on top of the network. This made existing graph algorithms available to us which we then used to calculate a path that metabolizes glucose into triacylglycerol (TAG) in the smallest number of steps. By visualizing the data this way, we observed a separate up-regulation of genes at different times instead of a concerted response. We also identified two metabolic paths that used less reactions than the one shown in KEGG and showed that the reactions were up-regulated during the experiment. The combination of analysis and visualization methods successfully analyzed time-course data, identified important metabolic pathways and provided new hypotheses for further research. PMID:25268590

  13. Noise minimization in eukaryotic gene expression

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-15

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  14. Physiological performance, secondary metabolite and expression profiling of genes associated with drought tolerance in Withania somnifera.

    PubMed

    Sanchita; Singh, Ruchi; Mishra, Anand; Dhawan, Sunita S; Shirke, Pramod A; Gupta, Madan M; Sharma, Ashok

    2015-11-01

    Physiological, biochemical, and gene expression responses under drought stress were studied in Withania somnifera. Photosynthesis rate, stomatal conductance, transpiration rate, relative water content, chlorophyll content, and quantum yield of photosystems I and II (PSI and PSII) decreased in response to drought stress. Comparative expression of genes involved in osmoregulation, detoxification, signal transduction, metabolism, and transcription factor was analyzed through quantitative RT-PCR. The genes encoding 1-pyrroline-5-carboxylate synthetase (P5CS), glutathione S-transferase (GST), superoxide dismutase (SOD), serine threonine-protein kinase (STK), serine threonine protein phosphatase (PSP), aldehyde dehydrogenase (AD), leucoanthocyanidin dioxygenase/anthocyanin synthase (LD/AS), HSP, MYB, and WRKY have shown upregulation in response to drought stress condition in leaf tissues. Enhanced detoxification and osmoregulation along with increased withanolides production were also observed under drought stress. The results of this study will be helpful in developing stress-tolerant and high secondary metabolite yielding genotypes. PMID:25691002

  15. Aminoglycoside uptake increased by tet gene expression.

    PubMed Central

    Merlin, T L; Davis, G E; Anderson, W L; Moyzis, R K; Griffith, J K

    1989-01-01

    The expression of extrachromosomal tet genes not only confers tetracycline resistance but also increases the susceptibilities of gram-negative bacteria to commonly used aminoglycoside antibiotics. We investigated the possibility that tet expression increases aminoglycoside susceptibility by increasing bacterial uptake of aminoglycoside. Studies of [3H]gentamicin uptake in paired sets of Escherichia coli HB101 and Salmonella typhimurium LT2 expressing and not expressing tet showed that tet expression accelerates energy-dependent [3H]gentamicin uptake. Increased [3H]gentamicin uptake was accompanied by decreased bacterial protein synthesis and bacterial growth. Increased aminoglycoside uptake occurred whether tet expression was constitutive or induced, whether the tet gene was class B or C, and whether the tet gene was plasmid borne or integrated into the bacterial chromosome. tet expression produced no measurable change in membrane potential, suggesting that tet expression increases aminoglycoside uptake either by increasing the availability of specific carriers or by lowering the minimum membrane potential that is necessary for uptake. PMID:2684011

  16. Inferring differentiation pathways from gene expression

    PubMed Central

    Costa, Ivan G.; Roepcke, Stefan; Hafemeister, Christoph; Schliep, Alexander

    2008-01-01

    Motivation: The regulation of proliferation and differentiation of embryonic and adult stem cells into mature cells is central to developmental biology. Gene expression measured in distinguishable developmental stages helps to elucidate underlying molecular processes. In previous work we showed that functional gene modules, which act distinctly in the course of development, can be represented by a mixture of trees. In general, the similarities in the gene expression programs of cell populations reflect the similarities in the differentiation path. Results: We propose a novel model for gene expression profiles and an unsupervised learning method to estimate developmental similarity and infer differentiation pathways. We assess the performance of our model on simulated data and compare it with favorable results to related methods. We also infer differentiation pathways and predict functional modules in gene expression data of lymphoid development. Conclusions: We demonstrate for the first time how, in principal, the incorporation of structural knowledge about the dependence structure helps to reveal differentiation pathways and potentially relevant functional gene modules from microarray datasets. Our method applies in any area of developmental biology where it is possible to obtain cells of distinguishable differentiation stages. Availability: The implementation of our method (GPL license), data and additional results are available at http://algorithmics.molgen.mpg.de/Supplements/InfDif/ Contact: filho@molgen.mpg.de, schliep@molgen.mpg.de Supplementary information: Supplementary data is available at Bioinformatics online. PMID:18586709

  17. Gene expression following acute morphine administration.

    PubMed

    Loguinov, A V; Anderson, L M; Crosby, G J; Yukhananov, R Y

    2001-08-28

    The long-term response to neurotropic drugs depends on drug-induced neuroplasticity and underlying changes in gene expression. However, alterations in neuronal gene expression can be observed even following single injection. To investigate the extent of these changes, gene expression in the medial striatum and lumbar part of the spinal cord was monitored by cDNA microarray following single injection of morphine. Using robust and resistant linear regression (MM-estimator) with simultaneous prediction confidence intervals, we detected differentially expressed genes. By combining the results with cluster analysis, we have found that a single morphine injection alters expression of two major groups of genes, for proteins involved in mitochondrial respiration and for cytoskeleton-related proteins. RNAs for these proteins were mostly downregulated both in the medial striatum and in lumbar part of the spinal cord. These transitory changes were prevented by coadministration of the opioid antagonist naloxone. Data indicate that microarray analysis by itself is useful in describing the effect of well-known substances on the nervous system and provides sufficient information to propose a potentially novel pathway mediating its activity. PMID:11526201

  18. Human AZU-1 gene, variants thereof and expressed gene products

    DOEpatents

    Chen, Huei-Mei; Bissell, Mina

    2004-06-22

    A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.

  19. Transcriptome-wide Changes in Coral Gene Expression at Noon and Midnight Under Field Conditions.

    PubMed

    Ruiz-Jones, Lupita J; Palumbi, Stephen R

    2015-06-01

    Reef-building corals experience high daily variation in their environment, food availability, and physiological activities such as calcification and photosynthesis by endosymbionts. On Ofu Island, American Samoa, we investigated day-night differences in gene expression under field conditions of changing pH, temperature, light, and oxygen. Using RNASeq techniques, we compared two replicate transcriptomes from a single coral colony of Acropora hyacinthus over six noons and five midnights. We identified 344 contigs with significant expression differences across 16,800 contigs in the transcriptome, most with small fold-changes. However, there were 21 contigs with fold-changes ranging from 10 to 141. The largest changes were in a set of transcription factors strongly associated with day-night gene regulation in other animals, including cryptochromes, thyrotroph embryonic factor, and D site-binding protein. We also found large daytime increases in a set of genes involved in glucose transport and glycogen storage. We found small expression differences in genes associated with aerobic ATP production and hypoxia response, along with slightly higher expression of most calcification genes at noon. Although >40-fold-changes in expression occur in important transcription factors, downstream gene regulation seems very stable in corals from day to night compared to other animals studied. PMID:26124449

  20. Alternative-splicing-mediated gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  1. Differentially expressed genes of Chenopodium amaranticolor in response to cymbidium mosaic virus infection.

    PubMed

    Kim, Su Min; Baek, Eseul; Ryu, Ki Hyun; Choi, Sun Hee

    2016-09-01

    Cymbidium mosaic virus (CymMV)-induced expressed sequence tag (EST) clones from Chenopodium amaranticolor were identified. CymMV was mechanically inoculated onto C. amaranticolor, and local lesion symptoms were observed. Inoculated leaves were collected on serial days post inoculation (dpi) to identify activated or suppressed genes. mRNA isolation and suppression subtractive hybridization (SSH) were then performed to identify differentially expressed genes related to the local lesion response. Fifty-three ESTs, including genes related to defense and stress responses (e.g., lipoxygenase, jasmonate-induced protein, and heat shock protein), were generated. In addition, a large proportion of the ESTs were found to be involved in photosynthesis, as determined by their functional categories. Expression levels of several EST genes were observed using quantitative real-time reverse transcription-polymerase chain reaction, and the evaluated genes showed varying levels of expression during the experimental period. In this study, differentially expressed sequences via SSH were identified from CymMV-infected C. amaranticolor, and profiling and annotation were carried out to determine the expression pattern of CymMV and its interaction with C. amaranticolor. PMID:27364083

  2. Analysis of gene expression patterns and levels in maize hybrids and their parents.

    PubMed

    Nie, H S; Li, S P; Shan, X H; Wu, Y; Su, S Z; Liu, H K; Han, J Y; Yuan, Y P

    2015-01-01

    Heterosis has greatly contributed to conventional plant breeding and is widely used to increase crop plant productivity. However, although some studies have explored the mechanisms of heterosis at the genomic and transcriptome level, these mechanisms still remain unclear. The growth and development of maize seedlings and immature embryos have an important impact on subsequent production. This study investigated differentially expressed genes (DEGs) between parents and reciprocal hybrids in the seedling leaves, roots, and immature embryo 15 days after pollination using amplified fragment length polymorphism (AFLP)-based transcript profiling (cDNA-AFLP). We isolated 180, 170, and 108 genes from the leaves, roots, and immature embryos, respectively, that were differentially expressed between hybrids and parents. Sequencing and functional analysis revealed that 107 transcript-derived fragments in the roots and leaves and 90 in the immature embryos were involved in known functions, whereas many DEGs had roles in plant growth and development, photosynthesis, signal transduction, and seed germination. Quantitative reverse-transcription polymerase chain reaction analysis of relative expression levels between reciprocal hybrids and both parental genotypes of selected genes produced results that were consistent with cDNA-AFLP. We validated the expression patterns of 15 selected genes related to heterosis formation and revealed that most showed non-additive expression in one or both hybrids, including dominant, underdominant, and overdominant expression. This indicates that gene-regulatory interactions among parental alleles play an important role in heterosis during the early developmental stages of maize. PMID:26634505

  3. Photosynthesis, water use, and root viability under water stress as affected by expression of SAG12-ipt controlling cytokinin synthesis in Agrostis stolonifera

    PubMed Central

    Merewitz, Emily B.; Gianfagna, Thomas; Huang, Bingru

    2011-01-01

    Water stress reduces endogenous cytokinin (CK) content and may inhibit CK production. Maintenance of endogenous CK levels by genetic transformation with ipt in leaves and roots undergoing senescence may promote stress tolerance. This study was designed to determine the physiological effects of ipt expression on immature and mature leaves and in roots for plants exposed to different levels of water stress for creeping bentgrass (Agrostis stolonifera). Plants containing the ipt gene, encoding the enzyme adenine isopentenyl phosphotransferase for CK synthesis ligated to a senescence-activated promoter (SAG12), and wild-type ‘Penncross’ (WT) were grown hydroponically in a growth chamber and exposed to water stress by weekly additions of polyethylene glycol 8000 to reduce the growing solution osmotic potential from –0.05 to –0.3, –0.5, –0.7, –1.0, and –1.4 MPa. Immature and mature leaves and roots of SAG12-ipt creeping bentgrass were evaluated for ipt expression, CK content, leaf relative water content (RWC), chlorophyll content (Chl), photochemical efficiency (FvFm), osmotic adjustment (OA), photosynthesis rate (Pn), stomatal conductance (gs), transpiration (E), water use efficiency (WUE), carbon isotope discrimination (Δ), and root viability. Expression of ipt was detected in all plant parts and a higher CK content, primarily in the form of isopentyladenine (iPa), was found in SAG12-ipt plants but not in the WT plants under water stress. Immature leaves exhibited higher iPa and OA at all treatment levels. Mature leaves of SAG12-ipt plants maintained higher OA, Pn, Chl, WUE, and Δ, whereas gs and E were relatively unaffected compared to the WT. Roots of SAG12-ipt plants had higher levels of iPa and greater root viability than the WT. The results demonstrate that expression of ipt enhanced the tolerance of creeping bentgrass to water stress, which could be attributed to the positive effects on osmotic adjustment, efficient water use, and maintaining

  4. Gene expression analysis of flax seed development

    PubMed Central

    2011-01-01

    Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise

  5. Reintroducing Photosynthesis

    ERIC Educational Resources Information Center

    Vila, F.; Sanz, A.

    2012-01-01

    This article reports on conceptual difficulties related to photosynthesis and respiratory metabolism of a Plant Physiology course for undergraduate students that could hinder their better learning of metabolic processes. A survey of results obtained in this area during the last 10 academic years was performed, as well as a specific test, aimed to…

  6. Dramatic Photosynthesis.

    ERIC Educational Resources Information Center

    Carlsson, Britta

    2003-01-01

    Presents a creative way to teach photosynthesis. Revolves around the growth of a lily planted and stored in the classroom. Combines the concepts of particle theory, transformation, and changes of phase and mass in a holistic approach. The six-step teaching sequence is founded on the notions of challenge, variation, and drama. (Author/NB)

  7. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress

    PubMed Central

    Ambavaram, Madana M. R.; Basu, Supratim; Krishnan, Arjun; Ramegowda, Venkategowda; Batlang, Utlwang; Rahman, Lutfor; Baisakh, Niranjan; Pereira, Andy

    2014-01-01

    Plants capture solar energy and atmospheric carbon dioxide (CO2) through photosynthesis, which is the primary component of crop yield, and needs to be increased considerably to meet the growing global demand for food. Environmental stresses, which are increasing with climate change, adversely affect photosynthetic carbon metabolism (PCM) and limit yield of cereals such as rice (Oryza sativa) that feeds half the world. To study the regulation of photosynthesis, we developed a rice gene regulatory network and identified a transcription factor HYR (HIGHER YIELD RICE) associated with PCM, which on expression in rice enhances photosynthesis under multiple environmental conditions, determining a morpho-physiological programme leading to higher grain yield under normal, drought and high-temperature stress conditions. We show HYR is a master regulator, directly activating photosynthesis genes, cascades of transcription factors and other downstream genes involved in PCM and yield stability under drought and high-temperature environmental stress conditions. PMID:25358745

  8. Gene expression profiles in irradiated cancer cells

    NASA Astrophysics Data System (ADS)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-01

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  9. Gene expression profiles in irradiated cancer cells

    SciTech Connect

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-26

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  10. Comparative differential gene expression analysis of nucleus-encoded proteins for Rafflesia cantleyi against Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Ng, Siuk-Mun; Lee, Xin-Wei; Wan, Kiew-Lian; Firdaus-Raih, Mohd

    2015-09-01

    Regulation of functional nucleus-encoded proteins targeting the plastidial functions was comparatively studied for a plant parasite, Rafflesia cantleyi versus a photosynthetic plant, Arabidopsis thaliana. This study involved two species of different feeding modes and different developmental stages. A total of 30 nucleus-encoded proteins were found to be differentially-regulated during two stages in the parasite; whereas 17 nucleus-encoded proteins were differentially-expressed during two developmental stages in Arabidopsis thaliana. One notable finding observed for the two plants was the identification of genes involved in the regulation of photosynthesis-related processes where these processes, as expected, seem to be present only in the autotroph.

  11. Method for assembling and expressing multiple genes in the nucleus of microalgae.

    PubMed

    Noor-Mohammadi, Samaneh; Pourmir, Azadeh; Johannes, Tyler W

    2014-03-01

    The green alga, Chlamydomonas reinhardtii, is a model organism used in the study of photosynthesis and biotechnological research. Despite its importance, a complete set of genetic tools has yet to be developed. Here, we report the development of a new method for constructing a multi-gene pathway in Saccharomyces cerevisiae and integrating the assembled pathway into the nuclear genome of C. reinhardtii. To demonstrate the use of this method, we assembled and functionally expressed up to three reporter proteins (Ble, AphVIII, and GFP) simultaneously in the nucleus of C. reinhardtii. This new molecular tool should aid efforts to engineer microalgae for biofuel and biopharmaceutical production. PMID:24129955

  12. Facilitated diffusion buffers noise in gene expression

    PubMed Central

    Schoech, Armin P.; Zabet, Nicolae Radu

    2014-01-01

    Transcription factors perform facilitated diffusion (3D diffusion in the cytosol and 1D diffusion on the DNA) when binding to their target sites to regulate gene expression. Here, we investigated the influence of this binding mechanism on the noise in gene expression. Our results showed that, for biologically relevant parameters, the binding process can be represented by a two-state Markov model and that the accelerated target finding due to facilitated diffusion leads to a reduction in both the mRNA and the protein noise. PMID:25314467

  13. Clustering of High Throughput Gene Expression Data

    PubMed Central

    Pirim, Harun; Ekşioğlu, Burak; Perkins, Andy; Yüceer, Çetin

    2012-01-01

    High throughput biological data need to be processed, analyzed, and interpreted to address problems in life sciences. Bioinformatics, computational biology, and systems biology deal with biological problems using computational methods. Clustering is one of the methods used to gain insight into biological processes, particularly at the genomics level. Clearly, clustering can be used in many areas of biological data analysis. However, this paper presents a review of the current clustering algorithms designed especially for analyzing gene expression data. It is also intended to introduce one of the main problems in bioinformatics - clustering gene expression data - to the operations research community. PMID:23144527

  14. Visualizing Gene Expression In Situ

    SciTech Connect

    Burlage, R.S.

    1998-11-02

    Visualizing bacterial cells and describing their responses to the environment are difficult tasks. Their small size is the chief reason for the difficulty, which means that we must often use many millions of cells in a sample in order to determine what the average response of the bacteria is. However, an average response can sometimes mask important events in bacterial physiology, which means that our understanding of these organisms will suffer. We have used a variety of instruments to visualize bacterial cells, all of which tell us something different about the sample. We use a fluorescence activated cell sorter to sort cells based on the fluorescence provided by bioreporter genes, and these can be used to select for particular genetic mutations. Cells can be visualized by epifluorescent microscopy, and sensitive photodetectors can be added that allow us to find a single bacterial cell that is fluorescent or bioluminescent. We have also used standard photomultipliers to examine cell aggregates as field bioreporter microorganisms. Examples of each of these instruments show how our understanding of bacterial physiology has changed with the technology.

  15. Co-expression analysis reveals a group of genes potentially involved in regulation of plant response to iron-deficiency.

    PubMed

    Li, Hua; Wang, Lei; Yang, Zhi Min

    2015-01-01

    Iron (Fe) is an essential element for plant growth and development. Iron deficiency results in abnormal metabolisms from respiration to photosynthesis. Exploration of Fe-deficient responsive genes and their networks is critically important to understand molecular mechanisms leading to the plant adaptation to soil Fe-limitation. Co-expression genes are a cluster of genes that have a similar expression pattern to execute relatively biological functions at a stage of development or under a certain environmental condition. They may share a common regulatory mechanism. In this study, we investigated Fe-starved-related co-expression genes from Arabidopsis. From the biological process GO annotation of TAIR (The Arabidopsis Information Resource), 180 iron-deficient responsive genes were detected. Using ATTED-II database, we generated six gene co-expression networks. Among these, two modules of PYE and IRT1 were successfully constructed. There are 30 co-expression genes that are incorporated in the two modules (12 in PYE-module and 18 in IRT1-module). Sixteen of the co-expression genes were well characterized. The remaining genes (14) are poorly or not functionally identified with iron stress. Validation of the 14 genes using real-time PCR showed differential expression under iron-deficiency. Most of the co-expression genes (23/30) could be validated in pye and fit mutant plants with iron-deficiency. We further identified iron-responsive cis-elements upstream of the co-expression genes and found that 22 out of 30 genes contain the iron-responsive motif IDE1. Furthermore, some auxin and ethylene-responsive elements were detected in the promoters of the co-expression genes. These results suggest that some of the genes can be also involved in iron stress response through the phytohormone-responsive pathways. PMID:25300251

  16. Sequence and gene expression evolution of paralogous genes in willows.

    PubMed

    Harikrishnan, Srilakshmy L; Pucholt, Pascal; Berlin, Sofia

    2015-01-01

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows. PMID:26689951

  17. Sequence and gene expression evolution of paralogous genes in willows

    PubMed Central

    Harikrishnan, Srilakshmy L.; Pucholt, Pascal; Berlin, Sofia

    2015-01-01

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows. PMID:26689951

  18. Transgenic control of perforin gene expression

    SciTech Connect

    Lichtenheld, M.G.; Podack, E.R.; Levy, R.B.

    1995-03-01

    Perforin is a pore-forming effector molecule of CTL and NK cells. To characterize perforin gene expression and its transcriptional control mechanisms in vivo, expression of a cell surface tag, i.e., human CD4, was driven by 5.1 kb of the murin perforin 5{prime} flanking and promoter region in transgenic mice. Six out of seven transgenic lines expressed the perforin-tag hybrid gene at low to intermediate levels, depending on the integration site. Transgene expression occurred in all cells that physiologically are able to express perforin. At the whole organ level, significant amounts of transgenic mRNA and endogenous perforin mRNA were co-expressed in the lymphoid organs, as well as in the lung, the ileum, the oviduct/uterus, and the bone marrow. At the single cell level, the perforin tag was present on NK cells and on CD8{sup +}, as well as on CD4{sup +} cells. Also targeted were Thy-1.2{sup +} {gamma}{delta} T cells, but not Thy-1.2{sup -} {gamma}{delta} T cells, B cells, nor monocytes. During thymic T cell development, transgene expression occurred in double negative (CD4{sup -}CD8{sup -}) thymocytes and was detected at all subsequent stages, but exceeded the expression levels of the endogenous gene in the thymus. In conclusion, the analyzed perforin 5{prime} flanking and promoter region contains important cis-acting sequences that restrict perforin expression to T cells and NK cells, and therefore provides a unique tool for manipulating T cell and/or Nk cell-mediated immune responses in transgenic mice. On the other hand, the normal control of perforin gene expression involves at least one additional negative control mechanism that was not mediated by the transgenic promoter and upstream region. This control restricts perforin gene expression in thymically developing T cells and in most resting peripheral T cells, but can be released upon T cell activation. 43 refs., 7 figs., 1 tab.

  19. Extensive Differences in Gene Expression Between Symbiotic and Aposymbiotic Cnidarians

    PubMed Central

    Lehnert, Erik M.; Mouchka, Morgan E.; Burriesci, Matthew S.; Gallo, Natalya D.; Schwarz, Jodi A.; Pringle, John R.

    2013-01-01

    Coral reefs provide habitats for a disproportionate number of marine species relative to the small area of the oceans that they occupy. The mutualism between the cnidarian animal hosts and their intracellular dinoflagellate symbionts provides the nutritional foundation for coral growth and formation of reef structures, because algal photosynthesis can provide >90% of the total energy of the host. Disruption of this symbiosis (“coral bleaching”) is occurring on a large scale due primarily to anthropogenic factors and poses a major threat to the future of coral reefs. Despite the importance of this symbiosis, the cellular mechanisms involved in its establishment, maintenance, and breakdown remain largely unknown. We report our continued development of genomic tools to study these mechanisms in Aiptasia, a small sea anemone with great promise as a model system for studies of cnidarian–dinoflagellate symbiosis. Specifically, we have generated de novo assemblies of the transcriptomes of both a clonal line of symbiotic anemones and their endogenous dinoflagellate symbionts. We then compared transcript abundances in animals with and without dinoflagellates. This analysis identified >900 differentially expressed genes and allowed us to generate testable hypotheses about the cellular functions affected by symbiosis establishment. The differentially regulated transcripts include >60 encoding proteins that may play roles in transporting various nutrients between the symbiotic partners; many more encoding proteins functioning in several metabolic pathways, providing clues regarding how the transported nutrients may be used by the partners; and several encoding proteins that may be involved in host recognition and tolerance of the dinoflagellate. PMID:24368779

  20. Gene expression profiling analysis of ovarian cancer

    PubMed Central

    YIN, JI-GANG; LIU, XIAN-YING; WANG, BIN; WANG, DAN-YANG; WEI, MAN; FANG, HUA; XIANG, MEI

    2016-01-01

    As a gynecological oncology, ovarian cancer has high incidence and mortality. To study the mechanisms of ovarian cancer, the present study analyzed the GSE37582 microarray. GSE37582 was downloaded from Gene Expression Omnibus and included data from 74 ovarian cancer cases and 47 healthy controls. The differentially-expressed genes (DEGs) were screened using linear models for microarray data package in R and were further screened for functional annotation. Next, Gene Ontology and pathway enrichment analysis of the DEGs was conducted. The interaction associations of the proteins encoded by the DEGs were searched using the Search Tool for the Retrieval of Interacting Genes, and the protein-protein interaction (PPI) network was visualized by Cytoscape. Moreover, module analysis of the PPI network was performed using the BioNet analysis tool in R. A total of 284 DEGs were screened, consisting of 145 upregulated genes and 139 downregulated genes. In particular, downregulated FBJ murine osteosarcoma viral oncogene homolog (FOS) was an oncogene, while downregulated cyclin-dependent kinase inhibitor 1A (CDKN1A) was a tumor suppressor gene and upregulated cluster of differentiation 44 (CD44) was classed as an ‘other’ gene. The enriched functions included collagen catabolic process, stress-activated mitogen-activated protein kinases cascade and insulin receptor signaling pathway. Meanwhile, FOS (degree, 15), CD44 (degree, 9), B-cell CLL/lymphoma 2 (BCL2; degree, 7), CDKN1A (degree, 7) and matrix metallopeptidase 3 (MMP3; degree, 6) had higher connectivity degrees in the PPI network for the DEGs. These genes may be involved in ovarian cancer by interacting with other genes in the module of the PPI network (e.g., BCL2-FOS, BCL2-CDKN1A, FOS-CDKN1A, FOS-CD44, MMP3-MMP7 and MMP7-CD44). Overall, BCL2, FOS, CDKN1A, CD44, MMP3 and MMP7 may be correlated with ovarian cancer. PMID:27347159

  1. Conditional Gene Expression in Mycobacterium abscessus

    PubMed Central

    Cortes, Mélanie; Singh, Anil Kumar; Gaillard, Jean-Louis; Nassif, Xavier; Herrmann, Jean-Louis

    2011-01-01

    Mycobacterium abscessus is an emerging human pathogen responsible for lung infections, skin and soft-tissue infections and disseminated infections in immunocompromised patients. It may exist either as a smooth (S) or rough (R) morphotype, the latter being associated with increased pathogenicity in various models. Genetic tools for homologous recombination and conditional gene expression are desperately needed to allow the study of M. abscessus virulence. However, descriptions of knock-out (KO) mutants in M. abscessus are rare, with only one KO mutant from an S strain described so far. Moreover, of the three major tools developed for homologous recombination in mycobacteria, only the one based on expression of phage recombinases is working. Several conditional gene expression tools have recently been engineered for Mycobacterium tuberculosis and Mycobacterium smegmatis, but none have been tested yet in M. abscessus. Based on previous experience with genetic tools allowing homologous recombination and their failure in M. abscessus, we evaluated the potential interest of a conditional gene expression approach using a system derived from the two repressors system, TetR/PipOFF. After several steps necessary to adapt TetR/PipOFF for M. abscessus, we have shown the efficiency of this system for conditional expression of an essential mycobacterial gene, fadD32. Inhibition of fadD32 was demonstrated for both the S and R isotypes, with marginally better efficiency for the R isotype. Conditional gene expression using the dedicated TetR/PipOFF system vectors developed here is effective in S and R M. abscessus, and may constitute an interesting approach for future genetic studies in this pathogen. PMID:22195042

  2. Analysis of gene expression and histone modification between C4 and non-C4 homologous genes of PPDK and PCK in maize.

    PubMed

    Dong, Xiu-Mei; Li, Yuan; Chao, Qing; Shen, Jie; Gong, Xiu-Jie; Zhao, Biligen-Gaowa; Wang, Bai-Chen

    2016-07-01

    More efficient photosynthesis has allowed C4 plants to adapt to more diverse ecosystems (such as hot and arid conditions) than C3 plants. To better understand C4 photosynthesis, we investigated the expression patterns of C4 genes (C4PPDK and PCK1) and their non-C4 homologous genes (CyPPDK1, CyPPDK2, and PCK2) in the different organs of maize (Zea mays). Both C4 genes and non-C4 genes showed organ-dependent expression patterns. The mRNA levels of C4 genes were more abundant in leaf organ than in seeds at 25 days after pollination (DAP), while non-C4 genes were mainly expressed in developing seeds. Further, acetylation of histone H3 lysine 9 (H3K9ac) positively correlates with mRNA levels of C4 genes (C4PPDK and PCK1) in roots, stems, leaves, and seeds at 25 DAP, acetylation of histone H4 lysine 5 (H4K5ac) in the promoter regions of both C4 (C4PPDK and PCK1) and non-C4 genes (CyPPDK1, CyPPDK2, and PCK2) correlated well with their transcripts abundance in stems. In photosynthetic organs (stems and leaves), dimethylation of histone H3 lysine 9 (H3K9me2) negatively correlated with mRNA levels of both C4 and non-C4 genes. Taken together, our data suggest that histone modification was involved in the transcription regulation of both C4 genes and non-C4 genes, which might provide a clue of the functional evolution of C4 genes. PMID:27161567

  3. Role of a COP1 interactive protein in mediating light-regulated gene expression in arabidopsis.

    PubMed Central

    Yamamoto, Y Y; Matsui, M; Ang, L H; Deng, X W

    1998-01-01

    Arabidopsis seedlings display distinct patterns of gene expression and morphogenesis according to the ambient light condition. An Arabidopsis nuclear protein, CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), acts to repress photomorphogenesis in the absence of light. The Arabidopsis CIP7 protein was identified by its capability to interact with COP1. CIP7 is a novel nuclear protein that contains transcriptional activation activity without a recognizable DNA binding motif. CIP7 requires light for its high level of expression, and COP1 seems to play a role in repressing its expression in darkness. Decreasing CIP7 expression by introducing antisense CIP7 RNA resulted in defects in light-dependent anthocyanin and chlorophyll accumulation. Antisense plants also displayed reduced expression of light-inducible genes for anthocyanin biosynthesis and photosynthesis. However, no defect was observed in light-dependent inhibition of hypocotyl elongation. Taken together, our data indicate that CIP7 acts as a positive regulator of light-regulated genes and is a potential direct downstream target of COP1 for mediating light control of gene expression. PMID:9668129

  4. Annotation of gene function in citrus using gene expression information and co-expression networks

    PubMed Central

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. Results We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Conclusions Integration of citrus gene co-expression networks

  5. Comparative genomic analysis of transgenic poplar dwarf mutant reveals numerous differentially expressed genes involved in energy flow.

    PubMed

    Chen, Su; Bai, Shuang; Liu, Guifeng; Li, Huiyu; Jiang, Jing

    2014-01-01

    In our previous research, the Tamarix androssowii LEA gene (Tamarix androssowii late embryogenesis abundant protein Mrna, GenBank ID: DQ663481) was transferred into Populus simonii × Populus nigra. Among the eleven transgenic lines, one exhibited a dwarf phenotype compared to the wild type and other transgenic lines, named dwf1. To uncover the mechanisms underlying this phenotype, digital gene expression libraries were produced from dwf1, wild-type, and other normal transgenic lines, XL-5 and XL-6. Gene expression profile analysis indicated that dwf1 had a unique gene expression pattern in comparison to the other two transgenic lines. Finally, a total of 1246 dwf1-unique differentially expressed genes were identified. These genes were further subjected to gene ontology and pathway analysis. Results indicated that photosynthesis and carbohydrate metabolism related genes were significantly affected. In addition, many transcription factors genes were also differentially expressed in dwf1. These various differentially expressed genes may be critical for dwarf mutant formation; thus, the findings presented here might provide insight for our understanding of the mechanisms of tree growth and development. PMID:25192286

  6. Long Serial Analysis of Gene Expression for Gene Discovery and Transcriptome Profiling in the Widespread Marine Coccolithophore Emiliania huxleyi†

    PubMed Central

    Dyhrman, Sonya T.; Haley, Sheean T.; Birkeland, Shanda R.; Wurch, Louie L.; Cipriano, Michael J.; McArthur, Andrew G.

    2006-01-01

    The abundant and widespread coccolithophore Emiliania huxleyi plays an important role in mediating CO2 exchange between the ocean and the atmosphere through its impact on marine photosynthesis and calcification. Here, we use long serial analysis of gene expression (SAGE) to identify E. huxleyi genes responsive to nitrogen (N) or phosphorus (P) starvation. Long SAGE is an elegant approach for examining quantitative and comprehensive gene expression patterns without a priori knowledge of gene sequences via the detection of 21-bp nucleotide sequence tags. E. huxleyi appears to have a robust transcriptional-level response to macronutrient deficiency, with 42 tags uniquely present or up-regulated twofold or greater in the N-starved library and 128 tags uniquely present or up-regulated twofold or greater in the P-starved library. The expression patterns of several tags were validated with reverse transcriptase PCR. Roughly 48% of these differentially expressed tags could be mapped to publicly available genomic or expressed sequence tag (EST) sequence data. For example, in the P-starved library a number of the tags mapped to genes with a role in P scavenging, including a putative phosphate-repressible permease and a putative polyphosphate synthetase. In short, the long SAGE analyses have (i) identified many new differentially regulated gene sequences, (ii) assigned regulation data to EST sequences with no database homology and unknown function, and (iii) highlighted previously uncharacterized aspects of E. huxleyi N and P physiology. To this end, our long SAGE libraries provide a new public resource for gene discovery and transcriptional analysis in this biogeochemically important marine organism. PMID:16391051

  7. Integrating heterogeneous gene expression data for gene regulatory network modelling.

    PubMed

    Sîrbu, Alina; Ruskin, Heather J; Crane, Martin

    2012-06-01

    Gene regulatory networks (GRNs) are complex biological systems that have a large impact on protein levels, so that discovering network interactions is a major objective of systems biology. Quantitative GRN models have been inferred, to date, from time series measurements of gene expression, but at small scale, and with limited application to real data. Time series experiments are typically short (number of time points of the order of ten), whereas regulatory networks can be very large (containing hundreds of genes). This creates an under-determination problem, which negatively influences the results of any inferential algorithm. Presented here is an integrative approach to model inference, which has not been previously discussed to the authors' knowledge. Multiple heterogeneous expression time series are used to infer the same model, and results are shown to be more robust to noise and parameter perturbation. Additionally, a wavelet analysis shows that these models display limited noise over-fitting within the individual datasets. PMID:21948152

  8. Multiple Stochastic Point Processes in Gene Expression

    NASA Astrophysics Data System (ADS)

    Murugan, Rajamanickam

    2008-04-01

    We generalize the idea of multiple-stochasticity in chemical reaction systems to gene expression. Using Chemical Langevin Equation approach we investigate how this multiple-stochasticity can influence the overall molecular number fluctuations. We show that the main sources of this multiple-stochasticity in gene expression could be the randomness in transcription and translation initiation times which in turn originates from the underlying bio-macromolecular recognition processes such as the site-specific DNA-protein interactions and therefore can be internally regulated by the supra-molecular structural factors such as the condensation/super-coiling of DNA. Our theory predicts that (1) in case of gene expression system, the variances ( φ) introduced by the randomness in transcription and translation initiation-times approximately scales with the degree of condensation ( s) of DNA or mRNA as φ ∝ s -6. From the theoretical analysis of the Fano factor as well as coefficient of variation associated with the protein number fluctuations we predict that (2) unlike the singly-stochastic case where the Fano factor has been shown to be a monotonous function of translation rate, in case of multiple-stochastic gene expression the Fano factor is a turn over function with a definite minimum. This in turn suggests that the multiple-stochastic processes can also be well tuned to behave like a singly-stochastic point processes by adjusting the rate parameters.

  9. Population-level control of gene expression

    NASA Astrophysics Data System (ADS)

    Nevozhay, Dmitry; Adams, Rhys; van Itallie, Elizabeth; Bennett, Matthew; Balazsi, Gabor

    2011-03-01

    Gene expression is the process that translates genetic information into proteins, that determine the way cells live, function and even die. It was demonstrated that cells with identical genomes exposed to the same environment can differ in their protein composition and therefore phenotypes. Protein levels can vary between cells due to the stochastic nature of intracellular biochemical events, indicating that the genotype-phenotype connection is not deterministic at the cellular level. We asked whether genomes could encode isogenic cell populations more reliably than single cells. To address this question, we built two gene circuits to control three cell population-level characteristics: gene expression mean, coefficient of variation and non-genetic memory of previous expression states. Indeed, we found that these population-level characteristics were more predictable than the gene expression of single cells in a well-controlled environment. This research was supported by the NIH Director's New Innovator Award 1DP2 OD006481-01 and Welch Foundation Grant C-1729.

  10. Current Gene Expression Studies in Esophageal Carcinoma

    PubMed Central

    Guo, Wei; Jiang, Yao-Guang

    2009-01-01

    Esophageal carcinoma is one of the deadliest cancers with highly aggressive potency, ranking as the sixth most common cancer among males and ninth most common cancer among females globally. Due to metastasis and invasion of surrounding tissues in early stage, the 5-year overall survival rate (14%) of esophageal cancer remains poor, even in comparison with the dismal survival rates (4%) from the 1970s. Numerous genes and proteins with abnormal expression and function involve in the pathogenesis of esophageal cancer, but the concrete process remains unclear. Microarray technique has been applied to investigating esophageal cancer. Many gene expression studies have been undertaken to look at the specific patterns of gene transcript levels in esophageal cancer. Human tissues and cell lines were used in these geneprofiling studies and a very valuable and interesting set of data has resulted from various microarray experiments. These expression studies have provided increased understanding of the complex pathological mechanisms involved in esophageal cancer. The eventual goal of microarray is to discover new markers for therapy and to customize therapy based on an individual tumor genetic composition. This review summarized the current state of gene expression profile studies in esophageal cancer. PMID:20514215

  11. Gene expression analysis of the embryonic subplate

    PubMed Central

    Oeschger, Franziska M.; Wang, Wei-Zhi; Lee, Sheena; García-Moreno, Fernando; Goffinet, André M.; Arbones, Mariona; Rakic, Sonia; Molnár, Zoltán

    2015-01-01

    The subplate layer of the cerebral cortex is comprised of a heterogeneous population of cells and contains some of the earliest-generated neurons. In the embryonic brain, subplate cells contribute to the guidance and areal targeting of thalamocortical axons. At later stages, they are involved in the maturation and plasticity of the cortical circuitry and the establishment of functional modules. We aimed to further characterize the embryonic murine subplate population by establishing a gene expression profile at embryonic day 15.5 using laser capture microdissection and microarrays. The microarray identified over 300 transcripts with higher expression in the subplate compared to the cortical plate at this stage. Using quantitative RT-PCR, in situ hybridization and immunohistochemistry, we have confirmed specific expression in the E15.5 subplate for 13 selected genes which have not been previously associated with this compartment (Abca8a, Cdh10, Cdh18, Csmd3, Gabra5, Kcnt2, Ogfrl1, Pls3, Rcan2, Sv2b, Slc8a2, Unc5c and Zdhhc2). In the reeler mutant, the expression of the majority of these genes (9 out of 13) was shifted in accordance with the altered position of subplate. These genes belong to several functional groups and likely contribute to the maturation and electrophysiological properties of subplate cells and to axonal growth and guidance. PMID:21862448

  12. The Low Noise Limit in Gene Expression

    PubMed Central

    Dar, Roy D.; Razooky, Brandon S.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.

    2015-01-01

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can–and in the case of E. coli does–control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. These results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes. PMID:26488303

  13. Trigger finger, tendinosis, and intratendinous gene expression.

    PubMed

    Lundin, A-C; Aspenberg, P; Eliasson, P

    2014-04-01

    The pathogenesis of trigger finger has generally been ascribed to primary changes in the first annular ligament. In contrast, we recently found histological changes in the tendons, similar to the findings in Achilles tendinosis or tendinopathy. We therefore hypothesized that trigger finger tendons would show differences in gene expression in comparison to normal tendons in a pattern similar to what is published for Achilles tendinosis. We performed quantitative real-time polymerase chain reaction on biopsies from finger flexor tendons, 13 trigger fingers and 13 apparently healthy control tendons, to assess the expression of 10 genes which have been described to be differently expressed in tendinosis (collagen type 1a1, collagen 3a1, MMP-2, MMP-3, ADAMTS-5, TIMP-3, aggrecan, biglycan, decorin, and versican). In trigger finger tendons, collagen types 1a1 and 3a1, aggrecan and biglycan were all up-regulated, and MMP-3and TIMP-3 were down-regulated. These changes were statistically significant and have been previously described for Achilles tendinosis. The remaining four genes were not significantly altered. The changes in gene expression support the hypothesis that trigger finger is a form of tendinosis. Because trigger finger is a common condition, often treated surgically, it could provide opportunities for clinical research on tendinosis. PMID:22882155

  14. Gene expression analysis of the embryonic subplate.

    PubMed

    Oeschger, Franziska M; Wang, Wei-Zhi; Lee, Sheena; García-Moreno, Fernando; Goffinet, André M; Arbonés, Maria L; Rakic, Sonja; Molnár, Zoltán

    2012-06-01

    The subplate layer of the cerebral cortex is comprised of a heterogeneous population of cells and contains some of the earliest-generated neurons. In the embryonic brain, subplate cells contribute to the guidance and areal targeting of thalamocortical axons. At later developmental stages, they are predominantly involved in the maturation and plasticity of the cortical circuitry and the establishment of functional modules. We aimed to further characterize the embryonic murine subplate population by establishing a gene expression profile at embryonic day (E) 15.5 using laser capture microdissection and microarrays. The microarray identified over 300 transcripts with higher expression in the subplate compared with the cortical plate at this stage. Using quantitative reverse transcription-polymerase chain reaction, in situ hybridization (ISH), and immunohistochemistry (IHC), we have confirmed specific expression in the E15.5 subplate for 13 selected genes, which have not been previously associated with this compartment (Abca8a, Cdh10, Cdh18, Csmd3, Gabra5, Kcnt2, Ogfrl1, Pls3, Rcan2, Sv2b, Slc8a2, Unc5c, and Zdhhc2). In the reeler mutant, the expression of the majority of these genes (9 of 13) was shifted in accordance with the altered position of subplate. These genes belong to several functional groups and likely contribute to synapse formation and axonal growth and guidance in subplate cells. PMID:21862448

  15. The low noise limit in gene expression

    SciTech Connect

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.; Razooky, Brandon S.

