Science.gov

Sample records for photovoltaic spectral responsivity

  1. Photovoltaic spectral responsivity measurements

    SciTech Connect

    Emery, K.; Dunlavy, D.; Field, H.; Moriarty, T.

    1998-09-01

    This paper discusses the various elemental random and nonrandom error sources in typical spectral responsivity measurement systems. The authors focus specifically on the filter and grating monochrometer-based spectral responsivity measurement systems used by the Photovoltaic (PV) performance characterization team at NREL. A variety of subtle measurement errors can occur that arise from a finite photo-current response time, bandwidth of the monochromatic light, waveform of the monochromatic light, and spatial uniformity of the monochromatic and bias lights; the errors depend on the light source, PV technology, and measurement system. The quantum efficiency can be a function of he voltage bias, light bias level, and, for some structures, the spectral content of the bias light or location on the PV device. This paper compares the advantages and problems associated with semiconductor-detector-based calibrations and pyroelectric-detector-based calibrations. Different current-to-voltage conversion and ac photo-current detection strategies employed at NREL are compared and contrasted.

  2. Survey of spectral response measurements for photovoltaic devices

    SciTech Connect

    Hartman, J.S.; Lind, M.A.

    1981-11-01

    A survey of the photovoltaic community was conducted to ascertain the present state-of-the-art for PV spectral response measurements. Specific topics explored included measurement system designs, good and bad features of the systems, and problems encountered in the evaluation of specific cell structures and materials. The survey showed that most spectral response data are used in diagnostic analysis for the optimization of developmental solar cells. Measurement systems commonly utilize a chopped narrowband source in conjunction with a constant bias illumination which simulates the ambient end use environment. Researchers emphasized the importance of bias illumination for all types of cells in order to minimize the effects of nonlinearities in cell response. Not surprisingly single crystal silicon cells present the fewest measurement problems to the researcher and have been studied more thoroughly than any other type of solar cell. But, the accurate characterization of silicon cells is still difficult and laboratory intercomparison studies have yielded data scatter ranging from +-5% to +-15%. The measurement experience with other types of cells is less extensive. The development of reliable data bases for some solar cells is complicated by problems of cell nonuniformity, environmental instability, nonlinearity, etc. Cascade cells present new problems associated with their structue (multiple cells in series) which are just beginning to be understood. In addition, the importance of many measurement parameters (spectral content of bias light, bias light intensity, bias voltage, chopping frequency, etc.) are not fully understood for most types of solar cells.

  3. Multijunction organic photovoltaics with a broad spectral response.

    PubMed

    Macko, Jill A; Lunt, Richard R; Osedach, Timothy P; Brown, Patrick R; Barr, Miles C; Gleason, Karen K; Bulovic, Vladimir

    2012-11-14

    We demonstrate series-integrated multijunction organic photovoltaics fabricated monolithically by vapor-deposition in a transposed subcell order with the near-infrared-absorbing subcell in front of the green-absorbing subcell. This transposed subcell order is enabled by the highly complementary absorption spectra of a near-infrared-absorbing visibly-transparent subcell and a visible-absorbing subcell and motivated by the non-spatially-uniform optical intensity in nanoscale photovoltaics. The subcell order and thicknesses are optimized via transfer-matrix formalism and short-circuit current simulations. An efficient charge recombination zone consisting of layers of BCP/Ag/MoOx leads to negligible voltage and series-resistance losses. Under 1-sun illumination the multijunction solar cells exhibit a power conversion efficiency of 5.5 ± 0.2% with an FF of 0.685 ± 0.002 and a V(OC) of 1.65 ± 0.02 V, corresponding to the sum of the V(OC) of the component subcells. These devices exhibit a broad spectral response (in the wavelength range of 350 nm to 850 nm) but are limited by subcell external quantum efficiencies between 20% and 30% over the photoactive spectrum. PMID:23014483

  4. Spectral response measurement of double-junction thin-film photovoltaic devices: the impact of shunt resistance and bias voltage

    NASA Astrophysics Data System (ADS)

    Pravettoni, Mauro; Galleano, Roberto; Virtuani, Alessandro; Müllejans, Harald; Dunlop, Ewan D.

    2011-04-01

    Multijunction photovoltaic (PV) thin-film modules are becoming more and more important on the market, due to their low cost and improved module efficiency now well above 10%. The spectral response (SR) measurement of multijunction thin-film cells presents additional challenges with respect to the SR measurement procedure for single-junction devices. Several works have appeared in the last 15 years in the PV literature, describing certain measurement artefacts that typically appear when measuring the SR of multijunction cells without applying an appropriate voltage bias to the entire cell. In this paper, the authors revise the theoretical description of SR measurements on multijunction devices, show how to detect the possible origin of measurement artefacts from the dark SR and show why bias voltage sometimes is not enough to avoid such artefacts or why it is not even necessary. An experimental confirmation of the theoretical approach is finally given.

  5. Photovoltaic hybrid device with broad tunable spectral response achieved by organic/inorganic thin-film heteropairing

    NASA Astrophysics Data System (ADS)

    Schroeder, R.; Ullrich, B.

    2002-07-01

    By means of laser deposition, spin casting and vacuum evaporation, optoelectronic hybrid devices were manufactured based upon the thin-film heteropairing of a perylene-derived molecule [di-isoquinoline perylene derivative (DQP)] and CdS. The photovoltaic characteristics of the devices are presented and discussed. We demonstrate that by exploitation of relatively high carrier mobilities in the CdS layer and the high photonic yield and deposition ease of the DQP film, efficient and technologically appealing optoelectronic devices are feasible. In addition, bias dependence of the spectral sensitivity demonstrates the versatility of the introduced device concept in light of photonic sensor applications.

  6. Predicting the Spectral Effects of Soils on Concentrating Photovoltaic Systems

    DOE PAGESBeta

    Burton, Patrick D.; King, Bruce Hardison; Riley, Daniel M.

    2014-12-15

    The soiling losses on high concentrating photovoltaic (HCPV) systems may be influenced by the spectral properties of accumulated soil. We predicted the response of an isotype cell to changes in spectral content and reduction in transmission due to soiling using measured UV/vis transmittance through soil films. Artificial soil test blends deposited on glass coupons were used to supply the transmission data, which was then used to calculate the effect on model spectra. Moreover, the wavelength transparency of the test soil was varied by incorporating red and yellow mineral pigments into graded sand. The more spectrally responsive (yellow) soils were predictedmore » to alter the current balance between the top and middle subcells throughout a range of air masses corresponding to daily and seasonal variation.« less

  7. Predicting the Spectral Effects of Soils on Concentrating Photovoltaic Systems

    SciTech Connect

    Burton, Patrick D.; King, Bruce Hardison; Riley, Daniel M.

    2014-12-15

    The soiling losses on high concentrating photovoltaic (HCPV) systems may be influenced by the spectral properties of accumulated soil. We predicted the response of an isotype cell to changes in spectral content and reduction in transmission due to soiling using measured UV/vis transmittance through soil films. Artificial soil test blends deposited on glass coupons were used to supply the transmission data, which was then used to calculate the effect on model spectra. Moreover, the wavelength transparency of the test soil was varied by incorporating red and yellow mineral pigments into graded sand. The more spectrally responsive (yellow) soils were predicted to alter the current balance between the top and middle subcells throughout a range of air masses corresponding to daily and seasonal variation.

  8. Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kinoshita, Takumi; Nonomura, Kazuteru; Joong Jeon, Nam; Giordano, Fabrizio; Abate, Antonio; Uchida, Satoshi; Kubo, Takaya; Seok, Sang Il; Nazeeruddin, Mohammad Khaja; Hagfeldt, Anders; Grätzel, Michael; Segawa, Hiroshi

    2015-11-01

    The extension of the light absorption of photovoltaics into the near-infrared region is important to increase the energy conversion efficiency. Although the progress of the lead halide perovskite solar cells is remarkable, and high conversion efficiency of >20% has been reached, their absorption limit on the long-wavelength side is ~800 nm. To further enhance the conversion efficiency of perovskite-based photovoltaics, a hybridized system with near-infrared photovoltaics is a useful approach. Here we report a panchromatic sensitizer, coded DX3, that exhibits a broad response into the near-infrared, up to ~1100 nm, and a photocurrent density exceeding 30 mA cm-2 in simulated air mass 1.5 standard solar radiation. Using the DX3-based dye-sensitized solar cell in conjunction with a perovskite cell that harvests visible light, the hybridized mesoscopic photovoltaics achieved a conversion efficiency of 21.5% using a system of spectral splitting.

  9. Enhanced photovoltaic energy conversion using thermally based spectral shaping

    NASA Astrophysics Data System (ADS)

    Bierman, David M.; Lenert, Andrej; Chan, Walker R.; Bhatia, Bikram; Celanović, Ivan; Soljačić, Marin; Wang, Evelyn N.

    2016-06-01

    Solar thermophotovoltaic devices have the potential to enhance the performance of solar energy harvesting by converting broadband sunlight to narrow-band thermal radiation tuned for a photovoltaic cell. A direct comparison of the operation of a photovoltaic with and without a spectral converter is the most critical indicator of the promise of this technology. Here, we demonstrate enhanced device performance through the suppression of 80% of unconvertible photons by pairing a one-dimensional photonic crystal selective emitter with a tandem plasma–interference optical filter. We measured a solar-to-electrical conversion rate of 6.8%, exceeding the performance of the photovoltaic cell alone. The device operates more efficiently while reducing the heat generation rates in the photovoltaic cell by a factor of two at matching output power densities. We determined the theoretical limits, and discuss the implications of surpassing the Shockley–Queisser limit. Improving the performance of an unaltered photovoltaic cell provides an important framework for the design of high-efficiency solar energy converters.

  10. Multiband spectral emitters matched to MBE grown photovoltaic cells

    SciTech Connect

    Wong, E.M.; Hickey, J.P.; Holmquist, G.A.; Uppal, P.N.; Waldman, C.H.

    1996-02-01

    Clearly TPV devices are of considerable interest for power generation. For practical devices it is desirable to have high efficiencies combined with low temperature operation. Photovoltaic cells which can convert the energy at the longer wavelengths of interest are needed to complete such a system. The spectral emission peak of Yb{sub 2}O{sub 3} is well matched to the band gap of Si; however, the longer wavelength, spectral emissions of other rare earth oxides can also be exploited through the use of III{endash}V semiconductor compounds such as GaSb or alloys of GaInAsSb. By doping GaSb with InAs, the band gap of the resulting material can be effectively varied depending upon the concentration of InAs in the quaternary alloy. The ability to tailor the emitter materials and, in conjunction, the photovoltaic materials leads to greater efficiencies through spectral matching. Two binary rare earth oxide combinations, Er{sub 2}O{sub 3}/Ho{sub 2}O{sub 3} and Er{sub 2}O{sub 3}/Yb{sub 2}O{sub 3}, were studied. The mixtures were found to give multiple peak spectral emission in the wavelengths of interest. The intensity of the peaks were compositionally dependent though it did not vary in a linear fashion. Photon efficiencies of the molecular beam epitaxially (MBE) grown GaSb cell and GaInAsSb quaternary cell were measured when used in conjunction with the Er{sub 2}O{sub 3}/Ho{sub 2}O{sub 3} emitters in which the concentration of Er{sub 2}O{sub 3} and Ho{sub 2}O{sub 3} were varied. The results demonstrated promise for further work. {copyright} {ital 1996 American Institute of Physics.}

  11. Spectral losses of high concentrator photovoltaic modules depending on latitude

    NASA Astrophysics Data System (ADS)

    Soria-Moya, Alberto; Fernández, Eduardo F.; Almonacid, Florencia; Mallick, Tapas K.

    2015-09-01

    High concentrator photovoltaic (HCPV) modules and systems are affected by changes on the incident solar spectrum. It is well known that among all the atmospheric parameters, the air mass has the largest impact on the spectral behavior of HCPV devices. The air mass can be considered as a geometrical parameter which depends entirely on the Sun's zenith angle (θ). Because of this, the yield of HCPV modules is affected by latitude. In this paper, a new method to estimate the gains/losses of energy due to the spectral impact has been introduced. Furthermore, the annual spectral losses depending on latitude have been calculated for several theoretical modules. For default values defined in the standard AM1.5d ASTM G-173-03 spectrum, results show that the spectral losses are almost independent of latitude for locations with low latitude values. Losses between 3% and 5% on the annual energy yield have been estimated for those areas. For high latitudes, the losses increase until they reach values between 10% and 14%. Results depend on the multi-junction solar cells and optical devices of the HCPV module considered.

  12. Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells

    PubMed Central

    Kinoshita, Takumi; Nonomura, Kazuteru; Joong Jeon, Nam; Giordano, Fabrizio; Abate, Antonio; Uchida, Satoshi; Kubo, Takaya; Seok, Sang Il; Nazeeruddin, Mohammad Khaja; Hagfeldt, Anders; Grätzel, Michael; Segawa, Hiroshi

    2015-01-01

    The extension of the light absorption of photovoltaics into the near-infrared region is important to increase the energy conversion efficiency. Although the progress of the lead halide perovskite solar cells is remarkable, and high conversion efficiency of >20% has been reached, their absorption limit on the long-wavelength side is ∼800 nm. To further enhance the conversion efficiency of perovskite-based photovoltaics, a hybridized system with near-infrared photovoltaics is a useful approach. Here we report a panchromatic sensitizer, coded DX3, that exhibits a broad response into the near-infrared, up to ∼1100 nm, and a photocurrent density exceeding 30 mA cm−2 in simulated air mass 1.5 standard solar radiation. Using the DX3-based dye-sensitized solar cell in conjunction with a perovskite cell that harvests visible light, the hybridized mesoscopic photovoltaics achieved a conversion efficiency of 21.5% using a system of spectral splitting. PMID:26538097

  13. Description and availability of the SMARTS spectral model for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Myers, Daryl R.; Gueymard, Christian A.

    2004-11-01

    Limited spectral response range of photocoltaic (PV) devices requires device performance be characterized with respect to widely varying terrestrial solar spectra. The FORTRAN code "Simple Model for Atmospheric Transmission of Sunshine" (SMARTS) was developed for various clear-sky solar renewable energy applications. The model is partly based on parameterizations of transmittance functions in the MODTRAN/LOWTRAN band model family of radiative transfer codes. SMARTS computes spectra with a resolution of 0.5 nanometers (nm) below 400 nm, 1.0 nm from 400 nm to 1700 nm, and 5 nm from 1700 nm to 4000 nm. Fewer than 20 input parameters are required to compute spectral irradiance distributions including spectral direct beam, total, and diffuse hemispherical radiation, and up to 30 other spectral parameters. A spreadsheet-based graphical user interface can be used to simplify the construction of input files for the model. The model is the basis for new terrestrial reference spectra developed by the American Society for Testing and Materials (ASTM) for photovoltaic and materials degradation applications. We describe the model accuracy, functionality, and the availability of source and executable code. Applications to PV rating and efficiency and the combined effects of spectral selectivity and varying atmospheric conditions are briefly discussed.

  14. Spectral response from blackbody measurements

    NASA Astrophysics Data System (ADS)

    Moore, W. J.

    1981-07-01

    Far-infrared and submillimeter detector responsivity and spectral response measurements can be performed simultaneously by sweeping the temperature of a cooled blackbody. Such measurements yield n simultaneous linear equations for n blackbody temperatures. Matrix inversion solutions are observed to fail due to a matrix ill-conditioned for inversion. However, an unconditionally convergent iterative solution can be performed. Results for a gallium-doped germanium detector are described.

  15. Solar cell spectral response characterization

    NASA Technical Reports Server (NTRS)

    Zalewski, E. F.; Geist, J.

    1979-01-01

    The absolute spectral response of solar cells is reported in the 400-1000-nm spectral region. Measurements were performed using two different types of monochromatic sources: amplitude-stabilized CW laser lines and interference filters with an incandescent lamp. Both types of calibration procedures use electrical substitution radiometry as the basis of traceability to absolute SI units. The accuracy of the calibration is shown to be limited by the nonideal characteristics of the solar cells themselves, specifically spatial nonuniformities and nonlinearities induced by high light levels.

  16. Photoconductive and photovoltaic response of high-dark-resistivity 6H-SiC devices

    NASA Technical Reports Server (NTRS)

    Cho, Pak S.; Goldhar, Julius; Lee, Chi H.; Saddow, Stephen E.; Neudeck, Philip

    1995-01-01

    The optoelectronic properties of high-resistivity p-type hexagonal silicon carbide (6H-SiC) have been investigated using lateral photoconductive switches. Both photovoltaic and photoconductive effects are reported, measured at 337 nm, which is above the 6H-SiC absorption edge. These photoconductive switches have been fabricated with dark resistances of up to 1 M omega; photoconductive switching efficiencies of more than 80% have been achieved. In addition, these devices displayed a high-speed photovoltaic response to nanosecond laser excitations in the ultraviolet spectral region; in particular, the observed photovoltaic response pulse width can be shorter than the exciting laser pulse width. This subnanosecond photovoltaic response has been modeled and good qualitative agreement with experiment has been obtained.

  17. Reconstruction of solar spectral resource using limited spectral sampling for concentrating photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Tatsiankou, Viktar; Hinzer, Karin; Mohammed, Jafaru; Muron, Aaron; Wilkins, Matthew; Haysom, Joan; Schriemer, Henry; Myrskog, Stefan

    2013-10-01

    One of the challenges associated with forecasting and evaluating concentrating photovoltaic system (CPV) performance in diverse locations is the lack of high-quality spectral solar resource data. Various local atmospheric conditions such as air mass, aerosols, and atmospheric gases affect daily CPV module operation. A multi-channel filter radiometer (MFCR) can be used to quantify these effects at relatively low cost. The proposed method of selectively sampling the solar spectrum at specific wavelength channels to spectrally reconstruct incident irradiance is described and extensively analyzed. Field spectroradiometer (FSR) measurements at the University of Ottawa's CPV testing facility (45.42°N, 75.68°W) are fed into our model to mimic the outputs from the MCFR. The analysis is performed over a two year period (2011-2012), using 46,564 spectra. A recommendation is made to use four aerosols channels at 420, 500, 780, and 1050 nm, one ozone channel at 610 nm and one water vapour channel at 940 nm, all of which can be measured with ubiquitous Si photodiodes. A simulation of this MFCR channel configuration produces an RMS error under 1.5% over 96% of the 350-1830 nm range, when compared with the FSR, for the 2012 data set in Ottawa.

  18. Ultrafast Photovoltaic Response in Ferroelectric Nanolayers

    SciTech Connect

    Daranciang, Dan

    2012-02-15

    We show that light drives large-amplitude structural changes in thin films of the prototypical ferroelectric PbTiO3 via direct coupling to its intrinsic photovoltaic response. Using time-resolved x-ray scattering to visualize atomic displacements on femtosecond timescales, photoinduced changes in the unit-cell tetragonality are observed. These are driven by the motion of photogenerated free charges within the ferroelectric and can be simply explained by a model including both shift and screening currents, associated with the displacement of electrons first antiparallel to and then parallel to the ferroelectric polarization direction.

  19. Terrestrial Solar Spectral Modeling Tools and Applications for Photovoltaic Devices: Preprint

    SciTech Connect

    Myers, D. R.; Emery, K. E.; Gueymard, C.

    2002-05-01

    This conference paper describes the variations in terrestrial spectral irradiance on photovoltaic devices can be an important consideration in photovoltaic device design and performance. This paper describes three available atmospheric transmission models, MODTRAN, SMARTS2, and SPCTRAL2. We describe the basics of their operation and performance, and applications in the photovoltaic community. Examples of model input and output data and comparisons between the model results for each under similar conditions are presented. The SMARTS2 model is shown to be much easier to use, as accurate as the complex MODTRAN model, and more accurate than the historical NREL SPCTRAL2 model.

  20. Spectral sensitization in an organic p-n junction photovoltaic cell

    SciTech Connect

    Harima, Y.; Yamashita, K.; Suzuki, H.

    1984-11-15

    Electric and photovoltaic characteristics of an orgainic p-n junction photovoltaic cell are described, where the p-type and n-type compounds used are phthalocyaninatozinc (II) (ZnPc) and 5, 10, 15, 20 -tetra (3-pyridyl) porphyrin (TPyP), respectively. The p-n junction cell with a thin film of TPyP exhibited stronger spectral sensitization and better spectral match to a solar spectrum than the Schottky barrier cells using either TPyP and ZnPc. The energy conversion efficiency found was about 2% for monochromatic light at 430 nm.

  1. Proposed Reference Spectral Irradiance Standards to Improve Photovoltaic Concentrating System Design and Performance Evaluation: Preprint

    SciTech Connect

    Myers, D. R.; Emery, K. E.; Gueymard, C.

    2002-05-01

    This conference paper describes the American Society for Testing and Materials (ASTM), the International Electrotechnical Commission (IEC), and the International Standards Organization (ISO) standard solar terrestrial spectra (ASTM G-159, IEC-904-3, ISO 9845-1) provide standard spectra for photovoltaic performance applications. Modern terrestrial spectral radiation models and knowledge of atmospheric physics are applied to develop suggested revisions to update the reference spectra. We use a moderately complex radiative transfer model (SMARTS2) to produce the revised spectra. SMARTS2 has been validated against the complex MODTRAN radiative transfer code and spectral measurements. The model is proposed as an adjunct standard to reproduce the reference spectra. The proposed spectra represent typical clear sky spectral conditions associated with sites representing reasonable photovoltaic energy production and weathering and durability climates. The proposed spectra are under consideration by ASTM.

  2. Spectral response measurements with white light bias

    NASA Technical Reports Server (NTRS)

    Devaney, W.; Lorenz, S.; Meakin, J. D.

    1976-01-01

    The spectral response of solar cells such as the CdS/Cu2S cell is non-linear with distinct quenching and enhancement bands. One possible technique to produce standardized solar efficiencies is to fold in spectral response with a standard solar spectrum. The spectral response of a cell was measured in a way which matched cell behavior under white light illumination. A technique was developed to measure the response of a cell to low intensity chopped monochromatic light while the cell is also illuminated with a white light bias corresponding to AMI.

  3. Planck 2013 results. IX. HFI spectral response

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme, B.; Santos, D.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    The Planck High Frequency Instrument (HFI) spectral response was determined through a series of ground based tests conducted with the HFI focal plane in a cryogenic environment prior to launch. The main goal of the spectral transmission tests was to measure the relative spectral response (includingthe level of out-of-band signal rejection) of all HFI detectors to a known source of electromagnetic radiation individually. This was determined by measuring the interferometric output of a continuously scanned Fourier transform spectrometer with all HFI detectors. As there is no on-board spectrometer within HFI, the ground-based spectral response experiments provide the definitive data set for the relative spectral calibration of the HFI. Knowledge of the relative variations in the spectral response between HFI detectors allows for a more thorough analysis of the HFI data. The spectral response of the HFI is used in Planck data analysis and component separation, this includes extraction of CO emission observed within Planck bands, dust emission, Sunyaev-Zeldovich sources, and intensity to polarization leakage. The HFI spectral response data have also been used to provide unit conversion and colour correction analysis tools. While previous papers describe the pre-flight experiments conducted on the Planck HFI, this paper focusses on the analysis of the pre-flight spectral response measurements and the derivation of data products, e.g. band-average spectra, unit conversion coefficients, and colour correction coefficients, all with related uncertainties. Verifications of the HFI spectral response data are provided through comparisons with photometric HFI flight data. This validation includes use of HFI zodiacal emission observations to demonstrate out-of-band spectral signal rejection better than 108. The accuracy of the HFI relative spectral response data is verified through comparison with complementary flight-data based unit conversion coefficients and colour correction

  4. Point-focus spectral splitting solar concentrator for multiple cells concentrating photovoltaic system

    NASA Astrophysics Data System (ADS)

    Maragliano, Carlo; Chiesa, Matteo; Stefancich, Marco

    2015-10-01

    In this paper we present and experimentally validate a low-cost design of a spectral splitting concentrator for the efficient conversion of solar energy. The optical device consists of a dispersive prismatic lens made of polycarbonate designed to simultaneously concentrate solar light and split it into its spectral components. With respect to our previous implementation, this device concentrates light along two axes and generates a light pattern compatible with the dimensions of a set of concentrating photovoltaic cells, while providing a higher concentration ratio. The mathematical framework and the constructive approach used for the design are presented and the device performance is simulated using ray-tracing software. We obtain spectral separation in the visible range within a 3 × 1 cm2 area and a maximum concentration of 210× for a single wavelength. The device is fabricated by injection molding and its performance is experimentally investigated. We measure an optical transmissivity above 90% in the range 400-800 nm and we observe a spectral distribution in good accordance with simulations. Our results demonstrate the feasibility of the device for cost effective high efficiency concentrated photovoltaic systems.

  5. Calibration of the ROSAT HRI Spectral Response

    NASA Technical Reports Server (NTRS)

    Prestwich, Andrea H.; Silverman, John; McDowell, Jonathan; Callanan, Paul; Snowden, Steve

    2000-01-01

    The ROSAT High Resolution Imager has a limited (2-band) spectral response. This spectral capability can give X-ray hardness ratios on spatial scales of 5 arcseconds. The spectral response of the center of the detector was calibrated before the launch of ROSAT, but the gain decreases with time and also is a function of position on the detector. To complicate matters further, the satellite is 'wobbled', possibly moving a source across several spatial gain states. These difficulties have prevented the spectral response of the ROSAT High Resolution Imager (HRI) from being used for scientific measurements. We have used Bright Earth data and in-flight calibration sources to map the spatial and temporal gain changes, and written software which will allow ROSAT users to generate a calibrated XSPEC (an x ray spectral fitting package) response matrix and hence determine a calibrated hardness ratio. In this report, we describe the calibration procedure and show how to obtain a response matrix. In Section 2 we give an overview of the calibration procedure, in Section 3 we give a summary of HRI spatial and temporal gain variations. Section 4 describes the routines used to determine the gain distribution of a source. In Sections 5 and 6, we describe in detail how, the Bright Earth database and calibration sources are used to derive a corrected response matrix for a given observation. Finally, Section 7 describes how to use the software.

  6. Calibration of the ROSAT HRI Spectral Response

    NASA Technical Reports Server (NTRS)

    Prestwich, Andrea

    1998-01-01

    The ROSAT High Resolution Imager has a limited (2-band) spectral response. This spectral capability can give X-ray hardness ratios on spatial scales of 5 arcseconds. The spectral response of the center of the detector was calibrated before the launch of ROSAT, but the gain decreases-with time and also is a function of position on the detector. To complicate matters further, the satellite is "wobbled", possibly moving a source across several spatial gain states. These difficulties have prevented the spectral response of the ROSAT HRI from being used for scientific measurements. We have used Bright Earth data and in-flight calibration sources to map the spatial and temporal gain changes, and written software which will allow ROSAT users to generate a calibrated XSPEC response matrix and hence determine a calibrated hardness ratio. In this report, we describe the calibration procedure and show how to obtain a response matrix. In Section 2 we give an overview of the calibration procedure, in Section 3 we give a summary of HRI spatial and temporal gain variations. Section 4 describes the routines used to determine the gain distribution of a source. In Sections 5 and 6, we describe in detail how the Bright Earth database and calibration sources are used to derive a corrected response matrix for a given observation. Finally, Section 7 describes how to use the software.

  7. A high temperature hybrid photovoltaic-thermal receiver employing spectral beam splitting for linear solar concentrators

    NASA Astrophysics Data System (ADS)

    Mojiri, Ahmad; Stanley, Cameron; Rosengarten, Gary

    2015-09-01

    Hybrid photovoltaic/thermal (PV-T) solar collectors are capable of delivering heat and electricity concurrently. Implementing such receivers in linear concentrators for high temperature applications need special considerations such as thermal decoupling of the photovoltaic (pv) cells from the thermal receiver. Spectral beam splitting of concentrated light provides an option for achieving this purpose. In this paper we introduce a relatively simple hybrid receiver configuration that spectrally splits the light between a high temperature thermal fluid and silicon pv cells using volumetric light filtering by semi-conductor doped glass and propylene glycol. We analysed the optical performance of this device theoretically using ray tracing and experimentally through the construction and testing of a full scale prototype. The receiver was mounted on a commercial parabolic trough concentrator in an outdoor experiment. The prototype receiver delivered heat and electricity at total thermal efficiency of 44% and electrical efficiency of 3.9% measured relative to the total beam energy incident on the primary mirror.

  8. Infrared spectral responsivity scale realization and validations.

    PubMed

    Eppeldauer, George P; Podobedov, Vyacheslav B

    2012-09-01

    An InSb working standard radiometer, first calibrated at the National Institute of Standards and Technology (NIST) in 1999 against a cryogenic bolometer, was recently calibrated against a newly developed low-noise-equivalent-power pyroelectric transfer standard detector. The pyroelectric transfer standard, which can operate at the output of a monochromator, holds the newly realized NIST spectral power responsivity scale between 1.7 and 14 μm with an uncertainty of 1% (k=2). The InSb working standard was also measured at the National Physical Laboratory (NPL) of the United Kingdom in 1999. The less than 2% spectral power responsivity disagreements obtained on the InSb working standard (both from the 1999 NIST and NPL comparison and also against the pyroelectric standard) validate the three independently realized power responsivity scales and verify the long-term stability of the InSb working standard. The InSb working standard was also used in irradiance measurement mode to validate the previously determined spectral irradiance responsivity of four narrowband InSb radiometers that were applied to calibrate IR target simulators. The uncertainty of the present spectral irradiance responsivity scale held by the InSb working standard is 2.5% (k=2) in the 2 to 5.2 μm wavelength range. PMID:22945145

  9. Photovoltaics

    NASA Astrophysics Data System (ADS)

    Seippel, R. G.

    This book attempts to provide the reader with a cursory look at solar energy from a quarry of quartz to a sophisticated solar system. The progression of the theories of light is discussed along with the progression of photoelectricity, light rays, the optical spectrum, light reception, photodetection, aspects of photometry and radiometry, preferred terms in radiometric measurement, semiconductor physics, and light energy availability. Other subjects explored are related to manufacturing processes, photovoltaic materials, crystal growing, slicing techniques, wafer finishing, solar cell fabrication, photovoltaic cell types, concentrators, module fabrication, problems of quality assurance, photovoltaic systems, and the photovoltaics hierarchy. Attention is given to the polycrystalline cell, insulator cells, cadmium sulfide cells, amorphous silicon cells, an electrochemical cell, and the low-cost solar array project.

  10. Swift/BAT Calibration and Spectral Response

    NASA Technical Reports Server (NTRS)

    Parsons, A.

    2004-01-01

    The Burst Alert Telescope (BAT) aboard NASA#s Swift Gamma-Ray Burst Explorer is a large coded aperture gamma-ray telescope consisting of a 2.4 m (8#) x 1.2 m (4#) coded aperture mask supported 1 meter above a 5200 square cm area detector plane containing 32,768 individual 4 mm x 4 mm x 2 mm CZT detectors. The BAT is now completely assembled and integrated with the Swift spacecraft in anticipation of an October 2004 launch. Extensive ground calibration measurements using a variety of radioactive sources have resulted in a moderately high fidelity model for the BAT spectral and photometric response. This paper describes these ground calibration measurements as well as related computer simulations used to study the efficiency and individual detector properties of the BAT detector array. The creation of a single spectral response model representative of the fully integrated BAT posed an interesting challenge and is at the heart of the public analysis tool #batdrmgen# which computes a response matrix for any given sky position within the BAT FOV. This paper will describe the batdrmgen response generator tool and conclude with a description of the on-orbit calibration plans as well as plans for the future improvements needed to produce the more detailed spectral response model that is required for the construction of an all-sky hard x-ray survey.

  11. Contactless Spectral-dependent Charge Carrier Lifetime Measurements in Silicon Photovoltaic Materials

    NASA Astrophysics Data System (ADS)

    Roller, John; Hamadani, Behrang; Dagenais, Mario

    Charge carrier lifetime measurements in bulk or unfinished photovoltaic (PV) materials allow for a more accurate estimate of power conversion efficiency in completed solar cells. In this work, carrier lifetimes in PV-grade silicon wafers are obtained by way of quasi-steady state photoconductance measurements. These measurements use a contactless RF system coupled with varying narrow spectrum input LEDs, ranging in wavelength from 460 nm to 1030 nm. Spectral dependent lifetime measurements allow for determination of bulk and surface properties of the material, including the intrinsic bulk lifetime and the surface recombination velocity. The effective lifetimes are fit to an analytical physics-based model to determine the desired parameters. Passivated and non-passivated samples are both studied and are shown to have good agreement with the theoretical model.

  12. Planck-LFI radiometers' spectral response

    NASA Astrophysics Data System (ADS)

    Zonca, A.; Franceschet, C.; Battaglia, P.; Villa, F.; Mennella, A.; D'Arcangelo, O.; Silvestri, R.; Bersanelli, M.; Artal, E.; Butler, R. C.; Cuttaia, F.; Davis, R. J.; Galeotta, S.; Hughes, N.; Jukkala, P.; Kilpiä, V.-H.; Laaninen, M.; Mandolesi, N.; Maris, M.; Mendes, L.; Sandri, M.; Terenzi, L.; Tuovinen, J.; Varis, J.; Wilkinson, A.

    2009-12-01

    The Low Frequency Instrument (LFI) is an array of pseudo-correlation radiometers on board the Planck satellite, the ESA mission dedicated to precision measurements of the Cosmic Microwave Background. The LFI covers three bands centred at 30, 44 and 70 GHz, with a goal bandwidth of 20% of the central frequency. The characterization of the broadband frequency response of each radiometer is necessary to understand and correct for systematic effects, particularly those related to foreground residuals and polarization measurements. In this paper we present the measured band shape of all the LFI channels and discuss the methods adopted for their estimation. The spectral characterization of each radiometer was obtained by combining the measured spectral response of individual units through a dedicated RF model of the LFI receiver scheme. As a consistency check, we also attempted end-to-end spectral measurements of the integrated radiometer chain in a cryogenic chamber. However, due to systematic effects in the measurement setup, only qualitative results were obtained from these tests. The measured LFI bandpasses exhibit a moderate level of ripple, compatible with the instrument scientific requirements.

  13. Uncertainty Calculation for Spectral-Responsivity Measurements

    PubMed Central

    Lehman, John H; Wang, CM; Dowell, Marla L; Hadler, Joshua A

    2009-01-01

    This paper discusses a procedure for measuring the absolute spectral responsivity of optical-fiber power meters and computation of the calibration uncertainty. The procedure reconciles measurement results associated with a monochromator-based measurement system with those obtained with laser sources coupled with optical fiber. Relative expanded uncertainties based on the methods from the Guide to the Expression of Uncertainty in Measurement and from Supplement 1 to the “Guide to the Expression of Uncertainty in Measurement”-Propagation of Distributions using a Monte Carlo Method are derived and compared. An example is used to illustrate the procedures and calculation of uncertainties.

  14. Micron-scale Frequency Selective Surfaces for Thermo-Photovoltaic spectral control

    NASA Astrophysics Data System (ADS)

    Raynolds, James; Anderson, Ted

    2001-03-01

    Frequency Selective Surfaces (FSS) are two-dimensional periodic arrays of electromagnetic scattering centers (e.g. apertures in a metal screen) which have desirable reflection and transmission properties for filtering applications. Such filters have widespread applications in radar and microwave communications and have been developed over the past thirty years. The advent of recent lithography techniques has made possible the fabrication of FSS arrays containing micron- (and submicron) scale feature sizes, thus opening the door for infra-red applications such as Thermo-Photovoltaics (TPV). The spectral control filter is a crucial component in a TPV system as it acts to recycle waste heat thus boosting efficiency. For TPV applications it is essential to have low absorption in the filter. We have designed, fabricated, and analyzed FSS filters containing submicron-scale feature sizes. An important result of the present study is the fact that absorption processes (ohmic loss) are dependent on geometric parameters. Detailed comparisons between theory and measurements will be presented.

  15. Enhancement of Spectral Response of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Chang, Shuai

    ruthenium-based/organic dyes for co-sensitized DSSCs are also investigated. Another approach is to increase light utility in DSSCs exploiting surface plasmon resonance (SPR) of noble metal nanostructures (e.g. Au, Ag). In this thesis, I will show that the strong longitudinal plasmonic absorption of Au nanorods (NRs) can be used to increase the low-photon energy sunlight harvesting in DSSCs, broadening strong light response of the devices. In specific, a remarkable improvement in photocurrent generation at 600-720 nm is achieved. This enhancement mechanism is anticipated to be applied to other kind of DSSCs with various dye molecules. In another approach, AuNRs/TiO2 core-shell nanostructures are employed as scattering layer for plasmon-enhanced light harvesting in DSSCs and also obtained positive results. Evolved from DSSCs, perovskite solar cells (PSCs) now become a new favorite in the field of photovoltaics. An intrinsic problem of this kind of solar cells is the use of lead based materials, which is of high toxicity and prohibited by the European Union and some other countries. I have conducted some fundamental research for lead-free PSCs using tin-based perovskite and have observed a surface plasmon resonance absorption of the organometal perovskite film of CH3NH3SnI3, which has potential applications for IR-absorption in the future solar photovoltaics. I believe the improved understanding on the co-sensitization mechanisms and the plasmonic effect to broaden the spectral response in DSSCs are luciferous for the design and fabrication of the new generation solar cells with high-efficiency and low-cost.

