Science.gov

Sample records for photovoltaic cells final

  1. Photovoltaic cell

    DOEpatents

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  2. Photovoltaic cell

    SciTech Connect

    Bronstein-Bonte, I.Y.; Fischer, A.B.

    1986-12-16

    This patent describes a product comprising a photovoltaic cell including a luminescent dye which will absorb radiation at a wavelength to which the cell is not significantly responsive and emit radiation at a higher wavelength at which it is responsive. The improvement described here is wherein the dye comprises a lepidopterene.

  3. 77 FR 35425 - Crystalline Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... 7, 2011. See 76 FR 61937 (Oct. 6, 2011) and the newly revised Commission's Handbook on E-Filing... COMMISSION Crystalline Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of... crystalline silicon photovoltaic cells and modules, provided for in subheadings 8501.31.80, 8501.61.00,...

  4. Photovoltaic cell

    SciTech Connect

    Jordan, J.F.; Lampkin, C.M.

    1981-12-08

    A photovoltaic cell has: an electrically conductive substrate, which may be glass having a film of conductive tin oxide; a first layer containing a suitable semiconductor, which layer has a first component film with an amorphous structure and a second component film with a polycrystalline structure; a second layer forming a heterojunction with the first layer; and suitable electrodes where the heterojunction is formed from a solution containing copper, the amorphous film component is superposed above an electrically conductive substrate to resist permeation of the copper-containing material to shorting electrical contact with the substrate. The penetration resistant amporphous layer permits a variety of processes to be used in forming the heterojunction with even very thin layers (1-6 mu thick) of underlying polycrystalline semi-conductor materials. In some embodiments, the amorphous-like structure may be formed by the addition of aluminum or zirconium compounds to a solution of cadmium salts sprayed over a heated substrate.

  5. Photovoltaic cell

    SciTech Connect

    Jordan, J. F.; Lampkin, C. M.

    1981-02-03

    A photovoltaic cell is disclosed having an electrically conductive substrate, which may be glass having a film of conductive tin oxide. A first layer contains a suitable semiconductor, which layer has a first component film with an amorphous structure and a second component film with a polycrystalline structure a second layer forms a heterojunction with the first layer suitable electrodes are provided where the heterojunction is formed from a solution containing copper, and the amorphous film component is superposed above an electrically conductive substrate to resist permeation of the copper-containing material to shorting electrical contact with the substrate. The penetration resistant amorphous layer permits a variety of processes to be used in forming the heterojunction with even very thin layers (1-6 mu thick) of underlying polycrystalline semi-conductor materials. In some embodiments, the amorphous-like structure may be formed by the addition of aluminum or zirconium compounds to a solution of cadmium salts sprayed over a heated substrate.

  6. Transparent ultraviolet photovoltaic cells.

    PubMed

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future. PMID:26872163

  7. Solar Photovoltaic Cells.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  8. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  9. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  10. Increased voltage photovoltaic cell

    NASA Technical Reports Server (NTRS)

    Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)

    1985-01-01

    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.

  11. High-Efficiency Thin-Film Cadmium Telluride Photovoltaic Cells; Final Subcontract Report,

    SciTech Connect

    A.D. Compaan; R.G. Bohn.

    1998-12-09

    This report describes work performed during the past year by The University of Toledo photovoltaics group. Researchers continued to develop rf sputtering for CdS/CdTe thin-film solar cells and to optimize the post-deposition process steps to match the characteristics of the sputtering process. During the fourth phase of the present contract, we focused on determining factors that limit the efficiency in our all-sputtered thin-film CdTe solar cells on soda-lime glass. These issues include controlling CdS/CdTe interdiffusion, understanding the properties of the CdSxTe1-x alloy, optimizing process conditions for CdCl2 treatments, manipulating the influence of ion bombardment during rf sputtering, and understanding the role of copper in quenching photoluminescence and carrier lifetimes in CdTe. To better understand the important CdS/CdTe interdiffusion process, we have continued our collaboration with the University at Buffalo and Brookhaven National Synchrotron Light Source in measurements using grazing-incidence X-rays. Interdiffusion results in the formation of the ternary alloy material CdSxTe1-x at or near the heterojunction, where its properties are critical to the operation of the solar cell. We have placed significant effort on characterizing this alloy, an effort begun in the last phase. A complete set of films spanning the alloy range, prepared by pulsed-laser deposition, has now been characterized by wavelength dispersive X-ray spectroscopy and optical absorption at NREL; by Raman scattering, X-ray diffraction, and electrical measurements in our lab; and by spectroscopic ellipsometry at Brooklyn College. We continued to participate in cooperative activity with the CdTe National Team. We prepared a series of depositions on borosilicate glass substrates having doped SnO2 layers coated with TiO2 (prepared by the University of South Florida and Harvard) and similar substrates having a resistive SnO2 layer on the doped tin oxide (fabricated by Golden Photon). The

  12. Flexible, rollable photovoltaic cell module

    SciTech Connect

    Cull, C.R.; Hartman, R.A.; Koch, P.E.

    1986-03-04

    A photovoltaic module is described consisting of: busbar means; individual photovoltaic cell strips, each cell strip having an electrically conductive substrate layer, a semiconductor body deposited on the substrate layer, and a transparent electrically conductive layer deposited on the semiconductor body, the transparent electrically conductive layer being selectively sectioned to define electrically distinct photovoltaic cells carried by the cell strip; grid means deposited on the transparent electrically conductive layer of each of the photovoltaic cell; continuous electrically conductive filament means alternately and repetitively connected, at contact points, to the electrically conductive substrate layer of one photovoltaic cell strip and to the grid means of another photovoltaic cell strip; wherein the filament means is connected medially of the lateral edges of the respective cell strips; and means for connecting the transparent electrically conductive layer of one photovoltaic cell strip to the busbar means.

  13. Thin film photovoltaic cell

    DOEpatents

    Meakin, John D.; Bragagnolo, Julio

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  14. Photovoltaic cell array

    NASA Technical Reports Server (NTRS)

    Eliason, J. T. (Inventor)

    1976-01-01

    A photovoltaic cell array consisting of parallel columns of silicon filaments is described. Each fiber is doped to produce an inner region of one polarity type and an outer region of an opposite polarity type to thereby form a continuous radial semi conductor junction. Spaced rows of electrical contacts alternately connect to the inner and outer regions to provide a plurality of electrical outputs which may be combined in parallel or in series.

  15. Photocurrent of Photovoltaic Cells

    NASA Astrophysics Data System (ADS)

    Peeler, Seth; McIntyre, Max; Cossel, Raquel; Bowser, Chris; Tzolov, Marian

    Photovoltaic cells can be used to harness clean, renewable energy from light. Examined in this project were photovoltaic cells based on a bulk heterojunction between PCPDTBT and PCBM sandwiched between an ITO anode and an Al cathode. Current-voltage characteristics and impedance spectra for multiple photovoltaic devices were taken under varying DC electrical bias and different level of illumination. This data was interpreted in terms of an equivalent circuit with linear elements, e.g. capacitance, series resistance, and parallel resistance. A physical interpretation of each circuit element will be presented. The spectral response of the devices was characterized by optical transmission and photocurrent spectroscopy using a spectrometer in the spectral range from 300 to 900 nm. The DC measurements confirmed that the devices are electrically rectifying. The AC measurements allowed modeling of the devices as a dielectric between two electrodes with injection current passing through it. The characteristic peaks for both PCBDTBT and PCBM are clearly visible in both the photocurrent and transmission data. The good correlation between the photocurrent and transmission data indicates photocurrent generation due to absorption in both materials constituting the heterojunction.

  16. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  17. Graphite-based photovoltaic cells

    DOEpatents

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  18. Photovoltaic research opportunities. Final report

    SciTech Connect

    Macaleer, B.; Bowers, J.; Hurlburt, B.

    1985-11-19

    The purpose of this study is to identify opportunities for photovoltaic (PV) research projects to capitalize on related but non-PV research. The study is performed under the assumption that a considerable body of ongoing semiconductor research in non-PV areas could be of value to its PV Program and the PV community in general. Research related to III-V compounds, thin films, and crystalline silicon materials is included. Research that is known to be PV-related or sponsored by DOE was excluded from consideration. The study resulted in 11 recommendations (research areas) and a subset of 58 specific research projects. In addition, over 75 non-PV research managers in the semiconductor field are identified as potential sources of ideas which could benefit photovoltaics.

  19. Electrochemical photovoltaic cells. Project 65021 final technical progress report, April 15, 1979-April 17, 1980

    SciTech Connect

    Ang, P.G.P.; Sammells, A.F.

    1980-09-01

    The overall goals of this program have been to experimentally identify semiconductor photoanode/redox couple systems that (a) show promise of meeting acceptable solar efficiencies using polycrystalline materials, and (b) have the potential for use in conjunction with a suitable cathode in which another redox species is available for reduction. Such an overall system allows for the convenient removal, storage, and later discharge of reaction products through the use of porous, flow-through redox electrodes. Increasing solar energy conversion efficiencies and identifying potentially long-life systems were emphasized. Semiconductor/redox couple systems were selected on the basis of the apparent positions of their conduction and valence band energy levels at the interface, together with the semiconductor decomposition potential. Selected redox couples should possess equilibrium potentials that lie negative of the semiconductor decomposition potential and positive of the semiconductor conduction band. Liquid-junction solar cells were characterized using n-MoSe/sub 2/, n-WSe/sub 2/, n-CdSe, and n-GaAs as photoanodes. Results are presented in detail. (WHK)

  20. Electrochemical photovoltaic cells CdSe thin film electrodes. Final report, June 1979-June 1980

    SciTech Connect

    Russak, M.A.; Reichman, J.; DeCarlo, J.; Creter, C.

    1980-07-01

    Progress on developing stable, thin-film CdSe electrodes with sunlight conversion efficiency of 10% for use with aqueous polysulfide electrolytes in frontwall and backwall illuminated EPCs is reported. The main effort has been directed towards establishing the relationships among thin-film processing, resultant electronic properties and I-V performance in order to produce electrodes with maximum power conversion efficiency. The most encouraging results have been obtained with CdSe thin-film electrodes produced in two ways for frontwall cells. Films were deposited on titanium at approximately 100/sup 0/C with a high Se/Cd ratio and then heat treated in air at 350 to 400/sup 0/C. These films usually have a very fine grained microstructure after heat treatment and the resultant electrodes exhibit fairly square I-V characteristics with fill factors of 0.6 or greater and high current output. The overall power efficiency of these electrodes is limited by relatively low output voltages. At present, power conversion efficiencies of 3 to 5% can be obtained reproducibly at simulated AM2 conditions with electrodes processed in this manner. The second type of film that has yielded very promising results is deposited on titanium at substrate temperatures greater than 400/sup 0/C. The interesting feature of these electrodes is their increased open circuit voltage. However, the current output and fill factor are lower. As a result, the power conversion efficiency of these electrodes is 3 to 4%. Backwall electrodes with an efficiency of greater than 4% and short circuit densities near theoretical for AM2 conditions have been produced.

  1. Electrochemical photovoltaic cells/stabilization and optimization of II-VI semiconductors. Final technical report

    SciTech Connect

    Noufi, R.; Tench, D.; Warren, L.

    1980-05-01

    The overall goal of this program is to provide the basis for designing a practical electrochemical solar cell based on the II-VI compound semiconductors. Emphasis is on developing new electrolyte redox sytems and electrode surface modifications which will stabilize the II-VI compounds against photodissolution without seriously degrading the long-term solar response. The bulk electrode material properties are also being optimized to provide the maximum solar conversion efficiency and greatest inherent electrode stability. Stabilization of n-CdSe against photodissolution has been achieved for the methanol/tetraethylammonium ferro-ferricyanide system. No degradation of the photocurrent or the electrode surface, even in the presence of traces of water, has been observed for runs up to 700 h at 6 mA/cm/sup 2/ and approx. AM1 light intensity. With higher quality single crystal CdSe, stable sort-circuit photocurrents of 15 to 17 mA/cm/sup 2/ and an open circuit voltage of 0.7 V (tungsten-halogen illumination) have been obtained, corresponding to a conversion efficiency of about 5%. Preliminary evaluation of a series of sulfur-containing 1,2-dithiolene metal complexes for stabilization of CdX photoanodes in acetonitrile solution has been completed. For the first time, a conducting polymer film (derived from pyrrole) has been electrochemically deposited on a semiconductor electrode. This could represent a breakthrough in the use of hydrophobic films to protect semiconductor photoanodes from dissolution/degradation. Mixed CdSe-CdTe solid solution electrodes were found to exhibit a minimum in both the flatband potential and the bandgap at approx. 65% CdTe. Both of these shifts would have a detrimental effect on the solar conversion efficiency.

  2. Polycrystalline photovoltaic cell

    SciTech Connect

    Jordan, J.F.; Lampkin, C.M.

    1983-10-25

    A photovoltaic cell is disclosed, having an electrically conductive substrate, which may be glass having a film of conductive tin oxide; a first layer containing a suitable semiconductor, which layer has a first component film with an amorphous structure and a second component film with a polycrystalline structure; a second layer forming a heterojunction with the first layer; and suitable electrodes where the heterojunction is formed from a solution containing copper, the amorphous film component is superposed above an electrically conductive substrate to resist permeation of the copper-containing material to shorting electrical contact with the substrate. The penetration resistant amorphous layer permits a variety of processes to be used in forming the heterojunction with even very thin layers (1-6 /SUB u/ thick) of underlying polycrystalline semiconductor materials. In some embodiments, the amorphous-like structure may be formed by the addition of aluminum or zirconium compounds to a solution of cadmium salts sprayed over a heated substrate.

  3. Photovoltaic cell assembly

    DOEpatents

    Beavis, Leonard C.; Panitz, Janda K. G.; Sharp, Donald J.

    1990-01-01

    A photovoltaic assembly for converting high intensity solar radiation into lectrical energy in which a solar cell is separated from a heat sink by a thin layer of a composite material which has excellent dielectric properties and good thermal conductivity. This composite material is a thin film of porous Al.sub.2 O.sub.3 in which the pores have been substantially filled with an electrophoretically-deposited layer of a styrene-acrylate resin. This composite provides electrical breakdown strengths greater than that of a layer consisting essentially of Al.sub.2 O.sub.3 and has a higher thermal conductivity than a layer of styrene-acrylate alone.

  4. Interband Cascade Photovoltaic Cells

    SciTech Connect

    Yang, Rui Q.; Santos, Michael B.; Johnson, Matthew B.

    2014-09-24

    In this project, we are performing basic and applied research to systematically investigate our newly proposed interband cascade (IC) photovoltaic (PV) cells [1]. These cells follow from the great success of infrared IC lasers [2-3] that pioneered the use of quantum-engineered IC structures. This quantum-engineered approach will enable PV cells to efficiently convert infrared radiation from the sun or other heat source, to electricity. Such cells will have important applications for more efficient use of solar energy, waste-heat recovery, and power beaming in combination with mid-infrared lasers. The objectives of our investigations are to: achieve extensive understanding of the fundamental aspects of the proposed PV structures, develop the necessary knowledge for making such IC PV cells, and demonstrate prototype working PV cells. This research will focus on IC PV structures and their segments for utilizing infrared radiation with wavelengths from 2 to 5 μm, a range well suited for emission by heat sources (1,000-2,000 K) that are widely available from combustion systems. The long-term goal of this project is to push PV technology to longer wavelengths, allowing for relatively low-temperature thermal sources. Our investigations address material quality, electrical and optical properties, and their interplay for the different regions of an IC PV structure. The tasks involve: design, modeling and optimization of IC PV structures, molecular beam epitaxial growth of PV structures and relevant segments, material characterization, prototype device fabrication and testing. At the end of this program, we expect to generate new cutting-edge knowledge in the design and understanding of quantum-engineered semiconductor structures, and demonstrate the concepts for IC PV devices with high conversion efficiencies.

  5. Photovoltaic-cell-research priorities

    SciTech Connect

    Bornstein, J.G.; Hien, L.K.; Silberglitt, R.

    1983-09-30

    The current state of research and development on photovoltaic materials and advanced concepts are reviewed, and priority research activities for improved photovoltaic cells in the major individual research areas (i.e., silicon, III-V materials, II-VI materials) are identified. Also noted is the importance of reserving a small but finite portion of photovoltaic research funding for out-of-the-mainstream research. The major features of a research management philosophy aimed at attracting the best available scientific resources and research capabilities to photovoltaic research and development are outlined. The priority research activities in the principal areas of photovoltaic research are then summarized and compared, and the overall conclusions of the assessment are presented. (LEW)

  6. 77 FR 73017 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ... Determination and Final Affirmative Critical Circumstances Determination, 77 FR 63788 (October 17, 2012). Scope... International Trade Administration Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules... issuing a countervailing duty order on crystalline silicon photovoltaic cells, whether or not...

  7. Photovoltaic cell and production thereof

    DOEpatents

    Narayanan, Srinivasamohan; Kumar, Bikash

    2008-07-22

    An efficient photovoltaic cell, and its process of manufacture, is disclosed wherein the back surface p-n junction is removed from a doped substrate having an oppositely doped emitter layer. A front surface and edges and optionally the back surface periphery are masked and a back surface etch is performed. The mask is not removed and acts as an anti-reflective coating, a passivating agent, or both. The photovoltaic cell retains an untextured back surface whether or not the front is textured and the dopant layer on the back surface is removed to enhance the cell efficiency. Optionally, a back surface field is formed.

  8. Photovoltaic cells employing zinc phosphide

    DOEpatents

    Barnett, Allen M.; Catalano, Anthony W.; Dalal, Vikram L.; Masi, James V.; Meakin, John D.; Hall, Robert B.

    1984-01-01

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  9. Optimizing Grid Patterns on Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1984-01-01

    CELCAL computer program helps in optimizing grid patterns for different photovoltaic cell geometries and metalization processes. Five different powerloss phenomena associated with front-surface metal grid pattern on photovoltaic cells.

  10. Inverted organic photovoltaic cells.

    PubMed

    Wang, Kai; Liu, Chang; Meng, Tianyu; Yi, Chao; Gong, Xiong

    2016-05-21

    The advance in lifestyle, modern industrialization and future technological revolution are always at high expense of energy consumption. Unfortunately, there exist serious issues such as limited storage, high cost and toxic contamination in conventional fossil fuel energy sources. Instead, solar energy represents a renewable, economic and green alternative in the future energy market. Among the photovoltaic technologies, organic photovoltaics (OPVs) demonstrate a cheap, flexible, clean and easy-processing way to convert solar energy into electricity. However, OPVs with a conventional device structure are still far away from industrialization mainly because of their short lifetime and the energy-intensive deposition of top metal electrode. To address the stability and cost issue simultaneously, an inverted device structure has been introduced into OPVs, bridging laboratory research with practical application. In this review, recent progress in device structures, working mechanisms, functions and advances of each component layer as well their correlations with the efficiency and stability of inverted OPVs are reviewed and illustrated. PMID:27087582

  11. Electrochemical photovoltaic cells and electrodes

    DOEpatents

    Skotheim, Terje A.

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  12. Improved photovoltaic cells and electrodes

    DOEpatents

    Skotheim, T.A.

    1983-06-29

    Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  13. Photovoltaic Manufacturing Technology, Phase 1, Final report

    SciTech Connect

    Easoz, J.R.; Herlocher, R.H. )

    1991-12-01

    This report examines the cost-effective manufacture of dendritic-web-based photovoltaic modules. It explains how process changes can increase production and reduce manufacturing costs. Long-range benefits of these improved processes are also discussed. Problems are identified that could impede increasing production and reducing costs; approaches to solve these problems are presented. These approaches involve web growth throughput, cell efficiency, process yield, silicon use, process control, automation, and module efficiency. Also discussed are the benefits of bifacial module design, unique to the dendritic web process.

  14. High-Efficiency Thin-Film Cadmium Telluride Photovoltaic Cells; Final Subcontract Report, Final Technical Report, 21 January 1994-31 March 1998

    SciTech Connect

    Compaan, A. D.; Bohn, R. G.

    1998-12-09

    This report describes work performed during the past year by The University of Toledo photovoltaics group. Researchers continued to develop rf sputtering for CdS/CdTe thin-film solar cells and to optimize the post-deposition process steps to match the characteristics of the sputtering process. During the fourth phase of the present contract, we focused on determining factors that limit the efficiency in our ''all-sputtered'' thin-film CdTe solar cells on soda-lime glass. These issues include controlling CdS/CdTe interdiffusion, understanding the properties of the CdS{sub x}Te{sub 1-x} alloy, optimizing process conditions for CdCl{sub 2} treatments, manipulating the influence of ion bombardment during rf sputtering, and understanding the role of copper in quenching photoluminescence and carrier lifetimes in CdTe. To better understand the important CdS/CdTe interdiffusion process, we have continued our collaboration with the University at Buffalo and Brookhaven National Synchrotron Light Source in measurements using grazing-incidence X-rays. Interdiffusion results in the formation of the ternary alloy material CdS{sub x}Te{sub 1-x} at or near the heterojunction, where its properties are critical to the operation of the solar cell. We have placed significant effort on characterizing this alloy, an effort begun in the last phase. A complete set of films spanning the alloy range, prepared by pulsed-laser deposition, has now been characterized by wavelength dispersive X-ray spectroscopy and optical absorption at NREL; by Raman scattering, X-ray diffraction, and electrical measurements in our lab; and by spectroscopic ellipsometry at Brooklyn College. We continued to participate in cooperative activity with the CdTe National Team. We prepared a series of depositions on borosilicate glass substrates having doped SnO{sub 2} layers coated with TiO{sub 2} (prepared by the University of South Florida and Harvard) and similar substrates having a resistive SnO{sub 2} layer on

  15. Functional substrates for flexible organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Niggemann, M.; Ruf, D.; Bläsi, B.; Glatthaar, M.; Riede, M.; Müller, C.; Zimmermann, B.; Gombert, A.

    2005-10-01

    Along with efficiency and lifetime, costs are one of the most important aspects for the commercialization of organic solar cells. Thinking of large scale production of organic solar cells by an efficient reel-to-reel process, the materials are expected to determine the costs of the final product. Our approach is to develop functional substrates for organic solar cells which have the potential for cost effective production. The functionality is obtained by combining periodically microstructured substrates with lamellar electrode structures. Such structured substrates were fabricated by cost effective replication from masterstructures that were generated by large area interference lithography. Two cell architectures were investigated - holographic microprisms and interdigital buried nanoelectrodes. A structure period of 20 μm in combination with a 2 μm wide metal grid was chosen for the microprism cells based on the results of electrical calculations. Current-voltage curves with reasonable fill factors were measured for these devices. A significant light trapping effect was predicted from optical simulations. Interdigital buried nanoelectrodes are embedded in the photoactive layer of the solar cell. Separated interdigital metal electrodes with a sufficiently high parallel resistance were manufactured despite a small electrode distance below 400 nm. Experimental results on first photovoltaic devices will be presented. We observe an insufficient rectification of the photovoltaic device which we attribute to partial electron injection into the gold anode.

  16. Photovoltaic cell with thin CS layer

    DOEpatents

    Jordan, John F.; Albright, Scot P.

    1994-01-18

    An improved photovoltaic panel and method of forming a photovoltaic panel are disclosed for producing a high efficiency CdS/CdTe photovoltaic cell. The photovoltaic panel of the present invention is initially formed with a substantially thick Cds layer, and the effective thickness of the CdS layer is substantially reduced during regrowth to both form larger diameter CdTe crystals and substantially reduce the effective thickness of the C This invention was made with Government support under Subcontract No. ZL-7-06031-3 awarded by the Department of Energy. The Government has certain rights in this invention.

  17. High Performance Photovoltaic Solar Cells: Cooperative Research and Development Final Report, CRADA Number CRD-05-169

    SciTech Connect

    Steiner, M.

    2012-07-01

    NREL will provide certified measurements of the conversion efficiency at high concentration for several multijunction solar cells that were fabricated by Cyrium Technologies. In an earlier phase of the CRADA, Cyrium provided epitaxially-grown material and NREL processed the samples into devices and measured the performance.

  18. Photovoltaic mechanisms in polycrystalline thin film silicon solar cells. Final report, 30 June 1979-29 June 1980

    SciTech Connect

    Sopori, B.L.

    1980-11-01

    The objectives of this program were: (1) to develop appropriate measurement techniques to facilitate a quantitative study of the electrical activity of structural defects and at a grain boundary (G.B.) in terms of generation-recombination, barrier height, and G.B. conductivity; (2) to characterize G.B.s in terms of physical properties such as angle of misfit and local stress, and to correlate them with the electrical activity; (3) to determine the influence of solar cell processing on the electrical behavior of structural defects and G.B.s; and (4) to evaluate polycrystalline solar cell performance based on the above study, and to compare it with the experimentally measured performance. Progress is reported in detail. (WHK)

  19. Thin-film cadmium telluride photovoltaic cells. Final subcontract report, 1 November 1992--1 January 1994

    SciTech Connect

    Compaan, A.D.; Bohn, R.G.

    1994-09-01

    This report describes work to develop and optimize radio-frequency (rf) sputtering for the deposition of thin films of cadmium telluride (CdTe) and related semiconductors for thin-film solar cells. Pulsed laser physical vapor deposition was also used for exploratory work on these materials, especially where alloying or doping are involved, and for the deposition of cadmium chloride layers. The sputtering work utilized a 2-in diameter planar magnetron sputter gun. The film growth rate by rf sputtering was studied as a function of substrate temperature, gas pressure, and rf power. Complete solar cells were fabricated on tin-oxide-coated soda-lime glass substrates. Currently, work is being done to improve the open-circuit voltage by varying the CdTe-based absorber layer, and to improve the short-circuit current by modifying the CdS window layer.

  20. Dendritic web silicon photovoltaic cell research

    SciTech Connect

    Easoz, J.A.; Rosey, R.; Campbell, R.B.; Rupnik, R.; Sprecace, R.P.; Piotrowski, P.A. . Advanced Energy Systems Div.); McHugh, J.P.; Seidensticker, R.G. . Science and Technology Center)

    1990-05-01

    This report summarizes the evaluation of a checkpoint demonstration of the throughout capability of the silicon dendritic web growth process as of January 1989. The demonstrated throughput of about 20,000 sq.cm/furnace/week was less than desired for a commercial production facility, however the results clearly indicated that the desired 35,000 sq.cm/furnace/week would be reached with continuous melt replenishment during growth. Improvements in seeding and increase in crystal length would increase the throughput even more. Solar cells subsequently fabricated on the material grown during the demonstration had average efficiency levels (14%) equivalent to cells fabricated on web produced prior to the demonstration run. Finally, a business analysis based on the present results gave estimated photovoltaic module costs in agreement with potential commercial viability. 5 figs., 8 tabs.

  1. Photovoltaics

    NASA Astrophysics Data System (ADS)

    Seippel, R. G.

    This book attempts to provide the reader with a cursory look at solar energy from a quarry of quartz to a sophisticated solar system. The progression of the theories of light is discussed along with the progression of photoelectricity, light rays, the optical spectrum, light reception, photodetection, aspects of photometry and radiometry, preferred terms in radiometric measurement, semiconductor physics, and light energy availability. Other subjects explored are related to manufacturing processes, photovoltaic materials, crystal growing, slicing techniques, wafer finishing, solar cell fabrication, photovoltaic cell types, concentrators, module fabrication, problems of quality assurance, photovoltaic systems, and the photovoltaics hierarchy. Attention is given to the polycrystalline cell, insulator cells, cadmium sulfide cells, amorphous silicon cells, an electrochemical cell, and the low-cost solar array project.

  2. Quantum well multijunction photovoltaic cell

    DOEpatents

    Chaffin, Roger J.; Osbourn, Gordon C.

    1987-01-01

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  3. Quantum well multijunction photovoltaic cell

    DOEpatents

    Chaffin, R.J.; Osbourn, G.C.

    1983-07-08

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  4. Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322

    SciTech Connect

    Geisz, J. F.

    2012-11-01

    The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basic PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.

  5. Tandem junction amorphous semiconductor photovoltaic cell

    DOEpatents

    Dalal, V.L.

    1983-06-07

    A photovoltaic stack comprising at least two p[sup +]i n[sup +] cells in optical series, said cells separated by a transparent ohmic contact layer(s), provides a long optical path for the absorption of photons while preserving the advantageous field-enhanced minority carrier collection arrangement characteristic of p[sup +]i n[sup +] cells. 3 figs.

  6. Measuring The Contact Resistances Of Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1985-01-01

    Simple method devised to measure contact resistances of photovoltaic solar cells. Method uses readily available equipment and applicable at any time during life of cell. Enables evaluation of cell contact resistance, contact-end resistance, contact resistivity, sheet resistivity, and sheet resistivity under contact.

  7. Tandem junction amorphous semiconductor photovoltaic cell

    DOEpatents

    Dalal, Vikram L.

    1983-01-01

    A photovoltaic stack comprising at least two p.sup.+ i n.sup.+ cells in optical series, said cells separated by a transparent ohmic contact layer(s), provides a long optical path for the absorption of photons while preserving the advantageous field-enhanced minority carrier collection arrangement characteristic of p.sup.+ i n.sup.+ cells.

  8. Nanostructured Inverted Organic Photovoltaic Cells

    NASA Astrophysics Data System (ADS)

    Thomas, Michael

    Organic photovoltaic cells (OPVs)are promising devices for inexpensive power generation from sunlight. Organic semiconductors, the basic materials for OPVs, can be fabricated using a broad range of fabrication technologies from vapor deposition to solution processing. Upon light absorption, a strongly bound exciton is generated which can diffuse to a donor-acceptor heterojunction. At this interface it can be dissociated into free charge carriers which can be collected by the device electrodes. A major challenge for OPVs are short exciton diffusion lengths of up to 20 nm. Morphology engineering is required in order to harvest the exciton before it recombines and improve OPV performance. This work focuses on the study of nanostructured morphologies for use in inverted architecture OPVs. Glancing angle deposition (GLAD)is employed to fabricate nanocolumnar acceptor films. Through combining these nanostructured C60 films with a conjugated polymer donor P3CBT and a small molecule 3-Q, inverted OPVs are fabricated with the goal to analyze effect of morphology engineering on device performance. A major challenge was that C60 were found to be soluble in most commonly used organic solvents such as dichlorobenzene or chloroform. Although this challenge has limited the donor choice and therefore has limited device performance, a significant effect of morphology engineering could be observed. All GLAD structured C60 OPVs outperformed state of the art architectures such as planar films and bulk heterojunctions fabricated with the same materials. For P3CBT in particular the GLAD structured devices exhibited a twofold increase in power conversion efficiency compared with bulk heterojunctions and a fourfold increase compared with planar devices. In a further study, the acceptor materials PTCDA and C60 were co-evaporated into a single film. PTCDA is stable against non-polar organic solvents while C60 provides a high electron mobility. Nanocolumnar acceptor blended PTCDA:C60 films

  9. Photovoltaic solar concentrator

    SciTech Connect

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  10. Photovoltaic-system costing-methodology development. Final report

    SciTech Connect

    Not Available

    1982-07-01

    Presented are the results of a study to expand the use of standardized costing methodologies in the National Photovoltaics Program. The costing standards, which include SAMIS for manufacturing costs and M and D for marketing and distribution costs, have been applied to concentrator collectors and power-conditioning units. The M and D model was also computerized. Finally, a uniform construction cost-accounting structure was developed for use in photovoltaic test and application projects. The appendices contain example cases which demonstrate the use of the models.

  11. Photovoltaic subsystem marketing and distribution model: programming manual. Final report

    SciTech Connect

    Not Available

    1982-07-01

    Complete documentation of the marketing and distribution (M and D) computer model is provided. The purpose is to estimate the costs of selling and transporting photovoltaic solar energy products from the manufacturer to the final customer. The model adjusts for the inflation and regional differences in marketing and distribution costs. The model consists of three major components: the marketing submodel, the distribution submodel, and the financial submodel. The computer program is explained including the input requirements, output reports, subprograms and operating environment. The program specifications discuss maintaining the validity of the data and potential improvements. An example for a photovoltaic concentrator collector demonstrates the application of the model.

  12. Two-layer organic photovoltaic cell

    SciTech Connect

    Tang, C.W.

    1986-01-13

    A thin-film, two-layer organic photovoltaic cell has been fabricated from copper phthalocyanine and a perylene tetracarboxylic derivative. A power conversion efficiency of about 1% has been achieved under simulated AM2 illumination. A novel feature of the device is that the charge-generation efficiency is relatively independent of the bias voltage, resulting in cells with fill factor values as high as 0.65. The interface between the two organic materials, rather than the electrode/organic contacts, is crucial in determining the photovoltaic properties of the cell.

  13. Photovoltaic industry manufacturing technology. Final report

    SciTech Connect

    Vanecek, D.; Diver, M.; Fernandez, R.

    1998-08-01

    This report contains the results of the Photovoltaic (PV) Industry Manufacturing Technology Assessment performed by the Automation and Robotics Research Institute (ARRI) of the University of Texas at Arlington for the National Renewable Energy laboratory. ARRI surveyed eleven companies to determine their state-of-manufacturing in the areas of engineering design, operations management, manufacturing technology, equipment maintenance, quality management, and plant conditions. Interviews with company personnel and plant tours at each of the facilities were conducted and the information compiled. The report is divided into two main segments. The first part of the report presents how the industry as a whole conforms to ``World Class`` manufacturing practices. Conclusions are drawn from the results of a survey as to the areas that the PV industry can improve on to become more competitive in the industry and World Class. Appendix A contains the questions asked in the survey, a brief description of the benefits to performing this task and the aggregate response to the questions. Each company participating in the assessment process received the results of their own facility to compare against the industry as a whole. The second part of the report outlines opportunities that exist on the shop floor for improving Process Equipment and Automation Strategies. Appendix B contains the survey that was used to assess each of the manufacturing processes.

  14. Grid-Optimization Program for Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Daniel, R. E.; Lee, T. S.

    1986-01-01

    CELLOPT program developed to assist in designing grid pattern of current-conducting material on photovoltaic cell. Analyzes parasitic resistance losses and shadow loss associated with metallized grid pattern on both round and rectangular solar cells. Though performs sensitivity studies, used primarily to optimize grid design in terms of bus bar and grid lines by minimizing power loss. CELLOPT written in APL.

  15. Photovoltaics effective capacity: Interim final report 2

    SciTech Connect

    Perez, R.; Seals, R.

    1997-11-01

    The authors provide solid evidence, based on more than 8 million data points, that regional photovoltaic (PV) effective capacity is largely unrelated to the region`s solar resource. They confirm, however, that effective capacity is strongly related to load-shape characteristics. The load-shape effective-capacity relationship appears to be valid for end-use loads as small as 100 kW, except possibly in the case of electrically heated buildings. This relationship was used as a tool to produce a US map of PV`s effective capacity. The regions of highest effective capacities include (1) the central US from the northern Great Plains to the metropolitan areas of Chicago and Detroit, down to the lower Mississippi Valley, (2) California and western Arizona, and (3) the northeast metropolitan corridor. The features of this map are considerably different from the traditional solar resource maps. They tend to reflect the socio-economic and climatic factors that indirectly drive PV`s effective capacity: e.g., commercial air-conditioning, little use of electric heat, and strong summer heat waves. The map provides a new and significant insight to a comprehensive valuation of the PV resource. The authors assembled preliminary evidence showing that end-use load type may be related to PV`s effective capacity. Highest effective capacities were found for (nonelectrically heated) office buildings, followed by hospitals. Lowest capacities were found for airports and residences. Many more data points are needed, however, to ascertain and characterize these preliminary findings.

  16. Dynamic thermal model of photovoltaic cell illuminated by laser beam

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoguang; Hua, Wenshen; Guo, Tong

    2015-07-01

    Photovoltaic cell is one of the most important components of laser powered unmanned aerial vehicle. Illuminated by high power laser beam, photovoltaic cell temperature increases significantly, which leads to efficiency drop, or even physical damage. To avoid such situation, the temperature of photovoltaic cell must be predicted precisely. A dynamic thermal model of photovoltaic cell is established in this paper, and the relationships between photovoltaic cell temperature and laser power, wind speed, ambient temperature are also analyzed. Simulation result indicates that illuminated by a laser beam, the temperature of photovoltaic cell rises gradually and reach to a constant maximum value. There is an approximately linear rise in photovoltaic cell temperature as the laser flux gets higher. The higher wind speed is, the stronger forced convection is, and then the lower photovoltaic cell temperature is. But the relationship between photovoltaic cell temperature and wind speed is not linear. Photovoltaic cell temperature is proportional to the ambient temperature. For each increase of 1 degree of ambient temperature, there is approximate 1 degree increase in photovoltaic cell temperature. The result will provide fundamentals to take reasonable measures to control photovoltaic cell temperature.

  17. Conjugated ionomers for photovoltaic applications: electric field driven charge separation in organic photovoltaics. Final Technical report

    SciTech Connect

    Lonergan, Mark

    2015-05-29

    Final technical report for Conjugated ionomers for photovoltaic applications, electric field driven charge separation in organic photovoltaics. The central goal of the work we completed was been to understand the photochemical and photovoltaic properties of ionically functionalized conjugated polymers (conjugated ionomers or polyelectrolytes) and energy conversion systems based on them. We primarily studied two classes of conjugated polymer interfaces that we developed based either upon undoped conjugated polymers with an asymmetry in ionic composition (the ionic junction) or doped conjugated polymers with an asymmetry in doping type (the p-n junction). The materials used for these studies have primarily been the polyacetylene ionomers. We completed a detailed study of p-n junctions with systematically varying dopant density, photochemical creation of doped junctions, and experimental and theoretical work on charge transport and injection in polyacetylene ionomers. We have also completed related work on the use of conjugated ionomers as interlayers that improve the efficiency or organic photovoltaic systems and studied several important aspects of the chemistry of ionically functionalized semiconductors, including mechanisms of so-called "anion-doping", the formation of charge transfer complexes with oxygen, and the synthesis of new polyfluorene polyelectrolytes. We also worked worked with the Haley group at the University of Oregon on new indenofluorene-based organic acceptors.

  18. Commercial Application of a Photovoltaic Concentrator system. Phase I. Final report, 1 June 1978-28 February 1979

    SciTech Connect

    Anderson, D.J.; Anderson, E.R.; Bardwell, K.M.

    1980-04-01

    This report documents the design and analysis of the BDM CAPVC (Commercial Application of a Photovoltaic Concentrator) system. The preliminary design, prototype test and evaluation, system analysis, and final design of a large-scale concentrating photovoltaic system are described. The application is on an attractive new office building which represents a large potential market. The photovoltaic concentrating array is a roof-mounted, single-axis linear parabolic trough, using single crystalline silicon photovoltaic cells. A total of 6720 square feet of aperture is focussed on 13,944 PV cells. The photovoltaic system operates in parallel with the local utility in an augmentary loadsharing operating mode. The array is actively cooled and the thermal energy utilized for building heat during winter months. (WHK)

  19. Photovoltaic Cell And Manufacturing Process

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes R.

    1996-11-26

    Provided is a method for controlling electrical properties and morphology of a p-type material of a photovoltaic device. The p-type material, such as p-type cadmium telluride, is first subjected to heat treatment in an oxidizing environment, followed by recrystallization in an environment substantially free of oxidants. In one embodiment, the heat treatment step comprises first subjecting the p-type material to an oxidizing atmosphere at a first temperature to getter impurities, followed by second subjecting the p-type material to an oxidizing atmosphere at a second temperature, higher than the first temperature, to develop a desired oxidation gradient through the p-type material.

  20. Cost-effective flat-plate photovoltaic modules using light trapping. Final report

    SciTech Connect

    Bain, C.N.; Gordon, B.A.; Knasel, T.M.; Malinowski, R.L.

    1981-04-01

    Work in optical trapping in thick films is extended to form a design guide for photovoltaic engineers. Details of the methods, techniques, and considerations that are used in the definition and analysis of light trapping photovoltaic panels are provided. Assumptions, sources of data, optical and cost modeling methods and the techniques used in the analysis are included. The ways to use light trapping are discussed, and methods are described to use simplified design and costing equations to predict performance and cost benefits. Four significant ways to use the findings presented are: a minimum design change module; an optimum packing factor module concept; roof or wall integrated panels; and modules using light trapping from cell grids. Finally, a design guide is included which shows how to construct photovoltaic modules to exploit light trapping. It is claimed that up to 20% improvements in standard module performance can be expected. (LEW)

  1. Photovoltaic stand-alone modular systems. Phase 2. Final Report

    SciTech Connect

    Naff, G.J.; Marshall, N.A.

    1983-07-01

    The final hardware and system qualification phase of a two part stand-alone photovoltaic (PV) system development is covered. The final design incorporated modular, power blocks capable of expanding incrementally from 320 watts to twenty kilowatts (PK). The basic power unit (PU) was nominally rated 1.28 kWp. The controls units, power collection buses and main lugs, electrical protection subsystems, power switching, and load management circuits are housed in a common control enclosure. Photo-voltaic modules are electrically connected in a horizontal daisy-chain method via Amp Solarlok plugs mating with compatible connectors installed on the back side of each photovoltaic module. A pair of channel rails accommodate the mounting of the modules into a frameless panel support structure. Foundations are of a unique planter (tub-like) configuration to allow for world-wide deployment without restriction as to types of soil. One battery string capable of supplying approximately 240 ampere hours nominal of carryover power is specified for each basic power unit. Load prioritization and shedding circuits are included to protect critical loads and selectively shed and defer lower priority or noncritical power demands. The baseline system, operating at approximately 2 1/2 PUs (3.2 kW pk.) was installed and deployed. Qualification was successfully complete in March 1983. Since that time, the demonstration system has logged approximately 3000 hours of continuous operation under load without major incident.

  2. Pulsed laser illumination of photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1994-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. Both the radio-frequency (RF) and induction FEL provide FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL pulse format.

  3. Pulsed laser illumination of photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.

  4. Colored dual-functional photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Tae; Lee, Jae Yong; Xu, Ting; Park, Hui Joon; Guo, L. Jay

    2016-06-01

    In this article, we review our recent efforts on multi-functional photovoltaic (PV) cells that can produce desired reflective, transmissive, or neutral colors, by controlling light interaction with semiconductors and electrode structures in a desired manner. The PV cells integrated with plasmonic color filtering schemes using subwavelength gratings, and other approaches exploiting photonic resonances in an optical nanocavity consisting of highly absorbing semiconductor media are described. For further enhancement of optical and electrical performance characteristics of the multi-functional PV cells, possible difficulties and the outlook for future work are discussed.

  5. Dye Sensitized Tandem Photovoltaic Cells

    SciTech Connect

    Barber, Greg D.

    2009-12-21

    This work provided a new way to look at photoelectrochemical cells and their performance. Although thought of as low efficiency, a the internal efficiency of a 9% global efficiency dye sensitized solar cell is approximately equal to an 18% efficient silicon cell when each is compared to their useful spectral range. Other work undertaken with this contract also reported the first growth oriented titania and perovskite columns on a transparent conducting oxide. Other work has shown than significant performance enhancement in the performance of dye sensitized solar cells can be obtained through the use of coupling inverse opal photonic crystals to the nanocrystalline dye sensitized solar cell. Lastly, a quick efficient method was developed to bond titanium foils to transparent conducting oxide substrates for anodization.

  6. An induced junction photovoltaic cell

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1974-01-01

    Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.

  7. Photovoltaic Cell Operation on Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Kerslake, Thomas; Jenkins, Phillip P.; Scheiman, David A.

    2004-01-01

    The Martian surface environment provides peculiar challenges for the operation of solar arrays: low temperature, solar flux with a significant scattered component that varies in intensity and spectrum with the amount of suspended atmospheric dust, and the possibility of performance loss due to dust deposition on the array surface. This paper presents theoretical analyses of solar cell performance on the surface of Mars and measurements of cells under Martian conditions.

  8. Liquid Crystal Cells Based on Photovoltaic Substrates

    NASA Astrophysics Data System (ADS)

    Lucchetti, L.; Kushnir, K.; Zaltron, A.; Simoni, F.

    2016-02-01

    Liquid crystal cells with LiNbO3:Fe crystals as substrates, are described. The photovoltaic field generated by the substrates is able to reorient the liquid crystal director thus giving rise to a phase shift on the light propagating through the cell, as in liquid crystal light valves. The process does not require the application of an external electric field, thus being potentially useful for applications requiring a high degree of compactness. An efficient optical switch with a high transmission contrast, based on the described optically-induced electric field, is also proposed.

  9. Solid polymer electrolyte photovoltaic cell

    SciTech Connect

    Skotheim, T.; Lundstrom, I.

    1982-04-01

    Solid photoelectrochemical cells are described based on PEO-KI/I/sub 2/ electrolytes, n-Si/Pt/PPy photoanodes, and conductive tin-oxide glass counter electrodes. The performance of the present devices is limited by a high series resistance in the polymer film. 22 refs.

  10. Pulsed Laser Illumination of Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland; Jenkins, Philip; Landis, Geoffrey A.

    1994-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. The induction FEL and the radio-frequency (RF) FEL both produce pulsed rather than continuous output. In this work, we investigate cell response to pulsed laser light which simulates the RF FEL format, producing 50 ps pulses at a frequency of 78 MHz. A variety of Si, GaAs, CaSb and CdInSe2 (CIS) solar cells are tested at average incident powers between 4 mW/sq cm and 425 mW/sq cm. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced by using a pulsed laser source compared to constant illumination at the same wavelength. Because the pulse separation is less than or approximately equal to the minority carrier lifetime, the illumination conditions are effectively those of a continuous wave laser. The time dependence of the voltage and current response of the cells are also measured using a sampling oscilloscope equipped with a high frequency voltage probe and current transformer. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments shows that the RF FEL pulse format yields much more efficient photovoltaic conversion of light than does an induction FEL pulse format.

  11. Terrestrial photovoltaic cell process testing

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1985-01-01

    The paper examines critical test parameters, criteria for selecting appropriate tests, and the use of statistical controls and test patterns to enhance PV-cell process test results. The coverage of critical test parameters is evaluated by examining available test methods and then screening these methods by considering the ability to measure those critical parameters which are most affected by the generic process, the cost of the test equipment and test performance, and the feasibility for process testing.

  12. Photoacoustic characterization of photovoltaic cells

    SciTech Connect

    Mello, S.M.N.; Ghizoni, C.C.; Miranda, L.C.M.; Vargas, H.

    1987-06-01

    The photoacoustic characterization of Si solar-cell samples having distinct internal resistances, both at low and high modulation frequencies, yielded results significantly different from each other. For large samples with very small internal resistances (--0.1 ..cap omega..), the additional contribution of the current dissipation near short-circuit conditions yielded results similar to those obtained with photothermal radiometry or the pyroelectric detection. For small samples, the results for the conversion efficiency, both at low and high modulation frequencies, are similar to ones obtained from the conventional electrical measurements.

  13. High-efficiency photovoltaic cells

    DOEpatents

    Yang, H.T.; Zehr, S.W.

    1982-06-21

    High efficiency solar converters comprised of a two cell, non-lattice matched, monolithic stacked semiconductor configuration using optimum pairs of cells having bandgaps in the range 1.6 to 1.7 eV and 0.95 to 1.1 eV, and a method of fabrication thereof, are disclosed. The high band gap subcells are fabricated using metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) to produce the required AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap subcells are similarly fabricated from AlGa(As)Sb compositions by LPE, MBE or MOCVD. These subcells are then coupled to form a monolithic structure by an appropriate bonding technique which also forms the required transparent intercell ohmic contact (IOC) between the two subcells. Improved ohmic contacts to the high bandgap semiconductor structure can be formed by vacuum evaporating to suitable metal or semiconductor materials which react during laser annealing to form a low bandgap semiconductor which provides a low contact resistance structure.

  14. Advanced photovoltaic system simulator to demonstrate the performance of advanced photovoltaic cells and devices

    SciTech Connect

    Mrig, L.; DeBlasio, R.; O'Sullivan, G.A.; Tomko, R.P.

    1983-05-01

    This paper describes a photovoltaic system simulator for characterizing and evaluating the performance of advanced photovoltaic cells, modules, and arrays as well as for simulating the operation of advanced conceptual photovoltaic systems. The system simulator is capable of extrapolating the performance from a single laboratory cell, or of a module to power levels up to 10 kW. The major subsystems comprising the system simulator are (1) Solar Array Simulator, (2) Power Conditioning Unit, (3) Load Controller and Resistive Load Unit, (4) Data Acquisition and Control Unit, and (5) Cell Test Bed.

  15. Efficient photovoltaic cells from semiconducting polymer heterojunctions

    NASA Astrophysics Data System (ADS)

    Jenekhe, Samson A.; Yi, Shujian

    2000-10-01

    Solar cells made from spin-coated bilayer thin-film heterojunctions of poly(p-phenylene vinylene) and poly(benzimidazobenzophenanthroline ladder) were found to have photovoltaic charge collection efficiency as high as 49%. The power conversion efficiency varied from 1.4% under sunlight illumination to 2.0% at the peak wavelength. A space-charge region around the polymer/polymer interface, Ohmic contacts at the electrodes, and complementary absorption bands of the semiconducting polymers, play important roles in the efficient charge collection in the photocells.

  16. Linearity Testing of Photovoltaic Cells: Preprint

    SciTech Connect

    Emery, K.; Winter, S.; Pinegar, S.; Nalley D.

    2006-05-01

    Photovoltaic devices are rated in terms of their peak power with respect to a specific spectrum, total irradiance, and temperature. To rate photovoltaic devices, a reference detector is required whose response is linear with total irradiance. This paper describes a procedure to determine the linearity of the short-circuit current (Isc) versus the total irradiance (Etot) by illuminating a reference cell with two lamps. A device is linear if the current measured with both lamps illuminating the cell is the same as the sum of the currents with each lamp illuminating the cell. The two-lamp method is insensitive to the light spectra or spatial nonuniformity changing with irradiance. The two-lamp method is rapid, easy to implement, and does not require operator intervention to change the irradiances. The presence of room light only limits the lowest irradiance that can be evaluated. Unlike other methods, the two-lamp method does not allow the current to be corrected for nonlinear effects.

  17. Mississippi County Community College Solar Photovoltaic Project. Final report

    SciTech Connect

    Turner, W.D.; Deaver, F.K.; Johnson, M.M.; Pugh, T.; Snowden, R.; Wall, J.D.; Williams, J.G.; Yeargan, J.R.

    1980-11-01

    A weather station was maintained in Blytheville, Arkansas, from April 1978 to April 1980. Daily totals of direct normal and global insolation are given, and an hour-by-hour printout of direct normal, global, and diffuse solar radiation for the entire two year period is included. A number of studies were conducted, including daylighting, energy conservation and management, design tradeoffs, and landscaping. The collector selection process included the writing of specifications, providing design data, reviewing the various collector designs, inspecting potential vendor facilities, monitoring on-site tests, and the final selection. A simulation was made of the entire system, including both an electrical and thermal simulation of the photovoltaic array and a thermal simulation of the various buildings. Example printouts of the simulations are included. (LEW)

  18. Some advanced testing techniques for concentrator photovoltaic cells and lenses

    SciTech Connect

    Wiczer, J.J.; Chaffin, R.J.; Hibray, R.E.

    1982-09-01

    The authors describe two separate test techniques for evaluating concentrator photovoltaic components. For convenient characterization of concentrator solar cells, they have developed a method for measuring the entire illuminated I-V curve of a photovoltaic cell with a single flash of intense simulated sunlight. This method reduces the heat input to the cell and the time required to test a cell, thus making possible quick indoor measurements of photovoltaic conversion efficiency at concentrated illumination levels without the use of elaborate cell mounting fixtures or heat sink attachments. The other test method provides a technique to analyze the spatially dependent, spectral distribution of intense sunlight collected and focused by lenses designed for use in photovoltaic concentrator systems. This information is important in the design of multijunction photovoltaic receivers, secondary concentrators, and in optimizing the performance of conventional silicon cell concentrator systems.

  19. Potential high efficiency solar cells: Applications from space photovoltaic research

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1986-01-01

    NASA involvement in photovoltaic energy conversion research development and applications spans over two decades of continuous progress. Solar cell research and development programs conducted by the Lewis Research Center's Photovoltaic Branch have produced a sound technology base not only for the space program, but for terrestrial applications as well. The fundamental goals which have guided the NASA photovoltaic program are to improve the efficiency and lifetime, and to reduce the mass and cost of photovoltaic energy conversion devices and arrays for use in space. The major efforts in the current Lewis program are on high efficiency, single crystal GaAs planar and concentrator cells, radiation hard InP cells, and superlattice solar cells. A brief historical perspective of accomplishments in high efficiency space solar cells will be given, and current work in all of the above categories will be described. The applicability of space cell research and technology to terrestrial photovoltaics will be discussed.

  20. Socioeconomic impact of photovoltaic power at Schuchulik, Arizona. Final report

    SciTech Connect

    Bahr, D.; Garrett, B.G.; Chrisman, C.

    1980-10-01

    Schuchuli, a small remote village on the Papago Indian Reservation in southwest Arizona, is 27 kilometers (17 miles) from the nearest available utility power. In some respects, Schuchuli resembles many of the rural villages in other parts of the world. For example, it's relatively small in size (about 60 residents), composed of a number of extended family groupings, and remotely situated relative to major population centers (190 km, or 120 miles, from Tucson). Its lack of conventional power is due to the prohibitive cost of supplying a small electrical load with a long-distance distribution line. Furthermore, alternate energy sources are expensive and place a burden on the resources of the villagers. On December 16, 1978, as part of a federally funded project, a solar cell power system was put into operation at Schuchuli. The system powers the village water pump, lighting for homes ad other village buildings, family refrigerators and a communal washing machine and sewing machine. The project, managed for the US Department of Energy by the NASA Lewis Research Center, provided for a one-year socio-economic study to assess the impact of a relatively small amount of electricity on the basic living environment of the villagers. The results of that study are presented, including village history, group life, energy use in general and the use of the photovoltaic-powered appliances. No significant impacts due to the photovoltaic power system were observed.

  1. Design & Fabrication of a High-Voltage Photovoltaic Cell

    SciTech Connect

    Felder, Jennifer; /North Carolina State U. /SLAC

    2012-09-05

    Silicon photovoltaic (PV) cells are alternative energy sources that are important in sustainable power generation. Currently, applications of PV cells are limited by the low output voltage and somewhat low efficiency of such devices. In light of this fact, this project investigates the possibility of fabricating high-voltage PV cells on float-zone silicon wafers having output voltages ranging from 50 V to 2000 V. Three designs with different geometries of diffusion layers were simulated and compared in terms of metal coverage, recombination, built-in potential, and conduction current density. One design was then chosen and optimized to be implemented in the final device design. The results of the simulation serve as a feasibility test for the design concept and provide supportive evidence of the effectiveness of silicon PV cells as high-voltage power supplies.