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.

  16. The low noise limit in gene expression

    DOE PAGESBeta

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.; Razooky, Brandon S.

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiencymore » can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.« less

  17. Digital gene expression signatures for maize development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-wide expression signatures detect specific perturbations in developmental programs and contribute to functional resolution of key regulatory networks. In maize (Zea mays) inflorescences, mutations in the RAMOSA (RA) genes affect determinacy of axillary meristems and thus alter branching patt...

  18. Expression of mouse metallothionein genes in tobacco

    SciTech Connect

    Maiti, I.B.; Yeargan, R.; Wagner, G.J.; Hunt, A.G. )

    1990-05-01

    We have expressed a mouse metallothionein (NT) gene in tobacco under control of the cauliflower mosaic virus (CaMV) 35S promoter and a pea ribulose-1,5-bisphosphate carboxylase small subunit (rbcS) gene promoter. Seedlings in which MT gene expression is driven by the 35S promoter are resistant to toxic levels of cadmium. Mature plants carrying the 35S-MT gene accumulate less Cd in their leaves when exposed to low levels of Cd in laboratory growth conditions. Plants with the rbcS-MT construction express this gene in a light-regulated and tissue-specific manner, as expected. Moreover, the MT levels in leaves in these plants are about 20% of those seen in 35S-MT plants. These plants are currently being tested for Cd resistance. In addition, a small field evaluation of 35S-MT lines for Cd levels is being evaluated. These experiments will address the possibility of using MTs to alter Cd levels in crop species.

  19. Gene expression variation and expression quantitative trait mapping of human chromosome 21 genes.

    PubMed

    Deutsch, Samuel; Lyle, Robert; Dermitzakis, Emmanouil T; Attar, Homa; Subrahmanyan, Lakshman; Gehrig, Corinne; Parand, Leila; Gagnebin, Maryline; Rougemont, Jacques; Jongeneel, C Victor; Antonarakis, Stylianos E

    2005-12-01

    Inter-individual differences in gene expression are likely to account for an important fraction of phenotypic differences, including susceptibility to common disorders. Recent studies have shown extensive variation in gene expression levels in humans and other organisms, and that a fraction of this variation is under genetic control. We investigated the patterns of gene expression variation in a 25 Mb region of human chromosome 21, which has been associated with many Down syndrome (DS) phenotypes. Taqman real-time PCR was used to measure expression variation of 41 genes in lymphoblastoid cells of 40 unrelated individuals. For 25 genes found to be differentially expressed, additional analysis was performed in 10 CEPH families to determine heritabilities and map loci harboring regulatory variation. Seventy-six percent of the differentially expressed genes had significant heritabilities, and genomewide linkage analysis led to the identification of significant eQTLs for nine genes. Most eQTLs were in trans, with the best result (P=7.46 x 10(-8)) obtained for TMEM1 on chromosome 12q24.33. A cis-eQTL identified for CCT8 was validated by performing an association study in 60 individuals from the HapMap project. SNP rs965951 located within CCT8 was found to be significantly associated with its expression levels (P=2.5 x 10(-5)) confirming cis-regulatory variation. The results of our study provide a representative view of expression variation of chromosome 21 genes, identify loci involved in their regulation and suggest that genes, for which expression differences are significantly larger than 1.5-fold in control samples, are unlikely to be involved in DS-phenotypes present in all affected individuals. PMID:16251198

  20. Gene expression during normal and FSHD myogenesis

    PubMed Central

    2011-01-01

    Background Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contraction of an array of tandem 3.3-kb repeats (D4Z4) at 4q35. Within each repeat unit is a gene, DUX4, that can encode a protein containing two homeodomains. A DUX4 transcript derived from the last repeat unit in a contracted array is associated with pathogenesis but it is unclear how. Methods Using exon-based microarrays, the expression profiles of myogenic precursor cells were determined. Both undifferentiated myoblasts and myoblasts differentiated to myotubes derived from FSHD patients and controls were studied after immunocytochemical verification of the quality of the cultures. To further our understanding of FSHD and normal myogenesis, the expression profiles obtained were compared to those of 19 non-muscle cell types analyzed by identical methods. Results Many of the ~17,000 examined genes were differentially expressed (> 2-fold, p < 0.01) in control myoblasts or myotubes vs. non-muscle cells (2185 and 3006, respectively) or in FSHD vs. control myoblasts or myotubes (295 and 797, respectively). Surprisingly, despite the morphologically normal differentiation of FSHD myoblasts to myotubes, most of the disease-related dysregulation was seen as dampening of normal myogenesis-specific expression changes, including in genes for muscle structure, mitochondrial function, stress responses, and signal transduction. Other classes of genes, including those encoding extracellular matrix or pro-inflammatory proteins, were upregulated in FSHD myogenic cells independent of an inverse myogenesis association. Importantly, the disease-linked DUX4 RNA isoform was detected by RT-PCR in FSHD myoblast and myotube preparations only at extremely low levels. Unique insights into myogenesis-specific gene expression were also obtained. For example, all four Argonaute genes involved in RNA-silencing were significantly upregulated during normal (but not FSHD) myogenesis relative to non

  1. Differential expression of myrosinase gene families.

    PubMed Central

    Lenman, M; Falk, A; Rödin, J; Höglund, A S; Ek, B; Rask, L

    1993-01-01

    In mature seeds of Brassica napus three major and three minor myrosinase isoenzymes were identified earlier. These myrosinases are known to be encoded by at least two different families of myrosinase genes, denoted MA and MB. In the work described in this paper the presence of different myrosinase isoenzymes in embryos, seedlings, and vegetative mature tissues of B. napus was studied and related to the expression of myrosinase MA and MB genes in the same tissues to facilitate future functional studies of these enzymes. In developing seeds, myrosinases of 75, 73, 70, 68, 66, and 65 kD were present. During seedling development there was a turnover of the myrosinase pool such that in 5-d-old seedlings the 75-, 70-, 66-, and 65-kD myrosinases were present, with the 70- and 75-kD myrosinases predominating. In 21-d-old seedlings the same myrosinases were present, but the 66- and 65-kD myrosinase species were most abundant. At flowering the mature organs of the plant contained only a 72-kD myrosinase. MA genes were expressed only in developing seeds, whereas MB genes were most highly expressed in seeds, seedling cotyledons, young leaves, and to a lesser extent other organs of the mature plant. During embryogenesis of B. napus, myrosinase MA and MB gene transcripts started to accumulate approximately 20 d after pollination and reached their highest level approximately 15 d later. MB transcripts accumulated to about 3 times the amount of MA transcripts. In situ hybridization analysis of B. napus embryos showed that MA transcripts were present predominatly in myrosin cells in the axis, whereas MB genes were expressed in myrosin cells of the entire embryo. The embryo axiz contained 75-, 70-, and 65-kD myrosinases, whereas the cotyledons contained mainly 70- and 65-kD myrosinases. Amino acid sequencing revealed the 75-kD myrosinase to be encoded by the MA gene family. The high degree of cell and tissue specificity of the expression of myrosinase genes suggests that studies of

  2. Fluid Mechanics, Arterial Disease, and Gene Expression

    NASA Astrophysics Data System (ADS)

    Tarbell, John M.; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid mechanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.

  3. Control mechanisms of plastid gene expression

    SciTech Connect

    Gruissem, W.; Tonkyn, J.C.

    1993-12-31

    Plastid DNAs of higher plants contain approximately 150 genes that encode RNAs and proteins for genetic and photosynthetic functions of the organelle. Results published in the last few years illustrate that the spatial and temporal expression of these plastid genes is regulated, in part, at the transcriptional level, but that developmentally controlled changes in mRNA stability, translational activity, and protein phosphorylation also have an important role in the control of plastid functions. This comprehensive review summarizes and discusses the mechanisms by which regulation of gene expression is exerted at the transcriptional and post-transcriptional levels. It provides an overview of our current knowledge, but also emphasizes areas that are controversial and in which information on regulatory mechanisms is still incomplete. 455 refs., 3 figs., 3 tabs.

  4. Fluid Mechanics, Arterial Disease, and Gene Expression

    PubMed Central

    Tarbell, John M.; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow–induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs. PMID:25360054

  5. Methods to improve cardiac gene therapy expression.

    PubMed

    Scimia, Maria Cecilia; Sydnes, Kate E; Zuppo, Daniel A; Koch, Walter J

    2014-11-01

    Gene therapy strategies are becoming a valuable approach for the treatment of heart failure. Some trials are ongoing and others are being organized. Vascular access in clinical experimentation is still the chosen modality of delivery, but many other approaches are in research and development. A successful gene therapy strategy involves not only the choice of the right vector and gene, but also the correct delivery strategy that allows for transduction of the highest percentage of cardiomyocytes, limited spilling of virus into other organs and the possibility to correlate the amount of injected virus to the rate of the expression within the cardiac tissue. The authors will first concentrate on clarifying what the barriers are that the virus has to overcome in order to reach the nuclei of the target organs and methodologies that have been tested to improve the range of expression. PMID:25340284

  6. Light has a specific role in modulating Arabidopsis gene expression at low temperature

    PubMed Central

    Soitamo, Arto J; Piippo, Mirva; Allahverdiyeva, Yagut; Battchikova, Natalia; Aro, Eva-Mari

    2008-01-01

    Background Light and temperature are the key abiotic modulators of plant gene expression. In the present work the effect of light under low temperature treatment was analyzed by using microarrays. Specific attention was paid to the up and down regulated genes by using promoter analysis. This approach revealed putative regulatory networks of transcription factors behind the induction or repression of the genes. Results Induction of a few oxidative stress related genes occurred only under the Cold/Light treatment including genes encoding iron superoxide dismutase (FeSOD) and glutathione-dependent hydrogen peroxide peroxidases (GPX). The ascorbate dependent water-water cycle genes showed no response to Cold/Light or Cold/Dark treatments. Cold/Light specifically induced genes encoding protective molecules like phenylpropanoids and photosynthesis-related carotenoids also involved in the biosynthesis of hormone abscisic acid (ABA) crucial for cold acclimation. The enhanced/repressed transcript levels were not always reflected on the respective protein levels as demonstrated by dehydrin proteins. Conclusion Cold/Light up regulated twice as many genes as the Cold/Dark treatment and only the combination of light and low temperature enhanced the expression of several genes earlier described as cold-responsive genes. Cold/Light-induced genes included both cold-responsive transcription factors and several novel ones containing zinc-finger, MYB, NAC and AP2 domains. These are likely to function in concert in enhancing gene expression. Similar response elements were found in the promoter regions of both the transcription factors and their target genes implying a possible parallel regulation or amplification of the environmental signals according to the metabolic/redox state in the cells. PMID:18230142

  7. From gene expressions to genetic networks

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek

    2009-03-01

    A method based on the principle of entropy maximization is used to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles [1]. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher order correlations. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabollic oscillations identifies a gene interaction network that reflects the intracellular communication pathways. These pathways adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems. The time-dependent behavior of the genetic network is found to involve only a few fundamental modes [2,3]. [4pt] REFERENCES:[0pt] [1] T. R. Lezon, J. R. Banavar, M. Cieplak, A. Maritan, and N. Fedoroff, Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns, Proc. Natl. Acad. Sci. (USA) 103, 19033-19038 (2006) [0pt] [2] N. S. Holter, M. Mitra, A. Maritan, M. Cieplak, J. R. Banavar, and N. V. Fedoroff, Fundamental patterns underlying gene expression profiles: simplicity from complexity, Proc. Natl. Acad. Sci. USA 97, 8409-8414 (2000) [0pt] [3] N. S. Holter, A. Maritan, M. Cieplak, N. V. Fedoroff, and J. R. Banavar, Dynamic modeling of gene expression data, Proc. Natl. Acad. Sci. USA 98, 1693-1698 (2001)

  8. Regulation of methane genes and genome expression

    SciTech Connect

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  9. Topological features in cancer gene expression data.

    PubMed

    Lockwood, S; Krishnamoorthy, B

    2015-01-01

    We present a new method for exploring cancer gene expression data based on tools from algebraic topology. Our method selects a small relevant subset from tens of thousands of genes while simultaneously identifying nontrivial higher order topological features, i.e., holes, in the data. We first circumvent the problem of high dimensionality by dualizing the data, i.e., by studying genes as points in the sample space. Then we select a small subset of the genes as landmarks to construct topological structures that capture persistent, i.e., topologically significant, features of the data set in its first homology group. Furthermore, we demonstrate that many members of these loops have been implicated for cancer biogenesis in scientific literature. We illustrate our method on five different data sets belonging to brain, breast, leukemia, and ovarian cancers. PMID:25592573

  10. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data.

    PubMed

    Ezer, Daphne; Moignard, Victoria; Göttgens, Berthold; Adryan, Boris

    2016-08-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics. PMID:27551778

  11. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data

    PubMed Central

    Moignard, Victoria; Göttgens, Berthold; Adryan, Boris

    2016-01-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete pipeline for the analysis of single cell qPCR data that uses the mathematics behind bursty expression to develop more accurate and robust algorithms for analyzing the origin of heterogeneity in experimental samples, specifically an algorithm for clustering cells by their bursting behavior (Simulated Annealing for Bursty Expression Clustering, SABEC) and a statistical tool for comparing the kinetic parameters of bursty expression across populations of cells (Estimation of Parameter changes in Kinetics, EPiK). We applied these methods to hematopoiesis, including a new single cell dataset in which transcription factors (TFs) involved in the earliest branchpoint of blood differentiation were individually up- and down-regulated. We could identify two unique sub-populations within a seemingly homogenous group of hematopoietic stem cells. In addition, we could predict regulatory mechanisms controlling the expression levels of eighteen key hematopoietic transcription factors throughout differentiation. Detailed information about gene regulatory mechanisms can therefore be obtained simply from high throughput single cell gene expression data, which should be widely applicable given the rapid expansion of single cell genomics. PMID:27551778

  12. Coevolution of gene expression among interacting proteins

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  13. [Modifications of gene expression by tumor promoters].

    PubMed

    Zhang, C; Zhao, Q; Guo, S; Zhao, M; Cheng, S

    1995-02-01

    The modifications of gene expression by tumor promoters were analyzed in vitro and in vivo. The results of slot blot hybridizations showed that tumor promoter TPA induced c-fos and c-myc expressions in mouse fibroblast cell line BALB/3T3 and rat liver, decreased the levels of Rb RNA in BALB/3T3 cell line and of alpha 1-I3 RNA in rat liver. It was also demonstrated that tumor promoter phenobarbital influenced c-fos and c-myc expressions and decreased alpha 1I3 mRNA level in rat liver during a long term experiment. Phenobarbital was found to have no effect on c-fos and c-myc expressions in rat liver during a short experiment. Tumor promoters induced the expressions of c-fos and c-myc which were positively-related to cancer formation and inhibited the expressions of Rb and alpha 1-I3 which were negatively-related to cancer formation. This implied that tumor promotion played an important role in cancer development and tumor promoters exerted their effects selectively according to the attributes of different genes. PMID:7540119

  14. Gene expression regulation in roots under drought.

    PubMed

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots. PMID:26663562

  15. Salt induced gene expression in Prosopis farcta

    SciTech Connect

    Heimer, I.M.; Golan, A.; Lips, H.

    1987-04-01

    The authors hypothesize that in facultative halophytes, the genes which impart salt tolerance are expressed when the plants are exposed to salt. As a first step towards possible identification of these genes, they examined salt induced changes of gene expression in the facultative halophyte Prosopis farcta at the protein level, by SDS-PAGE. Exposure to salt of aseptically grown, two-week old seedlings, was carried out in one of two ways: (1) a one step transfer of seedlings from medium without salt to that with the indicated concentrations followed by 5 hr or 24 hr incubation periods. During the last 2 hrs of each incubation period the seedlings were pulse-labelled with /sup 35/S Sulfate or L-Methionine; (2) a gradual increase of the salt concentration at 50 mM increments at 2-4 day intervals. Two days after reaching the desired salt concentration, the seedlings were pulse-labelled for 2 hrs with /sup 35/S sulfate or L-methionine. Protein from roots were extracted and analyzed. Polypeptides were visualized by staining with coomassie blue or by fluorography. Qualitative as well as quantitative changes of gene expression as induced by salt could be observed. Their significance regarding salt tolerance will be discussed.

  16. Expression of bacterial genes in plant cells.

    PubMed Central

    Fraley, R T; Rogers, S G; Horsch, R B; Sanders, P R; Flick, J S; Adams, S P; Bittner, M L; Brand, L A; Fink, C L; Fry, J S; Galluppi, G R; Goldberg, S B; Hoffmann, N L; Woo, S C

    1983-01-01

    Chimeric bacterial genes conferring resistance to aminoglycoside antibiotics have been inserted into the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid and introduced into plant cells by in vitro transformation techniques. The chimeric genes contain the nopaline synthase 5' and 3' regulatory regions joined to the genes for neomycin phosphotransferase type I or type II. The chimeric genes were cloned into an intermediate vector, pMON120, and inserted into pTiB6S3 by recombination and then introduced into petunia and tobacco cells by cocultivating A. tumefaciens cells with protoplast-derived cells. Southern hybridization was used to confirm the presence of the chimeric genes in the transformed plant tissues. Expression of the chimeric genes was determined by the ability of the transformed cells to proliferate on medium containing normally inhibitory levels of kanamycin (50 micrograms/ml) or other aminoglycoside antibiotics. Plant cells transformed by wild-type pTiB6S3 or derivatives carrying the bacterial neomycin phosphotransferase genes with their own promoters failed to grow under these conditions. The significance of these results for plant genetic engineering is discussed. Images PMID:6308651

  17. Gene expression profiling in sinonasal adenocarcinoma

    PubMed Central

    2009-01-01

    Background Sinonasal adenocarcinomas are uncommon tumors which develop in the ethmoid sinus after exposure to wood dust. Although the etiology of these tumors is well defined, very little is known about their molecular basis and no diagnostic tool exists for their early detection in high-risk workers. Methods To identify genes involved in this disease, we performed gene expression profiling using cancer-dedicated microarrays, on nine matched samples of sinonasal adenocarcinomas and non-tumor sinusal tissue. Microarray results were validated by quantitative RT-PCR and immunohistochemistry on two additional sets of tumors. Results Among the genes with significant differential expression we selected LGALS4, ACS5, CLU, SRI and CCT5 for further exploration. The overexpression of LGALS4, ACS5, SRI, CCT5 and the downregulation of CLU were confirmed by quantitative RT-PCR. Immunohistochemistry was performed for LGALS4 (Galectin 4), ACS5 (Acyl-CoA synthetase) and CLU (Clusterin) proteins: LGALS4 was highly up-regulated, particularly in the most differentiated tumors, while CLU was lost in all tumors. The expression of ACS5, was more heterogeneous and no correlation was observed with the tumor type. Conclusion Within our microarray study in sinonasal adenocarcinoma we identified two proteins, LGALS4 and CLU, that were significantly differentially expressed in tumors compared to normal tissue. A further evaluation on a new set of tissues, including precancerous stages and low grade tumors, is necessary to evaluate the possibility of using them as diagnostic markers. PMID:19903339

  18. Consensus gene regulatory networks: combining multiple microarray gene expression datasets

    NASA Astrophysics Data System (ADS)

    Peeling, Emma; Tucker, Allan

    2007-09-01

    In this paper we present a method for modelling gene regulatory networks by forming a consensus Bayesian network model from multiple microarray gene expression datasets. Our method is based on combining Bayesian network graph topologies and does not require any special pre-processing of the datasets, such as re-normalisation. We evaluate our method on a synthetic regulatory network and part of the yeast heat-shock response regulatory network using publicly available yeast microarray datasets. Results are promising; the consensus networks formed provide a broader view of the potential underlying network, obtaining an increased true positive rate over networks constructed from a single data source.

  19. Overexpression of the Maize psbA Gene Enhances Drought Tolerance Through Regulating Antioxidant System, Photosynthetic Capability, and Stress Defense Gene Expression in Tobacco.

    PubMed

    Huo, Yongjin; Wang, Meiping; Wei, Yangyang; Xia, Zongliang

    2015-01-01

    The psbA (encoding D1 protein) plays an important role in protecting photosystem II (PSII) from oxidative damage in higher plants. In our previous study, the role of the psbA from maize (Zea mays. L) in response to SO2 stress was characterized. To date, information about the involvement of the psbA gene in drought response is scarce. Here we found that overexpression (OE) of ZmpsbA showed increased D1 protein abundance and enhanced drought stress tolerance in tobacco. The drought-tolerant phenotypes of the OE lines were accompanied by increases of key antioxidant enzymes SOD, CAT, and POD activities, but decreases of hydrogen peroxide, malondialdehyde, and ion leakage. Further investigation showed that the OE plants had much less reductions than the wild-type in the net photosynthesis rate (Pn), stomatal conductance (Gs), and the maximal photochemical efficiency of PSII (Fv/Fm) during drought stress; indicating that OE of ZmpsbA may alleviate photosynthesis inhibition during drought. qRT-PCR analysis revealed that there was significantly increased expression of NtLEA5, NtERD10C, NtAREB, and NtCDPK2 in ZmpsbA-OE lines. Together, our results indicate that ZmpsbA improves drought tolerance in tobacco possibly by alleviating photosynthesis reduction, reducing reactive oxygen species accumulation and membrane damage, and modulating stress defense gene expression. ZmpsbA could be exploited for engineering drought-tolerant plants in molecular breeding of crops. PMID:26793207

  20. Gene expression profiling analysis of lung adenocarcinoma

    PubMed Central

    Xu, H.; Ma, J.; Wu, J.; Chen, L.; Sun, F.; Qu, C.; Zheng, D.; Xu, S.

    2016-01-01

    The present study screened potential genes related to lung adenocarcinoma, with the aim of further understanding disease pathogenesis. The GSE2514 dataset including 20 lung adenocarcinoma and 19 adjacent normal tissue samples from 10 patients with lung adenocarcinoma aged 45-73 years was downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) between the two groups were screened using the t-test. Potential gene functions were predicted using functional and pathway enrichment analysis, and protein-protein interaction (PPI) networks obtained from the STRING database were constructed with Cytoscape. Module analysis of PPI networks was performed through MCODE in Cytoscape. In total, 535 upregulated and 465 downregulated DEGs were identified. These included ATP5D, UQCRC2, UQCR11 and genes encoding nicotinamide adenine dinucleotide (NADH), which are mainly associated with mitochondrial ATP synthesis coupled electron transport, and which were enriched in the oxidative phosphorylation pathway. Other DEGs were associated with DNA replication (PRIM1, MCM3, and RNASEH2A), cell surface receptor-linked signal transduction and the enzyme-linked receptor protein signaling pathway (MAPK1, STAT3, RAF1, and JAK1), and regulation of the cytoskeleton and phosphatidylinositol signaling system (PIP5K1B, PIP5K1C, and PIP4K2B). Our findings suggest that DEGs encoding subunits of NADH, PRIM1, MCM3, MAPK1, STAT3, RAF1, and JAK1 might be associated with the development of lung adenocarcinoma. PMID:26840709

  1. Changes in gene expression of Prymnesium parvum induced by nitrogen and phosphorus limitation

    PubMed Central

    Liu, Zhenfeng; Koid, Amy E.; Terrado, Ramon; Campbell, Victoria; Caron, David A.; Heidelberg, Karla B.

    2015-01-01

    Prymnesium parvum is a globally distributed prymnesiophyte alga commonly found in brackish water marine ecosystems and lakes. It possesses a suite of toxins with ichthyotoxic, cytotoxic and hemolytic effects which, along with its mixotrophic nutritional capabilities, allows it to form massive Ecosystem Disruptive Algal Blooms (EDABs). While blooms of high abundance coincide with high levels of nitrogen (N) and phosphorus (P), reports of field and laboratory studies have noted that P. parvum toxicity appears to be augmented at high N:P ratios or P-limiting conditions. Here we present the results of a comparative analysis of P. parvum RNA-Seq transcriptomes under nutrient replete conditions, and N or P deficiency to understand how this organism responds at the transcriptional level to varying nutrient conditions. In nutrient limited conditions we found diverse transcriptional responses for genes involved in nutrient uptake, protein synthesis and degradation, photosynthesis, and toxin production. As anticipated, when either N or P was limiting, transcription levels of genes encoding transporters for the respective nutrient were higher than those under replete condition. Ribosomal and lysosomal protein genes were expressed at higher levels under either nutrient-limited condition compared to the replete condition. Photosynthesis genes and polyketide synthase genes were more highly expressed under P-limitation but not under N-limitation. These results highlight the ability of P. parvum to mount a coordinated and varied cellular and physiological response to nutrient limitation. Results also provide potential marker genes for further evaluating the physiological response and toxin production of P. parvum populations during bloom formation or to changing environmental conditions. PMID:26157435

  2. Changes in gene expression of Prymnesium parvum induced by nitrogen and phosphorus limitation.

    PubMed

    Liu, Zhenfeng; Koid, Amy E; Terrado, Ramon; Campbell, Victoria; Caron, David A; Heidelberg, Karla B

    2015-01-01

    Prymnesium parvum is a globally distributed prymnesiophyte alga commonly found in brackish water marine ecosystems and lakes. It possesses a suite of toxins with ichthyotoxic, cytotoxic and hemolytic effects which, along with its mixotrophic nutritional capabilities, allows it to form massive Ecosystem Disruptive Algal Blooms (EDABs). While blooms of high abundance coincide with high levels of nitrogen (N) and phosphorus (P), reports of field and laboratory studies have noted that P. parvum toxicity appears to be augmented at high N:P ratios or P-limiting conditions. Here we present the results of a comparative analysis of P. parvum RNA-Seq transcriptomes under nutrient replete conditions, and N or P deficiency to understand how this organism responds at the transcriptional level to varying nutrient conditions. In nutrient limited conditions we found diverse transcriptional responses for genes involved in nutrient uptake, protein synthesis and degradation, photosynthesis, and toxin production. As anticipated, when either N or P was limiting, transcription levels of genes encoding transporters for the respective nutrient were higher than those under replete condition. Ribosomal and lysosomal protein genes were expressed at higher levels under either nutrient-limited condition compared to the replete condition. Photosynthesis genes and polyketide synthase genes were more highly expressed under P-limitation but not under N-limitation. These results highlight the ability of P. parvum to mount a coordinated and varied cellular and physiological response to nutrient limitation. Results also provide potential marker genes for further evaluating the physiological response and toxin production of P. parvum populations during bloom formation or to changing environmental conditions. PMID:26157435

  3. Comparative Digital Gene Expression Analysis of the Arabidopsis Response to Volatiles Emitted by Bacillus amyloliquefaciens

    PubMed Central

    Hao, Hai-Ting; Zhao, Xia; Shang, Qian-Han; Wang, Yun; Guo, Zhi-Hong; Zhang, Yu-Bao; Xie, Zhong-Kui; Wang, Ruo-Yu

    2016-01-01

    Some plant growth-promoting rhizobacteria (PGPR) regulated plant growth and elicited plant basal immunity by volatiles. The response mechanism to the Bacillus amyloliquefaciens volatiles in plant has not been well studied. We conducted global gene expression profiling in Arabidopsis after treatment with Bacillus amyloliquefaciens FZB42 volatiles by Illumina Digital Gene Expression (DGE) profiling of different growth stages (seedling and mature) and tissues (leaves and roots). Compared with the control, 1,507 and 820 differentially expressed genes (DEGs) were identified in leaves and roots at the seedling stage, respectively, while 1,512 and 367 DEGs were identified in leaves and roots at the mature stage. Seventeen genes with different regulatory patterns were validated using quantitative RT-PCR. Numerous DEGs were enriched for plant hormones, cell wall modifications, and protection against stress situations, which suggests that volatiles have effects on plant growth and immunity. Moreover, analyzes of transcriptome difference in tissues and growth stage using DGE profiling showed that the plant response might be tissue-specific and/or growth stage-specific. Thus, genes encoding flavonoid biosynthesis were downregulated in leaves and upregulated in roots, thereby indicating tissue-specific responses to volatiles. Genes related to photosynthesis were downregulated at the seedling stage and upregulated at the mature stage, respectively, thereby suggesting growth period-specific responses. In addition, the emission of bacterial volatiles significantly induced killing of cells of other organism pathway with up-regulated genes in leaves and the other three pathways (defense response to nematode, cell morphogenesis involved in differentiation and trichoblast differentiation) with up-regulated genes were significantly enriched in roots. Interestingly, some important alterations in the expression of growth-related genes, metabolic pathways, defense response to biotic

  4. Comparative Digital Gene Expression Analysis of the Arabidopsis Response to Volatiles Emitted by Bacillus amyloliquefaciens.

    PubMed

    Hao, Hai-Ting; Zhao, Xia; Shang, Qian-Han; Wang, Yun; Guo, Zhi-Hong; Zhang, Yu-Bao; Xie, Zhong-Kui; Wang, Ruo-Yu

    2016-01-01

    Some plant growth-promoting rhizobacteria (PGPR) regulated plant growth and elicited plant basal immunity by volatiles. The response mechanism to the Bacillus amyloliquefaciens volatiles in plant has not been well studied. We conducted global gene expression profiling in Arabidopsis after treatment with Bacillus amyloliquefaciens FZB42 volatiles by Illumina Digital Gene Expression (DGE) profiling of different growth stages (seedling and mature) and tissues (leaves and roots). Compared with the control, 1,507 and 820 differentially expressed genes (DEGs) were identified in leaves and roots at the seedling stage, respectively, while 1,512 and 367 DEGs were identified in leaves and roots at the mature stage. Seventeen genes with different regulatory patterns were validated using quantitative RT-PCR. Numerous DEGs were enriched for plant hormones, cell wall modifications, and protection against stress situations, which suggests that volatiles have effects on plant growth and immunity. Moreover, analyzes of transcriptome difference in tissues and growth stage using DGE profiling showed that the plant response might be tissue-specific and/or growth stage-specific. Thus, genes encoding flavonoid biosynthesis were downregulated in leaves and upregulated in roots, thereby indicating tissue-specific responses to volatiles. Genes related to photosynthesis were downregulated at the seedling stage and upregulated at the mature stage, respectively, thereby suggesting growth period-specific responses. In addition, the emission of bacterial volatiles significantly induced killing of cells of other organism pathway with up-regulated genes in leaves and the other three pathways (defense response to nematode, cell morphogenesis involved in differentiation and trichoblast differentiation) with up-regulated genes were significantly enriched in roots. Interestingly, some important alterations in the expression of growth-related genes, metabolic pathways, defense response to biotic

  5. Heritability and expression of C sub 4 photosynthesis in hybrids between C sub 3 -C sub 4 and C sub 4 Flaveria

    SciTech Connect

    Cheng, S.H.

    1988-01-01

    In general, leaves of C{sub 4} plants are considered to be more efficient at fixing atmospheric CO{sub 2} than those of C{sub 3} plants. Such efficiency in carbon assimilation is attributed to unique C{sub 4} features in anatomy, physiology and biochemistry of leaves. In these studies I investigated whether these C{sub 4} characteristics can be inherited and expressed in C{sub 3}-C{sub 4} species through artificial hybridization with C{sub 4} species in genus Flaveria. The expression of C{sub 4} photosynthesis in the parent C{sub 4} parent F. brownii is influenced by the light intensity during growth. Characterization of these F{sub 1} hybrids demonstrates that several C{sub 4} traits are heritable. The expression of Kranz leaf anatomy, and the activities and/or quantities of key C{sub 4} enzymes in the F{sub 1} hybrids are intermediate between levels in the parents. Enzyme localization studies with isolated leaf mesophyll and bundle sheath protoplasts indicated that these hybrids lack a complete compartmentation of major photosynthetic enzymes, but they do exhibit a differential distribution of these enzymes between the two cell types. Furthermore, {sup 14}CO{sub 2} labeling experiments showed that they all possess a high degree of functional C{sub 4} photosynthesis, which may in part contribute to the reduced photorespiration observed in the F{sub 1} hybrids.

  6. Gene expression in Pseudomonas aeruginosa swarming motility

    PubMed Central

    2010-01-01

    Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14). Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center). Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to swarm center cells, tendril

  7. A novel circadianly expressed Drosophila melanogaster gene dependent on the period gene for its rhythmic expression.

    PubMed Central

    Van Gelder, R N; Krasnow, M A

    1996-01-01

    The Drosophila melanogaster period (per) gene is required for expression of endogenous circadian rhythms of locomotion and eclosion. per mRNA is expressed with a circadian rhythm that is dependent on Per protein; this feedback loop has been proposed to be essential to the central circadian pacemaker. This model would suggest the Per protein also controls the circadian expression of other genetic loci to generate circadian behavior and physiology. In this paper we describe Dreg-5, a gene whose mRNA is expressed in fly heads with a circadian rhythm nearly identical to that of the per gene. Dreg-5 mRNA continues to cycle in phase with that of per mRNA in conditions of total darkness and also when the daily feeding time is altered. Like per mRNA, Dreg-5 mRNA is not expressed rhythmically in per null mutant flies. Dreg-5 encodes a novel 298 residue protein and Dreg-5 protein isoforms also oscillate in abundance with a circadian rhythm. The phase of Dreg-5 protein oscillation, however, is different from that of Per protein expression, suggesting that Dreg-5 and per have common translational but different post-translational control mechanisms. These results demonstrate that the per gene is capable of modulating the rhythmic expression of other genes; this activity may form the basis of the output of circadian rhythmicity in Drosophila. Images PMID:8612586

  8. Identifying Driver Genes in Cancer by Triangulating Gene Expression, Gene Location, and Survival Data

    PubMed Central

    Rouam, Sigrid; Miller, Lance D; Karuturi, R Krishna Murthy

    2014-01-01

    Driver genes are directly responsible for oncogenesis and identifying them is essential in order to fully understand the mechanisms of cancer. However, it is difficult to delineate them from the larger pool of genes that are deregulated in cancer (ie, passenger genes). In order to address this problem, we developed an approach called TRIAngulating Gene Expression (TRIAGE through clinico-genomic intersects). Here, we present a refinement of this approach incorporating a new scoring methodology to identify putative driver genes that are deregulated in cancer. TRIAGE triangulates – or integrates – three levels of information: gene expression, gene location, and patient survival. First, TRIAGE identifies regions of deregulated expression (ie, expression footprints) by deriving a newly established measure called the Local Singular Value Decomposition (LSVD) score for each locus. Driver genes are then distinguished from passenger genes using dual survival analyses. Incorporating measurements of gene expression and weighting them according to the LSVD weight of each tumor, these analyses are performed using the genes located in significant expression footprints. Here, we first use simulated data to characterize the newly established LSVD score. We then present the results of our application of this refined version of TRIAGE to gene expression data from five cancer types. This refined version of TRIAGE not only allowed us to identify known prominent driver genes, such as MMP1, IL8, and COL1A2, but it also led us to identify several novel ones. These results illustrate that TRIAGE complements existing tools, allows for the identification of genes that drive cancer and could perhaps elucidate potential future targets of novel anticancer therapeutics. PMID:25949096

  9. Molecular imaging of in vivo gene expression

    PubMed Central

    Harney, Allison S.; Meade, Thomas J.

    2015-01-01

    Background Advances in imaging technologies have taken a prominent role in experimental and translational research and provide essential information on how changes in gene expression are related to downstream developmental and disease states. Discussion Magnetic resonance imaging contrast agents and optical probes developed to enhance signal intensity in the presence of a specific enzyme, genetic marker, second messenger or metabolite can prove a facile method of advancing the understanding of molecular events in disease progression. Conclusion The ability to detect changes in gene expression at the early stages of disease will lead to a greater understanding of disease progression, the use of early therapeutic intervention to increase patient survival, and tailored therapies to the detected genetic alterations in individual patients. PMID:21426178

  10. DNA supercoiling and bacterial gene expression.

    PubMed

    Dorman, Charles J

    2006-01-01

    DNA in bacterial cells is maintained in a negatively supercoiled state. This contributes to the organization of the bacterial nucleoid and also influences the global gene expression pattern in the cell through modulatory effects on transcription. Supercoiling arises as a result of changes to the linking number of the relaxed double-stranded DNA molecule and is set and reset by the action of DNA topoisomerases. This process is subject to a multitude of influences that are usually summarized as environmental stress. Responsiveness of linking number change to stress offers the promise of a mechanism for the wholesale adjustment of the transcription programme of the cell as the bacterium experiences different environments. Recent data from DNA microarray experiments support this proposition. The emerging picture is one of DNA supercoiling acting at or near the apex of a regulatory hierarchy where it collaborates with nucleoid-associated proteins and transcription factors to determine the gene expression profile of the cell. PMID:17338437

  11. Structure, expression and functions of MTA genes.

    PubMed

    Kumar, Rakesh; Wang, Rui-An

    2016-05-15

    Metastatic associated proteins (MTA) are integrators of upstream regulatory signals with the ability to act as master coregulators for modifying gene transcriptional activity. The MTA family includes three genes and multiple alternatively spliced variants. The MTA proteins neither have their own enzymatic activity nor have been shown to directly interact with DNA. However, MTA proteins interact with a variety of chromatin remodeling factors and complexes with enzymatic activities for modulating the plasticity of nucleosomes, leading to the repression or derepression of target genes or other extra-nuclear and nucleosome remodeling and histone deacetylase (NuRD)-complex independent activities. The functions of MTA family members are driven by the steady state levels and subcellular localization of MTA proteins, the dynamic nature of modifying signals and enzymes, the structural features and post-translational modification of protein domains, interactions with binding proteins, and the nature of the engaged and resulting features of nucleosomes in the proximity of target genes. In general, MTA1 and MTA2 are the most upregulated genes in human cancer and correlate well with aggressive phenotypes, therapeutic resistance, poor prognosis and ultimately, unfavorable survival of cancer patients. Here we will discuss the structure, expression and functions of the MTA family of genes in the context of cancer cells. PMID:26869315

  12. Global Gene Expression in Staphylococcus aureus Biofilms

    PubMed Central

    Beenken, Karen E.; Dunman, Paul M.; McAleese, Fionnuala; Macapagal, Daphne; Murphy, Ellen; Projan, Steven J.; Blevins, Jon S.; Smeltzer, Mark S.

    2004-01-01

    We previously demonstrated that mutation of the staphylococcal accessory regulator (sarA) in a clinical isolate of Staphylococcus aureus (UAMS-1) results in an impaired capacity to form a biofilm in vitro (K. E. Beenken, J. S. Blevins, and M. S. Smeltzer, Infect. Immun. 71:4206-4211, 2003). In this report, we used a murine model of catheter-based biofilm formation to demonstrate that a UAMS-1 sarA mutant also has a reduced capacity to form a biofilm in vivo. Surprisingly, mutation of the UAMS-1 ica locus had little impact on biofilm formation in vitro or in vivo. In an effort to identify additional loci that might be relevant to biofilm formation and/or the adaptive response required for persistence of S. aureus within a biofilm, we isolated total cellular RNA from UAMS-1 harvested from a biofilm grown in a flow cell and compared the transcriptional profile of this RNA to RNA isolated from both exponential- and stationary-phase planktonic cultures. Comparisons were done using a custom-made Affymetrix GeneChip representing the genomic complement of six strains of S. aureus (COL, N315, Mu50, NCTC 8325, EMRSA-16 [strain 252], and MSSA-476). The results confirm that the sessile lifestyle associated with persistence within a biofilm is distinct by comparison to the lifestyles of both the exponential and postexponential phases of planktonic culture. Indeed, we identified 48 genes in which expression was induced at least twofold in biofilms over expression under both planktonic conditions. Similarly, we identified 84 genes in which expression was repressed by a factor of at least 2 compared to expression under both planktonic conditions. A primary theme that emerged from the analysis of these genes is that persistence within a biofilm requires an adaptive response that limits the deleterious effects of the reduced pH associated with anaerobic growth conditions. PMID:15231800

  13. Imaging gene expression in single living cells

    PubMed Central

    Shav-Tal, Yaron; Singer, Robert H.; Darzacq, Xavier

    2016-01-01

    Technical advances in the field of live-cell imaging have introduced the cell biologist to a new, dynamic, subcellular world. The static world of molecules in fixed cells has now been extended to the time dimension. This allows the visualization and quantification of gene expression and intracellular trafficking events of the studied molecules and the associated enzymatic processes in individual cells, in real time. PMID:15459666

  14. Gene Expression Changes during the Gummosis Development of Peach Shoots in Response to Lasiodiplodia theobromae Infection Using RNA-Seq

    PubMed Central

    Gao, Lei; Wang, Yuting; Li, Zhi; Zhang, He; Ye, Junli; Li, Guohuai

    2016-01-01

    Lasiodiplodia theobromae is a causal agent of peach (Prunus persica L.) tree gummosis, a serious disease affecting peach cultivation and production. However, the molecular mechanism underlying the pathogenesis remains unclear. RNA-Seq was performed to investigate gene expression in peach shoots inoculated or mock-inoculated with L. theobromae. A total of 20772 genes were detected in eight samples; 4231, 3750, 3453, and 3612 differentially expressed genes were identified at 12, 24, 48, and 60 h after inoculation, respectively. Furthermore, 920 differentially co-expressed genes (515 upregulated and 405 downregulated) were found, respectively. Gene ontology annotation revealed that phenylpropanoid biosynthesis and metabolism, uridine diphosphate-glucosyltransferase activity, and photosynthesis were the most differentially regulated processes during gummosis development. Significant differences were also found in the expression of genes involved in glycometabolism and in ethylene and jasmonic acid biosynthesis and signaling. These data illustrate the dynamic changes in gene expression in the inoculated peach shoots at the transcriptome level. Overall, gene expression in defense response and glycometabolism might result in the gummosis of peach trees induced by L. theobromae. PMID:27242544

  15. Infection of apple by apple stem grooving virus leads to extensive alterations in gene expression patterns but no disease symptoms.