  16. Development of simple band-spectral pyranometer and quantum meter using photovoltaic cells and bandpass filters

    NASA Astrophysics Data System (ADS)

    Bilguun, Amarsaikhan; Nakaso, Tetsushi; Harigai, Toru; Suda, Yoshiyuki; Takikawa, Hirofumi; Tanoue, Hideto

    2016-02-01

    In recent years, greenhouse automatic-control, based on the measurement of solar irradiance, has been attracting attention. This control is an effective method for improving crop production. In the agricultural field, it is necessary to measure Photon Flux Density (PFD), which is an important parameter in the promotion of plant growth. In particular, the PFD of Photosynthetically Active Radiation (PAR, 400-700 nm) and Plant Biologically Active Radiation (PBAR, 300-800 nm) have been discussed in agricultural plant science. The commercial quantum meter (QM, PAR meter) can only measure Photosynthetically Photon Flux Density (PPFD) which is the integrated PFD quantity on the PAR wavelength. In this research, a band-spectral pyranometer or quantum meter using PVs with optical bandpass filters for dividing the PBAR wavelength into 100 nm bands (five independent channels) was developed. Before field testing, calibration of the instruments was carried out using a solar simulator. Next, a field test was conducted in three differing weather conditions such as clear, partly cloudy and cloudy skies. As a result, it was found that the response rate of the developed pyranometer was faster by four seconds compared with the response rate of the commercial pyranometer. Moreover, the outputs of each channel in the developed pyranometer were very similar to the integrated outputs of the commercial spectroradiometer. It was confirmed that the solar irradiance could be measured in each band separately using the developed band-spectral pyranometer. It was indicated that the developed band-spectral pyranometer could also be used as a PV band-spectral quantum meter which is obtained by converting the band irradiance into band PFD.

  17. Photovoltaics

    SciTech Connect

    Deb, S.K.

    1985-01-01

    Photovoltaics, the direct conversion of sunlight into electrical energy, may be the best hope for a relatively clean, secure, and inexhaustible source of energy for the future. To stimulate the growth of this technology as a viable energy supply option, considerable research and development has been directed, in both the private and public sectors, to a variety of materials and devices. The technology has sufficiently matured in recent years to be seriously considered as an alternative to conventional energy sources. Despite phenomenal advances in energy conversion efficiencies, many problems still remain to be solved. It is timely, therefore, to review various technological options available. This review critically assesses the status and promise of this emerging technology by a group of experts, each of whom has presented an extended invited paper on his specific field of expertise. This collection of presentations is intended to be an authoritative review of the technology including its developments, current status, and projections for future direction. The content of this review was carefully chosen to represent most of the leading state-of-the-art technologies; these are divided into four areas: (i) a general overview and discussion of silicon technology; (ii) high efficiency multijunction solar cells; (iii) amorphous silicon solar cells; and (iv) thin film compound semiconductors.

  18. Sunlight Simulator for Photovoltaic Testing

    NASA Technical Reports Server (NTRS)

    Mueller, R. L.

    1986-01-01

    Light with normalized spectral irradiance resembling that of airmass 1.5 sunlight striking surface of Earth produced by use of ultraviolet filter to modify output of set of flashlamps used as large-area pulsed solar simulator (LAPSS). Filtered LAPSS light allows more realistic measurements of output of photovoltaic devices when using silicon reference cell having different spectral response characteristic.

  19. Spectral response of multilayer optical structures to dynamic mechanical loading

    NASA Astrophysics Data System (ADS)

    Scripka, David; LeCroy, Garrett; Summers, Christopher J.; Thadhani, Naresh N.

    2015-05-01

    A computational study of Distributed Bragg Reflectors (DBR) and Optical Microcavities (OMC) was conducted to ascertain their potential as time-resolved mesoscale sensors due to their unique structure-driven spectral characteristics. Shock wave propagation simulations of polymer-based DBRs and glass/ceramic-based OMCs were coupled with spectral response calculations to demonstrate the combined dynamic mechanical and spectral response of the structures. Clear spectral shifts in both structures are predicted as a function of dynamic loading magnitude. Potential applications of the structures include high spatial and temporal resolution surface maps of material states, and in-situ probing of material interfaces during dynamic loading.

  20. Temporal spectral response of a corn canopy

    NASA Technical Reports Server (NTRS)

    Markham, B. L.; Kimes, D. S.; Tucker, C. J.; Mcmurtrey, J. E., III

    1981-01-01

    Techniques developed for the prediction of winter wheat yields from remotely sensed data indicating crop status over the growing season are tested for their applicability to corn. Ground-based spectral measurements in the Landsat Thematic Mapper bands 3 (0.62-0.69 microns), 4 (0.76-0.90 microns) and 5 (1.55-1.75 microns) were performed at one-week intervals throughout the growing season for 24 plots of corn, and analyzed to derive spectral ratios and normalized spectral differences of the IR and shortwave IR bands with the red. The ratios of the near IR and shortwave IR bands are found to provide the highest and most consistent correlations with corn yield and dry matter accumulation, however the value of band 5 could not be tested due to the absence of water stress conditions. Integration of spectral ratios over several dates improved the correlations over those of any single date by achieving a seasonal, rather than instantaneous, estimate of crop status. Results point to the desirability of further tests under other growth conditions to determine whether satellite-derived data will be useful in providing corn yield information.

  1. [Measurement technology for multi-parameter spectral responsivity of X-ray scintillation crystals].

    PubMed

    Li, Rui-hong; Han, Yue-ping; Zhou, Han-chang; Han, Yan

    2010-08-01

    Aimed at the measurement demand for development of better X-ray scintillation crystals, a photoelectrical detector for integrally test the multi-parameter spectral responsivity of scintillation crystals was developed. The conversion spectrum of the scintillation crystal excited by various X-ray energies under the critical focal length could be measured directly through the spectral output interface by one spectrometer, and the photovoltaic effect voltage of the PIN photodiode could be tested through the voltage output interface by one oscilloscope. Furthermore, the output power of fluorescence was calculated using an equivalent circuit. The measurement results show that the conversion efficiency of the scintillator declined along with the current increase of the X-ray tube while it has weak relation with the change in tube voltage. The experimental results show that the method presented in this paper is helpful for testing the scintillator properties. PMID:20939335

  2. Temperature effect on measurements of spectral responsivity of reference solar cell

    NASA Astrophysics Data System (ADS)

    Huang, Xuebo; Quan, Chenggen; Li, Yuanbo; Ng, Patrick

    2013-06-01

    Photovoltaic (PV) cells, or solar cells, take advantage of the photoelectric effect to convert solar energy to electricity. With rapidly increasing of demands of new and green energy, solar energy industry becomes more important in the global economic development. PV cells are the building blocks of all PV systems because they are the devices that convert sunlight to electricity. Characterization and performance testing are critical to the development of existing and emerging photovoltaic technologies and the growth of the solar industry. As new solar products are being developed and manufactured, the energy conversion efficiency and other critical parameters must be accurately measured and tested under globally recognized standard testing conditions which include solar cell temperature, spectral distribution and total irradiance level of solar radiation on the cell to be tested. The aim of this paper is to investigate one of critical parameters - solar cell temperature effect on measurement of spectral responsivity of the cell. When a reference solar cell is illuminated by solar radiation, the cell temperature will vary with different irradiance levels. Consequently it will affect the accurate measurement of spectral responsivity of the cell. In order to better understand the temperature effect on the measurement, temperature coefficients of reference solar cell in spectral range from 300 nm to 1000 nm are measured in temperature range from 25 oC to 35 oC. The measurement uncertainties of temperature coefficient are evaluated and described in this paper according to JCGM 100: 2008 (ISO/IEC Guide 98-3) - Guide to the expression of uncertainty in measurement.

  3. Challenges of an automated spectral responsivity characterization system

    NASA Astrophysics Data System (ADS)

    McKee, Greg

    2013-01-01

    An essential part of characterizing and improving imaging system performance and modeling is the determination of spectral responsivity; namely the spectral band-shape and out-of-band response. These complicated measurements have heretofore been difficult to make with consistency with do-it-yourself solutions. To address this industry-wide problem, Labsphere has developed an automated spectral response measurement stations, incorporating several techniques to enhance accuracy and ease of use. This presentation will cover the physics and considerations behind the scaling of these types of systems and the experimental methodology required to assure absolute traceability, as well as some of the lessons learned along the way.

  4. Field measurements of the spectral response of natural waters

    NASA Technical Reports Server (NTRS)

    Bartolucci, L. A.; Robinson, B. F.; Silva, L. F.

    1977-01-01

    The spectral response (air-water interface reflectance and water-volume scattering) of turbid river water (99 mg/liter suspended solids) and relatively clear lake water (10 mg/liter suspended solids) was measured in situ with a field spectroradiometer. The influence of the river bottom on the spectral response of the water also was determined by using a modified Secchi disc approach. The results indicated that turbid river water had a higher spectral response than clear lake water (about 6 percent) in the red (0.6-0.7 micron) and near-infrared (0.7-0.9 micron) portions of the spectrum. Also, the reflectance characteristics of the river bottom did not influence the spectral response of the turbid river water when the water was deeper than 30 cm

  5. Determination of silicon cell model parameters using a least-squares-fit to experimental spectral response and the V-I curve

    NASA Astrophysics Data System (ADS)

    Masden, G. W.

    An algorithm for the determination of photovoltaic cell parameters and absolute spectral response from terminal V-I measurements is presented. Input consists of V-I curve data measured with the cell operating under full-test illumination, the spectral distribution of the test illumination, the short circuit current response to superimposed quasi-monochromatic illumination and the spectral distribution of the quasi-monochromatic illumination. The algorithm yields internal spectral response and approximate values for cell model parameters such as minority carrier lifetimes, doping densities, junction depth, recombination velocities, and/or others provided the sensitivity of the cell response to changes in the parameter allows a satisfactory resolution of the parameter. Effects of measurement errors on the computed spectral response and parameters are presented.

  6. Photovoltaic and Spectral Properties of Conjugated Polymer Poly(3-octylthiophene) Doped with Various Acceptor Materials

    NASA Astrophysics Data System (ADS)

    Lee, Tsung-Hsien; Chen, Wei-Hsin; Su, Mu-Ting; Lai, Tzay-Shing; Lee, Wei

    2010-08-01

    We propose a novel approach for enhancement of efficiency of polymer-based photovoltaic devices by means of a low-molar-mass liquid crystal as a dopent. The active layers of the photovoltaic cells are primarily fabricated from the conjugated polymer poly(3-octylthiophene) as well as various acceptor substances including single-wall carbon nanotubes, buckminsterfullerene and the nematic liquid crystal E7 for comparison. The current-voltage characteristics are measured in dark and under green light illumination at wavelength of 514.5 nm. The power conversion efficiency for the active layer doped with E7 is the best among all cells in the simplest monolayer cell structure. Owing to the superior miscibility and orientational order of the nematic liquid crystal, E7 molecules may have promoted a composite film with fewer defects and locally helped the macromolecules align more orderly and consequently improved the charge-carrier transport, leading to the higher photocurrent and power conversion efficiency.

  7. Climate Response to Spectral Solar Forcing from GISS GCMAM

    NASA Astrophysics Data System (ADS)

    Wen, G.; Cahalan, R. F.; Rind, D. H.; Jonas, J.; Pilewskie, P.; Harder, J. W.

    2012-12-01

    Solar variations impose a unique external forcing to Earth's climate. Recent observations from Spectral Irradiance Monitor (SIM) on Solar Radiation and Climate Experiment (SORCE) indicate different spectral irradiance variations, both amplitude and phase, from previously models. The current version of Goddard Institute for Space Studies (GISS) Global Climate Middle Atmosphere Model (GCMAM) couples atmosphere with ocean, and has interactive atmospheric chemistry with a model top near the mesopause, allowing us to examine the full climate response to spectral solar forcing. We use the GCMAM to examine the climate response to two types of spectral solar forcing, with one from reconstruction and the other based on SORCE observations. We show different ozone and temperature responses to the two solar forcing scenarios on decadal time scale (i.e., solar minimum minus solar maximum) and long- term trends on centennial time scales. We further discuss mechanisms for Sun Climate connection.

  8. Spectral response of photopic instruments with traceability to lamps

    NASA Astrophysics Data System (ADS)

    Suarez-Romero, J. G.; Salas-Zuñiga, R.; Hurtado-Ramos, J. B.

    2010-08-01

    The spectral responsivity of detectors is commonly measured through the comparison with a reference detector and an optical system that provides monochromatic radiation. Such systems are designed to provide narrow bandwidth monochromatic radiation whose optical flux is generally low. These levels of optical flux are not enough to excite photopic instruments whose spectral response has to be measured. In this work we propose an optical arrangement with enough optical flux to realize such measurements. The system consists of a color temperature calibrated lamp which is the reference. The monochromatic separation is realized with a transmittance grating. The spectral distribution at the plane of the instrument is calculated, it is practically the same that the lamp except for the level of irradiance. The spectral response measured is corrected by the bandwidth of the system. Experimental results are presented and the noise-to-signal level reached in the system is discussed.

  9. Measuring solar spectral and angle-of-incidence effects on photovoltaic modules and solar irradiance sensors

    SciTech Connect

    King, D.L.; Kratochvil, J.A.; Boyson, W.E.

    1997-11-01

    Historically, two time-of-day dependent factors have complicated the characterization of photovoltaic module and array performance; namely, changes in the solar spectrum over the day and optical effects in the module that vary with the solar angle-of-incidence. This paper describes straightforward methods for directly measuring the effects of these two factors. Measured results for commercial modules, as well as for typical solar irradiance sensors (pyranometers) are provided. The empirical relationships obtained from the measurements can be used to improve the methods used for system design, verification of performance after installation, and diagnostic monitoring of performance during operation.

  10. Test and analysis of spectral response for UV image intensifier

    NASA Astrophysics Data System (ADS)

    Qian, Yunsheng; Liu, Jian; Feng, Cheng; Lv, Yang; Zhang, Yijun

    2015-10-01

    The UV image intensifier is one kind of electric vacuum imaging device based on principle of photoelectronic imaging. To achieve solar-blind detection, its spectral response characteristic is extremely desirable. A broad spectrum response measurement system is developed. This instrument uses EQ-99 laser-driven light source to get broad spectrum in the range of 200 nm to 1700 nm. A special preamplifier as well as a test software is work out. The spectral response of the image intensifier can be tested in the range of 200~1700 nm. Using this spectrum response measuring instrument, the UV image intensifiers are tested. The spectral response at the spectral range of 200 nm to 600 nm are obtained. Because of the quantum efficiency of Te-Cs photocathode used in image intens ifier above 280nm wavelength still exists, especially at 280 nm to 320nm.Therefore, high-performance UV filters is required for solar blind UV detection. Based on two sets of UV filters, the influence of solar radiation on solar blind detection is calculated and analyzed.

  11. Discrete spectral incoherent solitons in nonlinear media with noninstantaneous response

    SciTech Connect

    Michel, Claire; Kibler, Bertrand; Picozzi, Antonio

    2011-02-15

    We show theoretically that nonlinear optical media characterized by a finite response time may support the existence of discrete spectral incoherent solitons. The structure of the soliton consists of three incoherent spectral bands that propagate in frequency space toward the low-frequency components in a discrete fashion and with a constant velocity. Discrete spectral incoherent solitons do not exhibit a confinement in the space-time domain, but exclusively in the frequency domain. The kinetic theory describes in detail all the essential properties of discrete spectral incoherent solitons: A quantitative agreement has been obtained between simulations of the kinetic equation and the nonlinear Schroedinger equation. Discrete spectral incoherent solitons may be supported in both the normal dispersion regime or the anomalous dispersion regime. These incoherent structures find their origin in the causality condition inherent to the nonlinear response function of the material. Considering the concrete example of the Raman effect, we show that discrete incoherent solitons may be spontaneously generated through the process of supercontinuum generation in photonic crystal fibers.

  12. Photovoltaic response of a polymer p-i-n junction

    NASA Astrophysics Data System (ADS)

    Zhang, Yanguang; Hu, Yufeng; Gao, Jun

    2007-12-01

    We report the photovoltaic characterization of a polymer p-i-n junction, realized by in situ electrochemical doping and thermal cycling. The planar, "frozen" p-i-n junction exhibits record-high open-circuit voltage up to 2.25V, and in-plane short-circuit current density in excess of 10mA /cm2 under simulated sunlight (˜300mW/cm2). Our results suggest that built-in potential close to the polymer energy gap in magnitude can be obtained in a polymer device structure without the use of dissimilar electrodes, and large short-circuit current density is possible without the use of strong electron acceptors, which limits the open-circuit voltage.

  13. Spectral Response of Multilayer Optical Structures to Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Scripka, David; Lecroy, Garrett; Lee, Gyuhyon; Sun, Changyan; Kang, Zhitao; Summers, Christopher J.; Thadhani, Naresh N.

    2015-06-01

    Distributed Bragg Reflectors and optical microcavities are multilayer optical structures with spectral properties that are intrinsically sensitive to external perturbations. With nanometer to micrometer dimensions and near instantaneous optical response, these structures show significant potential as the basis for mesoscale time-resolved diagnostics that can be used to probe the dynamic behavior of mesoscale heterogeneous materials. In order to characterize the optical and mechanical behavior of the multilayer structures, a coupled computational-experimental study is underway. A mechanistic analysis of the spectral response of the structures to dynamic loading will be presented, along with computational simulations illustrating the observable spectral effects of 1D shock compression. Results from fabrication of specific multilayer designs and initial laser-driven shock loading experiments will be shown and compared to the simulation results. Preliminary results indicate that the magnitude of dynamic loading can be directly correlated to the altered spectral response. Potential applications of the theoretical diagnostics and challenges associated with spatially resolved data collection methodology will also be discussed. DTRA grant HDTRA-1-12-1-0052 is acknowledged. David Scripka is supported by the Department of Defense through the National Defense Science and Engineering Graduate Fellowship Program.

  14. Designing the plasmonic response of shell nanoparticles: spectral representation.

    PubMed

    Román-Velázquez, Carlos E; Noguez, Cecilia

    2011-01-28

    A spectral representation formalism in the quasistatic limit is developed to study the optical response of nanoparticles, such as nanospheres, nanospheroids, and concentric nanoshells. A transfer matrix theory is formulated for systems with an arbitrary number of shells. The spectral representation formalism allows us to analyze the optical response in terms of the interacting surface plasmons excited at the interfaces by separating the contributions of the geometry from those of the dielectric properties of each shell and surroundings. Neither numerical nor analytical methods can do this separation. These insights into the physical origin of the optical response of multishelled nanoparticles are very useful for engineering systems with desired properties for applications in different fields ranging from materials science and electronics to medicine and biochemistry. PMID:21280696

  15. Photovoltaic Response from Multilayered Transition Metal Dichalcogenides p-n Junctions

    NASA Astrophysics Data System (ADS)

    Memaran, Shahriar; Pradhan, Nihar; Lu, Zhengguang; Rhodes, Daniel; Ludwig, Jonathan; Zhou, Qiong; Ogunsolu, Omotola; Ajayan, Pulickel; Smirnov, Dmitry; Fernandez-Dominguez, Antonio; Garcia-Vidal, Francisco; Balicas, Luis

    Transition metal dichalcogenides (TMDs) are layered semiconductors with indirect band gaps comparable to Si. These compounds can be grown in large area, while their gap(s) can be tuned by changing their chemical composition or by applying a gate voltage. The experimental evidence collected so far points toward a strong interaction with light, which contrasts with the small photovoltaic efficiencies η <= 1 % extracted from bulk crystals or exfoliated monolayers. Here, we evaluate the potential of these compounds by studying the photovoltaic response of electrostatically generated p-n junctions composed of approximately 10 atomic layers of MoSe2 stacked onto the dielectric h-BN. In addition to ideal diode-like response, we find that these junctions can yield, under AM-1.5 illumination, photovoltaic efficiencies η exceeding 14%, with fill factors of ~ 70 % . Given the available strategies for increasing η such as gap tuning, improving the quality of the electrical contacts, or the fabrication of tandem cells, our study suggests a remarkable potential for photovoltaic applications based on TMDs.

  16. Pronounced Photovoltaic Response from Multilayered Transition-Metal Dichalcogenides PN-Junctions.

    PubMed

    Memaran, Shahriar; Pradhan, Nihar R; Lu, Zhengguang; Rhodes, Daniel; Ludwig, Jonathan; Zhou, Qiong; Ogunsolu, Omotola; Ajayan, Pulickel M; Smirnov, Dmitry; Fernández-Domínguez, Antonio I; García-Vidal, Francisco J; Balicas, Luis

    2015-11-11

    Transition metal dichalcogenides (TMDs) are layered semiconductors with indirect band gaps comparable to Si. These compounds can be grown in large area, while their gap(s) can be tuned by changing their chemical composition or by applying a gate voltage. The experimental evidence collected so far points toward a strong interaction with light, which contrasts with the small photovoltaic efficiencies η ≤ 1% extracted from bulk crystals or exfoliated monolayers. Here, we evaluate the potential of these compounds by studying the photovoltaic response of electrostatically generated PN-junctions composed of approximately 10 atomic layers of MoSe2 stacked onto the dielectric h-BN. In addition to ideal diode-like response, we find that these junctions can yield, under AM-1.5 illumination, photovoltaic efficiencies η exceeding 14%, with fill factors of ~70%. Given the available strategies for increasing η such as gap tuning, improving the quality of the electrical contacts, or the fabrication of tandem cells, our study suggests a remarkable potential for photovoltaic applications based on TMDs. PMID:26513598

  17. Effect of photometric detector spectral response quality on white LED spectral mismatch correction factors.

    PubMed

    Rosas, E; Estrada-Hernández, A

    2016-07-01

    Light-emitting-diode (LED)-based solid-state lighting has become a real option for private and public lighting after achieving high total luminous flux (TLF) and luminous efficacy levels, thus promoting the development of energy efficient use regulation to be fulfilled by LED lamps and LED luminaires. Here, we propose a photometer-quality-based fast-checking criterion. This allows photometric technicians to perform a quick evaluation of the photometric head spectral response quality effect on the LED source spectral mismatch correction factor-when determining the TLF and luminous efficacy minimum approved levels-performance parameters subject to mandatory verification by the conformity assessment procedures technically supporting the corresponding regulation. The proposed criterion applies for a wide range of photometric detector heads' qualities (2.6%≤f1'≤36.4%). PMID:27409220

  18. Absolute spectral response measurements of different photodiodes useful for applications in the UV spectral region

    NASA Astrophysics Data System (ADS)

    Pelizzo, Maria G.; Ceccherini, Paolo; Garoli, Denis; Masut, Pietro; Nicolosi, Piergiorgio

    2004-09-01

    Long UV radiation exposure can result in damages of biological tissues, as burns, skin aging, erythema and even melanoma cancer. In the past years an increase of melanoma cancer has been observed and associated to the atmospheric ozone deployment. Attendance of sun tanning unit centers has become a huge social phenomena, and the maximum UV radiation dose that a human being can receive is regulated by law. On the other side, UV radiation is largely used for therapeutic and germicidal purposes. In all these areas, spectroradiometer and radiomenter are needed for monitoring UVA (315-400 nm), UVB (280-315 nm) and UVC (100-280 nm) irradiance. We have selected some commercial photodiodes which can be used as solid state detectors in these instruments. We have characterized them by measuring their absolute spectral response in the 200 - 400 nm spectral range.

  19. Impact of spectral irradiance distribution and temperature on the outdoor performance of concentrator photovoltaic system

    NASA Astrophysics Data System (ADS)

    Husna, Husyira Al; Shibata, Naoki; Sawano, Naoki; Ueno, Seiya; Ota, Yasuyuki; Minemoto, Takashi; Araki, Kenji; Nishioka, Kensuke

    2013-09-01

    Multi-junction solar cell is designed to have considerable effect towards the solar spectrum distribution so that the maximum solar radiation could be absorbed hence, enhancing the energy conversion efficiency of the cell. Due to its application in CPV system, the system's characteristics are more sensitive to environmental factor in comparison to flat-plate PV system which commonly equipped with Si-based solar cell. In this paper, the impact of environmental factors i.e. average photon energy (APE) and temperature of solar cell (Tcell) towards the performance of the tracking type CPV system were discussed. A year data period of direct spectral irradiance, cell temperature, and power output which recorded from November 2010 to October 2011 at a CPV system power generator plant located at Miyazaki, Japan was used in this study. The result showed that most frequent condition during operation was at APE = 1.87±0.005eV, Tcell = 65±2.5°C with performance ratio of 83.9%. Furthermore, an equivalent circuit simulation of a CPV subsystem in module unit was conducted in order to investigate the influence of environmental factors towards the performance of the module.

  20. Spectral characteristics of ventricular response to atrial fibrillation.

    PubMed

    Hayano, J; Yamasaki, F; Sakata, S; Okada, A; Mukai, S; Fujinami, T

    1997-12-01

    To investigate the spectral characteristics of the fluctuation in ventricular response during atrial fibrillation (AF), R-R interval time series obtained from ambulatory electrocardiograms were analyzed in 45 patients with chronic AF and in 30 age-matched healthy subjects with normal sinus rhythm (SR). Although the 24-h R-R interval spectrum during SR showed a 1/f noise-like downsloping linear pattern when plotted as log power against log frequency, the spectrum during AF showed an angular shape with a breakpoint at a frequency of 0.005 +/- 0.002 Hz, by which the spectrum was separated into long-term and short-term components with different spectral characteristics. The short-term component showed a white noise-like flat spectrum with a spectral exponent (absolute value of the regression slope) of 0.05 +/- 0.08 and an intercept at 10(-2) Hz of 4.9 +/- 0.3 log(ms2/Hz). The long-term component had a 1/f noise-like spectrum with a spectral exponent of 1.26 +/- 0.40 and an intercept at 10(-4) Hz of 7.0 +/- 0.3 log(ms2/Hz), which did not differ significantly from those for the spectrum during SR in the same frequency range [spectral exponent, 1.36 +/- 0.06; intercept at 10(-4) Hz, 7.1 +/- 0.3 log(ms2/Hz)]. The R-R intervals during AF may be a sequence of uncorrelated values over the short term (within several minutes). Over the longer term, however, the R-R interval fluctuation shows the long-range negative correlation suggestive of underlying regulatory processes, and spectral characteristics indistinguishable from those for SR suggest that the long-term fluctuations during AF and SR may originate from similar dynamics of the cardiovascular regulatory systems. PMID:9435618

  1. A geostatistical approach to mapping site response spectral amplifications

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.; Tanaka, Y.; Tanaka, H.

    2010-01-01

    If quantitative estimates of the seismic properties do not exist at a location of interest then the site response spectral amplifications must be estimated from data collected at other locations. Currently, the most common approach employs correlations of site class with maps of surficial geology. Analogously, correlations of site class with topographic slope can be employed where the surficial geology is unknown. Our goal is to identify and validate a method to estimate site response with greater spatial resolution and accuracy for regions where additional effort is warranted. This method consists of three components: region-specific data collection, a spatial model for interpolating seismic properties, and a theoretical method for computing spectral amplifications from the interpolated seismic properties. We consider three spatial interpolation schemes: correlations with surficial geology, termed the geologic trend (GT), ordinary kriging (OK), and kriging with a trend (KT). We estimate the spectral amplifications from seismic properties using the square root of impedance method, thereby linking the frequency-dependent spectral amplifications to the depth-dependent seismic properties. Thus, the range of periods for which this method is applicable is limited by the depth of exploration. A dense survey of near-surface S-wave slowness (Ss) throughout Kobe, Japan shows that the geostatistical methods give more accurate estimates of Ss than the topographic slope and GT methods, and the OK and KT methods perform equally well. We prefer the KT model because it can be seamlessly integrated with geologic maps that cover larger regions. Empirical spectral amplifications show that the region-specific data achieve more accurate estimates of observed median short-period amplifications than the topographic slope method. ?? 2010 Elsevier B.V.

  2. Prediction of spectral acceleration response ordinates based on PGA attenuation

    USGS Publications Warehouse

    Graizer, V.; Kalkan, E.

    2009-01-01

    Developed herein is a new peak ground acceleration (PGA)-based predictive model for 5% damped pseudospectral acceleration (SA) ordinates of free-field horizontal component of ground motion from shallow-crustal earthquakes. The predictive model of ground motion spectral shape (i.e., normalized spectrum) is generated as a continuous function of few parameters. The proposed model eliminates the classical exhausted matrix of estimator coefficients, and provides significant ease in its implementation. It is structured on the Next Generation Attenuation (NGA) database with a number of additions from recent Californian events including 2003 San Simeon and 2004 Parkfield earthquakes. A unique feature of the model is its new functional form explicitly integrating PGA as a scaling factor. The spectral shape model is parameterized within an approximation function using moment magnitude, closest distance to the fault (fault distance) and VS30 (average shear-wave velocity in the upper 30 m) as independent variables. Mean values of its estimator coefficients were computed by fitting an approximation function to spectral shape of each record using robust nonlinear optimization. Proposed spectral shape model is independent of the PGA attenuation, allowing utilization of various PGA attenuation relations to estimate the response spectrum of earthquake recordings.

  3. Assessing Cd-induced stress from plant spectral response

    NASA Astrophysics Data System (ADS)

    Kancheva, Rumiana; Georgiev, Georgi

    2014-10-01

    Remote sensing plays a significant role in local, regional and global monitoring of land covers. Ecological concerns worldwide determine the importance of remote sensing applications for the assessment of soil conditions, vegetation health and identification of stress-induced changes. The extensive industrial growth and intensive agricultural land-use arise the serious ecological problem of environmental pollution associated with the increasing anthropogenic pressure on the environment. Soil contamination is a reason for degradation processes and temporary or permanent decrease of the productive capacity of land. Heavy metals are among the most dangerous pollutants because of their toxicity, persistent nature, easy up-take by plants and long biological half-life. This paper takes as its focus the study of crop species spectral response to Cd pollution. Ground-based experiments were performed, using alfalfa, spring barley and pea grown in Cd contaminated soils and in different hydroponic systems under varying concentrations of the heavy metal. Cd toxicity manifested itself by inhibition of plant growth and synthesis of photosynthetic pigments. Multispectral reflectance, absorbance and transmittance, as well as red and far red fluorescence were measured and examined for their suitability to detect differences in plant condition. Statistical analysis was performed and empirical relationships were established between Cd concentration, plant growth variables and spectral response Various spectral properties proved to be indicators of plant performance and quantitative estimators of the degree of the Cd-induced stress.

  4. Absolute spectral radiance responsivity calibration of sun photometers

    SciTech Connect

    Xu Qiuyun; Zheng Xiaobing; Zhang Wei; Wang Xianhua; Li Jianjun; Li Xin; Li Zhengqiang

    2010-03-15

    Sun photometers are designed to measure direct solar irradiance and diffused sky radiance for the purpose of atmospheric parameters characterization. A sun photometer is usually calibrated by using a lamp-illuminated integrating sphere source for its band-averaged radiance responsivity, which normally has an uncertainty of 3%-5% at present. Considering the calibration coefficients may also change with time, a regular high precision calibration is important to maintain data quality. In this paper, a tunable-laser-based facility for spectral radiance responsivity calibration has been developed at the Key Laboratory of Optical Calibration and Characterization, Chinese Academy of Sciences. A reference standard radiance radiometer, calibrated against cryogenic radiometer, is used to determine the radiance from a laser-illuminated integrating sphere source. Spectral radiance responsivity of CIMEL CE318-2 sun photometer is calibrated using this new calibration system with a combined standard uncertainty of about 0.8%. As a validation, the derived band-averaged radiance responsivity are compared to that from a Goddard Space Flight Center lamp-based sphere calibration and good agreements (difference <1.4%) are found from 675 to 1020 nm bands.

  5. Photovoltaic response and values of state dipole moments in single-layered pyrazoloquinoline/polymer composites

    NASA Astrophysics Data System (ADS)

    Gondek, E.; Kityk, I. V.; Danel, A.; Sanetra, J.

    2008-06-01

    We report the photovoltaic response of composite films formed by polymer transport matrices poly(3-octylthiophene) (P3OT) and poly(3-decylthiophene) (PDT) with incorporated 1 H-pyrazolo[3,4- b]quinoline (PAQ) chromophore (see the first figure). The photovoltage (PV) data were obtained for different substituted PAQ possessing different state dipole moments. The photovoltaic cells were formed between ITO and aluminum electrodes. We found that the PV signal of polymer/PAQ substantially depends on the state dipole moments of the pyrazoloquinoline chromophore. This fact indicates on a possibility of significant enhancement of PV efficiency by appropriate variations of the state dipole moments of chromophore. This results in photoinduced electron transfer from polymer serving as donors to PAQ being the electron acceptor. Despite an efficiency of the PV devices is below 1%, however, it may be substantially enhanced in future varying the chromophore state dipole moments appropriately.

  6. Spectral response data for development of cool coloured tile coverings

    NASA Astrophysics Data System (ADS)

    Libbra, Antonio; Tarozzi, Luca; Muscio, Alberto; Corticelli, Mauro A.

    2011-03-01

    Most ancient or traditional buildings in Italy show steep-slope roofs covered by red clay tiles. As the rooms immediately below the roof are often inhabited in historical or densely urbanized centres, the combination of low solar reflectance of tile coverings and low thermal inertia of either wooden roof structures or sub-tile insulation panels makes summer overheating a major problem. The problem can be mitigated by using tiles coated with cool colours, that is colours with the same spectral response of clay tiles in the visible, but highly reflecting in the near infrared range, which includes more than half of solar radiation. Cool colours can yield the same visible aspect of common building surfaces, but higher solar reflectance. Studies aimed at developing cool colour tile coverings for traditional Italian buildings have been started. A few coating solutions with the typical red terracotta colour have been produced and tested in the laboratory, using easily available materials. The spectral response and the solar reflectance have been measured and compared with that of standard tiles.

  7. Tailoring the spectral response of liquid waveguide diagnostic platforms.

    PubMed

    Zhao, Yue; Phillips, Brian; Ozcelik, Damla; Parks, Joshua; Measor, Philip; Gulbransen, David; Schmidt, Holger; Hawkins, Aaron R

    2012-08-01

    Liquid filled waveguides that form the basis for on-chip biophotonics diagnostic platforms have primarily found application in fluorescence and Raman spectroscopy experiments that require sensitive discrimination between weak analyte signals and a variety of background signals. Primary sources of background signal can include light from excitation sources (strong, narrow frequency band) and photoluminescence generated in waveguide cladding layers (weak, wide frequency band). Here we review both solid and liquid core filtering structures which are based on anti-resonant reflection that can be integrated with waveguides for attenuating undesirable optical bands. Important criteria to consider for an optimized biosensor include cladding layer materials that minimize broad-spectrum photoluminescence and optimize layer thicknesses for creating a desired spectral response in both solid and liquid guiding layers, and a microfabrication process capable of producing regions with variable spectral response. New results describing how spurious fluorescence can be minimized by optimized thermal growth conditions and how liquid-core filter discrimination can be tuned with liquid core waveguide length are presented. PMID:22589084

  8. Tailoring the spectral response of liquid waveguide diagnostic platforms

    PubMed Central

    Zhao, Yue; Phillips, Brian; Ozcelik, Damla; Parks, Joshua; Measor, Philip; Gulbransen, David; Schmidt, Holger; Hawkins, Aaron R.