  2. University Photovoltaic Research, Education, and Collaboration. Final Report

    SciTech Connect

    Rohatgi, Ajeet; Ebong, Abasifreke; Kim, Dong Seop; Yelundur, Vijay; Hilali, Mohamed M.; Rounsaville, Brian; Nakayashiki, Kenta; Meemongkolkiat, Vichai

    2007-03-30

    This report summarizes the progress made by Georgia Tech in the 2000-2006 period towards high-efficiency low-cost crystalline silicon solar cells. The overall goal of the program is to advance the current state of crystalline silicon solar cell technology in order to make photovoltaics more competitive with the conventional energy sources. A combination of material characterization, device modeling, low-cost technology development, cell fabrication and analysis have been used to achieve the goals of this program. Quality enhancement techniques have been developed to achieve high lifetime in commercial substrates. At the same time, advanced concepts and cell designs were developed to achieve high-efficiency cells on low-cost substrates. Low-cost in-line processing, novel diffusion techniques, and improved and screen-printed contacts were used to incorporate advanced design features in commercial cells. The program has also focused on the development of screen-printing pastes and contact firing to obtain high fill factors on high sheet resistance emitters with narrow grid lines. This report is divided into seven sections that summarize our work on i) high-efficiency monocrystalline cells through the achievement of ohmic contacts to high sheet resistance emitters by screen printing (Sections 1 and 2); ii) process and material factors that limit the potential of the Al-doped back surface field (Sections 3 and 4); iii) high-efficiency cells on low-cost multicrystalline wafers through defect gettering and passivation (Section 5); iv) low-cost phosphorus emitter diffusion in a novel in-line furnace (Section 6); and iv) the development of a 2D model to determine the effects of physical cell parameters on the performance of IBC (interdigitated back contact) solar cells (Section 7).

  3. Hybrid window layer for photovoltaic cells

    SciTech Connect

    Deng, Xunming; Liao, Xianbo; Du, Wenhui

    2011-02-01

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  4. Hybrid window layer for photovoltaic cells

    SciTech Connect

    Deng, Xunming; Liao, Xianbo; Du, Wenhui

    2011-10-04

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  5. Hybrid window layer for photovoltaic cells

    DOEpatents

    Deng, Xunming

    2010-02-23

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  6. Uniform sunlight concentration reflectors for photovoltaic cells.

    PubMed

    Rabady, Rabi Ibrahim

    2014-03-20

    Sunlight concentration is essential to reach high temperatures of a working fluid in solar-thermal applications and to reduce the cost of photovoltaic (PV) electricity generation systems. Commonly, sunlight concentration is realized by parabolic or cylindrical reflectors, which do not provide uniform concentration on the receiver finite surface. Uniform concentration of sunlight is favored especially for the PV conversion applications since it not only enhances the conversion efficiency of sunlight but also reduces the thermal variations along the receiving PV cell, which can be a performance and life-span limiting factor. In this paper a reflector profile that uniformly infiltrates the concentrated sunlight into the receiving unit is attempted. The new design accounts for all factors that contribute to the nonuniform concentration, like the reflector curvature, which spatially reflects the sunlight nonuniformly, and the angular dependency of both the reflector reflectivity and the sunlight transmission through the PV cell. PMID:24663464

  7. Organic photovoltaic cells with controlled polarization sensitivity

    SciTech Connect

    Awartani, Omar; O'Connor, Brendan T.; Kudenov, Michael W.

    2014-03-03

    In this study, we demonstrate linearly polarized organic photovoltaic cells with a well-controlled level of polarization sensitivity. The polarized devices were created through the application of a large uniaxial strain to the bulk heterojunction poly(3-hexylthiophene):Phenyl-C61-butyric acid methyl ester (P3HT:PCBM) film and printing the plastically deformed active layer onto a PEDOT:PSS and indium tin oxide coated glass substrate. The P3HT:PCBM layer is processed such that it is able to accommodate high strains (over 100%) without fracture. After printing the strained films, thermal annealing is used to optimize solar cell performance while maintaining polarization sensitivity. A dichroic ratio and short circuit current ratio of ≈6.1 and ≈1.6 were achieved, respectively.

  8. Cell shunt resistance and photovoltaic module performance

    SciTech Connect

    McMahon, T.J.; Basso, T.S.; Rummel, S.R.

    1996-05-01

    Shunt resistance of cells in photovoltaic modules can affect module power output and could indicate flawed manufacturing processes and reliability problems. The authors describe a two-terminal diagnostic method to directly measure the shunt resistance of individual cells in a series-connected module non-intrusively, without deencapsulation. Peak power efficiency vs. light intensity was measured on a 12-cell, series-connected, single crystalline module having relatively high cell shunt resistances. The module was remeasured with 0.5-, 1-, and 2-ohm resistors attached across each cell to simulate shunt resistances of several emerging technologies. Peak power efficiencies decreased dramatically at lower light levels. Using the PSpice circuit simulator, the authors verified that cell shunt and series resistances can indeed be responsible for the observed peak power efficiency vs. intensity behavior. The authors discuss the effect of basic cell diode parameters, i.e., shunt resistance, series resistance, and recombination losses, on PV module performance as a function of light intensity.

  9. Ultrathin optical design for organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Man, J. X.; Luo, D. Y.; Yu, L. M.; Wang, D. K.; Liu, Z.; Lu, Z. H.

    2015-05-01

    A trilayer ultrathin-film model concept had been adapted to maximize optical absorption of organic photovoltaic cells (OPVs) with a structure of transparent-electrode/highly-absorbing active material/metal. As demonstrated, device with the structure of ITO/Lead phthalocyanine (SubPc):Buckerminster fullerene (C60) (1:4 wt%)/Al had been studied. It is found that more than 90% optical absorption can be obtained in the device with a broaden wavelength range of 480-620 nm. The calculated optical electric fields shows that the unusually high optical absorption is due to the enhanced optical interference inside the OPVs device. This work paved a new way to design the OPVs device.

  10. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    PubMed

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells. PMID:24749413

  11. Series interconnected photovoltaic cells and method for making same

    DOEpatents

    Albright, S.P.; Chamberlin, R.R.; Thompson, R.A.

    1995-01-31

    A novel photovoltaic module and method for constructing the same are disclosed. The module includes a plurality of photovoltaic cells formed on a substrate and laterally separated by interconnection regions. Each cell includes a bottom electrode, a photoactive layer and a top electrode layer. Adjacent cells are connected in electrical series by way of a conductive-buffer line. The buffer line is also useful in protecting the bottom electrode against severing during downstream layer cutting processes. 11 figs.

  12. Understanding organic photovoltaic cells: Electrode, nanostructure, reliability, and performance

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Su

    My Ph.D. research has focused on alternative renewable energy using organic semiconductors. During my study, first, I have established reliable characterization methods of organic photovoltaic devices. More specifically, less than 5% variation of power conversion efficiency of fabricated organic blend photovoltaic cells (OBPC) was achieved after optimization. The reproducibility of organic photovoltaic cell performance is one of the essential issues that must be clarified before beginning serious investigations of the application of creative and challenging ideas. Second, the relationships between fill factor (FF) and process variables have been demonstrated with series and shunt resistance, and this provided a chance to understand the electrical device behavior. In the blend layer, series resistance (Rs) and shunt resistance (Rsh) were varied by controlling the morphology of the blend layer, the regioregularity of the conjugated polymer, and the thickness of the blend layer. At the interface between the cathode including PEDOT:PSS and the blend layer, cathode conductivity was controlled by varying the structure of the cathode or adding an additive. Third, we thoroughly examined possible characterization mistakes in OPVC. One significant characterization mistake is observed when the crossbar electrode geometry of OPVC using PEDOT:PSS was fabricated and characterized with illumination which is larger than the actual device area. The hypothesis to explain this overestimation was excess photo-current generated from the cell region outside the overlapped electrode area, where PEDOT:PSS plays as anode and this was clearly supported with investigations. Finally, I incorporated a creative idea, which enhances the exciton dissociation efficiency by increasing the interface area between donor and acceptor to improve the power conversion efficiency of organic photovoltaic cells. To achieve this, nanoimprint lithography was applied for interface area increase. To clarify the

  13. Flasher Powered by Photovoltaic Cells and Ultracapacitors

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Soltis, Richard F.

    2003-01-01

    A unique safety flasher powered by photovoltaic cells and ultracapacitors has been developed. Safety flashers are used wherever there are needs to mark actually or potentially hazardous locations. Examples of such locations include construction sites, highway work sites, and locations of hazardous operations. Heretofore, safety flashers have been powered by batteries, the use of which entails several disadvantages: Batteries must be kept adequately charged, and must not be allowed to become completely discharged. Batteries have rather short cycle lives, and their internal constituents that react chemically to generate electricity deteriorate (and hence power-generating capacities decrease) over time. The performances of batteries are very poor at low temperatures, which often occur in the circumstances in which safety flashers are most needed. The disposal of batteries poses a threat to the environment. The development of the present photovoltaic/ultracapacitor- powered safety flasher, in which the ultracapacitors are used to store energy, overcomes the aforementioned disadvantages of using batteries to store energy. The ultracapacitors in this flasher are electrochemical units that have extremely high volumetric capacitances because they contain large-surface-area electrodes separated by very small gaps. Ultracapacitors have extremely long cycle lives, as compared to batteries; consequently, it will never be necessary to replace the ultracapacitors in the safety flasher. The reliability of the flasher is correspondingly increased, and the life-of-system cost and the adverse environmental effects of the flasher are correspondingly reduced. Moreover, ultracapacitors have excellent low-temperature characteristics, are maintenance-free, and provide consistent performance over time.

  14. Role of polycrystallinity in CdTe and CuInSe{sub 2} photovoltaic cells. Final subcontract report, 1 April 1990--30 November 1993

    SciTech Connect

    Sites, J.R.

    1994-07-01

    The report describes the exploration of several aspects of the role of polycrystallinity in the operation of CdTe, CuInSe{sub 2}, and Cu(In,Ga)Se{sub 2} solar cells. The work included the refinement of several analytical techniques, the documentation and understanding of time-dependent voltage effects, the analysis of a large number of individual cells, and significant progress toward developing a viable current-voltage model. This work was integral to the doctoral training of four students and was greatly assisted by several active collaborations within the polycrystalline thin-film solar cell community.

  15. An advanced photovoltaic system simulator to demonstrate the performance of advanced photovoltaic cells and devices

    SciTech Connect

    Mrig, L.; DeBlasio, R.; O'Sullivan, G.A.; Tomko, R.P.

    1982-09-01

    This paper describes a photovoltaic system simulator for characterizing and evaluating the performance of advanced photovoltaic cells, modules, and arrays as well as for simulating the operation of advanced conceptual photovoltaic systems. The system simulator is capable of extrapolating the performance from a single laboratory cell, or of a module to power levels up to 10 kw. The major subsystems comprising the system simulator are Solar Array Simulator, Power Conditioning Unit, Load Controller and Resistive Load Unit, Data Acquisition and Control Unit, and Cell Test Bed. The system was designed and fabricated by Abacus Controls, Inc., Somerville, NJ, under subcontract to SERI, and has recently been installed (except the cell test bed) at SERI, where initial operation is taking place.

  16. 77 FR 73018 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ... FR 63791 (October 17, 2012) (``Final Determination''). \\2\\ See Crystalline Silicon Photovoltaic Cells... and Affirmative Preliminary Determination of Critical Circumstances,77 FR 31309 (May 25, 2012...., Ltd HC Solar Power Co., Ltd. 24.48 Zhiheng Solar Inc....... 24.48 Zhejiang Leye 24.48...

  17. Investigation of the photovoltaic cell/ thermoelectric element hybrid system performance

    NASA Astrophysics Data System (ADS)

    Cotfas, D. T.; Cotfas, P. A.; Machidon, O. M.; Ciobanu, D.

    2016-06-01

    The PV/TEG hybrid system, consisting of the photovoltaic cells and thermoelectric element, is presented in the paper. The dependence of the PV/TEG hybrid system parameters on the illumination levels and the temperature is analysed. The maxim power values of the photovoltaic cell, of the thermoelectric element and of the PV/TEG system are calculated and a comparison between them is presented and analysed. An economic analysis is also presented.

  18. Distributed generation system using wind/photovoltaic/fuel cell

    NASA Astrophysics Data System (ADS)

    Buasri, Panhathai

    This dissertation investigates the performance and the operation of a distributed generation (DG) power system using wind/photovoltaic/fuel cell (W/PV/FC). The power system consists of a 2500 W photovoltaic array subsystem, a 500 W proton exchange membrane fuel cell (PEMFC) stack subsystem, 300 W wind turbine, 500 W wind turbine, and 1500 W wind energy conversion subsystems. To extract maximum power from the PV, a maximum power point tracker was designed and fabricated. A 4 kW single phase inverter was used to convert the DC voltage to AC voltage; also a 44 kWh battery bank was used to store energy and prevent fluctuation of the power output of the DG system. To connect the fuel cell to the batteries, a DC/DC controller was designed and fabricated. To monitor and study the performance of the DG system under variable conditions, a data acquisition system was designed and installed. The fuel cell subsystem performance was evaluated under standalone operation using a variable resistance and under interactive mode, connected to the batteries. The manufacturing data and the experimental data were used to develop an electrical circuit model to the fuel cell. Furthermore, harmonic analysis of the DG system was investigated. For an inverter, the AC voltage delivered to the grid changed depending on the time, load, and electronic equipment that was connected. The quality of the DG system was evaluated by investigating the harmonics generated by the power electronics converters. Finally, each individual subsystem of the DG system was modeled using the neuro-fuzzy approach. The model was used to predict the performance of the DG system under variable conditions, such as passing clouds and wind gust conditions. The steady-state behaviors of the model were validated by the experimental results under different operating conditions.

  19. Cost effective flat plate photovoltaic modules using light trapping. Final report

    SciTech Connect

    Bain, C.N.; Gordon, B.A.; Knasel, T.M.; Malinowski, R.L.

    1981-04-01

    Work in optical trapping in 'thick films' is described to form a design guide for photovoltaic engineers. A thick optical film can trap light by diffusive reflection and total internal reflection. Light can be propagated reasonably long distances compared with layer thicknesses by this technique. This makes it possible to conduct light from inter-cell and intra-cell areas now not used in photovoltaic modules onto active cell areas.

  20. Photovoltaics

    SciTech Connect

    Deb, S.K.

    1985-01-01

    Photovoltaics, the direct conversion of sunlight into electrical energy, may be the best hope for a relatively clean, secure, and inexhaustible source of energy for the future. To stimulate the growth of this technology as a viable energy supply option, considerable research and development has been directed, in both the private and public sectors, to a variety of materials and devices. The technology has sufficiently matured in recent years to be seriously considered as an alternative to conventional energy sources. Despite phenomenal advances in energy conversion efficiencies, many problems still remain to be solved. It is timely, therefore, to review various technological options available. This review critically assesses the status and promise of this emerging technology by a group of experts, each of whom has presented an extended invited paper on his specific field of expertise. This collection of presentations is intended to be an authoritative review of the technology including its developments, current status, and projections for future direction. The content of this review was carefully chosen to represent most of the leading state-of-the-art technologies; these are divided into four areas: (i) a general overview and discussion of silicon technology; (ii) high efficiency multijunction solar cells; (iii) amorphous silicon solar cells; and (iv) thin film compound semiconductors.

  1. Standards for photovoltaic energy conversion systems. Final report

    SciTech Connect

    Schafft, H. A.

    1980-04-01

    This report provides the results of a search for existing domestic standards and related documents for possible application in the development of a standards base for photovoltaic energy conversion systems. The search resulted in locating about 150 test methods, recommended practices, standards, solar-thermal performance criteria, and other standards-related documents. They are listed by topic areas in the appendix. The listing was prepared to assist those involved in developing performance criteria for photovoltaic systems and in identifying methods to test system performance against these criteria. It is clear from the results of the search that few standards are directly applicable to terrestrial solar photovoltaic systems and that much standards development is required to support the commercialization of such systems.

  2. Photovoltaic module electrical termination design requirement study. Final report

    SciTech Connect

    Mosna, F.J. Jr.; Donlinger, J.

    1980-07-01

    Motorola Inc., in conjunction with ITT Cannon, has conducted a study to develop information to facilitate the selection of existing, commercial, electrical termination hardware for photovoltaic modules and arrays. Details of the study are presented in this volume. Module and array design parameters were investigated and recommendations were developed for use in surveying, evaluating, and comparing electrical termination hardware. Electrical termination selection criteria factors were developed and applied to nine generic termination types in each of the four application sectors. Remote, residential, intermediate and industrial. Existing terminations best suited for photovoltaic modules and arrays were identified. Cost information was developed to identify cost drivers and/or requirements which might lead to cost reductions. The general conclusion is that there is no single generic termination that is best suited for photovoltaic application, but that the appropriate termination is strongly dependent upon the module construction and its support structure as well as the specific application sector.

  3. Analysis of batteries for use in photovoltaic systems. Final report

    SciTech Connect

    Podder, A; Kapner, M

    1981-02-01

    An evaluation of 11 types of secondary batteries for energy storage in photovoltaic electric power systems is given. The evaluation was based on six specific application scenarios which were selected to represent the diverse requirements of various photovoltaic systems. Electrical load characteristics and solar insulation data were first obtained for each application scenario. A computer-based simulation program, SOLSIM, was then developed to determine optimal sizes for battery, solar array, and power conditioning systems. Projected service lives and battery costs were used to estimate life-cycle costs for each candidate battery type. The evaluation considered battery life-cycle cost, safety and health effects associated with battery operation, and reliability/maintainability. The 11 battery types were: lead-acid, nickel-zinc, nickel-iron, nickel-hydrogen, lithium-iron sulfide, calcium-iron sulfide, sodium-sulfur, zinc-chlorine, zinc-bromine, Redox, and zinc-ferricyanide. The six application scenarios were: (1) a single-family house in Denver, Colorado (photovoltaic system connected to the utility line); (2) a remote village in equatorial Africa (stand-alone power system); (3) a dairy farm in Howard County, Maryland (onsite generator for backup power); (4) a 50,000 square foot office building in Washington, DC (onsite generator backup); (5) a community in central Arizona with a population of 10,000 (battery to be used for dedicated energy storage for a utility grid-connected photovoltaic power plant); and (6) a military field telephone office with a constant 300 W load (trailer-mounted auxiliary generator backup). Recommendations for a research and development program on battery energy storage for photovoltaic applications are given, and a discussion of electrical interfacing problems for utility line-connected photovoltaic power systems is included. (WHK)

  4. Perovskite photovoltaics: a high-efficiency newcomer to the solar cell family

    NASA Astrophysics Data System (ADS)

    Wang, Baohua; Xiao, Xudong; Chen, Tao

    2014-10-01

    Organometal trihalide perovskite-based light absorbers have attracted great attention due to their excellent photovoltaic properties. The swift developments in the device fabrication techniques have led to the power conversion efficiencies exceeding 17%. In this minireview, we will present the typical characteristics of the materials and device structures, followed by analysing updated understandings on the operational principles of the devices. We will also point out the outstanding issues regarding the materials and devices. Finally, as a high-efficiency newcomer to the solar cell family, the potential impact on the relevant photovoltaics will be discussed.

  5. Series interconnected photovoltaic cells and method for making same

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes R.; Thompson, Roger A.

    1995-01-01

    A novel photovoltaic module (10) and method for constructing the same are disclosed. The module (10) includes a plurality of photovoltaic cells (12) formed on a substrate (14) and laterally separated by interconnection regions (15). Each cell (12) includes a bottom electrode (16), a photoactive layer (18) and a top electrode layer (20). Adjacent cells (12) are connected in electrical series by way of a conductive-buffer line (22). The buffer line (22) is also useful in protecting the bottom electrode (16) against severing during downstream layer cutting processes.

  6. Laminated photovoltaic modules using back-contact solar cells

    DOEpatents

    Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter

    1999-09-14

    Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

  7. Photovoltaic subsystem optimization and design tradeoff study. Final report

    SciTech Connect

    Stolte, W.J.

    1982-03-01

    Tradeoffs and subsystem choices are examined in photovoltaic array subfield design, power-conditioning sizing and selection, roof- and ground-mounted structure installation, energy loss, operating voltage, power conditioning cost, and subfield size. Line- and self-commutated power conditioning options are analyzed to determine the most cost-effective technology in the megawatt power range. Methods for reducing field installation of flat panels and roof mounting of intermediate load centers are discussed, including the cost of retrofit installations.

  8. Solar Photovoltaic Cell/Module Shipments Report

    EIA Publications

    2016-01-01

    Summary data for the photovoltaic industry in the United States. Data includes manufacturing, imports, and exports of modules in the United States and its territories. Summary data include volumes in peak kilowatts and average prices. Where possible, imports and exports are listed by country, and shipments to the United States are listed by state.

  9. Residential solar photovoltaic systems: Final report for the Northeast Residential Experiment Station

    SciTech Connect

    Kern, E.C. Jr.

    1986-06-01

    This report covers research and development work conducted by the MIT Energy Lab. from July 1982 through June 1986. This Energy Lab. work in the field of solar photovoltaic systems followed six years of similar work at the MIT Lincoln Lab. under the same contract with the US DOE. The final report from the Lincoln Lab. period was published by Lincoln Lab. in 1983. During the period of Energy Lab. involvement, the project focused on the refinement of residential scale, roof-mounted photovoltaic systems for application in the northeastern US. Concurrent with the conclusion of MIT`s involvement, the New England Electric Co. is building a major field test of residential photovoltaics in Gardner, Massachusetts to determine experimentally the effects of photovoltaics on electric power company operations. Using systems designs and technology developed at MIT, the long-term performance of these thirty residential systems in Gardner will provide a measure of our success.

  10. 77 FR 4764 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... Preliminary Determination in the Countervailing Duty Investigation, 76 FR 81914 (December 29, 2011... International Trade Administration Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules... duty investigation of crystalline silicon photovoltaic cells, whether or not assembled into...

  11. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  12. Photovoltaic technology: the case for thin-film solar cells

    PubMed

    Shah; Torres; Tscharner; Wyrsch; Keppner

    1999-07-30

    The advantages and limitations of photovoltaic solar modules for energy generation are reviewed with their operation principles and physical efficiency limits. Although the main materials currently used or investigated and the associated fabrication technologies are individually described, emphasis is on silicon-based solar cells. Wafer-based crystalline silicon solar modules dominate in terms of production, but amorphous silicon solar cells have the potential to undercut costs owing, for example, to the roll-to-roll production possibilities for modules. Recent developments suggest that thin-film crystalline silicon (especially microcrystalline silicon) is becoming a prime candidate for future photovoltaics. PMID:10426984

  13. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  14. SEM analysis as a diagnostic tool for photovoltaic cell degradation

    NASA Astrophysics Data System (ADS)

    Osayemwenre, Gilbert; Meyer, E. L.

    2013-04-01

    The importance of scanning electron microscopy (SEM) analysis as a diagnostic tool for analyzing the degradation of a polycrystalline Photovoltaic cell has been studied. The main aim of this study is to characterize the surface morphology of hot spot regions (degraded) cells in photovoltaic solar cells. In recent years, production of hetero and multi-junction solar cells has experience tremendous growth as compared to conventional silicon (Si) solar cells. Thin film photovoltaic solar cells generally are more prone to exhibiting defects and associated degradation modes. To improve the lifetime of these cells and modules, it is imperative to fully understand the cause and effect of defects and degradation modes. The objective of this paper is to diagnose the observed degradation in polycrystalline silicon cells, using scanning electron microscopy (SEM). In this study poly-Si cells were characterize before and after reverse biasing, the reverse biasing was done to evaluate the cells' susceptibility to leakage currents and hotspots formation. After reverse biasing, some cells were found to exhibit hotspots as confirmed by infrared thermography. The surface morphology of these hotspots re

  15. 64 kW concentrator Photovoltaics Application Test Center. Volume. Final report

    SciTech Connect

    Jardine, D.M.; Jones, D.W.

    1980-06-01

    Kaman Sciences Corporation has designed a 64 kW Concentrating Photovoltaic Applications Test Center (APTEC). The APTEC employs a combined concentrating photovoltaic array in a total energy system application for load sharing the electric and thermal demands of a large computer center with the interfaced electric and natural gas utility. The photovoltaic array is composed of two-axis tracking heliostats of Fresnel lens concentrating, silicon solar cell modules. The modules are cooled with a fluid which transfers heat to a ground coupled heat sink/storage unit for subsequent use in meeting the computer center's thermal load demand. The combined photovoltaic power system shares basic components - a power conditioning unit, batteries and thermal conditioning equipment - with the electric and natural gas utility service, improving the computer center's operating availability time and displacing a portion of the fossil fuel required to power the computer center with solar energy. The detailed system design is reported.

  16. Final Technical Report - Photovoltaics for You (PV4You) Program

    SciTech Connect

    Weissman, J. M.; Sherwood, L.; Pulaski, J.; Cook, C.; Kalland, S.; Haynes, J.

    2005-08-14

    In September 2000, the Interstate Renewable Energy Council (IREC) began its 5-year work on contract # DE-FGO3-00SF22116, the Photovoltaics for You (PV4You) Project. The objective was to develop and distribute information on photovoltaics and to educate key stakeholder groups including state government agencies, local government offices, consumer representative agencies, school officials and students, and Million Solar Roofs Partnerships. In addition, the project was to identify barriers to the deployment of photovoltaics and implement strategies to overcome them. Information dissemination and education was accomplished by publishing newsletters; creating a base of information, guides, and models on the www.irecusa.org and the www.millionsolarroofs.org web sites; convening workshops and seminars; engaging multiple stakeholders; and widening the solar network to include new consumers and decision makers. Two major web sites were maintained throughout the project cycle. The www.irecusa.org web site housed dedicated pages for Connecting to the Grid, Schools Going Solar, Community Outreach, and Certification & Training. The www.millionsolarroofs.org web site was created to serve the MSR Partnerships with news, interviews, key documents, and resource material. Through the course of this grant, the Interstate Renewable Energy Council has been supporting the Department of Energy's solar energy program goals by providing the Department with expertise services for their network of city, state, and community stakeholders. IREC has been the leading force at the state and federal levels regarding net metering and interconnection policy for photovoltaic systems. The principal goal and benefit of the interconnection and net metering work is to lower both barriers and cost for the installation of PV. IREC typically plays a leadership role among small generator stakeholders and has come to be relied upon for its expertise by industry and regulators. IREC also took a leadership

  17. Superlattice doped layers for amorphous silicon photovoltaic cells

    DOEpatents

    Arya, Rajeewa R.

    1988-01-12

    Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.

  18. Back contact to film silicon on metal for photovoltaic cells

    DOEpatents

    Branz, Howard M.; Teplin, Charles; Stradins, Pauls

    2013-06-18

    A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.

  19. A critical test of organic P-N photovoltaic cells

    SciTech Connect

    Bird, G.R.

    1996-09-01

    We present an urgent view of the field of organic solid state photovoltaic cells. This is a proper time to select the most promising materials from the Electrophotographic Industry, materials long tried in terms of stability, high quantum yield of charge carriers, but set apart by unusually high quantum yields at low applied fields. Our experience with the candidate dyes has covered new tests for identifiable impurities and removal of these impurities by verifiable methods. A new method of purification, reactive train sublimation, has been developed for DNT, one of the simplest of the outstanding perylene dyes, and the method seems applicable to some of the other promising perylene derivatives. It removes the offending impurity by converting it into the desired pure product. The role of water of hydration in the {open_quotes}wine cellar effect{close_quotes}, the slowly rising performance of newly made phthalocyanine containing cells has been analyzed. Under the concept of feasibility testing before a final refinement for practicality of materials and production methods, the hydration can be controlled for high level testing. At the same time, efforts go forward to eliminate the need. At least one of the best phthalocyanine components, X-H{sub 2}Pc, does not require water for peak performance. Finally, we have attacked BBIP (bis-benzimidazole perylene) one of the best and most enigmatic of the near infrared sensors. It has long been known and used as a mixture of synthetic isomers, and we hypothesize that either of these would be better than the uncontrolled mixture. A partial success in the form of isolating highly enriched crystals for an X-ray structure of the trans-molecule, is first presented here. A simple optical analysis method has been developed to follow enrichment procedures. For all of its difficult history, this material seems closest to a state of readiness for critical feasibility testing.

  20. Nanostructured photovoltaic devices for next generation solar cell

    NASA Astrophysics Data System (ADS)

    Kim, Sung Jin

    2008-10-01

    dissociation and charge transport, novel NQDs with functionalized ligands were developed. This research included the development of an approach to produce predefined patterns of quantum dots and multipod nanocrystals. The technique used optical lithography for direct writing of device structures for optoelectronic and electronic devices as well as the ability to change the ligand properties by using heat treatment. CdSe, CdTe, and PbSe nanocrystals were all functionalized by the incorporation of the functional ligand t-butoxycarbonyl (t-BOC). The ability to modify ligands of spin-casted nanocrystal layers by heating enables the fabrication of multi-layered structures. Moreover, the direct photopatterning of nanocrystal device structures was facilitated by the incorporation of a photo acid generator with the t-BOC functionalized nanocrystals. Finally, three different approaches that were recently developed to use t-BOC protected NQDs for photovoltaic devices will be discussed. The three types of devices that were developed include: (1) a multi-layered NQD all inorganic heterojunction photovoltaic devices; (2) a Schottky junction solar cell using a metal electrode on a NQD thin film; and (3) a hybrid (NQD/Polymer) bulk heterojunction device. Detailed characterization of these devices demonstrated that the t-BOC protected NQDs can be used to boost device performance (as compared to devices made from NQD with other ligands). This result provides significant advantages for realizing complicated device structures in the future.

  1. Byproduct mineral commodities used for the production of photovoltaic cells

    USGS Publications Warehouse

    Bleiwas, Donald I.

    2010-01-01

    Rising fossil fuel costs, environmental concerns relating to global climate change, and Government policy to signifcantly increase our Nation's energy independence have placed greater emphasis on the generation of electricity from renewable sources, such as the Sun (light and heat), water, and wind, which for all intents and purposes are inexhaustible resources. Although the total amount of electricity generated from the direct conversion of sunlight through photovoltaic cells is relatively small compared with that from other forms of renewable energy, the rate of growth in the sector is signifcant. The total value of energy of photovoltaic cells produced worldwide increased to nearly 7 gigawatts (GW) in 2008 from 45 megawatts (MW) in 1990, a compound annual growth rate of about 30 percent. In the United States, manufacturing of photovoltaic cells has grown exponentially to about 480 MW in 2008, accounting for 6 percent of world production, from less than 10 MW of photovoltaic capacity in 1990 (Benner, 2007; U.S. Department of Energy, Energy Information Administration, 2010), a compound annual growth rate of approxi-mately 23 percent. A production capacity of 1 GW of electricity [or 8,760 gigawatthours1 (GWh)] is equivalent to the annual electricity requirements for roughly 800,000 average households in the United States (U.S. Department of Energy, Energy Information Administration, 2010). This estimate does not include losses of electricity, such as during transmission through power lines.

  2. Quantifying Solar Cell Cracks in Photovoltaic Modules by Electroluminescence Imaging

    SciTech Connect

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso; Glick, Stephen; Kerekes, Tamas; Teodorescu, Remus

    2015-06-14

    This article proposes a method for quantifying the percentage of partially and totally disconnected solar cell cracks by analyzing electroluminescence images of the photovoltaic module taken under high- and low-current forward bias. The method is based on the analysis of the module's electroluminescence intensity distribution, applied at module and cell level. These concepts are demonstrated on a crystalline silicon photovoltaic module that was subjected to several rounds of mechanical loading and humidity-freeze cycling, causing increasing levels of solar cell cracks. The proposed method can be used as a diagnostic tool to rate cell damage or quality of modules after transportation. Moreover, the method can be automated and used in quality control for module manufacturers, installers, or as a diagnostic tool by plant operators and diagnostic service providers.

  3. Novel High Efficient Organic Photovoltaic Materials: Final Summary of Research

    NASA Technical Reports Server (NTRS)

    Sun, Sam

    2002-01-01

    The objectives and goals of this project were to investigate and develop high efficient, lightweight, and cost effective materials for potential photovoltaic applications, such as solar energy conversion or photo detector devices. Specifically, as described in the original project proposal, the target material to be developed was a block copolymer system containing an electron donating (or p-type) conjugated polymer block coupled to an electron withdrawing (or n-type) conjugated polymer block through a non-conjugated bridge unit. Due to several special requirements of the targeted block copolymer systems, such as electron donating and withdrawing substituents, conjugated block structures, processing requirement, stability requirement, size controllability, phase separation and self ordering requirement, etc., many traditional or commonly used block copolymer synthetic schemes are not suitable for this system. Therefore, the investigation and development of applicable and effective synthetic protocols became the most critical and challenging part of this project. During the entire project period, and despite the lack of a proposed synthetic polymer postdoctoral research associate due to severe shortage of qualified personnel in the field, several important accomplishments were achieved in this project and are briefly listed and elaborated. A more detailed research and experimental data is listed in the Appendix.

  4. Gold cluster/titanium dioxide heterojunction photovoltaic cell

    NASA Astrophysics Data System (ADS)

    Nakamura, Eiji; Kogo, Atsushi; Sakai, Nobuyuki; Tatsuma, Tetsu

    2014-08-01

    Metal clusters have recently been applied as photosensitizers to wet-type photovoltaic cells. However, there are some practical issues including instability of the clusters in a liquid phase and leakage of electrolyte. To address these issues, we fabricated a heterojunction photovoltaic cell with solid-state layers of glutathione-protected Au25 clusters and titanium dioxide (TiO2). The ITO/TiO2/Au25/Au cell responded to visible and near infrared light even at 900 nm. Short-circuit photocurrent was ˜14 μA cm-2 and open-circuit photovoltage was 0.53 V under a xenon lamp (>480 nm, 75 mW cm-2).

  5. Effect of molecular electrical doping on polyfuran based photovoltaic cells

    SciTech Connect

    Yu, Shuwen; Opitz, Andreas; Salzmann, Ingo; Frisch, Johannes; Cohen, Erez; Bendikov, Michael; Koch, Norbert

    2015-05-18

    The electronic, optical, and morphological properties of molecularly p-doped polyfuran (PF) films were investigated over a wide range of doping ratio in order to explore the impact of doping in photovoltaic applications. We find evidence for integer-charge transfer between PF and the prototypical molecular p-dopant tetrafluoro-tetracyanoquinodimethane (F4TCNQ) and employed the doped polymer in bilayer organic solar cells using fullerene as acceptor. The conductivity increase in the PF films at dopant loadings ≤2% significantly enhances the short-circuit current of photovoltaic devices. For higher doping ratios, however, F4TCNQ is found to precipitate at the heterojunction between the doped donor polymer and the fullerene acceptor. Ultraviolet photoelectron spectroscopy reveals that its presence acts beneficial to the energy-level alignment by doubling the open-circuit voltage of solar cells from 0.2 V to ca. 0.4 V, as compared to pristine PF.

  6. Two terminal diagnostics for cells in series connected photovoltaic modules

    SciTech Connect

    McMahon, T.J.; Basso, T.S.

    1995-11-01

    The authors have developed a method that allows us to know if a cell`s shunt resistance is affecting the output of a two-terminal, series-connected photovoltaic module, without the need of encapsulation. This two-terminal diagnostic method directly measures the shunt resistance of the individual cells within a series-connected module non-intrusively. Being a phase sensitive, lock-in technique, individual cell shunt resistance values are measured over a wide range, from a fraction of an ohm to thousands of ohms. The authors have applied this method to amorphous Si, Si and CuInSe{sub 2}-based modules, some with as few as eight cells in series, but usually with 28 to 68 cells. ``Two-terminal values`` are more accurate for cells that have lower shunt resistance, i.e., the ``problem`` cells. Cells with visual defects may be a significant problem if they provide a substantial shunt path.

  7. Semi-transparent polymer solar cells with excellent sub-bandgap transmission for third generation photovoltaics.

    PubMed

    Beiley, Zach M; Christoforo, M Greyson; Gratia, Paul; Bowring, Andrea R; Eberspacher, Petra; Margulis, George Y; Cabanetos, Clément; Beaujuge, Pierre M; Salleo, Alberto; McGehee, Michael D

    2013-12-23

    Semi-transparent organic photovoltaics are of interest for a variety of photovoltaic applications, including solar windows and hybrid tandem photovoltaics. The figure shows a photograph of our semi-transparent solar cell, which has a power conversion efficiency of 5.0%, with an above bandgap transmission of 34% and a sub-bandgap transmission of 81%. PMID:24123497

  8. Analysis of Electrical Characteristics of Thin Film Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Kasick, Michael P.

    2004-01-01

    Solar energy is the most abundant form of energy in many terrestrial and extraterrestrial environments. Often in extraterrestrial environments sunlight is the only readily available form of energy. Thus the ability to efficiently harness solar energy is one of the ultimate goals in the design of space power systems. The essential component that converts solar energy into electrical energy in a solar energy based power system is the photovoltaic cell. Traditionally, photovoltaic cells are based on a single crystal silicon absorber. While silicon is a well understood technology and yields high efficiency, there are inherent disadvantages to using single crystal materials. The requirements of weight, large planar surfaces, and high manufacturing costs make large silicon cells prohibitively expensive for use in certain applications. Because of silicon s disadvantages, there is considerable ongoing research into alternative photovoltaic technologies. In particular, thin film photovoltaic technologies exhibit a promising future in space power systems. While they are less mature than silicon, the better radiation hardness, reduced weight, ease of manufacturing, low material cost, and the ability to use virtually any exposed surface as a substrate makes thin film technologies very attractive for space applications. The research group lead by Dr. Hepp has spent several years researching copper indium disulfide as an absorber material for use in thin film photovoltaic cells. While the group has succeeded in developing a single source precursor for CuInS2 as well as a unique method of aerosol assisted chemical vapor deposition, the resulting cells have not achieved adequate efficiencies. While efficiencies of 11 % have been demonstrated with CuInS2 based cells, the cells produced by this group have shown efficiencies of approximately 1 %. Thus, current research efforts are turning towards the analysis of the individual layers of these cells, as well as the junctions between

  9. Simple characterization of electronic processes in perovskite photovoltaic cells

    SciTech Connect

    Miyano, Kenjiro Yanagida, Masatoshi; Tripathi, Neeti; Shirai, Yasuhiro

    2015-03-02

    Electronic properties of perovskite lead-halide photovoltaic cells have been studied. The dc current/voltage characteristics were found to be well fitted by a standard diode equation under optical excitation and in the dark, while the impedance spectroscopy revealed a pronounced slow process under light illumination, which is absent in the dark. A simple model is proposed, which can explain all aspects of the observed behavior quantitatively and consistently.

  10. Geometric photovoltaics applied to amorphous silicon thin film solar cells

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Timothy

    Geometrically generalized analytical expressions for device transport are derived from first principles for a photovoltaic junction. Subsequently, conventional planar and unconventional coaxial and hemispherical photovoltaic architectures are applied to detail the device physics of the junction based on their respective geometry. For the conventional planar cell, the one-dimensional transport equations governing carrier dynamics are recovered. For the unconventional coaxial and hemispherical junction designs, new multi-dimensional transport equations are revealed. Physical effects such as carrier generation and recombination are compared for each cell architecture, providing insight as to how non-planar junctions may potentially enable greater energy conversion efficiencies. Numerical simulations are performed for arrays of vertically aligned, nanostructured coaxial and hemispherical amorphous silicon solar cells and results are compared to those from simulations performed for the standard planar junction. Results indicate that fundamental physical changes in the spatial dependence of the energy band profile across the intrinsic region of an amorphous silicon p-i-n junction manifest as an increase in recombination current for non-planar photovoltaic architectures. Despite an increase in recombination current, however, the coaxial architecture still appears to be able to surpass the efficiency predicted for the planar geometry, due to the geometry of the junction leading to a decoupling of optics and electronics.

  11. Temperature dependence of photovoltaic cells, modules, and systems

    SciTech Connect

    Emery, K.; Burdick, J.; Caiyem, Y.

    1996-05-01

    Photovoltaic (PV) cells and modules are often rated in terms of a set of standard reporting conditions defined by a temperature, spectral irradiance, and total irradiance. Because PV devices operates over a wide range of temperatures and irradiances, the temperature and irradiance related behavior must be known. This paper surveys the temperature dependence of crystalline and thin-film, state-of-the-art, research-size cells, modules, and systems measured by a variety of methods. The various error sources and measurement methods that contribute to cause differences in the temperature coefficient for a given cell or module measured with various methods are discussed.

  12. High-efficiency Au/CdTe photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Raychaudhuri, Pranab K.

    1987-10-01

    Au/CdTe photovoltaic cells have been prepared on modified surfaces of single-crystal substrates with AM2 efficiencies of about 15 percent. The modification effected by heat treatment in air is found to decrease the reverse saturation current and increase the width of the depletion layer. As a result, the open-circuit voltage, the short-circuit current, and the fill factor are all significantly enhanced. The maximum values of cell parameters obtained in different cells suggest that significantly higher efficiency is feasible.

  13. Photovoltaic cells for laser power beaming

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Jain, Raj K.

    1992-01-01

    To better understand cell response to pulsed illumination at high intensity, the PC-1DC finite-element computer model was used to analyze the response of solar cells to pulsed laser illumination. Over 50% efficiency was calculated for both InP and GaAs cells under steady-state illumination near the optimum wavelength. The time-dependent response of a high-efficiency GaAs concentrator cell to a laser pulse was modelled, and the effect of laser intensity, wavelength, and bias point was studied. Designing a cell to accommodate pulsed input can be done either by accepting the pulsed output and designing a cell to minimize adverse effects due to series resistance and inductance, or to design a cell with a long enough minority carrier lifetime, so that the output of the cell will not follow the pulse shape. Two such design possibilities are a monolithic, low-inductance voltage-adding GaAs cell, or a high-efficiency, light-trapping silicon cell. The advantages of each design will be discussed.

  14. Photovoltaic concentrator initiative: Concentrator cell development

    SciTech Connect

    Wohlgemuth, J.H.; Narayanan, S.

    1993-05-01

    This project involves the development of a large-area, low-cost, high-efficiency concentrator solar cell for use in the Entech 22-sun linear-focus Fresnel lens concentrator system. The buried contact solar cell developed at the University of New South Wales was selected for this project. Both Entech and the University of New South Wales are subcontractors. This annual report presents the program efforts from November 1990 through December 1991, including the design of the cell, development of a baseline cell process, and presentation of the results of preliminary cell processing. Important results include a cell designed for operation in a real concentrator system and substitution of mechanical grooving for the previously utilized laser scribing.

  15. Silicon Nitride Antireflection Coatings for Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Johnson, C.; Wydeven, T.; Donohoe, K.

    1984-01-01

    Chemical-vapor deposition adapted to yield graded index of refraction. Silicon nitride deposited in layers, refractive index of which decreases with distance away from cell/coating interface. Changing index of refraction allows adjustment of spectral transmittance for wavelengths which cell is most effective at converting light to electric current. Average conversion efficiency of solar cells increased from 8.84 percent to 12.63 percent.

  16. Production of solar photovoltaic cells on the Moon

    NASA Technical Reports Server (NTRS)

    Criswell, David R.; Ignatiev, Alex

    1991-01-01

    Solar energy is directly available on the sunward lunar surface. Most, if not all, the materials are available on the Moon to make silicon based solar photovoltaic cells. A few additional types are possible. There is a small but growing literature on production of lunar derived solar cells. This literature is reviewed. Topics explored include trade-offs of local production versus import of key materials, processing options, the scale and nature of production equipment, implications of storage requirements, and the end-uses of the energy. Directions for future research and demonstrations are indicated.

  17. Electrical research on solar cells and photovoltaic materials

    NASA Technical Reports Server (NTRS)

    Orehotsky, J.

    1984-01-01

    The flat-plate solar cell array program which increases the service lifetime of the photovoltaic modules used for terrestrial energy applications is discussed. The current-voltage response characteristics of the solar cells encapsulated in the modules degrade with service time and this degradation places a limitation on the useful lifetime of the modules. The most desirable flat-plate array system involves solar cells consisting of highly polarizable materials with similar electrochemical potentials where the cells are encapsulated in polymers in which ionic concentrations and mobilities are negligibly small. Another possible mechanism limiting the service lifetime of the photovoltaic modules is the gradual loss of the electrical insulation characteristics of the polymer pottant due to water absorption or due to polymer degradation from light or heat effects. The mechanical properties of various polymer pottant materials and of electrochemical corrosion mechanisms in solar cell material are as follows: (1) electrical and ionic resistivity; (2) water absorption kinetics and water solubility limits; and (3) corrosion characterization of various metallization systems used in solar cell construction.

  18. Low cost and efficient photovoltaic conversion by nanocrystalline solar cells

    SciTech Connect

    Graetzel, M.

    1996-09-01

    Solar cells are expected to provide environmentally friendly solutions to the world`s energy supply problem. Learning from the concepts used by green plants we have developed a molecular photovoltaic device whose overall efficiency for AM 1.5 solar light to electricity has already attained 8-11%. The system is based on the sensitization of nanocrystalline oxide films by transition metal charge transfer sensitizers. In analogy to photosynthesis, the new chemical solar cell achieves the separation of the light absorption and charge carrier transport processes. Extraordinary yields for the conversion of incident photons into electric current are obtained, exceeding 90% for transition metal complexes within the wavelength range of their absorption band. The use of molten salt electrolytes together with coordination complexes of ruthenium as sensitizers and adequate sealing technology has endowed these cells with a remarkable stability making practical applications feasible. Seven industrial cooperations are presently involved in the development to bring these cells to the market. The first cells will be applied to supply electric power for consumer electronic devices. The launching of production of several products of this type is imminent and they should be on the market within the next two years. Quite aside from their intrinsic merits as photovoltaic device, the mesoscopic oxide semiconductor films developed in our laboratory offer attractive possibilities for a number of other applications. Thus, the first example of a nanocrystalline rocking chair battery will be demonstrated and its principle briefly discussed.

  19. Tandem photovoltaic cells formed in single fullerene films by impurity doping

    NASA Astrophysics Data System (ADS)

    Ishiyama, Norihiro; Kubo, Masayuki; Kaji, Toshihiko; Hiramoto, Masahiro

    2012-12-01

    Tandem photovoltaic cells were formed in single fullerene films by doping with molybdenum oxide and cesium carbonate. A heavily doped n+p+-homojunction acted as an ohmic interlayer between the two pn-homojunction cells. The observed photovoltaic properties of the tandem cell were shown to be consistent with the energy band diagram mapped using a Kelvin probe.

  20. Thin film cadmium telluride photovoltaic cells

    SciTech Connect

    Compaan, A.; Bohn, R. )

    1992-04-01

    This report describes research to develop to vacuum-based growth techniques for CdTe thin-film solar cells: (1) laser-driven physical vapor deposition (LDPVD) and (2) radio-frequency (rf) sputtering. The LDPVD process was successfully used to deposit thin films of CdS, CdTe, and CdCl{sub 2}, as well as related alloys and doped semiconductor materials. The laser-driven deposition process readily permits the use of several target materials in the same vacuum chamber and, thus, complete solar cell structures were fabricated on SnO{sub 2}-coated glass using LDPVD. The rf sputtering process for film growth became operational, and progress was made in implementing it. Time was also devoted to enhancing or implementing a variety of film characterization systems and device testing facilities. A new system for transient spectroscopy on the ablation plume provided important new information on the physical mechanisms of LDPVD. The measurements show that, e.g., Cd is predominantly in the neutral atomic state in the plume but with a fraction that is highly excited internally ({ge} 6 eV), and that the typical neutral Cd translational kinetic energies perpendicular to the target are 20 eV and greater. 19 refs.

  1. Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell

    SciTech Connect

    Chowdhury, Zahidur R. Kherani, Nazir P.

    2014-12-29

    This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide–plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparent passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are V{sub OC} of 666 mV, J{sub SC} of 29.5 mA-cm{sup −2}, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.

  2. About the transparent electrode of the organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Bernède, J.-C.; Nguyen, D.-T.; Cattin, L.; Morsli, M.; Kanth, S. R. B.; Patil, S.

    2011-12-01

    Electrodes and the nature of their contact with organic materials play a crucial role in the realization of efficient optoelectronic components. Whether the injection (organic light-emitting diodes - OLEDs) or collection (organic photovoltaic cells - OPV cells) of carriers, contacts must be as efficient as possible. To do this, it is customary to refer to electrode surface treatment and/or using a buffer layer all things to optimize the contact. Efficiency of organic photovoltaic cells based on organic electron donor/organic electron acceptor junctions can be strongly improved when the transparent conductive anode is coated with a buffer layer (ABL). We show that an ultra-thin gold (0.5 nm) or a thin molybdenum oxide (3-5 nm) can be used as efficient ABL. However, the effects of these ABL depend on the highest occupied molecular orbital (HOMO) of different electron donors of the OPV cells. The results indicate that, in the case of metal ABL, a good matching between the work function of the anode and the highest occupied molecular orbital of the donor material is the major factor limiting the hole transfer efficiency. Indeed, gold is efficient as ABL only when the HOMO of the organic donor is close to its work function ФAu. MoO3 has a wider field of application as ABL than gold. The role of the oxide is not so clearly understood than that of Au, different models proposed to interpret the experimental results are discussed.

  3. Silicon wafer-based tandem cells: The ultimate photovoltaic solution?

    NASA Astrophysics Data System (ADS)

    Green, Martin A.

    2014-03-01

    Recent large price reductions with wafer-based cells have increased the difficulty of dislodging silicon solar cell technology from its dominant market position. With market leaders expected to be manufacturing modules above 16% efficiency at 0.36/Watt by 2017, even the cost per unit area (60-70/m2) will be difficult for any thin-film photovoltaic technology to significantly undercut. This may make dislodgement likely only by appreciably higher energy conversion efficiency approaches. A silicon wafer-based cell able to capitalize on on-going cost reductions within the mainstream industry, but with an appreciably higher than present efficiency, might therefore provide the ultimate PV solution. With average selling prices of 156 mm quasi-square monocrystalline Si photovoltaic wafers recently approaching 1 (per wafer), wafers now provide clean, low cost templates for overgrowth of thin, wider bandgap high performance cells, nearly doubling silicon's ultimate efficiency potential. The range of possible Si-based tandem approaches is reviewed together with recent results and ultimate prospects.

  4. Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell

    NASA Astrophysics Data System (ADS)

    Chowdhury, Zahidur R.; Kherani, Nazir P.

    2014-12-01

    This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide-plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparent passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are VOC of 666 mV, JSC of 29.5 mA-cm-2, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.

  5. A new flame monitor with triple photovoltaic cells

    SciTech Connect

    Xu, L.J.; Yan, Y.

    2006-08-15

    In this paper, we present a new flame monitor that uses three photovoltaic cells covering the ultraviolet (UV), visible, and infrared (IR) spectral bands. A gain-adjustable amplifier is incorporated into the monitor so that it is applicable to the coal-, oil-, or gas-fired flames. Self-checking of the monitor is implemented through cross correlation of the signals from the three cells, and hence, no additional self-checking hardware is required. Both the oscillation frequency and the brightness of the flame are used to monitor flame stability and to detect flame presence as well as sighting-tube blockage. Unlike conventional single-cell flame detectors, the new multicell devices can still be in operation before being repaired, after a cell-failure alarm has gone off. Experiments were carried out on an industrial-scale combustion test facility in order to demonstrate the operability and efficacy of the new flame monitor.

  6. Periodically multilayered planar optical concentrator for photovoltaic solar cells

    SciTech Connect

    Solano, Manuel E.; Monk, Peter B.; Faryad, Muhammad; Lakhtakia, Akhlesh; Mallouk, Thomas E.

    2013-11-04

    A planar optical concentrator comprising a periodic multilayered isotropic dielectric material backed by a metallic surface-relief grating was theoretically examined for silicon photovoltaics. The concentrator was optimized using a differential evolution algorithm for solar-spectrum-integrated power-flux density. Further optimization was carried out for tolerance to variations in the incidence angle, spatial dimensions, and dielectric properties. The average electron-hole pair density in a silicon solar cell can be doubled, and the material costs substantially diminished by this concentrator, whose efficacy is due to the excitation of waveguide modes and multiple surface-plasmon-polariton waves in a broad spectral regime.

  7. Photovoltaic cell with light trapping for enhanced efficiency

    SciTech Connect

    Brener, Igal; Fofang, Nche Tumasang; Luk, Ting S.

    2015-11-19

    The efficiency of a photovoltaic cell is enhanced by light trapping using Mie-scattering nanostructures. In one embodiment, an array of nanocylinders is formed on the front surface of a silicon film to enhance forward scattering into the film, and an array of nanocylinders is formed on the back surface to enhance backscattering so that more light is absorbed within the silicon film. In an alternate embodiment, a mirror layer is formed on the back surface of the silicon film to reflect light within the film back toward the front-surface nanocylinder array.

  8. Periodically multilayered planar optical concentrator for photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Solano, Manuel E.; Faryad, Muhammad; Monk, Peter B.; Mallouk, Thomas E.; Lakhtakia, Akhlesh

    2013-11-01

    A planar optical concentrator comprising a periodic multilayered isotropic dielectric material backed by a metallic surface-relief grating was theoretically examined for silicon photovoltaics. The concentrator was optimized using a differential evolution algorithm for solar-spectrum-integrated power-flux density. Further optimization was carried out for tolerance to variations in the incidence angle, spatial dimensions, and dielectric properties. The average electron-hole pair density in a silicon solar cell can be doubled, and the material costs substantially diminished by this concentrator, whose efficacy is due to the excitation of waveguide modes and multiple surface-plasmon-polariton waves in a broad spectral regime.

  9. Effect of COOH-functionalized SWCNT addition on the electrical and photovoltaic characteristics of Malachite Green dye based photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Manik, N. B.

    2014-12-01

    We report the effect of COOH-functionalized single walled carbon nanotubes (COOH-SWCNT) on the electrical and photovoltaic characteristics of Malachite Green (MG) dye based photovoltaic cells. Two different types of photovoltaic cells were prepared, one with MG dye and another by incorporating COOH-SWCNT with this dye. Cells were characterized through different electrical and photovoltaic measurements including photocurrent measurements with pulsed radiation. From the dark current—voltage (I-V) characteristic results, we observed a certain transition voltage (Vth) for both the cells beyond which the conduction mechanism of the cells change sharply. For the MG dye, Vth is 3.9 V whereas for COOH-SWCNT mixed with this dye, Vth drops to 2.7 V. The device performance improves due to the incorporation of COOH-SWCNT. The open circuit voltage and short circuit current density change from 4.2 to 97 mV and from 108 to 965 μA/cm2 respectively. Observations from photocurrent measurements show that the rate of growth and decay of the photocurrent are quite faster in the presence of COOH-SWCNT. This observation indicates a faster charge separation processes due to the incorporation of COOH-SWCNT in the MG dye cells. The high aspect ratio of COOH-SWCNT allows efficient conduction pathways for the generated charge carriers.