    PubMed

    Chen, Shanyi; Ye, Ting; Hao, Lu; Chen, Hui; Wang, Shaojie; Fan, Zaifeng; Guo, Liyun; Zhou, Tao

    2014-01-01

    To understand the molecular basis of viral diseases, transcriptome profiling has been widely used to correlate host gene expression change patterns with disease symptoms during viral infection in many plant hosts. We used infection of apple by Apple stem grooving virus (ASGV), which produces no disease symptoms, to assess the significance of host gene expression changes in disease development. We specifically asked the question of whether such asymptomatic infection is attributed to limited changes in host gene expression. Using RNA-seq, we identified a total of 184 up-regulated and 136 down-regulated genes in apple shoot cultures permanently infected by ASGV in comparison with virus-free shoot cultures. As in most plant hosts showing disease symptoms during viral infection, these differentially expressed genes encode known or putative proteins involved in cell cycle, cell wall biogenesis, response to biotic and abiotic stress, development and fruit ripening, phytohormone function, metabolism, signal transduction, transcription regulation, translation, transport, and photosynthesis. Thus, global host gene expression changes do not necessarily lead to virus disease symptoms. Our data suggest that the general approaches to correlate host gene expression changes under viral infection conditions to specific disease symptom, based on the interpretation of transcription profiling data and altered individual gene functions, may have limitations depending on particular experimental systems. PMID:24736405

  16. Gene Expression Changes during the Gummosis Development of Peach Shoots in Response to Lasiodiplodia theobromae Infection Using RNA-Seq.

    PubMed

    Gao, Lei; Wang, Yuting; Li, Zhi; Zhang, He; Ye, Junli; Li, Guohuai

    2016-01-01

    Lasiodiplodia theobromae is a causal agent of peach (Prunus persica L.) tree gummosis, a serious disease affecting peach cultivation and production. However, the molecular mechanism underlying the pathogenesis remains unclear. RNA-Seq was performed to investigate gene expression in peach shoots inoculated or mock-inoculated with L. theobromae. A total of 20772 genes were detected in eight samples; 4231, 3750, 3453, and 3612 differentially expressed genes were identified at 12, 24, 48, and 60 h after inoculation, respectively. Furthermore, 920 differentially co-expressed genes (515 upregulated and 405 downregulated) were found, respectively. Gene ontology annotation revealed that phenylpropanoid biosynthesis and metabolism, uridine diphosphate-glucosyltransferase activity, and photosynthesis were the most differentially regulated processes during gummosis development. Significant differences were also found in the expression of genes involved in glycometabolism and in ethylene and jasmonic acid biosynthesis and signaling. These data illustrate the dynamic changes in gene expression in the inoculated peach shoots at the transcriptome level. Overall, gene expression in defense response and glycometabolism might result in the gummosis of peach trees induced by L. theobromae. PMID:27242544

  17. Infection of Apple by Apple Stem Grooving Virus Leads to Extensive Alterations in Gene Expression Patterns but No Disease Symptoms

    PubMed Central

    Hao, Lu; Chen, Hui; Wang, Shaojie; Fan, Zaifeng; Guo, Liyun; Zhou, Tao

    2014-01-01

    To understand the molecular basis of viral diseases, transcriptome profiling has been widely used to correlate host gene expression change patterns with disease symptoms during viral infection in many plant hosts. We used infection of apple by Apple stem grooving virus (ASGV), which produces no disease symptoms, to assess the significance of host gene expression changes in disease development. We specifically asked the question of whether such asymptomatic infection is attributed to limited changes in host gene expression. Using RNA-seq, we identified a total of 184 up-regulated and 136 down-regulated genes in apple shoot cultures permanently infected by ASGV in comparison with virus-free shoot cultures. As in most plant hosts showing disease symptoms during viral infection, these differentially expressed genes encode known or putative proteins involved in cell cycle, cell wall biogenesis, response to biotic and abiotic stress, development and fruit ripening, phytohormone function, metabolism, signal transduction, transcription regulation, translation, transport, and photosynthesis. Thus, global host gene expression changes do not necessarily lead to virus disease symptoms. Our data suggest that the general approaches to correlate host gene expression changes under viral infection conditions to specific disease symptom, based on the interpretation of transcription profiling data and altered individual gene functions, may have limitations depending on particular experimental systems. PMID:24736405

  18. Most photorespiratory genes are preferentially expressed in the bundle sheath cells of the C4 grass Sorghum bicolor

    PubMed Central

    Döring, Florian; Streubel, Monika; Bräutigam, Andrea; Gowik, Udo

    2016-01-01

    One of the hallmarks of C4 plants is the division of labor between two different photosynthetic cell types, the mesophyll and the bundle sheath cells. C4 plants are of polyphyletic origin and, during the evolution of C4 photosynthesis, the expression of thousands of genes was altered and many genes acquired a cell type-specific or preferential expression pattern. Several lines of evidence, including computational modeling and physiological and phylogenetic analyses, indicate that alterations in the expression of a key photorespiration-related gene, encoding the glycine decarboxylase P subunit, was an early and important step during C4 evolution. Restricting the expression of this gene to the bundle sheath led to the establishment of a photorespiratory CO2 pump. We were interested in whether the expression of genes related to photorespiration remains bundle sheath specific in a fully optimized C4 species. Therefore we analyzed the expression of photorespiratory and C4 cycle genes using RNA in situ hybridization and transcriptome analysis of isolated mesophyll and bundle sheath cells in the C4 grass Sorghum bicolor. It turns out that the C4 metabolism of Sorghum is based solely on the NADP-dependent malic enzyme pathway. The majority of photorespiratory gene expression, with some important exceptions, is restricted to the bundle sheath. PMID:26976818

  19. Most photorespiratory genes are preferentially expressed in the bundle sheath cells of the C4 grass Sorghum bicolor.

    PubMed

    Döring, Florian; Streubel, Monika; Bräutigam, Andrea; Gowik, Udo

    2016-05-01

    One of the hallmarks of C4 plants is the division of labor between two different photosynthetic cell types, the mesophyll and the bundle sheath cells. C4 plants are of polyphyletic origin and, during the evolution of C4 photosynthesis, the expression of thousands of genes was altered and many genes acquired a cell type-specific or preferential expression pattern. Several lines of evidence, including computational modeling and physiological and phylogenetic analyses, indicate that alterations in the expression of a key photorespiration-related gene, encoding the glycine decarboxylase P subunit, was an early and important step during C4 evolution. Restricting the expression of this gene to the bundle sheath led to the establishment of a photorespiratory CO2 pump. We were interested in whether the expression of genes related to photorespiration remains bundle sheath specific in a fully optimized C4 species. Therefore we analyzed the expression of photorespiratory and C4 cycle genes using RNA in situ hybridization and transcriptome analysis of isolated mesophyll and bundle sheath cells in the C4 grass Sorghum bicolor It turns out that the C4 metabolism of Sorghum is based solely on the NADP-dependent malic enzyme pathway. The majority of photorespiratory gene expression, with some important exceptions, is restricted to the bundle sheath. PMID:26976818

  20. The systemic control of circadian gene expression.

    PubMed

    Gerber, A; Saini, C; Curie, T; Emmenegger, Y; Rando, G; Gosselin, P; Gotic, I; Gos, P; Franken, P; Schibler, U

    2015-09-01

    The mammalian circadian timing system consists of a central pacemaker in the brain's suprachiasmatic nucleus (SCN) and subsidiary oscillators in nearly all body cells. The SCN clock, which is adjusted to geophysical time by the photoperiod, synchronizes peripheral clocks through a wide variety of systemic cues. The latter include signals depending on feeding cycles, glucocorticoid hormones, rhythmic blood-borne signals eliciting daily changes in actin dynamics and serum response factor (SRF) activity, and sensors of body temperature rhythms, such as heat shock transcription factors and the cold-inducible RNA-binding protein CIRP. To study these systemic signalling pathways, we designed and engineered a novel, highly photosensitive apparatus, dubbed RT-Biolumicorder. This device enables us to record circadian luciferase reporter gene expression in the liver and other organs of freely moving mice over months in real time. Owing to the multitude of systemic signalling pathway involved in the phase resetting of peripheral clocks the disruption of any particular one has only minor effects on the steady state phase of circadian gene expression in organs such as the liver. Nonetheless, the implication of specific pathways in the synchronization of clock gene expression can readily be assessed by monitoring the phase-shifting kinetics using the RT-Biolumicorder. PMID:26332965

  1. Nuclear structure, gene expression and development.

    PubMed

    Brown, K

    1999-01-01

    This article considers the extent to which features of nuclear structure are involved in the regulation of genome function. The recent renaissance in imaging technology has inspired a new determination to assign specific functions to nuclear domains or structures, many of which have been described as "factories" to express the idea that they coordinate nuclear processes in an efficient way. Visual data have been combined with genetic and biochemical information to support the idea that nuclear organization has functional significance. Particular DNA sequences or chromatin structures may nucleate domains that are permissive or restrictive of transcription, to which active or inactive loci could be recruited. Associations within the nucleus, as well as many nuclear structures, are transient and change dynamically during cell cycle progression and development. Despite this complexity, elucidation of the possible structural basis of epigenetic phenomena, such as the inheritance of a "cellular memory" of gene expression status, is an important goal for cell biology. Topics for discussion include the regulatory effect of chromatin structure on gene expression, putative "nuclear addresses" for genes and proteins, the functional significance of nuclear bodies, and the role of the nuclear matrix in nuclear compartmentalization. PMID:10651237

  2. Carbon Nanomaterials Alter Global Gene Expression Profiles.

    PubMed

    Woodman, Sara; Short, John C W; McDermott, Hyoeun; Linan, Alexander; Bartlett, Katelyn; Gadila, Shiva Kumar Goud; Schmelzle, Katie; Wanekaya, Adam; Kim, Kyoungtae

    2016-05-01

    Carbon nanomaterials (CNMs), which include carbon nanotubes (CNTs) and their derivatives, have diverse technological and biomedical applications. The potential toxicity of CNMs to cells and tissues has become an important emerging question in nanotechnology. To assess the toxicity of CNTs and fullerenol C60(OH)24, we in the present work used the budding yeast Saccharomyces cerevisiae, one of the simplest eukaryotic organisms that share fundamental aspects of eukaryotic cell biology. We found that treatment with CNMs, regardless of their physical shape, negatively affected the growth rates, end-point cell densities and doubling times of CNM-exposed yeast cells when compared to unexposed cells. To investigate potential mechanisms behind the CNMs-induced growth defects, we performed RNA-Seq dependent transcriptional analysis and constructed global gene expression profiles of fullerenol C60(OH)24- and CNT-treated cells. When compared to non-treated control cells, CNM-treated cells displayed differential expression of genes whose functions are implicated in membrane transporters and stress response, although differentially expressed genes were not consistent between CNT- and fullerenol C60(OH)24-treated groups, leading to our conclusion that CNMs could serve as environmental toxic factors to eukaryotic cells. PMID:27483901

  3. Transition Metals in Control of Gene Expression

    NASA Astrophysics Data System (ADS)

    O'Halloran, Thomas V.

    1993-08-01

    Metalloproteins play structural and catalytic roles in gene expression. The metalloregulatory proteins are a subclass that exerts metal-responsive control of genes involved in respiration, metabolism, and metal-specific homeostasis or stress-response systems, such as iron uptake and storage, copper efflux, and mercury detoxification. Two allosteric mechanisms for control of gene expression were first discovered in metalloregulatory systems: an iron-responsive translational control mechanism for ferritin production and a mercury-responsive DNA-distortion mechanism for transcriptional control of detoxification genes. These otherwise unrelated mechanisms give rise to a rapid physiological response when metal ion concentrations exceed a dangerous threshold. Molecular recognition in these allosteric metal ion receptors is achieved through atypical coordination geometries, cluster formation, or complexes with prosthetic groups, such as sulfide and heme. Thus, many of the inorganic assemblies that otherwise buttress the structure of biopolymers or catalyze substrate transformation in active sites of enzymes have also been adapted to serve sensor functions in the metalloregulatory proteins. Mechanistic studies of these metal-sensor protein interactions are providing new insights into fundamental aspects of inorganic chemistry, molecular biology, and cellular physiology.

  4. Gene expression profiling of inflammatory bladder disorders.

    PubMed

    Saban, Marcia R; Nguyen, Ngoc-Bich; Hurst, Robert E; Saban, Ricardo

    2003-03-01

    Inflammation underlies all major bladder pathologies including malignancy and represents a defense reaction to injury caused by physical damage, chemical substances, micro-organisms or other agents. During acute inflammation, activation of specific molecular pathways leads to an increased expression of selected genes whose products attack the insult, but ultimately should protect the tissue from the noxious stimulus. However, once the stimulus ceases, gene-expression should return to basal levels to avoid tissue damage, fibrosis, loss of function, and chronic inflammation. If this down-regulation does not occur, tissue fibrosis occurs as a serious complication of chronic inflammation. Although sensory nerve and most cells products are known to be key parts of the inflammatory puzzle, other key molecules are constantly being described that have a role in bladder inflammation. Therefore, as the database describing the repertoire of inflammatory mediators implicated in bladder inflammation increases, the central mechanisms by which injury can induce inflammation, cell damage, and repair often becomes less rather than more clear. To make sense of the vast knowledge of the genes involved in the inflammatory response may require analysis of the patterns of change and the elucidation of gene networks far more than definition of additional members of inflammatory cascades. This review discuss the appropriate use of microarray technology, which promises to solve both of these problems as well as identifying key molecules and mechanisms involved in the transition between acute and chronic inflammation. PMID:12647997

  5. Transcriptional analysis of human survivin gene expression.

    PubMed Central

    Li, F; Altieri, D C

    1999-01-01

    The preservation of tissue and organ homoeostasis depends on the regulated expression of genes controlling apoptosis (programmed cell death). In this study, we have investigated the basal transcriptional requirements of the survivin gene, an IAP (inhibitor of apoptosis) prominently up-regulated in cancer. Analysis of the 5' flanking region of the human survivin gene revealed the presence of a TATA-less promoter containing a canonical CpG island of approximately 250 nt, three cell cycle dependent elements, one cell cycle homology region and numerous Sp1 sites. PCR-based analysis of human genomic DNA, digested with methylation-sensitive and -insensitive restriction enzymes, indicated that the CpG island was unmethylated in both normal and neoplastic tissues. Primer extension and S1 nuclease mapping of the human survivin gene identified two main transcription start sites at position -72 and within -57/-61 from the initiating ATG. Transfection of cervical carcinoma HeLa cells with truncated or nested survivin promoter-luciferase constructs revealed the presence of both enhancer and repressor sequences and identified a minimal promoter region within the proximal -230 nt of the human survivin gene. Unbiased mutagenesis analysis of the human survivin promoter revealed that targeting the Sp1 sequences at position -171 and -151 abolished basal transcriptional activity by approximately 63-82%. Electrophoretic mobility-shift assay with DNA oligonucleotides confirmed formation of a DNA-protein complex between the survivin Sp1 sequences and HeLa cell extracts in a reaction abolished by mutagenesis of the survivin Sp1 sites. These findings identify the basal transcriptional requirements of survivin gene expression. PMID:10567210

  6. Differential Gene Expression between Leaf and Rhizome in Atractylodes lancea: A Comparative Transcriptome Analysis

    PubMed Central

    Huang, Qianqian; Huang, Xiao; Deng, Juan; Liu, Hegang; Liu, Yanwen; Yu, Kun; Huang, Bisheng

    2016-01-01

    The rhizome of Atractylodes lancea is extensively used in the practice of Traditional Chinese Medicine because of its broad pharmacological activities. This study was designed to characterize the transcriptome profiling of the rhizome and leaf of Atractylodes lancea in an attempt to uncover the molecular mechanisms regulating rhizome formation and growth. Over 270 million clean reads were assembled into 92,366 unigenes, 58% of which are homologous with sequences in public protein databases (NR, Swiss-Prot, GO, and KEGG). Analysis of expression levels showed that genes involved in photosynthesis, stress response, and translation were the most abundant transcripts in the leaf, while transcripts involved in stress response, transcription regulation, translation, and metabolism were dominant in the rhizome. Tissue-specific gene analysis identified distinct gene families active in the leaf and rhizome. Differential gene expression analysis revealed a clear difference in gene expression pattern, identifying 1518 up-regulated genes and 3464 down-regulated genes in the rhizome compared with the leaf, including a series of genes related to signal transduction, primary and secondary metabolism. Transcription factor (TF) analysis identified 42 TF families, with 67 and 60 TFs up-regulated in the rhizome and leaf, respectively. A total of 104 unigenes were identified as candidates for regulating rhizome formation and development. These data offer an overview of the gene expression pattern of the rhizome and leaf and provide essential information for future studies on the molecular mechanisms of controlling rhizome formation and growth. The extensive transcriptome data generated in this study will be a valuable resource for further functional genomics studies of A. lancea. PMID:27066021

  7. Phylogeny of C4-photosynthesis enzymes based on algal transcriptomic and genomic data supports an archaeal/proteobacterial origin and multiple duplication for most C4-related genes.

    PubMed

    Chi, Shan; Wu, Shuangxiu; Yu, Jun; Wang, Xumin; Tang, Xuexi; Liu, Tao

    2014-01-01

    Both Calvin-Benson-Bassham (C3) and Hatch-Slack (C4) cycles are most important autotrophic CO2 fixation pathways on today's Earth. C3 cycle is believed to be originated from cyanobacterial endosymbiosis. However, studies on evolution of different biochemical variants of C4 photosynthesis are limited to tracheophytes and origins of C4-cycle genes are not clear till now. Our comprehensive analyses on bioinformatics and phylogenetics of novel transcriptomic sequencing data of 21 rhodophytes and 19 Phaeophyceae marine species and public genomic data of more algae, tracheophytes, cyanobacteria, proteobacteria and archaea revealed the origin and evolution of C4 cycle-related genes. Almost all of C4-related genes were annotated in extensive algal lineages with proteobacterial or archaeal origins, except for phosphoenolpyruvate carboxykinase (PCK) and aspartate aminotransferase (AST) with both cyanobacterial and archaeal/proteobacterial origin. Notably, cyanobacteria may not possess complete C4 pathway because of the flawed annotation of pyruvate orthophosphate dikinase (PPDK) genes in public data. Most C4 cycle-related genes endured duplication and gave rise to functional differentiation and adaptation in different algal lineages. C4-related genes of NAD-ME (NAD-malic enzyme) and PCK subtypes exist in most algae and may be primitive ones, while NADP-ME (NADP-malic enzyme) subtype genes might evolve from NAD-ME subtype by gene duplication in chlorophytes and tracheophytes. PMID:25313828

  8. Phylogeny of C4-Photosynthesis Enzymes Based on Algal Transcriptomic and Genomic Data Supports an Archaeal/Proteobacterial Origin and Multiple Duplication for Most C4-Related Genes

    PubMed Central

    Yu, Jun; Wang, Xumin; Tang, Xuexi; Liu, Tao

    2014-01-01

    Both Calvin-Benson-Bassham (C3) and Hatch-Slack (C4) cycles are most important autotrophic CO2 fixation pathways on today’s Earth. C3 cycle is believed to be originated from cyanobacterial endosymbiosis. However, studies on evolution of different biochemical variants of C4 photosynthesis are limited to tracheophytes and origins of C4-cycle genes are not clear till now. Our comprehensive analyses on bioinformatics and phylogenetics of novel transcriptomic sequencing data of 21 rhodophytes and 19 Phaeophyceae marine species and public genomic data of more algae, tracheophytes, cyanobacteria, proteobacteria and archaea revealed the origin and evolution of C4 cycle-related genes. Almost all of C4-related genes were annotated in extensive algal lineages with proteobacterial or archaeal origins, except for phosphoenolpyruvate carboxykinase (PCK) and aspartate aminotransferase (AST) with both cyanobacterial and archaeal/proteobacterial origin. Notably, cyanobacteria may not possess complete C4 pathway because of the flawed annotation of pyruvate orthophosphate dikinase (PPDK) genes in public data. Most C4 cycle-related genes endured duplication and gave rise to functional differentiation and adaptation in different algal lineages. C4-related genes of NAD-ME (NAD-malic enzyme) and PCK subtypes exist in most algae and may be primitive ones, while NADP-ME (NADP-malic enzyme) subtype genes might evolve from NAD-ME subtype by gene duplication in chlorophytes and tracheophytes. PMID:25313828

  9. Screening of differentially expressed genes in pathological scar tissues using expression microarray.

    PubMed

    Huang, L P; Mao, Z; Zhang, L; Liu, X X; Huang, C; Jia, Z S

    2015-01-01

    Pathological scar tissues and normal skin tissues were differentiated by screening for differentially expressed genes in pathologic scar tissues via gene expression microarray. The differentially expressed gene data was analyzed by gene ontology and pathway analyses. There were 5001 up- or down-regulated genes in 2-fold differentially expressed genes, 956 up- or down-regulated genes in 5-fold differentially expressed genes, and 114 up- or down-regulated genes in 20-fold differentially expressed genes. Therefore, significant differences were observed in the gene expression in pathological scar tissues and normal foreskin tissues. The development of pathological scar tissues has been correlated to changes in multiple genes and pathways, which are believed to form a dynamic network connection. PMID:26400303

  10. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    SciTech Connect

    Salem, Tamer Z.; Zhang, Fengrui; Thiem, Suzanne M.

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  11. Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions

    PubMed Central

    Plessis, Anne; Hafemeister, Christoph; Wilkins, Olivia; Gonzaga, Zennia Jean; Meyer, Rachel Sarah; Pires, Inês; Müller, Christian; Septiningsih, Endang M; Bonneau, Richard; Purugganan, Michael

    2015-01-01

    Plants rely on transcriptional dynamics to respond to multiple climatic fluctuations and contexts in nature. We analyzed the genome-wide gene expression patterns of rice (Oryza sativa) growing in rainfed and irrigated fields during two distinct tropical seasons and determined simple linear models that relate transcriptomic variation to climatic fluctuations. These models combine multiple environmental parameters to account for patterns of expression in the field of co-expressed gene clusters. We examined the similarities of our environmental models between tropical and temperate field conditions, using previously published data. We found that field type and macroclimate had broad impacts on transcriptional responses to environmental fluctuations, especially for genes involved in photosynthesis and development. Nevertheless, variation in solar radiation and temperature at the timescale of hours had reproducible effects across environmental contexts. These results provide a basis for broad-based predictive modeling of plant gene expression in the field. DOI: http://dx.doi.org/10.7554/eLife.08411.001 PMID:26609814

  12. Heme Synthesis by Plastid Ferrochelatase I Regulates Nuclear Gene Expression in Plants

    PubMed Central

    Woodson, Jesse D.; Perez-Ruiz, Juan M.; Chory, Joanne

    2016-01-01

    Summary Chloroplast signals regulate hundreds of nuclear genes during development and in response to stress, but little is known of the signals or signal transduction mechanisms of plastid-to-nucleus (retrograde) signaling [1, 2]. In Arabidopsis thaliana, genetic studies using norflurazon (NF), an inhibitor of carotenoid biosynthesis, have identified five GUN (genomes uncoupled) genes, implicating the tetrapyrrole pathway as a source of a retrograde signal. Loss of function of any of these GUN genes leads to increased expression of photosynthesis-associated nuclear genes (PhANGs) when chloroplast development has been blocked by NF [3, 4]. Here we present a new Arabidopsis gain-of-function mutant, gun6-1D, with a similar phenotype. The gun6-1Dmutant overexpresses the conserved plastid ferrochelatase 1 (FC1, heme synthase). Genetic and biochemical experiments demonstrate that increased flux through the heme branch of the plastid tetrapyrrole biosynthetic pathway increases PhANG expression. The second conserved plant ferrochelatase, FC2, colocalizes with FC1, but FC2 activity is unable to increase PhANG expression in undeveloped plastids. These data suggest a model in which heme, specifically produced by FC1, may be used as a retrograde signal to coordinate PhANG expression with chloroplast development. PMID:21565502

  13. The transcriptional regulation of regucalcin gene expression.

    PubMed

    Yamaguchi, Masayoshi

    2011-01-01

    Regucalcin, which is discovered as a calcium-binding protein in 1978, has been shown to play a multifunctional role in many tissues and cell types; regucalcin has been proposed to play a pivotal role in keeping cell homeostasis and function for cell response. Regucalcin and its gene are identified in over 15 species consisting of regucalcin family. Comparison of the nucleotide sequences of regucalcin from vertebrate species is highly conserved in their coding region with throughout evolution. The regucalcin gene is localized on the chromosome X in rat and human. The organization of rat regucalcin gene consists of seven exons and six introns and several consensus regulatory elements exist upstream of the 5'-flanking region. AP-1, NF1-A1, RGPR-p117, β-catenin, and other factors have been found to be a transcription factor in the enhancement of regucalcin gene promoter activity. The transcription activity of regucalcin gene is enhanced through intracellular signaling factors that are mediated through the phosphorylation and dephosphorylation of nuclear protein in vitro. Regucalcin mRNA and its protein are markedly expressed in the liver and kidney cortex of rats. The expression of regucalcin mRNA in the liver and kidney cortex has been shown to stimulate by hormonal factors (including calcium, calcitonin, parathyroid hormone, insulin, estrogen, and dexamethasone) in vivo. Regucalcin mRNA expression is enhanced in the regenerating liver after partial hepatectomy of rats in vivo. The expression of regucalcin mRNA in the liver and kidney with pathophysiological state has been shown to suppress, suggesting an involvement of regucalcin in disease. Liver regucalcin expression is down-regulated in tumor cells, suggesting a suppressive role in the development of carcinogenesis. Liver regucalcin is markedly released into the serum of rats with chemically induced liver injury in vivo. Serum regucalcin has a potential sensitivity as a specific biochemical marker of chronic

  14. Effects of the Cryptochrome CryB from Rhodobacter sphaeroides on Global Gene Expression in the Dark or Blue Light or in the Presence of Singlet Oxygen

    PubMed Central

    Frühwirth, Sebastian; Teich, Kristin; Klug, Gabriele

    2012-01-01

    Several regulators are controlling the formation of the photosynthetic apparatus in the facultatively photosynthetic bacterium Rhodobacter sphaeroides. Among the proteins affecting photosynthesis gene expression is the blue light photoreceptor cryptochrome CryB. This study addresses the effect of CryB on global gene expression. The data reveal that CryB does not only influence photosynthesis gene expression but also genes for the non-photosynthetic energy metabolism like citric acid cycle and oxidative phosphorylation. In addition several genes involved in RNA processing and in transcriptional regulation are affected by a cryB deletion. Although CryB was shown to undergo a photocycle it does not only affect gene expression in response to blue light illumination but also in response to singlet oxygen stress conditions. While there is a large overlap in these responses, some CryB-dependent effects are specific for blue-light or photooxidative stress. In addition to protein-coding genes some genes for sRNAs show CryB-dependent expression. These findings give new insight into the function of bacterial cryptochromes and demonstrate for the first time a function in the oxidative stress response. PMID:22496766

  15. Gravity-Induced Gene Expression in Plants.

    NASA Astrophysics Data System (ADS)

    Sederoff, Heike; Heber, Steffen; Howard, Brian; Myburg-Nichols, Henrietta; Hammond, Rebecca; Salinas-Mondragon, Raul; Brown, Christopher S.

    Plants sense changes in their orientation towards the vector of gravity and respond with directional growth. Several metabolites in the signal transduction cascade have been identified. However, very little is known about the interaction between these sensing and signal transduction events and even less is known about their role in the differential growth response. Gravity induced changes in transcript abundance have been identified in Arabidopsis whole seedlings and root apices (Moseyko et al. 2002; Kimbrough et al. 2004). Gravity induced transcript abundance changes can be observed within less than 1 min after stimulation (Salinas-Mondragon et al. 2005). Gene expression however requires not only transcription but also translation of the mRNA. Translation can only occur when mRNA is associated with ribosomes, even though not all mRNA associated with ribosomes is actively translated. To approximate translational capacity we quantified whole genome transcript abundances in corn stem pulvini during the first hour after gravity stimulation in total and poly-ribosomal fractions. As in Arabidopsis root apices, transcript abundances of several clusters of genes responded to gravity stimulation. The vast majority of these transcripts were also found to associate with polyribosomes in the same temporal and quantitative pattern. These genes are transcriptionally regulated by gravity stimulation, but do not exhibit translational regulation. However, a small group of genes showed increased transcriptional regulation after gravity stimulation, but no association with polysomes. These transcripts likely are translationally repressed. The mechanism of translational repression for these transcripts is unknown. Based on the hypothesis that the genes essential for gravitropic responses should be expressed in most or all species, we compared the temporal gravity induced expression pattern of all orthologs identified between maize and Arabidopsis. A small group of genes showed high

  16. VTCdb: a gene co-expression database for the crop species Vitis vinifera (grapevine)

    PubMed Central

    2013-01-01

    Background Gene expression datasets in model plants such as Arabidopsis have contributed to our understanding of gene function and how a single underlying biological process can be governed by a diverse network of genes. The accumulation of publicly available microarray data encompassing a wide range of biological and environmental conditions has enabled the development of additional capabilities including gene co-expression analysis (GCA). GCA is based on the understanding that genes encoding proteins involved in similar and/or related biological processes may exhibit comparable expression patterns over a range of experimental conditions, developmental stages and tissues. We present an open access database for the investigation of gene co-expression networks within the cultivated grapevine, Vitis vinifera. Description The new gene co-expression database, VTCdb (http://vtcdb.adelaide.edu.au/Home.aspx), offers an online platform for transcriptional regulatory inference in the cultivated grapevine. Using condition-independent and condition-dependent approaches, grapevine co-expression networks were constructed using the latest publicly available microarray datasets from diverse experimental series, utilising the Affymetrix Vitis vinifera GeneChip (16 K) and the NimbleGen Grape Whole-genome microarray chip (29 K), thus making it possible to profile approximately 29,000 genes (95% of the predicted grapevine transcriptome). Applications available with the online platform include the use of gene names, probesets, modules or biological processes to query the co-expression networks, with the option to choose between Affymetrix or Nimblegen datasets and between multiple co-expression measures. Alternatively, the user can browse existing network modules using interactive network visualisation and analysis via CytoscapeWeb. To demonstrate the utility of the database, we present examples from three fundamental biological processes (berry development, photosynthesis and

  17. A gene expression signature for insulin resistance.

    PubMed

    Konstantopoulos, Nicky; Foletta, Victoria C; Segal, David H; Shields, Katherine A; Sanigorski, Andrew; Windmill, Kelly; Swinton, Courtney; Connor, Tim; Wanyonyi, Stephen; Dyer, Thomas D; Fahey, Richard P; Watt, Rose A; Curran, Joanne E; Molero, Juan-Carlos; Krippner, Guy; Collier, Greg R; James, David E; Blangero, John; Jowett, Jeremy B; Walder, Ken R

    2011-02-11

    Insulin resistance is a heterogeneous disorder caused by a range of genetic and environmental factors, and we hypothesize that its etiology varies considerably between individuals. This heterogeneity provides significant challenges to the development of effective therapeutic regimes for long-term management of type 2 diabetes. We describe a novel strategy, using large-scale gene expression profiling, to develop a gene expression signature (GES) that reflects the overall state of insulin resistance in cells and patients. The GES was developed from 3T3-L1 adipocytes that were made "insulin resistant" by treatment with tumor necrosis factor-α (TNF-α) and then reversed with aspirin and troglitazone ("resensitized"). The GES consisted of five genes whose expression levels best discriminated between the insulin-resistant and insulin-resensitized states. We then used this GES to screen a compound library for agents that affected the GES genes in 3T3-L1 adipocytes in a way that most closely resembled the changes seen when insulin resistance was successfully reversed with aspirin and troglitazone. This screen identified both known and new insulin-sensitizing compounds including nonsteroidal anti-inflammatory agents, β-adrenergic antagonists, β-lactams, and sodium channel blockers. We tested the biological relevance of this GES in participants in the San Antonio Family Heart Study (n = 1,240) and showed that patients with the lowest GES scores were more insulin resistant (according to HOMA_IR and fasting plasma insulin levels; P < 0.001). These findings show that GES technology can be used for both the discovery of insulin-sensitizing compounds and the characterization of patients into subtypes of insulin resistance according to GES scores, opening the possibility of developing a personalized medicine approach to type 2 diabetes. PMID:21081660

  18. Photorespiration connects C3 and C4 photosynthesis.

    PubMed

    Bräutigam, Andrea; Gowik, Udo

    2016-05-01

    C4 plants evolved independently more than 60 times from C3 ancestors. C4 photosynthesis is a complex trait and its evolution from the ancestral C3 photosynthetic pathway involved the modification of the leaf anatomy and the leaf physiology accompanied by changes in the expression of thousands of genes. Under high temperature, high light, and the current CO2 concentration in the atmosphere, the C4 pathway is more efficient than C3 photosynthesis because it increases the CO2 concentration around the major CO2 fixating enzyme Rubisco. The oxygenase reaction and, accordingly, photorespiration are largely suppressed. In the present review we describe a scenario for C4 evolution that not only includes the avoidance of photorespiration as the major driving force for C4 evolution but also highlights the relevance of changes in the expression of photorespiratory genes in inducing and establishing important phases on the path from C3 to C4. PMID:26912798

  19. Gene expression profiling for genetic merit in dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene expression patterns have been shown to be a heritable trait in dairy cattle. Thus, the pattern of gene expression in many selected tissues may serve as a biomarker for genetic stature or physiological condition. Our laboratory has conducted a 5-year study on the use of gene expression pattern...

  20. Covariance Structure Models for Gene Expression Microarray Data

    ERIC Educational Resources Information Center

    Xie, Jun; Bentler, Peter M.

    2003-01-01

    Covariance structure models are applied to gene expression data using a factor model, a path model, and their combination. The factor model is based on a few factors that capture most of the expression information. A common factor of a group of genes may represent a common protein factor for the transcript of the co-expressed genes, and hence, it…

  1. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.

    PubMed

    Edgar, Ron; Domrachev, Michael; Lash, Alex E

    2002-01-01

    The Gene Expression Omnibus (GEO) project was initiated in response to the growing demand for a public repository for high-throughput gene expression data. GEO provides a flexible and open design that facilitates submission, storage and retrieval of heterogeneous data sets from high-throughput gene expression and genomic hybridization experiments. GEO is not intended to replace in house gene expression databases that benefit from coherent data sets, and which are constructed to facilitate a particular analytic method, but rather complement these by acting as a tertiary, central data distribution hub. The three central data entities of GEO are platforms, samples and series, and were designed with gene expression and genomic hybridization experiments in mind. A platform is, essentially, a list of probes that define what set of molecules may be detected. A sample describes the set of molecules that are being probed and references a single platform used to generate its molecular abundance data. A series organizes samples into the meaningful data sets which make up an experiment. The GEO repository is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo. PMID:11752295

  2. Unique role for translation initiation factor 3 in the light color regulation of photosynthetic gene expression.

    PubMed

    Gutu, Andrian; Nesbit, April D; Alverson, Andrew J; Palmer, Jeffrey D; Kehoe, David M

    2013-10-01

    Light-harvesting antennae are critical for collecting energy from sunlight and providing it to photosynthetic reaction centers. Their abundance and composition are tightly regulated to maintain efficient photosynthesis in changing light conditions. Many cyanobacteria alter their light-harvesting antennae in response to changes in ambient light-color conditions through the process of chromatic acclimation. The control of green light induction (Cgi) pathway is a light-color-sensing system that controls the expression of photosynthetic genes during chromatic acclimation, and while some evidence suggests that it operates via transcription attenuation, the components of this pathway have not been identified. We provide evidence that translation initiation factor 3 (IF3), an essential component of the prokaryotic translation initiation machinery that binds the 30S subunit and blocks premature association with the 50S subunit, is part of the control of green light induction pathway. Light regulation of gene expression has not been previously described for any translation initiation factor. Surprisingly, deletion of the IF3-encoding gene infCa was not lethal in the filamentous cyanobacterium Fremyella diplosiphon, and its genome was found to contain a second, redundant, highly divergent infC gene which, when deleted, had no effect on photosynthetic gene expression. Either gene could complement an Escherichia coli infC mutant and thus both encode bona fide IF3s. Analysis of prokaryotic and eukaryotic genome databases established that multiple infC genes are present in the genomes of diverse groups of bacteria and land plants, most of which do not undergo chromatic acclimation. This suggests that IF3 may have repeatedly evolved important roles in the regulation of gene expression in both prokaryotes and eukaryotes. PMID:24048028

  3. Gene Expression in the Star Mutation of Petunia x Hybrida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in structural gene expression are responsible for a wide range of responses from human cancer to patterned flowers. Gene silencing is one of the ways in which gene expression is controlled. We have developed a model system to study anthocyanin gene silencing using a mutation in Petunia ...

  4. Nuclear AXIN2 represses MYC gene expression

    SciTech Connect

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S.

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  5. Investigation of factors affecting RNA-seq gene expression calls

    PubMed Central

    Harati, Sahar; Phan, John H.; Wang, May D.

    2016-01-01

    RNA-seq enables quantification of the human transcriptome. Estimation of gene expression is a fundamental issue in the analysis of RNA-seq data. However, there is an inherent ambiguity in distinguishing between genes with very low expression and experimental or transcriptional noise. We conducted an exploratory investigation of some factors that may affect gene expression calls. We observed that the distribution of reads that map to exonic, intronic, and intergenic regions are distinct. These distributions may provide useful insights into the behavior of gene expression noise. Moreover, we observed that these distributions are qualitatively similar between two sequence mapping algorithms. Finally, we examined the relationship between gene length and gene expression calls, and observed that they are correlated. This preliminary investigation is important for RNA-seq gene expression analysis because it may lead to more effective algorithms for distinguishing between true gene expression and experimental or transcriptional noise. PMID:25571173

  6. Molecular mechanisms of curcumin action: gene expression.

    PubMed

    Shishodia, Shishir

    2013-01-01

    Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin. PMID:22996381

  7. Using PCR to Target Misconceptions about Gene Expression

    PubMed Central

    Wright, Leslie K.; Newman, Dina L.

    2013-01-01

    We present a PCR-based laboratory exercise that can be used with first- or second-year biology students to help overcome common misconceptions about gene expression. Biology students typically do not have a clear understanding of the difference between genes (DNA) and gene expression (mRNA/protein) and often believe that genes exist in an organism or cell only when they are expressed. This laboratory exercise allows students to carry out a PCR-based experiment designed to challenge their misunderstanding of the difference between genes and gene expression. Students first transform E. coli with an inducible GFP gene containing plasmid and observe induced and un-induced colonies. The following exercise creates cognitive dissonance when actual PCR results contradict their initial (incorrect) predictions of the presence of the GFP gene in transformed cells. Field testing of this laboratory exercise resulted in learning gains on both knowledge and application questions on concepts related to genes and gene expression. PMID:23858358

  8. Differential Gene Expression Reflects Morphological Characteristics and Physiological Processes in Rice Immunity against Blast Pathogen Magnaporthe oryzae.

    PubMed

    Azizi, Parisa; Rafii, Mohd Y; Mahmood, Maziah; Abdullah, Siti N A; Hanafi, Mohamed M; Nejat, Naghmeh; Latif, Muhammad A; Sahebi, Mahbod

    2015-01-01

    The rice blast fungus Magnaporthe oryzae is a serious pathogen that jeopardises the world's most important food-security crop. Ten common Malaysian rice varieties were examined for their morphological, physiological and genomic responses to this rice blast pathogen. qPCR quantification was used to assess the growth of the pathogen population in resistant and susceptible rice varieties. The chlorophyll content and photosynthesis were also measured to further understand the disruptive effects that M. oryzae has on infected plants of these varieties. Real-time PCR was used to explore the differential expression of eight blast resistance genes among the ten local varieties. Blast disease has destructive effects on the growth of rice, and the findings of our study provide evidence that the Pikh, Pi9, Pi21, and Osw45 genes are involved in defence responses in the leaves of Malaysian rice at 31 h after inoculation with M. oryzae pathotype P7.2. Both the chlorophyll content and photosynthesis were reduced, but the levels of Pikh gene expression remained constant in susceptible varieties, with a developed pathogen population and mild or severe symptoms. The Pi9, Pi21, and Osw45 genes, however, were simultaneously upregulated in infected rice plants. Therefore, the presence of the Pikh, Pi9, Pi21, and Osw45 genes in the germplasm is useful for improving the resistance of rice varieties. PMID:26001124

  9. Differential Gene Expression Reflects Morphological Characteristics and Physiological Processes in Rice Immunity against Blast Pathogen Magnaporthe oryzae

    PubMed Central

    Mahmood, Maziah; Abdullah, Siti N. A.; Hanafi, Mohamed M.; Nejat, Naghmeh; Latif, Muhammad A.