    2015-01-01

    Liquid filled waveguides that form the basis for on-chip bio-photonics diagnostic platforms have primarily found application in fluorescence and Raman spectroscopy experiments that require sensitive discrimination between weak analyte signals and a variety of background signals. Primary sources of background signal can include light from excitation sources (strong, narrow frequency band) and photoluminescence generated in waveguide cladding layers (weak, wide frequency band). Here we review both solid and liquid core filtering structures which are based on anti-resonant reflection that can be integrated with waveguides for attenuating undesirable optical bands. Important criteria to consider for an optimized biosensor include cladding layer materials that minimize broad-spectrum photoluminescence and optimize layer thicknesses for creating a desired spectral response in both solid and liquid guiding layers, and a microfabrication process capable of producing regions with variable spectral response. New results describing how spurious fluorescence can be minimized by optimized thermal growth conditions and how liquid-core filter discrimination can be tuned with liquid core waveguide length are presented. PMID:22589084

  9. Laboratory calibration of pyrgeometers with known spectral responsivities

    NASA Astrophysics Data System (ADS)

    Gröbner, Julian; Los, Alexander

    2007-10-01

    A methodology is presented to calibrate pyrgeometers measuring atmospheric long-wave radiation, if their spectral dome transmission is known. The new calibration procedure is based on a black-body cavity to retrieve the sensitivity of the pyrgeometer, combined with calculated atmospheric long-wave spectra to determine a correction function in dependence of the integrated atmospheric water vapor to convert Planck radiation spectra to atmospheric long-wave spectra. The methodology was validated with two custom CG4 pyrgeometers with known dome transmissions by a comparison to the World Infrared Standard Group of Pyrgeometers at the World Radiation Center-Infrared Radiometry Section. The responsivities retrieved using the new laboratory calibration agree to within 1% with the responsivities determined by a comparison to the WISG, which is well within the uncertainties of both methodologies.

  10. Spectral Sensitivity Measured with Electroretinogram Using a Constant Response Method

    PubMed Central

    Rocha, Fernando Allan de Farias; Gomes, Bruno Duarte; Silveira, Luiz Carlos de Lima; Martins, Sonia Limara; Aguiar, Renata Genaro; de Souza, John Manuel; Ventura, Dora Fix

    2016-01-01

    A new method is presented to determine the retinal spectral sensitivity function S(λ) using the electroretinogram (ERG). S(λ)s were assessed in three different species of myomorph rodents, Gerbils (Meriones unguiculatus), Wistar rats (Ratus norvegicus), and mice (Mus musculus). The method, called AC Constant Method, is based on a computerized automatic feedback system that adjusts light intensity to maintain a constant-response amplitude to a flickering stimulus throughout the spectrum, as it is scanned from 300 to 700 nm, and back. The results are presented as the reciprocal of the intensity at each wavelength required to maintain a constant peak to peak response amplitude. The resulting S(λ) had two peaks in all three rodent species, corresponding to ultraviolet and M cones, respectively: 359 nm and 511 nm for mice, 362 nm and 493 nm for gerbils, and 362 nm and 502 nm for rats. Results for mouse and gerbil were similar to literature reports of S(λ) functions obtained with other methods, confirming that the ERG associated to the AC Constant-Response Method was effective to obtain reliable S(λ) functions. In addition, due to its fast data collection time, the AC Constant Response Method has the advantage of keeping the eye in a constant light adapted state. PMID:26800521

  11. Spectral Sensitivity Measured with Electroretinogram Using a Constant Response Method.

    PubMed

    Rocha, Fernando Allan de Farias; Gomes, Bruno Duarte; Silveira, Luiz Carlos de Lima; Martins, Sonia Limara; Aguiar, Renata Genaro; de Souza, John Manuel; Ventura, Dora Fix

    2016-01-01

    A new method is presented to determine the retinal spectral sensitivity function S(λ) using the electroretinogram (ERG). S(λ)s were assessed in three different species of myomorph rodents, Gerbils (Meriones unguiculatus), Wistar rats (Ratus norvegicus), and mice (Mus musculus). The method, called AC Constant Method, is based on a computerized automatic feedback system that adjusts light intensity to maintain a constant-response amplitude to a flickering stimulus throughout the spectrum, as it is scanned from 300 to 700 nm, and back. The results are presented as the reciprocal of the intensity at each wavelength required to maintain a constant peak to peak response amplitude. The resulting S(λ) had two peaks in all three rodent species, corresponding to ultraviolet and M cones, respectively: 359 nm and 511 nm for mice, 362 nm and 493 nm for gerbils, and 362 nm and 502 nm for rats. Results for mouse and gerbil were similar to literature reports of S(λ) functions obtained with other methods, confirming that the ERG associated to the AC Constant-Response Method was effective to obtain reliable S(λ) functions. In addition, due to its fast data collection time, the AC Constant Response Method has the advantage of keeping the eye in a constant light adapted state. PMID:26800521

  12. Indoor calibration of Sky Quality Meters: Linearity, spectral responsivity and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Pravettoni, M.; Strepparava, D.; Cereghetti, N.; Klett, S.; Andretta, M.; Steiger, M.

    2016-09-01

    The indoor calibration of brightness sensors requires extremely low values of irradiance in the most accurate and reproducible way. In this work the testing equipment of an ISO 17025 accredited laboratory for electrical testing, qualification and type approval of solar photovoltaic modules was modified in order to test the linearity of the instruments from few mW/cm2 down to fractions of nW/cm2, corresponding to levels of simulated brightness from 6 to 19 mag/arcsec2. Sixteen Sky Quality Meter (SQM) produced by Unihedron, a Canadian manufacturer, were tested, also assessing the impact of the ageing of their protective glasses on the calibration coefficients and the drift of the instruments. The instruments are in operation on measurement points and observatories at different sites and altitudes in Southern Switzerland, within the framework of OASI, the Environmental Observatory of Southern Switzerland. The authors present the results of the calibration campaign: linearity; brightness calibration, with and without protective glasses; transmittance measurement of the glasses; and spectral responsivity of the devices. A detailed uncertainty analysis is also provided, according to the ISO 17025 standard.

  13. Superstructure high efficiency photovoltaics

    NASA Technical Reports Server (NTRS)

    Wagner, M.; So, L. C.; Leburton, J. P.

    1987-01-01

    A novel class of photovoltaic cascade structures is introduced which features multijunction upper subcells. These superstructure high efficiency photovoltaics (SHEP's) exhibit enhanced upper subcell spectral response because of the additional junctions which serve to reduce bulk recombination losses by decreasing the mean collection distance for photogenerated minority carriers. Two possible electrical configurations were studied and compared: a three-terminal scheme that allows both subcells to be operated at their individual maximum power points and a two-terminal configuration with an intercell ohmic contact for series interconnection. The three-terminal devices were found to be superior both in terms of beginning-of-life expectancy and radiation tolerance. Realistic simulations of three-terminal AlGaAs/GaAs SHEP's show that one sun AMO efficiencies in excess of 26 percent are possible.

  14. Photocurrent of Photovoltaic Cells

    NASA Astrophysics Data System (ADS)

    Peeler, Seth; McIntyre, Max; Cossel, Raquel; Bowser, Chris; Tzolov, Marian

    Photovoltaic cells can be used to harness clean, renewable energy from light. Examined in this project were photovoltaic cells based on a bulk heterojunction between PCPDTBT and PCBM sandwiched between an ITO anode and an Al cathode. Current-voltage characteristics and impedance spectra for multiple photovoltaic devices were taken under varying DC electrical bias and different level of illumination. This data was interpreted in terms of an equivalent circuit with linear elements, e.g. capacitance, series resistance, and parallel resistance. A physical interpretation of each circuit element will be presented. The spectral response of the devices was characterized by optical transmission and photocurrent spectroscopy using a spectrometer in the spectral range from 300 to 900 nm. The DC measurements confirmed that the devices are electrically rectifying. The AC measurements allowed modeling of the devices as a dielectric between two electrodes with injection current passing through it. The characteristic peaks for both PCBDTBT and PCBM are clearly visible in both the photocurrent and transmission data. The good correlation between the photocurrent and transmission data indicates photocurrent generation due to absorption in both materials constituting the heterojunction.

  15. Photovoltaic response in pristine WSe{sub 2} layers modulated by metal-induced surface-charge-transfer doping

    SciTech Connect

    Wi, Sungjin; Chen, Mikai; Li, Da; Nam, Hongsuk; Meyhofer, Edgar; Liang, Xiaogan

    2015-08-10

    We obtained photovoltaic response in pristine multilayer WSe{sub 2} by sandwiching WSe{sub 2} between top and bottom metals. In this structure, the work-function difference between the top metal and WSe{sub 2} plays a critical role in generating built-in potentials and photovoltaic responses. Our devices with Zn as top metal exhibit photo-conversion efficiencies up to 6.7% under 532 nm illumination and external quantum efficiencies in the range of 40%–83% for visible light. This work provides a method for generating photovoltaic responses in layered semiconductors without detrimental doping or exquisite heterostructures, and also advances the physics for modulating the band structures of such emerging semiconductors.

  16. Photovoltaic cell

    SciTech Connect

    Bronstein-Bonte, I.Y.; Fischer, A.B.

    1986-12-16

    This patent describes a product comprising a photovoltaic cell including a luminescent dye which will absorb radiation at a wavelength to which the cell is not significantly responsive and emit radiation at a higher wavelength at which it is responsive. The improvement described here is wherein the dye comprises a lepidopterene.

  17. Carbon Nanotube Effects on Electroluminescence and Photovoltaic Response in Conjugated Polymers

    SciTech Connect

    Xu, Zhihua; Wu, Yue; Hu, Bin; Ivanov, Ilia N; Geohegan, David B

    2005-01-01

    This letter reports the experimental results of enhanced electroluminescence (EL) and photovoltaic (PV) response upon doping single-wall carbon nanotubes (SWNTs) into conjugated polymer poly[2-methoxy-5-(2{prime}-ethylhexyloxy)-1, 4-phenylenevinylene] (MEHPPV) based on single-layer light-emitting diodes. We found that the dispersed SWNTs result in two processes: charge transport and exciton dissociation at the tube-chain interface in the SWNT/polymer composites. The detailed EL and PV studies indicate that low SWNT doping concentrations mainly improve the bipolar charge injection, leading to enhanced both reverse and forward EL with reduced threshold voltage. As the SWNT doping concentration continues to increase, the interfacial exciton dissociation becomes dominated, giving rise to an increased PV response. This SWNT concentration-dependent charge transport and exciton dissociation present a pathway to individually address the dual EL and PV functionalities of SWNT-doped polymer composites by controlling the doping level of the SWNTs.

  18. Spectral response of multi-element silicon detectors

    SciTech Connect

    Ludewigt, B.A.; Rossington, C.S.; Chapman, K.

    1997-04-01

    Multi-element silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon Si(Li) and high purity germanium detectors (HPGe) for high count rate, low noise synchrotron x-ray fluorescence applications. One of the major differences between the segmented Si detectors and the commercially available single-element Si(Li) or HPGe detectors is that hundreds of elements can be fabricated on a single Si substrate using standard silicon processing technologies. The segmentation of the detector substrate into many small elements results in very low noise performance at or near, room temperature, and the count rate of the detector is increased many-fold due to the multiplication in the total number of detectors. Traditionally, a single channel of detector with electronics can handle {approximately}100 kHz count rates while maintaining good energy resolution; the segmented detectors can operate at greater than MHz count rates merely due to the multiplication in the number of channels. One of the most critical aspects in the development of the segmented detectors is characterizing the charge sharing and charge loss that occur between the individual detector strips, and determining how these affect the spectral response of the detectors.

  19. Calibration method for spectral responsivity of infrared detector based on blackbody at multiple temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Y. F.; Shao, Z. F.; Wu, Y. Q.

    2015-08-01

    The spectral responsivity is one of the most important technical indicators of infrared detector which has an important significance for radiation thermometry and emissivity measurement. Using a blackbody radiation at multiple temperatures, the calibration for spectral responsivity of the infrared detector is proposed. With the Planck's law, the spectral radiance of blackbody at the different temperature is calculated. The detector captures the radiation and generates output values each of those is the function of spectral responsivity, spectral radiance and environmental radiation. Calibration equation is established by means of the calculated radiance and output values. By solving the equations based on principle of least squares, the calibration of spectral responsivity is implemented. From the comparison experiment of measuring the radiance of blackbody at 850K, radiance value measured by the MCT detector has a good consistency with the theoretical data.

  20. Spectral induced polarization (SIP) response of mine tailings.

    PubMed

    Placencia-Gómez, Edmundo; Parviainen, Annika; Slater, Lee; Leveinen, Jussi

    2015-02-01

    Mine tailings impoundments are a source of leachates known as acid mine drainage (AMD) which can pose a contamination risk for surrounding surface and groundwater. Methodologies which can help management of this environmental issue are needed. We carried out a laboratory study of the spectral induced polarization (SIP) response of tailings from the Haveri Au-Cu mine, SW Finland. The primary objectives were, (1) to determine possible correlations between SIP parameters and textural properties associated with oxidative-weathering mechanisms, mineralogical composition and metallic content, and (2) to evaluate the effects of the pore water chemistry on SIP parameters associated with redox-inactive and redox-active electrolytes varying in molar concentration, conductivity and pH. The Haveri tailings exhibit well defined relaxation spectra between 100 and 10,000Hz. The relaxation magnitudes are governed by the in-situ oxidative-weathering conditions on sulphide mineral surfaces contained in the tailings, and decrease with the oxidation degree. The oxidation-driven textural variation in the tailings results in changes to the frequency peak of the phase angle, the imaginary conductivity and chargeability, when plotted versus the pore water conductivity. In contrast, the real and the formation electrical conductivity components show a single linear dependence on the pore water conductivity. The increase of the pore water conductivity (dominated by the increase of ions concentration in solution) along with a transition to acidic conditions shifts the polarization peak towards higher frequencies. These findings show the unique sensitivity of the SIP method to potentially discriminate AMD discharges from reactive oxidation zones in tailings, suggesting a significant advantage for monitoring threatened aquifers. PMID:25528133

  1. Spectral induced polarization (SIP) response of mine tailings

    NASA Astrophysics Data System (ADS)

    Placencia-Gómez, Edmundo; Parviainen, Annika; Slater, Lee; Leveinen, Jussi

    2015-02-01

    Mine tailings impoundments are a source of leachates known as acid mine drainage (AMD) which can pose a contamination risk for surrounding surface and groundwater. Methodologies which can help management of this environmental issue are needed. We carried out a laboratory study of the spectral induced polarization (SIP) response of tailings from the Haveri Au-Cu mine, SW Finland. The primary objectives were, (1) to determine possible correlations between SIP parameters and textural properties associated with oxidative-weathering mechanisms, mineralogical composition and metallic content, and (2) to evaluate the effects of the pore water chemistry on SIP parameters associated with redox-inactive and redox-active electrolytes varying in molar concentration, conductivity and pH. The Haveri tailings exhibit well defined relaxation spectra between 100 and 10,000 Hz. The relaxation magnitudes are governed by the in-situ oxidative-weathering conditions on sulphide mineral surfaces contained in the tailings, and decrease with the oxidation degree. The oxidation-driven textural variation in the tailings results in changes to the frequency peak of the phase angle, the imaginary conductivity and chargeability, when plotted versus the pore water conductivity. In contrast, the real and the formation electrical conductivity components show a single linear dependence on the pore water conductivity. The increase of the pore water conductivity (dominated by the increase of ions concentration in solution) along with a transition to acidic conditions shifts the polarization peak towards higher frequencies. These findings show the unique sensitivity of the SIP method to potentially discriminate AMD discharges from reactive oxidation zones in tailings, suggesting a significant advantage for monitoring threatened aquifers.

  2. ESTIMATION OF RESPONSE-SPECTRAL VALUES AS FUNCTIONS OF MAGNITUDE, DISTANCE, AND SITE CONDITIONS.

    USGS Publications Warehouse

    Joyner, W.B.; Boore, D.M.

    1983-01-01

    Horizontal pseudo-velocity response was analyzed for twelve shallow earthquakes in western North America. Estimation of response-spectral values was related to magnitude, distance and site conditions. Errors in the methods are analyzed.

  3. Spectral response variation of a negative-electron-affinity photocathode in the preparation process

    SciTech Connect

    Liu Lei; Du Yujie; Chang Benkang; Yunsheng Qian

    2006-08-20

    In order to research the spectral response variation of a negative electron affinity (NEA) photocathode in the preparation process, we have done two experiments on a transmission-type GaAs photocathode.First, an automatic spectral response recording system is described, which is used to take spectral response curves during the activation procedure of the photocathode. By this system, the spectral response curves of a GaAs:Cs-Ophotocathode measured in situ are presented. Then, after the cathode is sealed with a microchannel plate and a fluorescence screen into the image tube, we measure the spectral response of the tube by another measurement instrument. By way of comparing and analyzing these curves, we can find the typical variation in spectral-responses.The reasons for the variation are discussed. Based on these curves, spectral matching factors of a GaAs cathode for green vegetation and rough concrete are calculated. The visual ranges of night-vision goggles under specific circumstances are estimated. The results show that the spectral response of the NEA photocathode degraded in the sealing process, especially at long wavelengths. The variation has also influenced the whole performance of the intensifier tube.

  4. Spectral response variation of a negative-electron-affinity photocathode in the preparation process.

    PubMed

    Liu, Lei; Du, Yujie; Chang, Benkang; Yunsheng, Qian

    2006-08-20

    In order to research the spectral response variation of a negative electron affinity (NEA) photocathode in the preparation process, we have done two experiments on a transmission-type GaAs photocathode. First, an automatic spectral response recording system is described, which is used to take spectral response curves during the activation procedure of the photocathode. By this system, the spectral response curves of a GaAs:Cs-O photocathode measured in situ are presented. Then, after the cathode is sealed with a microchannel plate and a fluorescence screen into the image tube, we measure the spectral response of the tube by another measurement instrument. By way of comparing and analyzing these curves, we can find the typical variation in spectral-responses. The reasons for the variation are discussed. Based on these curves, spectral matching factors of a GaAs cathode for green vegetation and rough concrete are calculated. The visual ranges of night-vision goggles under specific circumstances are estimated. The results show that the spectral response of the NEA photocathode degraded in the sealing process, especially at long wavelengths. The variation has also influenced the whole performance of the intensifier tube. PMID:16892108

  5. Impact of overmodulation on spectral response in high efficient transmission gratings

    NASA Astrophysics Data System (ADS)

    Vojtíšek, Petr; Květoň, Milan

    2015-01-01

    In this contribution, we would like to present our results and discussions of the impact of overmodulation on spectral sensitivity in high efficient transmission gratings. The theoretical aspect of this issue was examined through Kogelnik's coupled wave theory and RCWA. Experimentally, we measured the spectral response of volume phase gratings produced in the Bayfol HX photopolymer and compared it with the theory. It was found that the spectral response has a character similar to angular sensitivity with respect to overmodulation apart from the pronounced wavelength-dependent spectral asymmetry.

  6. Camera response prediction for various capture settings using the spectral sensitivity and crosstalk model.

    PubMed

    Qiu, Jueqin; Xu, Haisong

    2016-09-01

    In this paper, a camera response formation model is proposed to accurately predict the responses of images captured under various exposure settings. Differing from earlier works that estimated the camera relative spectral sensitivity, our model constructs the physical spectral sensitivity curves and device-dependent parameters that convert the absolute spectral radiances of target surfaces to the camera readout responses. With this model, the camera responses to miscellaneous combinations of surfaces and illuminants could be accurately predicted. Thus, creating an "imaging simulator" by using the colorimetric and photometric research based on the cameras would be of great convenience. PMID:27607275

  7. [Radiation thermometry based on calibration of spectral responsivity].

    PubMed

    Xin, Cheng-Yun; Cheng, Xiao-Fang; Zhang, Zhong-Zheng

    2012-10-01

    Abstract True surface temperatures can be determined by measurements of radiation emitted by the object. The non-spectral parameter in the radiation measurement equation is the function of the relative position between the target and the lens, so calibration of space position is necessary for temperature measurement, when emissivity and temperature are measured simultaneously. In the present paper, the non-spectral parameter was included into the undetermined coefficients of emissivity modeled by finite series, which will not affect the solution of true surface temperature. Therefore, radiation thermometry can be accomplished without calibration of space position and normalization of measurement data. And not the true spectral emissivity but the trend of it can be measured. Two special examples were investigated, respectively. The results indicate that when the effective wavelength of each channel is different, multi-wavelength radiation thermometry equations have the unique solution, while the number of the multiband ones may be zero, one, two or even three. PMID:23285877

  8. Spectral and temporal response patterns of single units in the chinchilla dorsal cochlear nucleus.

    PubMed

    Kaltenbach, J A; Saunders, J C

    1987-05-01

    Spectral and temporal response patterns to pure-tone stimuli were collected from single units in the dorsal cochlear nucleus of anesthetized chinchillas. The spectral response profiles were divisible into groups based on the balance of excitation and inhibition. Temporal responses were characterized in chloralose-anesthetized animals by collecting PST-histograms. There appeared to be no simple one-to-one relationship between a unit's spectral and its temporal response pattern. Excitatory spectral responses were generally sharply tuned areas resembling those of auditory nerve fibers. However, unlike the latter, the majority of these had chopper or pauser/buildup temporal responses. Inhibitory spectral responses were of two distinct types: one included lateral inhibitory areas flanking the tuned excitatory areas which occasionally invaded the latter creating a nonmonotonic excitatory response at the unit's characteristic frequency. The other included sharply tuned inhibitory areas. The characteristic frequencies of these units were found to be in close correspondence with those of sharply tuned excitatory units from the same penetration suggesting that these inhibitory units were tonotopically mapped in the same register as tuned excitatory units. The spectral response patterns were studied with three types of anesthesia: ketamine/xylazine, dial/urethane, and chloralose. In each of these groups the patterns were similar. However, the proportions of units showing inhibition was strongly dependent on the choice of anesthetic agent with chloralose yielding the highest proportions (59%) and ketamine/xylazine yielding the lowest (29%). PMID:3569464

  9. Note: Measuring spectral response of photocells with light-emitting diodes.

    PubMed

    Tada, Kazuya; Tanaka, Hiroaki

    2015-12-01

    Although the spectral response is a key data for photocells, traditional measurement setup for it consists of expensive optical precision components including white-light source, collimator and monochromator, and has relatively large footprint. Here, it is demonstrated that a compact, portable, and low-cost device based on an array of light-emitting diodes can provide quantitatively reliable spectral response characterization of photocells. The device seems to be useful for the purpose of preliminary survey of the spectral response of novel material and/or materials system prior to precise measurement with the traditional equipment. PMID:26724087

  10. Note: Measuring spectral response of photocells with light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Tada, Kazuya; Tanaka, Hiroaki

    2015-12-01

    Although the spectral response is a key data for photocells, traditional measurement setup for it consists of expensive optical precision components including white-light source, collimator and monochromator, and has relatively large footprint. Here, it is demonstrated that a compact, portable, and low-cost device based on an array of light-emitting diodes can provide quantitatively reliable spectral response characterization of photocells. The device seems to be useful for the purpose of preliminary survey of the spectral response of novel material and/or materials system prior to precise measurement with the traditional equipment.

  11. Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials

    PubMed Central

    Mandel, Yossi; Goetz, Georges; Lavinsky, Daniel; Huie, Philip; Mathieson, Keith; Wang, Lele; Kamins, Theodore; Manivanh, Richard; Harris, James; Palanker, Daniel

    2014-01-01

    We have previously developed a wireless photovoltaic retinal prosthesis, in which camera-captured images are projected onto the retina using pulsed near-IR light. Each pixel in the subretinal implant directly converts pulsed light into local electric current to stimulate the nearby inner retinal neurons. Here we report that implants having pixel sizes of 280, 140 and 70μm implanted in the subretinal space in rats with normal and degenerate retina elicit robust cortical responses upon stimulation with pulsed near-IR light. Implant-induced eVEP has shorter latency than visible light-induced VEP, its amplitude increases with peak irradiance and pulse duration, and decreases with frequency in the range of 2-20Hz, similar to the visible light response. Modular design of the arrays allows scalability to a large number of pixels, and combined with the ease of implantation, offers a promising approach to restoration of sight in patients blinded by retinal degenerative diseases. PMID:23778557

  12. Adjusting spectral indices for spectral response function differences of very high spatial resolution sensors simulated from field spectra.

    PubMed

    Cundill, Sharon L; van der Werff, Harald M A; van der Meijde, Mark

    2015-01-01

    The use of data from multiple sensors is often required to ensure data coverage and continuity, but differences in the spectral characteristics of sensors result in spectral index values being different. This study investigates spectral response function effects on 48 spectral indices for cultivated grasslands using simulated data of 10 very high spatial resolution sensors, convolved from field reflectance spectra of a grass covered dike (with varying vegetation condition). Index values for 48 indices were calculated for original narrow-band spectra and convolved data sets, and then compared. The indices Difference Vegetation Index (DVI), Global Environmental Monitoring Index (GEMI), Enhanced Vegetation Index (EVI), Modified Soil-Adjusted Vegetation Index (MSAVI2) and Soil-Adjusted Vegetation Index (SAVI), which include the difference between the near-infrared and red bands, have values most similar to those of the original spectra across all 10 sensors (1:1 line mean 1:1R2 > 0.960 and linear trend mean ccR2 > 0.997). Additionally, relationships between the indices' values and two quality indicators for grass covered dikes were compared to those of the original spectra. For the soil moisture indicator, indices that ratio bands performed better across sensors than those that difference bands, while for the dike cover quality indicator, both the choice of bands and their formulation are important. PMID:25781511

  13. Adjusting Spectral Indices for Spectral Response Function Differences of Very High Spatial Resolution Sensors Simulated from Field Spectra

    PubMed Central

    Cundill, Sharon L.; van der Werff, Harald M. A.; van der Meijde, Mark

    2015-01-01

    The use of data from multiple sensors is often required to ensure data coverage and continuity, but differences in the spectral characteristics of sensors result in spectral index values being different. This study investigates spectral response function effects on 48 spectral indices for cultivated grasslands using simulated data of 10 very high spatial resolution sensors, convolved from field reflectance spectra of a grass covered dike (with varying vegetation condition). Index values for 48 indices were calculated for original narrow-band spectra and convolved data sets, and then compared. The indices Difference Vegetation Index (DVI), Global Environmental Monitoring Index (GEMI), Enhanced Vegetation Index (EVI), Modified Soil-Adjusted Vegetation Index (MSAVI2) and Soil-Adjusted Vegetation Index (SAVI), which include the difference between the near-infrared and red bands, have values most similar to those of the original spectra across all 10 sensors (1:1 line mean 1:1R2 > 0.960 and linear trend mean ccR2 > 0.997). Additionally, relationships between the indices’ values and two quality indicators for grass covered dikes were compared to those of the original spectra. For the soil moisture indicator, indices that ratio bands performed better across sensors than those that difference bands, while for the dike cover quality indicator, both the choice of bands and their formulation are important. PMID:25781511

  14. Spectral Power and Irradiance Responsivity Calibration of InSb Working-Standard Radiometers.

    PubMed

    Eppeldauer, G; Rácz, M

    2000-11-01

    New, improved-performance InSb power-irradiance meters have been developed and characterized to maintain the National Institute of Standards and Technology (NIST) spectral responsivity scale between 2 and 5.1 mum. The InSb radiometers were calibrated against the transfer-standard cryogenic bolometer that is tied to the primary-standard cryogenic radiometer of the NIST. The InSb radiometers serve as easy-to-use working standards for routine spectral power and irradiance responsivity calibrations. The spectral irradiance responsivities were derived from the spectral power responsivities by use of the measured area of the apertures in front of the InSb detectors. PMID:18354571

  15. An empirical method for correcting the detector spectral response in energy-resolved CT

    NASA Astrophysics Data System (ADS)

    Schmidt, Taly Gilat

    2012-03-01

    Energy-resolving photon-counting detectors have the potential for improved material decomposition compared to dual-kVp approaches. However, material decomposition accuracy is limited by the nonideal spectral response of the detectors. This work proposes an empirical method for correcting the nonideal spectral response, including spectrum-tailing effects. Unlike previous correction methods which relied on synchrotron measurements, the proposed method can be performed on the scanner. The proposed method estimates a spectral-response matrix by performing x-ray projection measurements through a range of known thicknesses of two or more calibration materials. Once estimated, the spectral-response matrix is incorporated into conventional material decomposition algorithms. A simulation study investigated preliminary feasibility of the proposed method. The spectral-response matrix was estimated using simulated projection measurements through PMMA, aluminum, and gadolinium. An energy-resolved acquisition of a thorax phantom with gadolinium in the blood pool was simulated assuming a five-bin detector with realistic spectral response. Energy-bin data was decomposed into Compton, photoelectric, and gadolinium basis projections with and without the proposed correction method. Basis images were reconstructed by filtered backprojection. Results demonstrated that the nonideal spectral response reduced the ability to distinguish gadolinium from materials such as bone, while images reconstructed with the proposed correction method successfully depicted the contrast agent. The proposed correction method reduced errors from 9% to 0.6% in the Compton image, 90% to 0.6% in the photoelectric image and from 40% to 6% in the gadolinium image when using a three-material calibration. Overall, results support feasibility of the proposed spectral-response correction method.

  16. [Comparative investigation of locust's phototactic visual spectrum effect and phototactic response to spectral illumination].

    PubMed

    Liu, Qi-Hang; Zhou, Qiang

    2014-07-01

    To provide theoretical support for determining locust's phototactic spectrum, and explore locust's phototactic mechanism stimulated by light, utilizing AvaSpec fiber-optic spectrometer system and AvaLight-DHS, the investigation of locust's phototactic visual spectrum effect after light energy stimulated locust's vision system was carried out and on this basis, utilizing the investigated device of locust's phototactic response to spectral illumination, the discrepancy of locust's phototactic response to spectral illumination was certificated comparatively. The results show that the degree of locust's vision system absorbing the single spectrum photon of 430, 545 and 610 nm is significant and there exists difference, and the behavioral response to orange, violet, green, and blue spectral light has the difference in selective sensitivity, with the intensity of response to violet light being the strongest. The degree of response to orange light is the maximum, simultaneously, locust's vision system absorbing spectral photon energy has selective difference and requirement of illumination time, moreover, the sensitive degree of locust's visual system to spectrum and the strength of the lighting energy, influencing locust's phototactic response degree, and the micro-response of locust's phototactic vision physiology, led by the photoelectric effect of locust absorbing sensitive photon and converting photon energy, is the reason for locust's phototactic orientation response. In addition, locust's phototactic visual spectrum effect, only when the biological photoelectric effect of locust's visual system is stimulated by spectral illumination, can present the sensitivity of the spectral absorption effect, so, using the stronger ultraviolet stimulation characteristic of violet light, the different sensitive stimulation of orange, green, blue spectral light on locust's phototactic vision, and combining orange, violet, green, blue spectral light field mechanism reasonably, can

  17. Strains and photovoltaic response in Ta-sputtered Si metal-insulator-semiconductor solar cells

    NASA Astrophysics Data System (ADS)

    Lalevic, B.; Murty, K.; Ito, T.; Kalman, Z. H.; Weissmann, S.

    1981-07-01

    Deformation by bending of Si or Si-SiO2 wafers is achieved by sputter deposition of tantalum films. Strains induced at Si-SiO2 interface and in Ta films are investigated using a combination of X-ray diffraction, electron diffraction, and transmission electron microscopy. Thin Ta film deposits are found to have predominantly a fcc structure, while thicker films have the normal bcc structure with certain admixture of fcc. Film strains generated by the coexistence of the polymorph structure are accommodated by formation of misfit dislocations at the film-Si substrate interface. The effect of the induced stress on the electronic parameters characterizing the Si-SiO2 interface is studied in the metal-oxide-semiconductor structure, and for the effect on photovoltaic response a metal-insulator-semiconductor solar cell configuration is used. Large changes with increasing stress are observed in the values of recombination time, capture cross section, and diffusion length and in sharply decreased conversion efficiency, fill factor, open-circuit voltage, and short-circuit current.

  18. Optical technique for photovoltaic spatial current response measurements using compressive sensing and random binary projections

    NASA Astrophysics Data System (ADS)

    Cashmore, Matt. T.; Koutsourakis, George; Gottschalg, Ralph; Hall, Simon. R. G.

    2016-04-01

    Compressive sensing has been widely used in image compression and signal recovery techniques in recent years; however, it has received limited attention in the field of optical measurement. This paper describes the use of compressive sensing for measurements of photovoltaic (PV) solar cells, using fully random sensing matrices, rather than mapping an orthogonal basis set directly. Existing compressive sensing systems optically image the surface of the object under test, this contrasts with the method described, where illumination patterns defined by precalculated sensing matrices, probe PV devices. We discuss the use of spatially modulated light fields to probe a PV sample to produce a photocurrent map of the optical response. This allows for faster measurements than would be possible using traditional translational laser beam induced current techniques. Results produced to a 90% correlation to raster scanned measurements, which can be achieved with under 25% of the conventionally required number of data points. In addition, both crack and spot type defects are detected at resolutions comparable to electroluminescence techniques, with 50% of the number of measurements required for a conventional scan.

  19. Spectral responsivity estimation and noise effect analysis for digital imaging systems

    NASA Astrophysics Data System (ADS)

    Chang, Gao-Wei; Kuo, Hung-Zen; Tu, Chung-Fan

    2004-02-01

    The determination of spectral responsivities plays a significant role in analyzing and predicting the performance of digital imaging systems for remote sensing. For example, given the spectral response functions, we can readily obtain the colorimetric data from a camera corresponding to the remote illuminated objects. In this paper, we develop a filter-based optical system to estimate these functions. The design objective of this system is to effectively select a limited amount of spectral (or broadband) filters to characterize the spectral features of color imaging processes, which are contaminated with noise, so that the spectral response functions can be estimated with satisfactory accuracy. In our approach, a theoretical study is first presented to pave the way for this work, and then we propose a filter selection method based on the technique of orthogonal-triangular (QR) decomposition with column pivoting, called QRCP method. This method involves QR computations and a column permutation process, which determines a permutation matrix to conduct the subset (or filter) selection. Experimental results reveal that the proposed technique is truly consistent with the theoretical study on filter selections. As expected, the optical system with the filters selected from the QRCP method is much less sensitive to noise than those with other spectral filters from different selections. It turns out that our approach is an effective way to implement the optical system for estimating spectral responsivities of digital imaging systems.

  20. Optically Induced PN Junction Diode and Photovoltaic Response on Ambipolar MoSe2 Field-effect Transistor

    NASA Astrophysics Data System (ADS)

    Pradhan, Nihar; Lu, Zhengguang; Rhodes, Daniel; Terrones, Mauricio; Smirnov, Dmitry; Balicas, Luis

    2015-03-01

    Transition metal dichalcogenides (TMDs) have emerged as an attractive material for electronic and optoelectronic devices due to their sizable band gap, flexibility and reduced dimensionality, which makes them promising candidates for applications in translucent optoelectronics components, such as solar cells and light emitting diodes. Here, we present an optically induced diode like response and concomitant photovoltaic effect in few-atomic layers molybdenum diselenide (MoSe2) field-effect transistors. Compared to recently reported PN junctions based on TMDs, ambipolar MoSe2 shows nearly ideal diode rectification under illumination, with a sizable photovoltaic efficiency. The observed light induced diode response under fixed gate voltage, yields a maximum open circuit voltage 0.28V and short circuit current 230nA at 30uW incident laser power. The sense of current rectification can be altered by changing the polarity of the applied gate voltage (Vbg) . At Vbg = 0V the highest electrical power obtained is 175pW corresponding to a maximum photovoltaic efficiency of 0.01%. These values increased to 11nW and 0.05% under a Vbg = -7.5V. At an excitation voltage 1V we observed maximum photocurrent responsivity surpassing 100mA/W with corresponding external quantum efficiency ~ 30%.

  1. [Comparison among remotely sensed image fusion methods based on spectral response function].

    PubMed

    Dou, Wen; Sun, Hong-quan; Chen, Yun-hao

    2011-03-01

    Remotely sensed image fusion is a critical issue, and many methods have been developed to inject features from a high spatial resolution panchromatic sensor into low spatial resolution multi-spectral images, trying to preserve spectral signatures while improving spatial resolution of multi-spectral images. However, no explicit physical information of the detection system has been taken into account in usual methods, which might lead to undesirable effects such as severe spectral distortion. Benefiting from the proper decomposition of the image fusion problem by a concise image fusion mathematical model, the present paper focuses on comparing reasonable modulation coefficient of spatial details based on analysis of the spectral response function (SRF). According to the classification of former methods, three modulation coefficients based on SRF of sensors were concluded, which lead to three image fusion methods incorporating spatial detail retrieved by Gaussian high-pass filter. All these methods were validated on Ikonos data compared to GS and HPM method. PMID:21595232

  2. Spectral response curve models applied to forest cover-type discrimination

    NASA Technical Reports Server (NTRS)

    Hudson, W. D.; Lusch, D. P.

    1984-01-01

    The potential of remote sensing systems to provide a cost-effective inventory tool in the case of forest resources is currently of interest to a variety of natural resources management agencies. A number of studies have been performed regarding the use of Landsat data for mapping forest resources in Michigan. The present paper is concerned with current research, which has been directed toward the development and evaluation of computer-implemented classifications for the identification and characterization of coniferous forest types in Michigan's northern Lower Peninsula. Attention is given to the characteristic response curves from Landsat MSS data, spectral response curve models, and forest cover-type discrimination. It is found that spectral response curve models can be used to evaluate and explain the characteristic spectral responses of coniferous forest types on a snow-covered, winter Landsat scene.