  10. Efficient small-molecule photovoltaic cells using nanostructured template

    NASA Astrophysics Data System (ADS)

    Taima, Tetsuya; Zhou, Ying; Kuwabara, Takayuki; Takahashi, Kohshin

    2014-03-01

    We report a simple method to achieve efficient nanostructured organic photovoltaics via patterning copper iodide (CuI) nano-rod template on indium tin oxide. The CuI nano-rod sheet was fabricated by glancing angle deposition method. The strong interfacial interaction between zinc phthalocyanine (ZnPc) and CuI leads to the formation of nano-pillar arrays with lying-down crystalline order, which greatly improve absorption efficiency and surface roughness for exciton dissociation. Optimized ZnPc/C60 bilayer cell has a power conversion efficiency of 4.0 +/- 0.1%, which is about three-fold larger than that of conventional planar cell. In addition, we also reported the new type of nano-structured template based on organic semiconductor. As the template material, diindenoperylene (DIP) was introduced into bilayer photovoltaic cells using based on tetraphenyldibenzoperifl anthene (DBP) and C60. While the basic molecular structure of DIP is similar to that of DBP, DIP shows higher crystallinity than DBP one. We obtained power conversion efficiency of 5.2% and high fill factor of 0.72 due to high crystallinity of DIP nano-structured template.

  11. Photovoltaic manufacturing technology, Phase 1. Final technical report, 1 May 1991--10 May 1991

    SciTech Connect

    Not Available

    1992-10-01

    This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS ``Eureka`` facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the ``Eureka`` facility to Chronar`s ``batch`` plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

  12. 77 FR 37877 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ... Determination of Critical Circumstances, 77 FR 31309 (May 25, 2012), under the section entitled ``Preliminary... International Trade Administration Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules... determination in the antidumping duty investigation of crystalline silicon photovoltaic cells, whether or...

  13. 77 FR 72884 - Crystalline Silicon Photovoltaic Cells and Modules From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... in the Federal Register on June 13, 2012 (77 FR 35425). The hearing was held in Washington, DC, on... COMMISSION Crystalline Silicon Photovoltaic Cells and Modules From China Determinations On the basis of the... reason of imports of crystalline silicon photovoltaic cells and modules from China, provided for...

  14. 76 FR 78313 - Crystalline Silicon Photovoltaic Cells and Modules From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... notice in the Federal Register of October 27, 2011 (76 FR 66748). The conference was held in Washington... COMMISSION Crystalline Silicon Photovoltaic Cells and Modules From China Determinations On the basis of the... is materially injured by reason of imports from China of crystalline silicon photovoltaic cells...

  15. 77 FR 14732 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ... People's Republic of China: Initiation of Antidumping Duty Investigation, 76 FR 70960 (November 16, 2011... International Trade Administration Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules... of crystalline silicon photovoltaic cells, whether or not assembled into modules, from the...

  16. The Photovoltaic Higher Education National Exemplar Facility (PHENEF). Final report, [August 1, 1980--September 30, 1991

    SciTech Connect

    Podbielski, V.; Shaff, D.

    1994-04-01

    In August 1980, the US Department of Energy awarded the proposed grant to Georgetown University. The grant covered the following tasks: Task 1, The Department of Energy would participate in the building of an academic facility that would facilitate the integration of flat plate photovoltaic roof modules with an optimally oriented solar architecture. The completion of the facility to be built on the Georgetown University Campus and known as the Georgetown University Intercultural Center was to be a jointly funded endeavor with the Department of Education funding $9.2M through a grant and a loan, Department of Energy funding a maximum of $4M and Georgetown University funding the residual costs. Task II, Georgetown University would provide the necessary skills, services, materials, equipment and facilities to design, furnish, install and make operational the Georgetown University Intercultural Center Photovoltaic System. The specific objective of this effort would be to build an exemplar flat plate electrical grid connected photovoltaic (PV) system which would demonstrate integration of PV modules into a watertight roofing surface. The system capability, measured at the input to the inverter, would be a 300 kilowatt peak power system as measured at the normal cell operating temperature and an isolation of 100 milliwatts per square centimeter at the collector surface. DOE funding under the grant for the PV system would be limited to a system cost of $20.00 per peak watt up to maximum of six million dollars.

  17. The efficiency of photovoltaic cells exposed to pulsed laser light

    NASA Technical Reports Server (NTRS)

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  18. Electrical research on solar cells and photovoltaic materials

    NASA Technical Reports Server (NTRS)

    Orehotsky, J.

    1985-01-01

    A systematic study of the properties of various polymer pottant materials and of the electrochemical corrosion mechanisms in solar cell materials is required for advancing the technology of terrestrial photovoltaic modules. The items of specific concern in this sponsored research activity involve: (1) kinetics of plasticizer loss in PVB, (2) kinetics of water absorption and desorption in PVB, (3) kinetics of water absorption and desorption in EVA, (4) the electrical properties at PVB as a function of temperature and humidity, (5) the electrical properties of EVA as a function of temperature and humidity, (6) solar cell corrosion characteristics, (7) water absorption effects in PVB and EVA, and (8) ion implantation and radiation effects in PVB and EVA.

  19. Efficient organic photovoltaic cells with vertically ordered bulk heterojunctions.

    PubMed

    Yu, Bo; Wang, Haibo; Yan, Donghang

    2013-12-01

    Nanoscale morphology has been proved to be the key parameter deciding the exciton dissociation and charge transportation in bulk heterojunction (BHJ) solar cells. In this paper, we report a kind of small molecular organic photovoltaic cell (OPV) with a vertically ordered BHJ prepared by the weak epitaxial growth method. By this method, zinc phthalocyanine (ZnPc) can easily be formed into a highly ordered and continuous thin film and C60 is inclined to become dispersed crystalline grains in ZnPc film. Furthermore, we can control both the size and distribution density of C60 crystalline grains in ZnPc thin film without destroying the order of the ZnPc thin film. The OPVs with the vertically ordered BHJ show a high fill factor and a power conversion efficiency over 3% has been achieved. PMID:24196430

  20. Efficient organic photovoltaic cells with vertically ordered bulk heterojunctions

    NASA Astrophysics Data System (ADS)

    Yu, Bo; Wang, Haibo; Yan, Donghang

    2013-12-01

    Nanoscale morphology has been proved to be the key parameter deciding the exciton dissociation and charge transportation in bulk heterojunction (BHJ) solar cells. In this paper, we report a kind of small molecular organic photovoltaic cell (OPV) with a vertically ordered BHJ prepared by the weak epitaxial growth method. By this method, zinc phthalocyanine (ZnPc) can easily be formed into a highly ordered and continuous thin film and C60 is inclined to become dispersed crystalline grains in ZnPc film. Furthermore, we can control both the size and distribution density of C60 crystalline grains in ZnPc thin film without destroying the order of the ZnPc thin film. The OPVs with the vertically ordered BHJ show a high fill factor and a power conversion efficiency over 3% has been achieved.

  1. Photovoltaic device

    DOEpatents

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  2. Photovoltaic device

    SciTech Connect

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  3. InGaN High-Temperature Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Starikov, David

    2015-01-01

    This Phase II project developed Indium-Gallium-Nitride (InGaN) photovoltaic cells for high-temperature and high-radiation environments. The project included theoretical and experimental refinement of device structures produced in Phase I as well as modeling and optimization of solar cell device processing. The devices have been tested under concentrated air mass zero (AM0) sunlight, at temperatures from 100 degC to 250 degC, and after exposure to ionizing radiation. The results are expected to further verify that InGaN can be used for high-temperature and high-radiation solar cells. The large commercial solar cell market could benefit from the hybridization of InGaN materials to existing solar cell technology, which would significantly increase cell efficiency without relying on highly toxic compounds. In addition, further development of this technology to even lower bandgap materials for space applications would extend lifetimes of satellite solar cell arrays due to increased radiation hardness. This could be of importance to the Departmentof Defense (DoD) and commercial satellite manufacturers.

  4. A surface plasmon enabled liquid-junction photovoltaic cell.

    PubMed

    Lee, Woo-ram; Mubeen, Syed; Stucky, Galen D; Moskovits, Martin

    2015-01-01

    Plasmonic nanosystems have recently been shown to be capable of functioning as photovoltaics and of carrying out redox photochemistry, purportedly using the energetic electrons and holes created following plasmonic decay as charge carriers. Although such devices currently have low efficiency, they already manifest a number of favorable characteristics, such as their tunability over the entire solar spectrum and a remarkable resistance to photocorrosion. Here, we report a plasmonic photovoltaic using a 25 μm thick electrolytic liquid junction which supports the iodide/triiodide (I-/I3-) redox couple. The device produces photocurrent densities in excess of 40 μA cm(-2), an open circuit voltage (Voc) of ∼0.24 V and a fill factor of ∼0.5 using AM 1.5 G solar radiation at 100 mW cm(-2). The photocurrent and the power conversion efficiency are primarily limited by the low light absorption in the 2-D gold nanoparticle arrays. The use of a liquid junction greatly reduces dielectric breakdown in the oxide layers utilized, which must be very thin for optimal performance, leading to a great improvement in the long-term stability of the cell's performance. PMID:25740725

  5. [Prediction of Encapsulation Temperatures of Copolymer Films in Photovoltaic Cells Using Hyperspectral Imaging Techniques and Chemometrics].

    PubMed

    Lin, Ping; Chen, Yong-ming; Yao, Zhi-lei

    2015-11-01

    introduced to eliminate the impact of nonlinear hyperspectral data to some extent through mapping the original nonlinear hyperspectral data to the high dimensional linear feature space, so the relationship between the nonlinear hyperspectral data and the encapsulation temperatures of EVA films was fully disclosed finally. Compared with the prediction results of three proposed models, the prediction performance of LMNN was superior to the other two, whose final recognition accuracy achieved 100%. The results indicated that the methods of combination of LMNN model with the hyperspectral imaging techniques was the best one for accurately and rapidly determining the encapsulation temperatures of EVA films of photovoltaic cells. In addition, this paper had created the ideal conditions for automatically monitoring and effectively controlling the encapsulation temperatures of EVA films in the photovoltaic cells production process. PMID:26978932

  6. Solar cells design for low and medium concentrating photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Baig, Hasan; Heasman, Keith C.; Sarmah, Nabin; Mallick, Tapas

    2012-10-01

    The solar cell is the key element of any CPV system, and its design plays an important role in enhancing the performance of the entire system. Special types of cells are required in the CPV systems capable of operating at high concentrations and elevated temperatures. These Concentrator solar cells differ significantly from the usual solar cells in the method of manufacture, the overall cell design and their performance. Systematic design and manufacture of the cell ensures better performance in a given CPV system. A number of factors come into play while designing the solar cell for a specific system these include concentration, cell material properties, expected operating temperature, shape, bus bar configuration and finger spacing. Most of these variables are decided on based on some rules of thumb and PC1D calculations. However, there is scope for design improvement and cell optimization by performing a detailed analysis based on the illumination profile incident on the cell. Recent studies demonstrated the use of Finite element method to analyze the electrical behavior of PV cell under the influence of arbitrarily chosen illumination flux profiles. This study outlines a methodology and analysis procedure while performing a case study of a CPV system under development having a non-uniform illumination profile towards the exit of the concentrator. The LCPV system chosen is the Photovoltaic Facades of Reduced Costs Incorporating Devices with Optically Concentrating Elements (PRIDE) concentrator made of dielectric material. A coupled optical, thermal and electrical analysis is performed on the system to demonstrate the method useful in designing solar cells for low and medium concentrations.

  7. Multiband spectral emitters matched to MBE grown photovoltaic cells

    SciTech Connect

    Wong, E.M.; Hickey, J.P.; Holmquist, G.A.; Uppal, P.N.; Waldman, C.H.

    1996-02-01

    Clearly TPV devices are of considerable interest for power generation. For practical devices it is desirable to have high efficiencies combined with low temperature operation. Photovoltaic cells which can convert the energy at the longer wavelengths of interest are needed to complete such a system. The spectral emission peak of Yb{sub 2}O{sub 3} is well matched to the band gap of Si; however, the longer wavelength, spectral emissions of other rare earth oxides can also be exploited through the use of III{endash}V semiconductor compounds such as GaSb or alloys of GaInAsSb. By doping GaSb with InAs, the band gap of the resulting material can be effectively varied depending upon the concentration of InAs in the quaternary alloy. The ability to tailor the emitter materials and, in conjunction, the photovoltaic materials leads to greater efficiencies through spectral matching. Two binary rare earth oxide combinations, Er{sub 2}O{sub 3}/Ho{sub 2}O{sub 3} and Er{sub 2}O{sub 3}/Yb{sub 2}O{sub 3}, were studied. The mixtures were found to give multiple peak spectral emission in the wavelengths of interest. The intensity of the peaks were compositionally dependent though it did not vary in a linear fashion. Photon efficiencies of the molecular beam epitaxially (MBE) grown GaSb cell and GaInAsSb quaternary cell were measured when used in conjunction with the Er{sub 2}O{sub 3}/Ho{sub 2}O{sub 3} emitters in which the concentration of Er{sub 2}O{sub 3} and Ho{sub 2}O{sub 3} were varied. The results demonstrated promise for further work. {copyright} {ital 1996 American Institute of Physics.}

  8. Dye Sensitized Solar Cells for Economically Viable Photovoltaic Systems.

    PubMed

    Jung, Hyun Suk; Lee, Jung-Kun

    2013-05-16

    TiO2 nanoparticle-based dye sensitized solar cells (DSSCs) have attracted a significant level of scientific and technological interest for their potential as economically viable photovoltaic devices. While DSSCs have multiple benefits such as material abundance, a short energy payback period, constant power output, and compatibility with flexible applications, there are still several challenges that hold back large scale commercialization. Critical factors determining the future of DSSCs involve energy conversion efficiency, long-term stability, and production cost. Continuous advancement of their long-term stability suggests that state-of-the-art DSSCs will operate for over 20 years without a significant decrease in performance. Nevertheless, key questions remain in regards to energy conversion efficiency improvements and material cost reduction. In this Perspective, the present state of the field and the ongoing efforts to address the requirements of DSSCs are summarized with views on the future of DSSCs. PMID:26282979

  9. Structural templating of multiple polycrystalline layers in organic photovoltaic cells

    SciTech Connect

    Lassiter, Brian E; Lunt, Richard R; Renshaw, Kyle; Forrest, Stephen R.

    2010-09-01

    We demonstrate that organic photovoltaic cell performance is influenced by changes in the crystalline orientation of composite layer structures. A 1.5 nm thick self-organized, polycrystalline template layer of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) orients subsequently deposited layers of a diindenoperylene exciton blocking layer, and the donor, copper phthalocyanine (CuPc). Control over the crystalline orientation of the CuPc leads to changes in its frontier energy levels, absorption coefficient, and surface morphology, resulting in an increase of power conversion efficiency at 1 sun from 1.42 ± 0.04% to 2.19 ± 0.05% for a planar heterojunction and from 1.89 ± 0.05% to 2.49 ± 0.03% for a planar-mixed heterojunction.

  10. Structural templating of multiple polycrystalline layers in organic photovoltaic cells.

    PubMed

    Lassiter, Brian E; Lunt, Richard R; Renshaw, C Kyle; Forrest, Stephen R

    2010-09-13

    We demonstrate that organic photovoltaic cell performance is influenced by changes in the crystalline orientation of composite layer structures. A 1.5 nm thick self-organized, polycrystalline template layer of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) orients subsequently deposited layers of a diindenoperylene exciton blocking layer, and the donor, copper phthalocyanine (CuPc). Control over the crystalline orientation of the CuPc leads to changes in its frontier energy levels, absorption coefficient, and surface morphology, resulting in an increase of power conversion efficiency at 1 sun from 1.42 ± 0.04% to 2.19 ± 0.05% for a planar heterojunction and from 1.89 ± 0.05% to 2.49 ± 0.03% for a planar-mixed heterojunction. PMID:21165074

  11. Concrete Embedded Dye-Synthesized Photovoltaic Solar Cell

    PubMed Central

    Hosseini, T.; Flores-Vivian, I.; Sobolev, K.; Kouklin, N.

    2013-01-01

    This work presents the concept of a monolithic concrete-integrated dye-synthesized photovoltaic solar cell for optical-to-electrical energy conversion and on-site power generation. The transport measurements carried out in the dark revealed the presence of VOC of ~190 mV and ISC of ~9 μA, induced by the electrochemical conversion of concrete-supplied ionic impurities at the electrodes. The current-voltage measurements performed under illumination at incident optical powers of ~46 mW confirmed the generation of electrical power of ~0.64 μW with almost half generated via battery effect. This work presents a first step towards realizing the additional pathways to low-cost electrical power production in urban environments based on a combined use of organic dyes, nanotitania and concrete technology. PMID:24067664

  12. Fullerene derivatives as electron donor for organic photovoltaic cells

    SciTech Connect

    Zhuang, Taojun; Wang, Xiao-Feng E-mail: ziruo@yz.yamagata-u.ac.jp; Sano, Takeshi; Kido, Junji; Hong, Ziruo E-mail: ziruo@yz.yamagata-u.ac.jp; Yang, Yang

    2013-11-11

    We demonstrated the performance of unconventional, all-fullerene-based, planar heterojunction (PHJ) organic photovoltaic (OPV) cells using fullerene derivatives indene-C{sub 60} bisadduct (ICBA) and phenyl C{sub 61}-butyric acid methyl ester as the electron donors with fullerene C{sub 70} as the electron acceptor. Two different charge generation processes, including charge generation in the fullerene bulk and exciton dissociation at the donor-acceptor interface, have been found to exist in such all-fullerene-based PHJ cells and the contribution to the total photocurrent from each process is strongly dependent on the thickness of fullerene donor. The optimized 5 nm ICBA/40 nm C{sub 70} PHJ cell gives clear external quantum efficiency responses for the long-wavelength photons corresponding to the dissociation of strongly bound Frenkel excitons, which is hardly observed in fullerene-based single layer reference devices. This approach using fullerene as a donor material provides further possibilities for developing high performance OPV cells.

  13. A heterojunction photovoltaic cell based on a mixture of silane copolymer with C70 fullerene derivative

    NASA Astrophysics Data System (ADS)

    Kostromin, S. V.; Malov, V. V.; Tameev, A. R.; Bronnikov, S. V.; Sacarescu, L.

    2016-01-01

    Heterojunction photovoltaic cells with a photoactive layer composed of a mixture of a silane copolymer with a fullerene derivative PC70BM have been fabricated, and their working characteristics have been measured. Data obtained by cyclic voltammetry were used to construct the energy level diagram for the cell components. Analysis of the diagram and photoelectric characteristics of the photovoltaic cell made it possible to find ways to improve its efficiency.

  14. Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications

    SciTech Connect

    Lunt, Richard R; Bulovic, Vladimir

    2011-03-14

    We fabricate near-infrared absorbing organic photovoltaics that are highly transparent to visible light. By optimizing near-infrared optical-interference, we demonstrate power efficiencies of 1.3±0.1% with simultaneous average visible transmission of >65% . Subsequent incorporation of near-infrared distributed-Bragg-reflector mirrors leads to an increase in the efficiency to 1.7±0.1% , approaching the 2.4±0.2% efficiency of the opaque cell, while maintaining high visible-transparency of >55% . Finally, we demonstrate that a series-integrated array of these transparent cells is capable of powering electronic devices under near-ambient lighting. This architecture suggests strategies for high-efficiency power-generating windows and highlights an application uniquely benefiting from excitonic electronics.

  15. Metallic nanoparticle deposition techniques for enhanced organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Cacha, Brian Joseph Gonda

    Energy generation via organic photovoltaic (OPV) cells provide many advantages over alternative processes including flexibility and price. However, more efficient OPVs are required in order to be competitive for applications. One way to enhance efficiency is through manipulation of exciton mechanisms within the OPV, for example by inserting a thin film of bathocuproine (BCP) and gold nanoparticles between the C60/Al and ZnPc/ITO interfaces, respectively. We find that BCP increases efficiencies by 330% due to gains of open circuit voltage (Voc) by 160% and short circuit current (Jsc) by 130%. However, these gains are complicated by the anomalous photovoltaic effect and an internal chemical potential. Exploration in the tuning of metallic nanoparticle deposition on ITO was done through four techniques. Drop casting Ag nanoparticle solution showed arduous control on deposited morphology. Spin-coating deposited very low densities of nanoparticles. Drop casting and spin-coating methods showed arduous control on Ag nanoparticle morphology due to clustering and low deposition density, respectively. Sputtered gold on glass was initially created to aid the adherence of Ag nanoparticles but instead showed a quick way to deposit aggregated gold nanoparticles. Electrodeposition of gold nanoparticles (AuNP) proved a quick method to tune nanoparticle morphology on ITO substrates. Control of deposition parameters affected AuNP size and distribution. AFM images of electrodeposited AuNPs showed sizes ranging from 39 to 58 nm. UV-Vis spectroscopy showed the presence of localized plasmon resonance through absorption peaks ranging from 503 to 614 nm. A linear correlation between electrodeposited AuNP size and peak absorbance was seen with a slope of 3.26 wavelength(nm)/diameter(nm).

  16. Tandem photovoltaic cells with a composite intermediate layer

    SciTech Connect

    Travkin, V. V. Pakhomov, G. L.; Luk’anov, A. Yu.; Stuzhin, P. A.

    2015-11-15

    We have fabricated and tested tandem photovoltaic cells containing series-connected subcells of the “oxide–organic semiconductor–metal” type. The organic semiconductors were two phthalocyanine dyes (SubPc and PcVO); Al or Ag:Mg were used as capping metallic electrodes. A semitransparent composite metal–oxide layer formed by molybdenum oxide MoO{sub x} deposited over an ultrathin Al layer is used to join the subcells. Additionally, a MoO{sub x} layer deposited onto glass/ITO substrates serves as an anode buffer in the front subcell, and LiF deposited onto the dye layers serves as a cathode buffer in the front or rear subcells. Upon optimization of the thickness and composition of the intermediate layer, the open circuit voltage U{sub oc} amounts to 1.6 V reflecting total summation of the contributions from the each of the subcells at a wide spectral coating from 300–1000 nm. The fill factor in the tandem cell is not worse than in individually made single cells with the same scheme or in disconnected subcells.

  17. Photovoltaic Universal Joints: Ball-and-Socket Interfaces in Molecular Photovoltaic Cells

    SciTech Connect

    Tremblay, Noah J.; Gorodetsky, Alon A.; Cox, Marshall P.; Schiros, Theanne; Kim, Bumjung; Steiner, Rachel; Bullard, Zachary; Sattler, Aaron; So, Woo-Young; Itoh, Yoshimitsu; Toney, Michael F.; Ogasawara, Hirohito; Ramirez, Arthur P.; Kymissis, Ioannis; Steigerwald, Michael L.; Nuckolls, Colin

    2010-02-15

    A new approach toward higher efficiency organic photovoltaic devices (OPVs) is described. Complementarity in shape between the donor (contorted hexabenzocoronene, see picture) and acceptor (buckminsterfullerene) molecules results in OPVs that perform surprisingly well. This exploitation of host-guest chemistry at the organic/organic interface demonstrates a new direction for OPV device design.

  18. Monolithic Parallel Tandem Organic Photovoltaic Cell with Transparent Carbon Nanotube Interlayer

    NASA Technical Reports Server (NTRS)

    Tanaka, S.; Mielczarek, K.; Ovalle-Robles, R.; Wang, B.; Hsu, D.; Zakhidov, A. A.

    2009-01-01

    We demonstrate an organic photovoltaic cell with a monolithic tandem structure in parallel connection. Transparent multiwalled carbon nanotube sheets are used as an interlayer anode electrode for this parallel tandem. The characteristics of front and back cells are measured independently. The short circuit current density of the parallel tandem cell is larger than the currents of each individual cell. The wavelength dependence of photocurrent for the parallel tandem cell shows the superposition spectrum of the two spectral sensitivities of the front and back cells. The monolithic three-electrode photovoltaic cell indeed operates as a parallel tandem with improved efficiency.

  19. 77 FR 63788 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ... the People's Republic of China: Preliminary Affirmative Countervailing Duty Determination, 77 FR 17439... Critical Circumstances, 77 FR 5487 (February 3, 2012) (Preliminary Critical Circumstances Determination... International Trade Administration Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into...

  20. Organic photovoltaic cells based on photoactive bacteriorhodopsin proteins

    NASA Astrophysics Data System (ADS)

    Al-Aribe, Khaled M.; Knopf, George K.; Bassi, Amarjeet S.

    2013-03-01

    Recent advances in materials engineering have enabled photovoltaic (PV) cells to be fabricated from solid state semiconductors, photosensitive organic dyes, and photoactive proteins. One type of organic PV cell is based on the natural light-harvesting protein bacteriorhodopsin (bR) found in the plasma membrane of a salt marsh archaebacteria. When exposed to sunlight, each bR molecule acts as a simple proton pump which transports hydrogen ions from the cytoplasmic to the extracellular side through a transmembrane ion channel. Two types of bR-PV cells comprised of photosensitive dry and aqueous (wet) bR thin films are described in this paper. The self-assembled monolayer of oriented purple membrane (PM) patches from the bR protein is created on a bio-functionalized gold (Au) surface using a biotin molecular recognition technique. The dry bR monolayer is covered with an optically transparent Indium Tin Oxide (ITO) electrode to complete the dry bR-PV device. In contrast, the aqueous bR-PV cell is created by immobilizing the bR monolayer on an Au-coated porous substrate and then inserting the assembly between two micro-reservoirs filled with KCl solutions. Platinum wire probes are then inserted in the opposing liquid reserviors near the porous bR monolayer. The dry bR-PV cell generated a photo-electric response of 9.73 mV/cm2, while the aqueous bR-PV produced 41.7 mV/cm2 and 33.3 μA/cm2. Although the generated voltages appear small, it may be sufficient to power various microelectromechanical systems (MEMS) and microfluidic devices.

  1. ZnTe-CdS thin film photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Pfisterer, F.; Schock, H. W.

    1982-09-01

    ZnTe-CdS heterojunctions, developed for photovoltaic tandem systems, have been fabricated by evaporating ZnTe on polycrystalline CdS films. The CdS films are vacuum deposited onto glass substrates with silver metallization. The deposition of p-type ZnTe is performed by coevaporation of ZnTe and dopants (Cu, Ag, Te) from two individually controlled evaporation boats. The properties of the ZnTe films have been investigated by means of optical transmission, cathodoluminescence, and resistivity measurements. For the characterization of the heterojunction measurements of the I-V characteristics, the spectral response, the electron beam induced current (EBIC), and the photocapacitance have been carried out. The measurements indicate that the largest part of the photocurrent is generated in the CdS layer. The open circuit voltage ranges from 0.5 to 0.93 V with most of the cells near 0.75 V. Short circuit current densities of about 3 mA/cm 2 have been obtained. The I-V characteristics commonly show a "flat-spot" or "broken-knee" effect. The theoretical model assumes multistep tunnelling and recombination processes for carrier transport and, probably in grain boundaries, the formation of Cu 2S(low barrier, low open circuit voltage) and ZnCdTe (high barrier, high open circuit voltage) in some parts of the cells.

  2. High-efficiency cell structures and processes applied to photovoltaic-grade Czochralski silicon

    SciTech Connect

    Gee, J.M.; King, R.R.; Mitchell, K.W.

    1996-12-01

    The authors performed a detailed study to examine the limiting performance available using photovoltaic-grade Cz silicon. Photovoltaic-grade silicon refers to silicon produced by the photovoltaic industry, which may differ from the silicon used in the semiconductor device industry in impurity and defect concentrations.The study included optimization of fabrication processes, development of advanced device structures, and detailed model calculations to project future performance improvements. Process and device optimization resulted in demonstration of 75-{micro}s bulk lifetimes and 17.6%-efficient large-area cells using photovoltaic-grade Cz silicon. Detailed calculations based on the material and device evaluation of the present work project efficiencies of 20% for photovoltaic-grade Cz silicon with properly optimized processing and device structures.

  3. Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kinoshita, Takumi; Nonomura, Kazuteru; Joong Jeon, Nam; Giordano, Fabrizio; Abate, Antonio; Uchida, Satoshi; Kubo, Takaya; Seok, Sang Il; Nazeeruddin, Mohammad Khaja; Hagfeldt, Anders; Grätzel, Michael; Segawa, Hiroshi

    2015-11-01

    The extension of the light absorption of photovoltaics into the near-infrared region is important to increase the energy conversion efficiency. Although the progress of the lead halide perovskite solar cells is remarkable, and high conversion efficiency of >20% has been reached, their absorption limit on the long-wavelength side is ~800 nm. To further enhance the conversion efficiency of perovskite-based photovoltaics, a hybridized system with near-infrared photovoltaics is a useful approach. Here we report a panchromatic sensitizer, coded DX3, that exhibits a broad response into the near-infrared, up to ~1100 nm, and a photocurrent density exceeding 30 mA cm-2 in simulated air mass 1.5 standard solar radiation. Using the DX3-based dye-sensitized solar cell in conjunction with a perovskite cell that harvests visible light, the hybridized mesoscopic photovoltaics achieved a conversion efficiency of 21.5% using a system of spectral splitting.

  4. Realizing Efficient Energy Harvesting from Organic Photovoltaic Cells

    NASA Astrophysics Data System (ADS)

    Zou, Yunlong

    Organic photovoltaic cells (OPVs) are emerging field of research in renewable energy. The development of OPVs in recent years has made this technology viable for many niche applications. In order to realize widespread application however, the power conversion efficiency requires further improvement. The efficiency of an OPV depends on the short-circuit current density (JSC), open-circuit voltage (VOC) and fill factor (FF). For state-of-the-art devices, JSC is mostly optimized with the application of novel low-bandgap materials and a bulk heterojunction device architecture (internal quantum efficiency approaching 100%). The remaining limiting factors are the low VOC and FF. This work focuses on overcoming these bottlenecks for improved efficiency. Temperature dependent measurements of device performance are used to examine both charge transfer and exciton ionization process in OPVs. The results permit an improved understanding of the intrinsic limit for VOC in various device architectures and provide insight on device operation. Efforts have also been directed at engineering device architecture for optimized FF, realizing a very high efficiency of 8% for vapor deposited small molecule OPVs. With collaborators, new molecules with tailored desired energy levels are being designed for further improvements in efficiency. A new type of hybrid organic-inorganic perovskite material is also included in this study. By addressing processing issues and anomalous hysteresis effects, a very high efficiency of 19.1% is achieved. Moving forward, topics including engineering film crystallinity, exploring tandem architectures and understanding degradation mechanisms will further push OPVs toward broad commercialization.

  5. Selective Interlayers and Contacts in Organic Photovoltaic Cells.

    PubMed

    Ratcliff, Erin L; Zacher, Brian; Armstrong, Neal R

    2011-06-01

    Organic photovoltaic cells (OPVs) are promising solar electric energy conversion systems with impressive recent optimization of active layers. OPV optimization must now be accompanied by the development of new charge-selective contacts and interlayers. This Perspective considers the role of interface science in energy harvesting using OPVs, looking back at early photoelectrochemical (photogalvanic) energy conversion platforms, which suffered from a lack of charge carrier selectivity. We then examine recent platforms and the fundamental aspects of selective harvesting of holes and electrons at opposite contacts. For blended heterojunction OPVs, contact/interlayer design is especially critical because charge harvesting competes with recombination at these same contacts. New interlayer materials can modify contacts to both control work function and introduce selectivity and chemical compatibility with nonpolar active layers and add thermodynamic and kinetic selectivity to charge harvesting. We briefly discuss the surface and interface science required for the development of new interlayer materials and take a look ahead at the challenges yet to be faced in their optimization. PMID:26295432

  6. Design and fabrication of prototype systems for photovoltaic residences in the northeast. Final report

    SciTech Connect

    Mehalick, E.M.

    1981-11-01

    A photovoltaic (PV) system has been designed and integrated into a residential home suitable for the northeast region of the country. The house design and the PV system design which incorporates a unique PV shingle module developed by General Electric Company are described. The system has been installed and is currently being tested by MIT/Lincoln Laboratory on a prototype structure at the Northeast Residential Experiment Station in Concord, Massachusetts. The PV system is grid-connected and is designed to meet both space conditioning requirements through a heat pump and all conventional electrical load requirements for an all-electric residence. The PV system consists of two major subsystems, the solar array and the power conversion subsystem. A 6.7-kW-peak power rating (100 mW/cm/sup 2/, 25/sup 0/C Cell temperature) photovoltaic array has been designed for the house. The 73.3 m/sup 2/ of exposed solar array module area uses 375 direct-mounted shingle modules in a 25 series by 15 parallel network. The PV generated power is supplied to an Abacus 6-kW-output-rated dual-bridge inverter, which is controlled to track the solar-array maximum-power operating point. The inverter feeds the 240-VAC output power directly to the house loads or back to the utility when excess is generated. The DC power is isolated from the utility by a transformer. The system operation is automatic and the output is synchronized with the utility. The system automatically shuts down with loss of utility. The overall system is connected in parallel with the utility service to supply the residential load. The installation of the modules was completed as planned by a local contractor without any problems. No module damage occurred during installation or in shipping and the measured array output was slightly above predictions. The installation was considered a complete success.

  7. High-Performance GaAs Nanowire Solar Cells for Flexible and Transparent Photovoltaics.

    PubMed

    Han, Ning; Yang, Zai-xing; Wang, Fengyun; Dong, Guofa; Yip, SenPo; Liang, Xiaoguang; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2015-09-16

    Among many available photovoltaic technologies at present, gallium arsenide (GaAs) is one of the recognized leaders for performance and reliability; however, it is still a great challenge to achieve cost-effective GaAs solar cells for smart systems such as transparent and flexible photovoltaics. In this study, highly crystalline long GaAs nanowires (NWs) with minimal crystal defects are synthesized economically by chemical vapor deposition and configured into novel Schottky photovoltaic structures by simply using asymmetric Au-Al contacts. Without any doping profiles such as p-n junction and complicated coaxial junction structures, the single NW Schottky device shows a record high apparent energy conversion efficiency of 16% under air mass 1.5 global illumination by normalizing to the projection area of the NW. The corresponding photovoltaic output can be further enhanced by connecting individual cells in series and in parallel as well as by fabricating NW array solar cells via contact printing showing an overall efficiency of 1.6%. Importantly, these Schottky cells can be easily integrated on the glass and plastic substrates for transparent and flexible photovoltaics, which explicitly demonstrate the outstanding versatility and promising perspective of these GaAs NW Schottky photovoltaics for next-generation smart solar energy harvesting devices. PMID:26284305

  8. Lithium Ion Cell Development for Photovoltaic Energy Storage Applications

    SciTech Connect

    Babinec, Susan

    2012-02-08

    The overall project goal is to reduce the cost of home and neighborhood photovoltaic storage systems by reducing the single largest cost component the energy storage cells. Solar power is accepted as an environmentally advantaged renewable power source. Its deployment in small communities and integrated into the grid, requires a safe, reliable and low cost energy storage system. The incumbent technology of lead acid cells is large, toxic to produce and dispose of, and offer limited life even with significant maintenance. The ideal PV storage battery would have the safety and low cost of lead acid but the performance of lithium ion chemistry. Present lithium ion batteries have the desired performance but cost and safety remain the two key implementation barriers. The purpose of this project is to develop new lithium ion cells that can meet PVES cost and safety requirements using A123Systems phosphate-based cathode chemistries in commercial PHEV cell formats. The cost target is a cell design for a home or neighborhood scale at <$25/kWh. This DOE program is the continuation and expansion of an initial MPSC (Michigan Public Service Commission) program towards this goal. This program further pushes the initial limits of some aspects of the original program even lower cost anode and cathode actives implemented at even higher electrode loadings, and as well explores new avenues of cost reduction via new materials specifically our higher voltage cathode. The challenge in our materials development is to achieve parity in the performance metrics of cycle life and high temperature storage, and to produce quality materials at the production scale. Our new cathode material, M1X, has a higher voltage and so requires electrolyte reformulation to meet the high temperature storage requirements. The challenge of thick electrode systems is to maintain adequate adhesion and cycle life. The composite separator has been proven in systems having standard loading electrodes; the challenge

  9. Safety-related requirements for photovoltaic modules and arrays. Final report

    SciTech Connect

    Levins, A.

    1984-03-01

    Underwriters Laboratories has conducted a study to identify and develop safety requirements for photovoltaic module and panel designs and configurations for residential, intermediate, and large scale applications. Concepts for safety systems, where each system is a collection of subsystems which together address the total anticipated hazard situation, are described. Descriptions of hardware, and system usefulness and viability are included. This discussion of safety systems recognizes that there is little history on which to base the expected safety related performance of a photovoltaic system. A comparison of these systems, as against the provisions of the 1984 National Electrical Code covering photovoltaic systems is made. A discussion of the UL investigation of the photovoltaic module evaluated to the provisions of the Proposed UL Standard for Flat-Plate Photovoltaic Modules and Panels is included. Grounding systems, their basis and nature, and the advantages and disadvantages of each are described. The meaning of frame grounding, circuit grounding, and the type of circuit ground are covered. The development of the Standard for Flat-Plate Photovoltaic Modules and Panels has continued, and with both industry comment and a product submittal and listing, the Standard has been refined to a viable document allowing an objective safety review of photovoltaic modules and panels. How this document, and other UL documents would cover investigations of certain other photovoltaic system components is described.

  10. Photovoltaic Cell Having A P-Type Polycrystalline Layer With Large Crystals

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes R.

    1996-03-26

    A photovoltaic cell has an n-type polycrystalline layer and a p-type polycrystalline layer adjoining the n-type polycrystalline layer to form a photovoltaic junction. The p-type polycrystalline layer comprises a substantially planar layer portion having relatively large crystals adjoining the n-type polycrystalline layer. The planar layer portion includes oxidized impurities which contribute to obtainment of p-type electrical properties in the planar layer portion.

  11. Distance distributions of photogenerated charge pairs in organic photovoltaic cells.

    PubMed

    Barker, Alex J; Chen, Kai; Hodgkiss, Justin M

    2014-08-27

    Strong Coulomb interactions in organic photovoltaic cells dictate that charges must separate over relatively long distances in order to circumvent geminate recombination and produce photocurrent. In this article, we measure the distance distributions of thermalized charge pairs by accessing a regime at low temperature where charge pairs are frozen out following the primary charge separation step and recombine monomolecularly via tunneling. The exponential attenuation of tunneling rate with distance provides a sensitive probe of the distance distribution of primary charge pairs, reminiscent of electron transfer studies in proteins. By fitting recombination dynamics to distributions of recombination rates, we identified populations of charge-transfer states and well-separated charge pairs. For the wide range of materials we studied, the yield of separated charges in the tunneling regime is strongly correlated with the yield of free charges measured via their intensity-dependent bimolecular recombination dynamics at room temperature. We therefore conclude that populations of free charges are established via long-range charge separation within the thermalization time scale, thus invoking early branching between free and bound charges across an energetic barrier. Subject to assumed values of the electron tunneling attenuation constant, we estimate critical charge separation distances of ∼3-4 nm in all materials. In some blends, large fullerene crystals can enhance charge separation yields; however, the important role of the polymers is also highlighted in blends that achieved significant charge separation with minimal fullerene concentration. We expect that our approach of isolating the intrinsic properties of primary charge pairs will be of considerable value in guiding new material development and testing the validity of proposed mechanisms for long-range charge separation. PMID:25102389

  12. US photovoltaic patents: 1991-1993

    NASA Astrophysics Data System (ADS)

    Pohle, L.

    1995-03-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class 'Batteries, Thermoelectric and Photoelectric' and the subclasses 'Photoelectric,' 'Testing,' and 'Applications.' The search also located patents that contained the words 'photovoltaic(s)' or 'solar cell(s)' and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

  13. US photovoltaic patents: 1991--1993

    SciTech Connect

    Pohle, L

    1995-03-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1991 to 1993. The entries were located by searching USPA, the database of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaic. Some patents on these three subjects were included when ft appeared that those inventions might be of use in terrestrial PV power technologies.

  14. Charge extraction from nanostructured hybrid organic-inorganic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Goh, Chiatzun

    Conjugated polymers are attractive for use in photovoltaic (PV) cells because they are highly absorptive, their absorption spectrum can be tuned to match various regions of the solar spectrum and their solubility in common solvents enables the use of low-cost printing technique to mass produce PV panels. Photoexcitation of conjugated polymers forms excitons, which are bound electron-hole pairs. In order to convert these excitons into free carriers, the polymers have to be blended with an electron acceptor in close promixity of ˜10 nm. The charge transfer process at the donor-acceptor interface provides the necessary driving force to split excitons, while the close proximity guarantees excitons reaching an interface before decaying. Once the carriers are split, they have to be transported to their respective electrodes before recombining. Ordered nanostructured titania (TiO2) matrix infiltrated with conjugated polymers is a promising acceptor-donor system, which can potentially meet these requirements. In this work, several optimizations are shown to be essential for increasing the performance of TiO2/polymer cells. First, we measure the hole mobility of poly(3-hexylthiophene) (P3HT) in a thin film diode in the space-charge limited regime. We show that the mobility increases with the polymer molecular weight and can be correlated to the film morphology. The anisotropy in P3HT chain packing suggests that its diode mobility of 10-4 cm 2/Vs can be further enhanced upon chain alignment in straight nanopores. Second, we investigate the use of molecular surface modification to control the interfacial energetics and charge transfer dynamics. By introducing dipoles at the TiO2/P3HT interface, the interfacial energy offset can be changed resulting in a concomitant change in the open circuit voltage. In addition, certain modifiers improve exciton harvesting by mediating charge transfer from the polymer to TiO2. We further show that the use of an amphiphilic molecule

  15. Hybrid solar thermal-photovoltaic systems demonstration, Phase I and II. Final technical progress report, July 5, 1979-December 1982

    SciTech Connect

    Loferski, J.J.

    1983-12-01

    The purpose of the project is to investigate a system based on combined photovoltaic/thermal (PV/T) panels to supply the energy needs of a small single family residence. The system finally selected and constructed uses PV/T panels which utilize air as the heat transfer medium. Optimization of thermal performance was accomplished by attaching metal fins to the back surface of each cell which significantly increased the heat transfer coefficient from the solar cells to the air stream. The other major components of the selected system are an air-to-air heat pump, a rock bin thermal energy storage bin, a synchronous dc-to-ac converter, a microprocessor to control the system, a heat exchanger for the domestic hot water system and of course the building itself which is a one story, well insulated structure having a floor area of 1200 ft/sup 2/. A prototype collector was constructed and tested. Based on this experience, twenty collectors, containing 2860 four inch diameter solar cells, were constructed and installed on the building. Performance of the system was simulated using a TRNSYS-derived program, modified to accommodate PV/T panels and to include the particular components included in the selected system. Simulation of the performance showed that about 65 percent of the total annual energy needs of the building would be provided by the PV/T system. Of this total, about one half is produced at a time when it can be used in the building and one half must be sold back to the utility.

  16. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells.

    PubMed

    Brun, Nadja Rebecca; Wehrli, Bernhard; Fent, Karl

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L(-1) molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L(-1). From OPV, copper (14 μg L(-1)), zinc (87 μg L(-1)) and silver (78 μg L(-1)) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk. PMID:26615488

  17. Spectral sensitization in an organic p-n junction photovoltaic cell

    SciTech Connect

    Harima, Y.; Yamashita, K.; Suzuki, H.

    1984-11-15

    Electric and photovoltaic characteristics of an orgainic p-n junction photovoltaic cell are described, where the p-type and n-type compounds used are phthalocyaninatozinc (II) (ZnPc) and 5, 10, 15, 20 -tetra (3-pyridyl) porphyrin (TPyP), respectively. The p-n junction cell with a thin film of TPyP exhibited stronger spectral sensitization and better spectral match to a solar spectrum than the Schottky barrier cells using either TPyP and ZnPc. The energy conversion efficiency found was about 2% for monochromatic light at 430 nm.

  18. EH AND S ANALYSIS OF DYE-SENSITIZED PHOTOVOLTAIC SOLAR CELL PRODUCTION.

    SciTech Connect

    BOWERMAN,B.; FTHENAKIS,V.

    2001-10-01

    Photovoltaic solar cells based on a dye-sensitized nanocrystalline titanium dioxide photoelectrode have been researched and reported since the early 1990's. Commercial production of dye-sensitized photovoltaic solar cells has recently been reported in Australia. In this report, current manufacturing methods are described, and estimates are made of annual chemical use and emissions during production. Environmental, health and safety considerations for handling these materials are discussed. This preliminary EH and S evaluation of dye-sensitized titanium dioxide solar cells indicates that some precautions will be necessary to mitigate hazards that could result in worker exposure. Additional information required for a more complete assessment is identified.

  19. Laboratory evaluation of a pilot cell battery protection system for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.; Thomas, R. D.

    1981-01-01

    An energy storage method for the 3.5 kW battery power system was investigated. The Pilot Cell Battery Protection System was tested for use in photovoltaic power systems and results show that this is a viable method of storage battery control. The method of limiting battery depth of discharge has the following advantages: (1) temperature sensitivity; (2) rate sensitivity; and (3) state of charge indication. The pilot cell concept is of interest in remote stand alone photovoltaic power systems. The battery can be protected from damaging overdischarge by using the proper ratio of pilot cell capacities to main battery capacity.

  20. Waste reduction options for manufacturers of copper indium diselenide photovoltaic cells

    SciTech Connect

    DePhillips, M.P.; Fthenakis, V.M.; Moskowitz, P.D.

    1994-03-01

    This paper identifies general waste reduction concepts and specific waste reduction options to be used in the production of copper indium diselenide (CIS) photovoltaic cells. A general discussion of manufacturing processes used for the production of photovoltaic cells is followed by a description of the US Environmental Protection Agency (EPA) guidelines for waste reduction (i.e., waste minimization through pollution prevention). A more specific discussion of manufacturing CIS cells is accompanied by detailed suggestions regarding waste minimization options for both inputs and outputs for ten stages of this process. Waste reduction from inputs focuses on source reduction and process changes, and reduction from outputs focuses on material reuse and recycling.

  1. SolarTile: A rooftop integrated photovoltaic system. Phase 1, final report

    SciTech Connect

    1998-03-26

    AstroPower, Royal Group Technologies, and Solar Design Associates are jointly developing an integrated photovoltaic roofing system for residential and light commercial building applications. This family of products will rely heavily on the technological development of a roofing tile made from recycled plastic and innovative module fabrication and encapsulation processes in conjunction with an advanced Silicon-Film{trademark} solar cell product. This solar power generating roofing product is presently being referred to as the SolarTile. A conceptual drawing of the solar roofing tile is shown. The SolarTile will be integrated with non-solar tiles in a single roof installation permitting ease of assembly and the ability to use conventional roofing techniques at ridges, valleys, and eaves. The Phase 1 effort included tasks aimed at the development of the proposed product concept; product manufacturing or fabrication, and installation cost estimates; business planning; and a market assessment of the proposed product, including target selling prices, target market sectors, size estimates for each market sector, and planned distribution mechanisms for market penetration. Technical goals as stated in the Phase 1 proposal and relevant progress are reported.

  2. Printing Processes Used to Manufacture Photovoltaic Solar Cells

    ERIC Educational Resources Information Center

    Rardin, Tina E.; Xu, Renmei

    2011-01-01

    There is a growing need for renewable energy sources, and solar power is a good option in many instances. Photovoltaic solar panels are now being manufactured via various methods, and different printing processes are being incorporated into the manufacturing process. Screen printing has been used most prevalently in the printing process to make…

  3. Sun Valley Photovoltaic Power Project, Phase 1. Final report, June 1, 1978-February 28, 1979

    SciTech Connect

    Goodman, Jr, F R

    1980-03-01

    An application experiment was devised for fabrication, installation, operation, and evaluation of a concentrating photovoltaic system for direct conversion of sunlight to electricity. If the experiment is performed, the photovoltaic system will be connected to an electric motor load and to an electric utility system. Provisions will be made to allow the motor load to be supplied with power from either the photovoltaic system or the utility system. When the demand of the motor load is low, the photovoltaic system will deliver excess power to the utility system for use elsewhere. Thus, the experimental installation has been designed with sufficient flexibility to enable several modes of operation to be evaluated. This type of application is a typical example of on-site power generation at an individual load center involving two-way energy exchange with the adjacent utility system. Because a growing market for photovoltaic systems in this type of application is expected in the 1980's, the experiment will provide needed information in a timely manner. The experiment was devised jointly by the Los Angeles Department of Water and Power (LADWP) and its subcontractor, Spectrolab, Inc. LADWP will furnish a site and operate the equipment after installation. The subcontractor will manufacture and furnish a concentrating photovoltaic array with a power rating of approximately 200 kilowatts at one kilowatt per square meter of insolation. Other required equipment will be purchased to specification from appropriate suppliers. The photovoltaic system represents a state-of-the-art design at the time this report was prepared. However, minor design improvements may be made prior to and during system installation. All phases of fabrication, installation and operation will be documented through formal reports. The results of the experiment will contribute to the goals of the National Photovoltaic Conversion Program.

  4. Re-Defining Photovoltaic Efficiency Through Molecule Scale Control. Final Report

    SciTech Connect

    Yardley, James T.

    2015-04-30

    The direct conversion of sunlight into electricity represents one of the most important general means for sustainable energy production. Most modern photovoltaic cells are based on some form of semiconductor material such as silicon that is described by a characteristic energy or ''bandgap''. For solar rays with photon energy lower than the bandgap no absorption occurs and thus no energy is generated. For solar rays with photon energy greater than the bandgap, light may be absorbed to create a pair of electrical charges but only one bandgap of energy is created, leaving any additional energy lost as heat. Thus low bandgap materials can use a great part of the spectrum but can lose much of that energy; high bandgap materials fail to capture much of the spectrum. Thus there is a limit to the efficiency of such a solar cell that turns out to be about 32%. This limit is known as the Shockely-Queisser Limit. The Columbia EFRC program is dedicated to exploration of concepts that in principle can provide for efficiencies beyond this limit. One concept that this EFRC has explored for enhancing the efficiency of solar photovoltaic cells is called “Singlet Fission.” In this concept the absorption of light rays with photon energy at least twice the value of the basic bandgap for the system can produce two pairs of electrical charge carriers. If properly implemented this in principle can significantly reduce the energy lost as heat and give rise to solar cell efficiencies greater than the Shockley-Queisser limit. The problem is that there are virtually no materials that can undergo this process effectively. We have developed new materials that have demonstrated singlet fission efficiencies of almost 100%. We understand how these materials work and we have learned how to design many more systems in the future. So far we have only demonstrated the basic capability for efficient singlet fission. Much more work will be required to design and engineer specific materials that

  5. Method for producing textured substrates for thin-film photovoltaic cells

    DOEpatents

    Lauf, R.J.

    1996-04-02

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells. 4 figs.

  6. Method for producing textured substrates for thin-film photovoltaic cells

    DOEpatents

    Lauf, Robert J.

    1996-01-01

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells.

  7. Method for producing textured substrates for thin-film photovoltaic cells

    DOEpatents

    Lauf, Robert J.

    1994-01-01

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells.

  8. Method for producing textured substrates for thin-film photovoltaic cells

    DOEpatents

    Lauf, R.J.

    1994-04-26

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells. 4 figures.

  9. Method for contact resistivity measurements on photovoltaic cells and cell adapted for such measurement

    NASA Technical Reports Server (NTRS)

    Burger, Dale R. (Inventor)

    1986-01-01

    A method is disclosed for scribing at least three grid contacts of a photovoltaic cell to electrically isolate them from the grid contact pattern used to collect solar current generated by the cell, and using the scribed segments for determining parameters of the cell by a combination of contact end resistance (CER) measurements using a minimum of three equally or unequally spaced lines, and transmission line modal (TLM) measurements using a minimum of four unequally spaced lines. TLM measurements may be used to determine sheet resistance under the contact, R.sub.sk, while CER measurements are used to determine contact resistivity, .rho..sub.c, from a nomograph of contact resistivity as a function of contact end resistance and sheet resistivity under the contact. In some cases, such as the case of silicon photovoltaic cells, sheet resistivity under the contact may be assumed to be equal to the known sheet resistance, R.sub.s, of the semiconductor material, thereby obviating the need for TLM measurements to determine R.sub.sk.

  10. Photovoltaic Engineering Testbed: A Facility for Space Calibration and Measurement of Solar Cells on the International Space Station

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Jenkins, Phillip; Sexton, J. Andrew; Scheiman, David; Christie, Robert; Charpie, James; Gerber, Scott S.; Johnson, D. Bruce

    2001-01-01

    The Photovoltaic Engineering Testbed ("PET") is a facility to be flown on the International Space Station to perform calibration, measurement, and qualification of solar cells in the space environment and then returning the cells to Earth for laboratory use. PET will allow rapid turnaround testing of new photovoltaic technology under AM0 conditions.

  11. Heat treatment effects in Cu2S-CdS heterojunction photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Fahrenbruch, A. L.; Bube, R. H.

    1974-01-01

    The dependence of the short-circuit current on photon energy, temperature, and the state of optical degradation (or enhancement) is determined in a study of the photovoltaic properties of Cu2S-CdS single-crystal heterojunctions. A coherent formulation is proposed for the relationship between enhancement and optical degradation and for their effects on the transport of a short-circuit photoexcited current and dark forward-bias current in a photovoltaic cell. Optical degradation in a Cu2S-CdS cell is shown to be identical to the optical degradation of lifetime in a homogeneous CdS:Cd:Cu crystal.

  12. Injected current-related distortion of photothermal signals from a photovoltaic cell

    SciTech Connect

    Cahen, D.; Nordal, P.; Kanstad, S.O.

    1986-11-17

    When power dissipation in a photovoltaic cell is measured as a function of load resistance via photothermal techniques which sense only part of the photovoltaic cell, significant deviations from previously reported photoacoustic measurements can be obtained. These deviations occur under nonuniform illumination. They are due to the fact that, under these experimental conditions, the measured signal is proportional to only part of the power dissipation by injected carriers, while all of the photogenerated carriers contribute to the signal. Results from photothermal radiometry experiments are presented and explained in this way.

  13. Design and fabrication of a rectenna system to be coupled to photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Mossavat, Mazda

    Inkjet-printed metamaterials and nanotechnology enabled flexible antennas fabricated on glass or polyester substrates help in further absorption of transmitted radiation through photovoltaic solar cells. Using metamaterials processed by inkjet printing and diffusing it, for a rectenna system coupled with photovoltaic solar cells, as rectifying antenna, an antenna in system in tandem is created. Metamaterials are artificial materials engineered to have properties that may not be found in nature (negative refractive index). When used in an antenna, they increase gain. For efficient solar cell use, nanophotonics on the incident surface or metamaterials under it as a rectenna, can enhance voltage gain in cloudy or rainy condition, which in turn increases the overall efficiency and reduces the amount of material required, thereby cutting costs. Photovoltaic is a field of technology and research related to practical application of photovoltaic cells in producing electricity from light. Cells are described as photovoltaic cells when the light source is not necessarily sunlight but can be lamplight, artificial light, or any other source used for detecting light or other electromagnetic radiation at different light intensity and producing voltage. These can be, for example, infrared detectors, or detectors for measurement of light intensity. Conventional solar cell films are typically manufactured using expensive and slow manufacturing methods, which rely on high-temperature fabrication and finicky `vacuum deposition' processes for depositing solar materials onto substrates (III-V elements). The resultant products are simply too thick to allow for transparency. An important consideration in the development of a commercially viable solar powered cell is the glass substrate. The learning process and skills involved in developing the antenna below a solar cell is a great experience in theory and practice. My main effort will be to design and check performance of different

  14. Data base on batteries, power-conditioning equipment, and photovoltaic arrays. Final report

    SciTech Connect

    Podder, A; Kapner, M; Morse, T

    1981-02-01

    The objective of this study was to compile an up-to-date comprehensive data base for research, design, and development of photovoltaic systems, primarily in the areas of applications and battery technology, and secondarily in the area of power conditioning and photovoltaic array technology. This volume contains the data base used to develop the end-use scenarios and identify the R and D needed for batteries to be used in photovoltaic power systems. In addition to its specific application to the present study, this data base is intended to provide state-of-the-art information to manufacturers of the various components of photovoltaic power systems, system designers, and researchers in this field. An extensive literature search was conducted to obtain technical data on batteries, power conditioners, and photovoltaic arrays. The data obtained from published technical literature and direct communication with manufacturers and developers are compiled. Principles of operation, types of systems, performance characteristics, test data, and cost data are included for each of the components. (WHK)

  15. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells

    DOE PAGESBeta

    Yuan, Yongbo; Chae, Jungseok; Shao, Yuchuan; Wang, Qi; Xiao, Zhengguo; Centrone, Andrea; Huang, Jinsong

    2015-06-05

    In this study, long range electromigration of methylammonium ions (MA+) in methyl ammonium lead tri-iodide (MAPbI3) film is observed directly using the photo­thermal induced resonance technique. The electromigration of MA+ leads to the formation of a lateral p-i-n structure, which is the origin of the switchable photovoltaic effect in MAPbI3 perovskite devices.