    2015-01-01

    The rice blast fungus Magnaporthe oryzae is a serious pathogen that jeopardises the world’s most important food-security crop. Ten common Malaysian rice varieties were examined for their morphological, physiological and genomic responses to this rice blast pathogen. qPCR quantification was used to assess the growth of the pathogen population in resistant and susceptible rice varieties. The chlorophyll content and photosynthesis were also measured to further understand the disruptive effects that M. oryzae has on infected plants of these varieties. Real-time PCR was used to explore the differential expression of eight blast resistance genes among the ten local varieties. Blast disease has destructive effects on the growth of rice, and the findings of our study provide evidence that the Pikh, Pi9, Pi21, and Osw45 genes are involved in defence responses in the leaves of Malaysian rice at 31 h after inoculation with M. oryzae pathotype P7.2. Both the chlorophyll content and photosynthesis were reduced, but the levels of Pikh gene expression remained constant in susceptible varieties, with a developed pathogen population and mild or severe symptoms. The Pi9, Pi21, and Osw45 genes, however, were simultaneously upregulated in infected rice plants. Therefore, the presence of the Pikh, Pi9, Pi21, and Osw45 genes in the germplasm is useful for improving the resistance of rice varieties. PMID:26001124

  10. Reptile freeze tolerance: metabolism and gene expression.

    PubMed

    Storey, Kenneth B

    2006-02-01

    Terrestrially hibernating reptiles that live in seasonally cold climates need effective strategies of cold hardiness to survive the winter. Use of thermally buffered hibernacula is very important but when exposure to temperatures below 0 degrees C cannot be avoided, either freeze avoidance (supercooling) or freeze tolerance strategies can be employed, sometimes by the same species depending on environmental conditions. Several reptile species display ecologically relevant freeze tolerance, surviving for extended times with 50% or more of their total body water frozen. The use of colligative cryoprotectants by reptiles is poorly developed but metabolic and enzymatic adaptations providing anoxia tolerance and antioxidant defense are important aids to freezing survival. New studies using DNA array screening are examining the role of freeze-responsive gene expression. Three categories of freeze responsive genes have been identified from recent screenings of liver and heart from freeze-exposed (5h post-nucleation at -2.5 degrees C) hatchling painted turtles, Chrysemys picta marginata. These genes encode (a) proteins involved in iron binding, (b) enzymes of antioxidant defense, and (c) serine protease inhibitors. The same genes were up-regulated by anoxia exposure (4 h of N2 gas exposure at 5 degrees C) of the hatchlings which suggests that these defenses for freeze tolerance are aimed at counteracting the injurious effects of the ischemia imposed by plasma freezing. PMID:16321368

  11. Regulation of Airway Mucin Gene Expression

    PubMed Central

    Thai, Philip; Loukoianov, Artem; Wachi, Shinichiro; Wu, Reen

    2015-01-01

    Mucins are important components that exert a variety of functions in cell-cell interaction, epidermal growth factor receptor signaling, and airways protection. In the conducting airways of the lungs, mucins are the major contributor to the viscoelastic property of mucous secretion, which is the major barrier to trapping inhaled microbial organism, particulates, and oxidative pollutants. The homeostasis of mucin production is an important feature in conducting airways for the maintenance of mucociliary function. Aberrant mucin secretion and accumulation in airway lumen are clinical hallmarks associated with various lung diseases, such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, emphysema, and lung cancer. Among 20 known mucin genes identified, 11 of them have been verified at either the mRNA and/or protein level in airways. The regulation of mucin genes is complicated, as are the mediators and signaling pathways. This review summarizes the current view on the mediators, the signaling pathways, and the transcriptional units that are involved in the regulation of airway mucin gene expression. In addition, we also point out essential features of epigenetic mechanisms for the regulation of these genes. PMID:17961085

  12. Retrotransposons as regulators of gene expression.

    PubMed

    Elbarbary, Reyad A; Lucas, Bronwyn A; Maquat, Lynne E

    2016-02-12

    Transposable elements (TEs) are both a boon and a bane to eukaryotic organisms, depending on where they integrate into the genome and how their sequences function once integrated. We focus on two types of TEs: long interspersed elements (LINEs) and short interspersed elements (SINEs). LINEs and SINEs are retrotransposons; that is, they transpose via an RNA intermediate. We discuss how LINEs and SINEs have expanded in eukaryotic genomes and contribute to genome evolution. An emerging body of evidence indicates that LINEs and SINEs function to regulate gene expression by affecting chromatin structure, gene transcription, pre-mRNA processing, or aspects of mRNA metabolism. We also describe how adenosine-to-inosine editing influences SINE function and how ongoing retrotransposition is countered by the body's defense mechanisms. PMID:26912865

  13. Regulation of interferon-gamma gene expression.

    PubMed

    Young, H A

    1996-08-01

    Interferon-gamma (IFN-gamma), also known as type II interferon, is an important immunoregulatory gene that has multiple effects on the development, maturation, and function of the immune system. IFN-gamma mRNA and protein are expressed predominantly by T cells and large granular lymphocytes. The IFN-gamma mRNA is induced/inhibited in these cell types by a wide variety of extracellular signals, thus implicating a number of diverse, yet convergent signal transduction pathways in its transcriptional control. In this review, I describe how DNA methylation and specific DNA binding proteins may regulate transcription of the IFN-gamma gene in response to extracellular signals. PMID:8877725

  14. Pathway network inference from gene expression data

    PubMed Central

    2014-01-01

    Background The development of high-throughput omics technologies enabled genome-wide measurements of the activity of cellular elements and provides the analytical resources for the progress of the Systems Biology discipline. Analysis and interpretation of gene expression data has evolved from the gene to the pathway and interaction level, i.e. from the detection of differentially expressed genes, to the establishment of gene interaction networks and the identification of enriched functional categories. Still, the understanding of biological systems requires a further level of analysis that addresses the characterization of the interaction between functional modules. Results We present a novel computational methodology to study the functional interconnections among the molecular elements of a biological system. The PANA approach uses high-throughput genomics measurements and a functional annotation scheme to extract an activity profile from each functional block -or pathway- followed by machine-learning methods to infer the relationships between these functional profiles. The result is a global, interconnected network of pathways that represents the functional cross-talk within the molecular system. We have applied this approach to describe the functional transcriptional connections during the yeast cell cycle and to identify pathways that change their connectivity in a disease condition using an Alzheimer example. Conclusions PANA is a useful tool to deepen in our understanding of the functional interdependences that operate within complex biological systems. We show the approach is algorithmically consistent and the inferred network is well supported by the available functional data. The method allows the dissection of the molecular basis of the functional connections and we describe the different regulatory mechanisms that explain the network's topology obtained for the yeast cell cycle data. PMID:25032889

  15. Diatom acclimation to elevated CO2 via cAMP signalling and coordinated gene expression

    NASA Astrophysics Data System (ADS)

    Hennon, Gwenn M. M.; Ashworth, Justin; Groussman, Ryan D.; Berthiaume, Chris; Morales, Rhonda L.; Baliga, Nitin S.; Orellana, Mónica V.; Armbrust, E. V.

    2015-08-01

    Diatoms are responsible for ~40% of marine primary productivity, fuelling the oceanic carbon cycle and contributing to natural carbon sequestration in the deep ocean. Diatoms rely on energetically expensive carbon concentrating mechanisms (CCMs) to fix carbon efficiently at modern levels of CO2 (refs , , ). How diatoms may respond over the short and long term to rising atmospheric CO2 remains an open question. Here we use nitrate-limited chemostats to show that the model diatom Thalassiosira pseudonana rapidly responds to increasing CO2 by differentially expressing gene clusters that regulate transcription and chromosome folding, and subsequently reduces transcription of photosynthesis and respiration gene clusters under steady-state elevated CO2. These results suggest that exposure to elevated CO2 first causes a shift in regulation, and then a metabolic rearrangement. Genes in one CO2-responsive cluster included CCM and photorespiration genes that share a putative cAMP-responsive cis-regulatory sequence, implying these genes are co-regulated in response to CO2, with cAMP as an intermediate messenger. We verified cAMP-induced downregulation of CCM gene δ-CA3 in nutrient-replete diatom cultures by inhibiting the hydrolysis of cAMP. These results indicate an important role for cAMP in downregulating CCM and photorespiration genes under elevated CO2 and provide insights into mechanisms of diatom acclimation in response to climate change.

  16. Transcript profiling of wheat genes expressed during feeding by two different biotypes of Diuraphis noxia.

    PubMed

    Botha, Anna-Maria; Swanevelder, Zacharias H; Lapitan, Nora L V

    2010-08-01

    Diuraphis noxia (Kurdjumov)(Russian wheat aphid) has severe economic impacts on wheat and barley production in the United States. The interaction between the Russian wheat aphid and its cereal hosts is poorly understood. However, the recent appearance of new biotypes in the United States showed that specific interactions exist between wheat resistance loci and Russian wheat aphid biotypes. At present, Dn7 is the only known gene in hexaploid wheat that confers resistance against all U.S. Russian wheat aphid biotypes. This study was conducted to investigate the molecular mechanism of Dn7-mediated resistance against two U.S. Russian wheat aphid biotypes (Russian wheat aphid 1 and Russian wheat aphid 2). Using GeneChip Wheat Genome Arrays, we compared transcript profiles of resistant and susceptible lines infested with either Russian wheat aphid 1 or Russian wheat aphid 2 using two time intervals (5 and 48 h after infestation). Russian wheat aphid feeding on hexaploid wheat led to the induction of groups of genes functioning in oxidative and general stress, photosynthesis, cell respiration and energy production, signal transduction, calcium-dependent signaling, pathogenesis related (PR) responses, and defense compound synthesis. The number of differentially expressed genes was higher in plants infested with Russian wheat aphid 1 compared with those infested with Russian wheat aphid 2. Although most genes involved in basic cellular functions were shared, unique genes were also obtained. This finding may indicate subtle differences in genes induced in response to different virulence proteins. PMID:22127172

  17. Clustering gene expression data using graph separators.

    PubMed

    Kaba, Bangaly; Pinet, Nicolas; Lelandais, Gaëlle; Sigayret, Alain; Berry, Anne

    2007-01-01

    Recent work has used graphs to modelize expression data from microarray experiments, in view of partitioning the genes into clusters. In this paper, we introduce the use of a decomposition by clique separators. Our aim is to improve the classical clustering methods in two ways: first we want to allow an overlap between clusters, as this seems biologically sound, and second we want to be guided by the structure of the graph to define the number of clusters. We test this approach with a well-known yeast database (Saccharomyces cerevisiae). Our results are good, as the expression profiles of the clusters we find are very coherent. Moreover, we are able to organize into another graph the clusters we find, and order them in a fashion which turns out to respect the chronological order defined by the the sporulation process. PMID:18391236

  18. Nuclear AXIN2 represses MYC gene expression.

    PubMed

    Rennoll, Sherri A; Konsavage, Wesley M; Yochum, Gregory S

    2014-01-01

    The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling. PMID:24299953

  19. Differential gene expression in anatomical compartments of the human eye

    PubMed Central

    Diehn, Jennifer J; Diehn, Maximilian; Marmor, Michael F; Brown, Patrick O

    2005-01-01

    Background The human eye is composed of multiple compartments, diverse in form, function, and embryologic origin, that work in concert to provide us with our sense of sight. We set out to systematically characterize the global gene expression patterns that specify the distinctive characteristics of the various eye compartments. Results We used DNA microarrays representing approximately 30,000 human genes to analyze gene expression in the cornea, lens, iris, ciliary body, retina, and optic nerve. The distinctive patterns of expression in each compartment could be interpreted in relation to the physiology and cellular composition of each tissue. Notably, the sets of genes selectively expressed in the retina and in the lens were particularly large and diverse. Genes with roles in immune defense, particularly complement components, were expressed at especially high levels in the anterior segment tissues. We also found consistent differences between the gene expression patterns of the macula and peripheral retina, paralleling the differences in cell layer densities between these regions. Based on the hypothesis that genes responsible for diseases that affect a particular eye compartment are likely to be selectively expressed in that compartment, we compared our gene expression signatures with genetic mapping studies to identify candidate genes for diseases affecting the cornea, lens, and retina. Conclusion Through genome-scale gene expression profiling, we were able to discover distinct gene expression 'signatures' for each eye compartment and identified candidate disease genes that can serve as a reference database for investigating the physiology and pathophysiology of the eye. PMID:16168081

  20. An Integrated View of Gene Expression and Solute Profiles of Arabidopsis Tumors: A Genome-Wide Approach[W

    PubMed Central

    Deeken, Rosalia; Engelmann, Julia C.; Efetova, Marina; Czirjak, Tina; Müller, Tobias; Kaiser, Werner M.; Tietz, Olaf; Krischke, Markus; Mueller, Martin J.; Palme, Klaus; Dandekar, Thomas; Hedrich, Rainer

    2006-01-01

    Transformation of plant cells with T-DNA of virulent agrobacteria is one of the most extreme triggers of developmental changes in higher plants. For rapid growth and development of resulting tumors, specific changes in the gene expression profile and metabolic adaptations are required. Increased transport and metabolic fluxes are critical preconditions for growth and tumor development. A functional genomics approach, using the Affymetrix whole genome microarray (∼22,800 genes), was applied to measure changes in gene expression. The solute pattern of Arabidopsis thaliana tumors and uninfected plant tissues was compared with the respective gene expression profile. Increased levels of anions, sugars, and amino acids were correlated with changes in the gene expression of specific enzymes and solute transporters. The expression profile of genes pivotal for energy metabolism, such as those involved in photosynthesis, mitochondrial electron transport, and fermentation, suggested that tumors produce C and N compounds heterotrophically and gain energy mainly anaerobically. Thus, understanding of gene-to-metabolite networks in plant tumors promotes the identification of mechanisms that control tumor development. PMID:17172353

  1. Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice

    PubMed Central

    2011-01-01

    Background Rice is highly sensitive to drought, and the effect of drought may vary with the different genotypes and development stages. Genome-wide gene expression profiling was used as the initial point to dissect molecular genetic mechanism of this complex trait and provide valuable information for the improvement of drought tolerance in rice. Affymetrix rice genome array containing 48,564 japonica and 1,260 indica sequences was used to analyze the gene expression pattern of rice exposed to drought stress. The transcriptome from leaf, root, and young panicle at three developmental stages was comparatively analyzed combined with bioinformatics exploring drought stress related cis-elements. Results There were 5,284 genes detected to be differentially expressed under drought stress. Most of these genes were tissue- or stage-specific regulated by drought. The tissue-specific down-regulated genes showed distinct function categories as photosynthesis-related genes prevalent in leaf, and the genes involved in cell membrane biogenesis and cell wall modification over-presented in root and young panicle. In a drought environment, several genes, such as GA2ox, SAP15, and Chitinase III, were regulated in a reciprocal way in two tissues at the same development stage. A total of 261 transcription factor genes were detected to be differentially regulated by drought stress. Most of them were also regulated in a tissue- or stage-specific manner. A cis-element containing special CGCG box was identified to over-present in the upstream of 55 common induced genes, and it may be very important for rice plants responding to drought environment. Conclusions Genome-wide gene expression profiling revealed that most of the drought differentially expressed genes (DEGs) were under temporal and spatial regulation, suggesting a crosstalk between various development cues and environmental stimuli. The identification of the differentially regulated DEGs, including TF genes and unique candidate

  2. Gut microbiota, host gene expression, and aging.

    PubMed

    Patrignani, Paola; Tacconelli, Stefania; Bruno, Annalisa

    2014-01-01

    Novel concepts of disease susceptibility and development suggest an important role of gastrointestinal microbiota and microbial pathogens. They can contribute to physiological systems and disease processes, even outside of the gastrointestinal tract. There is increasing evidence that genetics of the host influence and interact with gut microbiota. Moreover, aging-associated oxidative stress may cause morphologic alterations of bacterial cells, thus influencing the aggressive potential and virulence markers of an anaerobic bacterium and finally the type of interaction with the host. At the same time, microbiota may influence host gene expression and it is becoming apparent that it may occur through the regulation of microRNAs. They are short single-stranded noncoding RNAs that regulate posttranscriptional gene expression by affecting mRNA stability and/or translational repression of their target mRNAs. The introduction of -omics approaches (such as metagenomics, metaproteomics, and metatranscriptomics) in microbiota research will certainly advance our knowledge of this area. This will lead to greatly deepen our understanding of the molecular targets in the homeostatic interaction between the gut microbiota and the host and, thereby, promises to reveal new ways to treat diseases and maintain health. PMID:25291121

  3. Regulation of gene expression by hypoxia.

    PubMed

    Millhorn, D E; Czyzyk-Krzeska, M; Bayliss, D A; Lawson, E E

    1993-12-01

    The present study was undertaken to determine if gene expression for tyrosine hydroxylase (TH), the rate limiting enzyme in the biosynthesis of catecholamines, is regulated in the carotid body, sympathetic ganglia and adrenal medulla by hypoxia. We found that a reduction in oxygen tension from 21% to 10% caused a substantial increase (200% at 1 hour and 500% at 6 hours exposure) in the concentration of TH mRNA in carotid body type I cells but not in either the sympathetic ganglia or adrenal gland. In addition, we found that hypercapnia, another natural stimulus of carotid body activity, failed to enhance TH mRNA in type I cells. Removal of the sensory and sympathetic innervation of the carotid body failed to prevent the induction of TH mRNA by hypoxia in type I cells. Our results show that TH gene expression is regulated by hypoxia in the carotid body but not in other peripheral catecholamine synthesizing tissue and that the regulatory mechanism is intrinsic to type I cells. PMID:7909954

  4. Identification of Differentially Expressed Genes in Chilling-Induced Potato (Solanum tuberosum L.); a Data Analysis Study.

    PubMed

    Koc, I; Vatansever, R; Ozyigit, I I; Filiz, E

    2015-10-01

    Cold stress, as chilling (<20 °C) or freezing (<0 °C), is one of the frequently exposed stresses in cultivated plants like potato. Under cold stress, plants differentially modulate their gene expression to develop a cold tolerance/acclimation. In the present study, we aimed to identify the overall gene expression profile of chilling-stressed (+4 °C) potato at four time points (4, 8, 12, and 48 h), with a particular emphasis on the genes related with transcription factors (TFs), phytohormones, lipid metabolism, signaling pathway, and photosynthesis. A total of 3504 differentially expressed genes (DEGs) were identified at four time points of chilling-induced potato, of which 1397 were found to be up-regulated while 2107 were down-regulated. Heatmap showed that genes were mainly up-regulated at 4-, 8-, and 12-h time points; however, at 48-h time point, they inclined to down-regulate. Seventy five up-regulated TF genes were identified from 37 different families/groups, including mainly from bHLH, WRKY, CCAAT-binding, HAP3, and bZIP families. Protein kinases and calcium were major signaling molecules in cold-induced signaling pathway. A collaborated regulation of phytohormones was observed in chilling-stressed potato. Lipid metabolisms were regulated in a way, highly probably, to change membrane composition to avoid cold damage and render in signaling. A down-regulated gene expression profile was observed in photosynthesis pathway, probably resulting from chilling-induced reduced enzyme activity or light-triggered ROSs damage. The findings of this study will be a valuable theoretical knowledge in terms of understanding the chilling-induced tolerance mechanisms in cultivated potato plants as well as in other Solanum species. PMID:26260485

  5. An approach for clustering gene expression data with error information

    PubMed Central

    Tjaden, Brian

    2006-01-01

    Background Clustering of gene expression patterns is a well-studied technique for elucidating trends across large numbers of transcripts and for identifying likely co-regulated genes. Even the best clustering methods, however, are unlikely to provide meaningful results if too much of the data is unreliable. With the maturation of microarray technology, a wealth of research on statistical analysis of gene expression data has encouraged researchers to consider error and uncertainty in their microarray experiments, so that experiments are being performed increasingly with repeat spots per gene per chip and with repeat experiments. One of the challenges is to incorporate the measurement error information into downstream analyses of gene expression data, such as traditional clustering techniques. Results In this study, a clustering approach is presented which incorporates both gene expression values and error information about the expression measurements. Using repeat expression measurements, the error of each gene expression measurement in each experiment condition is estimated, and this measurement error information is incorporated directly into the clustering algorithm. The algorithm, CORE (Clustering Of Repeat Expression data), is presented and its performance is validated using statistical measures. By using error information about gene expression measurements, the clustering approach is less sensitive to noise in the underlying data and it is able to achieve more accurate clusterings. Results are described for both synthetic expression data as well as real gene expression data from Escherichia coli and Saccharomyces cerevisiae. Conclusion The additional information provided by replicate gene expression measurements is a valuable asset in effective clustering. Gene expression profiles with high errors, as determined from repeat measurements, may be unreliable and may associate with different clusters, whereas gene expression profiles with low errors can be

  6. Coactivators in PPAR-Regulated Gene Expression

    PubMed Central

    Viswakarma, Navin; Jia, Yuzhi; Bai, Liang; Vluggens, Aurore; Borensztajn, Jayme; Xu, Jianming; Reddy, Janardan K.

    2010-01-01

    Peroxisome proliferator-activated receptor (PPAR)α, β (also known as δ), and γ function as sensors for fatty acids and fatty acid derivatives and control important metabolic pathways involved in the maintenance of energy balance. PPARs also regulate other diverse biological processes such as development, differentiation, inflammation, and neoplasia. In the nucleus, PPARs exist as heterodimers with retinoid X receptor-α bound to DNA with corepressor molecules. Upon ligand activation, PPARs undergo conformational changes that facilitate the dissociation of corepressor molecules and invoke a spatiotemporally orchestrated recruitment of transcription cofactors including coactivators and coactivator-associated proteins. While a given nuclear receptor regulates the expression of a prescribed set of target genes, coactivators are likely to influence the functioning of many regulators and thus affect the transcription of many genes. Evidence suggests that some of the coactivators such as PPAR-binding protein (PBP/PPARBP), thyroid hormone receptor-associated protein 220 (TRAP220), and mediator complex subunit 1 (MED1) may exert a broader influence on the functions of several nuclear receptors and their target genes. Investigations into the role of coactivators in the function of PPARs should strengthen our understanding of the complexities of metabolic diseases associated with energy metabolism. PMID:20814439

  7. Posttranscriptional Control of Gene Expression in Yeast

    PubMed Central

    McCarthy, John E. G.

    1998-01-01

    Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5′ untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling

  8. Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus.

    PubMed

    Nebauer, Sergio G; Renau-Morata, Begoña; Guardiola, José Luis; Molina, Rosa-Victoria

    2011-02-01

    Photosynthesis down-regulation due to an imbalance between sources and sinks in Citrus leaves could be mediated by excessive accumulation of carbohydrates. However, there is limited understanding of the physiological role of soluble and insoluble carbohydrates in photosynthesis regulation and the elements triggering the down-regulation process. In this work, the role of non-structural carbohydrates in the regulation of photosynthesis under a broad spectrum of source-sink relationships has been investigated in the Salustiana sweet orange. Soluble sugar and starch accumulation in leaves, induced by girdling experiments, did not induce down-regulation of the photosynthetic rate in the presence of sinks (fruits). The leaf-to-fruit ratio did not modulate photosynthesis but allocation of photoassimilates to the fruits. The lack of strong sink activity led to a decrease in the photosynthetic rate and starch accumulation in leaves. However, photosynthesis down-regulation due to an excess of total soluble sugars or starch was discarded because photosynthesis and stomatal conductance reduction occurred prior to any significant accumulation of these carbohydrates. Gas exchange and fluorescence parameters suggested biochemical limitations to photosynthesis. In addition, the expression of carbon metabolism-related genes was altered within 24 h when strong sinks were removed. Sucrose synthesis and export genes were inhibited, whereas the expression of ADP-glucose pyrophosphorylase was increased to cope with the excess of assimilates. In conclusion, changes in starch and soluble sugar turnover, but not sugar content per se, could provide the signal for photosynthesis regulation. In these conditions, non-stomatal limitations strongly inhibited the photosynthetic rate prior to any significant increase in carbohydrate levels. PMID:21367744

  9. Correspondence between Resting-State Activity and Brain Gene Expression.

    PubMed

    Wang, Guang-Zhong; Belgard, T Grant; Mao, Deng; Chen, Leslie; Berto, Stefano; Preuss, Todd M; Lu, Hanzhang; Geschwind, Daniel H; Konopka, Genevieve

    2015-11-18

    The relationship between functional brain activity and gene expression has not been fully explored in the human brain. Here, we identify significant correlations between gene expression in the brain and functional activity by comparing fractional amplitude of low-frequency fluctuations (fALFF) from two independent human fMRI resting-state datasets to regional cortical gene expression from a newly generated RNA-seq dataset and two additional gene expression datasets to obtain robust and reproducible correlations. We find significantly more genes correlated with fALFF than expected by chance and identify specific genes correlated with the imaging signals in multiple expression datasets in the default mode network. Together, these data support a population-level relationship between regional steady-state brain gene expression and resting-state brain activity. PMID:26590343

  10. Sequence Determinants of Circadian Gene Expression Phase in Cyanobacteria

    PubMed Central

    Vijayan, Vikram

    2013-01-01

    The cyanobacterium Synechococcus elongatus PCC 7942 exhibits global biphasic circadian oscillations in gene expression under constant-light conditions. Class I genes are maximally expressed in the subjective dusk, whereas class II genes are maximally expressed in the subjective dawn. Here, we identify sequence features that encode the phase of circadian gene expression. We find that, for multiple genes, an ∼70-nucleotide promoter fragment is sufficient to specify class I or II phase. We demonstrate that the gene expression phase can be changed by random mutagenesis and that a single-nucleotide substitution is sufficient to change the phase. Our study provides insight into how the gene expression phase is encoded in the cyanobacterial genome. PMID:23204469

  11. A simple mechanism for the establishment of C₂-specific gene expression in Brassicaceae.

    PubMed

    Adwy, Waly; Laxa, Miriam; Peterhansel, Christoph

    2015-12-01

    The transition of C3 , via C2 towards C4 photosynthesis is an important example of stepwise evolution of a complex genetic trait. A common feature that was gradually emphasized during this trajectory is the evolution of a CO2 concentration mechanism around Rubisco. In C2 plants, this mechanism is based on tissue-specific accumulation of glycine decarboxylase (GDC) in bundle sheath (BS) cells, relative to global expression in the cells of C3 leaves. This limits photorespiratory CO2 release to BS cells. Because BS cells are surrounded by photosynthetically active mesophyll cells, this arrangement enhances the probability of re-fixation of CO2 . The restriction of GDC to BS cells was mainly achieved by confinement of its P-subunit (GLDP). Here, we provide a mechanism for the establishment of C2 -type gene expression by studying the upstream sequences of C3 Gldp genes in Arabidopsis thaliana. Deletion of 59 bp in the upstream region of AtGldp1 restricted expression of a reporter gene to BS cells and the vasculature without affecting diurnal variation. This region was named the 'M box'. Similar results were obtained for the AtGldp2 gene. Fusion of the M box to endogenous or exogenous promoters supported mesophyll expression. Nucleosome densities at the M box were low, suggesting an open chromatin structure facilitating transcription factor binding. In silico analysis defined a possible consensus for the element that was conserved across the Brassicaceae, but not in Moricandia nitens, a C2 plant. Collective results provide evidence that a simple mutation is sufficient for establishment of C2 -specific gene expression in a C3 plant. PMID:26603271

  12. Systematic determination of patterns of gene expression during Drosophila embryogenesis

    PubMed Central

    Tomancak, Pavel; Beaton, Amy; Weiszmann, Richard; Kwan, Elaine; Shu, ShengQiang; Lewis, Suzanna E; Richards, Stephen; Ashburner, Michael; Hartenstein, Volker; Celniker, Susan E; Rubin, Gerald M

    2002-01-01

    Background Cell-fate specification and tissue differentiation during development are largely achieved by the regulation of gene transcription. Results As a first step to creating a comprehensive atlas of gene-expression patterns during Drosophila embryogenesis, we examined 2,179 genes by in situ hybridization to fixed Drosophila embryos. Of the genes assayed, 63.7% displayed dynamic expression patterns that were documented with 25,690 digital photomicrographs of individual embryos. The photomicrographs were annotated using controlled vocabularies for anatomical structures that are organized into a developmental hierarchy. We also generated a detailed time course of gene expression during embryogenesis using microarrays to provide an independent corroboration of the in situ hybridization results. All image, annotation and microarray data are stored in publicly available database. We found that the RNA transcripts of about 1% of genes show clear subcellular localization. Nearly all the annotated expression patterns are distinct. We present an approach for organizing the data by hierarchical clustering of annotation terms that allows us to group tissues that express similar sets of genes as well as genes displaying similar expression patterns. Conclusions Analyzing gene-expression patterns by in situ hybridization to whole-mount embryos provides an extremely rich dataset that can be used to identify genes involved in developmental processes that have been missed by traditional genetic analysis. Systematic analysis of rigorously annotated patterns of gene expression will complement and extend the types of analyses carried out using expression microarrays. PMID:12537577

  13. Gene Expression patterns in cryogenically stored Arabidopsis thaliana shoot tips

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genes expressed in response to cryostress in plant shoot tips are not known. In this project we compared the gene expression patterns in untreated, cryoprotectant-treated, and recovering shoot tips using differential display methods. This project identified two genes that appeared to be differ...

  14. Gene expression profiling in male genital lichen sclerosus.

    PubMed

    Edmonds, Emma; Barton, Geraint; Buisson, Sandrine; Francis, Nick; Gotch, Frances; Game, Laurence; Haddad, Munther; Dinneen, Michael; Bunker, Chris

    2011-10-01

    Male genital lichen sclerosus (MGLSc) has a bimodal distribution in boys and men. It is associated with squamous cell carcinoma (SCC). The pathogenesis of MGLSc is unknown. HPV and autoimmune mechanisms have been mooted. Anti extracellular matrix protein (ECM)1 antibodies have been identified in women with GLSc. The gene expression pattern of LSc is unknown. Using DNA microarrays we studied differences in gene expression in healthy and diseased prepuces obtained at circumcision in adult males with MGLSc (n = 4), paediatric LSc (n = 2) and normal healthy paediatric foreskin (n = 4). In adult samples 51 genes with significantly increased expression and 87 genes with significantly reduced expression were identified; paediatric samples revealed 190 genes with significantly increased expression and 148 genes with significantly reduced expression. Concordance of expression profiles between adult and paediatric samples indicates the same disease process. Functional analysis revealed increased expression in the adult and child MGSLc samples in the immune response/cellular defence gene ontology (GO) category and reduced expression in other categories including genes related to squamous cancer. No specific HPV, autoimmune or squamous carcinogenesis-associated gene expression patterns were found. ECM1 and CABLES1 expression were significantly reduced in paediatric and adult samples respectively. PMID:21718371

  15. An inducible, modular system for spatio-temporal control of gene expression in stomatal guard cells.

    PubMed

    Xiong, Tou Cheu; Hann, Cliona M; Chambers, John P; Surget, Marie; Ng, Carl K-Y

    2009-01-01

    Stomata, flanked by pairs of guard cells, are small pores on the leaf surfaces of plants and they function to control gas exchange between plants and the atmosphere. Stomata will open when water is available to allow for the uptake of carbon dioxide for photosynthesis. During periods of drought, stomata will close to reduce desiccation stress. As such, optimal functioning of stomata will impact on water use efficiency by plants. The development of an inducible, modular system for robust and targeted gene expression in stomatal guard cells is reported here. It is shown that application of ethanol vapour to activate the gene expression system did not affect the ability of stomata to respond to ABA in bioassays to determine the promotion of stomatal closure and the inhibition of stomatal opening. The system that has been developed allows for robust spatio-temporal control of gene expression in all cells of the stomatal lineage, thereby enabling molecular engineering of stomatal function as well as studies on stomatal development. PMID:19700494

  16. Global analysis of patterns of gene expression during Drosophila embryogenesis

    PubMed Central

    Tomancak, Pavel; Berman, Benjamin P; Beaton, Amy; Weiszmann, Richard; Kwan, Elaine; Hartenstein, Volker; Celniker, Susan E; Rubin, Gerald M

    2007-01-01

    Background Cell and tissue specific gene expression is a defining feature of embryonic development in multi-cellular organisms. However, the range of gene expression patterns, the extent of the correlation of expression with function, and the classes of genes whose spatial expression are tightly regulated have been unclear due to the lack of an unbiased, genome-wide survey of gene expression patterns. Results We determined and documented embryonic expression patterns for 6,003 (44%) of the 13,659 protein-coding genes identified in the Drosophila melanogaster genome with over 70,000 images and controlled vocabulary annotations. Individual expression patterns are extraordinarily diverse, but by supplementing qualitative in situ hybridization data with quantitative microarray time-course data using a hybrid clustering strategy, we identify groups of genes with similar expression. Of 4,496 genes with detectable expression in the embryo, 2,549 (57%) fall into 10 clusters representing broad expression patterns. The remaining 1,947 (43%) genes fall into 29 clusters representing restricted expression, 20% patterned as early as blastoderm, with the majority restricted to differentiated cell types, such as epithelia, nervous system, or muscle. We investigate the relationship between expression clusters and known molecular and cellular-physiological functions. Conclusion Nearly 60% of the genes with detectable expression exhibit broad patterns reflecting quantitative rather than qualitative differences between tissues. The other 40% show tissue-restricted expression; the expression patterns of over 1,500 of these genes are documented here for the first time. Within each of these categories, we identified clusters of genes associated with particular cellular and developmental functions. PMID:17645804

  17. Suppression of Photosynthetic Gene Expression in Roots Is Required for Sustained Root Growth under Phosphate Deficiency1[W][OPEN

    PubMed Central

    Kang, Jun; Yu, Haopeng; Tian, Caihuan; Zhou, Wenkun; Li, Chuanyou; Jiao, Yuling; Liu, Dong

    2014-01-01

    Plants cope with inorganic phosphate (Pi) deficiencies in their environment by adjusting their developmental programs and metabolic activities. For Arabidopsis (Arabidopsis thaliana), the developmental responses include the inhibition of primary root growth and the enhanced formation of lateral roots and root hairs. Pi deficiency also inhibits photosynthesis by suppressing the expression of photosynthetic genes. Early studies showed that photosynthetic gene expression was also suppressed in Pi-deficient roots, a nonphotosynthetic organ; however, the biological relevance of this phenomenon remains unknown. In this work, we characterized an Arabidopsis mutant, hypersensitive to Pi starvation7 (hps7), that is hypersensitive to Pi deficiency; the hypersensitivity includes an increased inhibition of root growth. HPS7 encodes a tyrosylprotein sulfotransferase. Accumulation of HPS7 proteins in root tips is enhanced by Pi deficiency. Comparative RNA sequencing analyses indicated that the expression of many photosynthetic genes is activated in roots of hps7. Under Pi deficiency, the expression of photosynthetic genes in hps7 is further increased, which leads to enhanced accumulation of chlorophyll, starch, and sucrose. Pi-deficient hps7 roots also produce a high level of reactive oxygen species. Previous research showed that the overexpression of GOLDEN-like (GLK) transcription factors in transgenic Arabidopsis activates photosynthesis in roots. The GLK overexpressing (GLK OX) lines also exhibit increased inhibition of root growth under Pi deficiency. The increased inhibition of root growth in hps7 and GLK OX lines by Pi deficiency was completely reversed by growing the plants in the dark. Based on these results, we propose that suppression of photosynthetic gene expression is required for sustained root growth under Pi deficiency. PMID:24868033

  18. Analysis of Global Gene Expression in Brachypodium distachyon Reveals Extensive Network Plasticity in Response to Abiotic Stress

    PubMed Central

    Priest, Henry D.; Fox, Samuel E.; Rowley, Erik R.; Murray, Jessica R.; Michael, Todd P.; Mockler, Todd C.

    2014-01-01

    Brachypodium distachyon is a close relative of many important cereal crops. Abiotic stress tolerance has a significant impact on productivity of agriculturally important food and feedstock crops. Analysis of the transcriptome of Brachypodium after chilling, high-salinity, drought, and heat stresses revealed diverse differential expression of many transcripts. Weighted Gene Co-Expression Network Analysis revealed 22 distinct gene modules with specific profiles of expression under each stress. Promoter analysis implicated short DNA sequences directly upstream of module members in the regulation of 21 of 22 modules. Functional analysis of module members revealed enrichment in functional terms for 10 of 22 network modules. Analysis of condition-specific correlations between differentially expressed gene pairs revealed extensive plasticity in the expression relationships of gene pairs. Photosynthesis, cell cycle, and cell wall expression modules were down-regulated by all abiotic stresses. Modules which were up-regulated by each abiotic stress fell into diverse and unique gene ontology GO categories. This study provides genomics resources and improves our understanding of abiotic stress responses of Brachypodium. PMID:24489928

  19. Monoallelic expression of the human FOXP2 speech gene.

    PubMed

    Adegbola, Abidemi A; Cox, Gerald F; Bradshaw, Elizabeth M; Hafler, David A; Gimelbrant, Alexander; Chess, Andrew

    2015-06-01

    The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations. PMID:25422445

  20. Modulation of R-gene expression across environments.

    PubMed

    MacQueen, Alice; Bergelson, Joy

    2016-03-01

    Some environments are more conducive to pathogen growth than others, and, as a consequence, plants might be expected to invest more in resistance when pathogen growth is favored. Resistance (R-) genes in Arabidopsis thaliana have unusually extensive variation in basal expression when comparing the same R-gene among accessions collected from different environments. R-gene expression variation was characterized to explore whether R-gene expression is up-regulated in environments favoring pathogen proliferation and down-regulated when risks of infection are low; down-regulation would follow if costs of R-gene expression negatively impact plant fitness in the absence of disease. Quantitative reverse transcription-PCR was used to quantify the expression of 13 R-gene loci in plants grown in eight environmental conditions for each of 12 A. thaliana accessions, and large effects of the environment on R-gene expression were found. Surprisingly, almost every change in the environment--be it a change in biotic or abiotic conditions--led to an increase in R-gene expression, a response that was distinct from the average transcriptome response and from that of other stress response genes. These changes in expression are functional in that environmental change prior to infection affected levels of specific disease resistance to isolates of Pseudomonas syringae. In addition, there are strong latitudinal clines in basal R-gene expression and clines in R-gene expression plasticity correlated with drought and high temperatures. These results suggest that variation in R-gene expression across environments may be shaped by natural selection to reduce fitness costs of R-gene expression in permissive or predictable environments. PMID:26983577

  1. Modulation of R-gene expression across environments

    PubMed Central

    MacQueen, Alice; Bergelson, Joy

    2016-01-01

    Some environments are more conducive to pathogen growth than others, and, as a consequence, plants might be expected to invest more in resistance when pathogen growth is favored. Resistance (R-) genes in Arabidopsis thaliana have unusually extensive variation in basal expression when comparing the same R-gene among accessions collected from different environments. R-gene expression variation was characterized to explore whether R-gene expression is up-regulated in environments favoring pathogen proliferation and down-regulated when risks of infection are low; down-regulation would follow if costs of R-gene expression negatively impact plant fitness in the absence of disease. Quantitative reverse transcription–PCR was used to quantify the expression of 13 R-gene loci in plants grown in eight environmental conditions for each of 12 A. thaliana accessions, and large effects of the environment on R-gene expression were found. Surprisingly, almost every change in the environment—be it a change in biotic or abiotic conditions—led to an increase in R-gene expression, a response that was distinct from the average transcriptome response and from that of other stress response genes. These changes in expression are functional in that environmental change prior to infection affected levels of specific disease resistance to isolates of Pseudomonas syringae. In addition, there are strong latitudinal clines in basal R-gene expression and clines in R-gene expression plasticity correlated with drought and high temperatures. These results suggest that variation in R-gene expression across environments may be shaped by natural selection to reduce fitness costs of R-gene expression in permissive or predictable environments. PMID:26983577

  2. Aquaporin gene expression and physiological responses of Robinia pseudoacacia L. to the mycorrhizal fungus Rhizophagus irregularis and drought stress.