  3. Spectral response and efficiency of a silicon solar cell below water surface

    SciTech Connect

    Muaddi, J.A.; Jamal, M.A. )

    1992-07-01

    Solar radiation below water surface is modified in that the total solar energy is decreased and the spectral width is reduced. The extent of this modification depends upon the depth in water. This change in the solar radiation reflects its effects on the performance of the light measuring devices such as solar cells, where the efficiency of these cells depends upon the spectral distribution of the incident light. For a silicon solar cell, a computational work has been performed to reconstruct the spectral response curves of the cell at various depths in water, and to calculate the efficiency at these depths relative to the cell efficiency at the water surface.

  4. Correlated Particle Motion and THz Spectral Response of Supercritical Water

    NASA Astrophysics Data System (ADS)

    Śmiechowski, Maciej; Schran, Christoph; Forbert, Harald; Marx, Dominik

    2016-01-01

    Molecular dynamics simulations of supercritical water reveal distinctly different distance-dependent modulations of dipolar response and correlations in particle motion compared to ambient conditions. The strongly perturbed H-bond network of water at supercritical conditions allows for considerable translational and rotational freedom of individual molecules. These changes give rise to substantially different infrared spectra and vibrational density of states at THz frequencies for densities above and below the Widom line that separates percolating liquidlike and clustered gaslike supercritical water.

  5. Effects of Spectral Degradation on Attentional Modulation of Cortical Auditory Responses to Continuous Speech.

    PubMed

    Kong, Ying-Yee; Somarowthu, Ala; Ding, Nai

    2015-12-01

    This study investigates the effect of spectral degradation on cortical speech encoding in complex auditory scenes. Young normal-hearing listeners were simultaneously presented with two speech streams and were instructed to attend to only one of them. The speech mixtures were subjected to noise-channel vocoding to preserve the temporal envelope and degrade the spectral information of speech. Each subject was tested with five spectral resolution conditions (unprocessed speech, 64-, 32-, 16-, and 8-channel vocoder conditions) and two target-to-masker ratio (TMR) conditions (3 and 0 dB). Ongoing electroencephalographic (EEG) responses and speech comprehension were measured in each spectral and TMR condition for each subject. Neural tracking of each speech stream was characterized by cross-correlating the EEG responses with the envelope of each of the simultaneous speech streams at different time lags. Results showed that spectral degradation and TMR both significantly influenced how top-down attention modulated the EEG responses to the attended and unattended speech. That is, the EEG responses to the attended and unattended speech streams differed more for the higher (unprocessed, 64 ch, and 32 ch) than the lower (16 and 8 ch) spectral resolution conditions, as well as for the higher (3 dB) than the lower TMR (0 dB) condition. The magnitude of differential neural modulation responses to the attended and unattended speech streams significantly correlated with speech comprehension scores. These results suggest that severe spectral degradation and low TMR hinder speech stream segregation, making it difficult to employ top-down attention to differentially process different speech streams. PMID:26362546

  6. Designing spectrum-splitting dichroic filters to optimize current-matched photovoltaics.

    PubMed

    Miles, Alexander; Cocilovo, Byron; Wheelwright, Brian; Pan, Wei; Tweet, Doug; Norwood, Robert A

    2016-03-10

    We have developed an approach for designing a dichroic coating to optimize performance of current-matched multijunction photovoltaic cells while diverting unused light. By matching the spectral responses of the photovoltaic cells and current matching them, substantial improvement to system efficiencies is shown to be possible. A design for use in a concentrating hybrid solar collector was produced by this approach, and is presented. Materials selection, design methodology, and tilt behavior on a curved substrate are discussed. PMID:26974772

  7. Investigation on spectral response of micro-cavity structure by symmetrical tapered fiber tips

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Li, Yang; Yan, Xiaojun; Li, Weidong

    2016-06-01

    We proposed and experimentally demonstrated a micro-cavity structure made of symmetrical tapered fiber tips. The waist of a conventional fiber taper fabricated from heating and stretching technique is symmetrically cleaved, and the aligned fiber tips with air gap constitute a Fabry-Perot micro-cavity due to the reflection at the tip facet. The spectral responses of such micro-cavity structure have been investigated both in beam propagation models and experiments. The multibeam interference in the micro-cavity and the impact of the waist diameter and cavity length on the spectral response has been successfully demonstrated. And a micro-cavity structure with 45 μm waist diameter was experimentally achieved, the measured spectra agree well with the simulation ones, indicating that the spectral response of the micro-cavity structure is contributed by both the multibeam interference and the Fabry-Perot micro-cavity.

  8. Computed lateral power spectral density response of conventional and STOL airplanes to random atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Lichtenstein, J. H.

    1974-01-01

    A method of computing the power spectral densities of the lateral response of airplanes to random atmospheric turbulence was adapted to an electronic digital computer. By use of this program, the power spectral densities of the lateral roll, yaw, and sideslip angular displacement of several conventional and STOL airplanes were computed. The results show that for the conventional airplanes, the roll response is more prominent than that for yaw or sideslip response. For the STOL airplanes, on the other hand, the yaw and sideslip responses were larger than the roll response. The response frequency of the STOL airplanes generally is higher than that for the conventional airplanes. This combination of greater sensitivity of the STOL airplanes in yaw and sideslip and the frequency at which they occur could be a factor causing the poor riding qualities of this class of airplanes.

  9. Synthesis and spectral characterization of environmentally responsive fluorescent deoxycytidine analogs

    PubMed Central

    Elmehriki, Adam AH; Suchý, Mojmír; Chicas, Kirby J; Wojciechowski, Filip; Hudson, Robert HE

    2014-01-01

    Herein, we describe the synthesis and spectroscopic properties of five novel pyrrolodeoxycytidine analogs, and the related 5-(1-pyrenylethynyl)-2’-deoxycytidine analog; as well as fluorescence characterization of 5-(p-methoxyphenylethynyl)-2’-deoxyuridine. Within this series of compounds, rigidification of the structure from 6-phenylpyrrolodeoxycytidine to 5,6-benzopyrroldeoxycytidine made remarkable improvement of the fluorescence quantum yield (Φ ~1, EtOH) and substantially increased the Stokes shift. Exchange of the phenyl group of 6-phenylpyrrolodeoxycytidine for other heterocycles (benzofuryl or indolyl) produced an increase in the extinction coefficient at the excitation wavelength while preserving high quantum yields. The steady-state fluorescence response to the environment was determined by sensitivity of Stokes shift to solvent polarity. The effect of solvent polarity on fluorescence emission intensity was concurrently examined and showed that 5,6-benzopyrrolodeoxycytidine is highly sensitive to the presence of water. On the other hand, the previously synthesized 5-(p-methoxyphenylethynyl)-2’-deoxyuridine was found to be sensitive to solvent viscosity indicating molecular rotor behavior. PMID:25483932

  10. The influence of the opening between the heads of the two closest pyramids in textured surface for solar cells and its application on the spectral response

    NASA Astrophysics Data System (ADS)

    Hamel, A.

    2014-05-01

    The work presented in this study is concerned the development of a new solar cell prototype in order to improve photovoltaic efficiency In this model we show that the material can have five and more successive incident ray absorptions instead of three currently, where we changed the direction of the reflected ray, by varying the angle between the two neighbouring pyramids, the incidence angle, the opening between the heads of the two closest pyramids and their height. Thus, with an angle between the two neighbouring pyramid varying between 24° and 12° and for angle of incidence varying between 78° and 84°. For these values of the angle between the two neighbouring pyramids and incidence angle, the opening between the heads of the two closest pyramids varied respectively from 4.25 to 2.10 μm for a pyramid height of 10 μm. This lead to a substantial increase of the spectral response and the photovoltaic efficiency.

  11. Photovoltaic responses in ionically self-assembled nanostructures containing conjugated polymers and fullerenes

    NASA Astrophysics Data System (ADS)

    Brands, Charles; Piok, T.; Neyman, Patrick J.; Erlacher, A.; Soman, C.; Murray, M. A.; Schroeder, Raoul; Heflin, James R.; Graupner, Wilhelm; Marciu, Daniela; Drake, Adam; Miller, Michael B.; Wang, Hong; Gibson, Harry W.; Dorn, Harry C.; Leising, Guenther; Guzy, M.; Davis, Rick M.

    2000-04-01

    We use the technique of ironically self-assembled monolayers (ISAMs) to produce photovoltaic devices of well-controlled thickness and composition. The ISAM nanostructure fabrication method simply involves the alternate dipping of a charged substrate into aqueous cationic and anionic solutions at room temperature. We have employed several approaches to combine the tetrahydrothiophenium precursor of PPV with fullerenes and other organic materials .We apply modulation spectroscopy for the electro-optical characterization of the ISAM-devices. Analyzing the thickness dependence of the recorded photocurrent action spectra allows us to identify the photoactive region within the devices. The modulation frequency dependence of the photocurrent can be assigned to the influence of trapped charges taking part in the photovoltaic process. By utilizing the ability to control both thickness and composition of the organic layer at a nanometer level of precision, the composition and concentration of these defects has ben systematically varied.

  12. Spectral and angular responses of microbolometer IR FPA: a characterization method using a FTIR

    NASA Astrophysics Data System (ADS)

    Touvignon, Aurélie; Durand, Alain; Romanens, Fabien; Favreau, Julien; Gravrand, Olivier; Tisse, Christel-Loïc.

    2014-05-01

    In order to evaluate the impact of technological evolutions on the spectral responsivity of microbolometer FPAs (Focal Plane Arrays) as well as to find out a way to estimate the mechanical stability of microbolometric pixel membranes, ULIS is proposing a new method to measuring the spectral response of the detector array over a large region (area of pixels) simultaneously. This is done by tweaking the standard protocol of a commercial FTIR (Fourier Transform InfraRed) spectrometer where the IR detector is replaced by the array to be measured. All the calculations (i.e. interferogram processing) are taken care of externally. We use this new set up to measure the angular spectral response of the detector array and to analyse the relationship between spectral response and mechanical behaviour of the pixel. Firstly the setup of this measurement is presented and some preliminary technical issues are outlined. Then we focus on the results obtained from the measurements on 17μm pitch pixels over a wide range of angles of incidence (from normal to 45° incidence). Finally, we share some theoretical insights on both those results and the inherent limitations of this protocol using a simple optical cavity model.

  13. Photovoltaic detector based on type II heterostructure with deep AlSb/InAsSb/AlSb quantum well in the active region for the midinfrared spectral range

    SciTech Connect

    Mikhailova, M. P. Andreev, I. A.; Moiseev, K. D.; Ivanov, E. V.; Konovalov, G. G.; Mikhailov, M. Yu.; Yakovlev, Yu. P.

    2011-02-15

    Photodetectors for the spectral range 2-4 {mu}m, based on an asymmetric type-II heterostructure p-InAs/AlSb/InAsSb/AlSb/(p, n)GaSb with a single deep quantum well (QW) or three deep QWs at the heterointerface, have been grown by metal-organic vapor phase epitaxy and analyzed. The transport, luminescent, photoelectric, current-voltage, and capacitance-voltage characteristics of these structures have been examined. A high-intensity positive and negative luminescence was observed in the spectral range 3-4 {mu}m at high temperatures (300-400 K). The photosensitivity spectra were in the range 1.2-3.6 {mu}m (T = 77 K). Large values of the quantum yield ({eta} = 0.6-0.7), responsivity (S{sub {lambda}} = 0.9-1.4 A W{sup -1}), and detectivity (D*{sub {lambda}} = 3.5 Multiplication-Sign 10{sup 11} to 10{sup 10} cm Hz{sup 1/2} W{sup -1}) were obtained at T = 77-200 K. The small capacitance of the structures (C = 7.5 pF at V = -1 V and T = 300 K) enabled an estimate of the response time of the photodetector at {tau} = 75 ps, which corresponds to a bandwidth of about 6 GHz. Photodetectors of this kind are promising for heterodyne detection of the emission of quantum-cascade lasers and IR spectroscopy.

  14. Temperature Responses to Spectral Solar Variability on Decadal and Centennial Time Scales

    NASA Astrophysics Data System (ADS)

    Cahalan, Robert; Wen, Guoyong; Pilewskie, Peter; Harder, Jerald

    2010-05-01

    We apply two scenarios of 11-year solar spectral forcing, namely SIM-based out-of-phase variations and proxy-based in-phase variations, as input to a time-dependent radiative-convective model (RCM), and also to the GISS modelE GCM. For both scenarios, and both models, we find that the maximum temperature response occurs in the upper stratosphere, and temperature responses decrease downward to the surface. The upper stratospheric temperature peak-to-peak responses to out-of-phase solar forcing are ~0.6 K in RCM and ~0.9 K over the tropical region in GCM simulations, a factor of ~5 times as large as responses to in-phase solar forcing. Stratospheric responses are in-phase with TSI (Total Solar Irradiance) variations. The modeled upper stratospheric temperature response to the SORCE SIM observed SSI (Spectral Solar Irradiance) forcing resembles 11-year temperature variations observed with HALOE (Halogen Occultation Experiment). Surface responses to the two SSI scenarios are small for both RCM and GCM studies, as compared to stratospheric responses. Though solar irradiance variations on centennial time scale are not well known, the two scenarios of reconstructed TSI time series (i.e., one based on 11-year cycles with background [Lean 2000] and the second from flux transport that has much less background change [Wang, Lean, and Sheeley, 2005]) provide a range of variations of TSI on centennial time scales. We apply phase relations among different spectral irradiance bands both from SIM observation and proxy reconstructions to the two scenarios of historical TSI. The spectral solar forcing is used to drive the RCM. The updated atmosphere and ocean mixed coupled RCM including diffusion to deep-ocean provides a first-order estimate of climate response. We report the different responses of stratosphere, troposphere, and ocean surface to these 4 scenarios of centennial spectral solar forcing. We further discuss the mechanisms for atmosphere-ocean and stratosphere

  15. Analysis of spectral response of optical switching devices based on chalcogenide bistable fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Scholtz, Lubomír.; Müllerová, Jarmila

    2015-01-01

    Fiber Bragg gratings (FBGs) are novel and promising devices for all-optical switching, ADD/DROP multiplexers, AND gates, switches, all-optical memory elements. Optical switching based on optical Kerr effects induced with high pump laser light incident on the FBGs cause the change of spectral characteristics of grating depending on the incident power. In this paper numerical studies of the nonlinear FBGs are presented. Optical switching based on the optical bistability in nonlinear chalcogenide FBGs is investigated. The spectral response of nonlinear FBGs is discussed from theoretical viewpoint. The simulations are based on the nonlinear coupled mode theory.

  16. Flooding: The effect of water depth on the spectral response of grass canopies

    NASA Astrophysics Data System (ADS)

    Beget, M. E.; Di Bella, C. M.

    2007-03-01

    SummaryVegetation indices generated from remotely sensed data have been widely used to estimate biophysical characteristics of natural vegetation and agricultural crops like aboveground productivity, leaf area index or absorption of the photosynthetically active radiation. However, in flooded environments, such as grasslands or rice crops, alterations in the spectral response of canopies may happen due to the presence of surface water. The objective of this study was to analyse these alterations in flooding environments. Spectral response at high resolution was measured in grass canopies inside a tank with varying levels of water between 0 and 25 cm, resulting in different above-water biomass proportions. Reflectance data were acquired using an OceanOptics Inc © USB2000 visible and near-infrared spectroradiometer. Spectral indices like the Normalized Difference Vegetation Index (NDVI) were calculated for each flooded situation. As flooding level increased, absorption in red wavelengths decreased and reflectance in near infrared decreased. NDVI did not show differences between flooding levels lower than 5 cm, where more than 60% of biomass was above water. From 5 cm, NDVI decreased with the decreasing proportion of emerged biomass. These results evidence not only the alterations of spectral response data under flooded situations but also the conditions limiting vegetation index as a reliable estimator of plant biophysical characteristics.

  17. Early prediction of therapy responses and outcomes in breast cancer patients using quantitative ultrasound spectral texture.

    PubMed

    Sadeghi-Naini, Ali; Sannachi, Lakshmanan; Pritchard, Kathleen; Trudeau, Maureen; Gandhi, Sonal; Wright, Frances C; Zubovits, Judit; Yaffe, Martin J; Kolios, Michael C; Czarnota, Gregory J

    2014-06-15

    Early alterations in textural characteristics of quantitative ultrasound spectral parametric maps, in conjunction with changes in their mean values, are demonstrated here, for the first time, to be capable of predicting ultimate clinical/pathologic responses of breast cancer patients to chemotherapy. Mechanisms of cell death, induced by chemotherapy within tumor, introduce morphological alterations in cancerous cells, resulting in measurable changes in tissue echogenicity. We have demonstrated that the development of such changes is reflected in early alterations in textural characteristics of quantitative ultrasound spectral parametric maps, followed by consequent changes in their mean values. The spectral/textural biomarkers derived on this basis have been demonstrated as non-invasive surrogates of breast cancer chemotherapy response. Particularly, spectral biomarkers sensitive to the size and concentration of acoustic scatterers could predict treatment response of patients with up to 80% of sensitivity and specificity (p=0.050), after one week within 3-4 months of chemotherapy. However, textural biomarkers characterizing heterogeneities in distribution of acoustic scatterers, could differentiate between treatment responding and non-responding patients with up to 100% sensitivity and 93% specificity (p=0.002). Such early prediction permits offering effective alternatives to standard treatment, or switching to a salvage therapy, for refractory patients. PMID:24939867

  18. Spectral scaling of hydrochemical responses - decomposition of water quality time series

    NASA Astrophysics Data System (ADS)

    Riml, Joakim; Wörman, Anders

    2016-04-01

    Knowledge of the different processes affecting the biogeochemical cycling of compounds transported with water, such as nutrients, contaminants and different forms of organically and inorganically bound carbon, is fundamental for understanding and assessing the water quality of any given surface water systems. However, these governing processes are often difficult to quantify, partly due to the complex dynamics of the governing physical and biogeochemical mechanisms, which span over a wide range of temporal and spatial scales. Here we present a recently developed analytical technique that separates the spectrum of time scales in a physically based transport model by relating the fluctuations in the forcing boundary conditions (i.e. the load function) to the water quality response. By transforming the transport problem from the time domain into the frequency domain, closed-form solutions were obtained and used to derive compound specific formal expressions of the power spectral response for different hydrological systems including both a single stream reach and a network of interconnected transport pathways. The frequency dependent response, defined as the spectral scaling function, was subsequently used to evaluate concentration time series of water quality parameters on different spatial scales. This spectral decomposition attributes the water quality response in specific intervals of frequencies to governing processes and provides an opportunity to investigate/quantify the competing processes affecting the different compounds important for the water quality response.

  19. The spectral response of the SCUBA-2 850- and 450-micron photometric bands

    NASA Astrophysics Data System (ADS)

    Naylor, David A.; Gom, Brad G.; Abdelazim, Sherif; Friberg, Per; Bintley, Daniel; Holland, Wayne S.; MacIntosh, Michael J.; Ade, Peter A. R.; Tucker, Carole E.

    2014-07-01

    SCUBA-2 is a wide-field submillimeter bolometer camera operating at the James Clerk Maxwell Telescope. The camera has twin focal planes, each with 5120 superconducting Transition Edge Sensors, which provide simultaneous images in two filter bands at 450 and 850 microns matched to the atmospheric windows. Detailed knowledge of the optical filter profiles that define these bands is important for estimating potential contamination from the prevalent CO J = 3-2 and CO 6-5 line emission, and correctly interpreting the effects of the source spectral index on photometric observations. We present measurements of the spectral response of SCUBA-2 obtained with FTS-2, the ancillary Fourier transform spectrometer instrument at the JCMT. The spectral measurements will be compared with the predicted filter profile determined from the linear combination of the individual filter profiles present in the SCUBA-2 optical train.

  20. Total-light imager with flat spectral response for solar photometric measurements.

    PubMed

    Foukal, P; Libonate, S

    2001-03-01

    Certain applications in imaging photometry and radiometry require a telescope-detector system with (preferably constant) response over a wide spectral range from the ultraviolet through the infrared. We describe the design and characterization of the Solar Bolometric Imager (SBI), a 30-cm-aperture Dall-Kirkham telescope combined with a gold-blacked, 80, 000-element thermal array detector. Our SBI prototype provides spectrally uniform imaging in total solar light (0.28-2.6 mum) of heat-flow inhomogeneities at the solar photosphere, with better than 5-arc sec angular resolution over a 6.5 x 13 arc min field of view. A balloon-borne SBI would avoid most atmospheric transmission variation over this spectral range, enabling accurate study of the sources of total irradiance variation. PMID:18357099

  1. Photovoltaic responses of ZnO/Si heterojunctions synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Liu, H.; Zhao, S.; Zhao, K.; Liu, W.

    2011-07-01

    ZnO/Si heterojunctions were prepared by the sol-gel method and hexagonal polycrystalline wurtzite structures with pores were observed by a field emission scanning electron microscope. The steady photovoltage properties of ZnO/Si heterojunctions were obtained under the illumination of a 532 nm continuum solid state laser with a 50 Hz chopper. In addition ns photoresponse signals were found when the samples were excited by a ps pulsed laser at room temperature. A possible mechanism was proposed to describe the photovoltaic process in the ZnO/Si heterojunction.

  2. Examining Interindividual Differences in Cyclicity of Pleasant and Unpleasant Affects Using Spectral Analysis and Item Response Modeling

    ERIC Educational Resources Information Center

    Ram, Nilam; Chow, Sy-Miin; Bowles, Ryan P.; Wang, Lijuan; Grimm, Kevin; Fujita, Frank; Nesselroade, John R.

    2005-01-01

    Weekly cycles in emotion were examined by combining item response modeling and spectral analysis approaches in an analysis of 179 college students' reports of daily emotions experienced over 7 weeks. We addressed the measurement of emotion using an item response model. Spectral analysis and multilevel sinusoidal models were used to identify…

  3. Organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Leo, Karl

    2016-08-01

    Organic photovoltaics are on the verge of revolutionizing building-integrated photovoltaics. For other applications, however, several basic open scientific questions need answering to, in particular, further improve energy-conversion efficiency and lifetime.

  4. Validation of short-pulse-laser-based measurement setup for absolute spectral irradiance responsivity calibration.

    PubMed

    Schuster, Michaela; Nevas, Saulius; Sperling, Armin

    2014-05-01

    This paper describes the validation process of mode-locked lasers in the "tunable lasers in photometry" (TULIP) setup at Physikalisch-Technische Bundesanstalt (PTB) regarding spectral irradiance responsivity calibrations. Validation has been carried out in the visible spectral range, 400-700 nm, with two different photometer heads and in the long wavelength range, 690-780 nm, with a filtered radiometer. A comparison of the results against those from two different validated measurement setups has been carried out for validation. For the visible spectral range, the comparison is conducted against the data obtained from a lamp-based monochromator setup for spectral irradiance responsivity calibrations and against the photometric values (integral quantity) measured at the photometric bench setup of PTB. For the long wavelength range, comparisons against results from two different lamp-based monochromator measurement setups were made. Additionally, the effect of different radiation bandwidths on interference oscillations has been determined for a filter radiometer without a diffuser. A procedure for the determination of the optimum bandwidth of the setup for the respective measurement device is presented. PMID:24921865

  5. High-accuracy and cost-effective photodiode spectral response measurement system

    NASA Astrophysics Data System (ADS)

    Chang, Gao-Wei; Liao, Chia-Cheng; Yeh, Zong-Mu

    2007-02-01

    With the rapid growth of optoelectronics technologies, photodiodes (PDs) has been widely used in optical measurement systems, color measurement and analysis systems, etc. To meet most of the measurement requirements, the determination of PD spectral responses is very important. The goal of this paper is to develop a high-accuracy and cost-effective spectral response measurement system for PDs. In this paper, the proposed system contains a grating-based spectral filtering module, an amplifier module, and a digital-signal-processing (DSP) based platform. In the spectral filtering module, a single-grating monochromator based on a Czerny-Turner configuration is first analyzed and simulated, and then the experiments are conducted to check if the measurement accuracy is satisfactory. In the measurement system, optoelectronic signals from the PD under test are acquired from the amplifier module and the DSP-based platform is developed to communicate and manipulate the measured data. Through comparison with the measurement data from a commercially available system, it is found that our approach gives quite satisfactory results.

  6. Attenuation length and spectral response of Kuraray SCSF-78MJ scintillating fibres

    NASA Astrophysics Data System (ADS)

    Baulin, A. E.; Cao, Y.; Chan, J.; Giesbrecht, B. P.; Heinrichs, A. K.; Katsaganis, S.; Kolybaba, D.; Krueger, S. T.; Leverington, B. D.; Li, T.; Litzenberger, M. J.; Lolos, G. J.; Papandreou, Z.; Plummer, E. L.; Qian, H.; Sauder, M. D.; Semenov, A. Yu.; Semenova, I. A.; Sichello, L. M.; Sun, Y.; Teigrob, L. A.; Vuthitanachot, K.; Watson, A. M.; Yongzhe, Y.

    2013-07-01

    Over three quarters of a million, 4-m long Kuraray double-clad SCSF-78MJ (blue-green) scintillating fibres have been used in the construction of the GlueX electromagnetic barrel calorimeter, as part of the Hall D experimental program at Jefferson Lab. The response and quality of a random sample of 4750 of these fibres have been evaluated by employing a 373-nm UV LED to stimulate the fibres along their length and reading out the light using a spectrophotometer and a photodiode in order to extract the spectral response and the attenuation length, respectively. Single exponential fits to the spectral response in the 100-280 cm distance from the light source yielded an average bulk attenuation length and standard deviation of (387±26) cm. Double-exponential fits to the spectral response over the entire 4-m length also allowed the extraction of long and short wavelength components at (486±54) cm and (75±22) cm, respectively. Finally, diameter uniformity measurements were carried out. The quality assurance results confirmed that the fibres were of high quality and complied with GlueX specifications.

  7. Spectral integration in the inferior colliculus: role of glycinergic inhibition in response facilitation.

    PubMed

    Wenstrup, J; Leroy, S A

    2001-02-01

    This study examined the contribution of glycinergic inhibition to the time-sensitive spectral integration performed by neurons in the inferior colliculus of the mustached bat (Pteronotus parnellii). These neurons are sometimes called combination-sensitive because they display facilitatory (or inhibitory) responses to the combination of distinct spectral elements in sonar or social vocalizations. Present in a wide range of vertebrates, their temporally and spectrally selective integration is thought to endow them with the ability to discriminate among social vocalizations or to analyze particular cues concerning sonar targets. The mechanisms that underlie these responses or the sites in the auditory system where they are created are not known. We examined combination-sensitive neurons that are facilitated by the presentation of two different harmonic elements of the bat's sonar call and echo. Responses of 24 single units were recorded before and during local application of strychnine, an antagonist of glycinergic inhibition. For each of the 24 units, strychnine application eliminated or greatly reduced temporally sensitive facilitation. There was no difference in this effect for neurons tuned to frequencies associated with the frequency-modulated or the constant-frequency sonar components. These results are unusual because glycine is considered to be an inhibitory neurotransmitter, but here it appears to be essential for the expression of combination-sensitive facilitation. The findings provide strong evidence that facilitatory combination-sensitive response properties present throughout the mustached bat's auditory midbrain, thalamus, and cortex originate through neural interactions in the inferior colliculus. PMID:11157095

  8. Comparison of absolute spectral irradiance responsivity measurement techniques using wavelength-tunable lasers

    SciTech Connect

    Ahtee, Ville; Brown, Steven W.; Larason, Thomas C.; Lykke, Keith R.; Ikonen, Erkki; Noorma, Mart

    2007-07-10

    Independent methods for measuring the absolute spectral irradiance responsivity of detectors have been compared between the calibration facilities at two national metrology institutes, the Helsinki University of Technology (TKK), Finland, and the National Institute of Standards and Technology (NIST). The emphasis is on the comparison of two different techniques for generating a uniform irradiance at a reference plane using wavelength-tunable lasers. At TKK's Laser Scanning Facility (LSF) the irradiance is generated by raster scanning a single collimated laser beam, while at the NIST facility for Spectral Irradiance and Radiance Responsivity Calibrations with Uniform Sources (SIRCUS), lasers are introduced into integrating spheres to generate a uniform irradiance at a reference plane. The laser-based irradiance responsivity results are compared to a traditional lamp-monochromator-based irradiance responsivity calibration obtained at the NIST Spectral Comparator Facility (SCF). A narrowband filter radiometer with a24 nm bandwidth and an effective band-center wavelength of 801 nm was used as the artifact. The results of the comparison between the different facilities, reported for the first time in the near-infrared wavelength range, demonstrate agreement at the uncertainty level of less than 0.1%. This result has significant implications in radiation thermometry and in photometry as well as in radiometry.

  9. Photovoltaic device

    DOEpatents

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  10. Photovoltaic device

    SciTech Connect

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  11. Spectral and temperature features of coherent picosecond nonlinear response of HTSCs at low excitation levels

    SciTech Connect

    Bobyrev, Yu V; Petnikova, V M; Rudenko, K V; Shuvalov, V V

    2008-02-28

    It is shown that for the appropriate choice of the spectral measurement range (the choice of the coincidence point for the pumping component frequencies in the methods of biharmonic pumping and degenerate four-photon spectroscopy), the spectral and temperature features of the picosecond nonlinear response of high-temperature super-conductors (HTSCs) caused by interband transitions in the electronic spectrum with a metastable energy gap are stable with respect to the excitation level. The character of these features is determined by the resonance component of the total nonlinear response, which is formed at initial HTSC temperatures below the phase transition point (when the energy gap appears in the electronic spectrum). (nonlinear optical phenomena)

  12. Comparison of spectral radiance responsivity calibration techniques used for backscatter ultraviolet satellite instruments

    NASA Astrophysics Data System (ADS)

    Kowalewski, M. G.; Janz, S. J.

    2015-02-01

    Methods of absolute radiometric calibration of backscatter ultraviolet (BUV) satellite instruments are compared as part of an effort to minimize pre-launch calibration uncertainties. An internally illuminated integrating sphere source has been used for the Shuttle Solar BUV, Total Ozone Mapping Spectrometer, Ozone Mapping Instrument, and Global Ozone Monitoring Experiment 2 using standardized procedures traceable to national standards. These sphere-based spectral responsivities agree to within the derived combined standard uncertainty of 1.87% relative to calibrations performed using an external diffuser illuminated by standard irradiance sources, the customary spectral radiance responsivity calibration method for BUV instruments. The combined standard uncertainty for these calibration techniques as implemented at the NASA Goddard Space Flight Center’s Radiometric Calibration and Development Laboratory is shown to less than 2% at 250 nm when using a single traceable calibration standard.

  13. Enhancing the spectral response of filled bolometer arrays for submillimeter astronomy.

    PubMed

    Revéret, Vincent; Rodriguez, Louis; Agnèse, Patrick

    2010-12-10

    Future missions for astrophysical studies in the submillimeter region will need detectors with very high sensitivity and large fields of view. Bolometer arrays can fulfill these requirements over a very broad band. We describe a technique that enables bolometer arrays that use quarter-wave cavities to have a high spectral response over most of the submillimeter band. This technique is based on the addition on the front of the array of an antireflecting dielectric layer. The optimum parameters (layer thickness and distance to the array) are determined by a 2D analytic code. This general principle is applied to the case of Herschel PACS bolometers (optimized for the 60 to 210 μm band). As an example, we demonstrate experimentally that a PACS array covered by a 138 μm thick silicon layer can improve the spectral response by a factor of 1.7 in the 450 μm band. PMID:21151229

  14. Modeling the Temperature Responses to Spectral Solar Variability on Decadal and Centennial Time Scales

    NASA Astrophysics Data System (ADS)

    Cahalan, R. F.; Wen, G.; Pilewskie, P.; Harder, J. W.

    2010-12-01

    Atmospheric temperature responses to decadal solar variations are computed for two scenarios of solar spectral irradiance (SSI), SIM-based out-of-phase and proxy-based in-phase variations, using a time-dependent radiative-convective model (RCM), and also GISS modelE (GCM.) For both scenarios and both models, maximum responses occur in upper stratosphere, decreasing downward to the surface. Upper stratospheric temperature peak-to-peak responses to out-of-phase forcing are ~0.6 K in RCM and ~0.9 K over tropics in GCM, ~5x as large as responses to in-phase forcing. Stratospheric responses are in-phase with TSI (Total Solar Irradiance). Modeled upper stratospheric temperature responses to SIM-based forcing are similar to 11-year temperature variations observed with HALOE (Halogen Occultation Experiment). For both RCM and GCM, surface responses to the two scenarios are significantly smaller than stratospheric responses. On centennial timescales, SSI variations are poorly known. However, two scenarios of reconstructed TSI, one based on 11-year cycle with background [Lean 2000] and the other on flux transport with much less background [Wang, Lean, and Sheeley, 2005], provide a potential range of TSI variations. We apply phase relations among different SSI bands both from SIM observations and proxy reconstructions to the two scenarios of historical TSI to derive associated historical SSI, which then drives the RCM. The updated atmosphere and ocean mixed coupled RCM including diffusion to deep-ocean provide a first order estimate of temperature responses to SSI variations on centennial time scales. We discuss potential mechanisms for atmosphere-ocean and stratosphere-troposphere couplings responsible for the climate responses to spectral solar variations.

  15. Revised wavelength and spectral response calibrations for AKARI near-infrared grism spectroscopy: Cryogenic phase

    NASA Astrophysics Data System (ADS)

    Baba, Shunsuke; Nakagawa, Takao; Shirahata, Mai; Isobe, Naoki; Usui, Fumihiko; Ohyama, Youichi; Onaka, Takashi; Yano, Kenichi; Kochi, Chihiro

    2016-04-01

    We perform revised spectral calibrations for the AKARI near-infrared grism to correct quantitatively for the effect of the wavelength-dependent refractive index. The near-infrared grism covering the wavelength range of 2.5-5.0 μm, with a spectral resolving power of 120 at 3.6 μm, is found to be contaminated by second-order light at wavelengths longer than 4.9 μm, which is especially serious for red objects. First, we present the wavelength calibration considering the refractive index of the grism as a function of the wavelength for the first time. We find that the previous solution is positively shifted by up to 0.01 μm compared with the revised wavelengths at 2.5-5.0 μm. In addition, we demonstrate that second-order contamination occurs even with a perfect order-sorting filter owing to the wavelength dependence of the refractive index. Secondly, the spectral responses of the system from the first- and second-order light are simultaneously obtained from two types of standard objects with different colors. The response from the second-order light suggests leakage of the order-sorting filter below 2.5 μm. The relations between the output of the detector and the intensities of the first- and second-order light are formalized by a matrix equation that combines the two orders. The removal of the contaminating second-order light can be achieved by solving the matrix equation. The new calibration extends the available spectral coverage of the grism mode from 4.9 μm up to 5.0 μm. The revision can be used to study spectral features falling in these extended wavelengths, e.g., the carbon monoxide fundamental ro-vibrational absorption within nearby active galactic nuclei.

  16. Investigation of spectral responsivity of InAs QD-embedded GaAs solar cells

    NASA Astrophysics Data System (ADS)

    Bailey, Christopher G.; Forbes, David V.; Raffaelle, Ryne P.; Hubbard, Seth M.

    2011-02-01

    GaAs p-i-n solar cells embedded with varying number of QD layers (0-60) were grown by OMVPE. 1x1 cm2 cells were fabricated and standard solar cell testing was performed. Illuminated AM0 current-voltage characteristics were measured of both a baseline and 10-layer quantum dot (QD) embedded GaAs p-i-n. The QD solar cell (QDSC) gave an short circuit current of 23.1 mA/cm2 increase in of 0.7mA/cm2 above the baseline with no QDs. The QD embedded cell also showed limited loss in open circuit voltage characteristics of 0.99 V compared to 1.04 V of the baseline. Conversion efficiencies were 13.4 and 13.8 for the QDSC and baseline solar cell, respectively. Spectral responsivity measurements revealed equivalent GaAs response in the visible for the baseline, 10x and 20x layer QD samples, while systematically degraded emitter lifetime was found to be responsible for loss in visible responsivities for the 60x QDSC. Sub-GaAs bandgap response gave a systematic increase of 0.25 mA/QD layer. Spectral responsivity modeling was used and found that bulk GaAs emitter and i-region lifetimes degraded from 102 ns to 102 ps, with increasing number of QD layers.