  16. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells

    SciTech Connect

    Yuan, Yongbo; Chae, Jungseok; Shao, Yuchuan; Wang, Qi; Xiao, Zhengguo; Centrone, Andrea; Huang, Jinsong

    2015-06-05

    In this study, long range electromigration of methylammonium ions (MA+) in methyl ammonium lead tri-iodide (MAPbI3) film is observed directly using the photo­thermal induced resonance technique. The electromigration of MA+ leads to the formation of a lateral p-i-n structure, which is the origin of the switchable photovoltaic effect in MAPbI3 perovskite devices.

  17. Photovoltaic roof construction

    SciTech Connect

    Hawley, W.W.

    1980-02-26

    In a batten-seam roof construction employing at least one photovoltaic cell module, the electrical conduits employed with the at least one photovoltaic cell module are disposed primarily under the battens of the roof.

  18. Magnetic field effects in a polymer/fullerene blend photovoltaic cell

    NASA Astrophysics Data System (ADS)

    Jang, Hyuk-Jae; Basham, James I.; Gundlach, David J.; Richter, Curt A.

    Organic photovoltaic (OPV) systems based on blends of conjugated polymers and fullerene derivatives have shown great promise for low-cost and efficient photovoltaic applications. Recent findings suggest that a weak external magnetic field can disturb the spin configuration of excited states and subsequently change properties of OPV cells such as photocurrent. These changes are referred to as magnetic field effects (MFEs). In order to have a better understanding of the underlying mechanisms responsible for the MFEs in polymer/fullerene blend photovoltaic systems, we fabricated poly-3-hexylthiophene (P3HT):phenyl-C61-butyric acid methyl ester (PC61BM) cells and carried out photovoltaic device performance and impedance spectroscopy measurements with and without an externally applied magnetic field. A significant reduction in short circuit current (JSC) as well as open circuit voltage (VOC) was observed with an applied magnetic field of a 0.1 tesla compared to those measured without a magnetic field under the same intensity of illumination. Impedance spectroscopy data gives insights into the influence of an external magnetic field on charge generation and recombination near normal photovoltaic operating conditions.

  19. Improvement of power conversion efficiency in photovoltaic-assisted UHF rectifiers by non-silicide technique applied to photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Kotani, Koji

    2015-04-01

    Non-silicide PV cell structures were successfully applied to the photovoltaic (PV)-assisted UHF rectifier, which is one example realization of the “synergistic ambient energy harvesting” concept. Silicide blocking of PV cell area was experimentally verified to be effective for increasing photo-generated bias voltage, which resulted in the improved power conversion efficiency (PCE) of the rectifier by enhanced VTH compensation effect. Increase in both transparency of light and quantum efficiency of PV cells obtained by eliminating silicide layer affects the PCE improvement almost equally. 25.8% of PCE was achieved under the conditions of an RF input power of -20 dBm, a frequency of 920 MHz, an output load of 47 kΩ, and a typical indoor light irradiance level of 1 W/m2. In addition, when the non-silicide PV cell technique was applied to the voltage-boosted PV-cell structures, 32.1% peak PCE was achieved at 10 W/m2.

  20. Newman power station photovoltaic project: Phase 3, Operation and maintenance: Final report

    SciTech Connect

    Not Available

    1983-06-01

    The Newman Power Station (NPS) photovoltaic system provides dc power to an uninterruptible power supply (UPS). The UPS is an integral part of the generator control subsystem at the El Paso Electric Company (EPEC) facility near El Paso, Texas. The photovoltaic (PV) system has been operational since January 27, 1981, and has produced 69,871 kilowatt hours through April 30, 1983. On an annual basis this PV energy provides approximately 15% of the UPS load requirements. The system is technically sound and EPEC plans continued operation for the foreseeable future.

  1. Photovoltaic Cz Silicon Module Improvements; Final Subcontract Report, 9 November 1995 - 8 November 1998

    SciTech Connect

    T. L. Jester.

    1999-06-17

    This report describes work that focused on reducing the cost per watt of Cz silicon photovoltaic modules under Siemens Solar Industries' (SSI) DOE/NREL Photovoltaic Manufacturing Technology (PVMaT) 4A subcontract. SSI researchers deployed new module designs, realized improvements in yield of more than 25%, and implemented statistical process control (SPC). They have described yield improvements in detail and reported on the deployment of SPC in critical process steps. The sum of all improvements resulted in a greater than 17% cost per watt reduction in manufacturing.

  2. Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells.

    PubMed

    Bielawny, Andreas; Rockstuhl, Carsten; Lederer, Falk; Wehrspohn, Ralf B

    2009-05-11

    We have investigated the impact of three types of intermediate reflectors on the absorption enhancement in the top cell of micromorph tandem solar cells using rigorous diffraction theory. As intermediate reflectors we consider homogenous dielectric thin-films and 1D and 3D photonic crystals. Besides the expected absorption enhancements in cases where photonic band gaps are matched to the absorption edge of the semiconductor, our results distinguish between the impact of zero order Bragg-resonances and diffraction-based enhancement at larger lattice constants of the 3D photonic crystal. Our full-spectrum analysis permits for a quantitative prediction of the photovoltaic conversion efficiency increase of the a-Si:H top cell. PMID:19434178

  3. The decisive impact of cell efficiency on the implementation of photovoltaic systems

    SciTech Connect

    Federmann, E.F.; Rohatgi, A.

    1984-05-01

    Considerable attention has been paid to the area related costs for system installation as a function of module efficiency. For those involved in cell and module development, the effect of cell efficiency on module cost has also been examined. However, there is little quantitative information concerning the impact of cell efficiency on photovoltaic system implementation. This paper relates module price to cell cost and efficiency, analyze probable market penetration as a function of module price, and demonstrate the impact of module cell efficiency gains on MWp annual sales. The importance and substantial magnitude of these gains in photovoltaic implementation at the time that sizable markets become available is also demonstrated. The paper concludes with a brief discussion of likely means of achieving 20% cell efficiency.

  4. Photovoltaic characteristics of diffused P/+N bulk GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Borrego, J. M.; Keeney, R. P.; Bhat, I. B.; Bhat, K. N.; Sundaram, L. G.; Ghandhi, S. K.

    1982-01-01

    The photovoltaic characteristics of P(+)N junction solar cells fabricated on bulk GaAs by an open tube diffusion technique are described in this paper.Spectral response measurements were analyzed in detail and compared to a computer simulation in order to determine important material parameters. It is projected that proper optimization of the cell parameters can increase the efficiency of the cells from 12.2 percent to close to 20 percent.

  5. NREL Certifies First All-Quantum-Dot Photovoltaic Cell; Demonstrates Stability, Performance (Fact Sheet)

    SciTech Connect

    Not Available

    2011-02-01

    Researchers at the National Renewable Energy Laboratory (NREL) have certified the first all-quantum-dot photovoltaic cell, which was based on lead sulfide and demonstrated reasonable quantum dot solar cell performance for an initial efficiency measurement along with good stability. The certified open-circuit voltage of the quantum dot cell is greater than that possible from bulk lead sulfide because of quantum confinement.

  6. See-through dye-sensitized solar cells: photonic reflectors for tandem and building integrated photovoltaics.

    PubMed

    Heiniger, Leo-Philipp; O'Brien, Paul G; Soheilnia, Navid; Yang, Yang; Kherani, Nazir P; Grätzel, Michael; Ozin, Geoffrey A; Tétreault, Nicolas

    2013-10-25

    See-through dye-sensitized solar cells with 1D photonic crystal Bragg reflector photoanodes show an increase in peak external quantum efficiency of 47% while still maintaining high fill factors, resulting in an almost 40% increase in power conversion efficiency. These photoanodes are ideally suited for tandem and building integrated photovoltaics. PMID:23966106

  7. 77 FR 25400 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-30

    ..., 76 FR 70966 (November 16, 2011), and Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Initiation of Antidumping Duty Investigation, 76 FR..., 77 FR 17439 (March 26, 2012). Because the AD and CVD investigations were initiated simultaneously...

  8. 76 FR 81914 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... Countervailing Duty Investigation, 76 FR 70966 (November 16, 2011). Postponement of Due Date for the Preliminary... Amended, 70 FR 24533 (May 10, 2005). This notice is issued and published pursuant to section 703(c)(2) of... International Trade Administration Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into...

  9. US Coast Guard participation in the Federal Photovoltaic Utilization Program. Final technical report

    SciTech Connect

    Not Available

    1986-03-05

    The US Coast Guard began investigating solar photovoltaic arrays as power sources for marine aids to navigation in 1974. After several years of research and development effort the decision was made to convert the power systems of over 10,000 minor aids to navigation from expensive and environmentally hazardous primary batteries to solar power.

  10. US Coast Guard participation in the Federal Photovoltaic Utilization Program. Final Technical report

    SciTech Connect

    Not Available

    1986-03-05

    The US Coast Guard began investigating solar photovoltaic arrays as power sources for marine aids to navigation in 1974. After several years of research and development effort, the decision was made to convert the power systems of over 10,000 minor aids to navigation from expensive and environmentally hazardous primary batteries to solar power.

  11. Optoelectronic characterization of carrier extraction in a hot carrier photovoltaic cell structure

    NASA Astrophysics Data System (ADS)

    Dimmock, James A. R.; Kauer, Matthias; Smith, Katherine; Liu, Huiyun; Stavrinou, Paul N.; Ekins-Daukes, Nicholas J.

    2016-07-01

    A hot carrier photovoltaic cell requires extraction of electrons on a timescale faster than they can lose energy to the lattice. We optically and optoelectronically characterize two resonant tunneling structures, showing their compatability with hot carrier photovoltaic operation, demonstrating structural and carrier extraction properties necessary for such a device. In particular we use time resolved and temperature dependent photoluminescence to determine extraction timescales and energy levels in the structures and demonstrate fast carrier extraction by tunneling. We also show that such devices are capable of extracting photo-generated electrons at high carrier densities, with an open circuit voltage in excess of 1 V.

  12. The effect of the low Earth orbit environment on space solar cells: Results of the Advanced Photovoltaic Experiment (S0014)

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.; Scheiman, David A.

    1993-01-01

    The results of post-flight performance testing of the solar cells flown on the Advanced Photovoltaic Experiment are reported. Comparison of post-flight current-voltage characteristics with similar pre-flight data revealed little or no change in solar cell conversion efficiency, confirming the reliability and endurance of space photovoltaic cells. This finding is in agreement with the lack of significant physical changes in the solar cells despite nearly six years in the low Earth orbit environment.

  13. High-efficiency one-sun photovoltaic module demonstration using solar-grade CZ silicon. Final report

    SciTech Connect

    Gee, J.M.

    1996-10-01

    This work was performed jointly by Sandia National Laboratories (Albuquerque, NM) and Siemens Solar Industries (Camarillo, CA) under a Cooperative Research and Development Agreement (CRADA 1248). The work covers the period May 1994 to March 1996. The purpose of the work was to explore the performance potential of commercial, photovoltaic-grade Czochralski (Cz) silicon, and to demonstrate this potential through fabrication of high-efficiency cells and a module. Fabrication of the module was omitted in order to pursue further development of advanced device structures. The work included investigation of response of the material to various fabrication processes, development of advanced cell structures using the commercial material, and investigation of the stability of Cz silicon solar cells. Some important achievements of this work include the following: post-diffusion oxidations were found to be a possible source of material contamination; bulk lifetimes around 75 pts were achieved; efficiencies of 17.6% and 15.7% were achieved for large-area cells using advanced cell structures (back-surface fields and emitter wrap-through); and preliminary investigations into photodegradation in Cz silicon solar cells found that oxygen thermal donors might be involved. Efficiencies around 20% should be possible with commercial, photovoltaic-grade silicon using properly optimized processes and device structures.

  14. A study of potential high band-gap photovoltaic materials for a two step photon intermediate technique in fission energy conversion. Final report

    SciTech Connect

    Prelas, M.A.

    1996-01-24

    This report describes progress made to develop a high bandgap photovoltaic materials for direct conversion to electricity of excimer radiation produced by fission energy pumped laser. This report summarizes the major achievements in sections. The first section covers n-type diamond. The second section covers forced diffusion. The third section covers radiation effects. The fourth section covers progress in Schottky barrier and heterojunction photovoltaic cells. The fifth section covers cell and reactor development.

  15. PVSIM{copyright}: A simulation program for photovoltaic cells, modules, and arrays

    SciTech Connect

    King, D.L.; Dudley, J.K.; Boyson, W.E.

    1996-06-01

    An electrical simulation model for photovoltaic cells, modules, and arrays has been developed that will be useful to a wide range of analysts in the photovoltaic industry. The Microsoft{reg_sign} Windows{trademark} based program can be used to analyze individual cells, to analyze the effects of cell mismatch or reverse bias(`hot spot`) heating in modules and to analyze the performance of large arrays of modules including bypass and blocking diodes. User defined statistical variance can be applied to the fundamental parameters used to simulate the cells and diodes. The model is most appropriate for cells that can be accurately modeled using a two-diode equivalent circuit. This paper describes the simulation program and illustrates its versatility with examples.

  16. Electroanalytical Evaluation of Lithium Ion Batteries and Photovoltaic Cells

    NASA Astrophysics Data System (ADS)

    Crain, Daniel Jacob

    Efficient solar energy conversion and electrical energy storage have been studied widely for decades. However, as materials development and process engineering for these devices have advanced through the years, some of the traditional characterization techniques have gradually fallen short of providing quantitative information that is necessary for further significant advancements in these fields. In this work a modern electroanalytical framework for characterization of silicon solar cells and lithium ion batteries is presented. Electroanalytical characterization of lithium ion battery electrodes is achieved through a strategic combination of the D.C. techniques of slow scan cyclic voltammetry, galvanostatic charge/discharge, Ragone Analysis with the A.C. technique of impedance spectroscopy (IS) coupled with complex nonlinear least squares (CNLS) analysis of impedance spectra. Primarily this investigation focuses on characterization of intercalating composite electrodes where the active material is either lithium manganese oxide (cathode,LiMn2O4) or lithium titanate (anode, Li4Ti5O12). Aspects of high power limitations are studied in detail to elucidate physical parameters that control electrode performance under rapid charge/discharge conditions. Electroanalytical evaluation of the p-n junction silicon solar cell with a back surface field (BSF) is accomplished through the use of linear sweep voltammetry (LSV) and IS combined with CNLS analysis. Although LSV has been previously used for characterization of silicon solar cells the use of impedance techniques is relatively new. Temperature and voltage dependence of the series resistance (Rs), diode quality factor (m), minority carrier lifetime and BSF electrical parameters obtained through IS are examined. The temperature dependence of results obtained from LSV such as the open circuit potential (Voc), short circuit current (Jsc), fill factor (FF) and conversion efficiency are also explored. Finally, a parative

  17. Perylene Diimide Based ``Nanofabric'' Thin Films for Organic Photovoltaic Cells

    NASA Astrophysics Data System (ADS)

    Carter, Austin; Park, June Hyoung; Min, Yong; Epstein, Arthur

    2011-03-01

    We report progress in using a perylene diimide (PDI) nanofabric as an effective electron accepting nanostructure for organic photovoltaics (OPV). A key challenge in OPV continues to be the recovery of electrons after charge separation due to the relatively poor mobility of C60 and related materials. A series of PDI compounds and complexes have been synthesized and used to fabricate nanofibers and thin films using solution and vacuum deposition techniques. Overlaping PDI-based nanofibers form a fast electron-transporting ``nanofabric'' that has been characterized (AFM, PL, UV-vis, etc.) and can be blended with electron donating materials. A solution-processible OPV configuration containing a nanofabric heterojunction (FHJ) of poly(3-hexylthiophene) and the PDI nanofabric was investigated. We observed a significant improvement in power-conversion efficiency due in part to expansion of the interfacial area and the presence of high mobility electron pathways to the LiF/Al electrode. This work is supported by the Wright Center for Photovoltaic Innovation and Commercialization, the Institute for Materials Research and the Center for Affordable Nanoengineering of Polymeric Biomedical Devices.

  18. Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells

    PubMed Central

    Kinoshita, Takumi; Nonomura, Kazuteru; Joong Jeon, Nam; Giordano, Fabrizio; Abate, Antonio; Uchida, Satoshi; Kubo, Takaya; Seok, Sang Il; Nazeeruddin, Mohammad Khaja; Hagfeldt, Anders; Grätzel, Michael; Segawa, Hiroshi

    2015-01-01

    The extension of the light absorption of photovoltaics into the near-infrared region is important to increase the energy conversion efficiency. Although the progress of the lead halide perovskite solar cells is remarkable, and high conversion efficiency of >20% has been reached, their absorption limit on the long-wavelength side is ∼800 nm. To further enhance the conversion efficiency of perovskite-based photovoltaics, a hybridized system with near-infrared photovoltaics is a useful approach. Here we report a panchromatic sensitizer, coded DX3, that exhibits a broad response into the near-infrared, up to ∼1100 nm, and a photocurrent density exceeding 30 mA cm−2 in simulated air mass 1.5 standard solar radiation. Using the DX3-based dye-sensitized solar cell in conjunction with a perovskite cell that harvests visible light, the hybridized mesoscopic photovoltaics achieved a conversion efficiency of 21.5% using a system of spectral splitting. PMID:26538097

  19. Photoelectrochemical scanning droplet cell microscopy for localized photovoltaic investigations on organic semiconductors.

    PubMed

    Gasiorowski, Jacek; Kollender, Jan Philipp; Hingerl, Kurt; Sariciftci, Niyazi Serdar; Mardare, Andrei Ionut; Hassel, Achim Walter

    2014-02-28

    Photoelectrochemical characterization of the regioregular poly(3-hexylthiophene) (P3HT) was performed using an adapted version of a photoelectrochemical scanning droplet cell microscope (PE-SDCM). The real and imaginary parts of the dielectric function were determined using spectroscopic ellipsometry in order to identify the absorption region of the polymer. Detailed photoelectrochemical experiments were performed for the thin polymer layer contacted with 0.1 M tetrabutylammonium hexafluorophosphate dissolved in propylene carbonate as well as with an electrolyte containing a 5.4 mM ferrocene/ferrocenium redox couple. The effect of the illumination on the P3HT covered WE in contact with both the pure electrolyte and an electrolyte containing a ferrocene/ferrocenium redox couple was studied using dark/illumination sequences. The stability of the photovoltaic effect was characterized using long term current transients. Finally, the photoelectrochemical impedance spectroscopy was applied to determine the electrical properties of the P3HT in the dark and under illumination. PMID:24424428

  20. Fatigue degradation and electric recovery in Silicon solar cells embedded in photovoltaic modules

    PubMed Central

    Paggi, Marco; Berardone, Irene; Infuso, Andrea; Corrado, Mauro

    2014-01-01

    Cracking in Silicon solar cells is an important factor for the electrical power-loss of photovoltaic modules. Simple geometrical criteria identifying the amount of inactive cell areas depending on the position of cracks with respect to the main electric conductors have been proposed in the literature to predict worst case scenarios. Here we present an experimental study based on the electroluminescence (EL) technique showing that crack propagation in monocrystalline Silicon cells embedded in photovoltaic (PV) modules is a much more complex phenomenon. In spite of the very brittle nature of Silicon, due to the action of the encapsulating polymer and residual thermo-elastic stresses, cracked regions can recover the electric conductivity during mechanical unloading due to crack closure. During cyclic bending, fatigue degradation is reported. This pinpoints the importance of reducing cyclic stresses caused by vibrations due to transportation and use, in order to limit the effect of cracking in Silicon cells. PMID:24675974

  1. Fatigue degradation and electric recovery in Silicon solar cells embedded in photovoltaic modules.

    PubMed

    Paggi, Marco; Berardone, Irene; Infuso, Andrea; Corrado, Mauro

    2014-01-01

    Cracking in Silicon solar cells is an important factor for the electrical power-loss of photovoltaic modules. Simple geometrical criteria identifying the amount of inactive cell areas depending on the position of cracks with respect to the main electric conductors have been proposed in the literature to predict worst case scenarios. Here we present an experimental study based on the electroluminescence (EL) technique showing that crack propagation in monocrystalline Silicon cells embedded in photovoltaic (PV) modules is a much more complex phenomenon. In spite of the very brittle nature of Silicon, due to the action of the encapsulating polymer and residual thermo-elastic stresses, cracked regions can recover the electric conductivity during mechanical unloading due to crack closure. During cyclic bending, fatigue degradation is reported. This pinpoints the importance of reducing cyclic stresses caused by vibrations due to transportation and use, in order to limit the effect of cracking in Silicon cells. PMID:24675974

  2. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    SciTech Connect

    Moore, David T.; Sai, Hiroaki; Wee Tan, Kwan; Estroff, Lara A.; Wiesner, Ulrich

    2014-08-01

    The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material. Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt's anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films.

  3. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell (RFC) energy storage system based on high temperature solid oxide fuel cell (SOFC) technology is described. The reactants are stored as gases in lightweight insulated pressure vessels. The product water is stored as a liquid in saturated equilibrium with the fuel gas. The system functions as a secondary battery and is applicable to darkside energy storage for solar photovoltaics.

  4. Influence of chemical doping on the performance of organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Chan, Calvin K.; Zhao, Wei; Kahn, Antoine; Hill, Ian G.

    2009-05-01

    The power conversion efficiency of organic photovoltaic cells can be greatly enhanced by chemical doping to control the conductivity of the organic thin films. We demonstrate a nearly twofold improvement in the efficiency of planar heterojunction copper phthalocyanine/fullerene cells by n-doping the electron acceptor layer with decamethylcobaltocene in the vicinity of the fullerene/cathode interface. Doping improves the charge extraction efficiency and decreases the series resistance of the organic films, improving the current density and fill factor, respectively.

  5. Turbulence convective heat transfer for cooling the photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Arianmehr, Iman

    Solar PV (photovoltaic) is a rapidly advancing renewable energy technology which converts sunlight directly into electricity. One of the outstanding challenges of the current PV technology is the reduction in its conversion efficiency with increasing PV panel temperature, which is closely associated with the increase in solar intensity and the ambient temperature surrounding the PV panels. To more effectively capture the available energy when the sun is most intense, significant efforts have been invested in active and passive cooling research over the last few years. While integrated cooling systems can lead to the highest total efficiencies, they are usually neither the most feasible nor the most cost effective solutions. This work examines some simple passive means of manipulating the prevailing wind turbulence to enhance convective heat transfer over a heated plate in a wind tunnel.

  6. Photovoltaic Engineering

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Ohio Aerospace Institute through David Scheiman and Phillip Jenkins provided the Photovoltaics Branch at the NASA Glenn Research Center (GRC) with expertise in photovoltaic (PV) research, flight experiments and solar cell calibration. NASA GRC maintains the only world-class solar cell calibration and measurement facility within NASA. GRC also has a leadership role within the solar cell calibration community, and is leading the effort to develop ISO standards for solar cell calibration. OAI scientists working under this grant provided much of the expertise and leadership in this area.

  7. Comparison of photovoltaic cell temperatures in modules operating with exposed and enclosed back surfaces

    NASA Technical Reports Server (NTRS)

    Namkoong, D.; Simon, F. F.

    1981-01-01

    Four different photovoltaic module designs were tested to determine the cell temperature of each design. The cell temperatures were compared to those obtained on identical design, using the same nominal operating cell temperature (NOCT) concept. The results showed that the NOCT procedure does not apply to the enclosed configurations due to continuous transient conditions. The enclosed modules had higher cell temperatures than the open modules, and insulated modules higher than the uninsulated. The severest performance loss - when translated from cell temperatures - 17.5 % for one enclosed, insulated module as a compared to that module mounted openly.

  8. Electrochemical photovoltaic cells. Quarterly technical progress report, August 1-October 31, 1980

    SciTech Connect

    Ang, P. G.P.; Sammells, A. F.

    1980-12-01

    Liquid-junction photoelectrochemical cells can be used either for the direct conversion of solar energy to electricity or to generate stored chemical species available for later electrochemical discharge. The objective of this program is to identify experimental approaches for electrochemical photovoltaic cells that not only show promise of high power-conversion efficiencies but also have the potential to achieve long life and the capacity for energy storage. The work is organized as follows: (1) selection of high-efficiency semiconductor photoelectrode/electrolyte systems; (2) development of long-life electrochemical photovoltaic cells; (3) development of an all solid-state electrochemical photovoltaic cell with in-situ storage; and (4) demonstration of laboratory-size photoelectrochemical cell with redox storage. This program is directed toward identifying a suitable match between the proposed semiconductor and the redox species present in aqueous, nonaqueous, and solid electrolytes for achieving the necessary performance and semiconductor stability requirements. Emphasis is on aqueous electrolyte-based systems where fast kinetics are favored. The proposed systems will be compatible with convenient storage of the electroactive species generated and their later electrochemical discharge in a redox cell.

  9. Solar cell array design handbook - The principles and technology of photovoltaic energy conversion

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.

    1980-01-01

    Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.

  10. Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides

    SciTech Connect

    Yoon, Jongseung; Li, Lanfang; Semichaevsky, Andrey V.; Ryu, Jae Ha; Johnson, Harley T.; Nuzzo, Ralph G.; Rogers, John A.

    2011-06-14

    Unconventional methods to exploit monocrystalline silicon and other established materials in photovoltaic (PV) systems can create new engineering opportunities, device capabilities and cost structures. Here we show a type of composite luminescent concentrator PV system that embeds large scale, interconnected arrays of microscale silicon solar cells in thin matrix layers doped with luminophores. Photons that strike cells directly generate power in the usual manner; those incident on the matrix launch wavelength-downconverted photons that reflect and waveguide into the sides and bottom surfaces of the cells to increase further their power output, by more than 300% in examples reported here. Unlike conventional luminescent photovoltaics, this unusual design can be implemented in ultrathin, mechanically bendable formats. Detailed studies of design considerations and fabrication aspects for such devices, using both experimental and computational approaches, provide quantitative descriptions of the underlying materials science and optics.

  11. Tandem-structured, hot electron based photovoltaic cell with double Schottky barriers

    PubMed Central

    Lee, Young Keun; Lee, Hyosun; Park, Jeong Young

    2014-01-01

    We demonstrate a tandem-structured, hot electron based photovoltaic cell with double Schottky barriers. The tandem-structured, hot electron based photovoltaic cell is composed of two metal/semiconductor interfaces. Two types of tandem cells were fabricated using TiO2/Au/Si and TiO2/Au/TiO2, and photocurrent enhancement was detected. The double Schottky barriers lead to an additional pathway for harvesting hot electrons, which is enhanced through multiple reflections between the two barriers with different energy ranges. In addition, light absorption is improved by the band-to-band excitation of both semiconductors with different band gaps. Short-circuit current and energy conversion efficiency of the tandem-structured TiO2/Au/Si increased by 86% and 70%, respectively, compared with Au/Si metal/semiconductor nanodiodes, showing an overall solar energy conversion efficiency of 5.3%. PMID:24694838

  12. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers

    NASA Astrophysics Data System (ADS)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  13. Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides.

    PubMed

    Yoon, Jongseung; Li, Lanfang; Semichaevsky, Andrey V; Ryu, Jae Ha; Johnson, Harley T; Nuzzo, Ralph G; Rogers, John A

    2011-01-01

    Unconventional methods to exploit monocrystalline silicon and other established materials in photovoltaic (PV) systems can create new engineering opportunities, device capabilities and cost structures. Here we show a type of composite luminescent concentrator PV system that embeds large scale, interconnected arrays of microscale silicon solar cells in thin matrix layers doped with luminophores. Photons that strike cells directly generate power in the usual manner; those incident on the matrix launch wavelength-downconverted photons that reflect and waveguide into the sides and bottom surfaces of the cells to increase further their power output, by more than 300% in examples reported here. Unlike conventional luminescent photovoltaics, this unusual design can be implemented in ultrathin, mechanically bendable formats. Detailed studies of design considerations and fabrication aspects for such devices, using both experimental and computational approaches, provide quantitative descriptions of the underlying materials science and optics. PMID:21673664

  14. Thin film heterojunction photovoltaic cells and methods of making the same

    DOEpatents

    Basol, Bulent M.; Tseng, Eric S.; Rod, Robert L.

    1983-06-14

    A method of fabricating a thin film heterojunction photovoltaic cell which comprises depositing a film of a near intrinsic or n-type semiconductor compound formed of at least one of the metal elements of Class II B of the Periodic Table of Elements and at least tellurium and then heating said film at a temperature between about 250.degree. C. and 500.degree. C. for a time sufficient to convert said film to a suitably low resistivity p-type semiconductor compound. Such film may be deposited initially on the surface of an n-type semiconductor substrate. Alternatively, there may be deposited on the converted film a layer of n-type semiconductor compound different from the film semiconductor compound. The resulting photovoltaic cell exhibits a substantially increased power output over similar cells not subjected to the method of the present invention.

  15. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    PubMed

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-01-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes. PMID:25692264

  16. Enhanced Photovoltaic Performance with Carbon Nanotubes Incorporating into Hole Transport Materials for Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Wang, Junxia; Li, Jingling; Xu, Xueqing; Xu, Gang; Shen, Honglie

    2016-06-01

    In an attempt to further enhance the photovoltaic performance of perovskite solar cells (PSCs) fabricated by spray deposition under ambient conditions, carbon nanotubes (CNTs) are introduced for incorporation into hole transport materials (HTM). The effect of CNT category and length on the efficiency of the perovskite solar cell for incorporation into HTM is investigated. The enhanced photovoltaic performance is achieved in multi-walled carbon nanotubes (MWCNTs) with the shortest length. The efficiency of acid-treated MWCNT-based cells is improved compared to that of purified MWCNTs due to the better dispersibility and the π-π interaction between the -COOH group and spiro-OMeTAD. As the volume ratio of the spiro-OMeTAD and spiro/MWCNTs mixture is 2:2 or 3:1, the highest power conversion efficiency (PCE) of PSCs containing MWCNTs reaches 8.7% with the enhanced short-circuit current density (J sc) and open-circuit voltage (V oc).

  17. Thermionic photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, D. L. (Inventor)

    1985-01-01

    A thermionic photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or gallium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

  18. The electrodeposition of multilayers on a polymeric substrate in flexible organic photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Guedes, Andre F. S.; Guedes, Vilmar P.; Souza, Monica L.; Tartari, Simone; Cunha, Idaulo J.

    2015-09-01

    Flexible organic photovoltaic solar cells have drawn intense attention due to their advantages over competing solar cell technologies. The method utilized to deposit as well as to integrate solutions and processed materials, manufacturing organic solar cells by the Electrodeposition System, has been presented in this research. In addition, we have demonstrated a successful integration of a process for manufacturing the flexible organic solar cell prototype and we have discussed on the factors that make this process possible. The maximum process temperature was 120°C, which corresponds to the baking of the active polymeric layer. Moreover, the new process of the Electrodeposition of complementary active layer is based on the application of voltage versus time in order to obtain a homogeneous layer with thin film. This thin film was not only obtained by the electrodeposition of PANI-X1 on P3HT/PCBM Blend, but also prepared in perchloric acid solution. Furthermore, these flexible organic photovoltaic solar cells presented power conversion efficiency of 12% and the inclusion of the PANI-X1 layer reduced the effects of degradation on these organic photovoltaic panels induced by solar irradiation. Thus, in the Scanning Electron Microscopy (SEM), these studies have revealed that the surface of PANI-X1 layers is strongly conditioned by the dielectric surface morphology.

  19. Organic Photovoltaic Cells: Engineering of the Interfaces Electrodes/Organic Material

    NASA Astrophysics Data System (ADS)

    Bernède, J. C.

    2011-10-01

    The power conversion efficiency (PCE) of organic photovoltaic cells (OPV) depends of the efficiency of four steps, exciton generation by light absorption, exciton diffusion to an electron donor/electron acceptor (ED/EA) interface, charge separation giving free holes and electrons and finally, carrier transport and collection. Therefore, in OPV, besides good photoactive materials, the properties of the interfaces between the organic layers and the electrodes are crucial for achieving high carrier collection efficiency and high PCE. Optoelectronic devices require at least one transparent electrode, usually a transparent conductive oxide (TCO). Electrode contacts play a critical role in determining the device efficiencies. Rates of charge collection at the electrodes must be fast and selective. Contact selectivity is often achieved using buffer interlayers interposed between the electrodes and the organic materials. Efficiency of OPV cells, based on organic donor/acceptor heterojunctions can be strongly improved when the transparent conductive anode, is covered by an anode buffer layer (ABL). Currently, indium-tin oxide (ITO) is the most widely used transparent electrode for organic optoelectronic. Here, the effects of different ABLs (0.5 nm of Au, 3 to 4 nm of MoO3 or CuI) onto the ITO anode are studied using electron donors with different HOMO and LUMO levels. The results indicate that a good matching between the work function, of the anode and the HOMO of the organic electron donor, and the value of the anode surface energy, are important factors for an efficient hole transfer. General rules on the ABL efficiency can be deduced from this study.

  20. Nanoscale engineering of thin film morphology for efficient organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Pandey, Richa

    Organic photovoltaic cells (OPVs) have received significant industrial and academic interest in the last decade as a promising source of inexpensive renewable energy. However, further improvements in device performance and improved lifetimes are required for the commercialization of OPVs. This work is primarily focused on developing a novel device architecture to improve device performance and characterizing structure-property-performance relationships for OPVs. The excitonic nature of organic semiconductors necessitates the use of an electron donor-acceptor (D-A) heterojunction for efficient exciton dissociation and the generation of photocurrent. In many organic semiconductors, the optical absorption length is much larger than the exciton diffusion length. This trade-off between absorption and exciton diffusion is often overcome by increasing the area of the dissociating D-A interface using engineered film morphologies. This thesis presents an approach to maximize cell efficiency using a continuously graded D-A heterojunction. The graded heterojunction allows for an increase in the D-A interface area for an enhanced exciton diffusion efficiency, while also preserving the charge collection efficiency, leading to a significant improvement in device performance relative to that of optimized planar and uniformly mixed OPVs. In addition, this work correlates the optimized D-A composition gradient to the underlying film morphology and charge transport properties of uniform D-A mixtures. Subsequently, a new characterization technique to calculate the charge collection efficiency of OPVs is discussed. This technique is used to demonstrate the enhanced charge collection efficiency in graded heterojunctions relative to uniformly mixed heterojunctions. Afterwards, the properties of a new material and its potential as an electron donor material in OPVs are examined. Finally, an overview of the results and the ideas for future work are presented.

  1. The high intensity solar cell: Key to low cost photovoltaic power

    NASA Technical Reports Server (NTRS)

    Sater, B. L.; Goradia, C.

    1975-01-01

    The design considerations and performance characteristics of the 'high intensity' (HI) solar cell are presented. A high intensity solar system was analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency. It is shown that residential sized systems can be produced at less than $1000/kW peak electric power. Due to their superior high intensity performance characteristics compared to the conventional and VMJ cells, HI cells and light concentrators may be the key to low cost photovoltaic power.

  2. Some tests of flat plate photovoltaic module cell temperatures in simulated field conditions

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.; Rathod, M. S.; Paslaski, J.

    1981-01-01

    The nominal operating cell temperature (NOCT) of solar photovoltaic (PV) modules is an important characteristic. Typically, the power output of a PV module decreases 0.5% per deg C rise in cell temperature. Several tests were run with artificial sun and wind to study the parametric dependencies of cell temperature on wind speed and direction and ambient temperature. It was found that the cell temperature is extremely sensitive to wind speed, moderately so to wind direction and rather insensitive to ambient temperature. Several suggestions are made to obtain data more typical of field conditions.

  3. Modeling of organic photovoltaic cells with large fill factor and high efficiency

    NASA Astrophysics Data System (ADS)

    Yoo, Seunghyup; Domercq, Benoit; Marder, Seth R.; Armstrong, Neal R.; Kippelen, Bernard

    2004-11-01

    Organic photovoltaic cells exhibiting an ideal diode behavior with large fill factor (FF) are presented. It is demonstrated that the current-voltage characteristics can be well described using the equivalent circuit model that is also used for inorganic solar cells. Resistances associated with the cells and other diode parameters are extracted by fitting the experimental electrical characteristics using the equivalent circuit model. The effects of these parameters on FF are quantitatively described. Changes in these parameters under different illumination conditions are presented and compared to those occurring in inorganic pn-junction solar cells.

  4. Design and performance of the Georgia Tech Aquatic Center photovoltaic system. Final report

    SciTech Connect

    Rohatgi, A.; Begovic, M.; Long, R.; Ropp, M.; Pregelj, A.

    1996-12-31

    A building-integrated DC PV array has been constructed on the Georgia Tech campus. The array is mounted on the roof of the Georgia Tech Aquatic Center (GTAC), site of the aquatic events during the 1996 Paralympic and Olympic Games in Atlanta. At the time of its construction, it was the world`s largest roof-mounted photovoltaic array, comprised of 2,856 modules and rates at 342 kW. This section describes the electrical and physical layout of the PV system, and the associated data acquisition system (DAS) which monitors the performance of the system and collects measurements of several important meteorological parameters.

  5. Evaluation of critical materials in five additional advance design photovoltaic cells

    SciTech Connect

    Smith, S.A.; Watts, R.L.; Martin, P.; Gurwell, W.E.

    1981-02-01

    The objective of this study is to identify potential material supply constraints due to the large-scale deployment of five advanced photovoltaic (PV) cell designs, and to suggest strategies to reduce the impacts of these production capacity limitations and potential future material shortages. The Critical Materials Assessment Program (CMAP) screens the designs and their supply chains and identifies potential shortages which might preclude large-scale use of the technologies. The results of the screening of five advanced PV cell designs are presented: (1) indium phosphide/cadmium sulfide, (2) zinc phosphide, (3) cadmium telluride/cadmium sulfide, (4) copper indium selenium, and (5) cadmium selenide photoelectrochemical. Each of these five cells is screened individually assuming that they first come online in 1991, and that 25 Gwe of peak capacity is online by the year 2000. A second computer screening assumes that each cell first comes online in 1991 and that each cell has a 5 GWe of peak capacity by the year 2000, so that the total online capacity for the five cells is 25 GWe. Based on a review of the preliminary baseline screening results, suggestions were made for varying such parameters as the layer thickness, cell production processes, etc. The resulting PV cell characterizations were then screened again by the CMAP computer code. The CMAP methodology used to identify critical materials is described; and detailed characterizations of the advanced photovoltaic cell designs under investigation, descriptions of additional cell production processes, and the results are presented. (WHK)

  6. New N-Type Polymers for Organic Photovoltaics: Cooperative Research and Development Final Report, CRADA Number CRD-06-177

    SciTech Connect

    Olson, D.

    2014-08-01

    This CRADA will develop improved thin film organic solar cells using a new n-type semiconducting polymer. High efficiency photovoltaics (PVs) based on inorganic semiconductors have good efficiencies (up to 30%) but are extremely expensive to manufacture. Organic PV technology has the potential to overcome this problem through the use of high-throughput production methods like reel-to-reel printing on flexible substrates. Unfortunately, today's best organic PVs have only a few percent efficiency, a number that is insufficient for virtually all commercial applications. The limited choice of stable n-type (acceptor) organic semiconductor materials is one of the key factors that prevent the further improvement of organic PVs. TDA Research, Inc. (TDA) previously developed a new class of electron-deficient (n-type) conjugated polymers for use in organic light emitting diodes (OLEDs). During this project TDA in collaboration with the National Renewable Energy Laboratory (NREL) will incorporate these electron-deficient polymers into organic photovoltaics and investigate their performance. TDA Research, Inc. (TDA) is developing new materials and polymers to improve the performance of organic solar cells. Materials being developed at TDA include spin coated transparent conductors, charge injection layers, fullerene derivatives, electron-deficient polymers, and three-phase (fullerene/polythiophene/dye) active layer inks.

  7. Polymer substrates for flexible photovoltaic cells application in personal electronic system

    NASA Astrophysics Data System (ADS)

    Znajdek, K.; Sibiński, M.; Strąkowska, A.; Lisik, Z.

    2016-01-01

    The article presents an overview of polymeric materials for flexible substrates in photovoltaic (PV) structures that could be used as power supply in the personal electronic systems. Four types of polymers have been elected for testing. The first two are the most specialized and heat resistant polyimide films. The third material is transparent polyethylene terephthalate film from the group of polyesters which was proposed as a cheap and commercially available substrate for the technology of photovoltaic cells in a superstrate configuration. The last selected polymeric material is a polysiloxane, which meets the criteria of high elasticity, is temperature resistant and it is also characterized by relatively high transparency in the visible light range. For the most promising of these materials additional studies were performed in order to select those of them which represent the best optical, mechanical and temperature parameters according to their usage for flexible substrates in solar cells.

  8. Structures and photovoltaic properties of copper oxides/fullerene solar cells

    NASA Astrophysics Data System (ADS)

    Oku, Takeo; Motoyoshi, Ryosuke; Fujimoto, Kazuya; Akiyama, Tsuyoshi; Jeyadevan, Balachandran; Cuya, John

    2011-11-01

    Copper oxide (CuOx) thin films were produced by spin-coating and electrodeposition methods, and their microstructures and photovoltaic properties were investigated. Thin film solar cells based on the Cu2O/C60 and CuO/C60 heterojunction or bulk heterojunction structures were fabricated on F-doped or In-doped SnO2, which showed photovoltaic activity under air mass 1.5 simulated sunlight conditions. Microstructures of the CuOx thin films were examined by X-ray diffraction and transmission electron microscopy, which indicated the presence of Cu2O and CuO nanoparticles. The energy levels of the present solar cells were also discussed.

  9. A C70-carbon nanotube complex for bulk heterojunction photovoltaic cells

    SciTech Connect

    Lau, Xinbo C.; Wang, Zhiqian; Mitra, Somenath

    2013-12-09

    A C70 fullerene-multi-walled carbon nanotube (C70-CNT) complex has been used as a component of the photoactive layer in a bulk heterojunction photovoltaic cell. As compared to a control device with only C70, the addition of CNTs led to improvements in short circuit current density (J{sub sc}), open circuit voltage (V{sub oc}), and power conversion efficiency by 31.8, 17.5, and 69.5%, respectively. This device takes advantage of both the electron accepting feature of C70 and the high electron transport capability of CNTs. These results indicate that C70 decorated CNT is a promising additive for performance enhancement of polymer photovoltaic cells.

  10. Investigation of ITO layers for application as transparent contacts in flexible photovoltaic cell structures

    NASA Astrophysics Data System (ADS)

    Znajdek, Katarzyna; Sibiński, Maciej

    2013-07-01

    In this paper authors present the mechanical, optical and electrical parameters of Indium Tin Oxide (ITO) Transparent Conductive Layers (TCL) deposited on flexible substrate. Layers' properties are analyzed and verified. Investigated Transparent Conductive Oxide (TCO) was deposited, using magnetron sputtering method. Flexible polymer PET (polyethylene terephthalate) foil was used as a substrate, in order to photovoltaic (PV) cell's emitter contact application of investigated material. ITO-coated PET foils have been dynamically bent on numerous cylinders of various diameters according to the standard requirements. Resistance changes for each measured sample were measured and recorded during bending cycle. Thermal durability, as well as temperature influence on resistance and optical transmission are verified. Presented results were conducted to verify practical suitability and to evaluate possible applications of Indium Tin Oxide as a front contact in flexible photovoltaic cell structures.

  11. Scalable High-Efficiency Thin Crystalline Silicon Photovoltaic Cells Enabled by Light-Trapping Nanostructures

    SciTech Connect

    Chen, Gang; Branham, Matthew S.; Hsu, Wei-Chun; Yerci, Selcuk

    2014-09-02

    This report summarizes the research activities of the Chen group at MIT over the last two years pertaining to our research effort developing and proving light-trapping designs for ultrathin crystalline silicon solar cells. We present a new world record efficiency for a sub-20-micron crystalline silicon device, as well as details on the combined photonic/electronic transport simulation we developed for photovoltaic applications.

  12. Potential toxicity of improperly discarded exhausted photovoltaic cells.

    PubMed

    Motta, C M; Cerciello, R; De Bonis, S; Mazzella, V; Cirino, P; Panzuto, R; Ciaravolo, M; Simoniello, P; Toscanesi, M; Trifuoggi, M; Avallone, B

    2016-09-01

    Low tech photovoltaic panels (PVPs) installed in the early '80s are now coming to the end of their life cycle and this raises the problem of their proper disposal. As panels contain potentially toxic elements, unconventional, complex and costly procedures are required to avoid environmental health risks and in countries where environmental awareness and economic resources are limited this may be especially problematic. This work was designed to investigate potential risks from improper disposal of these panels. To accomplish this aim an exhausted panel was broken into pieces and these were placed in water for 30 days. The resulting leached solution was analyzed to determine chemical release or used in toto, to determine its potential toxicity in established tests. The end points were seed germination (on Cucumis sativus and Lens culinaris) and effects on early development in three larval models: two crustaceans, Daphnia magna and Artemia salina, and the sea urchin Paracentrotus lividus. Our results show that the panels release small amounts of electrolytes (Na, Ca and Mg) into solution, along with antimony and manganese, with a concentration under the accepted maximum contaminant level, and nickel at a potentially toxic concentration. Developmental defects are seen in the plant and animal test organisms after experimental exposure to the whole solution leached from the broken panel. The toxic effects revealed in in vitro tests are sufficient to attract attention considering that they are exerted on both plants and aquatic animals and that the number of old PVPs in disposal sites will be very high. PMID:27376992

  13. Life Cycle Assessment Projection of Photovoltaic Cells: A Case Study on Energy Demand of Quantum Wire Based Photovoltaic Technology Research

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shilpi

    With increasing clean-energy demand, photovoltaic (PV) technologies have gained attention as potential long-term alternative to fossil fuel energy. However, PV research and manufacture still utilize fossil fuel-powered grid electricity. With continuous enhancement of solar conversion efficiency, it is imperative to assess whether overall life cycle efficiency is also being enhanced. Many new-material PV technologies are still in their research phase, and life cycle analyses of these technologies have not yet been performed. For best results, grid dependency must be minimized for PV research, and this can be accomplished by an analytical instrument called Life Cycle Assessment (LCA). LCA is the study of environmental impacts of a product throughout its life cycle. While there are some non-recoverable costs of research, energy is precious, and the PV research community should be aware of its energy consumption. LCA can help identify options for energy conservation through process optimization. A case study was conducted on the energy demand of a test-bed emerging PV technology using life cycle assessment methodology. The test-bed system chosen for this study was a new-material PV cell. The objective was to quantify the total energy demand for the research phase of the test-bed solar cell's life cycle. The objective was accomplished by collecting primary data on energy consumption for each process in the development of this solar cell. It was found that 937 kWh of energy was consumed for performing research on a single sample of the solar cell. For comparison, this energy consumption is 83% of Arkansas's average monthly residential electricity consumption. Life cycle inventory analysis showed that heating, ventilation, and air conditioning consumed the bulk of the energy of research. It is to be noted that the processes studied as part of the solar cell test-bed system are representative of a research process only. Life cycle thinking can identify energy hot-spots and

  14. Toxicology of tetramethyltin and other organometals used in photovoltaic cell manufacture

    NASA Astrophysics Data System (ADS)

    Hamilton, L. D.; Medeiros, W. H.; Moskowitz, P. D.; Rybicka, K.

    1988-07-01

    In photovoltaic cell fabrication, organometals (alkyl metals) may be used in such processes as metalorganic chemical vapor deposition, transparent contact oxide deposition, doping, and ion implantation. Although these compounds offer potential performance advantages over earth metals and possibly greater safety in handling than metal hydrides, they are not without risk to health and property. Most organometals can ignite spontaneously in air. Some also react violently with water. Oxidation by-products from these reactions are hazardous to health. Of the organometals used in photovoltaic cell fabrication, only the toxicology of organotins (triethyl-, trimethyl- and tetramethyltin) was studied extensively. In mammalian systems, tetramethyltin is rapidly dealkylated to trimethyltin. Although tin was classified by some investigators as an essential trace element, the effects of organotin compounds on humans are poorly known. Animal studies show that the most prominent effects of trimethyltin are on the central nervous system. Several observations of poisoning were reported; effects ranged from reversible neurologic disorders to death. Limited available data suggest that humans respond to single acute doses and more alarmingly to repeated sub-toxic doses, suggesting a cumulative effect. Toxicologic properties of diethyltelluride also were evaluated in animal experiments. The compound had toxic effects on the blood, liver, kidney, heart, and skin. Based on these studies and others of related compounds (e.g., methylmercury, tributyltin) extreme caution should be exercised in using organometal compounds in photovoltaic cell manufacturing.

  15. Toxicology of tetramethyltin and other organometals used in photovoltaic cell manufacture

    SciTech Connect

    Hamilton, L.D.; Medeiros, W.H.; Moskowitz, P.D.; Rybicka, K.

    1988-01-01

    In photovoltaic cell fabrication, organometals (alkyl metals) may be used in such processes as metalorganic chemical vapor deposition, transparent contact oxide deposition, doping, and ion implantation. Although these compounds offer potential performance advantages over earth metals and possibly greater safety in handling than metal hydrides, they are not without risk to health and property. Most organometals can ignite spontaneously in air. Some also react violently with water. Oxidation by-products from these reactions are hazardous to health. Of the organometals used in photovoltaic cell fabrication, only the toxicology of organotins (triethyl-, trimethyl- and tetramethyltin) was studied extensively. In mammalian systems, tetramethyltin is rapidly dealkylated to trimethyltin. Although tin was classified by some investigators as an essential trace element, the effects of organotin compounds on humans are poorly known. Animal studies show that the most prominent effects of trimethyltin are on the central nervous system. Several observations of poisoning were reported; effects ranged from reversible neurologic disorders to death. Limited available data suggest that humans respond to single acute doses, and more alarmingly, to repeated sub-toxic doses, suggesting a cumulative effect. Toxicologic properties of diethyltelluride also were evaluated in animal experiments. The compound had toxic effects on the blood, liver, kidney, heart, and skin. Based on these studies and others of related compounds (e.g., methylmercury, tributyltin) extreme caution should be exercised in using organometal compounds in photovoltaic cell manufacturing. 54 refs., 3 tabs.

  16. Toxicology of tetramethyltin and other organometals used in photovoltaic cell manufacture

    SciTech Connect

    Hamilton, L.D.; Medeiros, W.H.; Moskowitz, P.D.; Rybicka, K.

    1988-07-15

    In photovoltaic cell fabrication, organometals (alkyl metals) may be used in such processes as metalorganic chemical vapor deposition, transparent contact oxide deposition, doping, and ion implantation. Although these compounds offer potential performance advantages over earth metals and possibly greater safety in handling than metal hydrides, they are not without risk to health and property. Most organometals can ignite spontaneously in air. Some also react violently with water. Oxidation by-products from these reactions are hazardous to health. Of the organometals used in photovoltaic cell fabrication, only the toxicology of organotins (triethyl-, trimethyl- and tetramethyltin) was studied extensively. In mammalian systems, tetramethyltin is rapidly dealkylated to trimethyltin. Although tin was classified by some investigators as an essential trace element, the effects of organotin compounds on humans are poorly known. Animal studies show that the most prominent effects of trimethyltin are on the central nervous system. Several observations of poisoning were reported; effects ranged from reversible neurologic disorders to death. Limited available data suggest that humans respond to single acute doses and more alarmingly to repeated sub-toxic doses, suggesting a cumulative effect. Toxicologic properties of diethyltelluride also were evaluated in animal experiments. The compound had toxic effects on the blood, liver, kidney, heart, and skin. Based on these studies and others of related compounds (e.g., methylmercury, tributyltin) extreme caution should be exercised in using organometal compounds in photovoltaic cell manufacturing.

  17. Light-splitting photovoltaic system utilizing two dual-junction solar cells

    SciTech Connect

    Xiong, Kanglin; Yang, Hui; Lu, Shulong; Dong, Jianrong; Zhou, Taofei; Wang, Rongxin; Jiang, Desheng

    2010-12-15

    There are many difficulties limiting the further development of monolithic multi-junction solar cells, such as the growth of lattice-mismatched material and the current matching constraint. As an alternative approach, the light-splitting photovoltaic system is investigated intensively in different aspects, including the energy loss mechanism and the choice of energy bandgaps of solar cells. Based on the investigation, a two-dual junction system has been implemented employing lattice-matched GaInP/GaAs and InGaAsP/InGaAs cells grown epitaxially on GaAs and InP substrates, respectively. (author)

  18. High fill factor and thermal stability of bilayer organic photovoltaic cells with an inverted structure

    NASA Astrophysics Data System (ADS)

    Wang, Zhongqiang; Hong, Ziruo; Zhuang, Taojun; Chen, Guo; Sasabe, Hisahiro; Yokoyama, Daisuke; Kido, Junji

    2015-02-01

    In this study, we fabricated planar heterojunction photovoltaic cells with inverted device structures based on tetraphenyldibenzoperiflanthene and fullerene-70 (C70). With proper designs of device architecture and selection of electrode buffers, a high fill factor and power conversion efficiency were obtained due to large shunt resistance (Rsh) and efficient carrier collection. Optical simulation reveals that field-dependent recombination is depressed in the inverted structure cells because of less light absorption in short wavelength range, resulting in high fill factor. More importantly, high thermal stability of inverted structure cells was demonstrated via utilizing stable electrode buffers.

  19. Single-cell concepts for obtaining photovoltaic conversion efficiency over 30 percent

    NASA Technical Reports Server (NTRS)

    Fan, John C. C.

    1985-01-01

    Although solar photovoltaic conversion efficiencies over 30 percent (one sun, AM1) can be expected for multiple-cell configurations using spectral splitting techniques, the highest practical single-cell conversion efficiency that can be attained using present concepts is estimated to be about 27-28 percent. To achieve conversion efficiencies above 30 percent using single-cell configurations it will be necessary to employ different concepts, such as spectral compression and broad-band detection. The implementation of these concepts would require major breakthroughs that are not anticipated in the near future.