    PubMed

    He, Fei; Zhang, Haoqiang; Tang, Ming

    2016-05-01

    The influence of arbuscular mycorrhiza (AM) and drought stress on aquaporin (AQP) gene expression, water status, and photosynthesis was investigated in black locust (Robinia pseudoacacia L.). Seedlings were grown in potted soil inoculated without or with the AM fungus Rhizophagus irregularis, under well-watered and drought stress conditions. Six full-length AQP complementary DNAs (cDNAs) were isolated from Robinia pseudoacacia, named RpTIP1;1, RpTIP1;3, RpTIP2;1, RpPIP1;1, RpPIP1;3, and RpPIP2;1. A phylogenetic analysis of deduced amino acid sequences demonstrated that putative proteins coded by these RpAQP genes belong to the water channel protein family. Expression analysis revealed higher RpPIP expression in roots while RpTIP expression was higher in leaves, except for RpTIP1;3. AM symbiosis regulated host plant AQPs, and the expression of RpAQP genes in mycorrhizal plants depended on soil water condition and plant tissue. Positive effects were observed for plant physiological parameters in AM plants, which had higher dry mass and lower water saturation deficit and electrolyte leakage than non-AM plants. Rhizophagus irregularis inoculation also slightly increased leaf net photosynthetic rate and stomatal conductance under well-watered and drought stress conditions. These findings suggest that AM symbiosis can enhance the drought tolerance in Robinia pseudoacacia plants by regulating the expression of RpAQP genes, and by improving plant biomass, tissue water status, and leaf photosynthesis in host seedlings. PMID:26590998

  3. Plant enolase: gene structure, expression, and evolution.

    PubMed Central

    Van der Straeten, D; Rodrigues-Pousada, R A; Goodman, H M; Van Montagu, M

    1991-01-01

    Enolase genes were cloned from tomato and Arabidopsis. Comparison of their primary structures with other enolases revealed a remarkable degree of conservation, except for the presence of an insertion of 5 amino acids unique to plant enolases. Expression of the enolase genes was studied under various conditions. Under normal growth conditions, steady-state messenger and enzyme activity levels were significantly higher in roots than in green tissue. Large inductions of mRNA, accompanied by a moderate increase in enzyme activity, were obtained by an artificial ripening treatment in tomato fruits. However, there was little effect of anaerobiosis on the abundance of enolase messenger. In heat shock conditions, no induction of enolase mRNA was observed. We also present evidence that, at least in Arabidopsis, the hypothesis that there exists a complete set of glycolytic enzymes in the chloroplast is not valid, and we propose instead the occurrence of a substrate shuttle in Arabidopsis chloroplasts for termination of the glycolytic cycle. PMID:1841726

  4. Preferential DNA repair in expressed genes.

    PubMed Central

    Hanawalt, P C

    1987-01-01

    Potentially deleterious alterations to DNA occur nonrandomly within the mammalian genome. These alterations include the adducts produced by many chemical carcinogens, but not the UV-induced cyclobutane pyrimidine dimer, which may be an exception. Recent studies in our laboratory have shown that the excision repair of pyrimidine dimers and certain other lesions is nonrandom in the mammalian genome, exhibiting a distinct preference for actively transcribed DNA sequences. An important consequence of this fact is that mutagenesis and carcinogenesis may be determined in part by the activities of the relevant genes. Repair may also be processive, and a model is proposed in which excision repair is coupled to transcription at the nuclear matrix. Similar but freely diffusing repair complexes may account for the lower overall repair efficiencies in the silent domains of the genome. Risk assessment in relation to chemical carcinogenesis requires assays that determine effective levels of DNA damage for producing malignancy. The existence of nonrandom repair in the genome casts into doubt the reliability of overall indicators of DNA binding and lesion repair for such determinations. Furthermore, some apparent differences between the intragenomic repair heterogeneity in rodent cells and that in human cells mandate a reevaluation of rodent test systems for human risk assessment. Tissue-specific and cell-specific differences in the coordinate regulation of gene expression and DNA repair may account for corresponding differences in the carcinogenic response. Images FIGURE 1. FIGURE 1. PMID:3447906

  5. Serial analysis of gene expression (SAGE): unraveling the bioinformatics tools.

    PubMed

    Tuteja, Renu; Tuteja, Narendra

    2004-08-01

    Serial analysis of gene expression (SAGE) is a powerful technique that can be used for global analysis of gene expression. Its chief advantage over other methods is that it does not require prior knowledge of the genes of interest and provides qualitative and quantitative data of potentially every transcribed sequence in a particular cell or tissue type. This is a technique of expression profiling, which permits simultaneous, comparative and quantitative analysis of gene-specific, 9- to 13-basepair sequences. These short sequences, called SAGE tags, are linked together for efficient sequencing. The sequencing data are then analyzed to identify each gene expressed in the cell and the levels at which each gene is expressed. The main benefit of SAGE includes the digital output and the identification of novel genes. In this review, we present an outline of the method, various bioinformatics methods for data analysis and general applications of this important technology. PMID:15273993

  6. Stochastic models of gene expression and post-transcriptional regulation

    NASA Astrophysics Data System (ADS)

    Pendar, Hodjat; Kulkarni, Rahul; Jia, Tao

    2011-10-01

    The intrinsic stochasticity of gene expression can give rise to phenotypic heterogeneity in a population of genetically identical cells. Correspondingly, there is considerable interest in understanding how different molecular mechanisms impact the 'noise' in gene expression. Of particular interest are post-transcriptional regulatory mechanisms involving genes called small RNAs, which control important processes such as development and cancer. We propose and analyze general stochastic models of gene expression and derive exact analytical expressions quantifying the noise in protein distributions [1]. Focusing on specific regulatory mechanisms, we analyze a general model for post-transcriptional regulation of stochastic gene expression [2]. The results obtained provide new insights into the role of post-transcriptional regulation in controlling the noise in gene expression. [4pt] [1] T. Jia and R. V. Kulkarni, Phys. Rev. Lett.,106, 058102 (2011) [0pt] [2] T. Jia and R. V. Kulkarni, Phys. Rev. Lett., 105, 018101 (2010)

  7. Quantitative imaging of gene expression in Drosophila embryos.

    PubMed

    Surkova, Svetlana; Myasnikova, Ekaterina; Kozlov, Konstantin N; Pisarev, Andrei; Reinitz, John; Samsonova, Maria

    2013-06-01

    Quantitative measurements derived using sophisticated microscopy techniques are essential for understanding the basic principles that control the behavior of biological systems. Here we describe a data pipeline developed to extract quantitative data on segmentation gene expression from confocal images of gene expression patterns in Drosophila. The pipeline consists of image segmentation, background removal, temporal characterization of an embryo, data registration, and data averaging. This pipeline has been successfully applied to obtain quantitative gene expression data at cellular resolution in space and at 6.5-min resolution in time. It has also enabled the construction of a spatiotemporal atlas of segmentation gene expression. We describe the software used to construct a workflow for extracting quantitative data on segmentation gene expression and the BREReA package, which implements the methods for background removal and registration of segmentation gene expression patterns. PMID:23734022

  8. Gene expression variability in clonal populations: Causes and consequences.

    PubMed

    Roberfroid, Stefanie; Vanderleyden, Jos; Steenackers, Hans

    2016-11-01

    During the last decade it has been shown that among cell variation in gene expression plays an important role within clonal populations. Here, we provide an overview of the different mechanisms contributing to gene expression variability in clonal populations. These are ranging from inherent variations in the biochemical process of gene expression itself, such as intrinsic noise, extrinsic noise and bistability to individual responses to variations in the local micro-environment, a phenomenon called phenotypic plasticity. Also genotypic variations caused by clonal evolution and phase variation can contribute to gene expression variability. Consequently, gene expression studies need to take these fluctuations in expression into account. However, frequently used techniques for expression quantification, such as microarrays, RNA sequencing, quantitative PCR and gene reporter fusions classically determine the population average of gene expression. Here, we discuss how these techniques can be adapted towards single cell analysis by integration with single cell isolation, RNA amplification and microscopy. Alternatively more qualitative selection-based techniques, such as mutant screenings, in vivo expression technology (IVET) and recombination-based IVET (RIVET) can be applied for detection of genes expressed only within a subpopulation. Finally, differential fluorescence induction (DFI), a protocol specially designed for single cell expression is discussed. PMID:26731119

  9. Plastid Transcriptomics and Translatomics of Tomato Fruit Development and Chloroplast-to-Chromoplast Differentiation: Chromoplast Gene Expression Largely Serves the Production of a Single Protein[W][OA

    PubMed Central

    Kahlau, Sabine; Bock, Ralph

    2008-01-01

    Plastid genes are expressed at high levels in photosynthetically active chloroplasts but are generally believed to be drastically downregulated in nongreen plastids. The genome-wide changes in the expression patterns of plastid genes during the development of nongreen plastid types as well as the contributions of transcriptional versus translational regulation are largely unknown. We report here a systematic transcriptomics and translatomics analysis of the tomato (Solanum lycopersicum) plastid genome during fruit development and chloroplast-to-chromoplast conversion. At the level of RNA accumulation, most but not all plastid genes are strongly downregulated in fruits compared with leaves. By contrast, chloroplast-to-chromoplast differentiation during fruit ripening is surprisingly not accompanied by large changes in plastid RNA accumulation. However, most plastid genes are translationally downregulated during chromoplast development. Both transcriptional and translational downregulation are more pronounced for photosynthesis-related genes than for genes involved in gene expression, indicating that some low-level plastid gene expression must be sustained in chromoplasts. High-level expression during chromoplast development identifies accD, the only plastid-encoded gene involved in fatty acid biosynthesis, as the target gene for which gene expression activity in chromoplasts is maintained. In addition, we have determined the developmental patterns of plastid RNA polymerase activities, intron splicing, and RNA editing and report specific developmental changes in the splicing and editing patterns of plastid transcripts. PMID:18441214

  10. A model for gene deregulation detection using expression data.

    PubMed

    Picchetti, Thomas; Chiquet, Julien; Elati, Mohamed; Neuvial, Pierre; Nicolle, Rémy; Birmelé, Etienne

    2015-01-01

    In tumoral cells, gene regulation mechanisms are severely altered. Genes that do not react normally to their regulators' activity can provide explanations for the tumoral behavior, and be characteristic of cancer subtypes. We thus propose a statistical methodology to identify the misregulated genes given a reference network and gene expression data. PMID:26679516

  11. Laser capture microdissection for gene expression analysis.

    PubMed

    Bidarimath, Mallikarjun; Edwards, Andrew K; Tayade, Chandrakant

    2015-01-01

    Laser capture microdissection (LCM) is an excellent and perhaps the only platform to isolate homogeneous cell populations from specific microscopic regions of heterogeneous tissue section, under direct microscopic visualization. The basic operations of the LCM system are based on (a) microscopic visualization of phenotypically identified cells of interest, (b) selective adherence of cells to a melting thermolabile film/membrane using a low-energy infrared laser (IR system) or photovolatization of cells within a selected region (UV system), (c) capturing or catapulting of structurally intact cells from a stained tissue section. RNA/DNA or protein can be extracted from the cell or tissue fragments for downstream applications to quantitatively study gene expression. This method can be applied to many downstream analyses including but not limited to quantitative real-time polymerase chain reaction (PCR), microarray, DNA genotyping, RNA transcript profiling, generation of cDNA library, mass spectrometry analysis, and proteomic discovery.The application of LCM is described here to specifically and reliably obtain a homogeneous cell population in order to extract RNA to study microRNA expression by quantitative real-time PCR. PMID:25308266

  12. Restricting expression prolongs expression of foreign genes introduced into animals by retroviruses.

    PubMed

    Pinto, V B; Prasad, S; Yewdell, J; Bennink, J; Hughes, S H

    2000-11-01

    If foreign genes are ubiquitously expressed in mice using a viral vector, expression is abrogated by CD8(+) cells in 2 to 4 weeks. However, if the expression of the genes is confined to skeletal muscle cells, the CD8(+) T-cell response is much weaker and expression is maintained for more than 6 weeks. These data show that restricting the expression of foreign genes to skeletal muscle cells and presumably to other cells that are inefficient at antigen presentation can prolong the expression of a foreign gene product. PMID:11024149

  13. Gene Expression Profiling in Pachyonychia Congenita Skin

    PubMed Central

    Cao, Yu-An; Hickerson, Robyn P.; Seegmiller, Brandon L.; Grapov, Dmitry; Gross, Maren M.; Bessette, Marc R.; Phinney, Brett S.; Flores, Manuel A.; Speaker, Tycho J.; Vermeulen, Annaleen; Bravo, Albert A.; Bruckner, Anna L.; Milstone, Leonard M.; Schwartz, Mary E.; Rice, Robert H.; Kaspar, Roger L.

    2015-01-01

    Background Pachyonychia congenita (PC) is a skin disorder resulting from mutations in keratin (K) proteins including K6a, K6b, K16, and K17. One of the major symptoms is painful plantar keratoderma. The pathogenic sequelae resulting from the keratin mutations remain unclear. Objective To better understand PC pathogenesis. Methods RNA profiling was performed on biopsies taken from PC-involved and uninvolved plantar skin of seven genotyped PC patients (two K6a, one K6b, three K16, and one K17) as well as from control volunteers. Protein profiling was generated from tape-stripping samples. Results A comparison of PC-involved skin biopsies to adjacent uninvolved plantar skin identified 112 differentially-expressed mRNAs common to patient groups harboring K6 (i.e., both K6a and K6b) and K16 mutations. Among these mRNAs, 25 encode structural proteins including keratins, small proline-rich and late cornified envelope proteins, 20 are related to metabolism and 16 encode proteases, peptidases, and their inhibitors including kallikrein-related peptidases (KLKs), and serine protease inhibitors (SERPINs). mRNAs were also identified to be differentially expressed only in K6 (81) or K16 (141) patient samples. Furthermore, 13 mRNAs were identified that may be involved in pain including nociception and neuropathy. Protein profiling, comparing three K6a plantar tape-stripping samples to non-PC controls, showed changes in the PC corneocytes similar, but not identical, to the mRNA analysis. Conclusion Many differentially-expressed genes identified in PC-involved skin encode components critical for skin barrier homeostasis including keratinocyte proliferation, differentiation, cornification, and desquamation. The profiling data provide a foundation for unraveling the pathogenesis of PC and identifying targets for developing effective PC therapeutics. PMID:25656049

  14. Gene Expression Patterns in Bone Following Mechanical Loading

    PubMed Central

    Mantila Roosa, Sara M; Liu, Yunlong; Turner, Charles H

    2011-01-01

    The advent of high-throughput measurements of gene expression and bioinformatics analysis methods offers new ways to study gene expression patterns. The primary goal of this study was to determine the time sequence for gene expression in a bone subjected to mechanical loading during key periods of the bone-formation process, including expression of matrix-related genes, the appearance of active osteoblasts, and bone desensitization. A standard model for bone loading was employed in which the right forelimb was loaded axially for 3 minutes per day, whereas the left forearm served as a nonloaded contralateral control. We evaluated loading-induced gene expression over a time course of 4 hours to 32 days after the first loading session. Six distinct time-dependent patterns of gene expression were identified over the time course and were categorized into three primary clusters: genes upregulated early in the time course, genes upregulated during matrix formation, and genes downregulated during matrix formation. Genes then were grouped based on function and/or signaling pathways. Many gene groups known to be important in loading-induced bone formation were identified within the clusters, including AP-1-related genes in the early-response cluster, matrix-related genes in the upregulated gene clusters, and Wnt/β-catenin signaling pathway inhibitors in the downregulated gene clusters. Several novel gene groups were identified as well, including chemokine-related genes, which were upregulated early but downregulated later in the time course; solute carrier genes, which were both upregulated and downregulated; and muscle-related genes, which were primarily downregulated. © 2011 American Society for Bone and Mineral Research. PMID:20658561

  15. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient

    PubMed Central

    Fortunato, Caroline S.; Crump, Byron C.

    2015-01-01

    Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance

  16. Microbial Gene Abundance and Expression Patterns across a River to Ocean Salinity Gradient.

    PubMed

    Fortunato, Caroline S; Crump, Byron C

    2015-01-01

    Microbial communities mediate the biogeochemical cycles that drive ecosystems, and it is important to understand how these communities are affected by changing environmental conditions, especially in complex coastal zones. As fresh and marine waters mix in estuaries and river plumes, the salinity, temperature, and nutrient gradients that are generated strongly influence bacterioplankton community structure, yet, a parallel change in functional diversity has not been described. Metagenomic and metatranscriptomic analyses were conducted on five water samples spanning the salinity gradient of the Columbia River coastal margin, including river, estuary, plume, and ocean, in August 2010. Samples were pre-filtered through 3 μm filters and collected on 0.2 μm filters, thus results were focused on changes among free-living microbial communities. Results from metagenomic 16S rRNA sequences showed taxonomically distinct bacterial communities in river, estuary, and coastal ocean. Despite the strong salinity gradient observed over sampling locations (0 to 33), the functional gene profiles in the metagenomes were very similar from river to ocean with an average similarity of 82%. The metatranscriptomes, however, had an average similarity of 31%. Although differences were few among the metagenomes, we observed a change from river to ocean in the abundance of genes encoding for catabolic pathways, osmoregulators, and metal transporters. Additionally, genes specifying both bacterial oxygenic and anoxygenic photosynthesis were abundant and expressed in the estuary and plume. Denitrification genes were found throughout the Columbia River coastal margin, and most highly expressed in the estuary. Across a river to ocean gradient, the free-living microbial community followed three different patterns of diversity: 1) the taxonomy of the community changed strongly with salinity, 2) metabolic potential was highly similar across samples, with few differences in functional gene abundance

  17. Endothelin-1 stimulates resistin gene expression.

    PubMed

    Tang, Ya-Chu; Liu, Chi-Wei; Chang, Hsin-Huei; Juan, Chi-Chang; Kuo, Yow-Chii; Kao, Chung-Cheng; Huang, Yao-Ming; Kao, Yung-Hsi

    2014-03-01

    Resistin and endothelin (ET)-1 have been reported to inhibit adipogenesis and regulate adipocyte insulin resistance, respectively. Although both hormones interact with each other, the exact signaling pathway of ET-1 to act on resistin gene expression is still unknown. Using 3T3-L1 adipocytes, we investigated the signaling pathways involved in ET-1-stimulated resistin gene expression. The up-regulation of resistin mRNA expression by ET-1 depends on concentration and timing. The concentration of ET-1 that increased resistin mRNA levels by 100%-250% was approximately 100 nM for a range of 0.25-12 hours of treatment. Treatment with actinomycin D blocked ET-1-increased resistin mRNA levels, suggesting that the effect of ET-1 requires new mRNA synthesis. Treatment with an inhibitor of the ET type-A receptor, such as N-[1-Formyl-N-[N-[(hexahydro-1H-azepin-1-yl)carbonyl]-L-leucyl]-D-tryptophyl]-D-tryptophan (BQ610), but not with the ET type-B receptor antagonist N-[(cis-2,6-Dimethyl-1-piperidinyl)carbonyl]-4-methyl-L-leucyl-1-(methoxycarbonyl)-D-tryptophyl-D-norleucine (BQ788), blocked ET-1, increased the levels of resistin mRNA, and phosphorylated levels of downstream signaling molecules, such as ERK1/2, c-Jun N-terminal kinases (JNKs), protein kinase B (AKT), and signal transducer and activator of transcription 3 (STAT3). Moreover, pretreatment of specific inhibitors of either ERK1/2 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene [U0126] and 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one [PD98059], two inhibitors of MEK1), JNKs (SP600125), phosphatidylinositol 3-kinase/AKT (LY294002 and Wortmannin), or Janus kinase 2 (JAK2)/STAT3 ((E)-2-Cyano-3-(3,4-dihydrophenyl)-N-(phenylmethyl)-2-propenamide, AG490) prevented ET-1-increased levels of resistin mRNA and reduced the ET-1-stimulated phosphorylation of ERK1/2, JNKs, AKT, and STAT3, respectively. However, the p38 kinase antagonist 4-[5-(4-Fluorophenyl)-2-[4-(methylsulfonyl)phenyl]-1H-imidazol-4-yl

  18. Association of tissue lineage and gene expression: conservatively and differentially expressed genes define common and special functions of tissues

    PubMed Central

    2010-01-01

    Background Embryogenesis is the process by which the embryo is formed, develops, and establishes developmental hierarchies of tissues. The recent advance in microarray technology made it possible to investigate the tissue specific patterns of gene expression and their relationship with tissue lineages. This study is focused on how tissue specific functions, tissue lineage, and cell differentiation are correlated, which is essential to understand embryonic development and organism complexity. Results We performed individual gene and gene set based analysis on multiple tissue expression data, in association with the classic topology of mammalian fate maps of embryogenesis. For each sub-group of tissues on the fate map, conservatively, differentially and correlatively expressed genes or gene sets were identified. Tissue distance was found to correlate with gene expression divergence. Tissues of the ectoderm or mesoderm origins from the same segments on the fate map shared more similar expression pattern than those from different origins. Conservatively expressed genes or gene sets define common functions in a tissue group and are related to tissue specific diseases, which is supported by results from Gene Ontology and KEGG pathway analysis. Gene expression divergence is larger in certain human tissues than in the mouse homologous tissues. Conclusion The results from tissue lineage and gene expression analysis indicate that common function features of neighbor tissue groups were defined by the conservatively expressed genes and were related to tissue specific diseases, and differentially expressed genes contribute to the functional divergence of tissues. The difference of gene expression divergence in human and mouse homologous tissues reflected the organism complexity, i.e. distinct neural development levels and different body sizes. PMID:21172044

  19. Analysis of HOX gene expression patterns in human breast cancer.

    PubMed

    Hur, Ho; Lee, Ji-Yeon; Yun, Hyo Jung; Park, Byeong Woo; Kim, Myoung Hee

    2014-01-01

    HOX genes are highly conserved transcription factors that determine the identity of cells and tissues along the anterior-posterior body axis in developing embryos. Aberrations in HOX gene expression have been shown in various tumors. However, the correlation of HOX gene expression patterns with tumorigenesis and cancer progression has not been fully characterized. Here, to analyze putative candidate HOX genes involved in breast cancer tumorigenesis and progression, the expression patterns of 39 HOX genes were analyzed using breast cancer cell lines and patient-derived breast tissues. In vitro analysis revealed that HOXA and HOXB gene expression occurred in a subtype-specific manner in breast cancer cell lines, whereas most HOXC genes were strongly expressed in most cell lines. Among the 39 HOX genes analyzed, 25 were chosen for further analysis in malignant and non-malignant tissues. Fourteen genes, encoding HOXA6, A13, B2, B4, B5, B6, B7, B8, B9, C5, C9, C13, D1, and D8, out of 25 showed statistically significant differential expression patterns between non-malignant and malignant breast tissues and are putative candidates associated with the development and malignant progression of breast cancer. Our data provide a valuable resource for furthering our understanding of HOX gene expression in breast cancer and the possible involvement of HOX genes in tumor progression. PMID:23820980

  20. Global gene expression profiles in developing soybean seeds.

    PubMed

    Asakura, Tomiko; Tamura, Tomoko; Terauchi, Kaede; Narikawa, Tomoyo; Yagasaki, Kazuhiro; Ishimaru, Yoshiro; Abe, Keiko

    2012-03-01

    The gene expression profiles in soybean (Glycine max L.) seeds at 4 stages of development, namely, pod, 2-mm bean, 5-mm bean, and full-size bean, were examined by DNA microarray analysis. The total genes of each sample were classified into 4 clusters based on stage of development. Gene expression was strictly controlled by seed size, which coincides with the development stage. First, stage specific gene expression was examined. Many transcription factors were expressed in pod, 2-mm bean and 5-mm bean. In contrast, storage proteins were mainly expressed in full-size bean. Next, we extracted the genes that are differentially expressed genes (DEGs) that were extracted using the Rank products method of the Bioconductor software package. These DEGs were sorted into 8 groups using the hclust function according to gene expression patterns. Three of the groups across which the expression levels progressively increased included 100 genes, while 3 groups across which the levels decreased contained 47 genes. Storage proteins, seed-maturation proteins, some protease inhibitors, and the allergen Gly m Bd 28K were classified into the former groups. Lipoxygenase (LOX) family members were present in both the groups, indicating the multi-functionality with different expression patterns. PMID:22245912

  1. Chloroplast transformation for engineering of photosynthesis.

    PubMed

    Hanson, Maureen R; Gray, Benjamin N; Ahner, Beth A

    2013-01-01

    Many efforts are underway to engineer improvements in photosynthesis to meet the challenges of increasing demands for food and fuel in rapidly changing environmental conditions. Various transgenes have been introduced into either the nuclear or plastid genomes in attempts to increase photosynthetic efficiency. We examine the current knowledge of the critical features that affect levels of expression of plastid transgenes and protein accumulation in transplastomic plants, such as promoters, 5' and 3' untranslated regions, RNA-processing sites, translation signals and amino acid sequences that affect protein turnover. We review the prior attempts to manipulate the properties of ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) through plastid transformation. We illustrate how plastid operons could be created for expression of the multiple genes needed to introduce new pathways or enzymes to enhance photosynthetic rates or reduce photorespiration. We describe here the past accomplishments and future prospects for manipulating plant enzymes and pathways to enhance carbon assimilation through plastid transformation. PMID:23162121

  2. Effect of low-expression gene filtering on detection of differentially expressed genes in RNA-seq data

    PubMed Central

    Sha, Ying; Phan, John H.; Wang, May D.

    2016-01-01

    We compare methods for filtering RNA-seq lowexpression genes and investigate the effect of filtering on detection of differentially expressed genes (DEGs). Although RNA-seq technology has improved the dynamic range of gene expression quantification, low-expression genes may be indistinguishable from sampling noise. The presence of noisy, low-expression genes can decrease the sensitivity of detecting DEGs. Thus, identification and filtering of these low-expression genes may improve DEG detection sensitivity. Using the SEQC benchmark dataset, we investigate the effect of different filtering methods on DEG detection sensitivity. Moreover, we investigate the effect of RNA-seq pipelines on optimal filtering thresholds. Results indicate that the filtering threshold that maximizes the total number of DEGs closely corresponds to the threshold that maximizes DEG detection sensitivity. Transcriptome reference annotation, expression quantification method, and DEG detection method are statistically significant RNA-seq pipeline factors that affect the optimal filtering threshold. PMID:26737772

  3. Analysis of Gene Expression and Physiological Responses in Three Mexican Maize Landraces under Drought Stress and Recovery Irrigation

    PubMed Central

    Hayano-Kanashiro, Corina; Calderón-Vázquez, Carlos; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Simpson, June

    2009-01-01

    Background Drought is one of the major constraints for plant productivity worldwide. Different mechanisms of drought-tolerance have been reported for several plant species including maize. However, the differences in global gene expression between drought-tolerant and susceptible genotypes and their relationship to physiological adaptations to drought are largely unknown. The study of the differences in global gene expression between tolerant and susceptible genotypes could provide important information to design more efficient breeding programs to produce maize varieties better adapted to water limiting conditions. Methodology/Principal Findings Changes in physiological responses and gene expression patterns were studied under drought stress and recovery in three Mexican maize landraces which included two drought tolerant (Cajete criollo and Michoacán 21) and one susceptible (85-2) genotypes. Photosynthesis, stomatal conductance, soil and leaf water potentials were monitored throughout the experiment and microarray analysis was carried out on transcripts obtained at 10 and 17 days following application of stress and after recovery irrigation. The two tolerant genotypes show more drastic changes in global gene expression which correlate with different physiological mechanisms of adaptation to drought. Differences in the kinetics and number of up- and down-regulated genes were observed between the tolerant and susceptible maize genotypes, as well as differences between the two tolerant genotypes. Interestingly, the most dramatic differences between the tolerant and susceptible genotypes were observed during recovery irrigation, suggesting that the tolerant genotypes activate mechanisms that allow more efficient recovery after a severe drought. Conclusions/Significance A correlation between levels of photosynthesis and transcription under stress was observed and differences in the number, type and expression levels of transcription factor families were also

  4. The pineapple genome and the evolution of CAM photosynthesis

    PubMed Central

    Ming, Ray; VanBuren, Robert; Wai, Ching Man; Tang, Haibao; Schatz, Michael C.; Bowers, John E.; Lyons, Eric; Wang, Ming-Li; Chen, Jung; Biggers, Eric; Zhang, Jisen; Huang, Lixian; Zhang, Lingmao; Miao, Wenjing; Zhang, Jian; Ye, Zhangyao; Miao, Chenyong; Lin, Zhicong; Wang, Hao; Zhou, Hongye; Yim, Won C.; Priest, Henry D.; Zheng, Chunfang; Woodhouse, Margaret; Edger, Patrick P.; Guyot, Romain; Guo, Hao-Bo; Guo, Hong; Zheng, Guangyong; Singh, Ratnesh; Sharma, Anupma; Min, Xiangjia; Zheng, Yun; Lee, Hayan; Gurtowski, James; Sedlazeck, Fritz J.; Harkess, Alex; McKain, Michael R.; Liao, Zhenyang; Fang, Jingping; Liu, Juan; Zhang, Xiaodan; Zhang, Qing; Hu, Weichang; Qin, Yuan; Wang, Kai; Chen, Li-Yu; Shirley, Neil; Lin, Yann-Rong; Liu, Li-Yu; Hernandez, Alvaro G.; Wright, Chris L.; Bulone, Vincent; Tuskan, Gerald A.; Heath, Katy; Zee, Francis; Moore, Paul H.; Sunkar, Ramanjulu; Leebens-Mack, James H.; Mockler, Todd; Bennetzen, Jeffrey L.; Freeling, Michael; Sankoff, David; Paterson, Andrew H.; Zhu, Xinguang; Yang, Xiaohan; Smith, J. Andrew C.; Cushman, John C.; Paull, Robert E.; Yu, Qingyi

    2016-01-01

    Pineapple (Ananas comosus (L.) Merr.) is the most economically valuable crop possessing crassulacean acid metabolism (CAM), a photosynthetic carbon assimilation pathway with high water use efficiency, and the second most important tropical fruit after banana in terms of international trade. We sequenced the genomes of pineapple varieties ‘F153’ and ‘MD2’, and a wild pineapple relative A. bracteatus accession CB5. The pineapple genome has one fewer ancient whole genome duplications than sequenced grass genomes and, therefore, provides an important reference for elucidating gene content and structure in the last common ancestor of extant members of the grass family (Poaceae). Pineapple has a conserved karyotype with seven pre rho duplication chromosomes that are ancestral to extant grass karyotypes. The pineapple lineage has transitioned from C3 photosynthesis to CAM with CAM-related genes exhibiting a diel expression pattern in photosynthetic tissues using beta-carbonic anhydrase (βCA) for initial capture of CO2. Promoter regions of all three βCA genes contain a CCA1 binding site that can bind circadian core oscillators. CAM pathway genes were enriched with cis-regulatory elements including the morning (CCACAC) and evening (AAAATATC) elements associated with regulation of circadian-clock genes, providing the first link between CAM and the circadian clock regulation. Gene-interaction network analysis revealed both activation and repression of regulatory elements that control key enzymes in CAM photosynthesis, indicating that CAM evolved by reconfiguration of pathways preexisting in C3 plants. Pineapple CAM photosynthesis is the result of regulatory neofunctionalization of preexisting gene copies and not acquisition of neofunctionalized genes via whole genome or tandem gene duplication. PMID:26523774

  5. Genes, environment and gene expression in colon tissue: a pathway approach to determining functionality

    PubMed Central

    Slattery, Martha L; Pellatt, Daniel F; Wolff, Roger K; Lundgreen, Abbie

    2016-01-01

    Genetic and environmental factors have been shown to work together to alter cancer risk. In this study we evaluate previously identified gene and lifestyle interactions in a candidate pathway that were associated with colon cancer risk to see if these interactions altered gene expression. We analyzed non-tumor RNA-seq data from 144 colon cancer patients who had genotype, recent cigarette smoking, diet, body mass index (BMI), and recent aspirin/non-steroidal anti-inflammatory use data. Using a false discovery rate of 0.1, we evaluated differential gene expression between high and low levels of lifestyle exposure and genotypes using DESeq2. Thirteen pathway genes and 17 SNPs within those genes were associated with altered expression of other genes in the pathway. BMI, NSAIDs use and dietary components of the oxidative balance score (OBS) also were associated with altered gene expression. SNPs previously identified as interacting with these lifestyle factors, altered expression of pathway genes. NSAIDs interacted with 10 genes (15 SNPs) within those genes to alter expression of 28 pathway genes; recent cigarette smoking interacted with seven genes (nine SNPs) to alter expression of 27 genes. BMI interacted with FLT1, KDR, SEPN1, TERT, TXNRD2, and VEGFA to alter expression of eight genes. Three genes (five SNPs) interacted with OBS to alter expression of 12 genes. These data provide support for previously identified lifestyle and gene interactions associated with colon cancer in that they altered expression of key pathway genes. The need to consider lifestyle factors in conjunction with genetic factors is illustrated. PMID:27186328

  6. Benzoic Acid-Inducible Gene Expression in Mycobacteria

    PubMed Central

    Dragset, Marte S.; Barczak, Amy K.; Kannan, Nisha; Mærk, Mali; Flo, Trude H.; Valla, Svein; Rubin, Eric J.; Steigedal, Magnus

    2015-01-01

    Conditional expression is a powerful tool to investigate the role of bacterial genes. Here, we adapt the Pseudomonas putida-derived positively regulated XylS/Pm expression system to control inducible gene expression in Mycobacterium smegmatis and Mycobacterium tuberculosis, the causative agent of human tuberculosis. By making simple changes to a Gram-negative broad-host-range XylS/Pm-regulated gene expression vector, we prove that it is possible to adapt this well-studied expression system to non-Gram-negative species. With the benzoic acid-derived inducer m-toluate, we achieve a robust, time- and dose-dependent reversible induction of Pm-mediated expression in mycobacteria, with low background expression levels. XylS/Pm is thus an important addition to existing mycobacterial expression tools, especially when low basal expression is of particular importance. PMID:26348349

  7. Social Regulation of Gene Expression in Threespine Sticklebacks

    PubMed Central

    Greenwood, Anna K.; Peichel, Catherine L.

    2015-01-01

    Identifying genes that are differentially expressed in response to social interactions is informative for understanding the molecular basis of social behavior. To address this question, we described changes in gene expression as a result of differences in the extent of social interactions. We housed threespine stickleback (Gasterosteus aculeatus) females in either group conditions or individually for one week, then measured levels of gene expression in three brain regions using RNA-sequencing. We found that numerous genes in the hindbrain/cerebellum had altered expression in response to group or individual housing. However, relatively few genes were differentially expressed in either the diencephalon or telencephalon. The list of genes upregulated in fish from social groups included many genes related to neural development and cell adhesion as well as genes with functions in sensory signaling, stress, and social and reproductive behavior. The list of genes expressed at higher levels in individually-housed fish included several genes previously identified as regulated by social interactions in other animals. The identified genes are interesting targets for future research on the molecular mechanisms of normal social interactions. PMID:26367311

  8. Discoveries in Photosynthesis

    NASA Astrophysics Data System (ADS)

    Govindjee; Beatty, J. T.; Gest, H.; Allen, J. F.

    "Life Is Bottled Sunshine" [Wynwood Reade, Martyrdom of Man, 1924]. This inspired phrase is a four-word summary of the significance of photosynthesis for life on earth. The study of photosynthesis has attracted the attention of a legion of biologists, biochemists, chemists and physicists for over 200 years. Discoveries in Photosynthesis presents a sweeping overview of the history of photosynthesis investigations, and detailed accounts of research progress in all aspects of the most complex bioenergetic process in living organisms.

  9. Unstable Expression of Commonly Used Reference Genes in Rat Pancreatic Islets Early after Isolation Affects Results of Gene Expression Studies

    PubMed Central

    Kosinová, Lucie; Cahová, Monika; Fábryová, Eva; Týcová, Irena; Koblas, Tomáš; Leontovyč, Ivan; Saudek, František; Kříž, Jan

    2016-01-01

    The use of RT-qPCR provides a powerful tool for gene expression studies; however, the proper interpretation of the obtained data is crucially dependent on accurate normalization based on stable reference genes. Recently, strong evidence has been shown indicating that the expression of many commonly used reference genes may vary significantly due to diverse experimental conditions. The isolation of pancreatic islets is a complicated procedure which creates severe mechanical and metabolic stress leading possibly to cellular damage and alteration of gene expression. Despite of this, freshly isolated islets frequently serve as a control in various gene expression and intervention studies. The aim of our study was to determine expression of 16 candidate reference genes and one gene of interest (F3) in isolated rat pancreatic islets during short-term cultivation in order to find a suitable endogenous control for gene expression studies. We compared the expression stability of the most commonly used reference genes and evaluated the reliability of relative and absolute quantification using RT-qPCR during 0–120 hrs after isolation. In freshly isolated islets, the expression of all tested genes was markedly depressed and it increased several times throughout the first 48 hrs of cultivation. We observed significant variability among samples at 0 and 24 hrs but substantial stabilization from 48 hrs onwards. During the first 48 hrs, relative quantification failed to reflect the real changes in respective mRNA concentrations while in the interval 48–120 hrs, the relative expression generally paralleled the results determined by absolute quantification. Thus, our data call into question the suitability of relative quantification for gene expression analysis in pancreatic islets during the first 48 hrs of cultivation, as the results may be significantly affected by unstable expression of reference genes. However, this method could provide reliable information from 48 hrs

  10. Expression and functional analyses of the Arabidopsis QUA1 gene in light signal transduction.

    PubMed

    Zhaojin, Chen; Chuanyu, Ding; Yuan, Zheng

    2016-05-01

    Plants not only use light as an energy source for photosynthesis, but also have to monitor the light quality and quantity input to execute appropriate physiological and developmental responses, such as cell differentiation, structural and functional changes, as well as the formation of tissues and organs. The process is referred to as photomorphogenesis. Arabidopsis QUA1 (QUASIMODO1), which functions in pectin synthesis, is identified as a member of glycosyltransferases. Previously, the hypocotyl elongation of the qua1-1 mutant was shown to be inhibited under dark conditions. In this study, we used the qua1-1/cry1 and qua1-1/phyB double mutants as the materials to study the function of the QUA1 gene in light signal transduction. The results showed that QUA1 not only participated in hypocotyl elongation under dark conditions, but also in blue light, red light and far red light conditions. In qua1-1 mutant seedlings, both the cell length of hypocotyl and the light-regulated gene expression were affected. Compared with cry1 and phyB mutants, qua1-1/cry1 and qua1-1/phyB double mutants had the shorter hypocotyl. Light-regulated gene expression was also affected in the double mutants. These data indicated that QUA1 might participate in the light signal transduction regulated by CRY1 and PHYB. Hence, the QUA1 gene may play multiple roles in light signal transduction by regulating the cell elongation and light-regulated gene expression. PMID:27232492

  11. Global gene expression responses to waterlogging in leaves of rape seedlings.

    PubMed

    Lee, Yong-Hwa; Kim, Kwang-Soo; Jang, Young-Seok; Hwang, Ji-Hye; Lee, Dong-Hee; Choi, In-Hu

    2014-02-01

    Soil waterlogging is a serious constraint to crop production. We investigated the physiological responses of rape (Brassica napus L.) seedlings to waterlogging stress and analyzed global gene transcription responses in the aerial leaves of waterlogged rape seedlings. Seedlings of 'Tammi' and 'Youngsan' cultivars were subjected to waterlogging for 3 and 6 days and recovery for 5 days. Waterlogging stress caused a significant decrease in leaf chlorophyll content and premature senescence of the leaves. Maximal quantum efficiency of PSII (F(v)/F(m)) decreased in the waterlogged seedlings compared with the control plants. To evaluate whether the observed physiological changes in the leaves are associated with the differential regulation of gene expression in response to waterlogging stress, we analyzed the global transcriptional profile of leaves of 'Tammi' seedlings that were exposed to waterlogging for a short period (36 and 72 h). SolexaQA RNA-seq analysis revealed that a total of 4,484 contigs (8.5 %) of all contigs assayed (52,747) showed a twofold change in expression after 36 h of the start of waterlogging and 9,659 contigs (18.3 %) showed a twofold change after 72 h. Major genes involved in leaf photosynthesis, including light reactions and carbon-fixing reactions, were downregulated, while a number of genes involved in the scavenging of reactive oxygen species, degradation (proteins, starch, and lipids), premature senescence, and abiotic stress tolerance were upregulated. Transcriptome analysis data suggested that the aerial leaves of waterlogged rape seedlings respond to hypoxia by regulating the expression of diverse genes in the leaves. PMID:24384821

  12. Why chloroplasts and mitochondria retain their own genomes and genetic systems: Colocation for redox regulation of gene expression

    PubMed Central

    Allen, John F.

    2015-01-01

    Chloroplasts and mitochondria are subcellular bioenergetic organelles with their own genomes and genetic systems. DNA replication and transmission to daughter organelles produces cytoplasmic inheritance of characters associated with primary events in photosynthesis and respiration. The prokaryotic ancestors of chloroplasts and mitochondria were endosymbionts whose genes became copied to the genomes of their cellular hosts. These copies gave rise to nuclear chromosomal genes that encode cytosolic proteins and precursor proteins that are synthesized in the cytosol for import into the organelle into which the endosymbiont evolved. What accounts for the retention of genes for the complete synthesis within chloroplasts and mitochondria of a tiny minority of their protein subunits? One hypothesis is that expression of genes for protein subunits of energy-transducing enzymes must respond to physical environmental change by means of a direct and unconditional regulatory control—control exerted by change in the redox state of the corresponding gene product. This hypothesis proposes that, to preserve function, an entire redox regulatory system has to be retained within its original membrane-bound compartment. Colocation of gene and gene product for redox regulation of gene expression (CoRR) is a hypothesis in agreement with the results of a variety of experiments designed to test it and which seem to have no other satisfactory explanation. Here, I review evidence relating to CoRR and discuss its development, conclusions, and implications. This overview also identifies predictions concerning the results of experiments that may yet prove the hypothesis to be incorrect. PMID:26286985

  13. Photosynthesis. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on photosynthesis. Presented first are an attention step/problem statement and a series of questions and answers designed to convey general information about photosynthesis. The following topics are among those discussed: the photosynthesis process and its importance, the organisms that…

  14. Gene expression within a dynamic nuclear landscape

    PubMed Central

    Shav-Tal, Yaron; Darzacq, Xavier; Singer, Robert H

    2006-01-01

    Molecular imaging in living cells or organisms now allows us to observe macromolecular assemblies with a time resolution sufficient to address cause-and-effect relationships on specific molecules. These emerging technologies have gained much interest from the scientific community since they have been able to reveal novel concepts in cell biology, thereby changing our vision of the cell. One main paradigm is that cells stochastically vary, thus implying that population analysis may be misleading. In fact, cells should be analyzed within time-resolved single-cell experiments rather than being compared to other cells within a population. Technological imaging developments as well as the stochastic events present in gene expression have been reviewed. Here, we discuss how the structural organization of the nucleus is revealed using noninvasive single-cell approaches, which ultimately lead to the resolution required for the analysis of highly controlled molecular processes taking place within live cells. We also describe the efforts being made towards physiological approaches within the context of living organisms. PMID:16900099

  15. Cell cycle gene expression under clinorotation

    NASA Astrophysics Data System (ADS)

    Artemenko, Olga

    2016-07-01

    Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.