  17. Modeling the Climate Responses to Spectral Solar Variability on Decadal and Centennial Time Scales

    NASA Astrophysics Data System (ADS)

    Cahalan, Robert; Wen, Guoyong; Pilewskie, Peter; Harder, Jerald

    We apply two scenarios of external forcing, namely the SIM-based out-of-phase variations and the proxy-based in-phase variations, as input to a time-dependent radiative-convective model (RCM), and also to the GISS modelE GCM, to compute climate responses to solar variation on decadal time scale. We find that the maximum temperature response occurs in the upper stratosphere, while temperature response decreases downward to the surface for both scenarios, and both models. The upper stratospheric temperature peak-to-peak responses to out-of-phase solar forcing are 0.6 K in RCM and 0.9 K over the tropical region in GCM simulations, a factor of 5 times as large as responses to in-phase solar forcing. Stratospheric responses are in-phase with TSI (Total Solar Irradiance) variations. The modeled upper stratospheric temperature responses to the SORCE SIM observed SSI (Spectral Solar Irradiance) forcing are similar to the HALOE (Halogen Occultation Experiment) observed 11-year temperature variations. Surface responses to the two SSI scenarios are small for both RCM and GCM studies, as compared to the stratospheric responses. Though solar irradiance variations on centennial time scale are not well known, the two sce-narios of reconstructed TSI time series (i.e., the one based on 11-year cycle with background [Lean 2000] and the other one from flux transport that has much less background component [Wang, Lean, and Sheeley, 2005]) provide potential range of variations of TSI on centennial time scale. We apply phase relations among different spectral irradiance bands both from SIM observation and proxy reconstructions to the two scenarios of historical TSI to derive the as-sociated historical SSI. The historical SSI is used to drive the RCM. The updated atmosphere and ocean mixed coupled RCM including diffusion to deep-ocean will provide the first order estimate of temperature response to SSI variation on centennial time scales. We anticipate the stratosphere, troposphere, and

  18. The GOES-R Advanced Baseline Imager: detector spectral response effects on thermal emissive band calibration

    NASA Astrophysics Data System (ADS)

    Pearlman, Aaron J.; Padula, Francis; Cao, Changyong; Wu, Xiangqian

    2015-10-01

    The Advanced Baseline Imager (ABI) will be aboard the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-Series (GOES-R) to supply data needed for operational weather forecasts and long-term climate variability studies, which depend on high quality data. Unlike the heritage operational GOES systems that have two or four detectors per band, ABI has hundreds of detectors per channel requiring calibration coefficients for each one. This increase in number of detectors poses new challenges for next generation sensors as each detector has a unique spectral response function (SRF) even though only one averaged SRF per band is used operationally to calibrate each detector. This simplified processing increases computational efficiency. Using measured system-level SRF data from pre-launch testing, we have the opportunity to characterize the calibration impact using measured SRFs, both per detector and as an average of detector-level SRFs similar to the operational version. We calculated the spectral response impacts for the thermal emissive bands (TEB) theoretically, by simulating the ABI response viewing an ideal blackbody and practically, with the measured ABI response to an external reference blackbody from the pre-launch TEB calibration test. The impacts from the practical case match the theoretical results using an ideal blackbody. The observed brightness temperature trends show structure across the array with magnitudes as large as 0.1 K for and 12 (9.61 µm), and 0.25 K for band 14 (11.2 µm) for a 300 K blackbody. The trends in the raw ABI signal viewing the blackbody support the spectral response measurements results, since they show similar trends in bands 12 (9.61µm), and 14 (11.2 µm), meaning that the spectral effects dominate the response differences between detectors for these bands. We further validated these effects using the radiometric bias calculated between calibrations using the external blackbody and

  19. An AC constant-response method for electrophysiological measurements of spectral sensitivity functions.

    PubMed

    de Souza, J M; DeVoe, R D; Schoeps, C; Ventura, D F

    1996-10-01

    A number of methods have been used in the past to measure spectral sensitivity (S(lambda)) functions of electric responses in the visual system. We present here a microcomputer based, AC, constant-response method for automatic on-line measurement of S(lambda) in cells with or without a sustained tonic response. It is based on feedback adjustment of light intensity to obtain constant peak-to-peak amplitudes of response to a flickering stimulus as the spectrum is scanned between 300 and 700 nm in 4 nm steps. It combines the advantages of: (1) on-line presentation of S(lambda) curves; (2) constant light adaptation; (3) sampling of many points; and (4) fast data collection time. The system can be applied to sensitivity or threshold (e.g., S(lambda), dark adaptation, receptive field) measurements of any electrically recorded visual response. PMID:8912193

  20. AIM results for space-qualified HgCdTe photovoltaic detectors from 0.9-μm to 13-μm spectral range

    NASA Astrophysics Data System (ADS)

    Haiml, M.; Bauer, A.; Bitterlich, H.; Bruder, M.; Hofmann, K.; Lutz, H.; Mai, M.; Nothaft, H.-P.; Rühlich, I.; Wendler, J.; Wiedmann, T.; Wollrab, R.; Ziegler, J.

    2006-09-01

    Remote sensing from space is an emerging market for applications in security, climate research, weather forecast, and global environmental monitoring, to mention a few. In particular, next generation systems demand for large, two-dimensional arrays in the short (SWIR, 0.9-2.5 μm) and the very long wavelength infrared (VLWIR) spectral range up to 15 μm. AIM's developments for space applications benefit from AIM's experiences in high-performance thermal imaging and seeker-head applications. AIM has delivered a 13 μm cut-off demonstrator for a high resolution Fourier-transform imaging spectrometer in limb geometry. For this 256 x 256 VLWIR sensor we measured a responsivity of 100 LSB/K and a noise equivalent temperature difference of 22 mK with 14 bit ADCs at 880 Hz full frame-rate. The substrate and epitaxial layer grown at AIM exhibit very good uniformity and low dark currents. Currently, AIM develops a 1024 x 256 SWIR detector (0.9-2.5 μm) with a capacitance transimpedance amplifier (CTIA) for hyperspectral imaging. The radiation hardness of AIM's FPA technology (MCT sensor and Silicon read-out integrated circuit) has been successfully tested by a total ionization dose (TID) experiment using ESTEC's 60Co γ-source. Our reference module withstands 30 krad TID. For enhanced reliability of the IDCA, AIM has developed a compact 1 W pulse-tube cooler with flexure bearing compressor, which induces also a very low vibration output. In summary, AIM will be able to supply space qualified detector modules covering the spectral range from 0.9 to 13 μm in the near future.

  1. Different response patterns between auditory spectral and spatial temporal order judgment (TOJ).

    PubMed

    Fostick, Leah; Babkoff, Harvey

    2013-01-01

    Temporal order judgment (TOJ) thresholds have been widely reported as valid estimates of the temporal disparity necessary for correctly identifying the order of two stimuli. Data for two auditory TOJ paradigms are often reported in the literature: (1) spatially-based TOJ in which the order of presentation of the same stimulus to the right and left ear differs; and (2) spectrally-based TOJ in which the order of two stimuli differing in frequency is presented to one ear or to both ears simultaneously. Since the thresholds reported using the two paradigms differ, the aim of the current study was to compare their response patterns. The results from three different experiments showed that: (1) while almost none of the participants were able to perform the spatial TOJ task when ISI = 5 ms, with the spectral task, 50% reached an accuracy level of 75% when ISI = 5 ms; (2) temporal separation was only a partial predictor for performance in the spectral task, while it fully predicted performance in the spatial task; and (3) training improved performance markedly in the spectral TOJ task, but had no effect on spatial TOJ. These results suggest that the two paradigms may reflect different perceptual mechanisms. PMID:23820944

  2. Relating the Spectral Electrical Response of Soils to Salinity and Clay Content

    NASA Astrophysics Data System (ADS)

    Seabrook, B. C.; Boadu, F. K.

    2001-05-01

    The variation of the spectral electrical response (SER) of soils as a function of clay content and pore fluid salinity is important for non-invasive characterization of the subsurface using electromagnetic methods. In this laboratory study we present the SER of soils with various clay contents and pore fluid salinities. Parameters used to describe the SER are then found through inversion of the laboratory data. These parameters are correlated with soil properties in order to quantitatively describe the relationship between clay content, salinity and electrical response. Predictive capabilities based on the findings of this study will enable these results to be used in future field work and model development.

  3. Spectral distribution of local field potential responses to electrical stimulation of the retina

    NASA Astrophysics Data System (ADS)

    Wong, Yan T.; Halupka, Kerry; Kameneva, Tatiana; Cloherty, Shaun L.; Grayden, David B.; Burkitt, Anthony N.; Meffin, Hamish; Shivdasani, Mohit N.

    2016-06-01

    Objective. Different frequency bands of the local field potential (LFP) have been shown to reflect neuronal activity occurring at varying cortical scales. As such, recordings of the LFP may offer a novel way to test the efficacy of neural prostheses and allow improvement of stimulation strategies via neural feedback. Here we use LFP measurements from visual cortex to characterize neural responses to electrical stimulation of the retina. We aim to show that the LFP is a viable signal that contains sufficient information to optimize the performance of sensory neural prostheses. Approach. Clinically relevant electrode arrays were implanted in the suprachoroidal space of one eye in four felines. LFPs were simultaneously recorded in response to stimulation of individual electrodes using penetrating microelectrode arrays from the visual cortex. The frequency response of each electrode was extracted using multi-taper spectral analysis and the uniqueness of the responses was determined via a linear decoder. Main results. We found that cortical LFPs are reliably modulated by electrical stimulation of the retina and that the responses are spatially localized. We further characterized the spectral distribution of responses, with maximum information being contained in the low and high gamma bands. Finally, we found that LFP responses are unique to a large range of stimulus parameters (∼40) with a maximum conveyable information rate of 6.1 bits. Significance. These results show that the LFP can be used to validate responses to electrical stimulation of the retina and we provide the first steps towards using these responses to provide more efficacious stimulation strategies.

  4. Spectral and fluorescence imaging of immune system and tissue response to an immunogenic agent

    NASA Astrophysics Data System (ADS)

    Choe, Se-woon; Acharya, Abhinav; Keselowsky, Benjamin G.; Sorg, Brian S.

    2009-05-01

    Imaging of immune system and tissue response to immunogenic agents can be important to the development of new biomaterials. Additionally, quantitative functional imaging can be useful for testing and evaluation of methods to alter or control the immune system response to implanted materials. In this preliminary study, we employ spectral imaging and fluorescence imaging to measure immune system and tissue response to implanted immunogenic agents. Poly (D,L lactide-co-glycolide) (PLGA) with a 50:50 composition was used to create immunogenic microparticles (MPs). Lipopolysaccharide (LPS) encapsulated in the MPs was used to provoke a tissue immune response in mice and encapsulated fluorescein isothiocyanate (FITC) was used to fluorescently label the MPs for imaging. Control MPs did not contain LPS. The MPs were delivered at 50 particles/μL in a total volume of 20μL by subcutaneous injection in the skin of a nude mouse in a dorsal skin-fold window chamber preparation. Cultured immune cells from a mouse leukemic monocyte macrophage cell line were exogenously labeled with the fluorescent dye DiD in solution at a concentration of 8000cells/μL. Immediately after window chamber surgery and implantation of the MPs, 100μL of the fluorescent macrophage solution was administered via the tail vein. Fluorescence imaging was used to track MPs and macrophages while spectral imaging was used for imaging and measurement of hemoglobin saturation in the tissue microvasculature. Imaging was performed periodically over about three days. The spectral and fluorescence imaging combination enabled detailed observations of the macrophage response and functional effects on the tissue.

  5. Experimental and theoretical studies of spectral alteration in ultrasonic waves resulting from nonlinear elastic response in rock

    SciTech Connect

    Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr.

    1993-11-01

    Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime.

  6. Estimating Cosmic-Ray Spectral Parameters from Simulated Detector Responses with Detector Design Implications

    NASA Technical Reports Server (NTRS)

    Howell, L. W.

    2001-01-01

    A simple power law model consisting of a single spectral index (alpha-1) is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at knee energy (E(sub k)) to a steeper spectral index alpha-2 > alpha-1 above E(sub k). The maximum likelihood procedure is developed for estimating these three spectral parameters of the broken power law energy spectrum from simulated detector responses. These estimates and their surrounding statistical uncertainty are being used to derive the requirements in energy resolution, calorimeter size, and energy response of a proposed sampling calorimeter for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). This study thereby permits instrument developers to make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.

  7. Study of Site Response in the Seattle and Tacoma Basins, Washington, Using Spectral Ratio Methods

    NASA Astrophysics Data System (ADS)

    Keshvardoost, R.; Wolf, L. W.

    2014-12-01

    Sedimentary basins are known to have a pronounced influence on earthquake-generated ground motions, affecting both predominant frequencies and wave amplification. These site characteristics are important elements in estimating ground shaking and seismic hazard. In this study, we use three-component broadband and strong motion seismic data from three recent earthquakes to determine site response characteristics in the Seattle and Tacoma basins, Washington. Resonant frequencies and relative amplification of ground motions were determined using Fourier spectral ratios of velocity and acceleration records from the 2012 Mw 6.1 Vancouver Island earthquake, the 2012 Mw 7.8 Queen Charlotte Island earthquake, and the 2014 Mw 6.6 Vancouver Island earthquake. Recordings from sites within and adjacent to the Seattle and Tacoma basins were selected for the study based on their signal to noise ratios. Both the Standard Spectral Ratio (SSR) and the Horizontal-to-Vertical Spectral Ratio (HVSR) methods were used in the analysis, and results from each were compared to examine their agreement and their relation to local geology. Although 57% of the sites (27 out of 48) exhibited consistent results between the two methods, other sites varied considerably. In addition, we use data from the Seattle Liquefaction Array (SLA) to evaluate the site response at 4 different depths. Results indicate that resonant frequencies remain the same at different depths but amplification decreases significantly over the top 50 m.

  8. [Validation of HJ-1B thermal infrared channels onboard radiometric calibration based on spectral response differences].

    PubMed

    Liu, Li; Fu, Qiao-yan; Shi, Ting-ting; Wang, Ai-chun; Zhang, Xue-wen

    2014-08-01

    Since HJ-1B was launched, 7 sets of blackbody data have been used to calculate onboard calibration coefficients, but the research work on the validation of coefficients is rare. According to the onboard calibration principle, calibration coefficients of HJ-1B thermal infrared channel on Sep 14th, 2009 were calculated with the half-width, moments and look-up table methods. MODIS was selected for the reference sensor, and algorithms of spectral match were improved between the HJ-1B thermal infrared channel and MODIS 31, 32 channels based on the spectral response divergence. The relationship of top of atmosphere (TOA) radiance between the remote sensors was calculated, based on which the surface leaving brightness temperature was calculated by Planck function to validate the brightness temperature calculated through the onboard calibration coefficients. The equivalent brightness temperature calculated by spectral response divergence method is 285.97 K, and the inversion brightness temperature calculated by half-width, moments and look-up table methods is 288.77, 274.52 and 285.97 K respectively. The difference between the inversion brightness temperature and the equivalent brightness temperature is 2.8, -11.46 and 0.02 K, respectively, which demonstrate that onboard calibration coefficients calculated by the look-up table method has better precision and feasibility. PMID:25508743

  9. [Validation of HJ-1B thermal infrared channels onboard radiometric calibration based on spectral response differences].

    PubMed

    Liu, Li; Fu, Qiao-yan; Shi, Ting-ting; Wang, Ai-chun; Zhang, Xue-wen

    2014-08-01

    Since HJ-1B was launched, 7 sets of blackbody data have been used to calculate onboard calibration coefficients, but the research work on the validation of coefficients is rare. According to the onboard calibration principle, calibration coefficients of HJ-1B thermal infrared channel on Sep 14th, 2009 were calculated with the half-width, moments and look-up table methods. MODIS was selected for the reference sensor, and algorithms of spectral match were improved between the HJ-1B thermal infrared channel and MODIS 31, 32 channels based on the spectral response divergence. The relationship of top of atmosphere (TOA) radiance between the remote sensors was calculated, based on which the surface leaving brightness temperature was calculated by Planck function to validate the brightness temperature calculated through the onboard calibration coefficients. The equivalent brightness temperature calculated by spectral response divergence method is 285.97 K, and the inversion brightness temperature calculated by half-width, moments and look-up table methods is 288.77, 274.52 and 285.97 K respectively. The difference between the inversion brightness temperature and the equivalent brightness temperature is 2.8, -11.46 and 0.02 K, respectively, which demonstrate that onboard calibration coefficients calculated by the look-up table method has better precision and feasibility. PMID:25474964

  10. Techniques for estimating the unknown functions of incomplete experimental spectral and correlation response matrices

    NASA Astrophysics Data System (ADS)

    Antunes, Jose; Borsoi, Laurent; Delaune, Xavier; Piteau, Philippe

    2016-02-01

    In this paper, we propose analytical and numerical straightforward approximate methods to estimate the unknown terms of incomplete spectral or correlation matrices, when the cross-spectra or cross-correlations available from multiple measurements do not cover all pairs of transducer locations. The proposed techniques may be applied whenever the available data includes the auto-spectra at all measurement locations, as well as selected cross-spectra which implicates all measurement locations. The suggested methods can also be used for checking the consistency between the spectral or correlation functions pertaining to measurement matrices, in cases of suspicious data. After presenting the proposed spectral estimation formulations, we discuss their merits and limitations. Then we illustrate their use on a realistic simulation of a multi-supported tube subjected to turbulence excitation from cross-flow. Finally, we show the effectiveness of the proposed techniques by extracting the modal responses of the simulated flow-excited tube, using the SOBI (Second Order Blind Identification) method, from an incomplete response matrix 1

  11. Estimating Cosmic Ray Spectral Parameters From Simulated Detector Responses With Detector Design Implications

    NASA Technical Reports Server (NTRS)

    Howell, L. W.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    A simple power law model consisting of a single spectral index alpha (sub 1), is believed to be an adequate description of the galactic cosmic ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at knee energy E(sub k) to a steeper spectral index alpha(sub 2) greater than alpha(sub 1) above E(sub k). The maximum likelihood procedure is developed for estimating these three spectral parameters of the broken power law energy spectrum from simulated detector responses. These estimates and their surrounding statistical uncertainty are being used to derive the requirements in energy resolution, calorimeter size, and energy response of a proposed sampling calorimeter for the Advanced Cosmic ray Composition Experiment for the Space Station (ACCESS). This study thereby permits instrument developers to make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.

  12. VIIRS F1 "best" relative spectral response characterization by the government team

    NASA Astrophysics Data System (ADS)

    Moeller, Chris; McIntire, Jeff; Schwarting, Tom; Moyer, Dave

    2011-10-01

    The VIIRS Flight 1 (F1) instrument completed sensor level testing, including relative spectral response (RSR) characterization in 2009 and is moving forward towards a launch on the NPP platform late in 2011. As part of its mandate to produce analyses of F1 performance essentials, the VIIRS Government Team, consisting of NASA, Aerospace Corp., and MIT/Lincoln Lab elements, has produced an independent (from that of industry) analysis of F1 RSR. The test data used to derive RSR for all VIIRS spectral bands was collected in the TVAC environment using the Spectral Measurement Assembly (SpMA), a dual monochromator system with tungsten and ceramic glow bar sources. These spectrally contiguous measurements were analyzed by the Government Team to produce a complete in-band + out-of-band RSR for 21 of the 22 VIIRS bands (exception of the Day-Night Band). The analysis shows that VIIRS RSR was well measured in the pre-launch test program for all bands, although the measurement noise floor is high on the thermal imager band I5. The RSR contain expected detector to detector variation resulting from the VIIRS non-telecentric optical design, and out-of-band features are present in some bands; non-compliances on the integrated out-of-band spectral performance metric are noted in M15 and M16A,B bands and also for several VisNIR bands, though the VisNIR non-compliances were expected due to known scattering in the VisNIR integrated filter assembly. The Government Team "best" RSR have been released into the public domain for use by the science community in preparation for the post-launch era of VIIRS F1.

  13. Mid-infrared absolute spectral responsivity scale based on an absolute cryogenic radiometer and an optical parametric oscillator laser

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Shi, Xueshun; Chen, Haidong; Liu, Yulong; Liu, Changming; Chen, Kunfeng; Li, Ligong; Gan, Haiyong; Ma, Chong

    2016-06-01

    We are reporting on a laser-based absolute spectral responsivity scale in the mid-infrared spectral range. By using a mid-infrared tunable optical parametric oscillator as the laser source, the absolute responsivity scale has been established by calibrating thin-film thermopile detectors against an absolute cryogenic radiometer. The thin-film thermopile detectors can be then used as transfer standard detectors. The extended uncertainty of the absolute spectral responsivity measurement has been analyzed to be 0.58%–0.68% (k  =  2).

  14. Proposal for superstructure based high efficiency photovoltaics

    NASA Technical Reports Server (NTRS)

    Wagner, M.; Leburton, J. P.

    1986-01-01

    A novel class of cascade structures is proposed which features multijunction upper subcells, referred to as superstructure high-efficiency photovoltaics (SHEPs). The additional junctions enhance spectral response and improve radiation tolerance by reducing bulk recombination losses. This is important because ternary III-V alloys, which tend to have short minority-carrier diffusion lengths, are the only viable materials for the high-bandgap upper subcells required for cascade solar cells. Realistic simulations of AlGaAs SHEPs show that one-sun AM0 efficiencies in excess of 26 percent are possible.

  15. Enhanced Visible Photovoltaic Response of TiO₂ Thin Film with an All-Inorganic Donor-Acceptor Type Polyoxometalate.

    PubMed

    Li, Jian-Sheng; Sang, Xiao-Jing; Chen, Wei-Lin; Zhang, Lan-Cui; Zhu, Zai-Ming; Ma, Teng-Ying; Su, Zhong-Min; Wang, En-Bo

    2015-06-24

    In the field of material chemistry, it is of great significance to develop abundant and sustainable materials for solar energy harvesting and management. Herein, after evaluating the energy band characteristics of 13 kinds of polyoxometalates (POMs), the trisubstituted POM compound K6H4[α-SiW9O37Co3(H2O)3]·17H2O (SiW9Co3) was first studied due to its relatively smaller band gap (2.23 eV) and higher lowest unoccupied molecular orbital (LUMO) level (-0.63 V vs NHE). Additionally, the preliminary computational modeling indicated that SiW9Co3 exhibited the donor-acceptor (D-A) structure, in which the cobalt oxygen clusters and tungsten skeletons act as the electron donor and electron acceptor, respectively. By employing SiW9Co3 to modify the TiO2 film, the visible photovoltaic and photocurrent response were both enhanced, and the light-induced photocurrent at 420 nm was improved by 7.1 times. Moreover, the highly dispersive and small sized SiW9Co3 nanoclusters loading on TiO2 were successfully achieved by fabricating the nanocomposite film of {TiO2/SiW9Co3}3 with the layer-by-layer method, which can result in the photovoltaic performance enhancement of dye-sensitized solar cells (DSSCs), of which the overall power conversion efficiency was improved by 25.6% from 6.79% to 8.53% through the synergistic effect of POMs and Ru-complex. PMID:26030670

  16. Broad spectral response photodetector based on individual tin-doped CdS nanowire

    NASA Astrophysics Data System (ADS)

    Zhou, Weichang; Peng, Yuehua; Yin, Yanling; Zhou, Yong; Zhang, Yong; Tang, Dongsheng

    2014-12-01

    High purity and tin-doped 1D CdS micro/nano-structures were synthesized by a convenient thermal evaporation method. SEM, EDS, XRD and TEM were used to examine the morphology, composition, phase structure and crystallinity of as-prepared samples. Raman spectrum was used to confirm tin doped into CdS effectively. The effect of impurity on the photoresponse properties of photodetectors made from these as-prepared pure and tin-doped CdS micro/nano-structures under excitation of light with different wavelength was investigated. Various photoconductive parameters such as responsivity, external quantum efficiency, response time and stability were analyzed to evaluate the advantage of doped nanowires and the feasibility for photodetector application. Comparison with pure CdS nanobelt, the tin-doped CdS nanowires response to broader spectral range while keep the excellect photoconductive parameters. Both trapped state induced by tin impurity and optical whispering gallery mode microcavity effect in the doped CdS nanowires contribute to the broader spectral response. The micro-photoluminescence was used to confirm the whispering gallery mode effect and deep trapped state in the doped CdS nanowires.

  17. Broad spectral response photodetector based on individual tin-doped CdS nanowire

    SciTech Connect

    Zhou, Weichang E-mail: dstang@hunnu.edu.cn; Peng, Yuehua; Yin, Yanling; Zhou, Yong; Zhang, Yong; Tang, Dongsheng E-mail: dstang@hunnu.edu.cn

    2014-12-15

    High purity and tin-doped 1D CdS micro/nano-structures were synthesized by a convenient thermal evaporation method. SEM, EDS, XRD and TEM were used to examine the morphology, composition, phase structure and crystallinity of as-prepared samples. Raman spectrum was used to confirm tin doped into CdS effectively. The effect of impurity on the photoresponse properties of photodetectors made from these as-prepared pure and tin-doped CdS micro/nano-structures under excitation of light with different wavelength was investigated. Various photoconductive parameters such as responsivity, external quantum efficiency, response time and stability were analyzed to evaluate the advantage of doped nanowires and the feasibility for photodetector application. Comparison with pure CdS nanobelt, the tin-doped CdS nanowires response to broader spectral range while keep the excellect photoconductive parameters. Both trapped state induced by tin impurity and optical whispering gallery mode microcavity effect in the doped CdS nanowires contribute to the broader spectral response. The micro-photoluminescence was used to confirm the whispering gallery mode effect and deep trapped state in the doped CdS nanowires.

  18. Tropospheric Response to Estimated Spectrally Discriminated Solar Forcing Over the Past 500 Years

    NASA Technical Reports Server (NTRS)

    Rind, David; Hansen, James E. (Technical Monitor)

    2000-01-01

    The GISS Global Climate Middle Atmosphere Model (GCMAM) is used to investigate the effect of estimated solar irradiance changes on climate for the past 500 years. This model is employed to allow the impact of UV variations on the stratosphere to affect the troposphere via wave-mean flow interactions. Multiple experiments are done with only a total solar irradiance change (peaking at 0.2 percent from the Maunder Minimum to today); with estimated spectrally-varying irradiance changes (i.e., peak changes of 0.7 percent in the UV, 0.2 percent in the visible and near IR; and 0.07 percent in the IR greater than 1 micron); and the spectrally-varying changes in conjunction with model calculated ozone responses in the stratosphere. Results of the varying temperature patterns and radiation response will be discussed. Of interest is whether the different methods of forcing the solar-induced climate change produce different spatial surface temperature signatures, particularly ones that can be differentiated from greenhouse gas warming. In preliminary tests, spectrally-varying solar forcing with induced ozone changes for solar maximum minus solar minimum conditions results in a temperature signal that is primarily at high latitudes.The high latitude response arises due to solar/ozone-induced alterations in the stratospheric wind field that affect planetary wave propagation from the troposphere, and alter tropospheric advection patterns. In contrast, forcing by total solar irradiance changes produces significant response at low and subtropical latitudes as well, driven by water vapor and cloud feedbacks to the radiative perturbation.

  19. Effects of Posture and Stimulus Spectral Composition on Peripheral Physiological Responses to Loud Sounds.

    PubMed

    Koch, Jennifer; Flemming, Jan; Zeffiro, Thomas; Rufer, Michael; Orr, Scott P; Mueller-Pfeiffer, Christoph

    2016-01-01

    In the "loud-tone" procedure, a series of brief, loud, pure-tone stimuli are presented in a task-free situation. It is an established paradigm for measuring autonomic sensitization in posttraumatic stress disorder (PTSD). Successful use of this procedure during fMRI requires elicitation of brain responses that have sufficient signal-noise ratios when recorded in a supine, rather than sitting, position. We investigated the modulating effects of posture and stimulus spectral composition on peripheral psychophysiological responses to loud sounds. Healthy subjects (N = 24) weekly engaged in a loud-tone-like procedure that presented 500 msec, 95 dB sound pressure level, pure-tone or white-noise stimuli, either while sitting or supine and while peripheral physiological responses were recorded. Heart rate, skin conductance, and eye blink electromyographic responses were larger to white-noise than pure-tone stimuli (p's < 0.001, generalized eta squared 0.073-0.076). Psychophysiological responses to the stimuli were similar in the sitting and supine position (p's ≥ 0.082). Presenting white noise, rather than pure-tone, stimuli may improve the detection sensitivity of the neural concomitants of heightened autonomic responses by generating larger responses. Recording in the supine position appears to have little or no impact on psychophysiological response magnitudes to the auditory stimuli. PMID:27583659

  20. Novel characterization of the nonlinear refractive response of materials using spatially and spectrally resolved interferometry

    NASA Astrophysics Data System (ADS)

    Meier, Amanda; Adams, Daniel; Squier, Jeff; Durfee, Charles

    2010-10-01

    Characterization of the nonlinear refractive index of a material is important in order to fully understand the nonlinear propagation of femtosecond laser pulses. The most common method to obtaining the nonlinear refractive index is Z-scan. However, since it averages over pulse duration and beam profile, Z-scan is not reliable when there is time- and intensity-dependence of the nonlinear response. The new method we are exploring to make these nonlinear refractive index measurements is spatially and spectrally resolved interferometry (SSRI). SSRI is a method that can give a simultaneous measurement of the spatial wave-front across the frequency or temporal profile of the pulse. The SSRI method proves better in measuring response at specific y and t, allowing it to measure both delayed response and saturation effects. The ability to make a measurement in both dimensions enables understanding of spatiotemporal dynamics in other experiments as cross-wave polarization and filamentation.

  1. Switched integration amplifier-based photocurrent meter for accurate spectral responsivity measurement of photometers.

    PubMed

    Park, Seongchong; Hong, Kee-Suk; Kim, Wan-Seop

    2016-03-20

    This work introduces a switched integration amplifier (SIA)-based photocurrent meter for femtoampere (fA)-level current measurement, which enables us to measure a 107 dynamic range of spectral responsivity of photometers even with a common lamp-based monochromatic light source. We described design considerations and practices about operational amplifiers (op-amps), switches, readout methods, etc., to compose a stable SIA of low offset current in terms of leakage current and gain peaking in detail. According to the design, we made six SIAs of different integration capacitance and different op-amps and evaluated their offset currents. They showed an offset current of (1.5-85) fA with a slow variation of (0.5-10) fA for an hour under opened input. Applying a detector to the SIA input, the offset current and its variation were increased and the SIA readout became noisier due to finite shunt resistance and nonzero shunt capacitance of the detector. One of the SIAs with 10 pF nominal capacitance was calibrated using a calibrated current source at the current level of 10 nA to 1 fA and at the integration time of 2 to 65,536 ms. As a result, we obtained a calibration formula for integration capacitance as a function of integration time rather than a single capacitance value because the SIA readout showed a distinct dependence on integration time at a given current level. Finally, we applied it to spectral responsivity measurement of a photometer. It is demonstrated that the home-made SIA of 10 pF was capable of measuring a 107 dynamic range of spectral responsivity of a photometer. PMID:27140564

  2. On estimating frequency response function envelopes using the spectral element method and fuzzy sets

    NASA Astrophysics Data System (ADS)

    Nunes, R. F.; Klimke, A.; Arruda, J. R. F.

    2006-04-01

    The influence of uncertain input data on response spectra of dynamic structures is considered. Traditionally, frequency response analyses are based on finite or boundary element models of the objective structure. In the case of the mid-frequency range problem, however, a very fine mesh is required to correctly approximate the frequency response. This is particularly problematic in uncertainty modeling where the computational effort is usually increased significantly by the need for multiple runs (e.g. when conducting a Monte Carlo analysis) to achieve reliable results. In this paper, the spectral element method, combined with a fuzzy set-based uncertainty modeling approach, is presented as an appealing alternative, provided that the models are simple enough to yield a spectral element representation. To conduct the fuzzy analysis part, three different implementations of the extension principle of fuzzy arithmetic are applied and compared. The suitability of each method depends on the number of uncertain parameters, the problem characteristics, and the required accuracy of the results. The performance of the proposed approach is illustrated by two test problems, a simple coupled rod and a reinforced plate model. To verify the fuzzy-valued results, a Monte Carlo simulation has also been included.

  3. Hybrid quantum dot-tin disulfide field-effect transistors with improved photocurrent and spectral responsivity

    DOE PAGESBeta

    Cotlet, Mircea; Huang, Yuan Zang; Chen, Jia -Shiang; Huidong Zang; Sutter, Eli A.; Sutter, Peter W.; Nam, Chang -Yong

    2016-03-24

    We report an improved photosensitivity in few-layer tin disulfide (SnS2) field-effect transistors(FETs) following doping with CdSe/ZnS core/shell quantum dots(QDs). The hybrid QD-SnS2 FET devices achieve more than 500% increase in the photocurrent response compared with the starting SnS2-only FET device and a spectral responsivity reaching over 650 A/W at 400 nm wavelength. The negligible electrical conductance in a control QD-only FET device suggests that the energy transfer between QDs and SnS2 is the main mechanism responsible for the sensitization effect, which is consistent with the strong spectral overlap between QDphotoluminescence and SnS2 optical absorption as well as the large nominalmore » donor-acceptor interspacing between QD core and SnS2. Furthermore, we also find enhanced charge carrier mobility in hybrid QD-SnS2 FETs which we attribute to a reduced contact Schottky barrier width due to an elevated background charge carrier density.« less

  4. Spectral response of a UV flame sensor for a modern turbojet aircraft engine

    NASA Astrophysics Data System (ADS)

    Schneider, William E.; Minott, George L.

    1989-12-01

    A flame sensor is incorporated into the F404 turbojet's afterburner section in order to monitor operations. The sensor contains a gaseous-discharge-type UV detector tube. Attention is presently given to the results of a study of the relationship between the flame and the sensor at temperatures of up to 400 F, using a double monochromator-based spectroradiometric system optimized for spectral response measurements in the 200-300 nm wavelength range. Modifications have been instituted as a result of these tests which guarantee a sufficiently high sensor output signal level, irrespective of variability in afterburner flame irradiance associated with differences in engine operating conditions.

  5. The effect of minority carrier mobility variations on solar cell spectral response

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Godlewski, M. P.; Trivisonno, R. J.

    1981-01-01

    Analysis of multistep diffused, high voltage 0.1 ohm-cm solar cells suggests that the increased voltage capability of these cells is correlated with localized variations in the base minority carrier mobility. An attempt to calculate the behavior of those cells revealed unexpected results. It is shown, contrary to what was expected, that spatial variations in the mobility effects severe changes in the short-circuit current and the spectral response. Variations in cell output as a result of imposing abrupt, linear, and exponential mobility variations are presented.

  6. Analytic Solutions for the Spectral Responses of RCA-Grating-Based Waveguide Devices

    NASA Astrophysics Data System (ADS)

    Zeng, Xiang-Kai; Wei, Lai

    2012-12-01

    Analytic solutions (ASs) for the spectral responses of waveguide devices with raised-cosine-apodized (RCA) gratings are presented. The waveguide devices include short- and long-period RCA-gratings, RCA-grating-based interferometers as Fabry—Perot, Mach—Zehnder and Michelson interferometers. The calculations based on the analytic solutions are demonstrated and compared with those based on the transfer matrix (TM) method preferred, which has confirmed that the AS-based analysis is with enough accuracy and several thousands times the efficiency of the TM method.

  7. Mapping Site Response Parameters on Cal Poly Pomona Campus Using the Spectral Ratio Method

    NASA Astrophysics Data System (ADS)

    HO, K. Y. K.; Polet, J.