  20. Trapping light with micro lenses in thin film organic photovoltaic cells.

    PubMed

    Tvingstedt, Kristofer; Dal Zilio, Simone; Inganäs, Olle; Tormen, Massimo

    2008-12-22

    We demonstrate a novel light trapping configuration based on an array of micro lenses in conjunction with a self aligned array of micro apertures located in a highly reflecting mirror. When locating the light trapping element, that displays strong directional asymmetric transmission, in front of thin film organic photovoltaic cells, an increase in cell absorption is obtained. By recycling reflected photons that otherwise would be lost, thinner films with more beneficial electrical properties can effectively be deployed. The light trapping element enhances the absorption rate of the solar cell and increases the photocurrent by as much as 25%. PMID:19104592

  1. Nanoparticle Solar Cell Final Technical Report

    SciTech Connect

    Breeze, Alison, J; Sahoo, Yudhisthira; Reddy, Damoder; Sholin, Veronica; Carter, Sue

    2008-06-17

    The purpose of this work was to demonstrate all-inorganic nanoparticle-based solar cells with photovoltaic performance extending into the near-IR region of the solar spectrum as a pathway towards improving power conversion efficiencies. The field of all-inorganic nanoparticle-based solar cells is very new, with only one literature publication in the prior to our project. Very little is understood regarding how these devices function. Inorganic solar cells with IR performance have previously been fabricated using traditional methods such as physical vapor deposition and sputtering, and solution-processed devices utilizing IR-absorbing organic polymers have been investigated. The solution-based deposition of nanoparticles offers the potential of a low-cost manufacturing process combined with the ability to tune the chemical synthesis and material properties to control the device properties. This work, in collaboration with the Sue Carter research group at the University of California, Santa Cruz, has greatly expanded the knowledge base in this field, exploring multiple material systems and several key areas of device physics including temperature, bandgap and electrode device behavior dependence, material morphological behavior, and the role of buffer layers. One publication has been accepted to Solar Energy Materials and Solar Cells pending minor revision and another two papers are being written now. While device performance in the near-IR did not reach the level anticipated at the beginning of this grant, we did observe one of the highest near-IR efficiencies for a nanoparticle-based solar cell device to date. We also identified several key parameters of importance for improving both near-IR performance and nanoparticle solar cells in general, and demonstrated multiple pathways which showed promise for future commercialization with further research.

  2. Si concentrator solar cell development. [Final report

    SciTech Connect

    Krut, D.D.

    1994-10-01

    This is the final report of a program to develop a commercial, high-efficiency, low-cost concentrator solar cell compatible with Spectrolab`s existing manufacturing infrastructure for space solar cells. The period covered is between 1991 and 1993. The program was funded through Sandia National Laboratories through the DOE concentrator initiative and, was also cost shared by Spectrolab. As a result of this program, Spectrolab implemented solar cells achieving an efficiency of over 19% at 200 to 300X concentration. The cells are compatible with DOE guidelines for a cell price necessary to achieve a cost of electricity of 12 cents a kilowatthour.

  3. Investigating reliability attributes of silicon photovoltaic cells - An overview

    NASA Technical Reports Server (NTRS)

    Royal, E. L.

    1982-01-01

    Reliability attributes are being developed on a wide variety of advanced single-crystal silicon solar cells. Two separate investigations: cell-contact integrity (metal-to-silicon adherence), and cracked cells identified with fracture-strength-reducing flaws are discussed. In the cell-contact-integrity investigation, analysis of contact pull-strength data shows that cell types made with different metallization technologies, i.e., vacuum, plated, screen-printed and soldered, have appreciably different reliability attributes. In the second investigation, fracture strength was measured using Czochralski wafers and cells taken at various stages of processing and differences were noted. Fracture strength, which is believed to be governed by flaws introduced during wafer sawing, was observed to improve (increase) after chemical polishing and other process steps that tend to remove surface and edge flaws.

  4. Enhanced photovoltaic performance of an inclined nanowire array solar cell.

    PubMed

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2015-11-30

    An innovative solar cell based on inclined p-i-n nanowire array is designed and analyzed. The results show that the inclined geometry can sufficiently increase the conversion efficiency of solar cells by enhancing the absorption of light in the active region. By tuning the nanowire array density, nanowire diameter, nanowire length, as well as the proportion of intrinsic region of the inclined nanowire solar cell, a remarkable efficiency in excess of 16% can be obtained in GaAs. Similar results have been obtained in InP and Si nanowire solar cells, demonstrating the universality of the performance enhancement of inclined nanowire arrays. PMID:26698807

  5. Ferroelectric-semiconductor photovoltaics: Non-PN junction solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Fude; Wang, Wentao; Wang, Lei; Yang, Guandong

    2014-03-01

    Traditional positive-negative (PN) junction based solar cells have many limitations. Herein, we introduce ferroelectric-semiconductor solar cells that use the bound surface charges of the ferroelectric for achieving charge separation in the semiconductor. The feasibility of the new concept cells was verified both experimentally and theoretically in detail. The new cells are unique in that free charge carriers and fixed charge carriers are physically separated from each other. The feature allows us to go beyond traditional junction-based structures and have more freedom in material selection, device design, and fabrication.

  6. Building-integrated photovoltaics (BIPV): Analysis and US market potential. Final report

    SciTech Connect

    Frantzis, L.; Friedman, D.; Hill, S.; Teagan, P.; Strong, S.; Strong, M.

    1995-02-01

    Arthur D. Little, Inc., in conjunction with Solar Design Associates, conducted a study for the US Department of Energy (DOE), Office of Building Technologies (OBT) to determine the market potential for grid-connected, building-integrated photovoltaics (BIPV). This study defines BIPV as two types of applications: (1) where the PV modules are an integral part of the building, often serving as the exterior weathering skin; and (2) the PV modules are mounted on the existing building exterior. Both of these systems are fully integrated with the energy usage of the building and have potential for significant market penetration in the US. Off-grid building applications also offer a near-term market for BIPV, but are not included in the scope of this study.

  7. Building opportunities for photovoltaics in the U.S. Final report [PV BONUS

    SciTech Connect

    Michael Nicklas

    1999-09-08

    The objective of the North Carolina's PV Bonus Team was to develop and demonstrate a commercially viable, building-integrated, photovoltaic system that, in addition to providing electricity, would capture and effectively utilize the thermal energy produced by the photovoltaic array. This project objective was successfully achieved by designing, testing, constructing, and monitoring two roof integrated photovoltaic systems--one on a Applebee's Restaurant in Salisbury, North Carolina and the second on a Central Carolina Bank in Bessemer City, North Carolina. The goal of Innovative Design is to now use these successful demonstrations to facilitate entry of building integrated, pv/thermal systems into the marketplace. The strategy was to develop the two systems that could be utilized in future applications. Both systems were designed and then constructed at the North Carolina Solar Center at North Carolina State University. After extensive testing at the North Carolina Solar Center, the systems were moved to the actual construction sites and implemented. The Applebee's Restaurant system was designed to substitute for the roof assembly of a low sloping, south-facing sunspace roof that typically incorporated clay tile. After monitoring the installed system for one year it was determined that the 1.2 kilowatt (peak) system produces an average peak reduction of 1 kilowatt (rated peak is 1.7 kiloWatts), saves 1,529 kilowatt-hours of electricity, and offsets 11,776 kilowatt-hours of thermal energy savings used to pre-heat water. A DC fan connected directly to eight of the thirty-two amorphous modules moves air through air passages mounted on the backside of the modules and into a closed loop duct system to a heat exchanger. This heat exchanger is, in turn, connected to a pre-heat hot water tank that is used to heat the water for the restaurant. The Central Carolina Bank system was designed to substitute for the roof assembly of the drive-in window area of the bank. The

  8. Wind loads on flat plate photovoltaic array fields. Phase III, final report

    SciTech Connect

    Miller, R.D.; Zimmerman, D.K.

    1981-04-01

    The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads.

  9. Quantum Dot Sensitized Nanotubes for Full Solar Spectrum Photovoltaic Cell

    NASA Astrophysics Data System (ADS)

    Khanal, Sohana

    The demand for energy with limited non-renewable sources of energy has called researchers to find clean renewable energy sources. Solar light is considered good choice of the alternate energy. Our effort in this work was to investigate efficient photovoltaic (PV) systems by designing a hybrid photoelectrode with good absorption as well as charge transport properties. A coupled semiconductor material, one-dimensional TiO2 nanotubes (1D TiO2-NTs), filled with low band semiconductor quantum dots (QDs), PbS QDs, for better charge carrier transport was prepared and investigated. The vertically standing self assembled nanotubular array was attained by anodizing the Ti metal in two different solutions: (1) Ethylene Glycol with 0.5 wt% NH4F and 3 vol percent water and (2) 0.5M H3PO4 with 0.5 wt% NH4F. The anodized samples were annealed and then filled with the nanoparticles of other low band gap semiconductor materials. The CdS nanoparticles were used for the better understanding of the sensitizing process. The material was then switched to the PbS. As in the hypothesis, if PbS quantum dots are uniformly distributed in the 1D TiO2 Multiple Charge Carrier Generation can be created since PbS has a small band gap. A chemical bath deposition process in the presence of ultrasonic waves was adopted for the deposition of the QDs. Saturated lead sulfide solution was used as the lead source and the 0.2 M Na2S solution for the sulfur source. The process resulted in the successful uniform deposition of the PbS QDs onto the 1D TiO2 NTs. The deposited compound obeyed the stoichiometric ratio of 1:1 as desired. Photocurrent densities of 4.5 mA/cm2 was obtained, which is higher than the TiO2 alone in a polysulfide solution. PbS-TiO2 can be a suitable candidate for harvesting a broad solar spectrum as the UV-vis study proved that they absorb the light in the UV range.

  10. Environmental tests of metallization systems for terrestrial photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Alexander, P., Jr.

    1985-01-01

    Seven different solar cell metallization systems were subjected to temperature cycling tests and humidity tests. Temperature cycling excursions were -50 deg C to 150 deg C per cycle. Humidity conditions were 70 deg C at 98% relative humidity. The seven metallization systems were: Ti/Ag, Ti/Pd/Ag, Ti/Pd/Cu, Ni/Cu, Pd/Ni/Solder, Cr/Pd/Ag, and thick film Ag. All metallization systems showed a slight to moderate decrease in cell efficiencies after subjection to 1000 temperature cycles. Six of the seven metallization systems also evidenced slight increases in cell efficiencies after moderate numbers of cycles, generally less than 100 cycles. The copper based systems showed the largest decrease in cell efficiencies after temperature cycling. All metallization systems showed moderate to large decreases in cell efficiencies after 123 days of humidity exposure. The copper based systems again showed the largest decrease in cell efficiencies after humidity exposure. Graphs of the environmental exposures versus cell efficiencies are presented for each metallization system, as well as environmental exposures versus fill factors or series resistance.

  11. Low cost high power GaSB photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Fraas, Lewis M.; Huang, Han X.; Ye, Shi-Zhong; Hui, She; Avery, James; Ballantyne, Russell

    1997-03-01

    High power density and high capacity factor are important attributes of a thermophotovoltaics (TPV) system and GaSb cells are enabling for TPV systems. A TPV cogeneration unit at an off grid site will compliment solar arrays producing heat and electricity on cloudy days with the solar arrays generating electricity on sunny days. Herein, we project that GaSb cells generating 2 Watts each can be made in 1 MW quantities at 4 per cell. This will allow TPV circuits to be made at 2 per Watt. At this cost, the off-grid cogeneration and self-powered furnace markets will be viable.

  12. Enhancement in photovoltaic properties of silicon solar cells by surface plasmon effect of palladium nanoparticles

    NASA Astrophysics Data System (ADS)

    Atyaoui, Malek; Atyaoui, Atef; Khalifa, Marwen; Elyagoubi, Jalel; Dimassi, Wissem; Ezzaouia, Hatem

    2016-04-01

    This work presents the surface Plasmon effect of Palladium nanoparticles (Pd NPs) on the photovoltaic properties of silicon solar cells. Pd NPs were deposited on the p-type silicon base of the n+/p junction using a chemical deposition method in an aqueous solution containing Palladium (II) Nitrate (PdNO3)2 and Ammonium Hydroxide (NH4OH) followed by a thermal treatment at 500 °C under nitrogen atmosphere. Chemical composition and surface morphology of the treated silicon base were examined by energy dispersive X-ray (EDX) spectroscopy, scanning electronic microscopy (SEM) and Atomic Force Microscopy (AFM). The effect of the deposited Pd NPs on the electrical properties was evaluated by the internal quantum efficiency (IQE) and current-voltage (I-V) measurements. The results indicate that the formation of the Pd NPs is accompanied by an enhanced light absorption and improved photovoltaic parameters.

  13. Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS2 thin film

    NASA Astrophysics Data System (ADS)

    Tsuboi, Yuka; Wang, Feijiu; Kozawa, Daichi; Funahashi, Kazuma; Mouri, Shinichiro; Miyauchi, Yuhei; Takenobu, Taishi; Matsuda, Kazunari

    2015-08-01

    Transition-metal dichalcogenides exhibit great potential as active materials in optoelectronic devices because of their characteristic band structure. Here, we demonstrated that the photovoltaic performances of graphene/Si Schottky junction solar cells were significantly improved by inserting a chemical vapor deposition (CVD)-grown, large MoS2 thin-film layer. This layer functions as an effective electron-blocking/hole-transporting layer. We also demonstrated that the photovoltaic properties are enhanced with the increasing number of graphene layers and the decreasing thickness of the MoS2 layer. A high photovoltaic conversion efficiency of 11.1% was achieved with the optimized trilayer-graphene/MoS2/n-Si solar cell.Transition-metal dichalcogenides exhibit great potential as active materials in optoelectronic devices because of their characteristic band structure. Here, we demonstrated that the photovoltaic performances of graphene/Si Schottky junction solar cells were significantly improved by inserting a chemical vapor deposition (CVD)-grown, large MoS2 thin-film layer. This layer functions as an effective electron-blocking/hole-transporting layer. We also demonstrated that the photovoltaic properties are enhanced with the increasing number of graphene layers and the decreasing thickness of the MoS2 layer. A high photovoltaic conversion efficiency of 11.1% was achieved with the optimized trilayer-graphene/MoS2/n-Si solar cell. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03046c

  14. Theoretical and experimental investigation of 'grating' type photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Loferski, J. J.; Crisman, E. E.; Armitage, W.; Chen, L. Y.

    1974-01-01

    The fabrication procedure and properties of 'grating' cells made by forming a fine grating pattern of aluminum alloyed into n-silicon wafers are described. The finest grating lines achieved in the cells described were 5 microns; the smallest spacing was about 15 microns. The best temperature for alloying was found to be about 600 C, a bit above the Si-Al eutectic temperature (576 C). The short-circuit current obtained from the best of these cells exposed to 100 mW/sq cm of (simulated air mass zero) illumination was at least equal to that obtained from conventional diffused cells, but their open-circuit voltage was lower. Their quantum yield was strongly blue-shifted; it was flat from 4000 to 8500 A.

  15. MANUFACTURE OF PHOTOVOLTAIC SOLAR CELL USING PLANT CHLOROPHYLL

    EPA Science Inventory

    To date, we have successfully manufactured working chlorophyll sensitized solar cells using chlorophyll (and b mixture) from spinach leaves. We have evaluated the electronic characteristics (voltage, current, and power outputs using different loading resistors) of this solar c...

  16. Simple Photovoltaic Cells for Exploring Solar Energy Concepts

    ERIC Educational Resources Information Center

    Appleyard, S. J.

    2006-01-01

    Low-efficiency solar cells for educational purposes can be simply made in school or home environments using wet-chemistry techniques and readily available chemicals of generally low toxicity. Instructions are given for making solar cells based on the heterojunctions Cu/Cu[subscript 2]O, Cu[subscript 2]O/ZnO and Cu[subscript 2]S/ZnO, together with…

  17. Low cost silicon-on-ceramic photovoltaic solar cells

    NASA Technical Reports Server (NTRS)

    Koepke, B. G.; Heaps, J. D.; Grung, B. L.; Zook, J. D.; Sibold, J. D.; Leipold, M. H.

    1980-01-01

    A technique has been developed for coating low-cost mullite-based refractory substrates with thin layers of solar cell quality silicon. The technique involves first carbonizing one surface of the ceramic and then contacting it with molten silicon. The silicon wets the carbonized surface and, under the proper thermal conditions, solidifies as a large-grained sheet. Solar cells produced from this composite silicon-on-ceramic material have exhibited total area conversion efficiencies of ten percent.

  18. Sensibilization of polymer/fullerene photovoltaic cells using Zinc Phtalocyanine studied by combinatorial technique

    NASA Astrophysics Data System (ADS)

    Godovsky, D.; Chen, L.; Petterson, L.; Inganäs, O.

    2000-11-01

    The influence of Zinc Phtalocyanine admixture to fullerene layers on top of PTOPT to the photovoltaic cells performance was studied. In order to investigate all the possible combinations of ZnPc and C60 the combinatorial technique was developed consisting in thermal co-evaporation of ZnPc and C60 from two different boats. The significant increase in solar cells photocurrent was observed, coming from ZnPc absorbance bands, especially for the layers containing 1:1 molar ratio of the components.

  19. Enhanced EOS photovoltaic power system capability with InP solar cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.

    1991-01-01

    The Earth Observing System (EOS), which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program which opens a new era in international cooperation to study the Earth's environment. Five large platforms are to be launched into polar orbit, two by NASA, two by ESA, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing five micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the advanced photovoltaic solar array the payload savings approaches 12 percent.

  20. High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage

    NASA Technical Reports Server (NTRS)

    Bents, David J.

    1987-01-01

    A hydrogen-oxygen regenerative fuel cell energy storage system based on high temperature solid oxide fuel cell technology is discussed which has application to darkside energy storage for solar photovoltaics. The forward and reverse operating cycles are described, and heat flow, mass, and energy balance data are presented to characterize the system's performance and the variation of performance with changing reactant storage pressure. The present system weighs less than nickel hydrogen battery systems after 0.7 darkside operation, and it maintains a specific weight advantage over radioisotope generators for discharge periods up to 72 hours.

  1. Formation of organic crystalline nanopillar arrays and their application to organic photovoltaic cells.

    PubMed

    Hirade, Masaya; Nakanotani, Hajime; Yahiro, Masayuki; Adachi, Chihaya

    2011-01-01

    To enhance the performance of organic photovoltaic (OPV) cells, preparation of organic nanometer-sized pillar arrays is fascinating because a significantly large area of a donor/acceptor heterointerface having continuous conduction path to both anode and cathode electrodes can be realized. In this study, we grew cupper phthalocyanine (CuPc) crystalline nanopillar arrays by conventional thermal gradient sublimation technique using a few-nanometer-sized trigger seeds composed of a CuPc and 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) stacked layer. We optimized the pillar density by tuning crystal growth condition in order to apply it to OPV cells. PMID:21194207

  2. Electric field measurement of organic photovoltaic cell model using electrooptic probe

    NASA Astrophysics Data System (ADS)

    Saito, Ryo; Yabe, Yoko; Suzuki, Akito; Shinagawa, Mitsuru; Sugino, Hiroyuki; Katsuyama, Jun; Matsumoto, Yoshinori

    2016-09-01

    In this paper, we describe the use of a transverse electrooptic probe to measure the electric field of an organic photovoltaic (OPV) cell model. It is necessary to measure the voltage of each OPV cell in order to diagnose failure of the OPV. An electric field is generated by the OPV cell voltage, so measuring the electric field is effective for obtaining a failure diagnosis of the OPV. We use a transverse electrooptic probe as an instrumentation tool for measuring the electric field over the OPV. We confirmed the principle of superposition for the electric field strength from each OPV cell model. These results show that the calibration of each OPV cell voltage can be accomplished by measuring the electric field strength over the OPV cells.

  3. Assessing corrosion problems in photovoltaic cells via electrochemical stress testing

    NASA Technical Reports Server (NTRS)

    Shalaby, H.

    1985-01-01

    A series of accelerated electrochemical experiments to study the degradation properties of polyvinylbutyral-encapsulated silicon solar cells has been carried out. The cells' electrical performance with silk screen-silver and nickel-solder contacts was evaluated. The degradation mechanism was shown to be electrochemical corrosion of the cell contacts; metallization elements migrate into the encapsulating material, which acts as an ionic conducting medium. The corrosion products form a conductive path which results in a gradual loss of the insulation characteristics of the encapsulant. The precipitation of corrosion products in the encapsulant also contributes to its discoloration which in turn leads to a reduction in its transparency and the consequent optical loss. Delamination of the encapsulating layers could be attributed to electrochemical gas evolution reactions. The usefulness of the testing technique in qualitatively establishing a reliability difference between metallizations and antireflection coating types is demonstrated.

  4. New nonimaging static concentrators for bifacial photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Benitez, Pablo; Hernandez, Maikel; Mohedano Arroyo, Ruben; Minano, Juan C.; Munoz, Fernando

    1999-10-01

    Two new static nonimaging designs for bifacial solar cells are presented. These concentrators have been obtained with the Simultaneous Multiple Surface design method of Nonimaging Optics. The main characteristics of these concentrators are: (1) high compactness, (2) linear symmetry (in order to be made by low cost extrusion), (3) performance close to the thermodynamic limit, and (4) a non-shading sizable gap between at least one of the cell edges and the optically active surfaces. This last feature is interesting because this gap can be used to allocate the interconnections between cells, with no additional optical losses. As an example of the results, one design for an acceptable angle of +/- 30 degrees gets a geometrical concentration of 5.5X, with an average thickness to entry aperture width ratio of 0.24. The 3D ray-tracing analysis of the concentrators is also presented.

  5. Space Solar Cell Research and Development Projects at Emcore Photovoltaics

    NASA Technical Reports Server (NTRS)

    Sharps, Paul; Aiken,Dan; Stan, Mark; Cornfeld, Art; Newman, Fred; Endicter, Scott; Girard, Gerald; Doman, John; Turner, Michele; Sandoval, Annette; Fatemi, Navid

    2007-01-01

    The GaInP2/InGaAs/Ge triple junction device lattice matched to germanium has achieved the highest power conversion efficiency and the most commercial success for space applications [1]. What are the practical performance limits of this technology? In this paper we will describe what we consider to be the practical performance limits of the lattice matched GaInP2/InGaAs/Ge triple junction cell. In addition, we discuss the options for next generation space cell performance.

  6. High-efficiency thin and compact concentrator photovoltaics using micro-solar cells with via-holes sandwiched between thin lens-array and circuit board

    NASA Astrophysics Data System (ADS)

    Itou, Akihiro; Asano, Tetsuya; Inoue, Daijiro; Arase, Hidekazu; Matsushita, Akio; Hayashi, Nobuhiko; Futakuchi, Ryutaro; Inoue, Kazuo; Yamamoto, Masaki; Fujii, Eiji; Nakagawa, Tohru; Anda, Yoshiharu; Ishida, Hidetoshi; Ueda, Tetsuzo; Fidaner, Onur; Wiemer, Michael; Ueda, Daisuke

    2014-01-01

    We have developed a compact concentrator photovoltaic (CPV) module that comprises micro-solar cells with an area of ≈0.6 × 0.6 mm2 sandwiched between a 20-mm-thick lens array and a 1-mm-thick circuit board with no air gap. To establish electrical connections between the circuit board and the micro-solar cells, we developed a micro-solar cell with positive and negative electrodes on the lower face of the cell. In this study, we demonstrated the photovoltaic performance of the micro-solar cell closely approaches that of the standard solar cell measuring ≈5 × 5 mm2 commonly used in conventional CPVs under concentrated illumination. Our study showed that the negative effect on PV performance of perimeter carrier recombination in the micro-solar cell was insignificant under concentrated illumination. Finally, we assembled our micro-solar cells into a CPV module and achieved the module energy conversion efficiency of 34.7% under outdoor solar illumination.

  7. Photovoltaic devices using a-Si:H from higher order silanes. Final subcontract report, September 1, 1983-August 31, 1984

    SciTech Connect

    Delahoy, A.E.

    1985-03-01

    This report describes the preparation of hydrogenated amorphous silicon (a-Si:H) films and photovoltaic devices by chemical vapor deposition (CVD) from higher silanes, and the properties of such films and devices. The motivation for this research is the prospect of preparing by a new technique a-Si:H having electronic properties similar (or superior) to material prepared by the well-known glow discharge technique. Possible advantages of thermal CVD are the absence of ion bombardment, high deposition rates, efficient utilization of feedstock gases, lower levels of impurity incorporation, absence of pinholes, and greater material stability. Photochemical vapor deposition of a-Si:H from disilane is also described and has yielded higher efficiency solar cells than thermal CVD.

  8. Photovoltaic properties and morphology of organic solar cells based on liquid-crystal semiconducting polymer with additive

    SciTech Connect

    Suzuki, Atsushi; Zushi, Masahito; Suzuki, Hisato; Ogahara, Shinichi; Akiyama, Tsuyoshi; Oku, Takeo

    2014-02-20

    Bulk heterojunction organic solar cell based on liquid crystal semiconducting polymers of poly[9,9-dioctylfluorene-co-bithiophene] (F8T2) as p-type semiconductors and fullerenes (C{sub 60}) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as electron donor and acceptor has been fabricated and characterized for improving photovoltaic and optical properties. The photovoltaic performance including current voltage curves in the dark and illumination of the F8T2/C{sub 60} conventional and inverted bulk heterojunction solar cells were investigated. Relationship between the photovoltaic properties and morphological behavior was focused on tuning for optimization of photo-voltaic performance under annealing condition near glass transition temperature. Additive-effect of diiodooctane (DIO) and poly(3-hexylthiophene-2,5-diyl) (P3HT) on the photovoltaic performance and optical properties was investigated. Mechanism of the photovoltaic properties of the conventional and inverted solar cells will be discussed by the experimental results.

  9. Study of potential photovoltaic/thermal applications in the commercial sector. Final report

    SciTech Connect

    Parker, C.D.; Whisnant, R.A.; Ferrell, G.C.; Hamlin, R.V.

    1981-07-01

    To identify the most promising applications for photovoltaic-thermal (PV/T) systems, a procedure has been evolved for ranking applications in the service, commercial, and institutional (SCI) sectors by using FEA's Energy Consumption Data Base, which tabulates energy use by sector, region, fuel type, and end use. Ranking takes into account such factors as temperature requirements of end-use, effects of temperature on efficiencies, cost of fuels replaced, and thermal and electrical loads. The electrical load and the temperature requirement of the thermal load determine size of the array, which meets the requirements of the entire electrical load. Hospitals and nursing homes, public office buildings, and schools rank high as potential applications. The rankings also indicate the PV/T arrays are more cost-effective than PV-only arrays for most commercial applications. Heating and cooling load profiles are determined for a hospital, a high school, and a shopping center, each in a different location; absorption cooling can usually be substituted for vapor-compression cooling. The high school load profiles are used as a case study of a PV/T array application in several energy cost scenarios. The analysis shows the PV/T array can be used advantageously in each scenario considered.

  10. The Influence of Substituent Orientation on the Photovoltaic Performance of Phthalocyanine-Sensitized Solar Cells.

    PubMed

    Tejerina, Lara; Martínez-Díaz, M Victoria; Nazeeruddin, Mohammad Khaja; Torres, Tomas

    2016-03-18

    Phthalocyanines (Pcs) are used as sensitizers in dye-sensitized solar cells (DSSCs) because of their stability and intense absorption in the red and near-IR regions. Impressive progress has been made in photovoltaic efficiencies by introduction of bulky peripheral substituents to help suppress macrocycle aggregation. To reach benchmark efficiencies reported for other related dyes, new designs need to be explored. Single carboxy-ZnPc regioisomers substituted at the non-peripheral positions by rigid aryl groups have now been studied, which has shed light on the influence of steric hindrance and/or orientation of the substituent around the anchoring group on the photovoltaic response. The regioisomer bearing the aryl group far away from the anchoring group produces a more effective sensitization of the TiO2 films and higher short-circuit photocurrent density (Jsc). Taking advantage of the good photovoltaic performance in the near-IR region of this ZnPc, it was combined with another appropriate dye for panchromatic sensitization of the mesoporous photoelectrode and an increase of the overall device efficiency. PMID:26777385

  11. Thick-film materials for silicon photovoltaic cell manufacture

    NASA Technical Reports Server (NTRS)

    Field, M. B.

    1977-01-01

    Thick film technology is applicable to three areas of silicon solar cell fabrication; metallization, junction formation, and coating for protection of screened ohmic contacts, particularly wrap around contacts, interconnection and environmental protection. Both material and process parameters were investigated. Printed ohmic contacts on n- and p-type silicon are very sensitive to the processing parameters of firing time, temperature, and atmosphere. Wrap around contacts are easily achieved by first printing and firing a dielectric over the edge and subsequently applying a low firing temperature conductor. Interconnection of cells into arrays can be achieved by printing and cofiring thick film metal pastes, soldering, or with heat curing conductive epoxies on low cost substrates. Printed (thick) film vitreous protection coatings do not yet offer sufficient optical uniformity and transparency for use on silicon. A sprayed, heat curable SiO2 based resin shows promise of providing both optical matching and environmental protection.

  12. Solar energy conversion by dye-sensitized photovoltaic cells.

    PubMed

    Grätzel, Michael

    2005-10-01

    The quality of human life depends to a large degree on the availability of energy. This is threatened unless renewable energy resources can be developed in the near future. Chemistry is expected to make important contributions to identify environmentally friendly solutions of the energy problem. One attractive strategy discussed in this Forum Article is the development of solar cells that are based on the sensitization of mesoscopic oxide films by dyes or quantum dots. These systems have already reached conversion efficiencies exceeding 11%. The underlying fundamental processes of light harvesting by the sensitizer, heterogeneous electron transfer from the electronically excited chromophore into the conduction band of the semiconductor oxide, and percolative migration of the injected electrons through the mesoporous film to the collector electrode will be described below in detail. A number of research topics will also be discussed, and the examples for the first outdoor application of such solar cells will be provided. PMID:16180840

  13. Polymer Photovoltaic Cells with Rhenium Oxide as Anode Interlayer

    PubMed Central

    Wei, Jinyu; Bai, Dongdong; Yang, Liying

    2015-01-01

    The effect of a new transition metal oxide, rhenium oxide (ReO3), on the performance of polymer solar cells based on regioregular poly(3-hexylthiophene) (P3HT) and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend as buffer layer was investigated. The effect of the thickness of ReO3 layer on electrical characteristics of the polymer solar cells was studied. It is found that insertion of ReO3 interfacial layer results in the decreased performance for P3HT: PCBM based solar cells. In order to further explore the mechanism of the decreasing of the open-circuit voltage (Voc), the X-ray photoelectron spectroscopy (XPS) is used to investigate the ReO3 oxidation states. Kelvin Probe method showed that the work function of the ReO3 is estimated to be 5.13eV after thermal evaporation. The results indicated the fact that a portion of ReO3 decomposed during thermal evaporation process, resulting in the formation of a buffer layer with a lower work function. As a consequence, a higher energy barrier was generated between the ITO and the active layer. PMID:26226439

  14. Polymer Photovoltaic Cells with Rhenium Oxide as Anode Interlayer.

    PubMed

    Wei, Jinyu; Bai, Dongdong; Yang, Liying

    2015-01-01

    The effect of a new transition metal oxide, rhenium oxide (ReO3), on the performance of polymer solar cells based on regioregular poly(3-hexylthiophene) (P3HT) and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend as buffer layer was investigated. The effect of the thickness of ReO3 layer on electrical characteristics of the polymer solar cells was studied. It is found that insertion of ReO3 interfacial layer results in the decreased performance for P3HT: PCBM based solar cells. In order to further explore the mechanism of the decreasing of the open-circuit voltage (Voc), the X-ray photoelectron spectroscopy (XPS) is used to investigate the ReO3 oxidation states. Kelvin Probe method showed that the work function of the ReO3 is estimated to be 5.13eV after thermal evaporation. The results indicated the fact that a portion of ReO3 decomposed during thermal evaporation process, resulting in the formation of a buffer layer with a lower work function. As a consequence, a higher energy barrier was generated between the ITO and the active layer. PMID:26226439

  15. Flat plate vs. concentrator solar photovoltaic cells - A manufacturing cost analysis

    NASA Technical Reports Server (NTRS)

    Granon, L. A.; Coleman, M. G.

    1980-01-01

    The choice of which photovoltaic system (flat plate or concentrator) to use for utilizing solar cells to generate electricity depends mainly on the cost. A detailed, comparative manufacturing cost analysis of the two types of systems is presented. Several common assumptions, i.e., cell thickness, interest rate, power rate, factory production life, polysilicon cost, and direct labor rate are utilized in this analysis. Process sequences, cost variables, and sensitivity analyses have been studied, and results of the latter show that the most important parameters which determine manufacturing costs are concentration ratio, manufacturing volume, and cell efficiency. The total cost per watt of the flat plate solar cell is $1.45, and that of the concentrator solar cell is $1.85, the higher cost being due to the increased process complexity and material costs.

  16. The lateral photovoltaic effect in CdS-Cu2S heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Islam, M. N.; Haque, M. A.

    1982-06-01

    The lateral photovoltaic effect has been observed in CdS-Cu2S thin-film solar cells. The effect is more pronounced on the CdS side than on the Cu2S side of the cells. On the CdS side, where the contacts were formed by soldering Cu wire by indium and then applying Ag paint, the photovoltage developed were found to increase as the point of illumination was moved towards the contact. The spectral response of photovoltage for coevaporated cells shows a peak at λ=0.5μm (2.45 eV). But for topotaxial cells two peaks, one at λ=0.5μm and the other at λ=0.65μm (1.89eV) were observed. A band model has been proposed for the heat-treated optimized cells.

  17. The lateral photovoltaic effect in CdS-Cu2S heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Islam, M. N.; Haque, M. A.

    1982-06-01

    The lateral photovoltaic effect has been observed in CdS-Cu2S thin-film solar cells. The effect is more pronounced on the CdS side than on the Cu2S side of the cells. On the CdS side, where the contacts were formed by soldering Cu wire by indium and then applying Ag paint, the photovoltage developed were found to increase as the point of illumination was moved towards the contact. The spectral response of photovoltage for coevaporated cells shows a peak at 0.5 micron (2.45 eV). But for topotaxial cells two peaks, one at 0.5 micron and the other at 0.65 micron (1.89 eV) were observed. A band model has been proposed for the heat-treated optimized cells.

  18. Assessing the Performance of the Photovoltaic Cells on the Effects of Yellow Dust Events and Haze in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Choi, Jiyeon; Kim, Yong Pyo; Wee, DaeHyun

    2016-04-01

    We analyze the potential effects of the Asian yellow dust Events and haze on the performance of Korean photovoltaic systems. Particulate matters from the Asian yellow dust outbreaks in the deserts of Mongolia and northern China are typically transported to Korea. Haze is an atmospheric phenomenon where dust, smoke and other dry particles obscure the clarity of the sky. Hence, we conjecture that the effects of the Asian yellow dust and haze block the incident solar irradiance. The potential reduction of the solar spectral irradiance due to Asian yellow dust events and haze in Korea is investigated using a clear-sky spectral radiation model, and the performance of photovoltaic systems under reduced irradiance is estimated by using a simple analytic model representing typical photovoltaic cells. Comparison of photovoltaic performance under Asian dust events, haze and that under a clear condition is made to evaluate overall influence of the particulate air pollution, respectively.

  19. Metal induced crystallization of amorphous silicon for photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Van Gestel, D.; Gordon, I.; Poortmans, J.

    A silicon thin-film technology could lead to less expensive modules by the use of less silicon material and by the implementation of monolithic module processes. A technology based on polycrystalline-silicon thin-films with a grain size between 1 μm and 1 mm (pc-Si), seems particularly promising since it combines the low-cost potential of a thin-film technology with the high efficiency potential of crystalline silicon. One of the possible approaches to fabricate pc-Si absorber layers is metal induced crystallization (MIC). For solar cell applications mainly aluminium is investigated as metal because 1) it forms a eutectic system with silicon instead of a silicide-metal system like e.g. Ni 2) only shallow level defects are formed in the forbidden bandgap of silicon and 3) a layer exchange process can be obtained in combination with a-Si. Aluminum induced crystallization (AIC) of a-Si on non-silicon substrates can results in grains with a preferential (100) orientation and a maximum grain sizes above 50 micrometer. These layers can act as seed layers for further epitaxial growth. Based on this two-step approach (AIC + epitaxial growth) we made solar cells with an energy conversion efficiency of 8%. Based on TEM, EBIC, SEM, defect etch and EBSD measurements we showed that the efficiency is nowadays mainly limited by the presence of electrical intragrain defects.

  20. Nature of photovoltaic action in dye-sensitized solar cells

    SciTech Connect

    Cahen, D.; Hodes, G.; Graetzel, M.; Guillemoles, J.F.; Riess, I.

    2000-03-09

    The authors explain the cause for the photocurrent and photovoltage in nanocrystalline, mesoporous dye-sensitized solar cells, in terms of the separation, recombination, and transport of electronic charge as well as in terms of electron energetics. On the basis of available experimental data, the basic cause for the photovoltage was confirmed as the change in the electron concentration in the nanocrystalline electron conductor that results from photoinduced charge injection from the dye. The maximum photovoltage is given by the difference in electron energies between the redox level and the bottom of the electron conductor's conduction band, rather than by any difference in electrical potential in the cell, in the dark. Charge separation occurs because of the energetic and entropic driving forces that exist at the dye/electron conductor interface, with charge transport aided by such driving forces at the electron conductor-contact interface. The mesoporosity and nanocrystallinity of the semiconductor are important not only because of the large amount of dye that can be adsorbed on the system's very large surface, but also for two additional reasons: (1) it allows the semiconductor small particles to become almost totally depleted upon immersion in the electrolyte (allowing for large photovoltages), and (2) the proximity of the electrolyte to all particles modes screening of injected electrons, and thus their transport, possible.

  1. Deliberate Design of TiO2 Nanostructures towards Superior Photovoltaic Cells.

    PubMed

    Sun, Ziqi; Liao, Ting; Sheng, Liyuan; Kou, Liangzhi; Kim, Jung Ho; Dou, Shi Xue

    2016-08-01

    TiO2 nanostructures are being sought after as flexibly utilizable building blocks for the fabrication of the mesoporous thin-film photoelectrodes that are the heart of the third-generation photovoltaic devices, such as dye-sensitized solar cells (DSSCs), quantum-dot-sensitized solar cells (QDSSCs), and the recently promoted perovskite-type solar cells. Here, we report deliberate tailoring of TiO2 nanostructures for superior photovoltaic cells. Morphology engineering of TiO2 nanostructures is realized by designing synthetic protocols in which the precursor hydrolysis, crystal growth, and oligomer self-organization are precisely controlled. TiO2 nanostructures in forms varying from isolated nanocubes, nanorods, and cross-linked nanorods to complex hierarchical structures and shape-defined mesoporous micro-/nanostructures were successfully synthesized. The photoanodes made from the shape-defined mesoporous TiO2 microspheres and nanospindles presented superior performances, owing to the well-defined overall shapes and the inner ordered nanochannels, which allow not only a high amount of dye uptake, but also improved visible-light absorption. This study provides a new way to seek an optimal synthetic protocol to meet the required functionality of the nanomaterials. PMID:27381513

  2. Solar-cell interconnect design for terrestrial photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1984-01-01

    Useful solar cell interconnect reliability design and life prediction algorithms are presented, together with experimental data indicating that the classical strain cycle (fatigue) curve for the interconnect material does not account for the statistical scatter that is required in reliability predictions. This shortcoming is presently addressed by fitting a functional form to experimental cumulative interconnect failure rate data, which thereby yields statistical fatigue curves enabling not only the prediction of cumulative interconnect failures during the design life of an array field, but also the quantitative interpretation of data from accelerated thermal cycling tests. Optimal interconnect cost reliability design algorithms are also derived which may allow the minimization of energy cost over the design life of the array field.

  3. Solar-cell interconnect design for terrestrial photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1984-11-01

    Useful solar cell interconnect reliability design and life prediction algorithms are presented, together with experimental data indicating that the classical strain cycle (fatigue) curve for the interconnect material does not account for the statistical scatter that is required in reliability predictions. This shortcoming is presently addressed by fitting a functional form to experimental cumulative interconnect failure rate data, which thereby yields statistical fatigue curves enabling not only the prediction of cumulative interconnect failures during the design life of an array field, but also the quantitative interpretation of data from accelerated thermal cycling tests. Optimal interconnect cost reliability design algorithms are also derived which may allow the minimization of energy cost over the design life of the array field.

  4. Optical Frequency Optimization of a High Intensity Laser Power Beaming System Utilizing VMJ Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Raible, Daniel E.; Dinca, Dragos; Nayfeh, Taysir H.

    2012-01-01

    An effective form of wireless power transmission (WPT) has been developed to enable extended mission durations, increased coverage and added capabilities for both space and terrestrial applications that may benefit from optically delivered electrical energy. The high intensity laser power beaming (HILPB) system enables long range optical 'refueling" of electric platforms such as micro unmanned aerial vehicles (MUAV), airships, robotic exploration missions and spacecraft platforms. To further advance the HILPB technology, the focus of this investigation is to determine the optimal laser wavelength to be used with the HILPB receiver, which utilizes vertical multi-junction (VMJ) photovoltaic cells. Frequency optimization of the laser system is necessary in order to maximize the conversion efficiency at continuous high intensities, and thus increase the delivered power density of the HILPB system. Initial spectral characterizations of the device performed at the NASA Glenn Research Center (GRC) indicate the approximate range of peak optical-to-electrical conversion efficiencies, but these data sets represent transient conditions under lower levels of illumination. Extending these results to high levels of steady state illumination, with attention given to the compatibility of available commercial off-the-shelf semiconductor laser sources and atmospheric transmission constraints is the primary focus of this paper. Experimental hardware results utilizing high power continuous wave (CW) semiconductor lasers at four different operational frequencies near the indicated band gap of the photovoltaic VMJ cells are presented and discussed. In addition, the highest receiver power density achieved to date is demonstrated using a single photovoltaic VMJ cell, which provided an exceptionally high electrical output of 13.6 W/sq cm at an optical-to-electrical conversion efficiency of 24 percent. These results are very promising and scalable, as a potential 1.0 sq m HILPB receiver of

  5. Photovoltaic surfaces enable clonal myoblastic cell release using visible light as external stimulation.

    PubMed

    Bhuyan, Mohammod Kabir; Rodriguez, Jorge; Tseng, Tzu-Liang Bill; Boland, Thomas

    2016-03-01

    Many new biomedical approaches to treating disease require the supply of cells delivered to an injured or diseased organ either individually, collectively as aggregates or sheets, or encapsulated with a scaffold. The collection of cells is accomplished by using enzymatic digestion witch suffer from the need to remove the enzymes after digestion. In addition, enzymatic methods are not applicable for all cells, cell aggregates, cell sheets or 3D structures. The objective of this study was to investigate the release of cultured cells from silicon based Photovoltaic (PV) surfaces using a light source as external stimulation. C2C12 myoblasts were cultured on the negative surface of a PV device and upon confluence they were exposed to light. The amount of released cells was quantified as a function light exposure. It was found that light exposure at 25 000 lux for one hour caused equivalent cell release from the PV surface than trypsination. The released cells are viable and can be re-cultured if needed. This mechanism may offer an alternative method to release excitable cells without using an enzymatic agent. This may be important for cell therapy if larger cell structures such as sheets need to be collected. PMID:26710125

  6. Preliminary Findings of the Photovoltaic Cell Calibration Experiment on Pathfinder Flight 95-3

    NASA Technical Reports Server (NTRS)

    Vargas-Aburto, Carlos

    1997-01-01

    The objective of the photovoltaic (PV) cell calibration experiment for Pathfinder was to develop an experiment compatible with an ultralight UAV to predict the performance of PV cells at AM0, the solar spectrum in space, using the Langley plot technique. The Langley plot is a valuable technique for this purpose and requires accurate measurements of air mass (pressure), cell temperature, solar irradiance, and current-voltage(IV) characteristics with the cells directed normal to the direct ray of the sun. Pathfinder's mission objective (95-3) of 65,000 ft. maximum altitude, is ideal for performing the Langley plot measurements. Miniaturization of electronic data acquisition equipment enabled the design and construction of an accurate and light weight measurement system that meets Pathfinder's low payload weight requirements.

  7. Light trapping for emission from a photovoltaic cell under normally incident monochromatic illumination

    SciTech Connect

    Takeda, Yasuhiko Iizuka, Hideo; Mizuno, Shintaro; Hasegawa, Kazuo; Ichikawa, Tadashi; Ito, Hiroshi; Kajino, Tsutomu; Ichiki, Akihisa; Motohiro, Tomoyoshi

    2014-09-28

    We have theoretically demonstrated a new light-trapping mechanism to reduce emission from a photovoltaic (PV) cell used for a monochromatic light source, which improves limiting conversion efficiency determined by the detailed balance. A multilayered bandpass filter formed on the surface of a PV cell has been found to prevent the light generated inside by radiative recombination from escaping the cell, resulting in a remarkable decrease of the effective solid angle for the emission. We have clarified a guide to design a suitable configuration of the bandpass filter and achieved significant reduction of the emission. The resultant gain in monochromatic conversion efficiency in the radiative limit due to the optimally designed 18-layerd bandpass filters is as high as 6% under normally incident 1064 nm illumination of 10 mW/cm²~ 1 kW/cm², compared with the efficiency for the perfect anti-reflection treatment to the surface of a conventional solar cell.

  8. Radioisotope thermal photovoltaic application of the GaSb solar cell

    NASA Technical Reports Server (NTRS)

    Morgan, M. D.; Horne, W. E.; Day, A. C.

    1991-01-01

    An examination of a RTVP (radioisotopic thermophotovoltaic) conceptual design has shown a high potential for power densities well above those achievable with radioisotopic thermoelectric generator (RTG) systems. An efficiency of 14.4 percent and system specific power of 9.25 watts/kg were predicted for a system with sixteen GPHS (general purpose heat source) sources operating at 1100 C. The models also showed a 500 watt system power by the strontium-90 isotope at 1200 C at an efficiency of 17.0 percent and a system specific power of 11.8 watts/kg. The key to this level of performance is a high-quality photovoltaic cell with narrow bandgap and a reflective rear contact. Recent work at Boeing on GaSb cells and transparent back GaAs cells indicate that such a cell is well within reach.

  9. Photovoltaic Cells involving Nonconjugated Conductive Polymer, Iodine-doped cis-Polyisoprene (Natural Rubber)

    NASA Astrophysics Data System (ADS)

    Jaju, S.; Thakur, M.

    2014-03-01

    Photovoltaic cells have been fabricated using titanium dioxide/doped cis-polyisoprene/carbon on ITO glass-substrates. Photocurrents and photo-voltages for different intensities of light (from a white light bulb, emission at 300-700 nm) have been measured. Use of the iodine-doped nonconjugated conductive polymer film (absorption ~ 250 to 700 nm) has led to significant enhancement of photocurrent compared to previous reports which included undoped polymer in a different cell-structure. A maximum photocurrent of about 0.20 mA was observed for a light intensity of ~ 5 mW/cm2. The maximum photo-voltage as observed was about 0.70 V for the same light intensity. Natural rubber being inexpensive these cells may provide cheaper alternatives to other reported cell structures.

  10. UV photovoltaic cells based on conjugated ZnO quantum dot/multiwalled carbon nanotube heterostructures

    NASA Astrophysics Data System (ADS)

    Li, Fushan; Cho, Sung Hwan; Son, Dong Ick; Kim, Tae Whan; Lee, Sun-Kyun; Cho, Yong-Hoon; Jin, Sungho

    2009-03-01

    In situ growth of ZnO quantum dots (QDs) on the surface of multiwalled carbon nanotubes (MWCNTs) was realized via a mild solution-process method, which resulted in an improvement in photoinduced charge separation and transport of carriers to the collecting electrode. The charge transfer efficiency was significantly increased by more than 90% due to the conjugation of ZnO QDs with MWCNTs, as confirmed by photoluminescence measurements. Ultraviolet photovoltaic cells based on the charge transfer at the ZnO QD-MWCNT heterostructures were fabricated, and their power conversion efficiency was measured to be above 1%.

  11. Nano-porous solid-state photovoltaic cell sensitized with tannin

    NASA Astrophysics Data System (ADS)

    Tennakone, K.; Kumara, G. R. R. A.; Wijayantha, K. G. U.; Kottegoda, I. R. M.; Perera, V. P. S.; Aponsu, G. M. L. P.

    1998-01-01

    Tannin and related polyphenolic substances strongly surface chelate with 0268-1242/13/1/021/img1 sensitizing nano-porous films of 0268-1242/13/1/021/img1 to the visible spectrum. The photovoltaic cell nano-porous n-0268-1242/13/1/021/img3-CuI generates highly stable photovoltages. The result is explained as the effectiveness of the 0268-1242/13/1/021/img4-tannin complex on the surface of 0268-1242/13/1/021/img1 in preventing short-circuiting across the 0268-1242/13/1/021/img1/CuI barrier.

  12. Intermediate-band dynamics of quantum dots solar cell in concentrator photovoltaic modules

    PubMed Central

    Sogabe, Tomah; Shoji, Yasushi; Ohba, Mitsuyoshi; Yoshida, Katsuhisa; Tamaki, Ryo; Hong, Hwen-Fen; Wu, Chih-Hung; Kuo, Cherng-Tsong; Tomić, Stanko; Okada, Yoshitaka

    2014-01-01

    We report for the first time a successful fabrication and operation of an InAs/GaAs quantum dot based intermediate band solar cell concentrator photovoltaic (QD-IBSC-CPV) module to the IEC62108 standard with recorded power conversion efficiency of 15.3%. Combining the measured experimental results at Underwriters Laboratory (UL®) licensed testing laboratory with theoretical simulations, we confirmed that the operational characteristics of the QD-IBSC-CPV module are a consequence of the carrier dynamics via the intermediate-band at room temperature. PMID:24762433

  13. Electrochemical photovoltaic cells based on n-GaAs in propylene carbonate

    NASA Astrophysics Data System (ADS)

    Langmuir, M. E.; Hoenig, P.; Rauh, R. D.

    1981-11-01

    Electrochemical photovoltaic cells (EPC's) have been characterized based on n-GaAs and propylene carbonate electrolytes. Photovoltages are limited to about 0.7V due to electrode corrosion and lack of specific adsorption by the redox systems studied. Polarization of photo and counterelectrodes, resulting from low redox solubilities and electrolyte conductivities, are responsible for lower fill factors and short-circuit photocurrents for nonaqueous, compared to aqueous, EPC's. Potentially, these losses can be offset by higher voltages and long-term stabilities, particularly if specifically adsorbing redox couples can be found.

  14. Advances in thin-film solar cells for lightweight space photovoltaic power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.

    1989-01-01

    The development of photovoltaic arrays beyond the next generation is discussed with attention given to the potentials of thin-film polycrystalline and amorphous cells. Of particular importance is the efficiency (the fraction of incident solar energy converted to electricity) and specific power (power to weight ratio). It is found that the radiation tolerance of thin-film materials is far greater than that of single crystal materials. CuInSe2 shows no degradation when exposed to 1-MeV electrons.

  15. Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays

    NASA Technical Reports Server (NTRS)

    Glaser, P. E.

    1974-01-01

    The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.

  16. Photovoltaic Roofs

    NASA Technical Reports Server (NTRS)

    Drummond, R. W., Jr.; Shepard, N. F., Jr.

    1984-01-01

    Solar cells perform two functions: waterproofing roof and generating electricity. Sections through horizontal and slanting joints show overlapping modules sealed by L-section rubber strips and side-by-side modules sealed by P-section strips. Water seeping through seals of slanting joints drains along channels. Rooftop photovoltaic array used watertight south facing roof, replacing shingles, tar, and gravel. Concept reduces cost of residential solar-cell array.

  17. Analytical study of pulsed laser irradiation on some materials used for photovoltaic cells on satellites

    NASA Astrophysics Data System (ADS)

    Abd El-Hameed, Afaf M.

    2015-12-01

    The present research concerns on the study of laser-powered solar panels used for space applications. A mathematical model representing the laser effects on semiconductors has been developed. The temperature behavior and heat flow on the surface and through a slab has been studied after exposed to nano-second pulsed laser. The model is applied on two different types of common active semiconductor materials that used for photovoltaic cells fabrication as silicon (Si), and gallium arsenide (GaAs). These materials are used for receivers' manufacture for laser beamed power in space. Various values of time are estimated to clarify the heat flow through the material sample and generated under the effects of pulsed laser irradiation. These effects are theoretically studied in order to determine the performance limits of the solar cells when they are powered by laser radiation during the satellite eclipse. Moreover, the obtained results are carried out to optimize conversion efficiency of photovoltaic cells and may be helpful to give more explanation for layout of the light-electricity space systems.

  18. A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells

    PubMed Central

    Guo, Fei; Li, Ning; Fecher, Frank W.; Gasparini, Nicola; Quiroz, Cesar Omar Ramirez; Bronnbauer, Carina; Hou, Yi; Radmilović, Vuk V.; Radmilović, Velimir R.; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J.

    2015-01-01

    The multi-junction concept is the most relevant approach to overcome the Shockley–Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series- and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies. PMID:26177808

  19. A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells.

    PubMed

    Guo, Fei; Li, Ning; Fecher, Frank W; Gasparini, Nicola; Ramirez Quiroz, Cesar Omar; Bronnbauer, Carina; Hou, Yi; Radmilović, Vuk V; Radmilović, Velimir R; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J

    2015-01-01

    The multi-junction concept is the most relevant approach to overcome the Shockley-Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series- and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies. PMID:26177808

  20. Control of toxic gas release during the production of copper-indium-diselenide photovoltaic cells

    SciTech Connect

    Fowler, P.K.; Dobryn, D.G.; Lee, C.M.

    1986-03-01

    Toxic gas control systems will be needed to treat both routine and accidental H/sub 2/Se and H/sub 2/S emissions from manufacturing facilities producing CuInSe/sub 2/ photovoltaic cells. In this study, routine and accidental environmental control options were evaluated for a manufacturing plant with an annual production of cells capable of generating 10 MWp. A routine emissions treatment facility was designed which uses a venture scrubber, a packed-bed scrubber, and a carbon adsorption bed to reduce emissions to allowable limits. This facility incrementally increases the cost of manufacturing CuInSe/sub 2/ photovoltaic cells by 0.60 cents/Wp. Two alternative systems were designed to handle an accidental release: a packed-bed scrubber/carbon adsorption bed, and a containment scheme followed by carbon adsorption. The incremental costs of manufacturing for these release systems are 0.91 cents/Wp and 1.25 cents/Wp, respectively.

  1. A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Guo, Fei; Li, Ning; Fecher, Frank W.; Gasparini, Nicola; Quiroz, Cesar Omar Ramirez; Bronnbauer, Carina; Hou, Yi; Radmilović, Vuk V.; Radmilović, Velimir R.; Spiecker, Erdmann; Forberich, Karen; Brabec, Christoph J.