  16. Local gene expression in nerve endings.

    PubMed

    Crispino, Marianna; Chun, Jong Tai; Cefaliello, Carolina; Perrone Capano, Carla; Giuditta, Antonio

    2014-03-01

    At the Nobel lecture for physiology in 1906, Ramón y Cajal famously stated that "the nerve elements possess reciprocal relationships in contiguity but not in continuity," summing up the neuron doctrine. Sixty years later, by the time the central dogma of molecular biology formulated the axis of genetic information flow from DNA to mRNA, and then to protein, it became obvious that neurons with extensive ramifications and long axons inevitably incur an innate problem: how can the effect of gene expression be extended from the nucleus to the remote and specific sites of the cell periphery? The most straightforward solution would be to deliver soma-produced proteins to the target sites. The influential discovery of axoplasmic flow has supported this scheme of protein supply. Alternatively, mRNAs can be dispatched instead of protein, and translated locally at the strategic target sites. Over the past decades, such a local system of protein synthesis has been demonstrated in dendrites, axons, and presynaptic terminals. Moreover, the local protein synthesis in neurons might even involve intercellular trafficking of molecules. The innovative concept of glia-neuron unit suggests that the local protein synthesis in the axonal and presynaptic domain of mature neurons is sustained by a local supply of RNAs synthesized in the surrounding glial cells and transferred to these domains. Here, we have reviewed some of the evidence indicating the presence of a local system of protein synthesis in axon terminals, and have examined its regulation in various model systems. PMID:23853157

  17. Assembly and Expression of Shark Ig Genes.

    PubMed

    Hsu, Ellen

    2016-05-01

    Sharks are modern descendants of the earliest vertebrates possessing Ig superfamily receptor-based adaptive immunity. They respond to immunogen with Abs that, upon boosting, appear more rapidly and show affinity maturation. Specific Abs and immunological memory imply that Ab diversification and clonal selection exist in cartilaginous fish. Shark Ag receptors are generated through V(D)J recombination, and because it is a mechanism known to generate autoreactive receptors, this implies that shark lymphocytes undergo selection. In the mouse, the ∼2.8-Mb IgH and IgL loci require long-range, differential activation of component parts for V(D)J recombination, allelic exclusion, and receptor editing. These processes, including class switching, evolved with and appear inseparable from the complex locus organization. In contrast, shark Igs are encoded by 100-200 autonomously rearranging miniloci. This review describes how the shark primary Ab repertoire is generated in the absence of structural features considered essential in mammalian Ig gene assembly and expression. PMID:27183649

  18. Expression profiles for six zebrafish genes during gonadal sex differentiation

    PubMed Central

    Jørgensen, Anne; Morthorst, Jane E; Andersen, Ole; Rasmussen, Lene J; Bjerregaard, Poul

    2008-01-01

    Background The mechanism of sex determination in zebrafish is largely unknown and neither sex chromosomes nor a sex-determining gene have been identified. This indicates that sex determination in zebrafish is mediated by genetic signals from autosomal genes. The aim of this study was to determine the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. Results In the present study, we have used quantitative real-time PCR to investigate the expression of ar, sox9a, dmrt1, fig alpha, cyp19a1a and cyp19a1b during the expected sex determination and gonadal sex differentiation period. The expression of the genes expected to be high in males (ar, sox9a and dmrt1a) and high in females (fig alpha and cyp19a1a) was segregated in two groups with more than 10 times difference in expression levels. All of the investigated genes showed peaks in expression levels during the time of sex determination and gonadal sex differentiation. Expression of all genes was investigated on cDNA from the same fish allowing comparison of the high and low expressers of genes that are expected to be highest expressed in either males or females. There were 78% high or low expressers of all three "male" genes (ar, sox9a and dmrt1) in the investigated period and 81% were high or low expressers of both "female" genes (fig alpha and cyp19a1a). When comparing all five genes with expected sex related expression 56% show expression expected for either male or female. Furthermore, the expression of all genes was investigated in different tissue of adult male and female zebrafish. Conclusion In zebrafish, the first significant peak in gene expression during the investigated period (2–40 dph) was dmrt1 at 10 dph which indicates involvement of this gene in the early gonadal sex

  19. Patterns of gene expression in microarrays and expressed sequence tags from normal and cataractous lenses.

    PubMed

    Sousounis, Konstantinos; Tsonis, Panagiotis A

    2012-01-01

    In this contribution, we have examined the patterns of gene expression in normal and cataractous lenses as presented in five different papers using microarrays and expressed sequence tags. The purpose was to evaluate unique and common patterns of gene expression during development, aging and cataracts. PMID:23244575

  20. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression.

    PubMed Central

    van der Krol, A R; Mur, L A; Beld, M; Mol, J N; Stuitje, A R

    1990-01-01

    To evaluate the effect of increased expression of genes involved in flower pigmentation, additional dihydroflavonol-4-reductase (DFR) or chalcone synthase (CHS) genes were transferred to petunia. In most transformants, the increased expression had no measurable effect on floral pigmentation. Surprisingly, however, in up to 25% of the transformants, a reduced floral pigmentation, accompanied by a dramatic reduction of DFR or CHS gene expression, respectively, was observed. This phenomenon was obtained with both chimeric gene constructs and intact CHS genomic clones. The reduction in gene expression was independent of the promoter driving transcription of the transgene and involved both the endogenous gene and the homologous transgene. The gene-specific collapse in expression was obtained even after introduction of only a single gene copy. The similarity between the sense transformants and regulatory CHS mutants suggests that this mechanism of gene silencing may operate in naturally occurring regulatory circuits. PMID:2152117

  1. Arabidopsis gene expression patterns are altered during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, Anna-Lisa; Popp, Michael P.; Gurley, William B.; Guy, Charles; Norwood, Kelly L.; Ferl, Robert J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments results in differential gene expression. A 5-day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β-Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on gene expression patterns initially by using the Adh/GUS transgene to address specifically the possibility that spaceflight induces a hypoxic stress response (Paul, A.L., Daugherty, C.J., Bihn, E.A., Chapman, D.K., Norwood, K.L., Ferl, R.J., 2001. Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in arabidopsis, Plant Physiol. 126, 613-621). As a follow-on to the reporter gene analysis, we report here the evaluation of genome-wide patterns of native gene expression within Arabidopsis shoots utilizing the Agilent DNA array of 21,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes was further characterized with quantitative Real-Time RT PCR (ABI - Taqman®). Comparison of the patterns of expression for arrays probed with RNA isolated from plants exposed to spaceflight compared to RNA isolated from ground control plants revealed 182 genes that were differentially expressed in response to the spaceflight mission by more than 4-fold, and of those only 50 genes were expressed at levels chosen to support a conservative change call. None of the genes that are hallmarks of hypoxic stress were induced to this level. However, genes related to heat shock were dramatically induced - but in a pattern and under growth conditions that are not easily explained by elevated temperatures. These gene expression data are discussed in light of current models for plant responses to the spaceflight environment and with regard to potential future spaceflight experiment

  2. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    SciTech Connect

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcanii was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of specific tfb

  3. The role of gene expression in ecological speciation

    PubMed Central

    Pavey, Scott A; Collin, Hélène; Nosil, Patrik; Rogers, Sean M

    2010-01-01

    Ecological speciation is the process by which barriers to gene flow between populations evolve due to adaptive divergence via natural selection. A relatively unexplored area in ecological speciation is the role of gene expression. Gene expression may be associated with ecologically important phenotypes not evident from morphology and play a role during colonization of new environments. Here we review two potential roles of gene expression in ecological speciation: (1) its indirect role in facilitating population persistence and (2) its direct role in contributing to genetically based reproductive isolation. We find indirect evidence that gene expression facilitates population persistence, but direct tests are lacking. We also find clear examples of gene expression having effects on phenotypic traits and adaptive genetic divergence, but links to the evolution of reproductive isolation itself remain indirect. Gene expression during adaptive divergence seems to often involve complex genetic architectures controlled by gene networks, regulatory regions, and “eQTL hotspots.” Nonetheless, we review how approaches for isolating the functional mutations contributing to adaptive divergence are proving to be successful. The study of gene expression has promise for increasing our understanding ecological speciation, particularly when integrative approaches are applied. PMID:20860685

  4. Microdissection of the gene expression codes driving nephrogenesis

    PubMed Central

    Brunskill, Eric W; Patterson, Larry T

    2010-01-01

    The kidney represents an excellent model system for learning the principles of organogenesis. It is intermediate in complexity, and employs many commonly used developmental processes. As such, kidney development has been the subject of intensive study, using a variety of techniques, including in situ hybridization, organ culture and gene targeting, revealing many critical genes and pathways. Nevertheless, proper organogenesis requires precise patterns of cell type specific differential gene expression, involving very large numbers of genes. This review is focused on the use of global profiling technologies to create an atlas of gene expression codes driving development of different mammalian kidney compartments. Such an atlas allows one to select a gene of interest, and to determine its expression level in each element of the developing kidney, or to select a structure of interest, such as the renal vesicle, and to examine its complete gene expression state. Novel component specific molecular markers are identified, and the changing waves of gene expression that drive nephrogenesis are defined. As the tools continue to improve for the purification of specific cell types and expression profiling of even individual cells it is possible to predict an atlas of gene expression during kidney development that extends to single cell resolution. PMID:21220959

  5. Microdissection of the gene expression codes driving nephrogenesis.

    PubMed

    Potter, S Steven; Brunskill, Eric W; Patterson, Larry T

    2010-01-01

    The kidney represents an excellent model system for learning the principles of organogenesis. It is intermediate in complexity, and employs many commonly used developmental processes. As such, kidney development has been the subject of intensive study, using a variety of techniques, including in situ hybridization, organ culture and gene targeting, revealing many critical genes and pathways. Nevertheless, proper organogenesis requires precise patterns of cell type specific differential gene expression, involving very large numbers of genes. This review is focused on the use of global profiling technologies to create an atlas of gene expression codes driving development of different mammalian kidney compartments. Such an atlas allows one to select a gene of interest, and to determine its expression level in each element of the developing kidney, or to select a structure of interest, such as the renal vesicle, and to examine its complete gene expression state. Novel component specific molecular markers are identified, and the changing waves of gene expression that drive nephrogenesis are defined. As the tools continue to improve for the purification of specific cell types and expression profiling of even individual cells it is possible to predict an atlas of gene expression during kidney development that extends to single cell resolution. PMID:21220959

  6. Congruence of tissue expression profiles from Gene Expression Atlas, SAGEmap and TissueInfo databases

    PubMed Central

    Huminiecki, Lukasz; Lloyd, Andrew T; Wolfe, Kenneth H

    2003-01-01

    Background Extracting biological knowledge from large amounts of gene expression information deposited in public databases is a major challenge of the postgenomic era. Additional insights may be derived by data integration and cross-platform comparisons of expression profiles. However, database meta-analysis is complicated by differences in experimental technologies, data post-processing, database formats, and inconsistent gene and sample annotation. Results We have analysed expression profiles from three public databases: Gene Expression Atlas, SAGEmap and TissueInfo. These are repositories of oligonucleotide microarray, Serial Analysis of Gene Expression and Expressed Sequence Tag human gene expression data respectively. We devised a method, Preferential Expression Measure, to identify genes that are significantly over- or under-expressed in any given tissue. We examined intra- and inter-database consistency of Preferential Expression Measures. There was good correlation between replicate experiments of oligonucleotide microarray data, but there was less coherence in expression profiles as measured by Serial Analysis of Gene Expression and Expressed Sequence Tag counts. We investigated inter-database correlations for six tissue categories, for which data were present in the three databases. Significant positive correlations were found for brain, prostate and vascular endothelium but not for ovary, kidney, and pancreas. Conclusion We show that data from Gene Expression Atlas, SAGEmap and TissueInfo can be integrated using the UniGene gene index, and that expression profiles correlate relatively well when large numbers of tags are available or when tissue cellular composition is simple. Finally, in the case of brain, we demonstrate that when PEM values show good correlation, predictions of tissue-specific expression based on integrated data are very accurate. PMID:12885301

  7. Comprehensive serial analysis of gene expression of the cervical transcriptome

    PubMed Central

    Shadeo, Ashleen; Chari, Raj; Vatcher, Greg; Campbell, Jennifer; Lonergan, Kim M; Matisic, Jasenka; van Niekerk, Dirk; Ehlen, Thomas; Miller, Dianne; Follen, Michele; Lam, Wan L; MacAulay, Calum

    2007-01-01

    Background More than half of the approximately 500,000 women diagnosed with cervical cancer worldwide each year will die from this disease. Investigation of genes expressed in precancer lesions compared to those expressed in normal cervical epithelium will yield insight into the early stages of disease. As such, establishing a baseline from which to compare to, is critical in elucidating the abnormal biology of disease. In this study we examine the normal cervical tissue transcriptome and investigate the similarities and differences in relation to CIN III by Long-SAGE (L-SAGE). Results We have sequenced 691,390 tags from four L-SAGE libraries increasing the existing gene expression data on cervical tissue by 20 fold. One-hundred and eighteen unique tags were highly expressed in normal cervical tissue and 107 of them mapped to unique genes, most belong to the ribosomal, calcium-binding and keratinizing gene families. We assessed these genes for aberrant expression in CIN III and five genes showed altered expression. In addition, we have identified twelve unique HPV 16 SAGE tags in the CIN III libraries absent in the normal libraries. Conclusion Establishing a baseline of gene expression in normal cervical tissue is key for identifying changes in cancer. We demonstrate the utility of this baseline data by identifying genes with aberrant expression in CIN III when compared to normal tissue. PMID:17543121

  8. MEPD: medaka expression pattern database, genes and more

    PubMed Central

    Alonso-Barba, Juan I.; Rahman, Raza-Ur; Wittbrodt, Joachim; Mateo, Juan L.

    2016-01-01

    The Medaka Expression Pattern Database (MEPD; http://mepd.cos.uni-heidelberg.de/) is designed as a repository of medaka expression data for the scientific community. In this update we present two main improvements. First, we have changed the previous clone-centric view for in situ data to a gene-centric view. This is possible because now we have linked all the data present in MEPD to the medaka gene annotation in ENSEMBL. In addition, we have also connected the medaka genes in MEPD to their corresponding orthologous gene in zebrafish, again using the ENSEMBL database. Based on this, we provide a link to the Zebrafish Model Organism Database (ZFIN) to allow researches to compare expression data between these two fish model organisms. As a second major improvement, we have modified the design of the database to enable it to host regulatory elements, promoters or enhancers, expression patterns in addition to gene expression. The combination of gene expression, by traditional in situ, and regulatory element expression, typically by fluorescence reporter gene, within the same platform assures consistency in terms of annotation. In our opinion, this will allow researchers to uncover new insights between the expression domain of genes and their regulatory landscape. PMID:26450962

  9. Expression and mapping of anthocyanin biosynthesis genes in carrot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthocyanin gene expression has been extensively studied in leaves, fruits and flowers of numerous plants. Little, however, is known about anthocyanin accumulation in roots, or in carrots or other Apiaceae. We quantified expression of six anthocyanin biosynthetic genes (phenylalanine ammonia-lyase (...

  10. Analysis of gene expression in skin using laser capture microdissection.

    PubMed

    Lee, Briana; Geyfman, Mikhail; Andersen, Bogi; Dai, Xing

    2013-01-01

    Gene expression analysis is a useful tool to study the molecular mechanisms underlying skin development and homeostasis. Here we describe a method that utilizes laser capture microdissection (LCM) to isolate RNAs from localized areas of skin, allowing the characterization of gene expression by RT-PCR and microarray technologies. PMID:23483391

  11. An Exercise to Estimate Differential Gene Expression in Human Cells

    ERIC Educational Resources Information Center

    Chaudhry, M. Ahmad

    2006-01-01

    The expression of genes in cells of various tissue types varies considerably and is correlated with the function of a particular organ. The pattern of gene expression changes in diseased tissues, in response to therapy or infection and exposure to environmental mutagens, chemicals, ultraviolet light, and ionizing radiation. To better understand…

  12. Multidimensional regulation of gene expression in the C. elegans embryo

    PubMed Central

    Murray, John Isaac; Boyle, Thomas J.; Preston, Elicia; Vafeados, Dionne; Mericle, Barbara; Weisdepp, Peter; Zhao, Zhongying; Bao, Zhirong; Boeck, Max; Waterston, Robert H.

    2012-01-01

    How cells adopt different expression patterns is a fundamental question of developmental biology. We quantitatively measured reporter expression of 127 genes, primarily transcription factors, in every cell and with high temporal resolution in C. elegans embryos. Embryonic cells are highly distinct in their gene expression; expression of the 127 genes studied here can distinguish nearly all pairs of cells, even between cells of the same tissue type. We observed recurrent lineage-regulated expression patterns for many genes in diverse contexts. These patterns are regulated in part by the TCF-LEF transcription factor POP-1. Other genes' reporters exhibited patterns correlated with tissue, position, and left–right asymmetry. Sequential patterns both within tissues and series of sublineages suggest regulatory pathways. Expression patterns often differ between embryonic and larval stages for the same genes, emphasizing the importance of profiling expression in different stages. This work greatly expands the number of genes in each of these categories and provides the first large-scale, digitally based, cellular resolution compendium of gene expression dynamics in live animals. The resulting data sets will be a useful resource for future research. PMID:22508763

  13. Meta-analysis of differentially expressed genes in ankylosing spondylitis.

    PubMed

    Lee, Y H; Song, G G

    2015-01-01

    The purpose of this study was to identify differentially expressed (DE) genes and biological processes associated with changes in gene expression in ankylosing spondylitis (AS). We performed a meta-analysis using the integrative meta-analysis of expression data program on publicly available microarray AS Gene Expression Omnibus (GEO) datasets. We performed Gene Ontology (GO) enrichment analyses and pathway analysis using the Kyoto Encyclopedia of Genes and Genomes. Four GEO datasets, including 31 patients with AS and 39 controls, were available for the meta-analysis. We identified 65 genes across the studies that were consistently DE in patients with AS vs controls (23 upregulated and 42 downregulated). The upregulated gene with the largest effect size (ES; -1.2628, P = 0.020951) was integral membrane protein 2A (ITM2A), which is expressed by CD4+ T cells and plays a role in activation of T cells. The downregulated gene with the largest ES (1.2299, P = 0.040075) was mitochondrial ribosomal protein S11 (MRPS11). The most significant GO enrichment was in the respiratory electron transport chain category (P = 1.67 x 10-9). Therefore, our meta-analysis identified genes that were consistently DE as well as biological pathways associated with gene expression changes in AS. PMID:26125709

  14. Gene Expression Profiling in the Hibernating Primate, Cheirogaleus Medius.

    PubMed

    Faherty, Sheena L; Villanueva-Cañas, José Luis; Klopfer, Peter H; Albà, M Mar; Yoder, Anne D

    2016-01-01

    Hibernation is a complex physiological response that some mammalian species employ to evade energetic demands. Previous work in mammalian hibernators suggests that hibernation is activated not by a set of genes unique to hibernators, but by differential expression of genes that are present in all mammals. This question of universal genetic mechanisms requires further investigation and can only be tested through additional investigations of phylogenetically dispersed species. To explore this question, we use RNA-Seq to investigate gene expression dynamics as they relate to the varying physiological states experienced throughout the year in a group of primate hibernators-Madagascar's dwarf lemurs (genus Cheirogaleus). In a novel experimental approach, we use longitudinal sampling of biological tissues as a method for capturing gene expression profiles from the same individuals throughout their annual hibernation cycle. We identify 90 candidate genes that have variable expression patterns when comparing two active states (Active 1 and Active 2) with a torpor state. These include genes that are involved in metabolic pathways, feeding behavior, and circadian rhythms, as might be expected to correlate with seasonal physiological state changes. The identified genes appear to be critical for maintaining the health of an animal that undergoes prolonged periods of metabolic depression concurrent with the hibernation phenotype. By focusing on these differentially expressed genes in dwarf lemurs, we compare gene expression patterns in previously studied mammalian hibernators. Additionally, by employing evolutionary rate analysis, we find that hibernation-related genes do not evolve under positive selection in hibernating species relative to nonhibernators. PMID:27412611

  15. Effects of G-gene Deletion and Replacement on Rabies Virus Vector Gene Expression

    PubMed Central

    Sato, Sho; Ohara, Shinya; Tsutsui, Ken-Ichiro; Iijima, Toshio

    2015-01-01

    The glycoprotein-gene (G gene) -deleted rabies virus (RV) vector is a powerful tool to examine the function and structure of neural circuits. We previously reported that the deletion of the G gene enhances the transgene expression level of the RV vector. However, the mechanism of this enhancement remains to be clarified. We presume that there are two possible factors for this enhancement. The first factor is the glycoprotein of RV, which shows cytotoxicity; thus, may cause a dysfunction in the translation process of infected cells. The second possible factor is the enhanced expression of the L gene, which encodes viral RNA polymerase. In the RV, it is known that the gene expression level is altered depending on the position of the gene. Since G-gene deletion displaces the L gene in the genome, the expression of the L gene and viral transcription may be enhanced. In this study, we compared the transgene expression level and viral transcription of three recombinant RV vectors. The effect of glycoprotein was examined by comparing the viral gene expression of G-gene-intact RV and G-gene-replaced RV. Despite the fact that the L-gene transcription level of these two RV vectors was similar, the G-gene-replaced RV vector showed higher viral transcription and transgene expression level than the G-gene-intact RV vector. To examine the effect of the position of the L gene, we compared the viral gene expression of the G-gene-deleted RV and G-gene-replaced RV. The G-gene-deleted RV vector showed higher L-gene transcription, viral transcription, and transgene expression level than the G-gene-replaced RV vector. These results indicate that G-gene deletion enhances the transgene expression level through at least two factors, the absence of glycoprotein and enhancement of L-gene expression. These findings enable investigators to design a useful viral vector that shows a controlled desirable transgene expression level in applications. PMID:26023771

  16. Direct Introduction of Genes into Rats and Expression of the Genes

    NASA Astrophysics Data System (ADS)

    Benvenisty, Nissim; Reshef, Lea

    1986-12-01

    A method of introducing actively expressed genes into intact mammals is described. DNA precipitated with calcium phosphate has been injected intraperitoneally into newborn rats. The injected genes have been taken up and expressed by the animal tissues. To examine the generality of the method we have injected newborn rats with the chloramphenicol acetyltransferase prokaryotic gene fused with various viral and cellular gene promoters and the gene for hepatitis B surface antigen, and we observed appearance of chloramphenicol acetyltransferase activity and hepatitis B surface antigen in liver and spleen. In addition, administration of genes coding for hormones (insulin or growth hormone) resulted in their expression.

  17. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    NASA Astrophysics Data System (ADS)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  18. Strategies for measurement of biotransformation enzyme gene expression.

    PubMed

    Romkes, Marjorie; Buch, Shama C

    2014-01-01

    The analysis of gene expression is an integral part of any gene function research. A wide variety of techniques have been developed for this purpose, each with its own advantages and limitations. The following chapter seeks to provide an overview of some of the most recent as well as conventional methods to study gene expression. These approaches include Northern blot analysis, ribonuclease protection assay, reverse transcription polymerase chain reaction, expressed tag sequencing, differential display, cDNA arrays, serial analysis of gene expression, and transcriptome sequencing. The current applications of the information derived from gene expression studies require most of the assays to be adaptable for the quantitative analysis of a large number of samples and endpoints within a short period of time coupled with cost-effectiveness. A comparison of some of these features of each analytical approach as well as their advantages and disadvantages has also been provided. PMID:24623221

  19. Fundamental principles of energy consumption for gene expression.

    PubMed

    Huang, Lifang; Yuan, Zhanjiang; Yu, Jianshe; Zhou, Tianshou

    2015-12-01

    How energy is consumed in gene expression is largely unknown mainly due to complexity of non-equilibrium mechanisms affecting expression levels. Here, by analyzing a representative gene model that considers complexity of gene expression, we show that negative feedback increases energy consumption but positive feedback has an opposite effect; promoter leakage always reduces energy consumption; generating more bursts needs to consume more energy; and the speed of promoter switching is at the cost of energy consumption. We also find that the relationship between energy consumption and expression noise is multi-mode, depending on both the type of feedback and the speed of promoter switching. Altogether, these results constitute fundamental principles of energy consumption for gene expression, which lay a foundation for designing biologically reasonable gene modules. In addition, we discuss possible biological implications of these principles by combining experimental facts. PMID:26723140

  20. 'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns

    PubMed Central

    Hastie, Trevor; Tibshirani, Robert; Eisen, Michael B; Alizadeh, Ash; Levy, Ronald; Staudt, Louis; Chan, Wing C; Botstein, David; Brown, Patrick

    2000-01-01

    Background: Large gene expression studies, such as those conducted using DNA arrays, often provide millions of different pieces of data. To address the problem of analyzing such data, we describe a statistical method, which we have called 'gene shaving'. The method identifies subsets of genes with coherent expression patterns and large variation across conditions. Gene shaving differs from hierarchical clustering and other widely used methods for analyzing gene expression studies in that genes may belong to more than one cluster, and the clustering may be supervised by an outcome measure. The technique can be 'unsupervised', that is, the genes and samples are treated as unlabeled, or partially or fully supervised by using known properties of the genes or samples to assist in finding meaningful groupings. Results: We illustrate the use of the gene shaving method to analyze gene expression measurements made on samples from patients with diffuse large B-cell lymphoma. The method identifies a small cluster of genes whose expression is highly predictive of survival. Conclusions: The gene shaving method is a potentially useful tool for exploration of gene expression data and identification of interesting clusters of genes worth further investigation. PMID:11178228

  1. Dimensionality of Data Matrices with Applications to Gene Expression Profiles

    ERIC Educational Resources Information Center

    Feng, Xingdong

    2009-01-01

    Probe-level microarray data are usually stored in matrices. Take a given probe set (gene), for example, each row of the matrix corresponds to an array, and each column corresponds to a probe. Often, people summarize each array by the gene expression level. Is one number sufficient to summarize a whole probe set for a specific gene in an array?…

  2. Gene expression profiling in adipose tissue from growing broiler chickens

    PubMed Central

    Hausman, Gary J; Barb, C Rick; Fairchild, Brian D; Gamble, John; Lee-Rutherford, Laura

    2014-01-01

    In this study, total RNA was collected from abdominal adipose tissue samples obtained from ten broiler chickens at 3, 4, 5, and 6 weeks of age and prepared for gene microarray analysis with Affymetrix GeneChip Chicken Genome Arrays (Affymetrix) and quantitative real-time PCR analysis. Studies of global gene expression in chicken adipose tissue were initiated since such studies in many animal species show that adipose tissue expresses and secretes many factors that can influence growth and physiology. Microarray results indicated 333 differentially expressed adipose tissue genes between 3 and 6 wk, 265 differentially expressed genes between 4 and 6 wk and 42 differentially expressed genes between 3 and 4 wk. Enrichment scores of Gene Ontology Biological Process categories indicated strong age upregulation of genes involved in the immune system response. In addition to microarray analysis, quantitative real-time PCR analysis was used to confirm the influence of age on the expression of adipose tissue CC chemokine ligands (CCL), toll-like receptor (TLR)-2, lipopolysaccharide-induced TNF factor (LITAF), chemokine (C-C motif) receptor 8 (CCR8), and several other genes. Between 3 and 6 wk of age CCL5, CCL1, and CCR8 expression increased (P = 0.0001) with age. Furthermore, TLR2, CCL19, and LITAF expression increased between 4 and 6 wk of age (P = 0.001). This is the first demonstration of age related changes in CCL, LITAF, and TLR2 gene expression in chicken adipose tissue. Future studies are needed to elucidate the role of these adipose tissue genes in growth and the immune system. PMID:26317054

  3. Tri-mean-based statistical differential gene expression detection.

    PubMed

    Ji, Zhaohua; Wu, Chunguo; Wang, Yao; Guan, Renchu; Tu, Huawei; Wu, Xiaozhou; Liang, Yanchun

    2012-01-01

    Based on the assumption that only a subset of disease group has differential gene expression, traditional detection of differentially expressed genes is under the constraint that cancer genes are up- or down-regulated in all disease samples compared with normal samples. However, in 2005, Tomlins assumed and discussed the situation that only a subset of disease samples would be activated, which are often referred to as outliers. PMID:23155761

  4. Fundamental patterns underlying gene expression profiles: Simplicity from complexity

    PubMed Central

    Holter, Neal S.; Mitra, Madhusmita; Maritan, Amos; Cieplak, Marek; Banavar, Jayanth R.; Fedoroff, Nina V.

    2000-01-01

    Analysis of previously published sets of DNA microarray gene expression data by singular value decomposition has uncovered underlying patterns or “characteristic modes” in their temporal profiles. These patterns contribute unequally to the structure of the expression profiles. Moreover, the essential features of a given set of expression profiles are captured using just a small number of characteristic modes. This leads to the striking conclusion that the transcriptional response of a genome is orchestrated in a few fundamental patterns of gene expression change. These patterns are both simple and robust, dominating the alterations in expression of genes throughout the genome. Moreover, the characteristic modes of gene expression change in response to environmental perturbations are similar in such distant organisms as yeast and human cells. This analysis reveals simple regularities in the seemingly complex transcriptional transitions of diverse cells to new states, and these provide insights into the operation of the underlying genetic networks. PMID:10890920

  5. Transgenic Rice Expressing Ictb and FBP/Sbpase Derived from Cyanobacteria Exhibits Enhanced Photosynthesis and Mesophyll Conductance to CO2

    PubMed Central

    Gong, Han Yu; Li, Yang; Fang, Gen; Hu, Dao Heng; Jin, Wen Bin; Wang, Zhao Hai; Li, Yang Sheng

    2015-01-01

    To find a way to promote the rate of carbon flux and further improve the photosynthetic rate in rice, two CO2-transporting and fixing relevant genes, Ictb and FBP/Sbpase, which were derived from cyanobacteria with the 35SCaMV promotor in the respective constructs, were transformed into rice. Three homologous transgenic groups with Ictb, FBP/Sbpase and the two genes combined were constructed in parallel, and the functional effects of these two genes were investigated by physiological, biochemical and leaf anatomy analyses. The results indicated that the mesophyll conductance and net photosynthetic rate were higher at approximately 10.5–36.8% and 13.5–34.6%, respectively, in the three groups but without any changes in leaf anatomy structure compared with wild type. Other physiological and biochemical parameters increased with the same trend in the three groups, which showed that the effect of FBP/SBPase on improving photosynthetic capacity was better than that of ICTB and that there was an additive effect in ICTB+FBP/SBPase. ICTB localized in the cytoplasm, whereas FBP/SBPase was successfully transported to the chloroplast. The two genes might show a synergistic interaction to promote carbon flow and the assimilation rate as a whole. The multigene transformation engineering and its potential utility for improving the photosynthetic capacity and yield in rice were discussed. PMID:26488581

  6. Transgenic Rice Expressing Ictb and FBP/Sbpase Derived from Cyanobacteria Exhibits Enhanced Photosynthesis and Mesophyll Conductance to CO2.

    PubMed

    Gong, Han Yu; Li, Yang; Fang, Gen; Hu, Dao Heng; Jin, Wen Bin; Wang, Zhao Hai; Li, Yang Sheng

    2015-01-01

    To find a way to promote the rate of carbon flux and further improve the photosynthetic rate in rice, two CO2-transporting and fixing relevant genes, Ictb and FBP/Sbpase, which were derived from cyanobacteria with the 35SCaMV promotor in the respective constructs, were transformed into rice. Three homologous transgenic groups with Ictb, FBP/Sbpase and the two genes combined were constructed in parallel, and the functional effects of these two genes were investigated by physiological, biochemical and leaf anatomy analyses. The results indicated that the mesophyll conductance and net photosynthetic rate were higher at approximately 10.5-36.8% and 13.5-34.6%, respectively, in the three groups but without any changes in leaf anatomy structure compared with wild type. Other physiological and biochemical parameters increased with the same trend in the three groups, which showed that the effect of FBP/SBPase on improving photosynthetic capacity was better than that of ICTB and that there was an additive effect in ICTB+FBP/SBPase. ICTB localized in the cytoplasm, whereas FBP/SBPase was successfully transported to the chloroplast. The two genes might show a synergistic interaction to promote carbon flow and the assimilation rate as a whole. The multigene transformation engineering and its potential utility for improving the photosynthetic capacity and yield in rice were discussed. PMID:26488581

  7. Chamber Specific Gene Expression Landscape of the Zebrafish Heart

    PubMed Central

    Singh, Angom Ramcharan; Sivadas, Ambily; Sabharwal, Ankit; Vellarikal, Shamsudheen Karuthedath; Jayarajan, Rijith; Verma, Ankit; Kapoor, Shruti; Joshi, Adita; Scaria, Vinod; Sivasubbu, Sridhar

    2016-01-01

    The organization of structure and function of cardiac chambers in vertebrates is defined by chamber-specific distinct gene expression. This peculiarity and uniqueness of the genetic signatures demonstrates functional resolution attributed to the different chambers of the heart. Altered expression of the cardiac chamber genes can lead to individual chamber related dysfunctions and disease patho-physiologies. Information on transcriptional repertoire of cardiac compartments is important to understand the spectrum of chamber specific anomalies. We have carried out a genome wide transcriptome profiling study of the three cardiac chambers in the zebrafish heart using RNA sequencing. We have captured the gene expression patterns of 13,396 protein coding genes in the three cardiac chambers—atrium, ventricle and bulbus arteriosus. Of these, 7,260 known protein coding genes are highly expressed (≥10 FPKM) in the zebrafish heart. Thus, this study represents nearly an all-inclusive information on the zebrafish cardiac transcriptome. In this study, a total of 96 differentially expressed genes across the three cardiac chambers in zebrafish were identified. The atrium, ventricle and bulbus arteriosus displayed 20, 32 and 44 uniquely expressing genes respectively. We validated the expression of predicted chamber-restricted genes using independent semi-quantitative and qualitative experimental techniques. In addition, we identified 23 putative novel protein coding genes that are specifically restricted to the ventricle and not in the atrium or bulbus arteriosus. In our knowledge, these 23 novel genes have either not been investigated in detail or are sparsely studied. The transcriptome identified in this study includes 68 differentially expressing zebrafish cardiac chamber genes that have a human ortholog. We also carried out spatiotemporal gene expression profiling of the 96 differentially expressed genes throughout the three cardiac chambers in 11 developmental stages and 6

  8. Candidate Genes Expressed in Tolerant Common Wheat With Resistant to English Grain Aphid.

    PubMed

    Luo, Kun; Zhang, Gaisheng; Wang, Chunping; Ouellet, Thérèse; Wu, Jingjing; Zhu, Qidi; Zhao, Huiyan

    2014-10-01

    The English grain aphid, Sitobion avenae (F.) (Hemiptera: Aphididae), is a common worldwide pest of wheat (Triticum aestivum L.). The use of improved resistant cultivars by the farmers is the most effective and environmentally friendly method to control this aphid in the field. The winter wheat genotypes 98-10-35 and Amigo are resistant to S. avenae. To identify genes responsible for resistance to S. avenae in these genotypes, differential-display reverse transcription-polymerase chain reaction was used to identify the corresponding differentially expressed sequences in current study. Two backcross progenies were obtained by crossing the two resistant genotypes with the susceptible genotype 1376. Six potential expected-differential bands were sequenced. Lengths of the expressed sequence tags ranged from 128 to 532 bp. Although these expressed sequences were likely associated with S. avenae resistance, there was one expressed sequence tag located on 7DL chromosome, and its potential function may associate with the ability to maintain photosynthesis in wheat. That serves as an active way for tolerant common wheat with resistant to S. avenae. Cloning the full length of these sequences would help us thoroughly understand the mechanism of wheat resistance to S. avenae and be valuable for breeding cultivars with S. avenae resistance. PMID:26309289

  9. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies

    PubMed Central

    Chapman, Joanne R.; Waldenström, Jonas

    2015-01-01

    The choice of reference genes that are stably expressed amongst treatment groups is a crucial step in real-time quantitative PCR gene expression studies. Recent guidelines have specified that a minimum of two validated reference genes should be used for normalisation. However, a quantitative review of the literature showed that the average number of reference genes used across all studies was 1.2. Thus, the vast majority of studies continue to use a single gene, with β-actin (ACTB) and/or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) being commonly selected in studies of vertebrate gene expression. Few studies (15%) tested a panel of potential reference genes for stability of expression before using them to normalise data. Amongst studies specifically testing reference gene stability, few found ACTB or GAPDH to be optimal, whereby these genes were significantly less likely to be chosen when larger panels of potential reference genes were screened. Fewer reference genes were tested for stability in non-model organisms, presumably owing to a dearth of available primers in less well characterised species. Furthermore, the experimental conditions under which real-time quantitative PCR analyses were conducted had a large influence on the choice of reference genes, whereby different studies of rat brain tissue showed different reference genes to be the most stable. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies. PMID:26555275

  10. Regulation of pepc gene expression in Anabaena sp. PCC 7120 and its effects on cyclic electron flow around photosystem I and tolerances to environmental stresses.

    PubMed

    Jia, Xiao-Hui; Zhang, Peng-Peng; Shi, Ding-Ji; Mi, Hua-Ling; Zhu, Jia-Cheng; Huang, Xi-Wen; He, Pei-Min

    2015-05-01

    Since pepc gene encoding phosphoenolpyruvate carboxylase (PEPCase) has been cloned from Anabaena sp. PCC 7120 and other cyanobacteria, the effects of pepc gene expression on photosynthesis have not been reported yet. In this study, we constructed mutants containing either upregulated (forward) or downregulated (reverse) pepc gene in Anabaena sp. PCC 7120. Results from real-time quantitative polymerase chain reaction (RT-qPCR), Western blot and enzymatic analysis showed that PEPCase activity was significantly reduced in the reverse mutant compared with the wild type, and that of the forward mutant was obviously increased. Interestingly, the net photosynthesis in both the reverse mutant and the forward mutant were higher than that of the wild type, but dark respiration was decreased only in the reverse mutant. The absorbance changes of P700 upon saturation pulse showed the photosystem I (PSI) activity was inhibited, as reflected by Y(I), and Y(NA) was elevated, and dark reduction of P700(+) was stimulated, indicating enhanced cyclic electron flow (CEF) around PSI in the reverse mutant. Additionally, the reverse mutant photosynthesis was higher than that of the wild type in low temperature, low and high pH, and high salinity, and this implies increased tolerance in the reverse mutant through downregulated pepc gene. PMID:25040477

  11. Characterization of genes with increased expression in human glioblastomas.

    PubMed

    Kavsan, V; Shostak, K; Dmitrenko, V; Zozulya, Yu; Rozumenko, V; Demotes-Mainard, J

    2005-01-01

    In the present study, we have used the gene expression data available in the SAGE database in an attempt to identify glioblastoma molecular markers. Of 129 genes with more than 5-fold difference found by comparison of nine glioblastoma with five normal brain SAGE libraries, 44 increased their expression in glioblastomas. Most corresponding proteins were involved in angiogenesis, host-tumor immune interplay, multidrug resistance, extracellular matrix (ECM) formation, IGF-signalling, or MAP-kinase pathway. Among them, 16 genes had a high expression both in glioblastomas and in glioblastoma cell lines suggesting their expression in transformed cells. Other 28 genes had an increased expression only in glioblastomas, not in glioblastoma cell lines suggesting an expression possibly originated from host cells. Many of these genes are among the top transcripts in activated macrophages, and involved in immune response and angiogenesis. This altered pattern of gene expression in both host and tumor cells, can be viewed as a molecular marker in the analysis of malignant progression of astrocytic tumors, and as possible clues for the mechanism of disease. Moreover, several genes overexpressed in glioblastomas produce extracellular proteins, thereby providing possible therapeutic targets. Further characterization of these genes will thus allow them to be exploited in molecular classification of glial tumors, diagnosis, prognosis, and anticancer therapy. PMID:16396319

  12. Differential Bacterial Gene Expression During Experimental Pneumococcal Endophthalmitis

    PubMed Central

    Thornton, Justin A.; Tullos, Nathan A.; Sanders, Melissa E.; Ridout, Granger; Wang, Yong-Dong; Taylor, Sidney D.; McDaniel, Larry S.; Marquart, Mary E.