    2014-12-01

    Site characteristics are an important factor in earthquake hazard assessment. To better understand site response differences on a small scale, as well as the seismic hazard of the area, we develop site response parameter maps of Cal Poly Pomona campus. Cal Poly Pomona is located in southern California about 40 km east of Los Angeles, within 50 km of San Andreas Fault. The campus is situated on top of the San Jose Fault. With about twenty two thousand students on campus, it is important to know the site response in this area. To this end, we apply the Horizontal-to-Vertical (H/V) spectral ratio technique, which is an empirical method that can be used in an urban environment with no environmental impact. This well-established method is based on the computation of the ratio of vertical ambient noise ground motion over horizontal ambient noise ground motion as a function of frequency. By applying the spectral ratio method and the criteria from Site Effects Assessment Using Ambient Excitations (SESAME) guidelines, we can determine fundamental frequency and a minimum site amplification factor. We installed broadband seismometers throughout the Cal Poly Pomona campus, with an initial number of about 15 sites. The sites are approximately 50 to 150 meters apart and about two hours of waveforms were recorded at each site. We used the Geopsy software to make measurements of the peak frequency and the amplitude of the main peak from the spectral ratio. These two parameters have been determined to be estimates of fundamental frequency and a minimum site amplification factor, respectively. Based on the geological map from the U.S. Geological Survey (USGS) and our data collected from Cal Poly Pomona campus, our preliminary results suggest that the area of campus that is covered by alluvial fan material tends to have a single significant spectral peak with a fundamental frequency of ~1Hz and a minimum amplification factor of ~3.7. The minimum depth of the surface layer is about 56

  8. Tailoring of spectral response and spatial field distribution with corrugated photonic crystal slab.

    PubMed

    Gad, Raanan; Lau, Wah Tung; Nicholaou, Costa; Ahmadi, Soroosh; Sigal, Iliya; Levi, Ofer

    2015-08-15

    We report a new physical mechanism for simultaneous tuning of quality factors, spectral responses, and field distributions in photonic crystal slabs through removal of polarization mode degeneracy using a lattice of elliptical nano-holes. The quality factors in these structures can become higher than those obtained with much smaller circular nano-holes. Furthermore, the modes can be superimposed by either rotating or morphing the elliptical nano-holes into a corrugated grating. These findings will enable improved radiation-matter interaction in optical, microwave, and THZ frequencies along with enhanced opto-acoustic coupling. PMID:26274642

  9. EUV/FUV response characteristics of photographic films for the Multi-Spectral Solar Telescope Array

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Walker, Arthur B. C., Jr.; Deforest, Craig E.; Allen, Maxwell J.; Lindblom, Joakim F.

    1991-01-01

    The photographic film employed by NASA's Multi-Spectral Solar Telescope Array must have high-to-ultrahigh resolution; since the spacecraft bearing the telescope must be evacuated to prevent the failure of delicate EUV and soft X-ray filters due to acoustic vibration during launch, the films must also have very low outgassing rates. An account is presently given of the properties of important new emulsions selected for flight, together with response-characteristics data for the experimental XUV 100 film and an uncoated Spectroscopic 649 emulsion.

  10. The effect of spectral filters on VEP and alpha-wave responses

    PubMed Central

    Willeford, Kevin T.; Fimreite, Vanessa; Ciuffreda, Kenneth J.

    2015-01-01

    Purpose Spectral filters are used to treat light sensitivity in individuals with traumatic brain injury (TBI); however, the effect of these filters on normal visual function has not been elucidated. Thus, the current study aimed to determine the effect of spectral filters on objectively-measured visual-evoked potential (VEP) and alpha-wave responses in the visually-normal population. Methods The full-field (15°H × 17°V), pattern-reversal VEP (20′ check size, mean luminance 52 cd/m2) was administered to 20 visually-normal individuals. They were tested with four Intuitive-Colorimeter-derived, broad-band, spectral filters (i.e., gray/neutral density, blue, yellow, and red), which produced similar luminance values for the test stimulus. The VEP N75 and P100 latencies, and VEP amplitude, were recorded. Power spectrum analysis was used to derive the respective powers at each frequency, and peak frequency, for the selected 9–11 Hz components of the alpha band. Results Both N75 and P100 latencies increased with the addition of each filter when compared to baseline. Additionally, each filter numerically reduced intra-session amplitude variability relative to baseline. There were no significant effects on either the mean VEP amplitude or alpha wave parameters. Conclusions The Intuitive Colorimeter filters significantly increased both N75 and P100 latencies, an effect which is primarily attributable (∼75%) to luminance, and in some cases, specific spectral effects (e.g., blue and red). VEP amplitude and alpha power were not significantly affected. These findings provide an important reference to which either amplitude or power changes in light-sensitive, younger clinical groups can be compared. PMID:26293969

  11. Field-resolved measurement of reaction-induced spectral densities by polarizability response spectroscopy

    NASA Astrophysics Data System (ADS)

    Moran, Andrew M.; Nome, Rene A.; Scherer, Norbert F.

    2007-11-01

    The experimental design and theoretical description of a novel five-pulse laser spectroscopy is presented with an application to a pyridinium charge transfer complex in acetonitrile and methanol. In field-resolved polarizability response spectroscopy (PORS), an electronically resonant laser pulse first excites a solvated chromophore (reactant) and off-resonant Raman spectra of the resulting nuclear motions are measured as a function of the reaction time. The present apparatus differs from our earlier design by performing the Raman probe measurement (with fixed pulse delays) in the frequency domain. In addition, the full electric fields of the signals are measured by spectral interferometry to separate nonresonant and Raman responses. Our theoretical model shows how the PORS signal arises from nuclear motions that are displaced/driven by the photoinduced reaction. The field-resolved off-resonant (of the solute's electronic transitions) probing favors detection of solvent (as opposed to solute) dynamics coupled to the reaction. The sign of the signal represents the relative strengths of polarization responses associated with the ground and photoexcited solutions. Signatures of nonresonant and PORS signal contributions to the experimental results are analyzed with numerical calculations based on a theoretical model we have developed for reaction-induced PORS. Our model identifies two mechanisms of PORS signal generation: (i) structural relaxation induced resonance; (ii) dephasing induced resonance. In the charge transfer reaction investigated, the solvent-dependent and time-evolving (solvent) polarizability spectral density (PSD) is readily obtained. The general trend of an initial broadband inertial nuclear response followed by a decrease in the linewidth of the PSD establishes that the measured PSD is inconsistent with the approximation of a linear response. Furthermore, the explicit time evolution of the PSD is important for properly describing solvent control of

  12. Field-resolved measurement of reaction-induced spectral densities by polarizability response spectroscopy

    SciTech Connect

    Moran, Andrew M.; Nome, Rene A.; Scherer, Norbert F.

    2007-11-14

    The experimental design and theoretical description of a novel five-pulse laser spectroscopy is presented with an application to a pyridinium charge transfer complex in acetonitrile and methanol. In field-resolved polarizability response spectroscopy (PORS), an electronically resonant laser pulse first excites a solvated chromophore (reactant) and off-resonant Raman spectra of the resulting nuclear motions are measured as a function of the reaction time. The present apparatus differs from our earlier design by performing the Raman probe measurement (with fixed pulse delays) in the frequency domain. In addition, the full electric fields of the signals are measured by spectral interferometry to separate nonresonant and Raman responses. Our theoretical model shows how the PORS signal arises from nuclear motions that are displaced/driven by the photoinduced reaction. The field-resolved off-resonant (of the solute's electronic transitions) probing favors detection of solvent (as opposed to solute) dynamics coupled to the reaction. The sign of the signal represents the relative strengths of polarization responses associated with the ground and photoexcited solutions. Signatures of nonresonant and PORS signal contributions to the experimental results are analyzed with numerical calculations based on a theoretical model we have developed for reaction-induced PORS. Our model identifies two mechanisms of PORS signal generation: (i) structural relaxation induced resonance; (ii) dephasing induced resonance. In the charge transfer reaction investigated, the solvent-dependent and time-evolving (solvent) polarizability spectral density (PSD) is readily obtained. The general trend of an initial broadband inertial nuclear response followed by a decrease in the linewidth of the PSD establishes that the measured PSD is inconsistent with the approximation of a linear response. Furthermore, the explicit time evolution of the PSD is important for properly describing solvent control of

  13. Photovoltaic cell

    DOEpatents

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  14. Stability of the spectral responsivity of cryogenically cooled InSb infrared detectors

    SciTech Connect

    Theocharous, Evangelos

    2005-10-10

    The spectral responsivity of two cryogenically cooled InSb detectors was observed to drift slowly with time. The origin of these drifts was investigated and was shown to occur due to a water-ice thin film that was deposited onto the active areas of the cold detectors. The presence of the ice film (which is itself a dielectric film) modifies the transmission characteristics of the antireflection coatings deposited on the active areas of the detectors, thus giving rise to the observed drifts. The magnitude of the drifts was drastically reduced by evacuating the detector dewars while baking them at 50 deg. C for approximately 48 h. All InSb detectors have antireflection coatings to reduce the Fresnel reflections and therefore enhance their spectral responsivity. This work demonstrates that InSb infrared detectors should be evacuated and baked at least annually and in some cases (depending on the quality of the dewar and the measurement uncertainty required) more frequently. These observations are particularly relevant to InSb detectors mounted in dewars that use rubber O rings since the ingress of moisture was found to be particularly serious in this type of dewar.

  15. Processing Pipeline of Sugarcane Spectral Response to Characterize the Fallen Plants Phenomenon

    NASA Astrophysics Data System (ADS)

    Solano, Agustín; Kemerer, Alejandra; Hadad, Alejandro

    2016-04-01

    Nowadays, in agronomic systems it is possible to make a variable management of inputs to improve the efficiency of agronomic industry and optimize the logistics of the harvesting process. In this way, it was proposed for sugarcane culture the use of remote sensing tools and computational methods to identify useful areas in the cultivated lands. The objective was to use these areas to make variable management of the crop. When at the moment of harvesting the sugarcane there are fallen stalks, together with them some strange material (vegetal or mineral) is collected. This strange material is not millable and when it enters onto the sugar mill it causes important looses of efficiency in the sugar extraction processes and affects its quality. Considering this issue, the spectral response of sugarcane plants in aerial multispectral images was studied. The spectral response was analyzed in different bands of the electromagnetic spectrum. Then, the aerial images were segmented to obtain homogeneous regions useful for producers to make decisions related to the use of inputs and resources according to the variability of the system (existence of fallen cane and standing cane). The obtained segmentation results were satisfactory. It was possible to identify regions with fallen cane and regions with standing cane with high precision rates.

  16. Hybrid integrated photodetector with flat-top steep-edge spectral response.

    PubMed

    Fan, Xinye; Huang, Yongqing; Ren, Xiaomin; Duan, Xiaofeng; Hu, Fuquan; Wang, Qi; Cai, Shiwei; Zhang, Xia

    2012-08-20

    Hybrid integrated photodetectors with flat-top steep-edge spectral responses that consist of an Si-based multicavity Fabry-Perot (F-P) filter and an InP-based p-i-n absorption structure (with a 0.2 μm In(0.53)Ga(0.47)As absorption layer), have been designed and fabricated. The performance of the hybrid integrated photodetectors is theoretically investigated by including key factors such as the thickness of each cavity, the pairs of each reflecting mirror, and the thickness of the benzocyclobutene bonding layer. The device is fabricated by bonding an Si-based multicavity F-P filter with an InP-based p-i-n absorption structure. A hybrid integrated photodetector with a peak quantum efficiency of 55% around 1549.2 nm, the -0.5 dB band of 0.43 nm, the 25 dB band of 1.06 nm, and 3 dB bandwidth more than 16 GHz, is simultaneously obtained. Based on multicavity F-P structure, this device has good flat-top steep-edge spectral response. PMID:22907001

  17. Observed acoustic and aeroelastic spectral responses of a MOD-2 turbine blade to turbulence excitation

    NASA Technical Reports Server (NTRS)

    Kelley, N. D.; Mckenna, H. E.; Jacobs, E. W.

    1995-01-01

    Early results from a recent experiment designed to directly evaluate the aeroacoustic/elastic spectral responses of a MOD-2 turbine blade to turbulence-induced unsteady blade loads are discussed. The experimental procedure consisted of flying a hot-film anemometer from a tethered balloon in the turbine inflow and simultaneously measuring the fluctuating airload and aeroelastic response at two blade span stations (65% and 87% spans) using surface-mounted, subminiature pressure transducers and standard strain gage instrumentation. The radiated acoustic pressure field was measured with a triad of very-low-frequency microphones placed at ground level, 1.5 rotor diameters upwind of the disk. Initial transfer function estimates for acoustic radiation, blade normal forces, flapwise acceleration/displacement, and chord/flapwise moments are presented.

  18. Simulating charge transport to understand the spectral response of Swept Charge Devices

    NASA Astrophysics Data System (ADS)

    Athiray, P. S.; Sreekumar, P.; Narendranath, S.; Gow, J. P. D.

    2015-11-01

    Context. Swept Charge Devices (SCD) are novel X-ray detectors optimized for improved spectral performance without any demand for active cooling. The Chandrayaan-1 X-ray Spectrometer (C1XS) experiment onboard the Chandrayaan-1 spacecraft used an array of SCDs to map the global surface elemental abundances on the Moon using the X-ray fluorescence (XRF) technique. The successful demonstration of SCDs in C1XS spurred an enhanced version of the spectrometer on Chandrayaan-2 using the next-generation SCD sensors. Aims: The objective of this paper is to demonstrate validation of a physical model developed to simulate X-ray photon interaction and charge transportation in a SCD. The model helps to understand and identify the origin of individual components that collectively contribute to the energy-dependent spectral response of the SCD. Furthermore, the model provides completeness to various calibration tasks, such as generating spectral matrices (RMFs - redistribution matrix files), estimating efficiency, optimizing event selection logic, and maximizing event recovery to improve photon-collection efficiency in SCDs. Methods: Charge generation and transportation in the SCD at different layers related to channel stops, field zones, and field-free zones due to photon interaction were computed using standard drift and diffusion equations. Charge collected in the buried channel due to photon interaction in different volumes of the detector was computed by assuming a Gaussian radial profile of the charge cloud. The collected charge was processed further to simulate both diagonal clocking read-out, which is a novel design exclusive for SCDs, and event selection logic to construct the energy spectrum. Results: We compare simulation results of the SCD CCD54 with measurements obtained during the ground calibration of C1XS and clearly demonstrate that our model reproduces all the major spectral features seen in calibration data. We also describe our understanding of interactions at

  19. Rayleigh radiance computations for satellite remote sensing: accounting for the effect of sensor spectral response function.

    PubMed

    Wang, Menghua

    2016-05-30

    To understand and assess the effect of the sensor spectral response function (SRF) on the accuracy of the top of the atmosphere (TOA) Rayleigh-scattering radiance computation, new TOA Rayleigh radiance lookup tables (LUTs) over global oceans and inland waters have been generated. The new Rayleigh LUTs include spectral coverage of 335-2555 nm, all possible solar-sensor geometries, and surface wind speeds of 0-30 m/s. Using the new Rayleigh LUTs, the sensor SRF effect on the accuracy of the TOA Rayleigh radiance computation has been evaluated for spectral bands of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP) satellite and the Joint Polar Satellite System (JPSS)-1, showing some important uncertainties for VIIRS-SNPP particularly for large solar- and/or sensor-zenith angles as well as for large Rayleigh optical thicknesses (i.e., short wavelengths) and bands with broad spectral bandwidths. To accurately account for the sensor SRF effect, a new correction algorithm has been developed for VIIRS spectral bands, which improves the TOA Rayleigh radiance accuracy to ~0.01% even for the large solar-zenith angles of 70°-80°, compared with the error of ~0.7% without applying the correction for the VIIRS-SNPP 410 nm band. The same methodology that accounts for the sensor SRF effect on the Rayleigh radiance computation can be used for other satellite sensors. In addition, with the new Rayleigh LUTs, the effect of surface atmospheric pressure variation on the TOA Rayleigh radiance computation can be calculated precisely, and no specific atmospheric pressure correction algorithm is needed. There are some other important applications and advantages to using the new Rayleigh LUTs for satellite remote sensing, including an efficient and accurate TOA Rayleigh radiance computation for hyperspectral satellite remote sensing, detector-based TOA Rayleigh radiance computation, Rayleigh radiance calculations for high altitude

  20. On the importance of spectral responsivity of Robertson-Berger-type ultraviolet radiometers for long-term observations.

    PubMed

    di Sarra, Alcide; Disterhoft, Patrick; DeLuisi, John J

    2002-07-01

    A system to determine the spectral responsivity of ultraviolet (UV) radiometers has been developed and is routinely operated at the Central Ultraviolet Calibration Facility, at the National Oceanic and Atmospheric Administration. The instrument and the measurement methodologies are described. Results of measurements from thermally controlled broadband UV radiometers of the Robertson-Berger (R-B)-type are described. Systematic differences in the spectral response curves for these instruments have been detected. The effect of these differences on the field operation of UV-B radiometers has been studied by calculating the instrumental response from modeled UV spectra. The differences of the weighted spectral UV irradiances, measured by two radiometers with different spectral response functions, caused by the daily variation in the position of the sun were estimated for fixed values of total ozone, altitude and albedo, and for cloud-free conditions. These differences increase with the solar zenith angle and are as large as 8%. Larger differences in the instrumental response may be produced by ozone variations. Thus, care must be taken when analyzing data from R-B radiometers and comparing results from different instruments. Routine cycling of UV-B radiometers in operative networks without a careful determination of the spectral responsivity, or small drifts of the spectral responsivity, may strongly affect the accuracy of UV radiation measurements and produce an erroneous trend. Because of the possible differences among radiometers, it would not be practical to derive the long-term behavior of UV radiation without routine and thorough characterization of the spectral responsivities of the instruments. PMID:12126309

  1. The topographic effect on spectral response from nadir-pointing sensors

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Justice, C. O.

    1980-01-01

    It is difficult to interpret multispectral Landsat earth resources data in areas of rugged and mountainous terrain because of the topographic effect on the sensor response. The objectives of this study were to examine and quantify the topographic effect on the sensor response from a uniform sand surface, to assess a simple theoretical incidence model for modeling the radiance from the surface, and to simulate Landsat sensor response due to the topographic effect. A field experiment was designed to collect data from a large range of slope angles and aspects at a range of solar elevations, using a hand-held radiometer. Analysis of these data showed that the magnitude of the topographic effect varied as a function of the solar elevation, the azimuthal orientation of the slope, and the slope inclination. The field measured variations in spectral response were found to have generally strong correlations with the theoretical model, and it was shown that the applicability of the Lambertian assumption varied within and between data sets. It is concluded that if slope angle, aspect, and solar zenith angle and azimuth are known, a technique incorporating a model to reduce the topographic effect prior to multispectral classification may be developed.

  2. Practical energy response estimation of photon counting detectors for spectral X-ray imaging

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Goo; Lee, Jongha; Sung, Younghun; Lee, SeongDeok

    2010-04-01

    Spectral X-ray imaging is a promising technique to drastically improve the diagnostic quality of radiography and computed tomography (CT), since it enables material decomposition and/or identification based on the energy dependency of material-specific X-ray attenuation. Unlike the charge-integration based X-ray detectors, photon counting X-ray detectors (PCXDs) can discriminate the energies of incident X-ray photons and thereby multi-energy images can be obtained in single exposure. However, the measured data are not accurate since the spectra of incident X-rays are distorted according to the energy response function (ERF) of a PCXD. Thus ERF should be properly estimated in advance for accurate spectral imaging. This paper presents a simple method for ERF estimation based on a polychromatic X-ray source that is widely used for medical imaging. The method consists of three steps: source spectra measurement, detector spectra reconstruction, and ERF inverse estimation. Real spectra of an X-ray tube are first measured at all kVs by using an X-ray spectrometer. The corresponding detector spectra are obtained by threshold scans. The ERF is then estimated by solving the inverse problem. Simulations are conducted to demonstrate the concept of the proposed method.

  3. Extracting the frequencies of the pinna spectral notches in measured head related impulse responses

    NASA Astrophysics Data System (ADS)

    Raykar, Vikas C.; Duraiswami, Ramani; Yegnanarayana, B.

    2005-07-01

    The head related impulse response (HRIR) characterizes the auditory cues created by scattering of sound off a person's anatomy. The experimentally measured HRIR depends on several factors such as reflections from body parts (torso, shoulder, and knees), head diffraction, and reflection/diffraction effects due to the pinna. Structural models (Algazi et al., 2002; Brown and Duda, 1998) seek to establish direct relationships between the features in the HRIR and the anatomy. While there is evidence that particular features in the HRIR can be explained by anthropometry, the creation of such models from experimental data is hampered by the fact that the extraction of the features in the HRIR is not automatic. One of the prominent features observed in the HRIR, and one that has been shown to be important for elevation perception, are the deep spectral notches attributed to the pinna. In this paper we propose a method to robustly extract the frequencies of the pinna spectral notches from the measured HRIR, distinguishing them from other confounding features. The method also extracts the resonances described by Shaw (1997). The techniques are applied to the publicly available CIPIC HRIR database (Algazi et al., 2001c). The extracted notch frequencies are related to the physical dimensions and shape of the pinna.

  4. Objective Assessment of Spectral Ripple Discrimination in Cochlear Implant Listeners Using Cortical Evoked Responses to an Oddball Paradigm

    PubMed Central

    Lopez Valdes, Alejandro; Mc Laughlin, Myles; Viani, Laura; Walshe, Peter; Smith, Jaclyn; Zeng, Fan-Gang; Reilly, Richard B.

    2014-01-01

    Cochlear implants (CIs) can partially restore functional hearing in deaf individuals. However, multiple factors affect CI listener's speech perception, resulting in large performance differences. Non-speech based tests, such as spectral ripple discrimination, measure acoustic processing capabilities that are highly correlated with speech perception. Currently spectral ripple discrimination is measured using standard psychoacoustic methods, which require attentive listening and active response that can be difficult or even impossible in special patient populations. Here, a completely objective cortical evoked potential based method is developed and validated to assess spectral ripple discrimination in CI listeners. In 19 CI listeners, using an oddball paradigm, cortical evoked potential responses to standard and inverted spectrally rippled stimuli were measured. In the same subjects, psychoacoustic spectral ripple discrimination thresholds were also measured. A neural discrimination threshold was determined by systematically increasing the number of ripples per octave and determining the point at which there was no longer a significant difference between the evoked potential response to the standard and inverted stimuli. A correlation was found between the neural and the psychoacoustic discrimination thresholds (R2 = 0.60, p<0.01). This method can objectively assess CI spectral resolution performance, providing a potential tool for the evaluation and follow-up of CI listeners who have difficulty performing psychoacoustic tests, such as pediatric or new users. PMID:24599314

  5. Objective assessment of spectral ripple discrimination in cochlear implant listeners using cortical evoked responses to an oddball paradigm.

    PubMed

    Lopez Valdes, Alejandro; Mc Laughlin, Myles; Viani, Laura; Walshe, Peter; Smith, Jaclyn; Zeng, Fan-Gang; Reilly, Richard B

    2014-01-01

    Cochlear implants (CIs) can partially restore functional hearing in deaf individuals. However, multiple factors affect CI listener's speech perception, resulting in large performance differences. Non-speech based tests, such as spectral ripple discrimination, measure acoustic processing capabilities that are highly correlated with speech perception. Currently spectral ripple discrimination is measured using standard psychoacoustic methods, which require attentive listening and active response that can be difficult or even impossible in special patient populations. Here, a completely objective cortical evoked potential based method is developed and validated to assess spectral ripple discrimination in CI listeners. In 19 CI listeners, using an oddball paradigm, cortical evoked potential responses to standard and inverted spectrally rippled stimuli were measured. In the same subjects, psychoacoustic spectral ripple discrimination thresholds were also measured. A neural discrimination threshold was determined by systematically increasing the number of ripples per octave and determining the point at which there was no longer a significant difference between the evoked potential response to the standard and inverted stimuli. A correlation was found between the neural and the psychoacoustic discrimination thresholds (R2=0.60, p<0.01). This method can objectively assess CI spectral resolution performance, providing a potential tool for the evaluation and follow-up of CI listeners who have difficulty performing psychoacoustic tests, such as pediatric or new users. PMID:24599314

  6. Spectral response of localized surface plasmon in resonance with mid-infrared light

    SciTech Connect

    Kusa, Fumiya; Ashihara, Satoshi

    2014-10-21

    We study spectral responses of localized surface plasmons (LSPs) in gold nanorods, which resonate at mid-infrared frequencies, by transmission spectroscopy and electromagnetic field analyses. The resonance linewidth is found to be linearly proportional to the resonance frequency, indicating that the dephasing due to Drude relaxation is suppressed and that the overall dephasing is dominated by radiative damping. Owing to the reduced radiative/non-radiative damping and large geometrical length of the nanorod, near-field intensity enhancement exceeds several hundred times. Nonetheless the resonance linewidth is comparable with or larger than the bandwidth of a 100-fs pulse, and therefore the enhanced near-field as short as 100-fs can be created upon pulsed excitation. The large enhancements with appropriate bandwidths make LSPs promising for enhanced nonlinear spectroscopies, coherent controls, and strong-field light-matter interactions in the mid-infrared range.

  7. Modeling and Characterization of MTF and Spectral Response at Small Pitch on Mercury Cadmium Telluride

    NASA Astrophysics Data System (ADS)

    Berthoz, J.; Grille, R.; Rubaldo, L.; Gravrand, O.; Kerlain, A.; Pere-Laperne, N.; Martineau, L.; Chabuel, F.; Leclercq, D.

    2015-09-01

    Space applications are challenging infrared (IR) technologies, demanding the best system performance achievable. This requires covering the entire IR spectrum from short-wavelength infrared (SWIR) to very long-wavelength infrared (VLWIR) for various pixel sizes, which is possible thanks to a well-mastered mercury cadmium telluride technology. Because of its adjustable gap, it can be operated in all the IR bands. Nevertheless, technology optimization requires deep understanding of physical mechanisms. This paper presents computations by finite-element modeling of two aspects of electrooptical performance: spectral response and modulation transfer function (MTF). Computations and characterizations for all IR bands demonstrate the accuracy of our simulations and the state-of-the-art nature of our technology, which performs according to theory. This paper also highlights the capability to measure MTF at very small pitch (10 μm) by a nondestructive method.

  8. Tunable spectral response by hydrogen irradiation of Ga(AsN) superlattice diodes

    SciTech Connect

    Balakrishnan, N. E-mail: amalia.patane@nottingham.ac.uk; Makarovsky, O.; Patanè, A. E-mail: amalia.patane@nottingham.ac.uk; Pettinari, G.; Hopkinson, M.

    2014-06-16

    We report on the tuning of the spectral response of superlattice (SL) diodes based on dilute nitride Ga(AsN) alloys by post-growth hydrogenation. Hydrogen is incorporated into the superlattice where it neutralizes the electronic activity of nitrogen by forming N-H complexes. We exploit the controlled thermal dissociation of the complexes to tune the energy of the SL photocurrent absorption and electroluminescence emission; also, by annealing a submicron spot with a focused laser beam we create a preferential path for the injection of carriers, thus activating a nanoscale light emitting region. This method can be used for fabricating planar diode arrays with distinct optical active regions, all integrated onto a single substrate.

  9. Variation in spectral response of soybeans with respect to illumination, view, and canopy geometry

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Biehl, L. L.; Bauer, M. E.

    1984-01-01

    Comparisons of the spectral response for incomplete (well-defined row structure) and complete (overlapping row structure) canopies of soybeans indicated a greater dependence on Sun and view geometry for the incomplete canopies. Red and near-IR reflectance for the incomplete canopy decreased as solar zenith angle increased for a nadir view angle until the soil between the plant rows was completely shaded. Thereafter for increasing solar zenith angle, the red reflectance leveled off and the near-IR reflectance increased. A 'hot spot' effect was evident for the red and near-IR reflectance factors. The 'hot spot' effect was more pronounced for the red band based on relative reflectance value changes. The ratios of off-nadir to nadir acquired data reveal that off-nadir red band reflectance factors more closely approximated straightdown measurements for time periods away from solar noon. Normalized difference generally approximated straightdown measurements during the middle portion of the day.

  10. Sun angle, view angle, and background effects on spectral response of simulated balsam fir canopies

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Daughtry, C. S. T.; Biehl, L. L.

    1986-01-01

    An experiment is described that examines the effects of solar zenith angle and background reflectance on the composite scene reflectance of small balsam fir (Abies balsamea (L.) Mill.) arranged in different densities. In this study, the shape, density, and, consequently, the needle area index and phytomass of the canopies, as well as the background reflectance, were controlled. The effects of sun angle, view angle, and background reflectance on the multispectral response of small balsam fir trees were significant. Regression models relating spectral vegetation indices (i.e., normalized difference (ND) and greenness (GR) to phytomass) showed very poor relationships for balsam fir canopies with a grass background. However, strong linear relationships were found for ND and GR with phytomass for a background that simulated the reflectance of snow. Changing solar zenith angle significantly affected the models relating ND to phytomass for the snow background, but was not significant in the model relating GR to phytomass for the snow background

  11. SNPP VIIRS spectral bands co-registration and spatial response characterization

    NASA Astrophysics Data System (ADS)

    Lin, Guoqing; Tilton, James C.; Wolfe, Robert E.; Tewari, Krishna P.; Nishihama, Masahiro

    2013-09-01

    The Visible Infrared Imager Radiometer Suite (VIIRS) instrument onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite was launched on 28 October 2011. The VIIRS has 5 imagery spectral bands (I-bands), 16 moderate resolution spectral bands (M-bands) and a panchromatic day/night band (DNB). Performance of the VIIRS spatial response and band-to-band co-registration (BBR) was measured through intensive pre-launch tests. These measurements were made in the non-aggregated zones near the start (or end) of scan for the I-bands and M-bands and for a limited number of aggregation modes for the DNB in order to test requirement compliance. This paper presents results based on a recently re-processed pre-launch test data. Sensor (detector) spatial impulse responses in the scan direction are parameterized in terms of ground dynamic field of view (GDFOV), horizontal spatial resolution (HSR), modulation transfer function (MTF), ensquared energy (EE) and integrated out-of-pixel (IOOP) spatial response. Results are presented for the non-aggregation, 2-sample and 3-sample aggregation zones for the I-bands and M-bands, and for a limited number of aggregation modes for the DNB. On-orbit GDFOVs measured for the 5 I-bands in the scan direction using a straight bridge are also presented. Band-to-band co-registration (BBR) is quantified using the prelaunch measured band-to-band offsets. These offsets may be expressed as fractions of horizontal sampling intervals (HSIs), detector spatial response parameters GDFOV or HSR. BBR bases on HSIs in the non-aggregation, 2-sample and 3-sample aggregation zones are presented. BBR matrices based on scan direction GDFOV and HSR are compared to the BBR matrix based on HSI in the non-aggregation zone. We demonstrate that BBR based on GDFOV is a better representation of footprint overlap and so this definition should be used in BBR requirement specifications. We propose that HSR not be used as the primary image quality indicator, since we

  12. SNPP VIIRS Spectral Bands Co-Registration and Spatial Response Characterization

    NASA Technical Reports Server (NTRS)

    Lin, Guoqing; Tilton, James C.; Wolfe, Robert E.; Tewari, Krishna P.; Nishihama, Masahiro

    2013-01-01

    The Visible Infrared Imager Radiometer Suite (VIIRS) instrument onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite was launched on 28 October 2011. The VIIRS has 5 imagery spectral bands (I-bands), 16 moderate resolution spectral bands (M-bands) and a panchromatic day/night band (DNB). Performance of the VIIRS spatial response and band-to-band co-registration (BBR) was measured through intensive pre-launch tests. These measurements were made in the non-aggregated zones near the start (or end) of scan for the I-bands and M-bands and for a limited number of aggregation modes for the DNB in order to test requirement compliance. This paper presents results based on a recently re-processed pre-launch test data. Sensor (detector) spatial impulse responses in the scan direction are parameterized in terms of ground dynamic field of view (GDFOV), horizontal spatial resolution (HSR), modulation transfer function (MTF), ensquared energy (EE) and integrated out-of-pixel (IOOP) spatial response. Results are presented for the non-aggregation, 2-sample and 3-sample aggregation zones for the I-bands and M-bands, and for a limited number of aggregation modes for the DNB. On-orbit GDFOVs measured for the 5 I-bands in the scan direction using a straight bridge are also presented. Band-to-band co-registration (BBR) is quantified using the prelaunch measured band-to-band offsets. These offsets may be expressed as fractions of horizontal sampling intervals (HSIs), detector spatial response parameters GDFOV or HSR. BBR bases on HSIs in the non-aggregation, 2-sample and 3-sample aggregation zones are presented. BBR matrices based on scan direction GDFOV and HSR are compared to the BBR matrix based on HSI in the non-aggregation zone. We demonstrate that BBR based on GDFOV is a better representation of footprint overlap and so this definition should be used in BBR requirement specifications. We propose that HSR not be used as the primary image quality indicator, since we

  13. A simple framework for modelling the photochemical response to solar spectral irradiance variability in the stratosphere

    NASA Astrophysics Data System (ADS)

    Muncaster, R.; Bourqui, M. S.; Chabrillat, S.; Viscardy, S.; Melo, S. M. L.; Charbonneau, P.

    2012-08-01

    The stratosphere is thought to play a central role in the atmospheric response to solar irradiance variability. Recent observations suggest that the spectral solar irradiance (SSI) variability involves significant time-dependent spectral variations, with variable degrees of correlation between wavelengths, and new reconstructions are being developed. In this paper, we propose a simplified modelling framework to characterise the effect of short term SSI variability on stratospheric ozone. We focus on the pure photochemical effect, for it is the best constrained one. The photochemical effect is characterised using an ensemble simulation approach with multiple linear regression analysis. A photochemical column model is used with interactive photolysis for this purpose. Regression models and their coefficients provide a characterisation of the stratospheric ozone response to SSI variability and will allow future inter-comparisons between different SSI reconstructions. As a first step in this study, and to allow comparison with past studies, we take the representation of SSI variability from the Lean (1997) solar minimum and maximum spectra. First, solar maximum-minimum response is analysed for all chemical families and partitioning ratios, and is compared with past studies. The ozone response peaks at 0.18 ppmv (approximately 3%) at 37 km altitude. Second, ensemble simulations are regressed following two linear models. In the simplest case, an adjusted coefficient of determination R2 larger than 0.97 is found throughout the stratosphere using two predictors, namely the previous day's ozone perturbation and the current day's solar irradiance perturbation. A better accuracy (R2 larger than 0.9992) is achieved with an additional predictor, the previous day's solar irradiance perturbation. The regression models also provide simple parameterisations of the ozone

  14. Estimation of response-spectral values as functions of magnitude, distance, and site conditions

    USGS Publications Warehouse

    Joyner, W.B.; Boore, David M.

    1982-01-01

    We have developed empirical predictive equations for the horizontal pseudo-velocity response at 5-percent damping for 12 different periods from 0.1 to 4.0 s. Using a multiple linear-regression method similar to the one we used previously for peak horizontal acceleration and velocity, we analyzed response spectra period by period for 64 records of 12 shallow earthquakes in western North America, including the recent Coyote Lake and Imperial Valley, California, earthquakes. The resulting predictive equations show amplification of the response values at soil sites for periods greater than or equal to 0.5 s, with maximum amplification exceeding a factor of 2 at 1.5 s. For periods less than 0.5 s there is no statistically significant difference between rock sites and the soil sites represented in the data set. These results are consistent with those of several earlier studies. A particularly significant aspect of the predictive equations is that the response values at different periods are different functions of magnitude (confirming earlier results by McGuire and by Trifunac and Anderson). The slope of the least-squares straight line relating log response to moment magnitude ranges from 0.21 at a period of 0.1 s to greater than 0.5 at periods of 1 s and longer. This result indicates that the conventional practice of scaling a constant spectral shape by peak acceleration will not give accurate answers. The Newmark and Hall method of spectral scaling, using both peak acceleration and peak velocity, largely avoids this error. Comparison of our spectra with the Regulatory Guide 1.60 spectrum anchored at the same value at 0.1 s shows that the Regulatory Guide 1.60 spectrum is exceeded at soil sites for a magnitude of 7.5 at all distances for periods greater than about 0.5 s. Comparison of our spectra for soil sites with the corresponding ATC-3 curve of lateral design force coefficients for the highest seismic zone indicates that the ATC-3 curve is exceeded within about 5 km

  15. Photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Groth, H.

    1982-11-01

    The utilization of photovoltaic generators in measuring and signalling installations, communication systems, water pumping, and electric power plants is discussed. The advantages of solar generators over conventional power supply equipment are outlined.

  16. Wave spectral response to sudden changes in wind direction in finite-depth waters

    NASA Astrophysics Data System (ADS)

    Aijaz, Saima; Rogers, W. Erick; Babanin, Alexander V.

    2016-07-01

    The response of a wind-sea spectrum to sudden changes in wind directions of 180° and 90° is investigated. Numerical simulations using the third-generation wave spectral model SWAN have been undertaken at micro timescales of 30 s and fine spatial resolution of less than 10 m. The results have been validated against the wave data collected during the field campaign at Lake George, Australia. The newly implemented 'ST6' physics in the SWAN model has been evaluated using a selection of bottom-friction terms and the two available functions for the nonlinear energy transfer: (1) exact solution of the nonlinear term (XNL), and (2) discrete interactions approximation (DIA) that parameterizes the nonlinear term. Good agreement of the modelled data is demonstrated directly with the field data and through the known experimental growth curves obtained from the extensive Lake George data set. The modelling results show that of the various combinations of models tested, the ST6/XNL model provides the most reliable computations of integral and spectral wave parameters. When the winds and waves are opposing (180° wind turn), the XNL is nearly twice as fast in the aligning the young wind-sea with the new wind direction than the DIA. In this case, the young wind-sea gradually decouples from the old waves and forms a new secondary peak. Unlike the 180° wind turn, there is no decoupling in the 90° wind turn and the entire spectrum rotates smoothly in the new direction. In both cases, the young wind-sea starts developing in the new wind direction within 10 min of the wind turn for the ST6 while the directional response of the default physics lags behind with a response time that is nearly double of ST6. The modelling results highlight the differences in source term balance among the different models in SWAN. During high wind speeds, the default settings provide a larger contribution from the bottom-friction dissipation than the whitecapping. In contrast, the whitecapping

  17. Response to soil moisture of spectral indexes derived from bidirectional reflectance in Thematic Mapper wavebands

    NASA Technical Reports Server (NTRS)

    Musick, H. Brad; Pelletier, Ramona E.