    2015-07-01

    The multi-junction concept is the most relevant approach to overcome the Shockley-Queisser limit for single-junction photovoltaic cells. The record efficiencies of several types of solar technologies are held by series-connected tandem configurations. However, the stringent current-matching criterion presents primarily a material challenge and permanently requires developing and processing novel semiconductors with desired bandgaps and thicknesses. Here we report a generic concept to alleviate this limitation. By integrating series- and parallel-interconnections into a triple-junction configuration, we find significantly relaxed material selection and current-matching constraints. To illustrate the versatile applicability of the proposed triple-junction concept, organic and organic-inorganic hybrid triple-junction solar cells are constructed by printing methods. High fill factors up to 68% without resistive losses are achieved for both organic and hybrid triple-junction devices. Series/parallel triple-junction cells with organic, as well as perovskite-based subcells may become a key technology to further advance the efficiency roadmap of the existing photovoltaic technologies.

  2. p/n-Polarity of thiophene oligomers in photovoltaic cells: role of molecular vs. supramolecular properties.

    PubMed

    Ghosh, Tanwistha; Gopal, Anesh; Saeki, Akinori; Seki, Shu; Nair, Vijayakumar C

    2015-04-28

    Molecular and supramolecular properties play key roles in the optoelectronic properties and photovoltaic performances of organic materials. In the present work, we show how small changes in the molecular structure affect such properties, which in turn control the intrinsic and fundamental properties such as the p/n-polarity of organic semiconductors in bulk-heterojunction solar cells. Herein, we designed and synthesized two acceptor-donor-acceptor type semiconducting thiophene oligomers end-functionalized with oxazolone/isoxazolone derivatives (OT1 and OT2 respectively). The HOMO-LUMO energy levels of both derivatives were found to be positioned in such a way that they can act as electron acceptors to P3HT and electron donors to PCBM. However, OT1 functions as a donor (with PCBM) and OT2 as an acceptor (with P3HT) in BHJ photovoltaic cells, and their reverse roles results in either no or poor performance of the cells. Detailed studies using UV-vis absorption and fluorescence spectroscopy, time-correlated single photon counting, UV-photoelectron spectroscopy, density functional theory calculations, X-ray diffraction, and thermal gravimetric analysis proved that both molecular and supramolecular properties contributed equally but in a contrasting manner to the abovementioned observation. The obtained results were further validated by flash-photolysis time-resolved microwave conductivity studies which showed an excellent correlation between the structure, property, and device performances of the materials. PMID:25805168

  3. External quantum efficiency and photovoltaic performance of silicon cells deposited with aluminum, indium, and silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Ho, Wen-Jeng; Hu, Chia-Hua; Yeh, Chien-Wu; Lee, Yi-Yu

    2016-08-01

    In this study, the plasmonic light scattering of aluminum (Al), indium (In), and sliver (Ag) nanoparticles (NPs) deposited on silicon solar cells was demonstrated. For comparison, the dimensions of all NPs were maintained at 17–25 nm with a coverage of approximately 30–40% through the control of film deposition and thermal annealing conditions. Absorbance and surface plasmon Raman scattering were used to examine the different localized surface plasmon resonances (LSPRs) of the proposed NPs. Optical reflectance, external quantum efficiency (EQE) response, and photovoltaic current density–voltage characteristics under AM 1.5G illumination were used to confirm the contribution of the plasmonic light scattering of the NPs. The conversion efficiencies of the solar cells with Al, In, and Ag NPs increased 1.21-, 1.23-, and 1.17-fold, respectively, compared with that of the reference bare Si solar cell. The EQE response and photovoltaic performance revealed that Al and In NPs produced broadband plasmonic light scattering and increased efficiency, far exceeding the results obtained using Ag NPs.

  4. Effect of annealing on photovoltaic performance of fabricated planar organic-inorganic perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Baltakesmez, Ali; Biber, Mehmet; Tüzemen, Sebahattin

    2016-04-01

    We fabricated planar perovskite solar cells used CH3NH3PbI3-xClx for light harvesting to investigate effect of annealing on photovoltaic performance of fabricated device. The devices have an architecture of Glass/ITO/Pedot:PSS/Perovskite/PC61BM/Al. Layers of hole transport (Pedot:PSS), active and electron transport (PC61BM) were prepared from solution based one step deposition method by a spin coater and standard annealing procedure. The current‑voltage curves of devices were measured inside the glovebox using a Keithley 2400 sourcemeter. The cells were illuminated by a solar simulator have optical intensity value of 300 mW/cm2. For the best cells, while PCE value of 5.78% before the annealing, photovoltaic efficiency was improved average 13% delivered a short-circuit current density of 3.20 mA/cm2, open-circuit voltage of 0.82 V and fill factor of 0.74, leading to an efficiency of 6.54% with respect to prior to annealing.

  5. Fullerene C{sub 70} as a p-type donor in organic photovoltaic cells

    SciTech Connect

    Zhuang, Taojun; Wang, Xiao-Feng E-mail: zrhong@ucla.edu Sano, Takeshi; Kido, Junji E-mail: zrhong@ucla.edu; Hong, Ziruo E-mail: zrhong@ucla.edu; Li, Gang; Yang, Yang

    2014-09-01

    Fullerenes and their derivatives have been widely used as n-type materials in organic transistor and photovoltaic devices. Though it is believed that they shall be ambipolar in nature, there have been few direct experimental proofs for that. In this work, fullerene C{sub 70}, known as an efficient acceptor, has been employed as a p-type electron donor in conjunction with 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile as an electron acceptor in planar-heterojunction (PHJ) organic photovoltaic (OPV) cells. High fill factors (FFs) of more than 0.70 were reliably achieved with the C{sub 70} layer even up to 100 nm thick in PHJ cells, suggesting the superior potential of fullerene C{sub 70} as the p-type donor in comparison to other conventional donor materials. The optimal efficiency of these unconventional PHJ cells was 2.83% with a short-circuit current of 5.33 mA/cm{sup 2}, an open circuit voltage of 0.72 V, and a FF of 0.74. The results in this work unveil the potential of fullerene materials as donors in OPV devices, and provide alternative approaches towards future OPV applications.

  6. Photovoltaics - The endless spring

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr.

    1984-01-01

    An overview of the developments in the photovoltaic field over the past decade or two is presened. Accomplishments in the terrestrial field are reviewed along with projections and challenges toward meeting cost goals. The contrasts and commonality of space and terrestrial photovoltaics are presented. Finally, a strategic philosophy of photovoltaics research highlighting critical factors, appropriate directions, emerging opportunities, and challenges of the future is given.

  7. Photovoltaics: The endless spring

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr.

    1984-01-01

    An overview of the developments in the photovoltaic field over the past decade or two is presented. Accomplishments in the terrestrial field are reviewed along with projections and challenges toward meeting cost goals. The contrasts and commonality of space and terrestrial photovoltaics are presented. Finally, a strategic philosophy of photovoltaics research highlighting critical factors, appropriate directions, emerging opportunities, and challenges of the future is given.

  8. Atom-probe tomographic study of interfaces of Cu{sub 2}ZnSnS{sub 4} photovoltaic cells

    SciTech Connect

    Tajima, S. Asahi, R.; Itoh, T.; Hasegawa, M.; Ohishi, K.; Isheim, D.; Seidman, D. N.

    2014-09-01

    The heterophase interfaces between the CdS buffer layer and the Cu{sub 2}ZnSnS{sub 4} (CZTS) absorption layers are one of the main factors affecting photovoltaic performance of CZTS cells. We have studied the compositional distributions at heterophase interfaces in CZTS cells using three-dimensional atom-probe tomography. The results demonstrate: (a) diffusion of Cd into the CZTS layer; (b) segregation of Zn at the CdS/CZTS interface; and (c) a change of oxygen and hydrogen concentrations in the CdS layer depending on the heat treatment. Annealing at 573 K after deposition of CdS improves the photovoltaic properties of CZTS cells probably because of the formation of a heterophase epitaxial junction at the CdS/CZTS interface. Conversely, segregation of Zn at the CdS/CZTS interface after annealing at a higher temperature deteriorates the photovoltaic properties.

  9. Enhancing photovoltaic efficiency through radiative cooling of solar cells below ambient temperature

    NASA Astrophysics Data System (ADS)

    Safi, Taqiyyah; Munday, Jeremy

    Sunlight heats up solar cells and the resulting elevated solar cell temperature adversely effects the photovoltaic efficiency and the reliability of the cell. Currently, a variety of active and passive cooling strategies are used to lower the operating temperature of the solar cell. Passive radiative cooling requires no energy input, and is ideal for solar cells; however, previously demonstrated devices still operate above the ambient, leading to a lower efficiency as compared to the ideal Shockley-Queisser limit, which is defined for a cell in contact with an ideal heat sink at ambient temperature (300 K). In this talk, we will describe the use of radiative cooling techniques to lower the cell temperature below the ambient temperature. We show that by combining specifically designed radiative cooling structures with solar cells, efficiencies higher than the limiting efficiency achievable at 300 K can be obtained for solar cells in both terrestrial and extraterrestrial environments. We show that these structures yield an efficiency 0.87% higher than a typical PV module at operating temperatures in a terrestrial application. We also demonstrate an efficiency advantage of 0.4-2.6% for cells in an extraterrestrial environment in near-earth orbit.

  10. System design of a photovoltaic flat-panel applications experiment at Busch Gardens, Tampa, Florida. Final report

    SciTech Connect

    Not Available

    1980-03-01

    The detailed system design for a photovoltaic roof shingle module installation at Busch Gardens, Tampa, FL, (also known as the Dark Continent) is discussed. This installation of 4312 shingle solar cell modules of a second-generation design, which was developed under this contract, produces 29.5 kW of peak output at 237 Vdc under Standard Operating Conditions (SOC) with an NOCT at 61/sup 0/C. With a total gross roof area of 330.7 m/sup 2/, this installation yields an areal specific power output of 89.2 watt/m/sup 2/ at SOC. The system which uses an improved, low loss direct-coupled, line-commutated inverter controlled to operate the solar array maximum power operating point, delivers 208Y/120 volt, 3 phase ac in parallel with the Busch Gardens distribution network. The calculated annual ac energy m/sup 2/. The resulting overall system conversion efficiency of 9.2% is considered high for a system using large area circular solar cells.

  11. Photovoltaic characteristics of n(+)pp(+) InP solar cells grown by OMVPE

    NASA Technical Reports Server (NTRS)

    Tyagi, S.; Singh, K.; Bhimnathwala, H.; Ghandhi, S. K.; Borrego, J. M.

    1990-01-01

    The photovoltaic characteristics of n(+)/p/p(+) homojunction InP solar cells fabricated by organometallic vapor-phase epitaxy (OMVPE) are described. The cells are characterized by I-V, C-V and quantum efficiency measurements, and simulations are used to obtain various device and material parameters. The I-V characteristics show a high recombination rate in the depletion region; this is shown to be independent of the impurity used. It is shown that cadmium is easier to use as an acceptor for the p base and p(+) buffer and is therefore beneficial. The high quantum efficiency of 98 percent at long wavelengths measured in these cells indicates a very good collection efficiency in the base. The short-wavelength quantum efficiency is poor, indicating a high surface recombination.

  12. Graphene-based photovoltaic cells for near-field thermal energy conversion.

    PubMed

    Messina, Riccardo; Ben-Abdallah, Philippe

    2013-01-01

    Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. While their efficiency is limited in far field by the Schockley-Queisser limit, in near field the heat flux transferred to a photovoltaic cell can be largely enhanced because of the contribution of evanescent photons, in particular for a source supporting a surface mode. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. In this paper we propose a modified thermophotovoltaic device in which the cell is covered by a graphene sheet. By discussing the transmission coefficient and the spectral properties of the flux, we show that both the cell efficiency and the produced current can be enhanced, paving the way to promising developments for the production of electricity from waste heat. PMID:23474891

  13. Fabrication of Monolithic Integrated Series-Connected GaAs Photovoltaic Cells for Concentrator Applications

    NASA Astrophysics Data System (ADS)

    Watanabe, Kentaroh; Yamada, Yugo; Senou, Minato; Sugiyama, Masakazu; Nakano, Yoshiaki

    2012-10-01

    Aiming at reducting in Joule energy loss of a photovoltaic cell under sunlight concentration, monolithic integration of GaAs cells has been realized, in which five subcells were connected in series and the total surface area of the cells occupied over 80% of the whole chip area. Using plasma etching with Cl2, a sufficiently sharp mesa for device isolation was obtained. Insulation between etched mesa sidewalls and interconnect electrodes proved to be the most significant issues for the purpose of eliminating shunt resistance and securing a reasonable fill factor; the SiO2 layer deposited by sputtering was much superior to polyimide as an insulator. The fabricated test device showed a short circuit current density of 20.7 mA/cm2 and an open circuit voltage of 4.79 V, which were consistent with the values for a single subcell.

  14. Titanium-containing zeolites and microporous molecular sieves as photovoltaic solar cells.

    PubMed

    Atienzar, Pedro; Valencia, Susana; Corma, Avelino; García, Hermenegildo

    2007-05-14

    Four titanium-containing zeolites and microporous molecular sieves differing on the crystal structure and particle size (Ti/Beta, Ti/Beta-60, TS-1 and ETS-10) are prepared, and their activity for solar cells after incorporating N3 (a commercially available ruthenium polypyridyl dye) is tested. All the zeolites exhibit photovoltaic activity, and the photoresponse is quite independent of the zeolite pore dimensions or particle size. The photoresponse increases with titanium content in the range 1-7% wt. In this way, cells are obtained that have open-circuit voltage Voc=560 mV and maximum short-circuit photocurrent density Isc=100 microA, measured for 1x1 cm2 surfaces with a solar simulator at 1000 W through and AM 1.5 filter. These values are promising and comparable to those obtained for current dye-sensitized titania solar cells. PMID:17410619

  15. Copper thiocyanate: An attractive hole transport/extraction layer for use in organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Treat, Neil D.; Yaacobi-Gross, Nir; Faber, Hendrik; Perumal, Ajay K.; Bradley, Donal D. C.; Stingelin, Natalie; Anthopoulos, Thomas D.

    2015-07-01

    We report the advantageous properties of the inorganic molecular semiconductor copper(I) thiocyanate (CuSCN) for use as a hole collection/transport layer (HTL) in organic photovoltaic (OPV) cells. CuSCN possesses desirable HTL energy levels [i.e., valence band at -5.35 eV, 0.35 eV deeper than poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS)], which produces a 17% increase in power conversion efficiency (PCE) relative to PEDOT:PSS-based devices. In addition, a two-fold increase in shunt resistance for the solar cells measured in dark conditions is achieved. Ultimately, CuSCN enables polymer:fullerene based OPV cells to achieve PCE > 8%. CuSCN continues to offer promise as a chemically stable and straightforward replacement for the commonly used PEDOT:PSS.

  16. Polymer photovoltaic cell embedded with p-type single walled carbon nanotubes fabricated by spray process

    NASA Astrophysics Data System (ADS)

    Kim, Dal-Ho; Park, Jea-Gun

    2012-08-01

    In the current study, we fabricated polymer (poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61 butyric-acid methyl-ester (PCBM) blend) photovoltaic (PV) cells embedded with p-type single walled carbon nanotubes (SWCNTs) with tangled hair morphology. The power conversion efficiency (PCE) rapidly increased with SWCNT concentration of up to 6.83% coverage, and then decreased and saturated with increasing SWCNT concentration; i.e., the PCE peaks at 5.379%. This tendency is mainly associated with hole transport efficiency toward the transparent electrode (indium-tin-oxide (ITO)) via SWCNTs, directly determining the series resistance and shunt resistance of the polymer PV cells embedded with SWCNTs: the PV cell is increasing shunt resistance and decreasing series resistance.

  17. Copper thiocyanate: An attractive hole transport/extraction layer for use in organic photovoltaic cells

    SciTech Connect

    Treat, Neil D. E-mail: t.anthopoulos@imperial.ac.uk; Stingelin, Natalie; Yaacobi-Gross, Nir; Faber, Hendrik; Perumal, Ajay K.; Bradley, Donal D. C.; Anthopoulos, Thomas D. E-mail: t.anthopoulos@imperial.ac.uk

    2015-07-06

    We report the advantageous properties of the inorganic molecular semiconductor copper(I) thiocyanate (CuSCN) for use as a hole collection/transport layer (HTL) in organic photovoltaic (OPV) cells. CuSCN possesses desirable HTL energy levels [i.e., valence band at −5.35 eV, 0.35 eV deeper than poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS)], which produces a 17% increase in power conversion efficiency (PCE) relative to PEDOT:PSS-based devices. In addition, a two-fold increase in shunt resistance for the solar cells measured in dark conditions is achieved. Ultimately, CuSCN enables polymer:fullerene based OPV cells to achieve PCE > 8%. CuSCN continues to offer promise as a chemically stable and straightforward replacement for the commonly used PEDOT:PSS.

  18. High efficiency, broadband solar cell architectures based on arrays of volumetrically distributed narrowband photovoltaic fibers.

    PubMed

    O'Connor, Brendan; Nothern, Denis; Pipe, Kevin P; Shtein, Max

    2010-09-13

    We propose a novel solar cell architecture consisting of multiple fiber-based photovoltaic (PV) cells. Each PV fiber element is designed to maximize the power conversion efficiency within a narrow band of the incident solar spectrum, while reflecting other spectral components through the use of optical microcavity effects and distributed Bragg reflector (DBR) coatings. Combining PV fibers with complementary absorption and reflection characteristics into volume-filling arrays enables spectrally tuned modules having an effective dispersion element intrinsic to the architecture, resulting in high external quantum efficiency over the incident spectrum. While this new reflective tandem architecture is not limited to one particular material system, here we apply the concept to organic PV (OPV) cells that use a metal-organic-metal-dielectric layer structure, and calculate the expected performance of such arrays. Using realistic material properties for organic absorbers, transport layers, metallic electrodes, and DBR coatings, 17% power conversion efficiency can be reached. PMID:21165073

  19. Optimization of material/device parameters of CdTe photovoltaic for solar cells applications

    NASA Astrophysics Data System (ADS)

    Wijewarnasuriya, Priyalal S.

    2016-05-01

    Cadmium telluride (CdTe) has been recognized as a promising photovoltaic material for thin-film solar cell applications due to its near optimum bandgap of ~1.5 eV and high absorption coefficient. The energy gap is near optimum for a single-junction solar cell. The high absorption coefficient allows films as thin as 2.5 μm to absorb more than 98% of the above-bandgap radiation. Cells with efficiencies near 20% have been produced with poly-CdTe materials. This paper examines n/p heterostructure device architecture. The performance limitations related to doping concentrations, minority carrier lifetimes, absorber layer thickness, and surface recombination velocities at the back and front interfaces is assessed. Ultimately, the paper explores device architectures of poly- CdTe and crystalline CdTe to achieve performance comparable to gallium arsenide (GaAs).

  20. Cast Polycrystalline Photovoltaic Module Manufacturing Technology Improvements; Final Subcontract Report, 8 December 199330 April 1998

    SciTech Connect

    J. Wohlgemuth.

    1999-06-16

    This report summarizes work performed by Solarex, A Business Unit of Amoco/Enron Solar, under this subcontract. Among the accomplishments during the program are the following: Converting all of the production casting stations to increase ingot size, operating them at equivalent yields and cell efficiencies, and thus doubling the casting capacity at a 20% lower cost than the cost of new equipment. Developing a wire-saw process and transferring the process to production; as a result, more than 80% of wafering is now done using wire saws, at higher yields and lower costs than achieved on the internal diameter saws. Developing an aluminum paste back-surface field (BSF) process to increase cell efficiency by 5%; researchers also designed, procured, and transferred to manufacturing a fully automated printing system to produce the BSF cells. Fabricating 15.2-cm by 15.2-cm polycrystalline silicon solar cells and building modules using these cells. Modifying the module assembly area to increase capacity by a factor of three. Implementing a single-layer Tedlar backsheet that reduced backsheet cost by $0.50/ft2. Selecting, testing, and qualifying a low-cost (< $1.00 per module) electrical termination system. Qualifying the structure and adhesive system for mounting frameless modules and using the system to build several large arrays.

  1. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    SciTech Connect

    Sang, Liwen; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo

    2015-03-14

    In{sub x}Ga{sub 1−x}N, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In{sub 0.08}Ga{sub 0.92}N is achieved with a high hole concentration of more than 10{sup 18 }cm{sup −3}. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.

  2. Production of thin-film photovoltaic cells: health and environmental effects

    SciTech Connect

    Fthenakis, V.M.; Moskowitz, P.D.

    1985-10-01

    Health and safety hazards in production of major thin-film photovoltaic cells are identified and characterized for their potential to cause health effects. These hazards are identified by examining process data, control technology availability, biomedical effects, and environmental standards. Quantitative estimates of material inputs and outputs and control costs were made on the basis of preliminary engineering designs of hypothetical facilities capable of manufacturing 10 MWp photovoltaic cells a year. The most significant potential hazards are associated with toxic and explosive gases. Emissions of toxic gases during normal operation can be controlled using available control technology. Accidental release of stored gases, however, will pose significant risks to both workers and the public, as atmospheric dispersion computer studies indicate. Possible release preventing options and release control options are examined. Explosive and flammable gases may present significant occupational safety hazards; gas handling systems will need to be carefully designed. High voltages and radio frequency equipment also require close attention for their potential to present occupational hazards. 10 refs., 2 figs., 5 tabs.

  3. Costs of controlling emissions from the manufacture of silicon photovoltaic cells using dendritic web technology

    SciTech Connect

    Wilenitz, I.

    1983-11-01

    Detailed analyses were conducted to determine environmental control costs associated with the production of silicon dendritic web photovoltaic (PV) cells. In these analyses (i) likely manufacturing processing steps were identified, (ii) material inputs and uncontrolled material outputs were estimated, (iii) need for and capability of environmental control equipment were examined, and (iv) capital and operation and maintenance costs for environmental controls for integrated and disaggregated plant designs were estimated. These estimates were developed for a hypothetical facility with a yearly output of PV cells capable of producing 10 MWp. Analysis suggested that the annualized incremental environmental control costs, based on capital recovery over a 10 year plant life, would be 1.4 cents and 2.8 cents per watt for integrated and disaggregated plant designs, respectively. Capital costs ranged from 50% to 55% (integrated) and 36% to 40% (disaggregated) of the estimated costs; the ranges reflected differences in assumed real discount rates. Because of the small emission flows projected, treatment equipment to be used, for the most part, represents the smallest size readily available from equipment manufacturers. Consequently, larger emission flows could be accommodated without additional capital costs. Total control costs are small in comparison with current production costs for silicon photovoltaic devices ($5/watt), but may be of greater importance at projected production cost of $0.5 to 1.0/watt. These conclusions may not apply to other material or process options.

  4. Tilted bulk heterojunction organic photovoltaic cells grown by oblique angle deposition

    NASA Astrophysics Data System (ADS)

    Li, Ning; Forrest, Stephen R.

    2009-09-01

    We demonstrate small molecule bulk heterojunction organic photovoltaic cells using oblique angle vacuum deposition. Obliquely deposited donor chloroaluminum phthalocyanine (ClAlPc) films on indium tin oxide have surface feature sizes of ˜30 nm, resulting in ClAlPc/C60 donor-acceptor heterojunctions (HJs) with approximately twice the interface area of HJs grown at normal incidence. This results in nearly twice the external quantum efficiency in the ClAlPc absorption band compared with analogous, planar HJs. The efficiency increase is attributed to the increased surface area presented by the donor-acceptor junction to the incident illumination by ClAlPc protrusions lying obliquely to the substrate plane formed during deposition. The power conversion efficiency improves from (2.0±0.1)% to (2.8±0.1)% under 1 sun, AM 1.5G simulated solar illumination. Similarly, the power efficiency of copper phthalocyanine/C60 organic photovoltaic cells is increased from (1.3±0.1)% to (1.7±0.1)%.

  5. Dependence of photocurrent generation on the crystalline phase of titanyl phthalocyanine film in heterojunction photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Jeon, Hyeon-Gu; Ito, Yosuke; Sunohara, Yoshimi; Ichikawa, Musubu

    2015-09-01

    We report that the photocurrent generation of a titanyl phthalocyanine (TiOPc) layer in heterojunction photovoltaic cells is strongly dependent on the crystalline phase of the TiOPc layer. Vacuum-deposited TiOPc films with an amorphous phase were changed into mixed crystalline films with two or three crystalline phases, Phase I and Phase II or Phase Y, by solvent vapor treatment with various solvents, which is confirmed from the ultraviolet-visible absorption spectra and X-ray diffraction patterns of solvent-vapor-treated TiOPc films. From the incident photon to current conversion efficiency (IPCE) measurement, it is clearly demonstrated that only the amorphous phase and Phase II but not Phase I nor Phase Y of TiOPc can contribute to photoelectric conversion in heterojunction photovoltaic cells. This result may come from the low charge generation (exciton dissociation) efficiency of Phase I and Phase Y crystalline structures, which was supported by the change in IPCE curves under inverse bias application.

  6. Inkjet Printed Metallizations for Cu(In1-xGax)Se2 Photovoltaic Cells

    SciTech Connect

    Hersh, P. A.; Curtis, C. J.; van Hest, M. F. A. M.; Kreuder, J. J.; Pasquarelli, R.; Miednaer, A.; Ginley, D. S.

    2011-12-01

    This study reports the inkjet printing of Ag front contacts on Aluminum doped Zinc Oxide (AZO)/intrinsic Zinc Oxide (i-ZnO)/CdS/Cu(In{sub 1-x}Ga{sub x})Se{sub 2} (CIGS)/Mo thin film photovoltaic cells. The printed Ag contacts are being developed to replace the currently employed evaporated Ni/Al bi-layer contacts. Inkjet deposition conditions were optimized to reduce line resistivity and reduce contact resistance to the Al:ZnO layer. Ag lines printed at a substrate temperature of 200 C showed a line resistivity of 2.06 {mu}{Omega} {center_dot} cm and a contact resistance to Al:ZnO of 8.2 {+-} 0.2 m{Omega} {center_dot} cm{sup 2} compared to 6.93 {+-} 0.3 m{Omega} {center_dot} cm{sup 2} for thermally evaporated contacts. These deposition conditions were used to deposit front contacts onto high quality CIGS thin film photovoltaic cells. The heating required to print the Ag contacts caused the performance to degrade compared to similar devices with evaporated Ni/Al contacts that were not heated. Devices with inkjet printed contacts showed 11.4% conversion efficiency compared to 14.8% with evaporated contacts. Strategies to minimize heating, which is detrimental for efficiency, during inkjet printing are proposed.

  7. Electricity from photovoltaic solar cells. Flat-Plate Solar Array Project of the US Department of Energy's National Photovoltaics Program: 10 years of progress

    NASA Technical Reports Server (NTRS)

    Christensen, Elmer

    1985-01-01

    The objectives were to develop the flat-plate photovoltaic (PV) array technologies required for large-scale terrestrial use late in the 1980s and in the 1990s; advance crystalline silicon PV technologies; develop the technologies required to convert thin-film PV research results into viable module and array technology; and to stimulate transfer of knowledge of advanced PV materials, solar cells, modules, and arrays to the PV community. Progress reached on attaining these goals, along with future recommendations are discussed.

  8. Analyzing luminescent solar concentrators with front-facing photovoltaic cells using weighted Monte Carlo ray tracing

    NASA Astrophysics Data System (ADS)

    Woei Leow, Shin; Corrado, Carley; Osborn, Melissa; Isaacson, Michael; Alers, Glenn; Carter, Sue A.

    2013-06-01

    Luminescent solar concentrators (LSC) collect ambient light from a broad range of angles and concentrate the captured light onto photovoltaic (PV) cells. LSCs with front-facing cells collect direct and indirect sunlight ensuring a gain factor greater than one. The flexible placement and percentage coverage of PV cells on the LSC panel allow for layout adjustments to be made in order to balance re-absorption losses and the level of light concentration desired. A weighted Monte Carlo ray tracing program was developed to study the transport of photons and loss mechanisms in the LSC to aid in design optimization. The program imports measured absorption/emission spectra of an organic luminescent dye (LR305), the transmission coefficient, and refractive index of acrylic as parameters that describe the system. Simulations suggest that for LR305, 8-10 cm of luminescent material surrounding the PV cell yields the highest increase in power gain per unit area of LSC added, thereby determining the ideal spacing between PV cells in the panel. For rectangular PV cells, results indicate that for each centimeter of PV cell width, an additional increase of 0.15 mm to the waveguide thickness is required to efficiently transport photon collected by the LSC to the PV cell with minimal loss.

  9. Large area low cost processing for CIS photovoltaics. Final technical report

    SciTech Connect

    B. Basol; G. Norsworthy; C. Leidholm; A. Halani; R. Roe; V. Kapur

    1999-07-22

    An ink coating method was developed for CIS absorber deposition. The technique involves four processing steps: (1) preparation of a Cu-In alloy powder, (2) preparation of an ink using this powder, (3) deposition of the ink on a substrate in the form of a precursor layer, and (4) selenization to convert the Cu-In precursor into a fused CIS film. Absorbers grown by this low-cost, large-area method were used in the fabrication of 10.5% efficient solar cells.

  10. Thermophotovoltaic energy converters based on thin film selective emitters and InGaAs photovoltaic cells

    SciTech Connect

    Fatemi, N.S.; Hoffman, R.H.; Wilt, D.M.; Lowe, R.A.; Garverick, L.M.; Scheiman, D.

    1996-02-01

    This paper presents the results of an investigation to demonstrate thermophotovoltaic energy conversion using InGaAs photovoltaic cells, yttrium-aluminum-garnet- (YAG-) based selective emitters, and bandpass/reflector filters, with the heat source operating at 1100{degree}C. InGaAs cells were grown on InP by organometallic vapor phase epitaxy with bandgaps of 0.60 and 0.75 eV and coupled to Ho-, Er-, and Er-Tm-doped YAG selective emitters. Infrared reflector and/or shortpass filters were also used to increase the ratio of in-band to out-of-band radiation from the selective emitters. Efficiencies as high as 13.2{percent} were recorded for filtered converters. {copyright} {ital 1996 American Institute of Physics.}

  11. Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers

    NASA Astrophysics Data System (ADS)

    Ma, Shengbo; Ting, Hungkit; Ma, Yingzhuang; Zheng, Lingling; Zhang, Miwei; Xiao, Lixin; Chen, Zhijian

    2015-05-01

    In this paper, smart photovoltaic (SPV) devices, integrating both functions of solar cells and smart windows, was fabricated based on dye-sensitized solar cells using photochromic spiropyran derivatives SIBT as photosensitizers. SPV devices have self-regulated power conversion efficiency (PCE) and light transmission responding to the incident spectra due to the photoisomerization of SIBT. SIBT isomerize from closed-ring form to open-ring form under UV illumination, accompanied with enhanced visible light absorption and electron delocalization. Therefore, increased PCE and absorption in SPV devices were observed under UV treatment and the devices can be restored gradually to the initial status when kept in dark. The SPV devices have self-regulation of PCE and sunlight transmission responding to the changing sun spectra in different times of a day, providing a proper energy usage and a better sun-shading.

  12. Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers

    SciTech Connect

    Ma, Shengbo; Ting, Hungkit; Ma, Yingzhuang; Zheng, Lingling; Zhang, Miwei; Xiao, Lixin E-mail: lxxiao@pku.edu.cn; Chen, Zhijian E-mail: lxxiao@pku.edu.cn

    2015-05-15

    In this paper, smart photovoltaic (SPV) devices, integrating both functions of solar cells and smart windows, was fabricated based on dye-sensitized solar cells using photochromic spiropyran derivatives SIBT as photosensitizers. SPV devices have self-regulated power conversion efficiency (PCE) and light transmission responding to the incident spectra due to the photoisomerization of SIBT. SIBT isomerize from closed-ring form to open-ring form under UV illumination, accompanied with enhanced visible light absorption and electron delocalization. Therefore, increased PCE and absorption in SPV devices were observed under UV treatment and the devices can be restored gradually to the initial status when kept in dark. The SPV devices have self-regulation of PCE and sunlight transmission responding to the changing sun spectra in different times of a day, providing a proper energy usage and a better sun-shading.

  13. Fabrication and photovoltaic properties of ZnO nanorods/perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Shirahata, Yasuhiro; Tanaike, Kohei; Akiyama, Tsuyoshi; Fujimoto, Kazuya; Suzuki, Atsushi; Balachandran, Jeyadevan; Oku, Takeo

    2016-02-01

    ZnO nanorods/perovskite solar cells with different lengths of ZnO nanorods were fabricated. The ZnO nanorods were prepared by chemical bath deposition and directly confirmed to be hexagon-shaped nanorods. The lengths of the ZnO nanorads were controlled by deposition condition of ZnO seed layer. Photovoltaic properties of the ZnO nanorods/CH3NH3PbI3 solar cells were investigated by measuring current density-voltage characteristics and incident photon to current conversion efficiency. The highest conversion efficiency was obtained in ZnO nanorods/CH3NH3PbI3 with the longest ZnO nanorods.

  14. Al-doping effects on the photovoltaic performance of inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Yu, Xuan; Shi, Ya-feng; Yu, Xiao-ming; Zhang, Jian-jun; Ge, Ya-ming; Chen, Li-qiao; Pan, Hong-jun

    2016-03-01

    The properties of Al-doped ZnO (AZO) play an important role in the photovoltaic performance of inverted polymer solar cells (PSCs), which is used as electron transport and hole blocking buffer layers. In this work, we study the effects of Al-doping level in AZO on device performance in detail. Results indicate that the device performance intensely depends on the Al-doping level. The AZO thin films with Al-doping atomic percentage of 1.0% possess the best conductivity. The resulting solar cells show the enhanced short current density and the fill factor ( FF) simultaneously, and the power conversion efficiency ( PCE) is improved by 74%, which are attributed to the reduced carrier recombination and the optimized charge transport and extraction between AZO and the active layer.

  15. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology

    NASA Astrophysics Data System (ADS)

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-01

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm2, and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p+-n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  16. Low-cost photovoltaics: Luminescent solar concentrators and colloidal quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Leow, Shin Woei

    Solar energy has long been lauded as an inexhaustible fuel source with more energy reaching the earth's surface in one hour than the global consumption for a year. Although capable of satisfying the world's energy requirements, solar energy remains an expensive technology that has yet to attain grid parity. Another drawback is that existing solar farms require large quantities of land in order to generate power at useful rates. In this work, we look to luminescent solar concentrator systems and quantum dot technology as viable solutions to lowering the cost of solar electricity production with the flexibility to integrate such technologies into buildings to achieve dual land use. Luminescent solar concentrator (LSC) windows with front-facing photovoltaic (PV) cells were built and their gain and power efficiency were investigated. Conventional LSCs employ a photovoltaic (PV) cell that is placed on the edge of the LSC, facing inward. This work describes a new design with the PV cells on the front-face allowing them to receive both direct solar irradiation and wave-guided photons emitted from a dye embedded in an acrylic sheet, which is optically coupled to the PV cells. Parameters investigated include the thickness of the waveguide, edge treatment of the window, cell width, and cell placement. The data allowed us to make projections that aided in designing windows for maximized overall efficiency. A gain in power of 2.2x over the PV cells alone was obtained with PV cell coverage of 5%, and a power conversion efficiency as high as 6.8% was obtained with a PV cell coverage of 31%. Balancing the trade-offs between gain and efficiency, the design with the lowest cost per watt attained a power efficiency of 3.8% and a gain of 1.6x. With the viability of the LSC demonstrated, a weighted Monte-Carlo Ray Tracing program was developed to study the transport of photons and loss mechanisms in the LSC to aid in design optimization. The program imports measured absorption

  17. Polymer Hybrid Photovoltaics for Inexpensive Electricity Generation: Final Technical Report, 1 September 2001--30 April 2006

    SciTech Connect

    Carter, S. A.

    2006-07-01

    The project goal is to understand the operating mechanisms underlying the performance of polymer hybrid photovoltaics to enable the development of a photovoltaic with a maximum power conversion efficiency over cost ratio that is significantly greater than current PV technologies. Plastic or polymer-based photovoltaics can have significant cost advantages over conventional technologies in that they are compatible with liquid-based plastic processing and can be assembled onto plastic under atmospheric conditions (ambient temperature and pressure) using standard printing technologies, such as reel-to-reel and screen printing. Moreover, polymer-based PVs are lightweight, flexible, and largely unbreakable, which make shipping, installation, and maintenance simpler. Furthermore, a numerical simulation program was developed (in collaboration with IBM) to fully simulate the performance of multicomponent polymer photovoltaic devices, and a manufacturing method was developed (in collaboration with Add-vision) to inexpensively manufacture larger-area devices.

  18. Optical analysis and thermal management of 2-cell strings linear concentrating photovoltaic system

    NASA Astrophysics Data System (ADS)

    Reddy, K. S.; Kamnapure, Nikhilesh R.

    2015-09-01

    This paper presents the optical and thermal analyses for a linear concentrating photovoltaic/thermal collector under different operating conditions. Linear concentrating photovoltaic system (CPV) consists of a highly reflective mirror, a receiver and semi-dual axis tracking mechanism. The CPV receiver embodies two strings of triple-junction cells (100 cells in each string) adhered to a mild steel circular tube mounted at the focal length of trough. This system provides 560 W of electricity and 1580 W of heat which needs to be dissipated by active cooling. The Al2O3/Water nanofluid is used as heat transfer fluid (HTF) flowing through circular receiver for CPV cells cooling. Optical analysis of linear CPV system with 3.35 m2 aperture and geometric concentration ratio (CR) of 35 is carried out using Advanced System Analysis Program (ASAP) an optical simulation tool. Non-uniform intensity distribution model of solar disk is used to model the sun in ASAP. The impact of random errors including slope error (σslope), tracking error (σtrack) and apparent change in sun's width (σsun) on optical performance of collector is shown. The result from the optical simulations shows the optical efficiency (ηo) of 88.32% for 2-cell string CPV concentrator. Thermal analysis of CPV receiver is carried out with conjugate heat transfer modeling in ANSYS FLUENT-14. Numerical simulations of Al2O3/Water nanofluid turbulent forced convection are performed for various parameters such as nanoparticle volume fraction (φ), Reynolds number (Re). The addition of the nanoparticle in water enhances the heat transfer in the ranges of 3.28% - 35.6% for φ = 1% - 6%. Numerical results are compared with literature data which shows the reasonable agreement.

  19. Degradation/oxidation susceptibility of organic photovoltaic cells in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Habib, K.; Husain, A.; Al-Hazza, A.

    2015-12-01

    A criterion of the degradation/oxidation susceptibility of organic photovoltaic (OPV) cells in aqueous solutions was proposed for the first time. The criterion was derived based on calculating the limit of the ratio value of the polarization resistance of an OPV cell in aqueous solution (Rps) to the polarization resistance of the OPV cell in air (Rpair). In other words, the criterion lim(Rps/Rpair) = 1 was applied to determine the degradation/oxidation of the OPV cell in the aqueous solution when Rpair became equal (increased) to Rps as a function of time of the exposure of the OPV cell to the aqueous solution. This criterion was not only used to determine the degradation/oxidation of different OPV cells in a simulated operational environment but also it was used to determine the electrochemical behavior of OPV cells in deionized water and a polluted water with fine particles of sand. The values of Rps were determined by the electrochemical impedance spectroscopy at low frequency. In addition, the criterion can be applied under diverse test conditions with a predetermined period of OPV operations.

  20. III-V Multi-junction solar cells and concentrating photovoltaic (CPV) systems

    NASA Astrophysics Data System (ADS)

    Philipps, Simon P.; Bett, Andreas W.

    2014-12-01

    It has been proven that the only realistic path to practical ultra-high efficiency solar cells is the monolithic multi-junction approach, i.e., to stack pn-junctions made of different semiconductor materials on top of each other. Each sub pn-junction, i.e., sub solar cell, converts a specific part of the sun's spectrum. In this way, the energy of the sunlight photons is converted with low thermalization losses. However, large-area multi-junction solar cells are still far too expensive if applied in standard PV modules. A viable solution to solve the cost issue is to use tiny solar cells in combination with optical concentrating technology, in particular, high concentrating photovoltaics (HCPV), in which the light is concentrated over the solar cells more than 500 times. The combination of ultra-high efficient solar cells and optical concentration lead to low cost on system level and eventually to low levelized cost of electricity, today, well below 8 €cent/kWh and, in the near future, below 5 €cent/kWh. A wide variety of approaches exists for III-V multi-junction solar cells and HCPV systems. This article is intended to provide an overview about the different routes being followed.

  1. Study on electrical and thermal behavior of organic photovoltaic (OPV) cells

    NASA Astrophysics Data System (ADS)

    Dobre, Robert Alexandru; Ionescu, Ciprian; Vlǎdescu, Marian; NiÅ£ǎ, Valentin Adrian

    2015-02-01

    Organic photovoltaic cells represent a major application of Flexible Organic and Large Area Electronics (FOLAE) field. The advantages of these cells are represented by flexibility and reduced thickness, making them easy to be integrated in electronics designs, removing the necessity of having a large, flat, heavy surface for energy harvesting. Although many studies about the structure1 and chemical reactions that occur exist, not a large amount of information is available about the characteristics that would be useful for an electronics engineer designing an electronic system. This paper presents the investigations of the electrical2 and thermal behavior of OPV cells, offering as results the optimal operating conditions and their evaluation using a comparison with the standard, semiconductor-based cells. Thermal characterization is very important because the targeted light source is the sun. By exposing the panels to sunlight in a summer day will greatly increase the working temperature of the cells, implying the necessity of knowing the impact on their electrical characteristics. The response of the cells at different wavelengths of the incident light, voltage vs. current and output voltage diagrams for different light intensities and different temperatures will be determined. In addition, the behavior of the cell as a light sensor will be investigated and a system that uses organic electronics at both ends: for sensing light intensity and also displaying this information will be built, using an electrochromic display.

  2. Point-focus spectral splitting solar concentrator for multiple cells concentrating photovoltaic system

    NASA Astrophysics Data System (ADS)

    Maragliano, Carlo; Chiesa, Matteo; Stefancich, Marco

    2015-10-01

    In this paper we present and experimentally validate a low-cost design of a spectral splitting concentrator for the efficient conversion of solar energy. The optical device consists of a dispersive prismatic lens made of polycarbonate designed to simultaneously concentrate solar light and split it into its spectral components. With respect to our previous implementation, this device concentrates light along two axes and generates a light pattern compatible with the dimensions of a set of concentrating photovoltaic cells, while providing a higher concentration ratio. The mathematical framework and the constructive approach used for the design are presented and the device performance is simulated using ray-tracing software. We obtain spectral separation in the visible range within a 3 × 1 cm2 area and a maximum concentration of 210× for a single wavelength. The device is fabricated by injection molding and its performance is experimentally investigated. We measure an optical transmissivity above 90% in the range 400-800 nm and we observe a spectral distribution in good accordance with simulations. Our results demonstrate the feasibility of the device for cost effective high efficiency concentrated photovoltaic systems.

  3. Effects of Immersion Solvent on Photovoltaic and Photophysical Properties of Porphyrin-Sensitized Solar Cells.

    PubMed

    Hayashi, Hironobu; Higashino, Tomohiro; Kinjo, Yuriko; Fujimori, Yamato; Kurotobi, Kei; Chabera, Pavel; Sundström, Villy; Isoda, Seiji; Imahori, Hiroshi

    2015-08-26

    Memory effects in self-assembled monolayers (SAMs) of zinc porphyrin carboxylic acid on TiO2 electrodes have been demonstrated for the first time by evaluating the photovoltaic and electron transfer properties of porphyrin-sensitized solar cells prepared by using different immersion solvents sequentially. The structure of the SAM of the porphyrin on the TiO2 was maintained even after treating the porphyrin monolayer with different neat immersion solvents (memory effect), whereas it was altered by treatment with solutions containing different porphyrins (inverse memory effect). Infrared spectroscopy shows that the porphyrins in the SAM on the TiO2 could be exchanged with the same or analogous porphyrin, leading to a change in the structure of the porphyrin SAM. The memory and inverse memory effects are well correlated with a change in porphyrin geometry, mainly the tilt angle of the porphyrin along the long molecular axis from the surface normal on the TiO2, as well as with kinetics of electron transfer between the porphyrin and TiO2. Such a new structure-function relationship for DSSCs will be very useful for the rational design and optimization of photoelectrochemical and photovoltaic properties of molecular assemblies on semiconductor surfaces. PMID:26266818

  4. Photovoltaic technology assessment

    SciTech Connect

    Backus, C.E.

    1981-01-01

    After a brief review of the history of photovoltaic devices and a discussion of the cost goals set for photovoltaic modules, the status of photovoltaic technology is assessed. Included are discussions of: current applications, present industrial production, low-cost silicon production techniques, energy payback periods for solar cells, advanced materials research and development, concentrator systems, balance-of-system components. Also discussed are some nontechnical aspects, including foreign markets, US government program approach, and industry attitudes and approaches. (LEW)

  5. US photovoltaic patents, 1951--1987

    NASA Astrophysics Data System (ADS)

    1988-09-01

    This document contains 2195 U.S. patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1951 through 1987; no patents were found in 1950. The entries were located by searching USPA, the data base of the U.S. Patent Office. The final search retrieved all patents under the class Batteries, Thermoelectric and Photoelectric, and the subclasses Photoelectric, Testing, and Applications. The search also located patents that contained the words photovoltaic(s) or solar cell(s) and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrwstrial PV power technologies.

  6. US photovoltaic patents, 1951--1987

    SciTech Connect

    Not Available

    1988-09-01

    This document contains 2195 US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials as well as manufacturing and support functions. The patent entries in this document were issued from 1951 through 1987; no patents were found in 1950. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class ''Batteries, Thermoelectric and Photoelectric,'' and the subclasses ''Photoelectric,'' ''Testing,'' and ''Applications.'' The search also located patents that contained the words ''photovoltaic(s)'' or ''solar cell(s)'' and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors, and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  7. US Photovoltaic Patents, 1988--1990

    SciTech Connect

    Not Available

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class ``Batteries, Thermoelectric and Photoelectric`` and the subclasses ``Photoelectric,`` ``Testing,`` and ``Applications.`` The search also located patents that contained the words ``photovoltaic(s)`` or ``solar cell(s)`` and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  8. US Photovoltaic Patents, 1988--1990

    SciTech Connect

    Not Available

    1991-12-01

    This document contains US patents on terrestrial photovoltaic (PV) power applications, including systems, components, and materials, as well as manufacturing and support functions. The patent entries in this document were issued from 1988 through 1990. The entries were located by searching USPA, the data base of the US Patent Office. The final search retrieved all patents under the class Batteries, Thermoelectric and Photoelectric'' and the subclasses Photoelectric,'' Testing,'' and Applications.'' The search also located patents that contained the words photovoltaic(s)'' or solar cell(s)'' and their derivatives. A manual search of the patents in the Solar Energy Research Institute (SERI) patent file augmented the data base search. After the initial list was compiled, most of the patents on the following subjects were excluded: space photovoltaic technology, use of the photovoltaic effect for detectors and subjects only peripherally concerned with photovoltaics. Some patents on these three subjects were included when it appeared that those inventions might be of use in terrestrial PV power technologies.

  9. Synergic system between photovoltaic module and microbial fuel cell with simultaneous pollution control

    NASA Astrophysics Data System (ADS)

    Vasyliv, Oresta; Dhere, Neelkanth G.

    2015-05-01

    Combined photovoltaic module-microbial fuel cell construction shows prospect of advanced autonomous functioning effective energy-production system with the possibility of round-the-clock power generation. Application of Desulfuromonas sp. as anode biocatalyst in photovoltaic (PV) - microbial fuel cell (MFC) could support highly effective eco-friendly energy derivation with simultaneous reduction of organic and inorganic wastes in water environment. D. acetoxidans is exoelectrogenic bacterium that supports S0-reduction with H2S formation and S0-oxidation while an electrode serves as the electron acceptor. Simultaneous sulfur redox processes enhance electron transfer to the electrode surface that may increase the effectiveness of microbial fuel cell performance. It was shown that D. acetoxidans IMV B-7384 possesses selective resistance to 0.5-2.5 mM of copper, iron, nickel, manganese and lead ions. Metal-resistant strains of this bacterium may help overcome H2S toxicity, which is produced because of dissimilative S0-reduction, since divalent cations will interact with sulfide ions, forming insoluble precipitates. Thus D. acetoxidans IMV B-7384 may be applied for remediation of toxic metal ions from water environments because of metal fixation in form of insoluble complexes of metal sulfides. D. acetoxidans IMV B-7384 is presumed to have the capability to convert organic compounds, such as malate, pyruvate, succinate and fumarate via reductive stage of tricarboxylic acid cycle. Thus application of effluents as anolyte in MFC, based on D. acetoxidans IMV B-7384, may cause decrease of its organic content with formation of simple benign constituents, such as CO2 and H2O. Hence the advanced system for eco-friendly energy generation with simultaneous water pollution control is proposed.

  10. PVT -- A photovoltaic/thermal concentrator total energy system: Final phase 1 project report. Building opportunities in the U.S. for photovoltaics (PV:BONUS) Two

    SciTech Connect

    1998-12-31

    United Solar completed its Phase 1 report and its proposal for Phase 2 of the PVBONUS Two program at the end of March 1998. At the same time, it also completed and submitted a proposal to the California Energy Commission PIER program for additional funding to cost-share development and testing of a pre-production model of the PVT-14. It was unsuccessful in both of these proposed efforts. While waiting for the proposal decisions, work continued in April and May to analyze the system design and component decisions described below. This document is a final summation report on the Phase 1 effort of the PVBONUS Two program that describes the key technical issues that United Solar and its subcontractor, Industrial Solar Technology Corporation, worked on in preparation of a Phase 2 award. The decisions described were ones that will guide the design and fabrication of a pre-production prototype of a 1500:1 mirrored concentrator with gallium arsenide cells when United solar resumes its development work. The material below is organized by citing the key components that underwent a design review, what the company considered, what was decided, the name of the expected supplier, if not to be produced in-house, and some information about expected costs. The cost figures given are usually budgetary estimates, not the result of firm quotations or extensive analysis.

  11. Porous Silicon Modified Photovoltaic Junctions: An Approach to High-Efficiency Solar Cells

    NASA Astrophysics Data System (ADS)

    Badawy, Waheed A.

    2007-02-01

    The solution of the energy problems of our universe is based on the use of the ultimate source of energy, THE SUN, as the main source of useable energy. The trials to obtain solar cells of appropriate efficiency and suitable price represent one of the main tasks of different research groups over the whole world. In this respect silicon represent the main absorber of sun light that could be converted to electricity, photovoltaic cells, or to high energy chemical products, photoelectrochemical cells. Photovoltaic and photoelectrochemical systems were prepared by the formation of a thin porous film on silicon. The porous silicon layer was formed on the top of a clean oxide free silicon wafer surface by anodic etching in HF/H2O/C2H5OH mixture (2:1:1). The silicon was then covered by an oxide film (tin oxide, ITO or titanium oxide. The oxide films were prepared by the spray/pyrolysis technique which enables the incorporation of foreign atoms like In, Ru or Sb in the oxide film matrix during the spray process/. The incorporation of foreign atoms improves the surface characteristics of the oxide film which leads to the improvement of the fill factor and higher solar conversion efficiency. The prepared solar cells are stable against environmental attack due to the presence of the stable oxide film. It gives relatively high short circuit currents (Isc) compared to our improved silicon single crystal solar cells /6/, due to the presence of the porous silicon layer, which leads to the recorded high conversion efficiency. Although the open-circuit potential (Voc) and fill factor (FF) were not affected by the thickness of the porous silicon film, the short circuit current was found to be sensitive to this thickness. An optimum thickness of the porous film and also the oxide layer is required to optimize the solar cell efficiency. The results represent a promising system for the application of porous silicon layers in solar energy converters. The use of porous silicon instead of

  12. The Importance of End Groups for Solution-Processed Small-Molecule Bulk-Heterojunction Photovoltaic Cells.

    PubMed

    Duan, Ruomeng; Cui, Yong; Zhao, Yanfei; Li, Chen; Chen, Long; Hou, Jianhui; Wagner, Manfred; Baumgarten, Martin; He, Chang; Müllen, Klaus

    2016-05-10

    End groups in small-molecule photovoltaic materials are important owing to their strong influence on molecular stability, solubility, energy levels, and aggregation behaviors. In this work, a series of donor-acceptor pentads (D2 -A-D1 -A-D2 ) were designed and synthesized, aiming to investigate the effect of the end groups on the materials properties and photovoltaic device performance. These molecules share identical central A-D1 -A triads (with benzodithiophene as D1 and 6-carbonyl-thieno[3,4-b]thiophene as A), but with various D2 end groups composed of alkyl-substituted thiophene (T), thieno[3,2-b]thiophene (TT), and 2,2'-bithiophene (BT). The results indicate a relationship between conjugated segment/alkyl chain length of the end groups and the photovoltaic performance, which contributes to the evolving molecular design principles for high efficiency organic solar cells. PMID:27008919

  13. Photovoltaic power generation system free of bypass diodes

    SciTech Connect

    Lentine, Anthony L.; Okandan, Murat; Nielson, Gregory N.

    2015-07-28

    A photovoltaic power generation system that includes a solar panel that is free of bypass diodes is described herein. The solar panel includes a plurality of photovoltaic sub-modules, wherein at least two of photovoltaic sub-modules in the plurality of photovoltaic sub-modules are electrically connected in parallel. A photovoltaic sub-module includes a plurality of groups of electrically connected photovoltaic cells, wherein at least two of the groups are electrically connected in series. A photovoltaic group includes a plurality of strings of photovoltaic cells, wherein a string of photovoltaic cells comprises a plurality of photovoltaic cells electrically connected in series. The strings of photovoltaic cells are electrically connected in parallel, and the photovoltaic cells are microsystem-enabled photovoltaic cells.

  14. Effect of surfactant on TPP (tetraphenylporphyrin)-SnO[sub 2] photovoltaic cell

    SciTech Connect

    Bi, Z.; Li, Y. . Inst. of Photographic Chemistry); Tien, H.T. . Dept. of Biophysics)

    1994-02-01

    A simple photovoltaic cell has been constructed by using Nesa glass coated with SnO[sub 2] on both sides as transparent electrodes, one of which is further coated with a photosensitizing dyestuff, tetraphenylporphyrin (TPP), forming the photocathode, and by using an aqueous solution of Fe[sup 3+]/Fe[sup 2+] redox couple as the electrolytic solution. By adding an anionic surfactant, sodium dodecyl sulfonate (SDS), to the solution, both the photovoltage and the photocurrent of the cell are markedly enhanced. The power conversion efficiency of the SDS-containing cell is about eight times the value of the original cell. Other anionic surfactants (e.g., sodium octyl sulfate and sodium dodecyl sulfate) have a similar effect. From the data of the surface tension and the contact angle which the authors have measured, the interface excess of SDS at the interface between the TPP film of the photocathode and the solution has been calculated. The relationship between the photovoltage of the cell and the conformation of the adsorbed SDS molecules at the interface as well as the critical micelle concentration (CMC) of SDS in the solution are discussed. Other types of surfactant were also tested.