    2015-01-01

    Streptococcus pneumoniae (pneumococcus) is a potential cause of bacterial endophthalmitis in humans that can result in ocular morbidity. We sought to identify pneumococcal genes that are differentially expressed during growth in the vitreous humor of the eye in an experimental endophthalmitis model. Microarray analysis was used to identify genes that were differentially expressed when pneumococci replicated in the vitreous of rabbit eyes as compared with bacteria grown in vitro in Todd Hewitt medium. Array results were verified by quantitative real-time PCR analysis of representative genes. Select genes potentially playing a role in virulence during endophthalmitis were deleted and mutants were tested for reduced eye pathogenesis and altered adhesion to host cells. Array analysis identified 134 genes that were differentially expressed during endophthalmitis. 112 genes demonstrated increased expression during growth in the eye whereas 22 were down-regulated. Real-time analysis verified increased expression of neuraminidase A (SP1693), neuraminidase B (SP1687), and serine protease (SP1954), and decreased expression of RlrA (SP0461) and choline transporter (SP1861). Mutation of neuraminidases A and B had no major effect on pathogenesis. Loss of SP1954 led to increased adherence to host cells. S. pneumoniae enhances and represses expression of a variety of genes during endophthalmitis. While some of these genes reflect changes in metabolic requirements, some appear to play a role in immune evasion and pathogenesis in the eye. PMID:25791614

  13. Magnetic field-controlled gene expression in encapsulated cells

    PubMed Central

    Ortner, Viktoria; Kaspar, Cornelius; Halter, Christian; Töllner, Lars; Mykhaylyk, Olga; Walzer, Johann; Günzburg, Walter H.; Dangerfield, John A.; Hohenadl, Christine; Czerny, Thomas

    2012-01-01

    Cell and gene therapies have an enormous range of potential applications, but as for most other therapies, dosing is a critical issue, which makes regulated gene expression a prerequisite for advanced strategies. Several inducible expression systems have been established, which mainly rely on small molecules as inducers, such as hormones or antibiotics. The application of these inducers is difficult to control and the effects on gene regulation are slow. Here we describe a novel system for induction of gene expression in encapsulated cells. This involves the modification of cells to express potential therapeutic genes under the control of a heat inducible promoter and the co-encapsulation of these cells with magnetic nanoparticles. These nanoparticles produce heat when subjected to an alternating magnetic field; the elevated temperatures in the capsules then induce gene expression. In the present study we define the parameters of such systems and provide proof-of-principle using reporter gene constructs. The fine-tuned heating of nanoparticles in the magnetic field allows regulation of gene expression from the outside over a broad range and within short time. Such a system has great potential for advancement of cell and gene therapy approaches. PMID:22197778

  14. An atlas of gene expression and gene co-regulation in the human retina.

    PubMed

    Pinelli, Michele; Carissimo, Annamaria; Cutillo, Luisa; Lai, Ching-Hung; Mutarelli, Margherita; Moretti, Maria Nicoletta; Singh, Marwah Veer; Karali, Marianthi; Carrella, Diego; Pizzo, Mariateresa; Russo, Francesco; Ferrari, Stefano; Ponzin, Diego; Angelini, Claudia; Banfi, Sandro; di Bernardo, Diego

    2016-07-01

    The human retina is a specialized tissue involved in light stimulus transduction. Despite its unique biology, an accurate reference transcriptome is still missing. Here, we performed gene expression analysis (RNA-seq) of 50 retinal samples from non-visually impaired post-mortem donors. We identified novel transcripts with high confidence (Observed Transcriptome (ObsT)) and quantified the expression level of known transcripts (Reference Transcriptome (RefT)). The ObsT included 77 623 transcripts (23 960 genes) covering 137 Mb (35 Mb new transcribed genome). Most of the transcripts (92%) were multi-exonic: 81% with known isoforms, 16% with new isoforms and 3% belonging to new genes. The RefT included 13 792 genes across 94 521 known transcripts. Mitochondrial genes were among the most highly expressed, accounting for about 10% of the reads. Of all the protein-coding genes in Gencode, 65% are expressed in the retina. We exploited inter-individual variability in gene expression to infer a gene co-expression network and to identify genes specifically expressed in photoreceptor cells. We experimentally validated the photoreceptors localization of three genes in human retina that had not been previously reported. RNA-seq data and the gene co-expression network are available online (http://retina.tigem.it). PMID:27235414

  15. An atlas of gene expression and gene co-regulation in the human retina

    PubMed Central

    Pinelli, Michele; Carissimo, Annamaria; Cutillo, Luisa; Lai, Ching-Hung; Mutarelli, Margherita; Moretti, Maria Nicoletta; Singh, Marwah Veer; Karali, Marianthi; Carrella, Diego; Pizzo, Mariateresa; Russo, Francesco; Ferrari, Stefano; Ponzin, Diego; Angelini, Claudia; Banfi, Sandro; di Bernardo, Diego

    2016-01-01

    The human retina is a specialized tissue involved in light stimulus transduction. Despite its unique biology, an accurate reference transcriptome is still missing. Here, we performed gene expression analysis (RNA-seq) of 50 retinal samples from non-visually impaired post-mortem donors. We identified novel transcripts with high confidence (Observed Transcriptome (ObsT)) and quantified the expression level of known transcripts (Reference Transcriptome (RefT)). The ObsT included 77 623 transcripts (23 960 genes) covering 137 Mb (35 Mb new transcribed genome). Most of the transcripts (92%) were multi-exonic: 81% with known isoforms, 16% with new isoforms and 3% belonging to new genes. The RefT included 13 792 genes across 94 521 known transcripts. Mitochondrial genes were among the most highly expressed, accounting for about 10% of the reads. Of all the protein-coding genes in Gencode, 65% are expressed in the retina. We exploited inter-individual variability in gene expression to infer a gene co-expression network and to identify genes specifically expressed in photoreceptor cells. We experimentally validated the photoreceptors localization of three genes in human retina that had not been previously reported. RNA-seq data and the gene co-expression network are available online (http://retina.tigem.it). PMID:27235414

  16. Gene Expression by Mouse Inner Ear Hair Cells during Development

    PubMed Central

    Scheffer, Déborah I.; Shen, Jun

    2015-01-01

    Hair cells of the inner ear are essential for hearing and balance. As a consequence, pathogenic variants in genes specifically expressed in hair cells often cause hereditary deafness. Hair cells are few in number and not easily isolated from the adjacent supporting cells, so the biochemistry and molecular biology of hair cells can be difficult to study. To study gene expression in hair cells, we developed a protocol for hair cell isolation by FACS. With nearly pure hair cells and surrounding cells, from cochlea and utricle and from E16 to P7, we performed a comprehensive cell type-specific RNA-Seq study of gene expression during mouse inner ear development. Expression profiling revealed new hair cell genes with distinct expression patterns: some are specific for vestibular hair cells, others for cochlear hair cells, and some are expressed just before or after maturation of mechanosensitivity. We found that many of the known hereditary deafness genes are much more highly expressed in hair cells than surrounding cells, suggesting that genes preferentially expressed in hair cells are good candidates for unknown deafness genes. PMID:25904789

  17. Gene expression profile analysis of tobacco leaf trichomes

    PubMed Central

    2011-01-01

    Background Leaf trichomes of Nicotiana tabacum are distinguished by their large size, high density, and superior secretion ability. They contribute to plant defense response against biotic and abiotic stress, and also influence leaf aroma and smoke flavor. However, there is limited genomic information about trichomes of this non-model plant species. Results We have characterized Nicotiana tabacum leaf trichome gene expression using two approaches. In the first, a trichome cDNA library was randomly sequenced, and 2831 unique genes were obtained. The most highly abundant transcript was ribulose bisphosphate carboxylase (RuBisCO). Among the related sequences, most encoded enzymes involved in primary metabolism. Secondary metabolism related genes, such as isoprenoid and flavonoid biosynthesis-related, were also identified. In the second approach, a cDNA microarray prepared from these 2831 clones was used to compare gene expression levels in trichome and leaf. There were 438 differentially expressed genes between trichome and leaves-minus-trichomes. Of these, 207 highly expressed genes in tobacco trichomes were enriched in second metabolic processes, defense responses, and the metabolism regulation categories. The expression of selected unigenes was confirmed by semi-quantitative RT-PCR analysis, some of which were specifically expressed in trichomes. Conclusion The expression feature of leaf trichomes in Nicotiana tabacum indicates their metabolic activity and potential importance in stress resistance. Sequences predominantly expressed in trichomes will facilitate gene-mining and metabolism control of plant trichome. PMID:21548994

  18. Skeletal muscle gene expression in space-flown rats.

    PubMed

    Nikawa, Takeshi; Ishidoh, Kazumi; Hirasaka, Katsuya; Ishihara, Ibuki; Ikemoto, Madoka; Kano, Mihoko; Kominami, Eiki; Nonaka, Ikuya; Ogawa, Takayuki; Adams, Gregory R; Baldwin, Kenneth M; Yasui, Natsuo; Kishi, Kyoichi; Takeda, Shin'ichi

    2004-03-01

    Skeletal muscles are vulnerable to marked atrophy under microgravity. This phenomenon is due to the transcriptional alteration of skeletal muscle cells to weightlessness. To further investigate this issue at a subcellular level, we examined the expression of approximately 26,000 gastrocnemius muscle genes in space-flown rats by DNA microarray analysis. Comparison of the changes in gene expression among spaceflight, tail-suspended, and denervated rats revealed that such changes were unique after spaceflight and not just an extension of simulated weightlessness. The microarray data showed two spaceflight-specific gene expression patterns: 1) imbalanced expression of mitochondrial genes with disturbed expression of cytoskeletal molecules, including putative mitochondria-anchoring proteins, A-kinase anchoring protein, and cytoplasmic dynein, and 2) up-regulated expression of ubiquitin ligase genes, MuRF-1, Cbl-b, and Siah-1A, which are rate-limiting enzymes of muscle protein degradation. Distorted expression of cytoskeletal genes during spaceflight resulted in dislocation of the mitochondria in the cell. Several oxidative stress-inducible genes were highly expressed in the muscle of spaceflight rats. We postulate that mitochondrial dislocation during spaceflight has deleterious effects on muscle fibers, leading to atrophy in the form of insufficient energy provision for construction and leakage of reactive oxygen species from the mitochondria. PMID:14715702

  19. Expression and genomic imprinting of the porcine Rasgrf1 gene.

    PubMed

    Ding, Yue-Yun; Liu, Li-Yuan; Zhou, Jie; Zhang, Xiao-Dong; Huang, Long; Zhang, Shu-Jing; Yin, Zong-Jun

    2014-02-25

    Imprinted genes play important roles in mammalian growth, development and behavior. The Rasgrf1 (Ras protein-specific guanine nucleotide exchange factor 1) gene has been identified as an imprinted gene in mouse and rat. In the present study, we detected its sequence, imprinting status and expression pattern in the domestic pigs. A 228 bp partial sequence located in exon 14 and a 193 bp partial sequence located in exon 1 of the Rasgrf1 gene in domestic pigs were obtained. A G/A transition, was identified in Rasgrf1 exon 14, and then, the reciprocal Berkshire × Wannan black F1 hybrid model and the RT-PCR-RFLP method were used to detect the imprinting status of porcine Rasgrf1 gene at the developmental stage of 1-day-old. The expression profile results indicated that the porcine Rasgrf1 mRNA was highly expressed in brain, pituitary and pancreas, followed by kidney, stomach, lung, testis, small intestine, ovary, spleen and liver, and at low levels of expression in longissimus dorsi, heart, and backfat. The expression levels of Rasgrf1 gene in brain, pituitary and pancreas tissues were significantly different between the two reciprocal F1 hybrids. Imprinting analysis showed that porcine Rasgrf1 gene was maternally expressed in the liver, small intestine, paternally expressed in the lung, but biallelically expressed in brain, heart, spleen, kidney, stomach, pancreas, backfat, testis, ovary, longissimus dorsi and pituitary tissues. PMID:24342659

  20. Prevalence of gene expression additivity in genetically stable wheat allohexaploids.

    PubMed

    Chelaifa, Houda; Chagué, Véronique; Chalabi, Smahane; Mestiri, Imen; Arnaud, Dominique; Deffains, Denise; Lu, Yunhai; Belcram, Harry; Huteau, Virginie; Chiquet, Julien; Coriton, Olivier; Just, Jérémy; Jahier, Joseph; Chalhoub, Boulos

    2013-02-01

    The reprogramming of gene expression appears as the major trend in synthetic and natural allopolyploids where expression of an important proportion of genes was shown to deviate from that of the parents or the average of the parents. In this study, we analyzed gene expression changes in previously reported, highly stable synthetic wheat allohexaploids that combine the D genome of Aegilops tauschii and the AB genome extracted from the natural hexaploid wheat Triticum aestivum. A comprehensive genome-wide analysis of transcriptional changes using the Affymetrix GeneChip Wheat Genome Array was conducted. Prevalence of gene expression additivity was observed where expression does not deviate from the average of the parents for 99.3% of 34,820 expressed transcripts. Moreover, nearly similar expression was observed (for 99.5% of genes) when comparing these synthetic and natural wheat allohexaploids. Such near-complete additivity has never been reported for other allopolyploids and, more interestingly, for other synthetic wheat allohexaploids that differ from the ones studied here by having the natural tetraploid Triticum turgidum as the AB genome progenitor. Our study gave insights into the dynamics of additive gene expression in the highly stable wheat allohexaploids. PMID:23278496

  1. Skin aging, gene expression and calcium.

    PubMed

    Rinnerthaler, Mark; Streubel, Maria Karolin; Bischof, Johannes; Richter, Klaus

    2015-08-01

    The human epidermis provides a very effective barrier function against chemical, physical and microbial insults from the environment. This is only possible as the epidermis renews itself constantly. Stem cells located at the basal lamina which forms the dermoepidermal junction provide an almost inexhaustible source of keratinocytes which differentiate and die during their journey to the surface where they are shed off as scales. Despite the continuous renewal of the epidermis it nevertheless succumbs to aging as the turnover rate of the keratinocytes is slowing down dramatically. Aging is associated with such hallmarks as thinning of the epidermis, elastosis, loss of melanocytes associated with an increased paleness and lucency of the skin and a decreased barrier function. As the differentiation of keratinocytes is strictly calcium dependent, calcium also plays an important role in the aging epidermis. Just recently it was shown that the epidermal calcium gradient in the skin that facilitates the proliferation of keratinocytes in the stratum basale and enables differentiation in the stratum granulosum is lost in the process of skin aging. In the course of this review we try to explain how this calcium gradient is built up on the one hand and is lost during aging on the other hand. How this disturbed calcium homeostasis is affecting the gene expression in aged skin and is leading to dramatic changes in the composition of the cornified envelope will also be discussed. This loss of the epidermal calcium gradient is not only specific for skin aging but can also be found in skin diseases such as Darier disease, Hailey-Hailey disease, psoriasis and atopic dermatitis, which might be very helpful to get a deeper insight in skin aging. PMID:25262846

  2. Gene Expression Profile Analysis of Type 2 Diabetic Mouse Liver

    PubMed Central

    Zhang, Fang; Xu, Xiang; Zhang, Yi; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2013-01-01

    Liver plays a key role in glucose metabolism and homeostasis, and impaired hepatic glucose metabolism contributes to the development of type 2 diabetes. However, the precise gene expression profile of diabetic liver and its association with diabetes and related diseases are yet to be further elucidated. In this study, we detected the gene expression profile by high-throughput sequencing in 9-week-old normal and type 2 diabetic db/db mouse liver. Totally 12132 genes were detected, and 2627 genes were significantly changed in diabetic mouse liver. Biological process analysis showed that the upregulated genes in diabetic mouse liver were mainly enriched in metabolic processes. Surprisingly, the downregulated genes in diabetic mouse liver were mainly enriched in immune-related processes, although all the altered genes were still mainly enriched in metabolic processes. Similarly, KEGG pathway analysis showed that metabolic pathways were the major pathways altered in diabetic mouse liver, and downregulated genes were enriched in immune and cancer pathways. Analysis of the key enzyme genes in fatty acid and glucose metabolism showed that some key enzyme genes were significantly increased and none of the detected key enzyme genes were decreased. In addition, FunDo analysis showed that liver cancer and hepatitis were most likely to be associated with diabetes. Taken together, this study provides the digital gene expression profile of diabetic mouse liver, and demonstrates the main diabetes-associated hepatic biological processes, pathways, key enzyme genes in fatty acid and glucose metabolism and potential hepatic diseases. PMID:23469233

  3. Web-based interrogation of gene expression signatures using EXALT

    PubMed Central

    2009-01-01

    Background Widespread use of high-throughput techniques such as microarrays to monitor gene expression levels has resulted in an explosive growth of data sets in public domains. Integration and exploration of these complex and heterogeneous data have become a major challenge. Results The EXALT (EXpression signature AnaLysis Tool) online program enables meta-analysis of gene expression profiles derived from publically accessible sources. Searches can be executed online against two large databases currently containing more than 28,000 gene expression signatures derived from GEO (Gene Expression Omnibus) and published expression profiles of human cancer. Comparisons among gene expression signatures can be performed with homology analysis and co-expression analysis. Results can be visualized instantly in a plot or a heat map. Three typical use cases are illustrated. Conclusions The EXALT online program is uniquely suited for discovering relationships among transcriptional profiles and searching gene expression patterns derived from diverse physiological and pathological settings. The EXALT online program is freely available for non-commercial users from http://seq.mc.vanderbilt.edu/exalt/. PMID:20003458

  4. Temporal Gene Expression of the Cyanobacterium Arthrospira in Response to Gamma Rays.

    PubMed

    Badri, Hanène; Monsieurs, Pieter; Coninx, Ilse; Nauts, Robin; Wattiez, Ruddy; Leys, Natalie

    2015-01-01

    The edible cyanobacterium Arthrospira is resistant to ionising radiation. The cellular mechanisms underlying this radiation resistance are, however, still largely unknown. Therefore, additional molecular analysis was performed to investigate how these cells can escape from, protect against, or repair the radiation damage. Arthrospira cells were shortly exposed to different doses of 60Co gamma rays and the dynamic response was investigated by monitoring its gene expression and cell physiology at different time points after irradiation. The results revealed a fast switch from an active growth state to a kind of 'survival modus' during which the cells put photosynthesis, carbon and nitrogen assimilation on hold and activate pathways for cellular protection, detoxification, and repair. The higher the radiation dose, the more pronounced this global emergency response is expressed. Genes repressed during early response, suggested a reduction of photosystem II and I activity and reduced tricarboxylic acid (TCA) and Calvin-Benson-Bassham (CBB) cycles, combined with an activation of the pentose phosphate pathway (PPP). For reactive oxygen species detoxification and restoration of the redox balance in Arthrospira cells, the results suggested a powerful contribution of the antioxidant molecule glutathione. The repair mechanisms of Arthrospira cells that were immediately switched on, involve mainly proteases for damaged protein removal, single strand DNA repair and restriction modification systems, while recA was not induced. Additionally, the exposed cells showed significant increased expression of arh genes, coding for a novel group of protein of unknown function, also seen in our previous irradiation studies. This observation confirms our hypothesis that arh genes are key elements in radiation resistance of Arthrospira, requiring further investigation. This study provides new insights into phasic response and the cellular pathways involved in the radiation resistance of

  5. Temporal Gene Expression of the Cyanobacterium Arthrospira in Response to Gamma Rays

    PubMed Central

    Badri, Hanène; Monsieurs, Pieter; Coninx, Ilse; Nauts, Robin; Wattiez, Ruddy; Leys, Natalie

    2015-01-01

    The edible cyanobacterium Arthrospira is resistant to ionising radiation. The cellular mechanisms underlying this radiation resistance are, however, still largely unknown. Therefore, additional molecular analysis was performed to investigate how these cells can escape from, protect against, or repair the radiation damage. Arthrospira cells were shortly exposed to different doses of 60Co gamma rays and the dynamic response was investigated by monitoring its gene expression and cell physiology at different time points after irradiation. The results revealed a fast switch from an active growth state to a kind of 'survival modus' during which the cells put photosynthesis, carbon and nitrogen assimilation on hold and activate pathways for cellular protection, detoxification, and repair. The higher the radiation dose, the more pronounced this global emergency response is expressed. Genes repressed during early response, suggested a reduction of photosystem II and I activity and reduced tricarboxylic acid (TCA) and Calvin-Benson-Bassham (CBB) cycles, combined with an activation of the pentose phosphate pathway (PPP). For reactive oxygen species detoxification and restoration of the redox balance in Arthrospira cells, the results suggested a powerful contribution of the antioxidant molecule glutathione. The repair mechanisms of Arthrospira cells that were immediately switched on, involve mainly proteases for damaged protein removal, single strand DNA repair and restriction modification systems, while recA was not induced. Additionally, the exposed cells showed significant increased expression of arh genes, coding for a novel group of protein of unknown function, also seen in our previous irradiation studies. This observation confirms our hypothesis that arh genes are key elements in radiation resistance of Arthrospira, requiring further investigation. This study provides new insights into phasic response and the cellular pathways involved in the radiation resistance of

  6. Using Transcriptomics to Identify Differential Gene Expression in Response to Salinity among Australian Phragmites australis Clones

    PubMed Central

    Holmes, Gareth D.; Hall, Nathan E.; Gendall, Anthony R.; Boon, Paul I.; James, Elizabeth A.

    2016-01-01

    Common Reed (Phragmites australis) is a frequent component of inland and coastal wetlands in temperate zones worldwide. Ongoing environmental changes have resulted in the decline of this species in many areas and invasive expansion in others. In the Gippsland Lakes coastal waterway system in south-eastern Australia, increasing salinity is thought to have contributed to the loss of fringing P. australis reed beds leading to increased shoreline erosion. A major goal of restoration in this waterway is to address the effect of salinity by planting a genetically diverse range of salt-tolerant P. australis plants. This has prompted an interest in examining the variation in salinity tolerance among clones and the underlying basis of this variation. Transcriptomics is an approach for identifying variation in genes and their expression levels associated with the exposure of plants to environmental stressors. In this paper we present initial results of the first comparative culm transcriptome analysis of P. australis clones. After sampling plants from sites of varied surface water salinity across the Gippsland Lakes, replicates from three clones from highly saline sites (>18 g L-1 TDS) and three from low salinity sites (<6 g L-1) were grown in containers irrigated with either fresh (<0.1 g L-1) or saline water (16 g L-1). An RNA-Seq protocol was used to generate sequence data from culm tissues from the 12 samples allowing an analysis of differential gene expression. Among the key findings, we identified several genes uniquely up- or down-regulated in clones from highly saline sites when irrigated with saline water relative to clones from low salinity sites. These included the higher relative expression levels of genes associated with photosynthesis and lignan biosynthesis indicative of a greater ability of these clones to maintain growth under saline conditions. Combined with growth data from a parallel study, our data suggests local adaptation of certain clones to salinity

  7. Using Transcriptomics to Identify Differential Gene Expression in Response to Salinity among Australian Phragmites australis Clones.

    PubMed

    Holmes, Gareth D; Hall, Nathan E; Gendall, Anthony R; Boon, Paul I; James, Elizabeth A

    2016-01-01

    Common Reed (Phragmites australis) is a frequent component of inland and coastal wetlands in temperate zones worldwide. Ongoing environmental changes have resulted in the decline of this species in many areas and invasive expansion in others. In the Gippsland Lakes coastal waterway system in south-eastern Australia, increasing salinity is thought to have contributed to the loss of fringing P. australis reed beds leading to increased shoreline erosion. A major goal of restoration in this waterway is to address the effect of salinity by planting a genetically diverse range of salt-tolerant P. australis plants. This has prompted an interest in examining the variation in salinity tolerance among clones and the underlying basis of this variation. Transcriptomics is an approach for identifying variation in genes and their expression levels associated with the exposure of plants to environmental stressors. In this paper we present initial results of the first comparative culm transcriptome analysis of P. australis clones. After sampling plants from sites of varied surface water salinity across the Gippsland Lakes, replicates from three clones from highly saline sites (>18 g L(-1) TDS) and three from low salinity sites (<6 g L(-1)) were grown in containers irrigated with either fresh (<0.1 g L(-1)) or saline water (16 g L(-1)). An RNA-Seq protocol was used to generate sequence data from culm tissues from the 12 samples allowing an analysis of differential gene expression. Among the key findings, we identified several genes uniquely up- or down-regulated in clones from highly saline sites when irrigated with saline water relative to clones from low salinity sites. These included the higher relative expression levels of genes associated with photosynthesis and lignan biosynthesis indicative of a greater ability of these clones to maintain growth under saline conditions. Combined with growth data from a parallel study, our data suggests local adaptation of certain clones to

  8. Evaluation of Quantitative PCR Reference Genes for Gene Expression Studies in Tribolium castaneum After Fungal Challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate gene expression in Tribolium castaneum exposed to Beauveria bassiana, reference genes for qPCR were evaluated. Of these, the widely used genes for ß-actin, a-tubulin, and RPS6 were not stable. The most stable were ribosomal protein genes, RPS3, RPS18, and RPL13a. Syntaxin1, syntaxin6...

  9. Gene expression profile analysis of ventilator-associated pneumonia

    PubMed Central

    XU, XIAOLI; YUAN, BO; LIANG, QUAN; HUANG, HUIMIN; YIN, XIANGYI; SHENG, XIAOYUE; NIE, NIUYAN; FANG, HONGMEI

    2015-01-01

    Based on the gene expression profile of patients with ventilator-associated pneumonia (VAP) and patients not affected by the disease, the present study aimed to enhance the current understanding of VAP development using bioinformatics methods. The expression profile GSE30385 was downloaded from the Gene Expression Omnibus database. The Linear Models for Microarray Data package in R language was used to screen and identify differentially expressed genes (DEGs), which were grouped as up- and down-regulated genes. The up- and downregulated genes were functionally enriched using the Database for Annotation, Visualization and Integrated Discovery system and then annotated according to TRANSFAC, Tumor Suppressor Gene and Tumor Associated Gene databases. Subsequently, the protein-protein interaction (PPI) network was constructed, followed by module analysis using CFinder software. A total of 69 DEGs, including 33 up- and 36 downregulated genes were screened out in patients with VAP. Upregulated genes were mainly enriched in functions and pathways associated with the immune response (including the genes ELANE and LTF) and the mitogen-activated protein kinase (MAPK) signaling pathway (including MAPK14). The PPI network comprised 64 PPI pairs and 44 nodes. The top two modules were enriched in different pathways, including the MAPK signaling pathway. Genes including ELANE, LTF and MAPK14 may have important roles in the development of VAP via altering the immune response and the MAPK signaling pathway. PMID:26459786

  10. IDENTIFICATION OF BIOLOGICALLY RELEVANT GENES USING A DATABASE OF RAT LIVER AND KIDNEY BASELINE GENE EXPRESSION

    EPA Science Inventory

    Microarray data from independent labs and studies can be compared to potentially identify toxicologically and biologically relevant genes. The Baseline Animal Database working group of HESI was formed to assess baseline gene expression from microarray data derived from control or...

  11. Gene Body Methylation can alter Gene Expression and is a Therapeutic Target in Cancer

    PubMed Central

    Yang, Xiaojing; Han, Han; De Carvalho, Daniel D.; Lay, Fides D.; Jones, Peter A.; Liang, Gangning

    2014-01-01

    SUMMARY DNA methylation in promoters is well known to silence genes and is the presumed therapeutic target of methylation inhibitors. Gene body methylation is positively correlated with expression yet its function is unknown. We show that 5-aza-2'-deoxycytidine treatment not only reactivates genes but decreases the over-expression of genes, many of which are involved in metabolic processes regulated by c-MYC. Down-regulation is caused by DNA demethylation of the gene bodies and restoration of high levels of expression requires remethylation by DNMT3B. Gene body methylation may therefore be an unexpected therapeutic target for DNA methylation inhibitors, resulting in the normalization of gene over-expression induced during carcinogenesis. Our results provide direct evidence for a causal relationship between gene body methylation and transcription. PMID:25263941

  12. Global Gene Expression Profiles of the Cyanobacterium Synechocystis sp. Strain PCC 6803 in Response to Irradiation with UV-B and White Light

    PubMed Central

    Huang, Lixuan; McCluskey, Michael P.; Ni, Hao; LaRossa, Robert A.

    2002-01-01

    We developed a transcript profiling methodology to elucidate expression patterns of the cyanobacterium Synechocystis sp. strain PCC 6803 and used the technology to investigate changes in gene expression caused by irradiation with either intermediate-wavelength UV light (UV-B) or high-intensity white light. Several families of transcripts were altered by UV-B treatment, including mRNAs specifying proteins involved in light harvesting, photosynthesis, photoprotection, and the heat shock response. In addition, UV-B light induced the stringent response in Synechocystis, as indicated by the repression of ribosomal protein transcripts and other mRNAs involved in translation. High-intensity white light- and UV-B-mediated expression profiles overlapped in the down-regulation of photosynthesis genes and induction of heat shock response but differed in several other transcriptional processes including those specifying carbon dioxide uptake and fixation, the stringent response, and the induction profile of the high-light-inducible proteins. These two profile comparisons not only corroborated known physiological changes but also suggested coordinated regulation of many pathways, including synchronized induction of D1 protein recycling and a coupling between decreased phycobilisome biosynthesis and increased phycobilisome degradation. Overall, the gene expression profile analysis generated new insights into the integrated network of genes that adapts rapidly to different wavelengths and intensities of light. PMID:12446635

  13. Expression of heat shock protein genes in insect stress responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The heat shock proteins (HSPs) that are abundantly expressed in insects are important modulators of insect survival. Expression of HSP genes in insects is not only developmentally regulated, but also induced by various stressors in order to confer protection against such stressors. The expression o...

  14. Noise in gene expression is coupled to growth rate.

    PubMed

    Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran

    2015-12-01

    Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in expression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes in noise at different growth rates as well as overall higher variability in expression for cell-cycle-regulated genes in all conditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally, we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications. PMID:26355006

  15. Noise in gene expression is coupled to growth rate

    PubMed Central

    Keren, Leeat; van Dijk, David; Weingarten-Gabbay, Shira; Davidi, Dan; Jona, Ghil; Weinberger, Adina; Milo, Ron; Segal, Eran

    2015-01-01

    Genetically identical cells exposed to the same environment display variability in gene expression (noise), with important consequences for the fidelity of cellular regulation and biological function. Although population average gene expression is tightly coupled to growth rate, the effects of changes in environmental conditions on expression variability are not known. Here, we measure the single-cell expression distributions of approximately 900 Saccharomyces cerevisiae promoters across four environmental conditions using flow cytometry, and find that gene expression noise is tightly coupled to the environment and is generally higher at lower growth rates. Nutrient-poor conditions, which support lower growth rates, display elevated levels of noise for most promoters, regardless of their specific expression values. We present a simple model of noise in expression that results from having an asynchronous population, with cells at different cell-cycle stages, and with different partitioning of the cells between the stages at different growth rates. This model predicts non-monotonic global changes in noise at different growth rates as well as overall higher variability in expression for cell-cycle–regulated genes in all conditions. The consistency between this model and our data, as well as with noise measurements of cells growing in a chemostat at well-defined growth rates, suggests that cell-cycle heterogeneity is a major contributor to gene expression noise. Finally, we identify gene and promoter features that play a role in gene expression noise across conditions. Our results show the existence of growth-related global changes in gene expression noise and suggest their potential phenotypic implications. PMID:26355006

  16. Expression of Growth Hormone Genes in Transgenic Mice

    PubMed Central

    Palmiter, Richard D.; Hammer, Robert E.; Brinster, Ralph L.

    2016-01-01

    OVERVIEW Human or rat growth hormone (GH) genes have been introduced into all cells of a mouse by microinjection of fertilized eggs but they were not expressed under their own promoters. However, substitution of a mouse metallothionein (MT) promoter allowed expression and regulation comparable to that of the endogenous MT genes. These fusion genes have been used to stimulate the growth of both normal mice and dwarf mice that lack sufficient GH. Substitution of a rat elastase-I promoter directed expression of GH exclusively to the acinar cells of the pancreas. Progress has been made towards developing the hGH gene into a vector that is not expressed in vivo unless an enhancer element is inserted. Recombination between overlapping DNA fragments derived from a MThGH gene, each of which is nonfunctional, has been observed when they are coinjected into mouse eggs. In some cases, functional hGH was produced as evidenced by enhanced growth of the mice.

  17. Microarray Analysis of Pneumococcal Gene Expression during Invasive Disease

    PubMed Central

    Orihuela, Carlos J.; Radin, Jana N.; Sublett, Jack E.; Gao, Geli; Kaushal, Deepak; Tuomanen, Elaine I.

    2004-01-01

    Streptococcus pneumoniae is a leading cause of invasive bacterial disease. This is the first study to examine the expression of S. pneumoniae genes in vivo by using whole-genome microarrays available from The Institute for Genomic Research. Total RNA was collected from pneumococci isolated from infected blood, infected cerebrospinal fluid, and bacteria attached to a pharyngeal epithelial cell line in vitro. Microarray analysis of pneumococcal genes expressed in these models identified body site-specific patterns of expression for virulence factors, transporters, transcription factors, translation-associated proteins, metabolism, and genes with unknown function. Contributions to virulence predicted for several unknown genes with enhanced expression in vivo were confirmed by insertion duplication mutagenesis and challenge of mice with the mutants. Finally, we cross-referenced our results with previous studies that used signature-tagged mutagenesis and differential fluorescence induction to identify genes that are potentially required by a broad range of pneumococcal strains for invasive disease. PMID:15385455

  18. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    SciTech Connect

    Daniel J. Arp

    2005-05-25

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression: The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression: N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression: Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  19. Gene expression profiles of Nitrosomonas europaea, an obligate chemolitotroph

    SciTech Connect

    Daniel J Arp

    2005-06-15

    Nitrosomonas europaea is an aerobic lithoautotrophic bacterium that uses ammonia (NH3) as its energy source. As a nitrifier, it is an important participant in the nitrogen cycle, which can also influence the carbon cycle. The focus of this work was to explore the genetic structure and mechanisms underlying the lithoautotrophic growth style of N. europaea. Whole genome gene expression. The gene expression profile of cells in exponential growth and during starvation was analyzed using microarrays. During growth, 98% of the genes increased in expression at least two fold compared to starvation conditions. In growing cells, approximately 30% of the genes were expressed eight fold higher, Approximately 10% were expressed more than 15 fold higher. Approximately 3% (91 genes) were expressed to more than 20 fold of their levels in starved cells. Carbon fixation gene expression. N. europaea fixes carbon via the Calvin-Benson-Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). This study showed that transcription of cbb genes was up-regulated when the carbon source was limited, while amo, hao and other energy harvesting related genes were down-regulated. Iron related gene expression. Because N. europaea has a relatively high content of hemes, sufficient Fe must be available in the medium for it to grow. The genome revealed that approximately 5% of the coding genes in N. europaea are dedicated to Fe transport and assimilation. Nonetheless, with the exception of citrate biosynthesis genes, N. europaea lacks genes for siderophore production. The Fe requirements for growth and the expression of the putative membrane siderophore receptors were determined. The N. europaea genome has over 100 putative genes ({approx}5% of the coding genes) related to Fe uptake and its siderophore receptors could be grouped phylogenetically in four clusters. Fe related genes, such as a number of TonB-dependent Fe-siderophore receptors for ferrichrome and

  20. Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity.

    PubMed

    Thiel, Cora S; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Unverdorben, Felix; Buttron, Isabell; Lauber, Beatrice; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E; Ullrich, Oliver

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes ("housekeeping genes") are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity. PMID:25654098

  1. Computational gene expression profiling under salt stress reveals patterns of co-expression.

    PubMed

    Sanchita; Sharma, Ashok

    2016-03-01

    Plants respond differently to environmental conditions. Among various abiotic stresses, salt stress is a condition where excess salt in soil causes inhibition of plant growth. To understand the response of plants to the stress conditions, identification of the responsible genes is required. Clustering is a data mining technique used to group the genes with similar expression. The genes of a cluster show similar expression and function. We applied clustering algorithms on gene expression data of Solanum tuberosum showing differential expression in Capsicum annuum under salt stress. The clusters, which were common in multiple algorithms were taken further for analysis. Principal component analysis (PCA) further validated the findings of other cluster algorithms by visualizing their clusters in three-dimensional space. Functional annotation results revealed that most of the genes were involved in stress related responses. Our findings suggest that these algorithms may be helpful in the prediction of the function of co-expressed genes. PMID:26981411

  2. Expression profile of cuticular genes of silkworm, Bombyx mori

    PubMed Central

    2010-01-01

    Background Insect cuticle plays essential roles in many physiological functions. During molting and metamorphosis tremendous changes occur in silkworm cuticle where multiple proteins exist and genes encoding them constitute about 1.5% of all Bombyx mori genes. Results In an effort to determine their expression profiles, a microarray-based investigation was carried out using mRNA collected from larvae to pupae. The results showed that a total of 6676 genes involved in various functions and physiological pathways were activated. The vast majority (93%) of cuticular protein genes were expressed in selected stages with varying expression patterns. There was no correlation between expression patterns and the presence of conserved motifs. Twenty-six RR genes distributed in chromosome 22 were co-expressed at the larval and wandering stages. The 2 kb upstream regions of these genes were further analyzed and three putative elements were identified. Conclusions Data from the present study provide, for the first time, a comprehensive expression profile of genes in silkworm epidermal tissues and evidence that putative elements exist to allow massive production of mRNAs from specific cuticular protein genes. PMID:20226095

  3. Expression of homeobox genes in the mouse olfactory epithelium.

    PubMed

    Parrilla, Marta; Chang, Isabelle; Degl'Innocenti, Andrea; Omura, Masayo

    2016-10-01

    Homeobox genes constitute a large family of genes widely studied because of their role in the establishment of the body pattern. However, they are also involved in many other events during development and adulthood. The main olfactory epithelium (MOE) is an excellent model to study neurogenesis in the adult nervous system. Analyses of homeobox genes during development show that some of these genes are involved in the formation and establishment of cell diversity in the MOE. Moreover, the mechanisms of expression of odorant receptors (ORs) constitute one of the biggest enigmas in the field. Analyses of OR promoters revealed the presence of homeodomain binding sites in their sequences. Here we characterize the expression patterns of a set of 49 homeobox genes in the MOE with in situ hybridization. We found that seven of them (Dlx3, Dlx5, Dlx6, Msx1, Meis1, Isl1, and Pitx1) are zonally expressed. The homeobox gene Emx1 is expressed in three guanylate cyclase(+) populations, two located in the MOE and the third one in an olfactory subsystem known as Grüneberg ganglion located at the entrance of the nasal cavity. The homeobox gene Tshz1 is expressed in a unique patchy pattern across the MOE. Our findings provide new insights to guide functional studies that aim to understand the complexity of transcription factor expression and gene regulation in the MOE. J. Comp. Neurol. 524:2713-2739, 2016. © 2016 Wiley Periodicals, Inc. PMID:27243442

  4. An interactive database of cocaine-responsive gene expression.

    PubMed

    Freeman, Willard M; Dougherty, Kathryn E; Vacca, Sally E; Vrana, Kent E

    2002-03-12

    The postgenomic era of large-scale gene expression studies is inundating drug abuse researchers and many other scientists with findings related to gene expression. This information is distributed across many different journals, and requires laborious literature searches. Here, we present an interactive database that combines existing information related to cocaine-mediated changes in gene expression in an easy-to-use format. The database is limited to statistically significant changes in mRNA or protein expression after cocaine administration. The Flash-based program is integrated into a Web page, and organizes changes in gene expression based on neuroanatomical region, general function, and gene name. Accompanying each gene is a description of the gene, links to the original publications, and a link to the appropriate OMIM (Online Mendelian Inheritance in Man) entry. The nature of this review allows for timely modifications and rapid inclusion of new publications, and should help researchers build second-generation hypotheses on the role of gene expression changes in the physiology and behavior of cocaine abuse. Furthermore, this method of organizing large volumes of scientific information can easily be adapted to assist researchers in fields outside of drug abuse. PMID:12805995

  5. Analysis of bHLH coding genes using gene co-expression network approach.

    PubMed

    Srivastava, Swati; Sanchita; Singh, Garima; Singh, Noopur; Srivastava, Gaurava; Sharma, Ashok

    2016-07-01

    Network analysis provides a powerful framework for the interpretation of data. It uses novel reference network-based metrices for module evolution. These could be used to identify module of highly connected genes showing variation in co-expression network. In this study, a co-expression network-based approach was used for analyzing the genes from microarray data. Our approach consists of a simple but robust rank-based network construction. The publicly available gene expression data of Solanum tuberosum under cold and heat stresses were considered to create and analyze a gene co-expression network. The analysis provide highly co-expressed module of bHLH coding genes based on correlation values. Our approach was to analyze the variation of genes expression, according to the time period of stress through co-expression network approach. As the result, the seed genes were identified showing multiple connections with other genes in the same cluster. Seed genes were found to be vary in different time periods of stress. These analyzed seed genes may be utilized further as marker genes for developing the stress tolerant plant species. PMID:27178572

  6. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses.

    PubMed

    Guo, Jinlong; Ling, Hui; Wu, Qibin; Xu, Liping; Que, Youxiong

    2014-01-01

    Sugarcane (Saccharum spp. hybrids) is a world-wide cash crop for sugar and biofuel in tropical and subtropical regions and suffers serious losses in cane yield and sugar content under salinity and drought stresses. Although real-time quantitative PCR has a numerous advantage in the expression quantification of stress-related genes for the elaboration of the corresponding molecular mechanism in sugarcane, the variation happened across the process of gene expression quantification should be normalized and monitored by introducing one or several reference genes. To validate suitable reference genes or gene sets for sugarcane gene expression normalization, 13 candidate reference genes have been tested across 12 NaCl- and PEG-treated sugarcane samples for four sugarcane genotypes using four commonly used systematic statistical algorithms termed geNorm, BestKeeper, NormFinder and the deltaCt method. The results demonstrated that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and eukaryotic elongation factor 1-alpha (eEF-1a) were identified as suitable reference genes for gene expression normalization under salinity/drought-treatment in sugarcane. Moreover, the expression analyses of SuSK and 6PGDH further validated that a combination of clathrin adaptor complex (CAC) and cullin (CUL) as reference should be better for gene expression normalization. These results can facilitate the future research on gene expression in sugarcane under salinity and drought stresses. PMID:25391499

  7. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses

    PubMed Central

    Guo, Jinlong; Ling, Hui; Wu, Qibin; Xu, Liping; Que, Youxiong

    2014-01-01

    Sugarcane (Saccharum spp. hybrids) is a world-wide cash crop for sugar and biofuel in tropical and subtropical regions and suffers serious losses in cane yield and sugar content under salinity and drought stresses. Although real-time quantitative PCR has a numerous advantage in the expression quantification of stress-related genes for the elaboration of the corresponding molecular mechanism in sugarcane, the variation happened across the process of gene expression quantification should be normalized and monitored by introducing one or several reference genes. To validate suitable reference genes or gene sets for sugarcane gene expression normalization, 13 candidate reference genes have been tested across 12 NaCl- and PEG-treated sugarcane samples for four sugarcane genotypes using four commonly used systematic statistical algorithms termed geNorm, BestKeeper, NormFinder and the deltaCt method. The results demonstrated that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and eukaryotic elongation factor 1-alpha (eEF-1a) were identified as suitable reference genes for gene expression normalization under salinity/drought-treatment in sugarcane. Moreover, the expression analyses of SuSK and 6PGDH further validated that a combination of clathrin adaptor complex (CAC) and cullin (CUL) as reference should be better for gene expression normalization. These results can facilitate the future research on gene expression in sugarcane under salinity and drought stresses. PMID:25391499

  8. PLEXdb: gene expression resources for plants and plant pathogens.

    PubMed

    Dash, Sudhansu; Van Hemert, John; Hong, Lu; Wise, Roger P; Dickerson, Julie A

    2012-01-01

    PLEXdb (http://www.plexdb.org), in partnership with community databases, supports comparisons of gene expression across multiple plant and pathogen species, promoting individuals and/or consortia to upload genome-scale data sets to contrast them to previously archived data. These analyses facilitate the interpretation of structure, function and regulation of genes in economically important plants. A list of Gene Atlas experiments highlights data sets that give responses across different developmental stages, conditions and tissues. Tools at PLEXdb allow users to perform complex analyses quickly and easily. The Model Genome Interrogator (MGI) tool supports mapping gene lists onto corresponding genes from model plant organisms, including rice and Arabidopsis. MGI predicts homologies, displays gene structures and supporting information for annotated genes and full-length cDNAs. The gene list-processing wizard guides users through PLEXdb functions for creating, analyzing, annotating and managing gene lists. Users can upload their own lists or create them from the output of PLEXdb tools, and then apply diverse higher level analyses, such as ANOVA and clustering. PLEXdb also provides methods for users to track how gene expression changes across many different experiments using the Gene OscilloScope. This tool can identify interesting expression patterns, such as up-regulation under diverse conditions or checking any gene's suitability as a steady-state control. PMID:22084198

  9. Regulated Expression of Adenoviral Vectors-Based Gene Therapies

    PubMed Central

    Curtin, James F.; Candolfi, Marianela; Puntel, Mariana; Xiong, Weidong; Muhammad, A. K. M.; Kroeger, Kurt; Mondkar, Sonali; Liu, Chunyan; Bondale, Niyati; Lowenstein, Pedro R.; Castro, Maria G.