    1988-01-01

    Laboratory reflectance measurements of 10 soils were used to determine the relationship between soil moisture and three spectral indices: the TM5/7 ratio and the Wetness(R) and Brightness(R) features of the reflectance factor TM Tasseled Cap transformation. Response of the indices to dry mass water percentage was approximately linear for individual soils, except for Wetness(R) and Brightness(R) at high moisture content. Soil differences in the slopes of the Wetness(R)- and Brightness(R)-moisture content relationships were almost entirely eliminated by expressing water content as the percentage of water retained at 0.1 bar (10 kPa) tension (relative water content). The resultant soil lines were offset from one another by the differences in dry soil index value. Slope of the TM5/7 response was not completely normalized by expressing moisture status as relative water content, because slope appeared to vary with dry soil ratio value. Sensitivity to the effects of illumination angle was negligible for the TM5/7 ratio, somewhat greater for Wetness(R) and greatest for Brightness(R).

  18. GISS GCMAM Modeled Climate Responses to Total and Spectral Solar Forcing on Decadal and Centennial Time Scales

    NASA Astrophysics Data System (ADS)

    Wen, Guoyong; Cahalan, Robert; Rind, David; Jonas, Jeffrey; Pilewskie, Peter; Harder, Jerry

    2014-05-01

    We examine the influence of the SORCE (Solar Radiation and Climate Experiment) SIM (Spectral Irradiance Monitor) observed spectral solar irradiance (SSI) variations on Earth's climate. We apply two reconstructed spectral solar forcing scenarios, one SIM based, the other based on the SATIRE (Spectral And Total Irradiance REconstruction) model, as inputs to the GISS (Goddard Institute for Space Studies) GCMAM (Global Climate Middle Atmosphere Model) to examine the climate responses on decadal and centennial time scales. We show that the atmosphere has different temperature, ozone, and dynamic responses to the two solar spectral forcing scenarios, even when the variations in TSI (Total Solar Irradiance) are the same. We find that solar variations under either scenario contribute a small fraction of the observed temperature increase since the industrial revolution. The trend of global averaged surface air temperature response to the SIM-based solar forcing is 0.02 °C/century, about half of the temperature trend to the SATIRE-based SSI. However the temporal variation of the surface air temperature for the SIM-based solar forcing scenario is much larger compared to its SATIRE counterpart. Further research is required to examine TSI and SSI variations in the ascending phase of solar cycle 24, to assess their implications for the solar influence on climate.

  19. GISS GCMAM Modeled Climate Responses to Total and Spectral Solar Forcing on Decadal and Centennial Time Scales

    NASA Astrophysics Data System (ADS)

    Wen, G.; Cahalan, R. F.; Rind, D. H.; Jonas, J.; Pilewskie, P.; Harder, J. W.; Krivova, N.

    2014-12-01

    We examine the influence of the SORCE (Solar Radiation and Climate Experiment) SIM (Spectral Irradiance Monitor) observed spectral solar irradiance (SSI) variations on Earth's climate. We apply two reconstructed spectral solar forcing scenarios, one SIM based, the other based on the SATIRE (Spectral And Total Irradiance REconstruction) model, as inputs to the GISS (Goddard Institute for Space Studies) GCMAM (Global Climate Middle Atmosphere Model) to examine the climate responses on decadal and centennial time scales. We show that the atmosphere has different temperature, ozone, and dynamic responses to the two solar spectral forcing scenarios, even when the variations in TSI (Total Solar Irradiance) are the same. We find that solar variations under either scenario contribute a small fraction of the observed temperature increase since the industrial revolution. The trend of global averaged surface air temperature response to the SIM-based solar forcing is 0.02 °C/century, about half of the temperature trend to the SATIRE-based SSI. However the temporal variation of the surface air temperature for the SIM-based solar forcing scenario is much larger compared to its SATIRE counterpart. Further research is required to examine TSI and SSI variations in the ascending phase of solar cycle 24, to assess their implications for the solar influence on climate.

  20. Spectral induced polarization (SIP) response of biodegraded oil in porous media

    NASA Astrophysics Data System (ADS)

    Abdel Aal, Gamal Z.; Atekwana, Estella A.

    2014-02-01

    Laboratory experiments were conducted to investigate the effect of different oil saturation (0.2-0.8), wetting conditions (water-wet and oil-wet), and the addition of asphaltene on the spectral induced polarization (SIP) response of biodegraded and fresh crude oil in sand columns. In the water-wet case, no significant differences were observed for both the fresh and biodegraded oil and both displayed an increase in the magnitude of the phase (ϕ) and decrease in the magnitudes of the real (σ') and imaginary (σ'') conductivity components with increasing oil saturation. In this instance the SIP response is most likely controlled by the conduction and polarization of the electric double layer at the mineral-water interface. However, when oil is the wetting phase there were considerable differences in the magnitude of the SIP parameters between the fresh and biodegraded oil. The magnitude of ϕ and σ'' increased with increasing oil saturation, whereas σ' decreased. The magnitude of σ' and σ'' for the biodegraded oil-wetted sands were relatively higher compared to fresh oil-wetted sands. In experiments with fresh and biodegraded oil-wet sand, the addition of 1 per cent asphaltene increased σ' and σ'' with the biodegraded oil showing the highest magnitude. Asphaltenes are the most dipolar fraction of crude oil and increase in concentration with increasing biodegradation. Asphaltene creates a surface charge due to the ionization and complexation reactions of functional groups at interfaces. Therefore, the enhancement in the conduction and polarization observed with the biodegraded oil-wetted sands may be due to the increase in polar components (e.g. asphaltene) from the biodegradation process and the interactions of the polar components with the surfaces of water and mineral grains. Further studies are required to investigate the effect of other components in biodegraded oil such as resins, trace metals, biogenic metallic minerals (e.g. magnetite) and organic

  1. Sensitivity studies of SREM instrument response and spectral unfolding to particle environment anisotropy

    NASA Astrophysics Data System (ADS)

    Hajdas, Wojtek; Xiao, Hualin; Marcinkowski, Radoslaw

    2016-04-01

    The Standard Radiation Environment Monitor (SREM) is installed on several ESA satellites to monitor space radiation environment of protons and electrons [1]. With its 15 spectroscopy channels the monitor can distinguish between particle species and provide information on their energy spectra. Measurements are based on three sensors located behind different shielding materials. Two of them are arranged into a telescope. All SREM instruments have been carefully calibrated and modelled during laboratory preparation phase. Space data are unfolded using a wide range of methods ranging from simple fit functions to response matrix inversions [2]. Cross comparisons often show discrepancies reaching even an order of magnitude. They are usually attributed to the particle environment anisotropy. Due to various thicknesses of the shielding given by SREM itself and the spacecraft mass distributions the response functions show directional sensitivity. Knowing the spacecraft orientation with respect to the magnetic field allows for more accurate spectral measurements [3]. It is not always possible as only some spacecraft with SREM on board provide such information. This study utilizes pitch angle distributions of particles in the radiation belts for improved unfolding of the SREM energy spectra. Both, random and known SREM orientations with respect to the magnetic field are investigated. Results are given for wide range of numerical studies and for space measurements based on the PROBA1 mission [4]. They contribute to improved accuracy of SREM spectral measurements and give valuable inputs to design of new spacecraft radiation instruments. Literature [1 A. Hajdas, P. Bühler, C. Eggel, P. Favre, A. Mchedlishvili, and A. Zehnder, "Radiation environment along the INTEGRAL orbit measured with the IREM monitor," Astro. Astrophys., vol. 411, pp. L43-L47, 2003. [2] I. Sandberg, I. A. Daglis, A. Anastasiadis, P. Bühler, P. Nieminen, and H. Evans, IEEE Trans. Nucl. Sci. vol. 59, no. 4

  2. A cascaded model of spectral distortions due to spectral response effects and pulse pileup effects in a photon-counting x-ray detector for CT

    SciTech Connect

    Cammin, Jochen E-mail: ktaguchi@jhmi.edu; Taguchi, Katsuyuki E-mail: ktaguchi@jhmi.edu; Xu, Jennifer; Barber, William C.; Iwanczyk, Jan S.; Hartsough, Neal E.

    2014-04-15

    Purpose: Energy discriminating, photon-counting detectors (PCDs) are an emerging technology for computed tomography (CT) with various potential benefits for clinical CT. The photon energies measured by PCDs can be distorted due to the interactions of a photon with the detector and the interaction of multiple coincident photons. These effects result in distorted recorded x-ray spectra which may lead to artifacts in reconstructed CT images and inaccuracies in tissue identification. Model-based compensation techniques have the potential to account for the distortion effects. This approach requires only a small number of parameters and is applicable to a wide range of spectra and count rates, but it needs an accurate model of the spectral distortions occurring in PCDs. The purpose of this study was to develop a model of those spectral distortions and to evaluate the model using a PCD (model DXMCT-1; DxRay, Inc., Northridge, CA) and various x-ray spectra in a wide range of count rates. Methods: The authors hypothesize that the complex phenomena of spectral distortions can be modeled by: (1) separating them into count-rate independent factors that we call the spectral response effects (SRE), and count-rate dependent factors that we call the pulse pileup effects (PPE), (2) developing separate models for SRE and PPE, and (3) cascading the SRE and PPE models into a combined SRE+PPE model that describes PCD distortions at both low and high count rates. The SRE model describes the probability distribution of the recorded spectrum, with a photo peak and a continuum tail, given the incident photon energy. Model parameters were obtained from calibration measurements with three radioisotopes and then interpolated linearly for other energies. The PPE model used was developed in the authors’ previous work [K. Taguchi et al., “Modeling the performance of a photon counting x-ray detector for CT: Energy response and pulse pileup effects,” Med. Phys. 38(2), 1089–1102 (2011

  3. Photovoltaic Engineering

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Ohio Aerospace Institute through David Scheiman and Phillip Jenkins provided the Photovoltaics Branch at the NASA Glenn Research Center (GRC) with expertise in photovoltaic (PV) research, flight experiments and solar cell calibration. NASA GRC maintains the only world-class solar cell calibration and measurement facility within NASA. GRC also has a leadership role within the solar cell calibration community, and is leading the effort to develop ISO standards for solar cell calibration. OAI scientists working under this grant provided much of the expertise and leadership in this area.

  4. Uncertainty Analysis of Spectral Irradiance Reference Standards Used for NREL Calibrations

    SciTech Connect

    Habte, A.; Andreas, A.; Reda, I.; Campanelli, M.; Stoffel, T.

    2013-05-01

    Spectral irradiance produced by lamp standards such as the National Institute of Standards and Technology (NIST) FEL-type tungsten halogen lamps are used to calibrate spectroradiometers at the National Renewable Energy Laboratory. Spectroradiometers are often used to characterize spectral irradiance of solar simulators, which in turn are used to characterize photovoltaic device performance, e.g., power output and spectral response. Therefore, quantifying the calibration uncertainty of spectroradiometers is critical to understanding photovoltaic system performance. In this study, we attempted to reproduce the NIST-reported input variables, including the calibration uncertainty in spectral irradiance for a standard NIST lamp, and quantify uncertainty for measurement setup at the Optical Metrology Laboratory at the National Renewable Energy Laboratory.

  5. The relationship of spectral sensitivity with growth and reproductive response in avian breeders (Gallus gallus).

    PubMed

    Yang, Ye-Feng; Jiang, Jing-Song; Pan, Jin-Ming; Ying, Yi-Bin; Wang, Xiao-Shuang; Zhang, Ming-Li; Lu, Min-Si; Chen, Xian-Hui

    2016-01-01

    A previous study demonstrated that birds that are exposed to light at night develop advanced reproductive systems. However, spectrum might also affect the photoperiodic response of birds. The present study was aimed to investigate the effects of spectral composition on the growth and reproductive physiology of female breeders, using pure light-emitting diode spectra. A total of 1,000 newly hatched female avian breeders (Gallus gallus) were equally allocated to white-, red-, yellow-, green- and blue-light treated groups. We found that blue-light treated birds had a greater and faster weight gain than did red- and yellow-light treated birds (P = 0.02 and 0.05). The red light expedited the sexual maturation of the chicks, whose age at sexual maturity was 7 and 14 days earlier than that of the green- and blue-light treated birds, respectively. The accumulative egg production of the red-light treated birds was 9 and 8 eggs more than that of the blue- and green-light treated birds. The peak lay rate of the red-light treated groups was significantly greater than the blue-light treated birds (P = 0.028). In conclusion, exposure to short-wavelength light appears to promote growth of female breeder birds, whereas exposure to long-wavelength light appears to accelerate reproductive performance. PMID:26765747

  6. The relationship of spectral sensitivity with growth and reproductive response in avian breeders (Gallus gallus)

    NASA Astrophysics Data System (ADS)

    Yang, Ye-Feng; Jiang, Jing-Song; Pan, Jin-Ming; Ying, Yi-Bin; Wang, Xiao-Shuang; Zhang, Ming-Li; Lu, Min-Si; Chen, Xian-Hui

    2016-01-01

    A previous study demonstrated that birds that are exposed to light at night develop advanced reproductive systems. However, spectrum might also affect the photoperiodic response of birds. The present study was aimed to investigate the effects of spectral composition on the growth and reproductive physiology of female breeders, using pure light-emitting diode spectra. A total of 1,000 newly hatched female avian breeders (Gallus gallus) were equally allocated to white-, red-, yellow-, green- and blue-light treated groups. We found that blue-light treated birds had a greater and faster weight gain than did red- and yellow-light treated birds (P = 0.02 and 0.05). The red light expedited the sexual maturation of the chicks, whose age at sexual maturity was 7 and 14 days earlier than that of the green- and blue-light treated birds, respectively. The accumulative egg production of the red-light treated birds was 9 and 8 eggs more than that of the blue- and green-light treated birds. The peak lay rate of the red-light treated groups was significantly greater than the blue-light treated birds (P = 0.028). In conclusion, exposure to short-wavelength light appears to promote growth of female breeder birds, whereas exposure to long-wavelength light appears to accelerate reproductive performance.

  7. MoS2-InGaZnO Heterojunction Phototransistors with Broad Spectral Responsivity.

    PubMed

    Yang, Jaehyun; Kwak, Hyena; Lee, Youngbin; Kang, Yu-Seon; Cho, Mann-Ho; Cho, Jeong Ho; Kim, Yong-Hoon; Jeong, Seong-Jun; Park, Seongjun; Lee, Hoo-Jeong; Kim, Hyoungsub

    2016-04-01

    We introduce an amorphous indium-gallium-zinc-oxide (a-IGZO) heterostructure phototransistor consisting of solution-based synthetic molybdenum disulfide (few-layered MoS2, with a band gap of ∼1.7 eV) and sputter-deposited a-IGZO (with a band gap of ∼3.0 eV) films as a novel sensing element with a broad spectral responsivity. The MoS2 and a-IGZO films serve as a visible light-absorbing layer and a high mobility channel layer, respectively. Spectroscopic measurements reveal that appropriate band alignment at the heterojunction provides effective transfer of the visible light-induced electrons generated in the few-layered MoS2 film to the underlying a-IGZO channel layer with a high carrier mobility. The photoresponse characteristics of the a-IGZO transistor are extended to cover most of the visible range by forming a heterojunction phototransistor that harnesses a visible light responding MoS2 film with a small band gap prepared through a large-area synthetic route. The MoS2-IGZO heterojunction phototransistors exhibit a photoresponsivity of approximately 1.7 A/W at a wavelength of 520 nm (an optical power of 1 μW) with excellent time-dependent photoresponse dynamics. PMID:26989951

  8. A comparison of electrophysiologically determined spectral responses in six subspecies of Lymantria.

    PubMed

    Crook, Damon J; Hull-Sanders, Helen M; Hibbard, Emily L; Mastro, Victor C

    2014-04-01

    The spectral sensitivity of the compound eye in three gypsy moth species from six different geographical regions (Lymantria dispar asiatica Vnukovskij [Asian gypsy moth], Lymantria dispar japonica Motschulsky [Japanese gypsy moth], and Lymantria dispar dispar L. [North American gypsy moth]) was tested electrophysiologically in the wavelength region 300-700 nm. For all moths examined, a maximum response occurred in the 480-520-nm range (blue-green region) with a shoulder peak occurring at 460 nm. A smaller, secondary peak was observed for both sexes at the 340-380-nm range, which is in the region considered behaviorally maximal in night-flying insects. No peaks in sensitivity were observed between 520 and 700 nm (red region) for any of the moths tested. Based on our retinal recording data, a short wavelength blocking filter with a transition wavelength near 500 nm should reduce gypsy moth attraction to artificial lighting sources. This would help reduce the number of Lymantria-infested ships traveling to and from foreign ports. PMID:24772548

  9. A unifying principle underlying the extracellular field potential spectral responses in the human cortex

    PubMed Central

    Podvalny, Ella; Noy, Niv; Harel, Michal; Bickel, Stephan; Chechik, Gal; Schroeder, Charles E.; Mehta, Ashesh D.; Tsodyks, Misha

    2015-01-01

    Electrophysiological mass potentials show complex spectral changes upon neuronal activation. However, it is unknown to what extent these complex band-limited changes are interrelated or, alternatively, reflect separate neuronal processes. To address this question, intracranial electrocorticograms (ECoG) responses were recorded in patients engaged in visuomotor tasks. We found that in the 10- to 100-Hz frequency range there was a significant reduction in the exponent χ of the 1/fχ component of the spectrum associated with neuronal activation. In a minority of electrodes showing particularly high activations the exponent reduction was associated with specific band-limited power modulations: emergence of a high gamma (80–100 Hz) and a decrease in the alpha (9–12 Hz) peaks. Importantly, the peaks' height was correlated with the 1/fχ exponent on activation. Control simulation ruled out the possibility that the change in 1/fχ exponent was a consequence of the analysis procedure. These results reveal a new global, cross-frequency (10–100 Hz) neuronal process reflected in a significant reduction of the power spectrum slope of the ECoG signal. PMID:25855698

  10. The impact of changing night vision goggle spectral response on night vision imaging system lighting compatibility

    NASA Astrophysics Data System (ADS)

    Task, Harry L.; Marasco, Peter L.

    2004-09-01

    The defining document outlining night-vision imaging system (NVIS) compatible lighting, MIL-L-85762A, was written in the mid 1980's, based on what was then the state of the art in night vision and image intensification. Since that time there have been changes in the photocathode sensitivity and the minus-blue coatings applied to the objective lenses. Specifically, many aviation night-vision goggles (NVGs) in the Air Force are equipped with so-called "leaky green" or Class C type objective lens coatings that provide a small amount of transmission around 545 nanometers so that the displays that use a P-43 phosphor can be seen through the NVGs. However, current NVIS compatibility requirements documents have not been updated to include these changes. Documents that followed and replaced MIL-L-85762A (ASC/ENFC-96-01 and MIL-STD-3009) addressed aspects of then current NVIS technology, but did little to change the actual content or NVIS radiance requirements set forth in the original MIL-L-85762A. This paper examines the impact of spectral response changes, introduced by changes in image tube parameters and objective lens minus-blue filters, on NVIS compatibility and NVIS radiance calculations. Possible impact on NVIS lighting requirements is also discussed. In addition, arguments are presented for revisiting NVIS radiometric unit conventions.

  11. Spectral response compensation for photon-counting clinical x-ray CT using sinogram restoration

    NASA Astrophysics Data System (ADS)

    Srivastava, Somesh; Cammin, Jochen; Fung, George S. K.; Tsui, Benjamin M. W.; Taguchi, Katsuyuki

    2012-03-01

    The x-ray spectrum recorded by a photon-counting x-ray detector (PCXD) is distorted due to the following physical effects which are independent of the count rate: finite energy-resolution, Compton scattering, charge-sharing, and Kescape. If left uncompensated, the spectral response (SR) of a PCXD due to the above effects will result in image artifacts and inaccurate material decomposition. We propose a new SR compensation (SRC) algorithm using the sinogram restoration approach. The two main contributions of our proposed algorithm are: (1) our algorithm uses an efficient conjugate gradient method in which the first and second derivatives of the cost functions are directly calculated analytically, whereas a slower optimization method that requires numerous function evaluations was used in other work; (2) our algorithm guarantees convergence by combining the non-linear conjugate gradient method with line searches that satisfy Wolfe conditions, whereas the algorithm in other work is not backed by theorems from optimization theory to guarantee convergence. In this study, we validate the performance of the proposed algorithm using computer simulations. The bias was reduced to zero from 11%, and image artifacts were removed from the reconstructed images. Quantitative K-edge imaging in possible only when SR compensation is done.

  12. A unifying principle underlying the extracellular field potential spectral responses in the human cortex.

    PubMed

    Podvalny, Ella; Noy, Niv; Harel, Michal; Bickel, Stephan; Chechik, Gal; Schroeder, Charles E; Mehta, Ashesh D; Tsodyks, Misha; Malach, Rafael

    2015-07-01

    Electrophysiological mass potentials show complex spectral changes upon neuronal activation. However, it is unknown to what extent these complex band-limited changes are interrelated or, alternatively, reflect separate neuronal processes. To address this question, intracranial electrocorticograms (ECoG) responses were recorded in patients engaged in visuomotor tasks. We found that in the 10- to 100-Hz frequency range there was a significant reduction in the exponent χ of the 1/f(χ) component of the spectrum associated with neuronal activation. In a minority of electrodes showing particularly high activations the exponent reduction was associated with specific band-limited power modulations: emergence of a high gamma (80-100 Hz) and a decrease in the alpha (9-12 Hz) peaks. Importantly, the peaks' height was correlated with the 1/f(χ) exponent on activation. Control simulation ruled out the possibility that the change in 1/f(χ) exponent was a consequence of the analysis procedure. These results reveal a new global, cross-frequency (10-100 Hz) neuronal process reflected in a significant reduction of the power spectrum slope of the ECoG signal. PMID:25855698

  13. The relationship of spectral sensitivity with growth and reproductive response in avian breeders (Gallus gallus)

    PubMed Central

    Yang, Ye-Feng; Jiang, Jing-Song; Pan, Jin-Ming; Ying, Yi-Bin; Wang, Xiao-Shuang; Zhang, Ming-Li; Lu, Min-Si; Chen, Xian-Hui

    2016-01-01

    A previous study demonstrated that birds that are exposed to light at night develop advanced reproductive systems. However, spectrum might also affect the photoperiodic response of birds. The present study was aimed to investigate the effects of spectral composition on the growth and reproductive physiology of female breeders, using pure light-emitting diode spectra. A total of 1,000 newly hatched female avian breeders (Gallus gallus) were equally allocated to white-, red-, yellow-, green- and blue-light treated groups. We found that blue-light treated birds had a greater and faster weight gain than did red- and yellow-light treated birds (P = 0.02 and 0.05). The red light expedited the sexual maturation of the chicks, whose age at sexual maturity was 7 and 14 days earlier than that of the green- and blue-light treated birds, respectively. The accumulative egg production of the red-light treated birds was 9 and 8 eggs more than that of the blue- and green-light treated birds. The peak lay rate of the red-light treated groups was significantly greater than the blue-light treated birds (P = 0.028). In conclusion, exposure to short-wavelength light appears to promote growth of female breeder birds, whereas exposure to long-wavelength light appears to accelerate reproductive performance. PMID:26765747

  14. Vacuum evaporated CdSe thin films and its some spectral response characteristics

    NASA Astrophysics Data System (ADS)

    Sarmah, K.; Sarma, R.; Das, H. L.

    2008-05-01

    CdSe thin films deposited by means of thermal evaporation technique under a high vacuum of 10-5 Torr on properly cleaned glass substrates held at different elevated temperatures are of polycrystalline nature having hexagonal structure. For a typical Al/CdSe/Al gap type structure of such films the I-V characteristics are linear both under dark and under monochromatic illuminations for low bias voltages, but such curves show Poole-Frenkel type of conductivity under the same illuminations mainly for high bias regions. The photocurrents of the deposited CdSe films are of deffect controlled type. The spectral response characteristics of the films at room temperature show a prominent peak along with some smaller peaks mainly in the longer wavelength side. The transport mechanism for the said films are generally a doubly activated process. From 1nσ vs 1000/T plot dark and photo-activation energies along with the mobility activation energies are calculated for a few wavelengths close to the threshold wavelength. The photocurrent decay characteristics curves under room temperature environment basically exhibited two different decay times which actually corresponds to two distinct trap levels and the corresponding trap depths are calculated. From the transmission spectra, optical band gaps have been calculated for deposited films.

  15. High dynamic range measurement of spectral responsivity and linearity of a radiation thermometer using a super-continuum laser and LEDs

    SciTech Connect

    Yoo, Y. S.; Lee, D. H.; Park, C. W.; Park, S. N.

    2013-09-11

    To realize the temperature scale above the freezing point of silver according to the definition of ITS-90, the dynamic range of the spectral responsivity is one of the most important factors which limit its uncertainty. When the residual spectral response at both side bands of a spectral band is not negligible, a significant uncertainty can be caused by a low dynamic range of the spectral responsivity measurement. In general, incandescent lamps are used to measure the spectral responsivity and the linearity. The dynamic range of the spectral responsivity measurement is often limited by a trade-off with the desired spectral resolution, which is less than 6 decades. Nonlinearity is another limiting fact of uncertainties of the temperature scale. Tungsten lamps have disadvantage in the nonlinearity measurements in terms of adjustability of radiance level and spectral selectivity. We report spectral responsivity measurements of which the measurable dynamic range is enhanced 50 times after replacing a QTH lamp with a super continuum laser. We also present a spectrally selected linearity measurement over a wide dynamic range using high-brightness light emitting diode arrays to observe a slight saturation of linearity.

  16. High dynamic range measurement of spectral responsivity and linearity of a radiation thermometer using a super-continuum laser and LEDs

    NASA Astrophysics Data System (ADS)

    Yoo, Y. S.; Lee, D. H.; Park, C. W.; Park, S. N.

    2013-09-01

    To realize the temperature scale above the freezing point of silver according to the definition of ITS-90, the dynamic range of the spectral responsivity is one of the most important factors which limit its uncertainty. When the residual spectral response at both side bands of a spectral band is not negligible, a significant uncertainty can be caused by a low dynamic range of the spectral responsivity measurement. In general, incandescent lamps are used to measure the spectral responsivity and the linearity. The dynamic range of the spectral responsivity measurement is often limited by a trade-off with the desired spectral resolution, which is less than 6 decades. Nonlinearity is another limiting fact of uncertainties of the temperature scale. Tungsten lamps have disadvantage in the nonlinearity measurements in terms of adjustability of radiance level and spectral selectivity. We report spectral responsivity measurements of which the measurable dynamic range is enhanced 50 times after replacing a QTH lamp with a super continuum laser. We also present a spectrally selected linearity measurement over a wide dynamic range using high-brightness light emitting diode arrays to observe a slight saturation of linearity.

  17. [Change of LAI and spectral response for rice under flood and waterlogging stress].

    PubMed

    Xu, Peng; Gu, Xiao-He; Meng, Lu-Min; Qiu, He; Wang, Hui-Fang

    2013-12-01

    In order to provide the foundational theoretical support for flood loss estimation of rice with RS, the change of leaf area index (LAI) and canopy spectral response during four developmental stages and three waterlogging depths were studied, and the LAI estimation model was established with spectra characteristics parameter using regression analysis method. The results show that LAI value decreases as water depth increases in tillering, jointing and heading stages, and LAI value under complete submergence decreased by 36. 36% than CK in jointing stages. "Double-Peak" presented in the canopy first derivative spectra of 680-760 nm where the red edge parameters existed, and the main peak is located in the 724-737 nm with 701 and 718 nm exhibiting secondary peak. With water depth increasing, "Triple-Peak" emerges especially. The red edge position moves to long-wavelength direction in each developmental stage. Blue shift of red edge amplitude and red edge area was detected in tillering, jointing and filling stages, while red shift appeared in heading stage. The relationship between spectra characteristics parameters and LAI were investigated during 4 growth stages, results were not consistently significant at any wavelengths, and the leaf area indices were significantly correlative to the spectra parameters before heading stage, so the spectra parameters before heading stage can be used to estimate the leaf area indices, and a regression model based on parameter D(lambda737)/D(lambda718) was recommended. Therefore the variation range of LAI for rice could response to the stress intensity directly, and the regression model LAI= 3. 138(D(lambda737)/D(lambda718))-0. 806 can precisely estimate the leaf area index under flooding and waterlogging stress. PMID:24611390

  18. 3D Spectral Element Method Simulations Of The Seismic Response of Caracas (Venezuela) Basin

    NASA Astrophysics Data System (ADS)

    Delavaud, E.; Vilotte, J.; Festa, G.; Cupillard, P.

    2007-12-01

    We present here 3D numerical simulations of the response of the Caracas (Venezuela) valley up to 5 Hz for different scenarios of plane wave excitation based on the regional seismicity. Attention is focused on the effects of the 3D basin geometry and of the adjacent regional topography. The simulations are performed using Spectral Element method (SEM) together with an unstructured hexahedral mesh discretization and perfectly matched layers (PML). These simulations show 3D amplification phenomena associated with complex wave reflexion, diffraction and focalisation patterns linked to the geometry of the basin. Time and frequency analysis reveal some interesting features both in terms of amplification and energy residence in the basin. The low frequency amplification pattern is mainly controlled by the early response of the basin to the incident plane wave while the high frequency amplification patterns result mainly from late arrivals where complex 3D wave diffraction phenomena are dominating and the memory of the initial excitation is lost. Interestingly enough, it is shown that H/V method correctly predict the low frequency amplification pattern when apply to the late part of the recorded seismograms. The complex high frequency amplification pattern is shown to be associated with surface wave generation at, and propagation from, sharp edges of the basin. Importance of 3D phenomena is assessed by comparison with simple 2D simulations. Significant differences in terms of time of residence, energy and amplification levels point out the interest of complete 3D modeling. In conclusions some of the limitations associated with the use of unstructured hexahedral meshes will be adressed. Despite the use of unstructured meshing tool, modeling the geometry of geological basins remain a complex and time consuming task. Possible extensions using more elaborate techniques like non conforming domain decomposition will be also discussed in conclusion.

  19. Photovoltaic energy

    NASA Astrophysics Data System (ADS)

    1990-01-01

    In 1989, the U.S. photovoltaic industry enjoyed a growth rate of 30 percent in sales for the second year in a row. This sends a message that the way we think about electricity is changing. Instead of big energy projects that perpetuate environmental and economic damage, there is a growing trend toward small renewable technologies that are well matched to end-user needs and operating conditions. As demand grows and markets expand, investment capital will be drawn to the industry and new growth trends will emerge. The photovoltaic industry around the world achieved record shipments also. Worldwide shipments of photovoltaic (PV) modules for 1989 totaled more than 40 megawatts (MW), nearly a 20 percent increase over last year's shipments. The previous two years showed increases in worldwide shipments of 23 and 25 percent, respectively. If this growth rate continues through the 1990s, as industry back orders would indicate, 300 to 1000 MW of PV-supplied power could be on line by 2000. Photovoltaic systems have low environmental impact and they are inexpensive to operate and maintain. Using solid-state technology, PV systems directly convert sunlight to electricity without high-temperature fluids or moving parts that could cause mechanical failure. This makes the technology very reliable.

  20. Simulation and analysis of grating-integrated quantum dot infrared detectors for spectral response control and performance enhancement

    SciTech Connect

    Oh Kim, Jun; Ku, Zahyun; Urbas, Augustine E-mail: Augustine.Urbas@wpafb.af.mil; Krishna, Sanjay; Kang, Sang-Woo; Jun Lee, Sang; Chul Jun, Young E-mail: Augustine.Urbas@wpafb.af.mil

    2014-04-28

    We propose and analyze a novel detector structure for pixel-level multispectral infrared imaging. More specifically, we investigate the device performance of a grating-integrated quantum dots-in-a-well photodetector under backside illumination. Our design uses 1-dimensional grating patterns fabricated directly on a semiconductor contact layer and, thus, adds a minimal amount of additional effort to conventional detector fabrication flows. We show that we can gain wide-range control of spectral response as well as large overall detection enhancement by adjusting grating parameters. For small grating periods, the spectral responsivity gradually changes with parameters. We explain this spectral tuning using the Fabry–Perot resonance and effective medium theory. For larger grating periods, the responsivity spectra get complicated due to increased diffraction into the active region, but we find that we can obtain large enhancement of the overall detector performance. In our design, the spectral tuning range can be larger than 1 μm, and, compared to the unpatterned detector, the detection enhancement can be greater than 92% and 148% for parallel and perpendicular polarizations. Our work can pave the way for practical, easy-to-fabricate detectors, which are highly useful for many infrared imaging applications.

  1. Simulation for spectral response of solar-blind AlGaN based p-i-n photodiodes

    NASA Astrophysics Data System (ADS)

    Xue, Shiwei; Xu, Jintong; Li, Xiangyang

    2015-04-01

    In this article, we introduced how to build a physical model of refer to the device structure and parameters. Simulations for solar-blind AlGaN based p-i-n photodiodes spectral characteristics were conducted in use of Silvaco TCAD, where device structure and parameters are comprehensively considered. In simulation, the effects of polarization, Urbach tail, mobility, saturated velocities and lifetime in AlGaN device was considered. Especially, we focused on how the concentration-dependent Shockley-Read-Hall (SRH) recombination model affects simulation results. By simulating, we analyzed the effects in spectral response caused by TAUN0 and TAUP0, and got the values of TAUN0 and TAUP0 which can bring a result coincides with test results. After that, we changed their values and made the simulation results especially the part under 255 nm performed better. In conclusion, the spectral response between 200 nm and 320 nm of solar-blind AlGaN based p-i-n photodiodes were simulated and compared with test results. We also found that TAUN0 and TAUP0 have a large impact on spectral response of AlGaN material.

  2. Enhanced ferroelectric photovoltaic response of BiFeO3/BaTiO3 multilayered structure

    NASA Astrophysics Data System (ADS)

    Sharma, Savita; Tomar, Monika; Kumar, Ashok; Puri, Nitin K.; Gupta, Vinay

    2015-08-01

    The present work is based on the photovoltaic properties of multilayered structure of Bismuth ferrite (BFO) and Barium titanate (BTO) thin films prepared by pulsed laser deposition technique on platinum coated silicon substrate. The multilayered structure possesses enhanced ferroelectric properties and shows a remarkable increase in photocurrent (from 1.56 × 10-7 A to 6.96 × 10-5 A) upon illumination with laser light of wavelength 405 nm at an intensity of 160 mW/cm2. The values of short circuit photocurrent and open circuit voltage were found to be 0.3184 mA/cm2 and -1.25 V, respectively, with a light-to-electricity conversion efficiency of 0.067%. A relatively high efficiency calculated at 405 nm for the developed multilayered BFO/BTO structure highlights its practical application in ferroelectric photovoltaics.

  3. Photovoltaic characteristics of diffused P/+N bulk GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Borrego, J. M.; Keeney, R. P.; Bhat, I. B.; Bhat, K. N.; Sundaram, L. G.; Ghandhi, S. K.

    1982-01-01

    The photovoltaic characteristics of P(+)N junction solar cells fabricated on bulk GaAs by an open tube diffusion technique are described in this paper.Spectral response measurements were analyzed in detail and compared to a computer simulation in order to determine important material parameters. It is projected that proper optimization of the cell parameters can increase the efficiency of the cells from 12.2 percent to close to 20 percent.

  4. Consequences of the spectral response of an a-Si EPID and implications for dosimetric calibration

    SciTech Connect

    Kirkby, C.; Sloboda, R.