  15. The Mechanical Properties of III-V Compound Semiconductors Used in High Efficiency Multijunction Photovoltaic Cells

    NASA Astrophysics Data System (ADS)

    Zakaria, Abdallah

    Lattice-mismatched heteroepitaxy enables the fabrication of metamorphic solar cells that have reached record light conversion efficiencies in the last five years. These devices are accelerating the commercialization of concentrator photovoltaics that can compete with fossil fuels for terrestrial energy production. A critical part of metamorphic structures is the graded buffer layer (GBL) needed to progressively change the lattice constant of the substrate to that the epilayer of interest. The effectiveness of the graded buffer layer in relieving misfit strain affects the quality of the device grown and depends on a variety of parameters. This study focuses on the mechanical properties of semiconductor compounds used in graded buffer layers. First, the effect of compound semiconductor spontaneous atomic ordering on hardness is assessed. In1--xGaxP was deposited on Ge wafers in two structures. A surfactant was used in experiment A to induce a lower degree of order. High resolution x-ray diffraction (HRXRD) estimated a theoretical band gap energy Eg corrected for strain effects. Photoluminescence measured the actual Eg. By comparing the two, the degree of order eta was determined to be 0.12-0.15 for samples A and 0.43-0.44 for samples B. Atomic force microscopy (AFM) demonstrated that all wafers had an equivalent surface roughness of 6.1-7.4 A. Nanoindentation measurements determined that the degree of order has no effect on the hardness of InGaP. Using 1/2 (115) superlattice reflection scans, the InGaP ordered domains size was estimated to be 28.5 nm for sample B1. No superlattice peak was detected in sample A1. The large ordered domain size in B1 explains why no order-hardening behavior was observed in InGaP. Second, a correlation between the composition of a ternary compound semiconductor and hardness is established and the effect of oxidation is determined. A structure consisting of three different AlxGa1--xAs layers separated by In0.01Ga0.99As etch stops was

  16. Polymer photovoltaic cells with a graded active region achieved using double stamp transfer printing

    NASA Astrophysics Data System (ADS)

    Joo Cho, Yong; Yeob Lee, Jun; Forrest, Stephen R.

    2013-11-01

    We demonstrate that double stamp transfer printing of the poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61-butyric acid methyl ester (PCBM) active layer on MoO3 of an organic photovoltaic (OPV) cell enhances the charge collection efficiency at the anode and cathode contacts by creating a concentration gradient of the P3HT and PCBM across the bulk heterojunction active layer. This gradient increases the short circuit current and the power conversion efficiency of stamp-transferred P3HT:PCBM polymer OPVs by 23% compared with that of similarly structured spin-coated polymer OPVs due to the graded active layer composition, resulting in a power conversion efficiency of 3.7 ± 0.2% for an as-cast device. The stamp-transfer printing process provides a route to low cost fabrication of OPVs over large flexible substrate areas.

  17. Efficient photovoltaic cells with wide photosensitization range fabricated from rhenium benzathiazole complexes

    NASA Astrophysics Data System (ADS)

    Wong, Hei Ling; Mak, Chris S. K.; Chan, Wai Kin; Djurišić, Aleksandra B.

    2007-02-01

    Bulk heterojunction ITO/CuPc/sensitizer:C60/C60/Al (ITO denotes indium tin oxide; CuPc denotes copper phthalocyanine) photovoltaic cells were fabricated by using rhenium(I) complexes with benzathiazole ligands as the sensitizers. The complexes enhance the photosensitivity in the region of 450-550nm in which CuPc and C60 have little absorption. The devices exhibited high fill factors in excess of 0.6, and the power conversion efficiency of the best device 1.72%. A device based on pure CuPc :C60 mixed layer was fabricated for comparison. The external quantum efficiency of the devices remained higher than 10% in the entire visible region, which clearly demonstrated the importance of rhenium complexes as sensitizers.

  18. Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Esteban, R.; Laroche, M.; Greffet, J. J.

    2010-11-01

    Optical management is essential to increase absorption in thin photovoltaic cells. In this article, full electromagnetic simulations show that a back mirror and a one-dimensional front SiC sawtooth grating of ˜1 μm dimensions can significantly increase absorption in a thin layer under light concentration. A 50 nm thick GaSb active layer in the described configuration absorbs ˜66% of the incident solar photons above the band gap for a concentration equivalent to a numerical aperture NA=1/√2 . This absorption represents a ˜76% or 26% increase over the same structure but with the grating removed or substituted by an ideal antireflection coating, respectively.

  19. Effect of electrode geometry on photovoltaic performance of polymer solar cells

    NASA Astrophysics Data System (ADS)

    Li, Meng; Ma, Heng; Liu, Hairui; Wu, Dongge; Niu, Heying; Cai, Wenjun

    2014-10-01

    This paper investigates the impact of electrode geometry on the performance of polymer solar cells (PSCs). The negative electrodes with equal area (0.09 cm2) but different shape (round, oval, square and triangular) are evaluated with respect to short-circuit current density, open-circuit voltage, fill factor and power conversion efficiency of PSCs. The results show that the device with round electrodes gives the best photovoltaic performance; in contrast, the device with triangular electrodes reveals the worst properties. A maximum of almost a 19% increase in power conversion efficiency with a round electrode is obtained in the devices compared with that of the triangular electrode. To conclude, the electrode boundary curvature has a significant impact on the performance of PSCs. The larger curvature, i.e. sharper electrodes edges, perhaps has a negative effect on exciton separation and carrier transport in photoelectric conversion processes.

  20. Architectures and criteria for the design of high efficiency organic photovoltaic cells

    SciTech Connect

    Rand, Barry; Forrest, Stephen R; Pendergrast Burk, Diane

    2015-03-31

    A method for fabricating an organic photovoltaic cell includes providing a first electrode; depositing a series of at least seven layers onto the first electrode, each layer consisting essentially of a different organic semiconductor material, the organic semiconductor material of at least an intermediate layer of the sequence being a photoconductive material; and depositing a second electrode onto the sequence of at least seven layers. One of the first electrode and the second electrode is an anode and the other is a cathode. The organic semiconductor materials of the series of at least seven layers are arranged to provide a sequence of decreasing lowest unoccupied molecular orbitals (LUMOs) and a sequence of decreasing highest occupied molecular orbitals (HOMOs) across the series from the anode to the cathode.

  1. Effect of temperature on carrier formation efficiency in organic photovoltaic cells

    SciTech Connect

    Moritomo, Yutaka Yonezawa, Kouhei; Yasuda, Takeshi

    2014-08-18

    The internal quantum efficiency (ϕ{sub IQ}) of an organic photovoltaic cell is governed by plural processes. Here, we propose that ϕ{sub IQ} can be experimentally decomposed into carrier formation (ϕ{sub CF}) and carrier transfer (ϕ{sub CT}) efficiencies. By combining femtosecond time-resolved and electrochemical spectroscopy, we clarified the effect of temperature on ϕ{sub CF} in a regioregular poly(3-hexylthiophene) (rr-P3HT)/[6,6]-phenyl C{sub 61}-butyric acid methyl ester blend film. We found that ϕ{sub CF} (=0.55) at 80 K is the same as that (=0.55) at 300 K. The temperature insensitivity of ϕ{sub CF} indicates that the electron-hole pairs at the D/A interface are seldom subjected to coulombic binding energy.

  2. Effect of temperature on carrier formation efficiency in organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Moritomo, Yutaka; Yonezawa, Kouhei; Yasuda, Takeshi

    2014-08-01

    The internal quantum efficiency ( ϕ IQ) of an organic photovoltaic cell is governed by plural processes. Here, we propose that ϕ IQ can be experimentally decomposed into carrier formation ( ϕ CF) and carrier transfer ( ϕ CT) efficiencies. By combining femtosecond time-resolved and electrochemical spectroscopy, we clarified the effect of temperature on ϕ CF in a regioregular poly(3-hexylthiophene) (rr-P3HT)/[6,6]-phenyl C61-butyric acid methyl ester blend film. We found that ϕ CF ( = 0.55 ) at 80 K is the same as that (=0.55) at 300 K. The temperature insensitivity of ϕ CF indicates that the electron-hole pairs at the D/A interface are seldom subjected to coulombic binding energy.

  3. Effect of sulfur doped TiO2 on photovoltaic properties of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Seo, Hyunwoong; Nam, Sang-Hun; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu; Boo, Jin-Hyo

    2016-07-01

    In a dye-sensitized solar cell (DSC), a nano-porous semiconductor layer plays an important role in the performance. It determines open-circuit voltage and it affects the dye adsorption capacity and charge transfer, which are closely associated with photocurrent and overall performance. TiO2 is the most proper material for nano-porous layer since the first development of DSCs. This work focuses on the enhancement of TiO2 by doping. Sulfur (S) doping enhances charge transfer and the photoconversion of TiO2. Therefore, the increase in photocurrent and efficiency is expected by S doping. S is doped into TiO2 by hydrolysis method. The amount of S is varied and their photo-responses are verified. The most effective S doped TiO2 is applied to DSCs. Overall performance of DSC is enhanced by the addition of S doped TiO2. Especially, the photocurrent is much increased by the improvement on charge transfer, electron lifetime, and photo-conversion. The photovoltaic properties of DSCs are investigated with various ratios of undoped and S doped TiO2. Finally, a DSC based on undoped and S doped TiO2 ratio of 1:1 has the highest efficiency, better than that of a standard DSC based on undoped TiO2. [Figure not available: see fulltext.

  4. Characterization of local electrochemical doping of high performance conjugated polymer for photovoltaics using scanning droplet cell microscopy☆

    PubMed Central

    Gasiorowski, Jacek; Mardare, Andrei Ionut; Sariciftci, Niyazi Serdar; Hassel, Achim Walter

    2013-01-01

    The electrochemical oxidation of a next generation low bandgap high performance photovoltaic material namely poly[4,8-bis-substituted-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl-alt-4-substituted-thieno[3,4-b] thiophene-2,6-diyl] (PBDTTT-c) thin film was investigated using a scanning droplet cell microscope. Cyclic voltammetry was used for the basic characterization of the oxidation/doping of PBDTTT-c. Application of the different final potentials during the electrochemical study provides a close look to the oxidation kinetics. The electrical properties of both doped and undoped PBDTTT-c were analyzed in situ by electrochemical impedance spectroscopy giving the possibility to correlate the changes in the doping level with the subsequent changes in the resistance and capacitance. As a result one oxidation peak was found during the cyclic voltammetry and in potentiostatic measurements. From Mott–Schottky analysis a donor concentration of 2.3 × 1020 cm−3 and a flat band potential of 1.00 V vs. SHE were found. The oxidation process resulted in an increase of the conductivity by two orders of magnitude reaching a maximum for the oxidized form of 1.4 S cm−1. PMID:25843970

  5. Nanostructured photovoltaics

    NASA Astrophysics Data System (ADS)

    Fu, Lan; Tan, H. Hoe; Jagadish, Chennupati

    2013-01-01

    Energy and the environment are two of the most important global issues that we currently face. The development of clean and sustainable energy resources is essential to reduce greenhouse gas emission and meet our ever-increasing demand for energy. Over the last decade photovoltaics, as one of the leading technologies to meet these challenges, has seen a continuous increase in research, development and investment. Meanwhile, nanotechnology, which is considered to be the technology of the future, is gradually revolutionizing our everyday life through adaptation and incorporation into many traditional technologies, particularly energy-related technologies, such as photovoltaics. While the record for the highest efficiency is firmly held by multijunction III-V solar cells, there has never been a shortage of new research effort put into improving the efficiencies of all types of solar cells and making them more cost effective. In particular, there have been extensive and exciting developments in employing nanostructures; features with different low dimensionalities, such as quantum wells, nanowires, nanotubes, nanoparticles and quantum dots, have been incorporated into existing photovoltaic technologies to enhance their performance and/or reduce their cost. Investigations into light trapping using plasmonic nanostructures to effectively increase light absorption in various solar cells are also being rigorously pursued. In addition, nanotechnology provides researchers with great opportunities to explore the new ideas and physics offered by nanostructures to implement advanced solar cell concepts such as hot carrier, multi-exciton and intermediate band solar cells. This special issue of Journal of Physics D: Applied Physics contains selected papers on nanostructured photovoltaics written by researchers in their respective fields of expertise. These papers capture the current excitement, as well as addressing some open questions in the field, covering topics including the

  6. Inverted Metamorphic Cell Development: Cooperative Research and Development Final Report, CRADA Number CRD-05-156

    SciTech Connect

    Wanlass, M.

    2012-05-01

    This CRADA targeted technology transfer of the inverted metamorphic multi-junction (IMM) solar cell innovation from NREL to Emcore Photovoltaics. The technology transfer was successfully completed. Additionally, NREL provided materials characterization of solar cell structures produced at Emcore.

  7. Microsystems Enabled Photovoltaics

    ScienceCinema

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2014-06-23

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  8. Microsystems Enabled Photovoltaics

    SciTech Connect

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2012-07-02

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  9. Thin-film CdTe photovoltaic cells by laser deposition and rf sputtering

    NASA Astrophysics Data System (ADS)

    Compaan, A.; Bohn, R. G.; Bhat, A.; Tabory, C.; Shao, M.; Li, Y.; Savage, M. E.; Tsien, L.

    1992-12-01

    Laser-driven physical vapor deposition (LDPVD) and radio-frequency (rf) sputtering have been used to fabricate thin-film solar cells on SnO2-coated glass substrates. The laser-ablation process readily permits the use of several target materials in the same vacuum chamber and complete solar cell structures have been fabricated on SnO2-coated glass using LDPVD for the CdS, CdTe, and CdCl2. To date the best devices (˜9% AM1.5) have been obtained after a post-deposition anneal at 400 °C. In addition, cells have been fabricated with the combination of LDPVD CdS, rf-sputtered CdTe, and LDPVD CdCl2. The performance of these cells indicates considerable promise for the potential of rf sputtering for CdTe photovoltaic devices. The physical mechanisms of LDPVD have been studied by transient optical spectroscopy on the laser ablation plume. These measurements have shown that, e.g., Cd is predominantly in the neutral atomic state in the plume but with a large fraction which is highly excited internally (≥6 eV) and that the typical neutral Cd translational kinetic energies perpendicular to the target are 20 eV and greater. Quality of as-grown and annealed films has been analyzed by optical absorption. Raman scattering, photoluminescence, electrical conductivity, Hall effect, x-ray diffraction, and SEM/EDS.

  10. Basic aspects for improving the energy conversion efficiency of hetero-junction organic photovoltaic cells.

    PubMed

    Ryuzaki, Sou; Onoe, Jun

    2013-01-01

    Hetero-junction organic photovoltaic (OPV) cells consisting of donor (D) and acceptor (A) layers have been regarded as next-generation PV cells, because of their fascinating advantages, such as lightweight, low fabrication cost, resource free, and flexibility, when compared to those of conventional PV cells based on silicon and semiconductor compounds. However, the power conversion efficiency (η) of the OPV cells has been still around 8%, though more than 10% efficiency has been required for their practical use. To fully optimize these OPV cells, it is necessary that the low mobility of carriers/excitons in the OPV cells and the open circuit voltage (V OC), of which origin has not been understood well, should be improved. In this review, we address an improvement of the mobility of carriers/excitons by controlling the crystal structure of a donor layer and address how to increase the V OC for zinc octaethylporphyrin [Zn(OEP)]/C60 hetero-junction OPV cells [ITO/Zn(OEP)/C60/Al]. It was found that crystallization of Zn(OEP) films increases the number of inter-molecular charge transfer (IMCT) excitons and enlarges the mobility of carriers and IMCT excitons, thus significantly improving the external quantum efficiency (EQE) under illumination of the photoabsorption band due to the IMCT excitons. Conversely, charge accumulation of photo-generated carriers in the vicinity of the donor/acceptor (D/A) interface was found to play a key role in determining the V OC for the OPV cells. PMID:23853702

  11. Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells

    NASA Astrophysics Data System (ADS)

    Mariani, Giacomo

    The sun delivers an amount of energy equivalent to ninety billion hydrogen bombs detonating each second. Despite the fact that only one billionth of that energy falls onto the surface of the Earth, one day of sunlight would be sufficient to power the whole human race energy needs for over half a century. Solar electricity represents an environmentally-benign source of power. However, such technology is still more than twice as expensive as natural gas-fired generators. III-V semiconductor nanopillars are defined as vertically aligned arrays of nanostructures that hold the promise to aggressively diminish the cost of the active photovoltaic cell by exploiting a fraction of material utilized in conventional planar schemes. In this dissertation, we assess the viability of two classes of high-performance nanopillar-based solar cells. We begin with the incorporation of dedicated conjugated polymers to achieve a hybrid organic/inorganic heterojunction. Such configuration introduces a high optical absorption arising from the polymeric layer in conjunction with an efficient carrier transport resulting from the semiconductor nanopillar array. We extend the controllability of the heterojunction properties by replacing traditional spin-casting methods with an electrodeposition technique where the polymer is formed and doped in-situ directly onto the nanopillar facets. The rational tuning of the electrical conductivity and energy level of the polymer translates into an enhanced photocurrent and open-circuit voltage, achieving 4.11% solar power conversion efficiency. We then turn our attention to all-semiconductor radial p-n homojunctions embedded in the nanopillars. The first architecture focuses on ex-situ ammonium-sulfide passivation and correlates the optoelectronic properties of the solar cell once two different types of transparent conducting oxides are adopted. The barrier formed at the contact/semiconductor interface greatly depends on the Hall polarity of the

  12. Photovoltaic Manufacturing Technology (PVMaT) improvements for ENTECH`s concentrator module. Final technical report, 9 January 1991--14 April 1991

    SciTech Connect

    O`Neill, M.J.; McDanal, A.J.; Perry, J.L.; Jackson, M.C.; Walters, R.R.

    1991-11-01

    This final technical report documents ENTECH`s Phase 1 contract with Photovoltaic Manufacturing Technology (PVMaT) project. Under this project we prepared a detailed description of our current manufacturing process for making our unique linear Fresnel lens photovoltaic concentrator modules. In addition, we prepared a detailed description of an improved manufacturing process, which will simultaneously increase module production rates, enhance module quality, and substantially reduce module costs. We also identified potential problems in implementing the new manufacturing process, and we proposed solutions to these anticipated problems. Before discussing the key results of our program, however, we present a brief description of our unique photovoltaic technology. The key conclusion of our PVMAT Phase 1 study is that our module technology, without further breakthroughs, can realistically meet the near-term DOE goal of 12 cents/kWh levelized electricity cost, provided that we successfully implement the new manufacturing process at a production volume of at least 10 megawatts per year. The key recommendation from our Phase 1 study is to continue our PVMaT project into Phase 2A, which is directed toward the actual manufacturing technology development required for our new module production process. 15 refs.

  13. Simulation and optimization of the performance of organic photovoltaic cells based on capped copolymers for bulk heterojunctions

    NASA Astrophysics Data System (ADS)

    Mhamdi, A.; Boukhili, W.; Raissi, M.; Mahdouani, M.; Vignau, L.; Bourguiga, R.

    2016-08-01

    Recently many investigations have been done to improve the performance of solar cells photovoltaic. One of this devices developed is the Bulk Heterojunction (BHJ) solar cells based on poly (3-hexylthiophene) (P3HT)/[6, 6]-phenyl C61-butyric acid methyl ester (PCBM) blend which have been fabricated by spin-coating. It is known that the nanostructure of the active layer of this device has an important impact on the photovoltaic performances. In this work, we analyze the results obtained on solar cells using a copolymer P3HT-b-PS based on poly (3-hexylthiophene) (P3HT) as a donor block and polystyrene (PS) as a soft block, their compatibility with the blend of P3HT/PCBM at various weight percentages (0%-5%). The addition of this weight percentage is in order to improve the performance of polymer solar cells. It has been demonstrated that the addition of a small amount of P3HT-b-PS (from 0.5%-1.5%) led to an increase in photovoltaic efficiency compared to devices made from P3HT/PCBM only. To study the impact of the added amount of the P3HT-b-PS on the performances of the fabricated organic cells, we used an equivalent circuit model based on single diode model with five photovoltaic parameters. Then, we extracted these physical parameters of the organic photovoltaic cells such as the saturation current density, the series and shunt resistances, the ideality factor and the photogenerated current density from the experimental characteristics (J-V) in the dark and under illumination. We proposed and developed the used procedure based on this model and we resolved the analytic equations of the density-current using the Lambert W-function. A good agreement between the theoretical model and the experimental data of electrical characteristics is obtained illustrating the enhancement of the addition of a small amount of P3HT-b-PS (≤1.5%) in the P3HT/PCBM blend on the characteristics of BHJ organic photovoltaic cells.

  14. Enhanced photovoltaic performance of dye-sensitized solar cell using composite photoanode on 3D electrode

    NASA Astrophysics Data System (ADS)

    Lim, Chiew Keat; Huang, Hui; Tse, Man Siu; Tan, Ooi Kiang

    2013-12-01

    For dye-sensitized solar cell (DSSC), an efficient transport of electron from the dye sensitizer through the mesoporous oxide layer and to be collected by electrode is crucial for high photovoltaic conversion efficiency. In this work, two novel approaches were developed in DSSC fabrication to improve the overall photovoltaic performance. The concurrent improvement in the charge transport property and light harvesting efficiency was achieved by incorporating N-doped TiO2 in the mesoporous TiO2 layer of the photoanode. These N-doped TiO2 (TiNxOy) was formed by using the single step thermal oxidation of Titanium Nitride (TiN) nanomaterials. At the same time, the 3D electrode with SnO2 nanorods grown on the FTO glass using plasma enhanced chemical vapor deposition (PECVD) system was used to enhance the charge collection efficiency. By combining these two approaches simultaneously, the DSSC with composite TiNxOy-TiO2 photoanode on SnO2 nanorods 3D electrode was successfully fabricated and characterized. As compared to the standard DSSC, an overall increment of 28 % in the conversion efficiency was achieved. Higher incident photon-current conversion efficiency (IPCE) values were also obtained, specifically for the region 400 - 500 nm due to the cosensitization effect of N-doped TiO2. Efficient transfer of electron due to the decrease in charge transfer resistance at the mesoporous oxide/dye/electrolyte interface was observed from electrochemical impedance spectroscopy (EIS) measurement. With the use of SnO2 nanorods, the adhesion between the mesoporous TiO2/FTO was enhanced and the transit time of a photogenerated electron through the mesoporous layer before being collected at the FTO electrode was significantly reduced by 50 %.

  15. Development of New Absorber Materials to Achieve Organic Photovoltaic Commercial Modules with 15% Efficiency and 20 Years Lifetime: Cooperative Research and Development Final Report, CRADA Number CRD-12-498

    SciTech Connect

    Olson, D.

    2014-08-01

    Under this CRADA the parties will develop intermediates or materials that can be employed as the active layer in dye sensitized solar cells printed polymer systems, or small molecule organic photovoltaics.

  16. A Maximum Power Point Tracking Control Method of a Photovoltaic Power Generator with Consideration of Dynamic Characteristics of Solar Cells

    NASA Astrophysics Data System (ADS)

    Watanabe, Takashi; Yoshida, Toshiya; Ohniwa, Katsumi

    This paper discusses a new control strategy for photovoltaic power generation systems with consideration of dynamic characteristics of the photovoltaic cells. The controller estimates internal currents of an equivalent circuit for the cells. This estimated, or the virtual current and the actual voltage of the cells are fed to a conventional Maximum-Power-Point-Tracking (MPPT) controller. Consequently, this MPPT controller still tracks the optimum point even though it is so designed that the seeking speed of the operating point is extremely high. This system may suit for applications, which are installed in rapidly changeable insolation and temperature-conditions e.g. automobiles, trains, and airplanes. The proposed method is verified by experiment with a combination of this estimating function and the modified Boehringer's MPPT algorithm.

  17. Candidate solar cell materials for photovoltaic conversion in a solar power satellite /SPS/

    NASA Technical Reports Server (NTRS)

    Glaser, P. E.; Almgren, D. W.

    1978-01-01

    In recognition of the obstacles to solar-generated baseload power on earth, proposals have been made to locate solar power satellites in geosynchronous earth orbit (GEO), where solar energy would be available 24 hours a day during most of the time of the year. In an SPS, the electricity produced by solar energy conversion will be fed to microwave generators forming part of a planar phase-array transmitting antenna. The antenna is designed to precisely direct a microwave beam of very low intensity to one or more receiving antennas at desired locations on earth. At the receiving antenna, the microwave energy will be safely and efficiently reconverted to electricity and then be transmitted to consumers. An SPS system will include a number of satellites in GEO. Attention is given to the photovoltaic option for solar energy conversion in GEO, solar cell requirements, the availability of materials, the implication of large production volumes, requirements for high-volume manufacture of solar cell arrays, and the effects of concentration ratio on solar cell array area.

  18. Effect of particle size of Martian dust on the degradation of photovoltaic cell performance

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.

    1991-01-01

    Glass coverglass and SiO2 covered and uncovered silicon photovoltaic (PV) cells were subjected to conditions simulating a Mars dust storm, using the Martian Surface Wind Tunnel, to assess the effect of particle size on the performance of PV cells in the Martian environment. The dust used was an artificial mineral of the approximate elemental composition of Martian soil, which was sorted into four different size ranges. Samples were tested both initially clean and initially dusted. The samples were exposed to clear and dust laden winds, wind velocities varying from 23 to 116 m/s, and attack angles from 0 to 90 deg. It was found that transmittance through the coverglass approximates the power produced by a dusty PV cell. Occultation by the dust was found to dominate the performance degradation for wind velocities below 50 m/s, whereas abrasion dominates the degradation at wind velocities above 85 m/s. Occultation is most severe at 0 deg (parallel to the wind), is less pronounced from 22.5 to 67.5 deg, and is somewhat larger at 90 deg (perpendicular to the wind). Abrasion is negligible at 0 deg, and increases to a maximum at 90 deg. Occultation is more of a problem with small particles, whereas large particles (unless they are agglomerates) cause more abrasion.

  19. Cuprous oxide photovoltaic cells. Third quarterly technical progress report, October 9, 1979 to January 8, 1980

    SciTech Connect

    Trivich, D.

    1980-01-08

    Previous work in this laboratory on cuprous oxide Schottky barrier photovoltaic cells showed that some potential improvements were limited by chemical degradations at the junction (1), e.g., in Al/Cu/sub 2/O cells, the aluminum reduced the surface of the Cu/sub 2/O to metallic Cu. The present project is being devoted to a study of methods to avoid this problem and also to the development of other methods of improving the efficiency of Cu/sub 2/O cells. The first quarterly report was devoted to a study of thin oxide interlayers between the metal and the Cu/sub 2/O which gives MIS structures. The most stable interlayers were obtained with SiO/sub 2/. The second quarterly report covered some initial work on heterojunctions with other oxides on Cu/sub 2/O. The most stable heterojunctions were obtained with CdO on Cu/sub 2/O. The present report presents some results on Auger studies of the oxide heterojunctions, the preparation of doped Cu/sub 2/O by introduction of impurities in the starting copper, the exploration of several method for the study of diffusion length, and some initial attempts on the laser annealing of Cu/sub 2/O.

  20. Optical spacing effect in organic photovoltaic cells incorporating a dilute acceptor layer

    SciTech Connect

    Menke, S. Matthew; Lindsay, Christopher D.; Holmes, Russell J.

    2014-06-16

    The addition of spacing layers in organic photovoltaic cells (OPVs) can enhance light absorption by optimizing the spatial distribution of the incident optical field in the multilayer structure. We explore the optical spacing effect in OPVs achieved using a diluted electron acceptor layer of C{sub 60}. While optical spacing is often realized by optimizing buffer layer thickness, we find that optical spacing via dilution leads to cells with similar or enhanced photocurrent. This is observed despite a smaller quantity of absorbing molecules, suggesting a more efficient use of absorbed photons. In fact, dilution is found to concentrate optical absorption near the electron donor-acceptor interface, resulting in a marked increase in the exciton diffusion efficiency. Contrasting the use of changes in thickness to engineer optical absorption, the use of dilution does not significantly alter the overall thickness of the OPV. Optical spacing via dilution is shown to be a viable alternative to more traditional optical spacing techniques and may be especially useful in the continued optimization of next-generation, tandem OPVs where it is important to minimize competition for optical absorption between individual sub-cells.

  1. SunEdison Photovoltaic Grid Integration Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-08-302

    SciTech Connect

    Kroposki, B.

    2012-09-01

    Under this Agreement, NREL will work with SunEdison to monitor and analyze the performance of photovoltaic (PV) systems as they relate to grid integration. Initially this project will examine the performance of PV systems with respect to evaluating the benefits and impacts on the electric power grid.

  2. Application of photovoltaic electric power to the rural education/communication needs of developing countries. Final Report

    SciTech Connect

    Cabraal, A.; Delansanta, D.; Burrill, G.

    1982-07-01

    The suitability (i.e., cost competitiveness and reliability) of photovoltaic (PV) power systems for rural applications in developing countries is considered. Potential application sectors include health delivery, education and communication where small amounts of electricity are needed to meet critical needs.

  3. Low-cost photovoltaics: Luminescent solar concentrators and colloidal quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Leow, Shin Woei

    Solar energy has long been lauded as an inexhaustible fuel source with more energy reaching the earth's surface in one hour than the global consumption for a year. Although capable of satisfying the world's energy requirements, solar energy remains an expensive technology that has yet to attain grid parity. Another drawback is that existing solar farms require large quantities of land in order to generate power at useful rates. In this work, we look to luminescent solar concentrator systems and quantum dot technology as viable solutions to lowering the cost of solar electricity production with the flexibility to integrate such technologies into buildings to achieve dual land use. Luminescent solar concentrator (LSC) windows with front-facing photovoltaic (PV) cells were built and their gain and power efficiency were investigated. Conventional LSCs employ a photovoltaic (PV) cell that is placed on the edge of the LSC, facing inward. This work describes a new design with the PV cells on the front-face allowing them to receive both direct solar irradiation and wave-guided photons emitted from a dye embedded in an acrylic sheet, which is optically coupled to the PV cells. Parameters investigated include the thickness of the waveguide, edge treatment of the window, cell width, and cell placement. The data allowed us to make projections that aided in designing windows for maximized overall efficiency. A gain in power of 2.2x over the PV cells alone was obtained with PV cell coverage of 5%, and a power conversion efficiency as high as 6.8% was obtained with a PV cell coverage of 31%. Balancing the trade-offs between gain and efficiency, the design with the lowest cost per watt attained a power efficiency of 3.8% and a gain of 1.6x. With the viability of the LSC demonstrated, a weighted Monte-Carlo Ray Tracing program was developed to study the transport of photons and loss mechanisms in the LSC to aid in design optimization. The program imports measured absorption

  4. Advances in Plexcore active layer technology systems for organic photovoltaics: roof-top and accelerated lifetime analysis of high performance organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Laird, Darin W.; Vaidya, Swanand; Li, Sergey; Mathai, Mathew; Woodworth, Brian; Sheina, Elena; Williams, Shawn; Hammond, Troy

    2007-09-01

    We report NREL-certified efficiencies and initial lifetime data for organic photovoltaic (OPV) cells based on Plexcore PV photoactive layer and Plexcore HTL-OPV hole transport layer technology. Plexcore PV-F3, a photoactive layer OPV ink, was certified in a single-layer OPV cell at the National Renewable Energy Laboratory (NREL) at 5.4%, which represents the highest official mark for a single-layer organic solar cell. We have fabricated and measured P3HT:PCBM solar cells with a peak efficiency of 4.4% and typical efficiencies of 3 - 4% (internal, NREL-calibrated measurement) with P3HT manufactured at Plextronics by the Grignard Metathesis (GRIM) method. Outdoor and accelerated lifetime testing of these devices is reported. Both Plexcore PV-F3 and P3HT:PCBM-based OPV cells exhibit >750 hours of outdoor roof-top, non-accelerated lifetime with less than 8% loss in initial efficiency for both active layer systems when exposed continuously to the climate of Western Pennsylvania. These devices are continuously being tested to date. Accelerated testing using a high-intensity (1000W) metal-halide lamp affords shorter lifetimes; however, the true acceleration factor is still to be determined.

  5. Final Technical Progress Report: High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program; July 14, 2010 - January 13, 2012

    SciTech Connect

    Mattos, L.

    2012-03-01

    This is the final technical progress report of the High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program. Alta Devices has successfully completed all milestones and deliverables established as part of the NREL PV incubator program. During the 18 months of this program, Alta has proven all key processes required to commercialize its solar module product. The incubator focus was on back end process steps directed at conversion of Alta's high quality solar film into high efficiency 1-sun PV modules. This report describes all program deliverables and the work behind each accomplishment.

  6. Advances in thin-film solar cells for lightweight space photovoltaic power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.

    1989-01-01

    The present stature and current research directions of photovoltaic arrays as primary power systems for space are reviewed. There have recently been great advances in the technology of thin-film solar cells for terrestrial applications. In a thin-film solar cell the thickness of the active element is only a few microns; transfer of this technology to space arrays could result in ultralow-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper-indium selenide (CuInSe2) and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon:hydrogen and alloys. The best experimental efficiency on thin-film solar cells to date is 12 percent AMO for CuIn Se2. This efficiency is likely to be increased in the next few years. The radiation tolerance of thin-film materials is far greater than that of single-crystal materials. CuIn Se2 shows no degradation when exposed to 1 MeV electrons. Experimental evidence also suggests that most of all of the radiation damage on thin-films can be removed by a low temperature anneal. The possibility of thin-film multibandgap cascade solar cells is discussed, including the tradeoffs between monolithic and mechanically stacked cells. The best current efficiency for a cascade is 12.5 percent AMO for an amorphous silicon on CuInSe2 multibandgap combination. Higher efficiencies are expected in the future. For several missions, including solar-electric propulsion, a manned Mars mission, and lunar exploration and manufacturing, thin-film photovolatic arrays may be a mission-enabling technology.

  7. Advances in thin-film solar cells for lightweight space photovoltaic power

    SciTech Connect

    Landis, G.A.; Bailey, S.G.; Flood, D.J.

    1989-01-01

    The present stature and current research directions of photovoltaic arrays as primary power systems for space are reviewed. There have recently been great advances in the technology of thin-film solar cells for terrestrial applications. In a thin-film solar cell the thickness of the active element is only a few microns; transfer of this technology to space arrays could result in ultralow-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper-indium selenide (CuInSe2) and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon:hydrogen and alloys. The best experimental efficiency on thin-film solar cells to date is 12 percent AMO for CuInSe2. This efficiency is likely to be increased in the next few years. The radiation tolerance of thin-film materials is far greater than that of single-crystal materials. CuInSe2 shows no degradation when exposed to 1 MeV electrons. Experimental evidence also suggests that most of all of the radiation damage on thin-films can be removed by a low temperature anneal. The possibility of thin-film multibandgap cascade solar cells is discussed, including the tradeoffs between monolithic and mechanically stacked cells. The best current efficiency for a cascade is 12.5 percent AMO for an amorphous silicon on CuInSe2 multibandgap combination. Higher efficiencies are expected in the future. For several missions, including solar-electric propulsion, a manned Mars mission, and lunar exploration and manufacturing, thin-film photovolatic arrays may be a mission-enabling technology.

  8. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology

    PubMed Central

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-01-01

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm2, and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p+−n homojunction through the formation of re-grown crystalline silicon layer (~5–10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method. PMID:26632759

  9. Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells

    PubMed Central

    Hedley, Gordon J.; Ward, Alexander J.; Alekseev, Alexander; Howells, Calvyn T.; Martins, Emiliano R.; Serrano, Luis A.; Cooke, Graeme; Ruseckas, Arvydas; Samuel, Ifor D. W.

    2013-01-01

    The morphology of bulk heterojunction organic photovoltaic cells controls many of the performance characteristics of devices. However, measuring this morphology is challenging because of the small length-scales and low contrast between organic materials. Here we use nanoscale photocurrent mapping, ultrafast fluorescence and exciton diffusion to observe the detailed morphology of a high-performance blend of PTB7:PC71BM. We show that optimized blends consist of elongated fullerene-rich and polymer-rich fibre-like domains, which are 10–50 nm wide and 200–400 nm long. These elongated domains provide a concentration gradient for directional charge diffusion that helps in the extraction of charge pairs with 80% efficiency. In contrast, blends with agglomerated fullerene domains show a much lower efficiency of charge extraction of ~45%, which is attributed to poor electron and hole transport. Our results show that the formation of narrow and elongated domains is desirable for efficient bulk heterojunction solar cells. PMID:24343223

  10. Hybrid Microgrid Model based on Solar Photovoltaics with Batteries and Fuel Cells system for intermittent applications

    NASA Astrophysics Data System (ADS)

    Patterson, Maxx

    Microgrids are a subset of the modern power structure; using distributed generation (DG) to supply power to communities rather than vast regions. The reduced scale mitigates loss allowing the power produced to do more with better control, giving greater security, reliability, and design flexibility. This paper explores the performance and cost viability of a hybrid grid-tied microgrid that utilizes Photovoltaic (PV), batteries, and fuel cell (FC) technology. The concept proposes that each community home is equipped with more PV than is required for normal operation. As the homes are part of a microgrid, excess or unused energy from one home is collected for use elsewhere within the microgrid footprint. The surplus power that would have been discarded becomes a community asset, and is used to run intermittent services. In this paper, the modeled community does not have parking adjacent to each home allowing for the installment of a privately owned slower Level 2 charger, making EV ownership option untenable. A solution is to provide a Level 3 DC Quick Charger (DCQC) as the intermittent service. The addition of batteries and Fuel Cells are meant to increase load leveling, reliability, and instill limited island capability.

  11. Detailed analysis of ultrathin fluorescent red dye interlayer for organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zang, Yue; Yu, Jun-Sheng; Wang, Na-Na; Jiang, Ya-Dong

    2011-01-01

    The influence of an ultrathin 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) fluorescent dye layer at donor/acceptor heterojunction on the performance of small-molecule organic photovoltaic (OPV) cell is studied. The structure of OPV cell is of indium-tin oxide (ITO)/copper phthalocyanine (CuPc)/DCJTB/fullerene (C60)/bathophenanthroline (Bphen)/Ag. The results show that open circuit voltage (VOC) increases to 0.57 V as the film thickness of DCJTB layer increases from 0.2 to 2.0 nm. By using an equivalent circuit model, the enhancement of VOC is found to be attributed to the reduced reverse saturation current density (JS) which is due to the lower highest occupied molecular orbital (HOMO) level in DCJTB than that in CuPc. Also, the short circuit current density (JSC) is affected when the DCJTB layer becomes thicker, resulting from the high series resistance RSA due to the low charge carrier mobility of fluorescent red dye.

  12. Enhanced photovoltaic performance of Cu-based metal-organic frameworks sensitized solar cell by addition of carbon nanotubes

    PubMed Central

    Lee, Deok Yeon; Shin, Chan Yong; Yoon, Seog Joon; Lee, Haw Young; Lee, Wonjoo; Shrestha, Nabeen K.; Lee, Joong Kee; Han, Sung-Hwan

    2014-01-01

    In the present work, TiO2 nanoparticle and multi-walled carbon nanotubes composite powder is prepared hydrothermally. After doctor blading the paste from composite powder, the resulted composite film is sensitized with Cu-based metal-organic frameworks using a layer-by-layer deposition technique and the film is characterized using FE-SEM, EDX, XRD, UV/Visible spectrophotometry and photoluminescence spectroscopy. The influence of the carbon nanotubes in photovoltaic performance is studied by constructing a Grätzel cell with I3−/I− redox couple containing electrolyte. The results demonstrate that the introduction of carbon nanotubes accelerates the electron transfer, and thereby enhances the photovoltaic performance of the cell with a nearly 60% increment in power conversion efficiency. PMID:24488110

  13. Influence of VB group doped TiO2 on photovoltaic performance of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Duan, Yandong; Zhou, Xiaowen; Lin, Yuan

    2013-07-01

    Dye-sensitized solar cell with VB group (vanadium (V), niobium (Nb) and tantalum (Ta)) doped TiO2 prepared by hydrothermal method shows a higher photovoltaic efficiency compared with the undoped TiO2. All the VB doping shift the flat band potential positively and increase the doping density which is investigated by Mott-Schottky plot. The positive shift of flat band potential improves the driving force of injecting electron from the LUMO of dye to the conduction band of TiO2 and the photocurrent. On the other hand, the increase of doping density accelerates transfer rate of electrons in TiO2 than the un-doped, which is confirmed by intensity-modulated photocurrent. V-, Nb-, Ta-doped TiO2 exhibited photovoltaic performance with 7.80%, 8.33%, 8.18%, respectively, compared with that of the cells based on pure TiO2 (7.42%).

  14. Enhanced photovoltaic performance of Cu-based metal-organic frameworks sensitized solar cell by addition of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lee, Deok Yeon; Shin, Chan Yong; Yoon, Seog Joon; Lee, Haw Young; Lee, Wonjoo; Shrestha, Nabeen K.; Lee, Joong Kee; Han, Sung-Hwan

    2014-02-01

    In the present work, TiO2 nanoparticle and multi-walled carbon nanotubes composite powder is prepared hydrothermally. After doctor blading the paste from composite powder, the resulted composite film is sensitized with Cu-based metal-organic frameworks using a layer-by-layer deposition technique and the film is characterized using FE-SEM, EDX, XRD, UV/Visible spectrophotometry and photoluminescence spectroscopy. The influence of the carbon nanotubes in photovoltaic performance is studied by constructing a Grätzel cell with I3-/I- redox couple containing electrolyte. The results demonstrate that the introduction of carbon nanotubes accelerates the electron transfer, and thereby enhances the photovoltaic performance of the cell with a nearly 60% increment in power conversion efficiency.

  15. Following the nanostructural molecular orientation guidelines for sulfur versus thiophene units in small molecule photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Kim, Yu Jin; Park, Chan Eon

    2016-03-01

    In bulk heterojunction (BHJ) organic photovoltaics, particularly those using small molecules, electron donor and/or electron acceptor materials form a distributed network in the photoactive layer where critical photo-physical processes occur. Extensive research has recently focused on the importance of sulfur atoms in the small molecules. Little is known about the three-dimensional orientation of these sulfur atom-containing molecules. Herein, we report on our research concerning the heterojunction textures of the crystalline molecular orientation of small compounds having sulfur-containing units in the side chains, specifically, compounds known as DR3TSBDT that contain the alkylthio group and DR3TBDTT that does not. The improved performance of the DR3TBDTT-based devices, particularly in the photocurrent and the fill factor, was attributed to the large population of donor compound crystallites with a favorable face-on orientation along the perpendicular direction. This orientation resulted in efficient charge transport and a reduction in charge recombination. These findings underscore the great potential of small-molecule solar cells and suggest that even higher efficiencies can be achieved through materials development and molecular orientation control.In bulk heterojunction (BHJ) organic photovoltaics, particularly those using small molecules, electron donor and/or electron acceptor materials form a distributed network in the photoactive layer where critical photo-physical processes occur. Extensive research has recently focused on the importance of sulfur atoms in the small molecules. Little is known about the three-dimensional orientation of these sulfur atom-containing molecules. Herein, we report on our research concerning the heterojunction textures of the crystalline molecular orientation of small compounds having sulfur-containing units in the side chains, specifically, compounds known as DR3TSBDT that contain the alkylthio group and DR3TBDTT that does not

  16. Organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Krebs, Frederik C.; Chen, Hongzheng

    2013-12-01

    Energy inflation, the constant encouragement to economize on energy consumption and the huge investments in developing alternative energy resources might seem to suggest that there is a global shortage of energy. Far from it, the energy the Sun beams on the Earth each hour is equivalent to a year's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating effectively across the electromagnetic spectrum remains a challenge. 'The trend is towards engineering low bandgap polymers with a wide optical absorption range and efficient hole/electron transport materials, so that light harvesting in the red and infrared region is enhanced and as much light of the solar spectrum as possible can be converted into an electrical current', explains Mukundan Thelakkat and colleagues in Germany, the US and UK. In this special issue they report on how charge carrier mobility and morphology of the active blend layer in thin film organic solar cells correlate with device parameters [2]. The work contributes to a better understanding of the solar-cell characteristics of polymer:fullerene blends, which form the material basis for some of the most

  17. Photovoltaic fibers

    NASA Astrophysics Data System (ADS)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  18. Dye sensitized photovoltaic miniaturized solar cells, used as optical sensors for line of sight detection

    NASA Astrophysics Data System (ADS)

    Cesar, Cortes Torres Carlos; Sampei, Kota; Miho, Ogawa; Masataka, Ozawa; Norihisa, Miki

    2014-11-01

    Dye sensitized photovoltaic devices have been studied as transparent and low-cost solar cells. Our group have miniaturized the cells and used them as transparent optical sensors. This paper reports the design and fabrication of the cells and avoids the cross talk among cells, which was found recently and such effect provokes hardware instability. We use these optical sensors as an eye tracking device. The sensor array detects the difference in the intensity of light reflected from the pupil and the sclera and then determines the pupil position. Each sensor consists of two electrodes and electrolyte; hence our device conformed by only four semi-circular shaped sensors on eyeglasses can detect the view angle in both horizontal and vertical directions. Manufacturing process gives us freedom to easily re-arrange, add or remove sensors. In our prior work we had good performance in stand-alone configuration. We used specialized equipment from National Instruments for our measurements. However we found that: A cell is not 100% independent from the others, is affected by the absence or presence of light at the neighbour cells. When our device is connected to other electronic devices (for data processing), all cells have the same voltage among them; therefore, all cells behave the same way when any of them is affected by light. The root cause is, due to all sensors were interconnected via a micro channel and filled with electrolyte, due to its conductive properties, electrolyte does neither need electrodes nor physical paths to conduct electricity, so it creates a liquid wire between sensors, hence the gap between them become inexistent, consequently when our device is connected to other electronic devices, due to this unique channel and by sharing a common electronic ground, this connection provokes the voltage to be the same among all sensors in the array. Our device becomes four separate voltage lines in a parallel circuit. The device was also in short circuit provoked

  19. Tandem photovoltaic solar cell with III-V diffused junction booster cell

    SciTech Connect

    Fraas, L.M.; Avery, J.E.; Girard, G.R.

    1992-02-25

    This patent describes a GaAs/GaSb tandem solar cell having improved conversion efficiency. It comprises: a GaAs upper cell having a predetermined bandgap selected for optimal performance of the tandem solar cell; a GaSb booster cell positioned beneath the GaAs upper cell to receive light transmitted through the GaAs upper cell and responsive to such light; and light conditioning means associated with the upper cell and the booster cell for achieving and energy conversion efficiency of at least 31% AMO. This patent also describes the cell as defined in claim 2, wherein the light conditioning means includes a prismatic coverglass for optically eliminating grid line obscuration losses on at least the upper cell and a concentrating lens for focusing solar energy onto an upper surface of the upper cell.

  20. Lightweight Solar Photovoltaic Blankets

    NASA Technical Reports Server (NTRS)

    Ceragioli, R.; Himmler, R.; Nath, P.; Vogeli, C.; Guha, S.

    1995-01-01

    Lightweight, flexible sheets containing arrays of stacked solar photovoltaic cells developed to supply electric power aboard spacecraft. Solar batteries satisfying stringent requirements for operation in outer space also adaptable to terrestrial environment. Attractive for use as long-lived, portable photovoltaic power sources. Cells based on amorphous silicon which offers potential for order-of-magnitude increases in power per unit weight, power per unit volume, and endurance in presence of ionizing radiation.

  1. InGaP-based quantum well solar cells: Growth, structural design, and photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Hashem, Islam E.; Zachary Carlin, C.; Hagar, Brandon G.; Colter, Peter C.; Bedair, S. M.

    2016-03-01

    Raising the efficiency ceiling of multi-junction solar cells (MJSCs) through the use of more optimal band gap configurations of next-generation MJSC is crucial for concentrator and space systems. Towards this goal, we propose two strain balanced multiple quantum well (SBMQW) structures to tune the bandgap of InGaP-based solar cells. These structures are based on InxGa1-xAs1-zPz/InyGa1-yP (x > y) and InxGa1-xP/InyGa1-yP (x > y) well/barrier combinations, lattice matched to GaAs in a p-i-n solar cell device. The bandgap of InxGa1-xAs1-zPz/InyGa1-yP can be tuned from 1.82 to 1.65 eV by adjusting the well composition and thickness, which promotes its use as an efficient subcell for next generation five and six junction photovoltaic devices. The thicknesses of wells and barriers are adjusted using a zero net stress balance model to prevent the formation of defects. Thin layers of InGaAsP wells have been grown thermodynamically stable with compositions within the miscibility gap for the bulk alloy. The growth conditions of the two SBMQWs and the individual layers are reported. The structures are characterized and analyzed by optical microscopy, X-ray diffraction, photoluminescence, current-voltage characteristics, and spectral response (external quantum efficiency). The effect of the well number on the excitonic absorption of InGaAsP/InGaP SBMQWs is discussed and analyzed.

  2. Organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Krebs, Frederik C.; Chen, Hongzheng

    2013-12-01

    Energy inflation, the constant encouragement to economize on energy consumption and the huge investments in developing alternative energy resources might seem to suggest that there is a global shortage of energy. Far from it, the energy the Sun beams on the Earth each hour is equivalent to a year's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating effectively across the electromagnetic spectrum remains a challenge. 'The trend is towards engineering low bandgap polymers with a wide optical absorption range and efficient hole/electron transport materials, so that light harvesting in the red and infrared region is enhanced and as much light of the solar spectrum as possible can be converted into an electrical current', explains Mukundan Thelakkat and colleagues in Germany, the US and UK. In this special issue they report on how charge carrier mobility and morphology of the active blend layer in thin film organic solar cells correlate with device parameters [2]. The work contributes to a better understanding of the solar-cell characteristics of polymer:fullerene blends, which form the material basis for some of the most

  3. An advanced space photovoltaic concentrator array using Fresnel lenses, gallium arsenide cells, and prismatic cell covers

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark J.; Piszczor, Michael F.

    1988-01-01

    The current status of a space concentrator array which uses refractive optics, gallium arsenide cells, and prismatic cell covers to achieve excellent performance at a very low array mass is documented. The prismatically covered cells have established records for space cell performance (24.2 percent efficient at 100 AM0 suns and 25 C) and terrestrial single-junction cell performance (29.3 percent efficient at 200 AM1.5 suns and 25 C).

  4. Synthesis, photophysics of two new perylene bisimides and their photovoltaic performances in quasi solid state dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Mikroyannidis, John A.; Stylianakis, Minas M.; Roy, M. S.; Suresh, P.; Sharma, G. D.

    Two new symmetrical compounds A and P based on perylene-anthracene and perylene-pyrene, respectively, were synthesized and characterized by FT-IR, 1H NMR, TGA and TMA. These compounds contained tert-butyl groups which enhanced their solubility, decomposed above 400 °C and gave char yields of 46-65% at 800 °C in N 2. Compound A showed significantly higher glass transition temperature (124 °C) than P (75 °C). Their absorption spectra were broad with longer wavelength absorption at 467-525 nm and optical band gap of 2.05 eV. The solutions of the compounds emitted green-yellow light with maximum at 555 nm, while their films were not photoluminescent. The compound A shows better photovoltaic response than compound P. Quasi solid state dye sensitized solar cells (DSSCs) have been fabricated employing compound A as sensitizer and polymer sol gel as electrolyte and characterized through the current-voltage characteristics in dark as well as under illumination and electrochemical impedance spectra. We found that the Al 2O 3 modification of TiO 2 layer significantly improves the dye absorption resulting in enhancement of power conversion efficiency (PCE) (from 1.15 to 2.13%) which is attributed to the increase in electron lifetime and reduction in back transfer of electrons. Finally, the TiO 2 has been incorporated into the polymer electrolyte gel to improve the power conversion efficiency (3.42%) of the quasi solid state DSSC. The faster electron diffusion in the device, the high ionic conductivity and the low activation energy of the polymer electrolyte are also responsible for enhanced PCE, when TiO 2 nano-particles are incorporated in the polymer electrolyte.

  5. Photovoltaic properties of high efficiency plastic dye-sensitized solar cells employing interparticle binding agent ``nanoglue''

    NASA Astrophysics Data System (ADS)

    Li, Yuelong; Yoo, Kicheon; Lee, Doh-Kwon; Kim, Jin Young; Kim, Honggon; Kim, Bongsoo; Ko, Min Jae

    2013-05-01

    An interparticle binding agent, or nanoglue, was synthesized by a sol-gel process, which facilitated the preparation of well-interconnected TiO2 electrodes at low-temperatures for plastic dye-sensitized solar cells. The viscosity of the nanoglue-based pastes was seven times higher than that obtained in pastes without any nanoglue. The increased viscosity was sufficiently high enough for coating thick films to fabricate TiO2 electrodes. The structural and photovoltaic properties of the films were extensively investigated by varying the amounts of nanoglue. A reduced pore size and greatly enhanced surface area were observed in the nanoglue-based films. Improved interparticle connectivity, resulting in faster electron transport, was confirmed by photocurrent transient spectroscopy and electrochemical impedance measurements of the nanoglue-based films. The electron diffusion length and charge collection efficiency were also enhanced in these nanoglue-based films. A maximum conversion efficiency of 5.43% was achieved in films containing 20 wt% nanoglue fabricated on a plastic substrate under one-sun illumination, even without any additional treatment.

  6. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells.

    PubMed

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J

    2015-06-30

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor-inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance. PMID:26080437

  7. Architectures and criteria for the design of high efficiency organic photovoltaic cells

    DOEpatents

    Rand, Barry; Forrest, Stephen R; Burk, Diana Pendergrast

    2015-03-24

    An organic photovoltaic cell includes an anode and a cathode, and a plurality of organic semiconductor layers between the anode and the cathode. At least one of the anode and the cathode is transparent. Each two adjacent layers of the plurality of organic semiconductor layers are in direct contact. The plurality of organic semiconductor layers includes an intermediate layer consisting essentially of a photoconductive material, and two sets of at least three layers. A first set of at least three layers is between the intermediate layer and the anode. Each layer of the first set consists essentially of a different organic semiconductor material having a higher LUMO and a higher HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the cathode. A second set of at least three layers is between the intermediate layer and the cathode. Each layer of the second set consists essentially of a different organic semiconductor material having a lower LUMO and a lower HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the anode.

  8. Optimal operation management of fuel cell/wind/photovoltaic power sources connected to distribution networks

    NASA Astrophysics Data System (ADS)

    Niknam, Taher; Kavousifard, Abdollah; Tabatabaei, Sajad; Aghaei, Jamshid

    2011-10-01

    In this paper a new multiobjective modified honey bee mating optimization (MHBMO) algorithm is presented to investigate the distribution feeder reconfiguration (DFR) problem considering renewable energy sources (RESs) (photovoltaics, fuel cell and wind energy) connected to the distribution network. The objective functions of the problem to be minimized are the electrical active power losses, the voltage deviations, the total electrical energy costs and the total emissions of RESs and substations. During the optimization process, the proposed algorithm finds a set of non-dominated (Pareto) optimal solutions which are stored in an external memory called repository. Since the objective functions investigated are not the same, a fuzzy clustering algorithm is utilized to handle the size of the repository in the specified limits. Moreover, a fuzzy-based decision maker is adopted to select the 'best' compromised solution among the non-dominated optimal solutions of multiobjective optimization problem. In order to see the feasibility and effectiveness of the proposed algorithm, two standard distribution test systems are used as case studies.