    2008-01-01

    Summary Regulatable promoter systems allow gene expression to be tightly controlled in vivo. This is highly desirable for the development of safe, efficacious adenoviral vectors that can be used to treat human diseases in the clinic. Ideally, regulatable cassettes should have minimal gene expression in the “OFF” state, and expression should quickly reach therapeutic levels in the “ON” state. In addition, the components of regulatable cassettes should be non-toxic at physiological concentrations and should not be immunogenic, especially when treating chronic illness that requires long-lasting gene expression. In this chapter, we will describe in detail protocols to develop and validate first generation (Ad) and high-capacity adenoviral (HC-Ad) vectors that express therapeutic genes under the control of the TetON regulatable system. Our laboratory has successfully used these protocols to regulate the expression of marker genes, immune stimulatory genes, and toxins for cancer gene therapeutics, i.e., glioma that is a deadly form of brain cancer. We have shown that this third generation TetON regulatable system, incorporating a doxycycline (DOX)-sensitive rtTA2S-M2 inducer and tTSKid silencer, is non-toxic, relatively non-immunogenic, and can tightly regulate reporter transgene expression downstream of a TRE promoter from adenoviral vectors in vitro and also in vivo. PMID:18470649

  10. Adult mouse brain gene expression patterns bear an embryologic imprint

    PubMed Central

    Zapala, Matthew A.; Hovatta, Iiris; Ellison, Julie A.; Wodicka, Lisa; Del Rio, Jo A.; Tennant, Richard; Tynan, Wendy; Broide, Ron S.; Helton, Rob; Stoveken, Barbara S.; Winrow, Christopher; Lockhart, Daniel J.; Reilly, John F.; Young, Warren G.; Bloom, Floyd E.; Lockhart, David J.; Barlow, Carrolee

    2005-01-01

    The current model to explain the organization of the mammalian nervous system is based on studies of anatomy, embryology, and evolution. To further investigate the molecular organization of the adult mammalian brain, we have built a gene expression-based brain map. We measured gene expression patterns for 24 neural tissues covering the mouse central nervous system and found, surprisingly, that the adult brain bears a transcriptional “imprint” consistent with both embryological origins and classic evolutionary relationships. Embryonic cellular position along the anterior–posterior axis of the neural tube was shown to be closely associated with, and possibly a determinant of, the gene expression patterns in adult structures. We also observed a significant number of embryonic patterning and homeobox genes with region-specific expression in the adult nervous system. The relationships between global expression patterns for different anatomical regions and the nature of the observed region-specific genes suggest that the adult brain retains a degree of overall gene expression established during embryogenesis that is important for regional specificity and the functional relationships between regions in the adult. The complete collection of extensively annotated gene expression data along with data mining and visualization tools have been made available on a publicly accessible web site (www.barlow-lockhart-brainmapnimhgrant.org). PMID:16002470

  11. Schizophrenia Gene Expression Profile Reverted to Normal Levels by Antipsychotics

    PubMed Central

    Crespo-Facorro, Benedicto; Prieto, Carlos

    2015-01-01

    Background: Despite the widespread use of antipsychotics, little is known of the molecular bases behind the action of antipsychotic drugs. A genome-wide study is needed to characterize the genes that affect the clinical response and their adverse effects. Methods: Here we show the analysis of the blood transcriptome of 22 schizophrenia patients before and after medication with atypical antipsychotics by next-generation sequencing. Results: We found that 17 genes, among the 21 495 genes analyzed, have significantly-altered expression after medication (p-value adjusted [Padj] <0.05). Six genes (ADAMTS2, CD177, CNTNAP3, ENTPD2, RFX2, and UNC45B) out of the 17 are among the 200 genes that we characterized with differential expression in a previous study between antipsychotic-naïve schizophrenia patients and controls (Sainz et al., 2013). This number of schizophrenia-altered expression genes is significantly higher than expected by chance (Chi-test, Padj 1.19E-50), suggesting that at least part of the antipsychotic beneficial effects is exerted by modulating the expression of these genes. Interestingly, all six of these genes were overexpressed in patients and reverted to control levels of expression after treatment. We also found a significant enrichment of genes related to obesity and diabetes, known adverse affects of antipsychotics. Conclusions: These results may facilitate understanding of unknown molecular mechanisms behind schizophrenia symptoms and the molecular mechanisms of antipsychotic drugs. PMID:25522406

  12. Novel redox nanomedicine improves gene expression of polyion complex vector

    NASA Astrophysics Data System (ADS)

    Toh, Kazuko; Yoshitomi, Toru; Ikeda, Yutaka; Nagasaki, Yukio

    2011-12-01

    Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS) affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP) as an ROS scavenger. When polyethyleneimine (PEI)/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI)/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF)-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  13. Validation of housekeeping genes for gene expression studies in an ice alga Chlamydomonas during freezing acclimation.

    PubMed

    Liu, Chenlin; Wu, Guangting; Huang, Xiaohang; Liu, Shenghao; Cong, Bailin

    2012-05-01

    Antarctic ice alga Chlamydomonas sp. ICE-L can endure extreme low temperature and high salinity stress under freezing conditions. To elucidate the molecular acclimation mechanisms using gene expression analysis, the expression stabilities of ten housekeeping genes of Chlamydomonas sp. ICE-L during freezing stress were analyzed. Some discrepancies were detected in the ranking of the candidate reference genes between geNorm and NormFinder programs, but there was substantial agreement between the groups of genes with the most and the least stable expression. RPL19 was ranked as the best candidate reference genes. Pairwise variation (V) analysis indicated the combination of two reference genes was sufficient for qRT-PCR data normalization under the experimental conditions. Considering the co-regulation between RPL19 and RPL32 (the most stable gene pairs given by geNorm program), we propose that the mean data rendered by RPL19 and GAPDH (the most stable gene pairs given by NormFinder program) be used to normalize gene expression values in Chlamydomonas sp. ICE-L more accurately. The example of FAD3 gene expression calculation demonstrated the importance of selecting an appropriate category and number of reference genes to achieve an accurate and reliable normalization of gene expression during freeze acclimation in Chlamydomonas sp. ICE-L. PMID:22527038

  14. Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification

    PubMed Central

    Lohbeck, Kai T.; Riebesell, Ulf; Reusch, Thorsten B. H.

    2014-01-01

    Coccolithophores are unicellular marine algae that produce biogenic calcite scales and substantially contribute to marine primary production and carbon export to the deep ocean. Ongoing ocean acidification particularly impairs calcifying organisms, mostly resulting in decreased growth and calcification. Recent studies revealed that the immediate physiological response in the coccolithophore Emiliania huxleyi to ocean acidification may be partially compensated by evolutionary adaptation, yet the underlying molecular mechanisms are currently unknown. Here, we report on the expression levels of 10 candidate genes putatively relevant to pH regulation, carbon transport, calcification and photosynthesis in E. huxleyi populations short-term exposed to ocean acidification conditions after acclimation (physiological response) and after 500 generations of high CO2 adaptation (adaptive response). The physiological response revealed downregulation of candidate genes, well reflecting the concomitant decrease of growth and calcification. In the adaptive response, putative pH regulation and carbon transport genes were up-regulated, matching partial restoration of growth and calcification in high CO2-adapted populations. Adaptation to ocean acidification in E. huxleyi likely involved improved cellular pH regulation, presumably indirectly affecting calcification. Adaptive evolution may thus have the potential to partially restore cellular pH regulatory capacity and thereby mitigate adverse effects of ocean acidification. PMID:24827439

  15. Digital gene expression for non-model organisms.

    PubMed

    Hong, Lewis Z; Li, Jun; Schmidt-Küntzel, Anne; Warren, Wesley C; Barsh, Gregory S

    2011-11-01

    Next-generation sequencing technologies offer new approaches for global measurements of gene expression but are mostly limited to organisms for which a high-quality assembled reference genome sequence is available. We present a method for gene expression profiling called EDGE, or EcoP15I-tagged Digital Gene Expression, based on ultra-high-throughput sequencing of 27-bp cDNA fragments that uniquely tag the corresponding gene, thereby allowing direct quantification of transcript abundance. We show that EDGE is capable of assaying for expression in >99% of genes in the genome and achieves saturation after 6-8 million reads. EDGE exhibits very little technical noise, reveals a large (10(6)) dynamic range of gene expression, and is particularly suited for quantification of transcript abundance in non-model organisms where a high-quality annotated genome is not available. In a direct comparison with RNA-seq, both methods provide similar assessments of relative transcript abundance, but EDGE does better at detecting gene expression differences for poorly expressed genes and does not exhibit transcript length bias. Applying EDGE to laboratory mice, we show that a loss-of-function mutation in the melanocortin 1 receptor (Mc1r), recognized as a Mendelian determinant of yellow hair color in many different mammals, also causes reduced expression of genes involved in the interferon response. To illustrate the application of EDGE to a non-model organism, we examine skin biopsy samples from a cheetah (Acinonyx jubatus) and identify genes likely to control differences in the color of spotted versus non-spotted regions. PMID:21844123

  16. Biased gene expression in early honeybee larval development

    PubMed Central

    2013-01-01

    Background Female larvae of the honeybee (Apis mellifera) develop into either queens or workers depending on nutrition. This nutritional stimulus triggers different developmental trajectories, resulting in adults that differ from each other in physiology, behaviour and life span. Results To understand how these trajectories are established we have generated a comprehensive atlas of gene expression throughout larval development. We found substantial differences in gene expression between worker and queen-destined larvae at 6 hours after hatching. Some of these early changes in gene expression are maintained throughout larval development, indicating that caste-specific developmental trajectories are established much earlier than previously thought. Within our gene expression data we identified processes that potentially underlie caste differentiation. Queen-destined larvae have higher expression of genes involved in transcription, translation and protein folding early in development with a later switch to genes involved in energy generation. Using RNA interference, we were able to demonstrate that one of these genes, hexamerin 70b, has a role in caste differentiation. Both queen and worker developmental trajectories are associated with the expression of genes that have alternative splice variants, although only a single variant of a gene tends to be differentially expressed in a given caste. Conclusions Our data, based on the biases in gene expression early in development together with published data, supports the idea that caste development in the honeybee consists of two phases; an initial biased phase of development, where larvae can still switch to the other caste by differential feeding, followed by commitment to a particular developmental trajectory. PMID:24350621

  17. The pineapple genome and the evolution of CAM photosynthesis

    DOE PAGESBeta

    Ming, Ray; VanBuren, Robert; Wai, Ching Man; Tang, Haibao; Schatz, Michael C.; Bowers, John E.; Lyons, Eric; Wang, Ming-Li; Chen, Jung; Biggers, Eric; et al

    2015-11-02

    Pineapple (Ananas comosus (L.) Merr.) is the most economically valuable crop possessing crassulacean acid metabolism (CAM), a photosynthetic carbon assimilation pathway with high water-use efficiency, and the second most important tropical fruit. We sequenced the genomes of pineapple varieties F153 and MD2 and a wild pineapple relative, Ananas bracteatus accession CB5. The pineapple genome has one fewer ancient whole-genome duplication event than sequenced grass genomes and a conserved karyotype with seven chromosomes from before the ρ duplication event. The pineapple lineage has transitioned from C3 photosynthesis to CAM, with CAM-related genes exhibiting a diel expression pattern in photosynthetic tissues. CAMmore » pathway genes were enriched with cis-regulatory elements associated with the regulation of circadian clock genes, providing the first cis-regulatory link between CAM and circadian clock regulation. Lastly, we found pineapple CAM photosynthesis evolved by the reconfiguration of pathways in C3 plants, through the regulatory neofunctionalization of preexisting genes and not through the acquisition of neofunctionalized genes via whole-genome or tandem gene duplication.« less

  18. The pineapple genome and the evolution of CAM photosynthesis

    SciTech Connect

    Ming, Ray; VanBuren, Robert; Wai, Ching Man; Tang, Haibao; Schatz, Michael C.; Bowers, John E.; Lyons, Eric; Wang, Ming-Li; Chen, Jung; Biggers, Eric; Zhang, Jisen; Huang, Lixian; Zhang, Lingmao; Miao, Wenjing; Zhang, Jian; Ye, Zhangyao; Miao, Chenyong; Lin, Zhicong; Wang, Hao; Zhou, Hongye; Yim, Won C.; Priest, Henry D.; Zheng, Chunfang; Woodhouse, Margaret; Edger, Patrick P.; Guyot, Romain; Guo, Hao-Bo; Guo, Hong; Zheng, Guangyong; Singh, Ratnesh; Sharma, Anupma; Min, Xiangjia; Zheng, Yun; Lee, Hayan; Gurtowski, James; Sedlazeck, Fritz J.; Harkess, Alex; McKain, Michael R.; Liao, Zhenyang; Fang, Jingping; Liu, Juan; Zhang, Xiaodan; Zhang, Qing; Hu, Weichang; Qin, Yuan; Wang, Kai; Chen, Li-Yu; Shirley, Neil; Lin, Yann-Rong; Liu, Li-Yu; Hernandez, Alvaro G.; Wright, Chris L.; Bulone, Vincent; Tuskan, Gerald A.; Heath, Katy; Zee, Francis; Moore, Paul H.; Sunkar, Ramanjulu; Leebens-Mack, James H.; Mockler, Todd; Bennetzen, Jeffrey L.; Freeling, Michael; Sankoff, David; Paterson, Andrew H.; Zhu, Xinguang; Yang, Xiaohan; Smith, J. Andrew C.; Cushman, John C.; Paull, Robert E.; Yu, Qingyi

    2015-11-02

    Pineapple (Ananas comosus (L.) Merr.) is the most economically valuable crop possessing crassulacean acid metabolism (CAM), a photosynthetic carbon assimilation pathway with high water-use efficiency, and the second most important tropical fruit. We sequenced the genomes of pineapple varieties F153 and MD2 and a wild pineapple relative, Ananas bracteatus accession CB5. The pineapple genome has one fewer ancient whole-genome duplication event than sequenced grass genomes and a conserved karyotype with seven chromosomes from before the ρ duplication event. The pineapple lineage has transitioned from C3 photosynthesis to CAM, with CAM-related genes exhibiting a diel expression pattern in photosynthetic tissues. CAM pathway genes were enriched with cis-regulatory elements associated with the regulation of circadian clock genes, providing the first cis-regulatory link between CAM and circadian clock regulation. Lastly, we found pineapple CAM photosynthesis evolved by the reconfiguration of pathways in C3 plants, through the regulatory neofunctionalization of preexisting genes and not through the acquisition of neofunctionalized genes via whole-genome or tandem gene duplication.

  19. The pineapple genome and the evolution of CAM photosynthesis.

    PubMed

    Ming, Ray; VanBuren, Robert; Wai, Ching Man; Tang, Haibao; Schatz, Michael C; Bowers, John E; Lyons, Eric; Wang, Ming-Li; Chen, Jung; Biggers, Eric; Zhang, Jisen; Huang, Lixian; Zhang, Lingmao; Miao, Wenjing; Zhang, Jian; Ye, Zhangyao; Miao, Chenyong; Lin, Zhicong; Wang, Hao; Zhou, Hongye; Yim, Won C; Priest, Henry D; Zheng, Chunfang; Woodhouse, Margaret; Edger, Patrick P; Guyot, Romain; Guo, Hao-Bo; Guo, Hong; Zheng, Guangyong; Singh, Ratnesh; Sharma, Anupma; Min, Xiangjia; Zheng, Yun; Lee, Hayan; Gurtowski, James; Sedlazeck, Fritz J; Harkess, Alex; McKain, Michael R; Liao, Zhenyang; Fang, Jingping; Liu, Juan; Zhang, Xiaodan; Zhang, Qing; Hu, Weichang; Qin, Yuan; Wang, Kai; Chen, Li-Yu; Shirley, Neil; Lin, Yann-Rong; Liu, Li-Yu; Hernandez, Alvaro G; Wright, Chris L; Bulone, Vincent; Tuskan, Gerald A; Heath, Katy; Zee, Francis; Moore, Paul H; Sunkar, Ramanjulu; Leebens-Mack, James H; Mockler, Todd; Bennetzen, Jeffrey L; Freeling, Michael; Sankoff, David; Paterson, Andrew H; Zhu, Xinguang; Yang, Xiaohan; Smith, J Andrew C; Cushman, John C; Paull, Robert E; Yu, Qingyi

    2015-12-01

    Pineapple (Ananas comosus (L.) Merr.) is the most economically valuable crop possessing crassulacean acid metabolism (CAM), a photosynthetic carbon assimilation pathway with high water-use efficiency, and the second most important tropical fruit. We sequenced the genomes of pineapple varieties F153 and MD2 and a wild pineapple relative, Ananas bracteatus accession CB5. The pineapple genome has one fewer ancient whole-genome duplication event than sequenced grass genomes and a conserved karyotype with seven chromosomes from before the ρ duplication event. The pineapple lineage has transitioned from C3 photosynthesis to CAM, with CAM-related genes exhibiting a diel expression pattern in photosynthetic tissues. CAM pathway genes were enriched with cis-regulatory elements associated with the regulation of circadian clock genes, providing the first cis-regulatory link between CAM and circadian clock regulation. Pineapple CAM photosynthesis evolved by the reconfiguration of pathways in C3 plants, through the regulatory neofunctionalization of preexisting genes and not through the acquisition of neofunctionalized genes via whole-genome or tandem gene duplication. PMID:26523774

  20. The Effect of Statins on Blood Gene Expression in COPD

    PubMed Central

    Obeidat, Ma’en; Fishbane, Nick; Nie, Yunlong; Chen, Virginia; Hollander, Zsuzsanna; Tebbutt, Scott J.; Bossé, Yohan; Ng, Raymond T.; Miller, Bruce E.; McManus, Bruce; Rennard, Stephen; Paré, Peter D.; Sin, Don D.

    2015-01-01

    Background COPD is currently the fourth leading cause of death worldwide. Statins are lipid lowering agents with documented cardiovascular benefits. Observational studies have shown that statins may have a beneficial role in COPD. The impact of statins on blood gene expression from COPD patients is largely unknown. Objective Identify blood gene signature associated with statin use in COPD patients, and the pathways underpinning this signature that could explain any potential benefits in COPD. Methods Whole blood gene expression was measured on 168 statin users and 451 non-users from the ECLIPSE study using the Affymetrix Human Gene 1.1 ST microarray chips. Factor Analysis for Robust Microarray Summarization (FARMS) was used to process the expression data. Differential gene expression analysis was undertaken using the Linear Models for Microarray data (Limma) package adjusting for propensity score and surrogate variables. Similarity of the expression signal with published gene expression profiles was performed in ProfileChaser. Results 25 genes were differentially expressed between statin users and non-users at an FDR of 10%, including LDLR, CXCR2, SC4MOL, FAM108A1, IFI35, FRYL, ABCG1, MYLIP, and DHCR24. The 25 genes were significantly enriched in cholesterol homeostasis and metabolism pathways. The resulting gene signature showed correlation with Huntington’s disease, Parkinson’s disease and acute myeloid leukemia gene signatures. Conclusion The blood gene signature of statins’ use in COPD patients was enriched in cholesterol homeostasis pathways. Further studies are needed to delineate the role of these pathways in lung biology. PMID:26462087

  1. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    PubMed

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T

    2009-01-23

    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  2. DIFFERENTIAL GENE EXPRESSION OF PUTATIVE VIRULENCE GENES IN Flavobacterium columnare

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A shot-gun genomic library of the Flavobacterium columnare ALG-530 virulent strain has been constructed and more than 3,000 clones have been sequenced to date (800 contigs). Based on sequence identity with putative known virulence genes from related species, seven genes were selected for differentia...

  3. Gene Expression Profiling of Breast Cancer Brain Metastasis.

    PubMed

    Lee, Ji Yun; Park, Kyunghee; Lee, Eunjin; Ahn, TaeJin; Jung, Hae Hyun; Lim, Sung Hee; Hong, Mineui; Do, In-Gu; Cho, Eun Yoon; Kim, Duk-Hwan; Kim, Ji-Yeon; Ahn, Jin Seok; Im, Young-Hyuck; Park, Yeon Hee

    2016-01-01

    The biology of breast cancer brain metastasis (BCBM) is poorly understood. We aimed to explore genes that are implicated in the process of brain metastasis of primary breast cancer (BC). NanoString nCounter Analysis covering 252 target genes was used for comparison of gene expression levels between 20 primary BCs that relapsed to brain and 41 BCBM samples. PAM50-based intrinsic subtypes such as HER2-enriched and basal-like were clearly over-represented in BCBM. A panel of 22 genes was found to be significantly differentially expressed between primary BC and BCBM. Five of these genes, CXCL12, MMP2, MMP11, VCAM1, and MME, which have previously been associated with tumor progression, angiogenesis, and metastasis, clearly discriminated between primary BC and BCBM. Notably, the five genes were significantly upregulated in primary BC compared to BCBM. Conversely, SOX2 and OLIG2 genes were upregulated in BCBM. These genes may participate in metastatic colonization but not in primary tumor development. Among patient-matched paired samples (n = 17), a PAM50 molecular subtype conversion was observed in eight cases (47.1%), with a trend toward unfavorable subtypes in patients with the distinct gene expression. Our findings, although not conclusive, reveal differentially expressed genes that might mediate the brain metastasis process. PMID:27340107

  4. Gene Expression Profiling of Breast Cancer Brain Metastasis

    PubMed Central

    Lee, Ji Yun; Park, Kyunghee; Lee, Eunjin; Ahn, TaeJin; Jung, Hae Hyun; Lim, Sung Hee; Hong, Mineui; Do, In-Gu; Cho, Eun Yoon; Kim, Duk-Hwan; Kim, Ji-Yeon; Ahn, Jin Seok; Im, Young-Hyuck; Park, Yeon Hee

    2016-01-01

    The biology of breast cancer brain metastasis (BCBM) is poorly understood. We aimed to explore genes that are implicated in the process of brain metastasis of primary breast cancer (BC). NanoString nCounter Analysis covering 252 target genes was used for comparison of gene expression levels between 20 primary BCs that relapsed to brain and 41 BCBM samples. PAM50-based intrinsic subtypes such as HER2-enriched and basal-like were clearly over-represented in BCBM. A panel of 22 genes was found to be significantly differentially expressed between primary BC and BCBM. Five of these genes, CXCL12, MMP2, MMP11, VCAM1, and MME, which have previously been associated with tumor progression, angiogenesis, and metastasis, clearly discriminated between primary BC and BCBM. Notably, the five genes were significantly upregulated in primary BC compared to BCBM. Conversely, SOX2 and OLIG2 genes were upregulated in BCBM. These genes may participate in metastatic colonization but not in primary tumor development. Among patient-matched paired samples (n = 17), a PAM50 molecular subtype conversion was observed in eight cases (47.1%), with a trend toward unfavorable subtypes in patients with the distinct gene expression. Our findings, although not conclusive, reveal differentially expressed genes that might mediate the brain metastasis process. PMID:27340107

  5. Evaluation of four commonly used normalizer genes for the study of decidual gene expression.

    PubMed

    Sousa, Ana Rita Sequeira de; Staff, Anne Cathrine; Johnsen, Guro Mørk; Weedon-Fekjær, Mina Susanne; Størvold, Gro Leite

    2016-07-01

    Reverse transcription quantitative PCR (RT-qPCR) gene expression results must be normalized using stably expressed genes to correct for technical variation. We evaluated the expression of four widely used normalizers (RNA18S, GAPDH, TBP, and YWHAZ) across 59 decidual tissue samples collected by vacuum suction from preeclamptic and normotensive pregnancies. RNA18S and GAPDH were not suitable as normalizers, while YWHAZ and TBP were stably expressed across the study groups. PMID:27324093

  6. In plants, expression breadth and expression level distinctly and non-linearly correlate with gene structure

    PubMed Central

    2009-01-01

    Background Compactness of highly/broadly expressed genes in human has been explained as selection for efficiency, regional mutation biases or genomic design. However, highly expressed genes in flowering plants were shown to be less compact than lowly expressed ones. On the other hand, opposite facts have also been documented that pollen-expressed Arabidopsis genes tend to contain shorter introns and highly expressed moss genes are compact. This issue is important because it provides a chance to compare the selectionism and the neutralism views about genome evolution. Furthermore, this issue also helps to understand the fates of introns, from the angle of gene expression. Results In this study, I used expression data covering more tissues and employ new analytical methods to reexamine the correlations between gene expression and gene structure for two flowering plants, Arabidopsis thaliana and Oryza sativa. It is shown that, different aspects of expression pattern correlate with different parts of gene sequences in distinct ways. In detail, expression level is significantly negatively correlated with gene size, especially the size of non-coding regions, whereas expression breadth correlates with non-coding structural parameters positively and with coding region parameters negatively. Furthermore, the relationships between expression level and structural parameters seem to be non-linear, with the extremes of structural parameters possibly scale as power-laws or logrithmic functions of expression levels. Conclusion In plants, highly expressed genes are compact, especially in the non-coding regions. Broadly expressed genes tend to contain longer non-coding sequences, which may be necessary for complex regulations. In combination with previous studies about other plants and about animals, some common scenarios about the correlation between gene expression and gene structure begin to emerge. Based on the functional relationships between extreme values of structural

  7. Expression of β-Defensin Genes in Bovine Alveolar Macrophages

    PubMed Central

    Ryan, Lisa K.; Rhodes, Janice; Bhat, Meenakshi; Diamond, Gill

    1998-01-01

    Bovine alveolar macrophages (BAM) were examined for the expression of β-defensins and to determine whether their expression could be upregulated by bacterial lipopolysaccharide (LPS), as observed with β-defensins expressed in bovine tracheal epithelial cells. Four β-defensins were expressed constitutively in BAM, with bovine neutrophil β-defensin (BNBD)-4 and BNBD-5 being the most predominant. This is the first evidence of β-defensin gene expression in a mature myeloid cell. LPS had no effect on β-defensin expression in BAM, even though tumor necrosis factor alpha (TNF-α) production was induced. Nonbacterial inflammatory particles had little effect on β-defensin gene expression or TNF-α production in BAM. We hypothesize that constitutively expressed β-defensins of alveolar macrophages may have a role in lung host defense. PMID:9453661

  8. Analysis of gene expression data using self-organizing maps.

    PubMed

    Törönen, P; Kolehmainen, M; Wong, G; Castrén, E

    1999-05-21

    DNA microarray technologies together with rapidly increasing genomic sequence information is leading to an explosion in available gene expression data. Currently there is a great need for efficient methods to analyze and visualize these massive data sets. A self-organizing map (SOM) is an unsupervised neural network learning algorithm which has been successfully used for the analysis and organization of large data files. We have here applied the SOM algorithm to analyze published data of yeast gene expression and show that SOM is an excellent tool for the analysis and visualization of gene expression profiles. PMID:10371154

  9. Membrane channel gene expression in human costal and articular chondrocytes

    PubMed Central

    Asmar, A.; Barrett-Jolley, R.; Werner, A.; Kelly, R.; Stacey, M.

    2016-01-01

    ABSTRACT Chondrocytes are the uniquely resident cells found in all types of cartilage and key to their function is the ability to respond to mechanical loads with changes of metabolic activity. This mechanotransduction property is, in part, mediated through the activity of a range of expressed transmembrane channels; ion channels, gap junction proteins, and porins. Appropriate expression of ion channels has been shown essential for production of extracellular matrix and differential expression of transmembrane channels is correlated to musculoskeletal diseases such as osteoarthritis and Albers-Schönberg. In this study we analyzed the consistency of gene expression between channelomes of chondrocytes from human articular and costal (teenage and fetal origin) cartilages. Notably, we found 14 ion channel genes commonly expressed between articular and both types of costal cartilage chondrocytes. There were several other ion channel genes expressed only in articular (6 genes) or costal chondrocytes (5 genes). Significant differences in expression of BEST1 and KCNJ2 (Kir2.1) were observed between fetal and teenage costal cartilage. Interestingly, the large Ca2+ activated potassium channel (BKα, or KCNMA1) was very highly expressed in all chondrocytes examined. Expression of the gap junction genes for Panx1, GJA1 (Cx43) and GJC1 (Cx45) was also observed in chondrocytes from all cartilage samples. Together, this data highlights similarities between chondrocyte membrane channel gene expressions in cells derived from different anatomical sites, and may imply that common electrophysiological signaling pathways underlie cellular control. The high expression of a range of mechanically and metabolically sensitive membrane channels suggest that chondrocyte mechanotransduction may be more complex than previously thought. PMID:27116676

  10. Cloning and expression pattern of akirin2 gene in broiler.

    PubMed

    Man, Chaolai; Chang, Yang; Mu, Weitao; Zhao, Dongxue

    2014-12-01

    Akirin2 is an important nuclear factor which plays functions in innate immune response, myogenesis, muscle development, and carcinogenesis. In this study, akirin2 genes were cloned from 4-day-old Sanhuang and AA(+) broiler, and its expression patterns were analyzed by RT-PCR. The results showed that there were four SNPs in the 5'-terminal region of akirin2 coding sequences. Expression profile analysis showed that the akirin2 transcripts were constitutively expressed in 15 tissues tested, and similar expression patterns were found between the two breeds of broilers. In addition, one of the interesting findings was that the akirin2 gene is highly expressed in blood and lowly expressed in heart, respectively. These data can serve as a foundation for further studying functions of akirin2 gene. PMID:25098451

  11. Control of alphavirus-based gene expression using engineered riboswitches.

    PubMed

    Bell, Christie L; Yu, Dong; Smolke, Christina D; Geall, Andrew J; Beard, Clayton W; Mason, Peter W

    2015-09-01

    Alphavirus-based replicons are a promising nucleic acid vaccine platform characterized by robust gene expression and immune responses. To further explore their use in vaccination, replicons were engineered to allow conditional control over their gene expression. Riboswitches, comprising a ribozyme actuator and RNA aptamer sensor, were engineered into the replicon 3' UTR. Binding of ligand to aptamer modulates ribozyme activity and, therefore, gene expression. Expression from DNA-launched and VRP-packaged replicons containing riboswitches was successfully regulated, achieving a 47-fold change in expression and modulation of the resulting type I interferon response. Moreover, we developed a novel control architecture where riboswitches were integrated into the 3' and 5' UTR of the subgenomic RNA region of the TC-83 virus, leading to an 1160-fold regulation of viral replication. Our studies demonstrate that the use of riboswitches for control of RNA replicon expression and viral replication holds promise for development of novel and safer vaccination strategies. PMID:26005949

  12. Scaling of Gene Expression with Transcription-Factor Fugacity

    NASA Astrophysics Data System (ADS)

    Weinert, Franz M.; Brewster, Robert C.; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K.

    2014-12-01

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve.

  13. The Role of Nuclear Bodies in Gene Expression and Disease

    PubMed Central

    Morimoto, Marie; Boerkoel, Cornelius F.

    2013-01-01

    This review summarizes the current understanding of the role of nuclear bodies in regulating gene expression. The compartmentalization of cellular processes, such as ribosome biogenesis, RNA processing, cellular response to stress, transcription, modification and assembly of spliceosomal snRNPs, histone gene synthesis and nuclear RNA retention, has significant implications for gene regulation. These functional nuclear domains include the nucleolus, nuclear speckle, nuclear stress body, transcription factory, Cajal body, Gemini of Cajal body, histone locus body and paraspeckle. We herein review the roles of nuclear bodies in regulating gene expression and their relation to human health and disease. PMID:24040563

  14. Scaling of gene expression with transcription-factor fugacity.

    PubMed

    Weinert, Franz M; Brewster, Robert C; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K

    2014-12-19

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve. PMID:25554908

  15. Scaling of Gene Expression with Transcription-Factor Fugacity

    PubMed Central

    Weinert, Franz M.; Brewster, Robert C.; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K.

    2015-01-01

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve. PMID:25554908

  16. A model for gene deregulation detection using expression data

    PubMed Central

    2015-01-01

    In tumoral cells, gene regulation mechanisms are severely altered. Genes that do not react normally to their regulators' activity can provide explanations for the tumoral behavior, and be characteristic of cancer subtypes. We thus propose a statistical methodology to identify the misregulated genes given a reference network and gene expression data. Our model is based on a regulatory process in which all genes are allowed to be deregulated. We derive an EM algorithm where the hidden variables correspond to the status (under/over/normally expressed) of the genes and where the E-step is solved thanks to a message passing algorithm. Our procedure provides posterior probabilities of deregulation in a given sample for each gene. We assess the performance of our method by numerical experiments on simulations and on a bladder cancer data set. PMID:26679516

  17. Effects of chronic ozone exposure on gene expression in Arabidopsis thaliana ecotypes and in Thellungiella halophila.

    PubMed

    Li, Pinghua; Mane, Shrinivasrao P; Sioson, Allan A; Robinet, Cecilia Vasquez; Heath, Lenwood S; Bohnert, Hans J; Grene, Ruth

    2006-05-01

    Arabidopsis thaliana (At) ecotypes Columbia-0 (Col-0), Wassilewskija (WS), Cape Verde Islands (Cvi-0) and a relative, Thellungiella halophila (Th), were exposed to 20-25% over ambient ozone [O3] in a free air concentration enrichment (FACE) experiment (http://www.soyFACE. uiuc.edu), mirroring increases expected in the near future. Col-0 and WS accelerated development and developed lesions within 10 d under increased ozone, while Cvi-0 and Th grew slowly. RNAs were used in microarray hybridizations (Col-0-based 26 000 elements, 70-mer oligonucleotides). A two-step analysis of variance (ANOVA) model, including comparison with values obtained under [O3], was used for analyses. WS showed the greatest number of changes in gene expression in response to ozone. Th showed the least changes, suggesting that its expression state at [O3] was sufficient for resistance at increased ozone. Patterns observed in ambient air controls for Cvi-0 and Col-0 were most similar, while Th showed the greatest number of differences compared with the other controls. Compared with Col-0, however, Cvi-0 showed higher levels of expression of chaperones, receptor kinase-like and photosynthesis-related genes in ambient air. Cvi-0 exhibited ozone-mediated changes in a pathway involving AtSR, a homologue of the mammalian NF kappa B family of redox-sensitive transcription factors, changes in chaperones, WRKY and C2H2 proteins and antioxidants. WS displayed ozone-mediated decreases in the expression of two AtSR/NF kappa B family members, C2-domain proteins and genes associated with cell wall growth and changes in the expression of marker genes for programmed cell death (PCD), among them RCD1, a key regulator in this pathway. Microarray data were verified by reverse transcriptase (RT)-PCR. We relate O3-response diversity across the four lines to different responses among signaling and transcriptional response networks and differences in gene expression at [O3] levels. PMID:17087469

  18. Gene expression changes during retinal development and rod specification

    PubMed Central

    Carrigan, Matthew; Hokamp, Karsten; Farrar, G. Jane

    2015-01-01

    Purpose Retinitis pigmentosa (RP) typically results from individual mutations in any one of >70 genes that cause rod photoreceptor cells to degenerate prematurely, eventually resulting in blindness. Gene therapies targeting individual RP genes have shown efficacy at clinical trial; however, these therapies require the surviving photoreceptor cells to be viable and functional, and may be economically feasible for only the more commonly mutated genes. An alternative potential treatment strategy, particularly for late stage disease, may involve stem cell transplants into the photoreceptor layer of the retina. Rod progenitors from postnatal mouse retinas can be transplanted and can form photoreceptors in recipient adult retinas; optimal numbers of transplantable cells are obtained from postnatal day 3–5 (P3–5) retinas. These cells can also be expanded in culture; however, this results in the loss of photoreceptor potential. Gene expression differences between postnatal retinas, cultured retinal progenitor cells (RPCs), and rod photoreceptor precursors were investigated to identify gene expression patterns involved in the specification of rod photoreceptors. Methods Microarrays were used to investigate differences in gene expression between cultured RPCs that have lost photoreceptor potential, P1 retinas, and fresh P5 retinas that contain significant numbers of transplantable photoreceptors. Additionally, fluorescence-activated cell sorting (FACS) sorted Rho-eGFP-expressing rod photoreceptor precursors were compared with Rho-eGFP-negative cells from the same P5 retinas. Differential expression was confirmed with quantitative polymerase chain reaction (q-PCR). Results Analysis of the microarray data sets, including the use of t-distributed stochastic neighbor embedding (t-SNE) to identify expression pattern neighbors of key photoreceptor specific genes, resulted in the identification of 636 genes differentially regulated during rod specification. Forty-four of these

  19. Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids.

    PubMed Central

    Wang, Jianlin; Tian, Lu; Madlung, Andreas; Lee, Hyeon-Se; Chen, Meng; Lee, Jinsuk J; Watson, Brian; Kagochi, Trevor; Comai, Luca; Chen, Z Jeffrey

    2004-01-01

    Polyploidization is an abrupt speciation mechanism for eukaryotes and is especially common in plants. However, little is known about patterns and mechanisms of gene regulation during early stages of polyploid formation. Here we analyzed differential expression patterns of the progenitors' genes among successive selfing generations and independent lineages. The synthetic Arabidopsis allotetraploid lines were produced by a genetic cross between A. thaliana and A. arenosa autotetraploids. We found that some progenitors' genes are differentially expressed in early generations, whereas other genes are silenced in late generations or among different siblings within a selfing generation, suggesting that the silencing of progenitors' genes is rapidly and/or stochastically established. Moreover, a subset of genes is affected in autotetraploid and multiple independent allotetraploid lines and in A. suecica, a natural allotetraploid derived from A. thaliana and A. arenosa, indicating locus-specific susceptibility to ploidy-dependent gene regulation. The role of DNA methylation in silencing progenitors' genes is tested in DNA-hypomethylation transgenic lines of A. suecica using RNA interference (RNAi). Two silenced genes are reactivated in both ddm1- and met1-RNAi lines, consistent with the demethylation of centromeric repeats and gene-specific regions in the genome. A rapid and stochastic process of differential gene expression is reinforced by epigenetic regulation during polyploid formation and evolution. PMID:15342533

  20. Identification of Reference Genes in Human Myelomonocytic Cells for Gene Expression Studies in Altered Gravity

    PubMed Central

    Thiel, Cora S.; Hauschild, Swantje; Tauber, Svantje; Paulsen, Katrin; Raig, Christiane; Raem, Arnold; Biskup, Josefine; Gutewort, Annett; Hürlimann, Eva; Philpot, Claudia; Lier, Hartwin; Engelmann, Frank; Layer, Liliana E.

    2015-01-01

    Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes (“housekeeping genes”) are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity. PMID:25654098

  1. Profiling of chicken adipose tissue gene expression by genome array

    PubMed Central

    Wang, Hong-Bao; Li, Hui; Wang, Qi-Gui; Zhang, Xin-Yu; Wang, Shou-Zhi; Wang, Yu-Xiang; Wang, Xiu-Ping

    2007-01-01

    Background Excessive accumulation of lipids in the adipose tissue is a major problem in the present-day broiler industry. However, few studies have analyzed the expression of adipose tissue genes that are involved in pathways and mechanisms leading to adiposity in chickens. Gene expression profiling of chicken adipose tissue could provide key information about the ontogenesis of fatness and clarify the molecular mechanisms underlying obesity. In this study, Chicken Genome Arrays were used to construct an adipose tissue gene expression profile of 7-week-old broilers, and to screen adipose tissue genes that are differentially expressed in lean and fat lines divergently selected over eight generations for high and low abdominal fat weight. Results The gene expression profiles detected 13,234–16,858 probe sets in chicken adipose tissue at 7 weeks, and genes involved in lipid metabolism and immunity such as fatty acid binding protein (FABP), thyroid hormone-responsive protein (Spot14), lipoprotein lipase(LPL), insulin-like growth factor binding protein 7(IGFBP7) and major histocompatibility complex (MHC), were highly expressed. In contrast, some genes related to lipogenesis, such as leptin receptor, sterol regulatory element binding proteins1 (SREBP1), apolipoprotein B(ApoB) and insulin-like growth factor 2(IGF2), were not detected. Moreover, 230 genes that were differentially expressed between the two lines were screened out; these were mainly involved in lipid metabolism, signal transduction, energy metabolism, tumorigenesis and immunity. Subsequently, real-time RT-PCR was performed to validate fifteen differentially expressed