  9. Time-resolved, nonequilibrium carrier dynamics in Si-on-glass thin films for photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Serafini, John; Akbas, Yunus; Crandall, Lucas; Bellman, Robert; Kosik Williams, Carlo; Sobolewski, Roman

    2016-04-01

    A femtosecond pump-probe spectroscopy method was used to characterize the growth process and transport properties of amorphous silicon-on-glass, thin films, intended as absorbers for photovoltaic cells. We collected normalized transmissivity change (ΔT/T) waveforms and interpreted them using a comprehensive three-rate equation electron trapping and recombination model. Optically excited ˜300-500 nm thick Si films exhibited a bi-exponential carrier relaxation with the characteristic times varying from picoseconds to nanoseconds depending on the film growth process. From our comprehensive trapping model, we could determine that for doped and intrinsic films with very low hydrogen dilution the dominant relaxation mode was carrier trapping; while for intrinsic films with large hydrogen content and some texture, it was the standard electron-phonon cooling. In both cases, the initial nonequilibrium relaxation was followed by Shockley-Read-Hall recombination. An excellent fit between the model and the ΔT/T experimental transients was obtained and a correlation between the Si film growth process, its hydrogen content, and the associated trap concentration was demonstrated.

  10. Magnetophotocurrent in Organic Bulk Heterojunction Photovoltaic Cells at Low Temperatures and High Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Khachatryan, B.; Devir-Wolfman, A. H.; Tzabari, L.; Tessler, N.; Vardeny, Z. V.; Ehrenfreund, E.

    2016-04-01

    We study high-field (up to B ˜8.5 T ) magnetophotocurrent (MPC) related to photogenerated polaron pairs (PPs) in the temperature range T =10 - 320 K in organic bulk heterojunction photovoltaic cells. We find that in the high-field regime (B >1 T ), MPC (B ) response increases with B for temperature T >200 K but decreases with B at T <200 K . MPC (B ) response does not saturate even at the highest field studied, at all T . We attribute the observed high-field MPC (B ) response to two competing mechanisms within the PP spin states: (a) a spin-mixing mechanism caused by the difference in the donor-acceptor (or positive-negative polarons) g factors (the so-called "Δ g mechanism"), and (b) the spin polarization induced by thermal population of the PP Zeeman split levels. The nonsaturating MPC (B ) response at high fields and high temperatures indicates that there exist charge-transfer excitons (CTEs) with decay time in the subnanosecond time domain. With decreasing temperature, the CTE decay time sharply increases, thereby promoting an increase of the thermal spin-polarization contribution to the MPC (B ) response.

  11. Time-resolved, nonequilibrium carrier dynamics in Si-on-glass thin films for photovoltaic cells

    DOE PAGESBeta

    Serafini, John; Akbas, Yunus; Crandall, Lucas; Bellman, Robert; Williams, Carlo Kosik; Sobolewski, Robert

    2016-03-02

    Here, a femtosecond pump–probe spectroscopy method was used to characterize the growth process and transport properties of amorphous silicon-on-glass, thin films, intended as absorbers for photovoltaic cells. We collected normalized transmissivity change (ΔT/T) waveforms and interpreted them using a comprehensive three-rate equation electron trapping and recombination model. Optically excited ~300–500 nm thick Si films exhibited a bi-exponential carrier relaxation with the characteristic times varying from picoseconds to nanoseconds depending on the film growth process. From our comprehensive trapping model, we could determine that for doped and intrinsic films with very low hydrogen dilution the dominant relaxation mode was carrier trapping;more » while for intrinsic films with large hydrogen content and some texture, it was the standard electron–phonon cooling. In both cases, the initial nonequilibrium relaxation was followed by Shockley–Read–Hall recombination. An excellent fit between the model and the ΔT/T experimental transients was obtained and a correlation between the Si film growth process, its hydrogen content, and the associated trap concentration was demonstrated.« less

  12. Strains and photovoltaic response in Ta-sputtered Si metal-insulator-semiconductor solar cells

    NASA Astrophysics Data System (ADS)

    Lalevic, B.; Murty, K.; Ito, T.; Kalman, Z. H.; Weissmann, S.

    1981-07-01

    Deformation by bending of Si or Si-SiO2 wafers is achieved by sputter deposition of tantalum films. Strains induced at Si-SiO2 interface and in Ta films are investigated using a combination of X-ray diffraction, electron diffraction, and transmission electron microscopy. Thin Ta film deposits are found to have predominantly a fcc structure, while thicker films have the normal bcc structure with certain admixture of fcc. Film strains generated by the coexistence of the polymorph structure are accommodated by formation of misfit dislocations at the film-Si substrate interface. The effect of the induced stress on the electronic parameters characterizing the Si-SiO2 interface is studied in the metal-oxide-semiconductor structure, and for the effect on photovoltaic response a metal-insulator-semiconductor solar cell configuration is used. Large changes with increasing stress are observed in the values of recombination time, capture cross section, and diffusion length and in sharply decreased conversion efficiency, fill factor, open-circuit voltage, and short-circuit current.

  13. Optimal operation management of fuel cell/wind/photovoltaic power sources connected to distribution networks

    NASA Astrophysics Data System (ADS)

    Niknam, Taher; Kavousifard, Abdollah; Tabatabaei, Sajad; Aghaei, Jamshid

    2011-10-01

    In this paper a new multiobjective modified honey bee mating optimization (MHBMO) algorithm is presented to investigate the distribution feeder reconfiguration (DFR) problem considering renewable energy sources (RESs) (photovoltaics, fuel cell and wind energy) connected to the distribution network. The objective functions of the problem to be minimized are the electrical active power losses, the voltage deviations, the total electrical energy costs and the total emissions of RESs and substations. During the optimization process, the proposed algorithm finds a set of non-dominated (Pareto) optimal solutions which are stored in an external memory called repository. Since the objective functions investigated are not the same, a fuzzy clustering algorithm is utilized to handle the size of the repository in the specified limits. Moreover, a fuzzy-based decision maker is adopted to select the ‘best' compromised solution among the non-dominated optimal solutions of multiobjective optimization problem. In order to see the feasibility and effectiveness of the proposed algorithm, two standard distribution test systems are used as case studies.

  14. Elucidating the Factors that Determine the Open Circuit Voltage in Discrete Heterojunction Organic Photovoltaic Cells

    SciTech Connect

    Chauhan, V.; Hatton, R; Sullivan, P; Jones, T; Cho, S; Piper, L; DeMasi, A; Smith, K

    2010-01-01

    The operation of discrete heterojunction organic photovoltaic (OPV) cells employing chloro-aluminium phthalocyanine (ClAlPc) as the electron donor and C{sub 60} as the electron acceptor is reported and the characteristics are correlated with the energy level structure of the devices determined using X-ray photoelectron spectroscopy. The results give new insight into the origin of the open circuit voltage (V{sub oc}) in discrete heterojunction OPVs. The measured V{sub oc} in this system is found to be determined by: (i) the frontier orbital energy offsets between the donor and acceptor materials, accounting for the likely formation of an abrupt vacuum level shift at the heterojunction interface and (ii) the degree of alignment between the hole-extracting electrode Fermi level and the highest occupied molecular orbital energy of the electron donor material. The generality of the findings is demonstrated by rationalising the V{sub oc} in OPVs employing the archetypal electron donor, copper phthalocyanine.

  15. Electrosprayed molybdenum trioxide aqueous solution and its application in organic photovoltaic cells.

    PubMed

    Suzuki, Katsumi; Fukuda, Takeshi; Liao, Yingjie

    2014-01-01

    A molybdenum trioxide thin film with smooth surface and uniform thickness was successfully achieved by an electrospray deposition method using an aqueous solution with a drastically low concentration of 0.05 wt%. Previous papers demonstrated that an additive solvent technique is useful for depositing the thin film by the electrospray deposition, and the high vapor pressure and a low surface tension of an additive solvent were found to be important factors. As a result, the smooth molybdenum trioxide thin film was obtained when the acetonitrile was used as the additive solvent. Furthermore, the vapor pressure of acetone is much higher than that of aqueous solution, and this indicates that the acetone is easily evaporated after spraying from the glass capillary. By optimizing a concentration of acetone in the molybdenum aqueous solution, a minimum root mean square roughness of the MoO3 thin film became 3.7 nm. In addition, an organic photovoltaic cell was also demonstrated using the molybdenum trioxide as a hole transport layer. Highest photoconversion efficiency was 1.72%, a value comparable to that using conventional thermal evaporation process even though the aqueous solution was used for the solution process. The photovonversion efficiency was not an optimized value, and the higher value can be achieved by optimizing the coating condition of the active layer. PMID:25148047

  16. Optical study of thin-film photovoltaic cells with apparent optical path length

    NASA Astrophysics Data System (ADS)

    Cho, Changsoon; Jeong, Seonju; Lee, Jung-Yong

    2016-09-01

    Extending the insufficient optical path length (OPL) in thin-film photovoltaic cells (PVs) is the key to achieving a high power conversion efficiency (PCE) in devices. Here, we introduce the apparent OPL (AOPL) as a figure of merit for light absorbing capability in thin-film PVs. The optical characteristics such as the structural effects and angular responses in thin-film PVs were analyzed in terms of the AOPL. Although the Lambertian scattering surface yields a broadband absorption enhancement in thin-film PVs, the enhancement is not as effective as in thick-film PVs. On the other hand, nanophotonic schemes are introduced as an approach to increasing the single-pass AOPL by inducing surface plasmon resonance. The scheme using periodic metal gratings is proved to increase the AOPL in a narrow wavelength range and specific polarization, overcoming the Yablonovitch limit. The AOPL calculation can be also adopted in the experimental analysis and a maximum AOPL of 4.15d (where d is the active layer thickness) is exhibited in the absorption band edge region of PTB7:PC70BM-based polymer PVs.

  17. Solution-Processible Crystalline NiO Nanoparticles for High-Performance Planar Perovskite Photovoltaic Cells

    PubMed Central

    Kwon, Uisik; Kim, Bong-Gi; Nguyen, Duc Cuong; Park, Jong-Hyeon; Ha, Na Young; Kim, Seung-Joo; Ko, Seung Hwan; Lee, Soonil; Lee, Daeho; Park, Hui Joon

    2016-01-01

    In this work, we report on solution-based p-i-n-type planar-structured CH3NH3PbI3 perovskite photovoltaic (PV) cells, in which precrystallized NiO nanoparticles (NPs) without post-treatment are used to form a hole transport layer (HTL). X-ray diffraction and high-resolution transmission electron microscopy showed the crystallinity of the NPs, and atomic force microscopy and scanning electron microscopy confirmed the uniform surfaces of the resultant NiO thin film and the subsequent perovskite photoactive layer. Compared to the conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, the NiO HTL had excellent energy-level alignment with that of CH3NH3PbI3 and improved electron-blocking capability, as analyzed by photoelectron spectroscopy and diode modeling, resulting in Voc ~0.13 V higher than conventional PEDOT:PSS-based devices. Consequently, a power conversion efficiency (PCE) of 15.4% with a high fill factor (FF, 0.74), short-circuit current density (Jsc, 20.2 mA·cm−2), and open circuit voltage (Voc, 1.04 V) having negligible hysteresis and superior air stability has been achieved. PMID:27465263

  18. Following the nanostructural molecular orientation guidelines for sulfur versus thiophene units in small molecule photovoltaic cells.

    PubMed

    Kim, Yu Jin; Park, Chan Eon

    2016-03-31

    In bulk heterojunction (BHJ) organic photovoltaics, particularly those using small molecules, electron donor and/or electron acceptor materials form a distributed network in the photoactive layer where critical photo-physical processes occur. Extensive research has recently focused on the importance of sulfur atoms in the small molecules. Little is known about the three-dimensional orientation of these sulfur atom-containing molecules. Herein, we report on our research concerning the heterojunction textures of the crystalline molecular orientation of small compounds having sulfur-containing units in the side chains, specifically, compounds known as that contain the alkylthio group and that does not. The improved performance of the -based devices, particularly in the photocurrent and the fill factor, was attributed to the large population of donor compound crystallites with a favorable face-on orientation along the perpendicular direction. This orientation resulted in efficient charge transport and a reduction in charge recombination. These findings underscore the great potential of small-molecule solar cells and suggest that even higher efficiencies can be achieved through materials development and molecular orientation control. PMID:26987868

  19. High-performance NiO/Ag/NiO transparent electrodes for flexible organic photovoltaic cells.

    PubMed

    Xue, Zhichao; Liu, Xingyuan; Zhang, Nan; Chen, Hong; Zheng, Xuanming; Wang, Haiyu; Guo, Xiaoyang

    2014-09-24

    Transparent electrodes with a dielectric-metal-dielectric (DMD) structure can be implemented in a simple manufacturing process and have good optical and electrical properties. In this study, nickel oxide (NiO) is introduced into the DMD structure as a more appropriate dielectric material that has a high conduction band for electron blocking and a low valence band for efficient hole transport. The indium-free NiO/Ag/NiO (NAN) transparent electrode exhibits an adjustable high transmittance of ∼82% combined with a low sheet resistance of ∼7.6 Ω·s·q(-1) and a work function of 5.3 eV after UVO treatment. The NAN electrode shows excellent surface morphology and good thermal, humidity, and environmental stabilities. Only a small change in sheet resistance can be found after NAN electrode is preserved in air for 1 year. The power conversion efficiencies of organic photovoltaic cells with NAN electrodes deposited on glass and polyethylene terephthalate (PET) substrates are 6.07 and 5.55%, respectively, which are competitive with those of indium tin oxide (ITO)-based devices. Good photoelectric properties, the low-cost material, and the room-temperature deposition process imply that NAN electrode is a striking candidate for low-cost and flexible transparent electrode for efficient flexible optoelectronic devices. PMID:25148532

  20. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells

    PubMed Central

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J.; Chang, Robert P. H.; Facchetti, Antonio; Marks, Tobin J.

    2015-01-01

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor–inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance. PMID:26080437

  1. Solution-Processible Crystalline NiO Nanoparticles for High-Performance Planar Perovskite Photovoltaic Cells

    NASA Astrophysics Data System (ADS)

    Kwon, Uisik; Kim, Bong-Gi; Nguyen, Duc Cuong; Park, Jong-Hyeon; Ha, Na Young; Kim, Seung-Joo; Ko, Seung Hwan; Lee, Soonil; Lee, Daeho; Park, Hui Joon

    2016-07-01

    In this work, we report on solution-based p-i-n-type planar-structured CH3NH3PbI3 perovskite photovoltaic (PV) cells, in which precrystallized NiO nanoparticles (NPs) without post-treatment are used to form a hole transport layer (HTL). X-ray diffraction and high-resolution transmission electron microscopy showed the crystallinity of the NPs, and atomic force microscopy and scanning electron microscopy confirmed the uniform surfaces of the resultant NiO thin film and the subsequent perovskite photoactive layer. Compared to the conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, the NiO HTL had excellent energy-level alignment with that of CH3NH3PbI3 and improved electron-blocking capability, as analyzed by photoelectron spectroscopy and diode modeling, resulting in Voc ~0.13 V higher than conventional PEDOT:PSS-based devices. Consequently, a power conversion efficiency (PCE) of 15.4% with a high fill factor (FF, 0.74), short-circuit current density (Jsc, 20.2 mA·cm‑2), and open circuit voltage (Voc, 1.04 V) having negligible hysteresis and superior air stability has been achieved.

  2. Electrosprayed Molybdenum Trioxide Aqueous Solution and Its Application in Organic Photovoltaic Cells

    PubMed Central

    Suzuki, Katsumi; Fukuda, Takeshi; Liao, Yingjie

    2014-01-01

    A molybdenum trioxide thin film with smooth surface and uniform thickness was successfully achieved by an electrospray deposition method using an aqueous solution with a drastically low concentration of 0.05 wt%. Previous papers demonstrated that an additive solvent technique is useful for depositing the thin film by the electrospray deposition, and the high vapor pressure and a low surface tension of an additive solvent were found to be important factors. As a result, the smooth molybdenum trioxide thin film was obtained when the acetonitrile was used as the additive solvent. Furthermore, the vapor pressure of acetone is much higher than that of aqueous solution, and this indicates that the acetone is easily evaporated after spraying from the glass capillary. By optimizing a concentration of acetone in the molybdenum aqueous solution, a minimum root mean square roughness of the MoO3 thin film became 3.7 nm. In addition, an organic photovoltaic cell was also demonstrated using the molybdenum trioxide as a hole transport layer. Highest photoconversion efficiency was 1.72%, a value comparable to that using conventional thermal evaporation process even though the aqueous solution was used for the solution process. The photovonversion efficiency was not an optimized value, and the higher value can be achieved by optimizing the coating condition of the active layer. PMID:25148047

  3. Step-Stress Accelerated Degradation Testing (SSADT) for Photovoltaic (PV) Devices and Cells (Presentation)

    SciTech Connect

    Lee, J.; Elmore, R.; Suh, C.; Jones, W.

    2010-10-01

    Presentation on step-stress accelerated degradation testing (SSADT) for photovoltaics (PV). Developed are a step-stress degradation test (SSADT) for PV reliability tests and a lifetime prediction model for PV products.

  4. Organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Leo, Karl

    2016-08-01

    Organic photovoltaics are on the verge of revolutionizing building-integrated photovoltaics. For other applications, however, several basic open scientific questions need answering to, in particular, further improve energy-conversion efficiency and lifetime.

  5. Monte Carlo Simulations of Luminescent Solar Concentrators with Front-Facing Photovoltaic Cells for Building Integrated Photovoltaics

    NASA Astrophysics Data System (ADS)

    Leow, Shin; Corrado, Carley; Osborn, Melissa; Carter, Sue

    2013-03-01

    Luminescent solar concentrators (LSCs) have the ability to receive light from a wide range of angles and concentrate the captured light on to small photo active areas. This enables LSCs to be integrated more extensively into buildings as windows and wall claddings on top of roof installations. LSCs with front facing PV cells collect both direct and concentrated light ensuring a gain factor greater than one. It also allows for flexibility in determining the placement and percentage coverage of PV cells when designing panels to balance reabsorption losses, power output and the level of concentration desired. A Monte-Carlo ray tracing program was developed to study the transport of photons and loss mechanisms in LSC panels and aid in design optimization. The program imports measured absorption/emission spectra and transmission coefficients as simulation parameters. Interactions of photons with the LSC panel are determined by comparing calculated probabilities with random number generators. Simulation results reveal optimal panel dimensions and PV cell layouts to achieve maximum power output.

  6. Single nanowire photovoltaics.

    PubMed

    Tian, Bozhi; Kempa, Thomas J; Lieber, Charles M

    2009-01-01

    This tutorial review focuses on recent work addressing the properties and potential of semiconductor nanowires as building blocks for photovoltaic devices based on investigations at the single nanowire level. Two central nanowire motifs involving p-i-n dopant modulation in axial and coaxial geometries serve as platforms for fundamental studies. Research illustrating the synthesis of these structural motifs will be reviewed first, followed by an examination of recent studies of single axial and coaxial p-i-n silicon nanowire solar cells. Finally, challenges and opportunities for improving efficiency enabled by controlled synthesis of more complex nanowire structures will be discussed, as will their potential applications as power sources for emerging nanoelectronic devices. PMID:19088961

  7. Modeling and control of hybrid wind/photovoltaic/fuel cell distributed generation systems

    NASA Astrophysics Data System (ADS)

    Wang, Caisheng

    Due to ever increasing energy consumption, rising public awareness of environmental protection, and steady progress in power deregulation, alternative (i.e., renewable and fuel cell based) distributed generation (DG) systems have attracted increased interest. Wind and photovoltaic (PV) power generation are two of the most promising renewable energy technologies. Fuel cell (FC) systems also show great potential in DG applications of the future due to their fast technology development and many merits they have, such as high efficiency, zero or low emission (of pollutant gases) and flexible modular structure. The modeling and control of a hybrid wind/PV/FC DG system is addressed in this dissertation. Different energy sources in the system are integrated through an AC bus. Dynamic models for the main system components, namely, wind energy conversion system (WECS), PV energy conversion system (PVECS), fuel cell, electrolyzer, power electronic interfacing circuits, battery, hydrogen storage tank, gas compressor and gas pressure regulator, are developed. Two types of fuel cells have been modeled in this dissertation: proton exchange membrane fuel cell (PEMFC) and solid oxide fuel cell (SOFC). Power control of a grid-connected FC system as well as load mitigation control of a stand-alone FC system are investigated. The pitch angle control for WECS, the maximum power point tracking (MPPT) control for PVECS, and the control for electrolyzer and power electronic devices, are also addressed in the dissertation. Based on the dynamic component models, a simulation model for the proposed hybrid energy system has been developed using MATLAB/Simulink. The overall power management strategy for coordinating the power flows among the different energy sources is presented in the dissertation. Simulation studies have been carried out to verify the system performance under different scenarios using a practical load profile and real weather data. The results show that the overall power

  8. Potential health and safety hazards associated with the production of cadmium telluride, copper indium diselenide, and zinc phosphide photovoltaic cells

    SciTech Connect

    Moskowitz, P.D.; Fthenakis, V.M.; Lee, J.C.

    1985-04-01

    In large-scale manufacture of cadmium telluride, copper indium diselenide, and zinc phosphide photovoltaic cells, the materials and equipment used may present potential health and safety hazards to workers and the public. These hazards were identified by reviewing data on process materials, availability of control technology, biomedical effects, and health and environmental standards. Quantitative estimates of material inputs and outputs, and control technology costs for selected processes were based on preliminary engineering designs for hypothetical 10-MWp/yr photovoltaic cell production facilities. In the fabrication of these devices, unusually large quantities of some toxic gases may be used; large demands for phosphine and hydrogen selenide are of special concern. Because projected usage of these materials is much larger than the current one, a thorough evaluation of engineering controls will be needed before the technologies are commercialized. These materials could also present occupational health hazards. Some management options to reduce occupational exposures to these materials are presented. Although specific federal and state regulations have not been promulgated for emissions from the photovoltaic industry, prudent engineering practice should be applied to all waste streams - solid, atmospheric, or liquid - containing toxic pollutants to limit discharges of these materials. Control costs for most atmospheric waste streams should not be large (<0.01 cent per watt); for phosphine, however, costs are potentially much larger (4.4 cents per watt). Some processes may also produce large quantities of solid waste defined as toxic or hazardous under US Environmental Protection Agency guidelines. Disposal costs for these materials are presented.

  9. Advances in the theory and application of BSF cells. [including electrical resistivity and photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Mandelkorn, J.; Lamneck, J. H.

    1975-01-01

    The characteristics and behavior of p(+), p solar cells were investigated. The p(+), p cells were made by the removal of the n(+) surface layers from n(+), p p(+), BSF cells followed by application of a suitable contact to the resultant p(+), p structures. The open circuit voltage of p(+), p cells was found to increase with increasing 'p' bulk resistivity. The measured open circuit velocity-temperature coefficients were positive and increased with increasing resistivity. An outline of prior limitations in solar cell design is presented, and the removal of these limitations through use of BSF effects is pointed out. The study of BSF effects made feasible production of very thin high efficiency silicon cells as well as high resistivity-high efficiency cells, two desirable types of silicon cells which were previously impossible to make.

  10. Multiple gap photovoltaic device

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  11. Design, development and deployment of public service photovoltaic power/load systems for the Gabonese Republic. Final report

    SciTech Connect

    Kaszeta, W.J.

    1987-04-01

    Five different types of public service photovoltaic power/load systems installed in the Gabonese Republic are discussed. The village settings, the systems, performance results and some problems encountered are described. Most of the systems performed well, but some of the systems had problems due to failure of components or installation errors. The project was reasonably successful in collecting and reporting data for system performance evaluation that will be useful for guiding officials and system designers involved in village power applications in developing countries.

  12. Organic Photovoltaics and Bioelectrodes Providing Electrical Stimulation for PC12 Cell Differentiation and Neurite Outgrowth.

    PubMed

    Hsiao, Yu-Sheng; Liao, Yan-Hao; Chen, Huan-Lin; Chen, Peilin; Chen, Fang-Chung

    2016-04-13

    Current bioelectronic medicines for neurological therapies generally involve treatment with a bioelectronic system comprising a power supply unit and a bioelectrode device. Further integration of wireless and self-powered units is of practical importance for implantable bioelectronics. In this study, we developed biocompatible organic photovoltaics (OPVs) for serving as wireless electrical power supply units that can be operated under illumination with near-infrared (NIR) light, and organic bioelectronic interface (OBEI) electrode devices as neural stimulation electrodes. The OPV/OBEI integrated system is capable to provide electrical stimulation (ES) as a means of enhancing neuron-like PC12 cell differentiation and neurite outgrowth. For the OPV design, we prepared devices incorporating two photoactive material systems--β-carotene/N,N'-dioctyl-3,4,9,10-perylenedicarboximide (β-carotene/PTCDI-C8) and poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM)--that exhibited open circuit voltages of 0.11 and 0.49 V, respectively, under NIR light LED (NLED) illumination. Then, we connected OBEI devices with different electrode gaps, incorporating biocompatible poly(hydroxymethylated-3,4-ethylenedioxythiophene), to OPVs to precisely tailor the direct current electric field conditions during the culturing of PC12 cells. This NIR light-driven OPV/OBEI system could be engineered to provide tunable control over the electric field (from 220 to 980 mV mm(-1)) to promote 64% enhancement in the neurite length, direct the neurite orientation on chips, or both. The OPV/OBEI integrated systems under NIR illumination appear to function as effective power delivery platforms that should meet the requirements for wirelessly offering medical ES to a portion of the nervous system; they might also be a key technology for the development of next-generation implantable bioelectronics. PMID:26999636

  13. The status of lightweight photovoltaic space array technology based on amorphous silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hanak, Joseph J.; Kaschmitter, Jim

    1991-01-01

    Ultralight, flexible photovoltaic (PV) array of amorphous silicon (a-Si) was identified as a potential low cost power source for small satellites. A survey was conducted of the status of the a-Si PV array technology with respect to present and future performance, availability, cost, and risks. For existing, experimental array blankets made of commercial cell material, utilizing metal foil substrates, the Beginning of Life (BOL) performance at Air Mass Zero (AM0) and 35 C includes total power up to 200 W, power per area of 64 W/sq m and power per weight of 258 W/kg. Doubling of power per weight occurs when polyimide substrates are used. Estimated End of Life (EOL) power output after 10 years in a nominal low earth orbit would be 80 pct. of BOL, the degradation being due to largely light induced effects (-10 to -15 pct.) and in part (-5 pct.) to space radiation. Predictions for the year 1995 for flexible PV arrays, made on the basis of published results for rigid a-Si modules, indicate EOL power output per area and per weight of 105 W/sq m and 400 W/kg, respectively, while predictions for the late 1990s based on existing U.S. national PV program goals indicate EOL values of 157 W/sq m and 600 W/kg. Cost estimates by vendors for 200 W ultralight arrays in volume of over 1000 units range from $100/watt to $125/watt. Identified risks include the lack of flexible, space compatible encapsulant, the lack of space qualification effort, recent partial or full acquisitions of US manufacturers of a-Si cells by foreign firms, and the absence of a national commitment for a long range development program toward developing of this important power source for space.

  14. Laser processing of organic photovoltaic cells with a roll-to-roll manufacturing process

    NASA Astrophysics Data System (ADS)

    Petsch, Tino; Haenel, Jens; Clair, Maurice; Keiper, Bernd; Scholz, Christian

    2011-03-01

    Flexible large area organic photovoltaic (OPV) is currently one of the fastest developing areas of organic electronics. New light absorbing polymer blends combined with new transparent conductive materials provide higher power conversion efficiencies while new and improved production methods are developed to achieve higher throughput at reduced cost. A typical OPV is formed by TCO layers as the transparent front contact and polymers as active layer as well as interface layer between active layer and front contact. The several materials have to be patterned in order to allow for a row connection of the solar cell. 3D-Micromac used ultra-short pulsed lasers to evaluate the applicability of various wavelengths for the selective ablation of the indium tin oxide (ITO) layer and the selective ablation of the bulk hetero junction (BHJ) consisting of poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) on top of a Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) without damaging the ITO. These lasers in combination with high performance galvanometer scanning systems achieve superior scribing quality without damaging the substrate. With scribing speeds of 10 m/s and up it is possible to integrate this technology into a roll-to-roll manufacturing tool. The functionality of an OPV usually also requires an annealing step, especially when using a BHJ for the active layer consisting of P3HT:PCBM, to optimize the layers structure and therewith the efficiency of the solar cell (typically by thermal treatment, e.g. oven). The process of laser annealing was investigated using a short-pulsed laser with a wavelength close to the absorption maximum of the BHJ.

  15. Positive temperature coefficient of photovoltaic efficiency in solar cells based on InGaN/GaN MQWs

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoying; Zheng, Xiantong; Li, Zhilong; Wang, Ping; Rong, Xin; Wang, Tao; Yang, Xuelin; Xu, Fujun; Qin, Zhixin; Ge, Weikun; Shen, Bo; Wang, Xinqiang

    2016-08-01

    We report a 23.4% improvement of conversion efficiency in solar cells based on InGaN/GaN multiple quantum wells by using a patterned sapphire substrate in the fabrication process. The efficiency enhancement is due to the improvement of the crystalline quality, as proven by the reduction of the threading dislocation density. More importantly, the better crystalline quality leads to a positive photovoltaic efficiency temperature coefficient up to 423 K, which shows the property and advantage of wide gap semiconductors like InGaN, signifying the potential of III-nitride based solar cells for high temperature and concentrating solar power applications.

  16. Effect of potassium iodide on luminescent and photovoltaic properties of organic solar cells P3HT-PCBM

    NASA Astrophysics Data System (ADS)

    Ibrayev, N. Kh; Afanasyev, D. A.; Zhapabaev, K. A.

    2016-02-01

    It has been investigated spectral-luminescence properties of polymer films, doped with potassium iodide (KI). Using of KI didn't lead to the gradual changes of optical density of polymer films and the range of band gap semiconductor polymer P3HT. The fluorescence intensity of P3HT decreased and changed by use of KI. Using of 1% KI in polymer leaded to decrease of fluorescence lifetime. Influence of heavy atom on photovoltaic effect of organic solar cells has been investigated. 1% of KI in polymer film leaded to decrease of Isc and slightly decrease of Uoc. Investigation shows that magnetic field does not affect on photovoltaic properties of cells P3HT-PCBM. Magnetic field increased of open circuit voltage and short circuit current of solar cells with 1% of KI. Study of electrical impedance of cells revealed the magnetic sensivity of solar cells with KI additives. The lifetime of free charge carriers increased in the magnetic field for solar cells with KI additives.

  17. General method for simultaneous optimization of light trapping and carrier collection in an ultra-thin film organic photovoltaic cell

    SciTech Connect

    Tsai, Cheng-Chia Grote, Richard R.; Beck, Jonathan H.; Kymissis, Ioannis; Osgood, Richard M.; Englund, Dirk

    2014-07-14

    We describe a general method for maximizing the short-circuit current in thin planar organic photovoltaic (OPV) heterojunction cells by simultaneous optimization of light absorption and carrier collection. Based on the experimentally obtained complex refractive indices of the OPV materials and the thickness-dependence of the internal quantum efficiency of the OPV active layer, we analyze the potential benefits of light trapping strategies for maximizing the overall power conversion efficiency of the cell. This approach provides a general strategy for optimizing the power conversion efficiency of a wide range of OPV structures. In particular, as an experimental trial system, the approach is applied here to a ultra-thin film solar cell with a SubPc/C{sub 60} photovoltaic structure. Using a patterned indium tin oxide (ITO) top contact, the numerically optimized designs achieve short-circuit currents of 0.790 and 0.980 mA/cm{sup 2} for 30 nm and 45 nm SubPc/C{sub 60} heterojunction layer thicknesses, respectively. These values correspond to a power conversion efficiency enhancement of 78% for the 30 nm thick cell, but only of 32% for a 45 nm thick cell, for which the overall photocurrent is actually higher. Applied to other material systems, the general optimization method can elucidate if light trapping strategies can improve a given cell architecture.

  18. Impacts of Post-metallisation Processes on the Electrical and Photovoltaic Properties of Si Quantum Dot Solar Cells

    PubMed Central

    2010-01-01

    As an important step towards the realisation of silicon-based tandem solar cells using silicon quantum dots embedded in a silicon dioxide (SiO2) matrix, single-junction silicon quantum dot (Si QD) solar cells on quartz substrates have been fabricated. The total thickness of the solar cell material is 420 nm. The cells contain 4 nm diameter Si quantum dots. The impacts of post-metallisation treatments such as phosphoric acid (H3PO4) etching, nitrogen (N2) gas anneal and forming gas (Ar: H2) anneal on the cells’ electrical and photovoltaic properties are investigated. The Si QD solar cells studied in this work have achieved an open circuit voltage of 410 mV after various processes. Parameters extracted from dark I–V, light I–V and circular transfer length measurement (CTLM) suggest limiting mechanism in the Si QD solar cell operation and possible approaches for further improvement. PMID:21124642

  19. Fabrication and performance analysis of 4-sq cm indium tin oxide/InP photovoltaic solar cells

    NASA Technical Reports Server (NTRS)

    Gessert, T. A.; Li, X.; Phelps, P. W.; Coutts, T. J.; Tzafaras, N.

    1991-01-01

    Large-area photovoltaic solar cells based on direct current magnetron sputter deposition of indium tin oxide (ITO) into single-crystal p-InP substrates demonstrated both the radiation hardness and high performance necessary for extraterrestrial applications. A small-scale production project was initiated in which approximately 50 ITO/InP cells are being produced. The procedures used in this small-scale production of 4-sq cm ITO/InP cells are presented and discussed. The discussion includes analyses of performance range of all available production cells, and device performance data of the best cells thus far produced. Additionally, processing experience gained from the production of these cells is discussed, indicating other issues that may be encountered when large-scale productions are begun.

  20. Calibration and Rating of Photovoltaics: Preprint

    SciTech Connect

    Emery, K.

    2012-06-01

    Rating the performance of photovoltaic (PV) modules is critical to determining the cost per watt, and efficiency is useful to assess the relative progress among PV concepts. Procedures for determining the efficiency for PV technologies from 1-sun to low concentration to high concentration are discussed. We also discuss the state of the art in primary and secondary calibration of PV reference cells used by calibration laboratories around the world. Finally, we consider challenges to rating PV technologies and areas for improvement.

  1. Cell signalling and phospholipid metabolism. Final report

    SciTech Connect

    Boss, W.F.

    1990-12-31

    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  2. Advancements in n-Type Base Crystalline Silicon Solar Cells and Their Emergence in the Photovoltaic Industry

    PubMed Central

    ur Rehman, Atteq; Lee, Soo Hong

    2013-01-01

    The p-type crystalline silicon wafers have occupied most of the solar cell market today. However, modules made with n-type crystalline silicon wafers are actually the most efficient modules up to date. This is because the material properties offered by n-type crystalline silicon substrates are suitable for higher efficiencies. Properties such as the absence of boron-oxygen related defects and a greater tolerance to key metal impurities by n-type crystalline silicon substrates are major factors that underline the efficiency of n-type crystalline silicon wafer modules. The bi-facial design of n-type cells with good rear-side electronic and optical properties on an industrial scale can be shaped as well. Furthermore, the development in the industrialization of solar cell designs based on n-type crystalline silicon substrates also highlights its boost in the contributions to the photovoltaic industry. In this paper, a review of various solar cell structures that can be realized on n-type crystalline silicon substrates will be given. Moreover, the current standing of solar cell technology based on n-type substrates and its contribution in photovoltaic industry will also be discussed. PMID:24459433

  3. Enhancement in the photovoltaic performance of a dye-sensitized solar cell by an optimized ZnO barrier layer

    NASA Astrophysics Data System (ADS)

    Seo, Hyunwoong; Son, Min-Kyu; Kim, Jin-Kyoung; Shin, Inyoung; Prabakar, K.; Kim, Hee-Je

    2010-05-01

    A dye-sensitized solar cell (DSC) has been considered as a strong alternative to conventional photovoltaic devices based on semiconductors such as silicon or compound semiconductors. The barrier layer functioned by the use of an electrode consisting of two different conduction band potentials is very effective in increasing the photovoltaic performance of a DSC. Especially, zinc oxide (ZnO) is very effective as a barrier layer because it has a higher energy level of the conduction band than TiO2and good contact with TiO2 and dye molecules. We tried to fabricate the ZnO barrier layer using zinc acetate aqueous solution by the dip-coating method, although ZnO film is usually fabricated by chemical vapor deposition or sputter deposition. The experimental parameters were optimized to achieve an effective ZnO barrier layer. The electrochemical impedance spectroscopy and x-ray diffraction pattern were measured to analyze the ZnO layer. The photovoltaic performance of a completed DSC with an optimized ZnO barrier layer was measured and compared with that of a conventional DSC. Consequently, a DSC with a ZnO barrier layer had an increased VOC up to 0.85 V and an enhanced efficiency of 4.05%.

  4. Photovoltaic conversion of laser energy

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1976-01-01

    The Schottky barrier photovoltaic converter is suggested as an alternative to the p/n junction photovoltaic devices for the conversion of laser energy to electrical energy. The structure, current, output, and voltage output of the Schottky device are summarized. The more advanced concepts of the multilayer Schottky barrier cell and the AMOS solar cell are briefly considered.

  5. Development of large-area monolithically integrated silicon-film{trademark} photovoltaic modules. Final subcontract report, May 1, 1991--December 31, 1994

    SciTech Connect

    Hall, R.B.; Rand, J.A.; Cotter, J.E.

    1995-04-01

    The objective of this program is to develop Silicon Film{trademark} Product III into a low-cost, stable solar cell for large-scale terrestrial power applications. The Product III structure is a thin (<100 {mu}m) polycrystalline layer of silicon on a durable, insulating, ceramic substrate. The insulating substrate allows the silicon layer to be isolated and metallized to form a monolithically interconnected array of solar cells. High efficiency is achieved by the use of light trapping and passivated surfaces. This project focused on the development of five key technologies associated with the monolithic sub-module device structure: (1) development of the film deposition and growth processes; (2) development of the low-cost ceramic substrate; (3) development of a metallurgical barrier technology; (4) development of sub-element solar cell processing techniques; and (5) development of sub-module (isolation and interconnection) processes. This report covers the development approaches and results relating to these technologies. Significant progress has been made in the development of all of the related technologies. This is evidenced by the fabrication of a working 12.0 cm{sup 2} prototype sub-module consisting of 7 elements and testing with an open circuit voltage of 3.9 volts, a short circuit current of 35.2 mA and a fill factor of 63% and an overall efficiency of 7.3%. Another significant result achieved is a 13.4% (NREL verified), 1.0 cm{sup 2} solar cell fabricated from material deposited and grown on a graphite cloth substrate. The significant technological hurdle of the program was and remains the low quality of the photovoltaic layer which is caused by contamination of the photovoltaic layer from the low-cost ceramic substrate by trace impurities found in the substrate precursor materials. The ceramic substrate and metallurgical barrier are being developed specifically to solve this problem.

  6. Role of bromine doping on the photovoltaic properties and microstructures of CH3NH3PbI3 perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsushi; Okada, Hiroshi; Oku, Takeo

    2016-02-01

    Organic-inorganic hybrid heterojunction solar cells containing CH3NH3PbI3 perovskite compound were fabricated using mesoporous TiO2 as the electronic transporting layer and spirobifluorence as the hole-transporting layer. The purpose of the present study is to investigate role of bromine (Br) doping on the photovoltaic properties and microstructure of CH3NH3PbI3 perovskite solar cells. Photovoltaic, optical properties and microstructures of perovskite-based solar cells were investigated. The X-ray diffraction identified crystal structure of the perovskite layer doped with Br in the solar cell. Scanning electron microscopy observation showed a different behavior of surface morphology and the perovskite crystal structure on the TiO2 mesoporous structure depending on extent amount of hydrogen doping of Br. The role of bromide halogen doping on the perovskite crystal structure and photovoltaic properties was due to improvement of carrier mobility, optimization of electron structure, band gap related with the photovoltaic parameters of Voc, Jsc and η. Energy diagram and photovoltaic mechanism of the perovskite solar cells varied with halogen doping was discussed by experimental results.

  7. Thin film photovoltaic panel and method

    DOEpatents

    Ackerman, Bruce; Albright, Scot P.; Jordan, John F.

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  8. Solution-processed tBu4-ZnPc:C61 bulk heterojunction organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Bekalé, Laurent; Barazzouk, Saïd; Sakai, Nobuya; Murakami, Takurou; Miyoshi, Kozo; Miyasaka, Tsutomu; Hotchandani, Surat

    2016-03-01

    A bulk heterojunction (BHJ) organic photovoltaic cell employing tetra-tert-butyl zinc phthalocyanine as electron donor and [6,6]-phenyl C61-buturic acid methyl ester as electron acceptor has been fabricated. The effect of TiOx cathode interlayer, the weight ratio of donor:acceptor in the photoactive layer, and the thermal annealing of photoactive layer on the performance of the cells were investigated. The results show that the insertion of TiOx layer leads to an increase in the photocurrent density of the cells by 11 times compared to those without cathode interlayer. Atomic force microscopy images reveal the formation of well-connected percolated pathways for each phase separated component (donor and acceptor) upon annealing of the film at 150 °C. An important aspect of the present BHJ photovoltaic cell is that it has been obtained by simple wet processes, and most of the fabrication steps have been carried out in ambient air without the use of a glove box.

  9. Controlling the Morphology of BDTT-DPP-Based Small Molecules via End-Group Functionalization for Highly Efficient Single and Tandem Organic Photovoltaic Cells.

    PubMed

    Kim, Ji-Hoon; Park, Jong Baek; Yang, Hoichang; Jung, In Hwan; Yoon, Sung Cheol; Kim, Dongwook; Hwang, Do-Hoon

    2015-11-01

    A series of narrow-band gap, π-conjugated small molecules based on diketopyrrolopyrrole (DPP) electron acceptor units coupled with alkylthienyl-substituted-benzodithiophene (BDTT) electron donors were designed and synthesized for use as donor materials in solution-processed organic photovoltaic cells. In particular, by end-group functionalization of the small molecules with fluorine derivatives, the nanoscale morphologies of the photoactive layers of the photovoltaic cells were successfully controlled. The influences of different fluorine-based end-groups on the optoelectronic and morphological properties, carrier mobilities, and the photovoltaic performances of these materials were investigated. A high power conversion efficiency (PCE) of 6.00% under simulated solar light (AM 1.5G) illumination has been achieved for organic photovoltaic cells based on a small-molecule bulk heterojunction system consisting of a trifluoromethylbenzene (CF3) end-group-containing oligomer (BDTT-(DPP)2-CF3) as the donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor. As a result, the introduction of CF3 end-groups has been found to enhance both the short circuit current density (JSC) and fill factor (FF). A tandem photovoltaic device comprising an inverted BDTT-(DPP)2-CF3:PC71BM cell and a poly(3-hexylthiophene) (P3HT):indene-C60-bisadduct (IC60BA)-based cell as the top and bottom cell components, respectively, showed a maximum PCE of 8.30%. These results provide valuable guidelines for the rational design of conjugated small molecules for applications in high-performance organic photovoltaic cells. Furthermore, to the best of our knowledge, this is the first report on the design of fluorine-functionalized BDTT-DPP-based small molecules, which have been shown to be a viable candidate for use in inverted tandem cells. PMID:26457421

  10. Plasmon-enhanced polymer photovoltaic cells based on large aspect ratio gold nanorods and the related working mechanism

    SciTech Connect

    Chen, S. F.; Cheng, F.; Mei, Y.; Kong, M.; Hao, J. Y.; Zhang, R.; Wang, L. H.; Peng, B.; Xiong, Q. H. E-mail: iamdirector@njupt.edu.cn; Huang, W. E-mail: iamdirector@njupt.edu.cn

    2014-05-26

    Two types of Au nanorods (NRs) possessing longitudinal/transverse axes of 55/11 (NR{sub 11}) and 90/18 nm (NR{sub 18}) are, respectively, incorporated into the hole extraction layer to improve optical-to-electrical conversion performances in polymer photovoltaic cells. Totally different improvement factors in short-circuit current and power conversion efficiency occur in the NR{sub 11}- and NR{sub 18}-doped cells. Optical simulations, electrical analysis, and morphology alteration accompanying with the incorporation of NRs were proceeded to investigate the reason, and analysis demonstrates that a slower damping of field around NRs{sub 18} (results in a field and absorption enhancement around the active layer) and one order higher scattering cross section in the NR{sub 18}-incorporated cell are key factors contributed to the improvement of cell performances.

  11. The effect of the low Earth orbit environment on space solar cells: Results of the advanced photovoltaic experiment (S0014)

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.

    1992-01-01

    The Advanced Photovoltaic Experiment (APEX), containing over 150 solar cells and sensors, was designed to generate laboratory reference standards as well as to explore the durability of a wide variety of space solar cells. Located on the leading edge of the Long Duration Exposure Facility (LDEF), APEX received the maximum possible dosage of atomic oxygen and ultraviolet radiation, as well as enormous numbers of impacts from micrometeoroids and debris. The effect of the low earth orbital (LEO) environment on the solar cells and materials of APEX will be discussed in this paper. The on-orbit performance of the solar cells, as well as a comparison of pre- and postflight laboratory performance measurements, will be presented.

  12. See-through amorphous silicon solar cells with selectively transparent and conducting photonic crystal back reflectors for building integrated photovoltaics

    SciTech Connect

    Yang, Yang; O’Brien, Paul G.; Ozin, Geoffrey A. E-mail: kherani@ecf.utoronto.ca; Kherani, Nazir P. E-mail: kherani@ecf.utoronto.ca

    2013-11-25

    Thin semi-transparent hydrogenated amorphous silicon (a-Si:H) solar cells with selectively transparent and conducting photonic crystal (STCPC) back-reflectors are demonstrated. Short circuit current density of a 135 nm thick a-Si:H cell with a given STCPC back-reflector is enhanced by as much as 23% in comparison to a reference cell with an ITO film functioning as its rear contact. Concurrently, solar irradiance of 295 W/m{sup 2} and illuminance of 3480 lux are transmitted through the cell with a given STCPC back reflector under AM1.5 Global tilt illumination, indicating its utility as a source of space heating and lighting, respectively, in building integrated photovoltaic applications.

  13. A 24.4% solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells

    NASA Astrophysics Data System (ADS)

    Nakamura, Akihiro; Ota, Yasuyuki; Koike, Kayo; Hidaka, Yoshihide; Nishioka, Kensuke; Sugiyama, Masakazu; Fujii, Katsushi

    2015-10-01

    The highest efficiency of 24.4% for the solar-to-hydrogen (STH) energy conversion was obtained in an outdoor field test by combining concentrator photovoltaic (CPV) modules with InGaP/GaAs/Ge three-junction cells and polymer-electrolyte electrochemical (EC) cells. The high efficiency was obtained by using the high-efficiency CPV modules (∼31% under the present operation conditions) and the direct connection between the CPV modules and the EC cells with an almost optimized number of elements in series. The STH efficiency bottleneck was clarified to be the efficiency of the CPV modules, the over-potential of the EC cells, and matching of the operation point to the maximal-power point of the CPV modules.

  14. Heat treatment effects in Cu2S-CdS heterojunction photovoltaic cells. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Fahrenbruch, A. L.

    1973-01-01

    The optical and electronic properties of single crystal Cu2S-CdS photovoltaic cells were investigated. In these cells trapped charge near the interface which is manifested by a persistent increase in junction capacitance (the photocapacitance) plays a significant role in determining the carrier transport properties. It was found that the severe degradation in short-circuit current observed in heat-treated cells can be separated into two components: (1) a relatively small thermal component occurring on heat-treatment in the dark, and (2) a much larger degradation caused by exposure to light at room temperature. By a short additional heat-treatment above approximately 100 C the cell can be completely restored to its condition before the optically caused degradation with no effect on the depletion layer width.

  15. Improvement of Performance and Stability of Polymer Photovoltaic Cells by WO3/CUPC as Anode Buffer Layers

    NASA Astrophysics Data System (ADS)

    Varnamkhasti, M. G.; Shahriaria, E.

    2015-05-01

    In this work, bulk-hetrojunction polymer photovoltaic cells based on poly-(3-hexylthiophene) (P3HT): [6,6]-phenyl C61 butyric acid methyl ester (PCBM) were fabricated with tungsten oxide (WO3) and copper phthalocyanine (CuPc) as anodic buffer layers. The WO3 plays an important role in reducing the interfacial resistance, efficiently extracting holes and good band structure matching between the work function of the anode and the highest occupied molecular orbital of the organic material. The insertion of CuPc improves the device In this work, bulk-hetrojunction polymer photovoltaic cells based on poly-(3-hexylthiophene) (P3HT): [6, 6]-phenyl C61 butyric acid methylester (PCBM) were fabricated with tungsten oxide (WO3) and copper phthalocyanine (CuPc) as anodic buffer layers. The WO3 plays animportant role in reducing the interfacial resistance, efficiently extracting holes and good band structure matching between the workfunction of the anode and the highest occupied molecular orbital of the organic material. The insertion of CuPc improves the device performance and expands the absorption spectra range of the photovoltaic devices. The effects of WO3 and CuPc thickness on the performance of the photovoltaic devices were investigated. The optimum thicknesses of WO3 and CuPc were 10 nm and 8 nm, respectively. The obtained power conversion efficiency of optimized cell was about 4.21%. Also, the device performance was analyzed based on thesurface roughness of bare ITO and ITO that was covered with poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT:PSS) or WO3/CuPc. The device stability in an ambient atmosphere without encapsulation under continuous light irradiation was also investigated.For the cell with PEDOT:PSS, the power conversion efficiency reduced down to 50% of the maximum value (half-life) after light irradiation for 12 h, while the half-life of device for WO3/CuPc was about 120 h. Therefore, the lifetime of unpackaged devices was improved with

  16. CIBS Solar Cell Development Final Scientific/Technical Report

    SciTech Connect

    Exstrom, Christopher L.; Soukup, Rodney J.; Ianno, Natale J.

    2011-09-28

    Efforts to fabricate and study a new photovoltaic material, copper indium boron diselenide (CuInxB1-xSe2 or CIBS), were undertaken. Attempts to prepare CIBS using sputtering deposition techniques resulted in segregation of boron from the rest of elements in the material. CIBS nanocrystals were prepared from the reaction of elemental Se with CuCl, InCl3, and boric acid in solution, but the product material quickly decomposed upon heating that was required in attempts to convert the nanocrystals into a thin film. The investigation of the reasons for the lack of CIBS material stability led to new structure-property studies of closely-related photovoltaic systems as well as studies of new solar cell materials and processing methods that could enhance the development of next-generation solar technologies. A detailed compositional study of CuIn1-xAlxSe2 (CIAS, a system closely related to CIBS) revealed a non-linear correlation between crystal lattice size and the Al/(In+Al) ratios with dual-phase formation being observed. A new nanocrystal-to-thin-film processing method was developed for the preparation of CuIn1-xGaxSe2 (CIGS) thin films in which colloidal Se particles are sprayed in contact with CuIn1-xGaxS2 nanoparticles and heated in an argon atmosphere with no other Se source in the system. The process is non-vacuum and does not require toxic gases such as Se vapor or H2Se. Expertise gained from these studies was applied to new research in the preparation of thin-film pyrite FeS2, an attractive earth-abundant candidate material for next-generation photovoltaics. Three methods successfully produced pure pyrite FeS2 films: sulfurization of sputtered Fe films, chemical bath deposition, and sulfurization of Fe2O3 sol-gel precursors. The last method produced pinhole-free films that may be viable for device development. Nickel, platinum, and possibly carbon would appear to serve as good ohmic contact materials. While CdS has a reasonable conduction band energy match to

  17. Analysis of regenerative fuel cells. Final report

    SciTech Connect

    Gross, S.

    1982-11-01

    The concept of a rechargeable fuel cell (RFC) system is considered. A newer type of rechargeable battery, the nickel hydrogen (Ni-H2) battery, is also evaluated. A review was made of past studies which showed large variations in weight, cost, and efficiency. Hydrogen-bromine and hydrogen-chlorine regenerable fuel cells were studied, and were found to have a potential for higher energy storage efficiency then the hydrogen-oxygen system. A reduction of up to 15 percent in solar array size may be possible as a result. These systems are not yet developed, but further study of them is recommended.

  18. Catalyzing Mass Production of Solar Photovoltaic Cells Using University Driven Green Purchasing

    ERIC Educational Resources Information Center

    Pearce, Joshua M.

    2006-01-01

    Purpose: The purpose of this paper is to explore the use of the purchase power of the higher education system to catalyze the economy of scale necessary to ensure market competitiveness for solar photovoltaic electricity. Design/methodology/approach: The approach used here was to first determine the demand necessary to construct "Solar City…

  19. Photovoltaic concentrator research progress

    SciTech Connect

    Arvizu, D.E.

    1985-01-01

    This paper provides a review of progress in the DOE sponsored, Sandia managed Photovoltaic Concentrator Research Project. Research status, project goals and a discussion of concentrator economics is presented. Recent research accomplishments that will be discussed include 21% efficient baseline silicon cells by Applied Solar Energy Corporation and Sandia, 26% efficient GaAs cells by Varian Associates, and near 25% mechanically stacked multijunction GaAs/Si cells by Hughes Research, Applied Solar, and Sandia. In addition, improvements in breadboard module units (i.e. single lens/cell combination) such as a 19% GaAs unit by Varian and a near 17% silicon unit by ENTECH will be reviewed. This paper concludes that the photovoltaic concentrator option is making excellent progress toward competitive cost-effectiveness and provides a strong photovoltaic alternative.

  20. Analysis of Thermal Losses for a Variety of Single-Junction Photovoltaic Cells: An Interesting Means of Thermoelectric Heat Recovery

    NASA Astrophysics Data System (ADS)

    Lorenzi, Bruno; Acciarri, Maurizio; Narducci, Dario

    2015-06-01

    Exploitation of solar energy conversion has become a fundamental aspect of satisfying a growing demand for energy. Thus, improvement of the efficiency of conversion in photovoltaic (PV) devices is highly desirable to further promote this source. Because it is well known that the most relevant efficiency constraint, especially for single-junction solar cells, is unused heat within the device, hybrid thermo-photovoltaic systems seem promising . Among several hybrid solutions proposed in the literature, coupling of thermoelectric and PV devices seems one of the most interesting. Taking full advantage of this technology requires proper definition and analysis of the thermal losses occurring in PV cells. In this communication we propose a novel analysis of such losses, decoupling source-dependent and absorber-dependent losses. This analysis enables an evaluation of the actual recoverable amount of energy, depending on the absorber used in the PV cell. It shows that for incoming solar irradiation of , and depending on the choice of material, the maximum available thermal power ranges from (for single-crystal silicon) to (for amorphous silicon).