    2005-08-15

    One of the attractive features of amorphous silicon electronic portal imaging devices (a-Si EPIDs) as dosimetric tools is that for open fields they are known to exhibit a generally linear relation between pixel value and incident energy fluence as measured by an ion chamber. It has also been established that a-Si EPIDs incorporating high atomic number phosphors such as Gd{sub 2}O{sub 2}S:Tb exhibit a disproportionately large response to low-energy (<1 MeV) photons. The present work examines the consequences of this hypersensitivity in a commercially available EPID, the Varian aS500, with respect to energy fluence calibration in a 6 MV radiotherapy beam. EPIDs may be deployed in situations where the spectrum of the incident beam is modified by passing through a compensator or through a patient or phantom. By examining the specific case of a beam hardened by passage through compensator material, we show that the discrepancy between open and attenuated beam calibration curves can be as high as 8%. A Monte Carlo study using a comprehensive model of the aS500 shows that this difference can be explained by spectral changes, and further suggests that it can be reduced by the addition of an external copper plate. We consider configurations with the plate placed directly on top of the EPID cassette and 15 cm above the cassette, supported by Styrofoam. In order to reduce the maximum discrepancy to <4%, it was found that a copper thickness of {approx}0.7 cm was required in the elevated configuration. Improvement was minimal with the copper in the contact configuration. Adding 0.7 cm of copper in the elevated configuration reduced the contrast-to-noise ratio by 19% and the modulation transfer for a given spatial frequency by 30%.

  5. Temporal relationships between spectral response and agronomic variables of a corn canopy

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Markham, B. L.; Tucker, C. J.; Mcmurtrey, J. E., III

    1981-01-01

    Attention is given to an experiment in which spectral radiance data collected in three spectral regions are related to corn canopy variables. The study extends the work of Tucker et al. (1979) in that more detailed measurements of corn canopy variables were made using quantitative techniques. Wet and dry green leaf biomass is considered along with the green leaf area index, chlorotic leaf biomass, chlorotic leaf area, and leaf water content. In addition, spectral data were collected with a hand-held radiometer having Landsat-D Thematic Mapper (TM) bands TM3 (0.63-0.69 micrometers), TM4 (0.76-0.90 micrometers), and TM5 (1.55-1.75 micrometers). TM3, TM4, and TM5 seem to be well situated spectrally for making remotely sensed measurements related to chlorophyll concentration, leaf density, and leaf water content.

  6. Design and analysis of filter-based optical systems for spectral responsivity estimation of digital video cameras

    NASA Astrophysics Data System (ADS)

    Chang, Gao-Wei; Jian, Hong-Da; Yeh, Zong-Mu; Cheng, Chin-Pao

    2004-02-01

    For estimating spectral responsivities of digital video cameras, a filter-based optical system is designed with sophisticated filter selections, in this paper. The filter consideration in the presence of noise is central to the optical systems design, since the spectral filters primarily prescribe the structure of the perturbed system. A theoretical basis is presented to confirm that sophisticated filter selections can make this system as insensitive to noise as possible. Also, we propose a filter selection method based on the orthogonal-triangular (QR) decomposition with column pivoting (QRCP). To investigate the noise effects, we assess the estimation errors between the actual and estimated spectral responsivities, with the different signal-to-noise ratio (SNR) levels of an eight-bit/channel camera. Simulation results indicate that the proposed method yields satisfactory estimation accuracy. That is, the filter-based optical system with the spectral filters selected from the QRCP-based method is much less sensitive to noise than those with other filters from different selections.

  7. Spectral Kernel Approach to Study Radiative Response of Climate Variables and Interannual Variability of Reflected Solar Spectrum

    NASA Technical Reports Server (NTRS)

    Jin, Zhonghai; Wielicki, Bruce A.; Loukachine, Constantin; Charlock, Thomas P.; Young, David; Noeel, Stefan

    2011-01-01

    The radiative kernel approach provides a simple way to separate the radiative response to different climate parameters and to decompose the feedback into radiative and climate response components. Using CERES/MODIS/Geostationary data, we calculated and analyzed the solar spectral reflectance kernels for various climate parameters on zonal, regional, and global spatial scales. The kernel linearity is tested. Errors in the kernel due to nonlinearity can vary strongly depending on climate parameter, wavelength, surface, and solar elevation; they are large in some absorption bands for some parameters but are negligible in most conditions. The spectral kernels are used to calculate the radiative responses to different climate parameter changes in different latitudes. The results show that the radiative response in high latitudes is sensitive to the coverage of snow and sea ice. The radiative response in low latitudes is contributed mainly by cloud property changes, especially cloud fraction and optical depth. The large cloud height effect is confined to absorption bands, while the cloud particle size effect is found mainly in the near infrared. The kernel approach, which is based on calculations using CERES retrievals, is then tested by direct comparison with spectral measurements from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) (a different instrument on a different spacecraft). The monthly mean interannual variability of spectral reflectance based on the kernel technique is consistent with satellite observations over the ocean, but not over land, where both model and data have large uncertainty. RMS errors in kernel ]derived monthly global mean reflectance over the ocean compared to observations are about 0.001, and the sampling error is likely a major component.

  8. Investigation of exciton photodissociation, charge transport and photovoltaic response of poly(N-vinyl carbazole):TiO2 nanocomposites for solar cell applications

    NASA Astrophysics Data System (ADS)

    Dridi, C.; Barlier, V.; Chaabane, H.; Davenas, J.; Ben Ouada, H.

    2008-09-01

    The photogeneration of charge carriers in spin-coated thin films of nanocrystalline (nc-)TiO2 particles dispersed in a semiconducting polymer, poly(N-vinylcarbazole) (PVK), has been studied by photoluminescence and charge transport measurements. The solvent and the TiO2 particle concentration have been selected to optimize the composite morphology. A large number of small domains leading to a large interface and an improved exciton dissociation could be obtained with tetrahydrofuran (THF). The charge transport mechanism and trap distribution at low and high voltage in ITO/nc-TiO2:PVK/Al diodes in the dark could be identified by current-voltage measurements and impedance spectroscopy. The transport mechanism is space charge limited with an exponential trap distribution in the high voltage regime (1-4 V), whereas a Schottky process with a barrier height of about 0.9 eV is observed at low bias voltages (<1 V). The current-voltage characteristics under white illumination have shown a dramatic increase of the short circuit current density Jsc and open circuit voltage Voc for a 30% TiO2 volume content corresponding to the morphology exhibiting the best dispersion of TiO2 particles. A degradation of the photovoltaic properties is induced at higher compositions by the formation of larger TiO2 aggregates. A procedure has been developed to extract the physical parameters from the J-V characteristics in the dark and under illumination on the basis of an equivalent circuit. The variation of the solar cell parameters with the TiO2 composition confirms that the photovoltaic response is optimum for 30% TiO2 volume content. It is concluded that the photovoltaic properties of nc-TiO2:PVK nanocomposites are controlled by the interfacial area between the donor and the acceptor material and are limited by the dispersion of the TiO2 nanoparticles in the polymer.

  9. Photovoltaic Roofs

    NASA Technical Reports Server (NTRS)

    Drummond, R. W., Jr.; Shepard, N. F., Jr.

    1984-01-01

    Solar cells perform two functions: waterproofing roof and generating electricity. Sections through horizontal and slanting joints show overlapping modules sealed by L-section rubber strips and side-by-side modules sealed by P-section strips. Water seeping through seals of slanting joints drains along channels. Rooftop photovoltaic array used watertight south facing roof, replacing shingles, tar, and gravel. Concept reduces cost of residential solar-cell array.

  10. Improvement of polypyrrole nanowire devices by plasmonic space charge generation: high photocurrent and wide spectral response by Ag nanoparticle decoration.

    PubMed

    Lee, S-H; Bae, J; Lee, S W; Jang, J-W

    2015-11-01

    In this study, improvement of the opto-electronic properties of non-single crystallized nanowire devices with space charges generated by localized surface plasmon resonance (LSPR) is demonstrated. The photocurrent and spectral response of single polypyrrole (PPy) nanowire (NW) devices are increased by electrostatically attached Ag nanoparticles (Ag NPs). To take advantage of plasmon-exciton coupling in the photocurrent of the device, 80 nm of Ag NPs (454 nm = λmax) were chosen for matching the maximum absorption with PPy NWs (442 nm = λmax). The photocurrent density is remarkably improved, up to 25.3 times (2530%), by the Ag NP decoration onto the PPy NW (PPyAgNPs NW) under blue light (λ = 425-475 nm) illumination. In addition, the PPyAgNPs NW shows a photocurrent decay time twice that of PPy NW, as well as an improved spectral response of the photocurrent. The improved photocurrent efficiency, decay time, and spectral response resulted from the space charges generated by the LSPR of Ag NPs. Furthermore, the increasing exponent (m) of the photocurrent (JPC ∼ V(m)) and finite-differential time domain (FDTD) simulation straightforwardly indicate relatively large plasmonic space charge generation under blue light illumination. These results prove that the performance of non-single crystallized polymer nanowire devices can also be improved by plasmonic enhancement. PMID:26413791

  11. Improvement of polypyrrole nanowire devices by plasmonic space charge generation: high photocurrent and wide spectral response by Ag nanoparticle decoration

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Hoon; Lee, Seung Woo; Jang, Jaw-Won

    In this study, improvement of the opto-electronic properties of non-single crystallized nanowire devices with space charges generated by localized surface plasmon resonance (LSPR) is demonstrated. The photocurrent and spectral response of single polypyrrole (PPy) nanowire (NW) devices are increased by electrostatically attached Ag nanoparticles (Ag NPs). The photocurrent density is remarkably improved, up to 25.3 times, by the Ag NP decoration onto the PPy NW (PPyAgNPs NW) under blue light illumination. In addition, the PPyAgNPs NW shows a photocurrent decay time twice that of PPy NW, as well as an improved spectral response of the photocurrent. The improved photocurrent efficiency, decay time, and spectral response resulted from the space charges generated by the LSPR of Ag NPs. Furthermore, the increasing exponent (m) of the photocurrent (JPC ~Vm) and finite-differential time domain (FDTD) simulation straightforwardly indicate relatively large plasmonic space charge generation. Supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (no. 2013K1A3A1A32035429 and 2015R1A1A1A05027681).

  12. Enhanced spectral response of π-phase shifted fiber Bragg gratings in closed-loop configuration.

    PubMed

    Malara, P; Campanella, C E; De Leonardis, F; Giorgini, A; Avino, S; Passaro, V M N; Gagliardi, G

    2015-05-01

    The transmission spectrum of a ring resonator enclosing a π-phase shifted fiber Bragg grating (π-FBG) shows a spectral feature at the Bragg wavelength that is much sharper than resonance of the π-FBG alone, and that can be detected with a simple integrated cavity output technique. Hence, the resolution of any sensor based on the fitting of the π-FBG spectral profile can be largely improved by the proposed configuration at no additional fabrication costs and without altering the sensor robustness. A theoretical model shows that the resolution enhancement attainable in the proposed closed-loop geometry depends on the quality factor of the ring resonator. With a commercial grating in a medium-finesse ring, a spectral feature 12 times sharper than the π-FBG resonance is experimentally demonstrated. A larger enhancement is expected in a low-loss, polarization maintaining setup. PMID:25927801

  13. Organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Krebs, Frederik C.; Chen, Hongzheng

    2013-12-01

    Energy inflation, the constant encouragement to economize on energy consumption and the huge investments in developing alternative energy resources might seem to suggest that there is a global shortage of energy. Far from it, the energy the Sun beams on the Earth each hour is equivalent to a year's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating effectively across the electromagnetic spectrum remains a challenge. 'The trend is towards engineering low bandgap polymers with a wide optical absorption range and efficient hole/electron transport materials, so that light harvesting in the red and infrared region is enhanced and as much light of the solar spectrum as possible can be converted into an electrical current', explains Mukundan Thelakkat and colleagues in Germany, the US and UK. In this special issue they report on how charge carrier mobility and morphology of the active blend layer in thin film organic solar cells correlate with device parameters [2]. The work contributes to a better understanding of the solar-cell characteristics of polymer:fullerene blends, which form the material basis for some of the most

  14. Advanced Rainbow Solar Photovoltaic Arrays

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick; Shields, Virgil

    2003-01-01

    Photovoltaic arrays of the rainbow type, equipped with light-concentrator and spectral-beam-splitter optics, have been investigated in a continuing effort to develop lightweight, high-efficiency solar electric power sources. This investigation has contributed to a revival of the concept of the rainbow photovoltaic array, which originated in the 1950s but proved unrealistic at that time because the selection of solar photovoltaic cells was too limited. Advances in the art of photovoltaic cells since that time have rendered the concept more realistic, thereby prompting the present development effort. A rainbow photovoltaic array comprises side-by-side strings of series-connected photovoltaic cells. The cells in each string have the same bandgap, which differs from the bandgaps of the other strings. Hence, each string operates most efficiently in a unique wavelength band determined by its bandgap. To obtain maximum energy-conversion efficiency and to minimize the size and weight of the array for a given sunlight input aperture, the sunlight incident on the aperture is concentrated, then spectrally dispersed onto the photovoltaic array plane, whereon each string of cells is positioned to intercept the light in its wavelength band of most efficient operation. The number of cells in each string is chosen so that the output potentials of all the strings are the same; this makes it possible to connect the strings together in parallel to maximize the output current of the array. According to the original rainbow photovoltaic concept, the concentrated sunlight was to be split into multiple beams by use of an array of dichroic filters designed so that each beam would contain light in one of the desired wavelength bands. The concept has since been modified to provide for dispersion of the spectrum by use of adjacent prisms. A proposal for an advanced version calls for a unitary concentrator/ spectral-beam-splitter optic in the form of a parabolic curved Fresnel-like prism

  15. Nanostructured photovoltaics

    NASA Astrophysics Data System (ADS)

    Fu, Lan; Tan, H. Hoe; Jagadish, Chennupati

    2013-01-01

    Energy and the environment are two of the most important global issues that we currently face. The development of clean and sustainable energy resources is essential to reduce greenhouse gas emission and meet our ever-increasing demand for energy. Over the last decade photovoltaics, as one of the leading technologies to meet these challenges, has seen a continuous increase in research, development and investment. Meanwhile, nanotechnology, which is considered to be the technology of the future, is gradually revolutionizing our everyday life through adaptation and incorporation into many traditional technologies, particularly energy-related technologies, such as photovoltaics. While the record for the highest efficiency is firmly held by multijunction III-V solar cells, there has never been a shortage of new research effort put into improving the efficiencies of all types of solar cells and making them more cost effective. In particular, there have been extensive and exciting developments in employing nanostructures; features with different low dimensionalities, such as quantum wells, nanowires, nanotubes, nanoparticles and quantum dots, have been incorporated into existing photovoltaic technologies to enhance their performance and/or reduce their cost. Investigations into light trapping using plasmonic nanostructures to effectively increase light absorption in various solar cells are also being rigorously pursued. In addition, nanotechnology provides researchers with great opportunities to explore the new ideas and physics offered by nanostructures to implement advanced solar cell concepts such as hot carrier, multi-exciton and intermediate band solar cells. This special issue of Journal of Physics D: Applied Physics contains selected papers on nanostructured photovoltaics written by researchers in their respective fields of expertise. These papers capture the current excitement, as well as addressing some open questions in the field, covering topics including the

  16. Evaluation of the response and healing effect after laser hair removal using a multi-spectral dermatoscope

    NASA Astrophysics Data System (ADS)

    Noordmans, Herke Jan; Kuijer, Ellen; de Groot, Ilva; de Roode, Rowland; Rem, Alex; de Boorder, Tjeerd; Verdaasdonk, Rudolf

    2009-02-01

    A multi-spectral dermatoscope was used to investigate the effect of laser hair removal. Ten volunteers underwent three laser treatments, 6 weeks apart. In a subsequent trial, three volunteers received one laser treatment after which the skin region was imaged at short intervals. Practical solutions were developed to re-locate the investigated skin area. After exact matching using rigid and elastic registration software, the images showed acute and delayed effects on the hairs, pigment and vasculature after laser hair removal and subsequent healing response. The multi-spectral dermatoscope provides a perfect tool to study the efficacy and side effects of laser hair removal procedures and can be used to optimize the treatment plan.

  17. Measurement of normalized spectral responsivity of digital imaging devices by using a LED-based tunable uniform source.

    PubMed

    Mahmoud, Khaled; Park, Seongchong; Park, Seung-Nam; Lee, Dong-Hoon

    2013-02-20

    We present an instrumentation solution for measurement of normalized spectral responsivity of digital imaging sensors and cameras. The instrument consists of multiple light-emitting diodes (LEDs), a single-grating monochromator, and a small-size integrating sphere. Wavelength tuning is achieved by a proper selection of LED in accordance with the monochromator setting in a range from 380 to 900 nm. High spectral purity with a bandwidth of 5 nm is realized without using double gratings and order-sorting filters. Experimental characteristics and calibration of the instrument are described with the related error and uncertainty sources. The performance is demonstrated by measuring a monochrome charge-coupled device and a trichromatic complementary metal-oxide-semiconductor device. The measurement uncertainty is evaluated to be less than 1% (k=2) except several wavelengths with low LED power. PMID:23434998

  18. Multi-Spectral Solar Telescope Array. V - Temperature diagnostic response to the optically thin solar plasma

    NASA Technical Reports Server (NTRS)

    Deforest, Craig E.; Kankelborg, Charles C.; Allen, Max J.; Paris, Elizabeth S.; Willis, Tom D.; Lindblom, Joakim F.; O'Neal, Ray H.; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.; Hoover, Richard B.

    1991-01-01

    The compact soft X-ray/EUV/FUV multilayer coated telescopes developed for solar chromosphere, corona, and corona/solar-wind interface studies permit the use of conventional (Cassegrain, Herschelian, etc.) configurations. The multilayer coatings also allow a narrow-wavelength band to be selected for imaging. NASA's Multi-Spectral Solar Telescope Array is composed of 17 of these compact telescopes; attention is given to their ability to obtain temperature-diagnostic information concerning the solar plasma.

  19. How Solar Flare Spectral Characteristics Determine the Thermosphere-Ionosphere Response

    NASA Astrophysics Data System (ADS)

    Solomon, S. C.; Qian, L.

    2011-12-01

    Measurements of flare irradiance in the X-ray and EUV spectral regions by the Solar EUV Experiment on the TIMED satellite, the X-ray Photometer System on the SORCE satellite, and the X-ray monitors on the GOES spacecraft, have been used to demonstrate the importance of different flare spectral characteristics and temporal development in causing rapid changes in the thermosphere and ionosphere. Now, observations by the EUV Variability Experiment on the Solar Dynamics Observatory (SDO), show striking variability of coronal lines in the crucial 7-37 nm region during different types and phases of flares. Very limited measurements of this spectral region were made by TIMED and SORCE, so these new observations yield insight into the magnitude and distribution of flare-driven changes in the thermosphere and ionosphere. We present results of simulations using flare spectra measured by TIMED, SORCE, and SDO as input to the NCAR Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model, and compare the results to measurements of thermosphere and ionosphere density changes.

  20. Organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Krebs, Frederik C.; Chen, Hongzheng

    2013-12-01

    Energy inflation, the constant encouragement to economize on energy consumption and the huge investments in developing alternative energy resources might seem to suggest that there is a global shortage of energy. Far from it, the energy the Sun beams on the Earth each hour is equivalent to a year's supply, even at our increasingly ravenous rate of global energy consumption [1]. But it's not what you have got it's what you do with it. Hence the intense focus on photovoltaic research to find more efficient ways to harness energy from the Sun. Recently much of this research has centred on organic solar cells since they offer simple, low-cost, light-weight and large-area flexible photovoltaic structures. This issue with guest editors Frederik C Krebs and Hongzheng Chen focuses on some of the developments at the frontier of organic photovoltaic technology. Improving the power conversion efficiency of organic photovoltaic systems, while maintaining the inherent material, economic and fabrication benefits, has absorbed a great deal of research attention in recent years. Here significant progress has been made with reports now of organic photovoltaic devices with efficiencies of around 10%. Yet operating effectively across the electromagnetic spectrum remains a challenge. 'The trend is towards engineering low bandgap polymers with a wide optical absorption range and efficient hole/electron transport materials, so that light harvesting in the red and infrared region is enhanced and as much light of the solar spectrum as possible can be converted into an electrical current', explains Mukundan Thelakkat and colleagues in Germany, the US and UK. In this special issue they report on how charge carrier mobility and morphology of the active blend layer in thin film organic solar cells correlate with device parameters [2]. The work contributes to a better understanding of the solar-cell characteristics of polymer:fullerene blends, which form the material basis for some of the most

  1. Photovoltaic solar concentrator

    SciTech Connect

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  2. Photovoltaics: New opportunities for utilities

    SciTech Connect

    Not Available

    1991-07-01

    This publication presents information on photovoltaics. The following topics are discussed: Residential Photovoltaics: The New England Experience Builds Confidence in PV; Austin's 300-kW Photovoltaic Power Station: Evaluating the Breakeven Costs; Residential Photovoltaics: The Lessons Learned; Photovoltaics for Electric Utility Use; Least-Cost Planning: The Environmental Link; Photovoltaics in the Distribution System; Photovoltaic Systems for the Rural Consumer; The Issues of Utility-Intertied Photovoltaics; and Photovoltaics for Large-Scale Use: Costs Ready to Drop Again.

  3. Improvement of polypyrrole nanowire devices by plasmonic space charge generation: high photocurrent and wide spectral response by Ag nanoparticle decoration

    NASA Astrophysics Data System (ADS)

    Lee, S.-H.; Bae, J.; Lee, S. W.; Jang, J.-W.

    2015-10-01

    In this study, improvement of the opto-electronic properties of non-single crystallized nanowire devices with space charges generated by localized surface plasmon resonance (LSPR) is demonstrated. The photocurrent and spectral response of single polypyrrole (PPy) nanowire (NW) devices are increased by electrostatically attached Ag nanoparticles (Ag NPs). To take advantage of plasmon-exciton coupling in the photocurrent of the device, 80 nm of Ag NPs (454 nm = λmax) were chosen for matching the maximum absorption with PPy NWs (442 nm = λmax). The photocurrent density is remarkably improved, up to 25.3 times (2530%), by the Ag NP decoration onto the PPy NW (PPyAgNPs NW) under blue light (λ = 425-475 nm) illumination. In addition, the PPyAgNPs NW shows a photocurrent decay time twice that of PPy NW, as well as an improved spectral response of the photocurrent. The improved photocurrent efficiency, decay time, and spectral response resulted from the space charges generated by the LSPR of Ag NPs. Furthermore, the increasing exponent (m) of the photocurrent (JPC ~ Vm) and finite-differential time domain (FDTD) simulation straightforwardly indicate relatively large plasmonic space charge generation under blue light illumination. These results prove that the performance of non-single crystallized polymer nanowire devices can also be improved by plasmonic enhancement.In this study, improvement of the opto-electronic properties of non-single crystallized nanowire devices with space charges generated by localized surface plasmon resonance (LSPR) is demonstrated. The photocurrent and spectral response of single polypyrrole (PPy) nanowire (NW) devices are increased by electrostatically attached Ag nanoparticles (Ag NPs). To take advantage of plasmon-exciton coupling in the photocurrent of the device, 80 nm of Ag NPs (454 nm = λmax) were chosen for matching the maximum absorption with PPy NWs (442 nm = λmax). The photocurrent density is remarkably improved, up to 25.3 times

  4. Anomalous spectral response in heterojunction PbTe/PbSnTe infrared detectors - A new effect: Two Peak Effect

    SciTech Connect

    Gong Shuxing; Chen Boliang; Yuan Shixin )

    1991-03-01

    In the measurements of the spectral responses of PbTe/PbSnTe p-n heterojunction infrared detectors, the authors have discovered that there is an anomalous phenomenon in a few detectors when reverse bias is applied: there is not only a response peak in the 8-14 {mu}m long-wavelength range, but also another response peak in the 3-6 {mu}m short-wavelength range. They have also discovered that when reverse bias is increased, the heights of both spectral peaks can be adjusted, and the height of short-wavelength peak may be quickly increased, even if its long-wavelength peak is exceeded. This is an unreported new phenomenon up to now. It is shortly called anomalous phenomenon,' or Two Peak Effect' (TPE). This paper describes the new effect TPE' firstly, and makes a theoretical explanation. On the basis of this effect, it would be possible to make a new type of IR detector, which is quite different from the available detectors.

  5. Spectral response of the coral rubble, living corals, and dead corals: study case on the Spermonde Archipelago, Indonesia

    NASA Astrophysics Data System (ADS)

    Nurdin, Nurjannah; Komatsu, Teruhisa; Yamano, Hiroya; Arafat, Gulam; Rani, Chair; Akbar AS, M.

    2012-10-01

    Coral reefs play important ecological services such as providing foods, biodiversity, nutrient recycling etc. for human society. On the other hand, they are threatened by human impacts such as illegal fishing and environmental changes such as rises of sea water temperature and sea level due to global warming. Thus, it is very important to monitor dynamic spatial distributions of coral reefs and related habitats such as coral rubble, dead coral, bleached corals, seagrass, etc. Hyperspectral data, in particular, offer high potential for characterizing and mapping coral reefs because of their capability to identify individual reef components based on their detailed spectral response. We studied the optical properties by measuring in situ spectra of living corals, dead coral and coral rubble covered with algae. Study site was selected in Spermonde archipelago, South Sulawesi, Indonesia because this area is included in the highest diversity of corals in the world named as Coral Triangle, which is recognized as the global centre of marine biodiversity and a global priority for conservation. Correlation analysis and cluster analysis support that there are distinct differences in reflectance spectra among categories. Common spectral characteristic of living corals, dead corals and coral rubble covered with algae was a reflectance minimum at 674 nm. Healthy corals, dead coral covered with algae and coral rubble covered with algae showed high similarity of spectral reflectance. It is estimated that this is due to photsynthetic pigments.

  6. Investigation of exciton photodissociation, charge transport and photovoltaic response of poly(N-vinyl carbazole):TiO(2) nanocomposites for solar cell applications.

    PubMed

    Dridi, C; Barlier, V; Chaabane, H; Davenas, J; Ben Ouada, H

    2008-09-17

    The photogeneration of charge carriers in spin-coated thin films of nanocrystalline (nc-)TiO(2) particles dispersed in a semiconducting polymer, poly(N-vinylcarbazole) (PVK), has been studied by photoluminescence and charge transport measurements. The solvent and the TiO(2) particle concentration have been selected to optimize the composite morphology. A large number of small domains leading to a large interface and an improved exciton dissociation could be obtained with tetrahydrofuran (THF). The charge transport mechanism and trap distribution at low and high voltage in ITO/nc-TiO(2):PVK/Al diodes in the dark could be identified by current-voltage measurements and impedance spectroscopy. The transport mechanism is space charge limited with an exponential trap distribution in the high voltage regime (1-4 V), whereas a Schottky process with a barrier height of about 0.9 eV is observed at low bias voltages (<1 V). The current-voltage characteristics under white illumination have shown a dramatic increase of the short circuit current density J(sc) and open circuit voltage V(oc) for a 30% TiO(2) volume content corresponding to the morphology exhibiting the best dispersion of TiO(2) particles. A degradation of the photovoltaic properties is induced at higher compositions by the formation of larger TiO(2) aggregates. A procedure has been developed to extract the physical parameters from the J-V characteristics in the dark and under illumination on the basis of an equivalent circuit. The variation of the solar cell parameters with the TiO(2) composition confirms that the photovoltaic response is optimum for 30% TiO(2) volume content. It is concluded that the photovoltaic properties of nc-TiO(2):PVK nanocomposites are controlled by the interfacial area between the donor and the acceptor material and are limited by the dispersion of the TiO(2) nanoparticles in the polymer. PMID:21832543

  7. Photoacoustic spectral analysis to sense programmed erythrocyte cell death (eryptosis) for monitoring cancer response to treatment

    NASA Astrophysics Data System (ADS)

    Fadhel, Muhannad N.; Kibria, Fayruz; Kolios, Michael C.

    2016-03-01

    Many types of cancer therapies target the tumor microenvironment, causing biochemical and morphological changes in tissues. In therapies using ultrasound activated microbubbles, vascular collapse is typically reported. Red blood cells (RBCs) that leak out of the vasculature become exposed to the ceramide that is released from damaged endothelial cells. Ceramide can induce programmed cell death in RBCs (eryptosis), and is characterized by cell shrinkage, membrane blebbing and scrambling. Since the effect of eryptotic cells on generated photoacoustics (PA) signals has not been reported, we investigated the potential PA may have for cancer treatment monitoring by using PA spectral analysis to sense eryptosis. To induce eryptosis, C2-ceramide was added to RBC suspensions and that were incubated for 24 hours at 37°C. A control and ceramide-induced sample was imaged in a vessel phantom using a high frequency PA system (VevoLAZR, 10 - 45 MHz bandwidth) irradiated with multiple wavelengths ranging from 680 to 900 nm. PA spectral parameters were measured and linked to changes in RBCs as it underwent eryptosis. These samples were examined using optical microscopy, a blood gas analyzer and an integrating sphere setup to measure optical properties (wavelengths 600 - 900 nm). The results of the experiment demonstrate how PA spectral analysis can be used to identify eryptosis at a depth of more than 1 cm into the phantom using ultrasound derived the y-intercept and mid bandfit (MBF) parameters at optical wavelengths of 800 - 900 nm. These parameters were correlated to the morphological and biochemical changes that eryptotic RBCs display. The results establish the potential of PA in cancer treatment monitoring through sensing treatment induced eryptosis.

  8. Linear Response Coupled Cluster Singles and Doubles Approach with Modified Spectral Resolution of the Similarity Transformed Hamiltonian

    SciTech Connect

    Kowalski, Karol; Hammond, Jeffrey R.; De Jong, Wibe A.

    2007-10-28

    This paper discusses practical scheme of correcting the linear response coupled cluster with singles and doubles (LR-CCSD) equations by shifting their poles, corresponding to the equation-of-motion CCSD (EOMCCSD) excitation energies, through adding the no-iterative corrections due to triples to the EOMCCSD excitation energies. A simple criterion is derived for the excited states to be corrected in the spectral resolution of similarity transformed Hamiltonian on the CCSD level. Benchmark calculations were performed to compare the accuracies of static and dynamic polarizabilities obtained in the way with the CC3 and CCSDT counterparts.

  9. Response of diamond photoconductors to soft x-ray in the spectral range 125 {angstrom} to 240 {angstrom}

    SciTech Connect

    Han, S.; Wagner, R.S.; Gullikson, E.

    1995-12-01

    Due to the large bandgap of diamond, it is transparent to the visible spectrum, making it an attractive material for soft x-ray detection. Response of diamond photoconductors fabricated using Polycrystalline chemical-vapor-deposited (CVD) diamond to soft x-rays has been measured using x-rays emitted from a laser-produced plasma source in the spectral range 125 {Angstrom} to 240 {Angstrom}. These photoconductors have interdigitated electrode structure in order to increase the active area as well as detector sensitivity. Contributions to the detector sensitivity by the photoelectrons is discussed.

  10. Radiometric instrumentation and measurements guide for photovoltaic performance testing

    SciTech Connect

    Myers, D.

    1997-04-01

    The Photovoltaic Module and Systems Performance and Engineering Project at the National Renewable Energy Laboratory performs indoor and outdoor standardization, testing, and monitoring of the performance of a wide range of photovoltaic (PV) energy conversion devices and systems. The PV Radiometric Measurements and Evaluation Team (PVSRME) within that project is responsible for measurement and characterization of natural and artificial optical radiation which stimulates the PV effect. The PV manufacturing and research and development community often approaches project members for technical information and guidance. A great area of interest is radiometric instrumentation, measurement techniques, and data analysis applied to understanding and improving PV cell, module, and system performance. At the Photovoltaic Radiometric Measurements Workshop conducted by the PVSRME team in July 1995, the need to communicate knowledge of solar and optical radiometric measurements and instrumentation, gained as a result of NREL`s long-term experiences, was identified as an activity that would promote improved measurement processes and measurement quality in the PV research and manufacturing community. The purpose of this document is to address the practical and engineering need to understand optical and solar radiometric instrument performance, selection, calibration, installation, and maintenance applicable to indoor and outdoor radiometric measurements for PV calibration, performance, and testing applications. An introductory section addresses radiometric concepts and definitions. Next, concepts essential to spectral radiometric measurements are discussed. Broadband radiometric instrumentation and measurement concepts are then discussed. Each type of measurement serves as an important component of the PV cell, module, and system performance measurement and characterization process.

  11. Photovoltaic cell

    SciTech Connect

    Jordan, J.F.; Lampkin, C.M.

    1981-12-08

    A photovoltaic cell has: an electrically conductive substrate, which may be glass having a film of conductive tin oxide; a first layer containing a suitable semiconductor, which layer has a first component film with an amorphous structure and a second component film with a polycrystalline structure; a second layer forming a heterojunction with the first layer; and suitable electrodes where the heterojunction is formed from a solution containing copper, the amorphous film component is superposed above an electrically conductive substrate to resist permeation of the copper-containing material to shorting electrical contact with the substrate. The penetration resistant amporphous layer permits a variety of processes to be used in forming the heterojunction with even very thin layers (1-6 mu thick) of underlying polycrystalline semi-conductor materials. In some embodiments, the amorphous-like structure may be formed by the addition of aluminum or zirconium compounds to a solution of cadmium salts sprayed over a heated substrate.

  12. EEG Alpha and Gamma Modulators Mediate Motion Sickness-Related Spectral Responses.

    PubMed

    Chuang, Shang-Wen; Chuang, Chun-Hsiang; Yu, Yi-Hsin; King, Jung-Tai; Lin, Chin-Teng

    2016-03-01

    Motion sickness (MS) is a common experience of travelers. To provide insights into brain dynamics associated with MS, this study recruited 19 subjects to participate in an electroencephalogram (EEG) experiment in a virtual-reality driving environment. When riding on consecutive winding roads, subjects experienced postural instability and sensory conflict between visual and vestibular stimuli. Meanwhile, subjects rated their level of MS on a six-point scale. Independent component analysis (ICA) was used to separate the filtered EEG signals into maximally temporally independent components (ICs). Then, reduced logarithmic spectra of ICs of interest, using principal component analysis, were decomposed by ICA again to find spectrally fixed and temporally independent modulators (IMs). Results demonstrated that a higher degree of MS accompanied increased activation of alpha (r = 0.421) and gamma (r =0.478) IMs across remote-independent brain processes, covering motor, parietal and occipital areas. This co-modulatory spectral change in alpha and gamma bands revealed the neurophysiological demand to regulate conflicts among multi-modal sensory systems during MS. PMID:26790485

  13. Monte Carlo modelling of a-Si EPID response: The effect of spectral variations with field size and position

    SciTech Connect

    Parent, Laure; Seco, Joao; Evans, Phil M.; Fielding, Andrew; Dance, David R.

    2006-12-15

    This study focused on predicting the electronic portal imaging device (EPID) image of intensity modulated radiation treatment (IMRT) fields in the absence of attenuation material in the beam with Monte Carlo methods. As IMRT treatments consist of a series of segments of various sizes that are not always delivered on the central axis, large spectral variations may be observed between the segments. The effect of these spectral variations on the EPID response was studied with fields of various sizes and off-axis positions. A detailed description of the EPID was implemented in a Monte Carlo model. The EPID model was validated by comparing the EPID output factors for field sizes between 1x1 and 26x26 cm{sup 2} at the isocenter. The Monte Carlo simulations agreed with the measurements to within 1.5%. The Monte Carlo model succeeded in predicting the EPID response at the center of the fields of various sizes and offsets to within 1% of the measurements. Large variations (up to 29%) of the EPID response were observed between the various offsets. The EPID response increased with field size and with field offset for most cases. The Monte Carlo model was then used to predict the image of a simple test IMRT field delivered on the beam axis and with an offset. A variation of EPID response up to 28% was found between the on- and off-axis delivery. Finally, two clinical IMRT fields were simulated and compared to the measurements. For all IMRT fields, simulations and measurements agreed within 3%--0.2 cm for 98% of the pixels. The spectral variations were quantified by extracting from the spectra at the center of the fields the total photon yield (Y{sub total}), the photon yield below 1 MeV (Y{sub low}), and the percentage of photons below 1 MeV (P{sub low}). For the studied cases, a correlation was shown between the EPID response variation and Y{sub total}, Y{sub low}, and P{sub low}.

  14. Calcium-doping effects on photovoltaic response and structure in multiferroic BiFeO3 ceramics

    NASA Astrophysics Data System (ADS)

    Tu, C. S.; Hung, C.-M.; Xu, Z.-R.; Schmidt, V. H.; Ting, Y.; Chien, R. R.; Peng, Y.-T.; Anthoninappen, J.

    2013-09-01

    Photovoltaic (PV) effects, power-conversion efficiencies, and structures have been systematically measured in (Bi1-xCax)FeO3-δ ceramics for x = 0.05, 0.10, and 0.15. The heterostructures of indium tin oxide (ITO) film/(Bi1-xCax)FeO3-δ ceramics/Au film exhibit significant PV effects under illumination of λ = 405 nm. The maximum power-conversion efficiency in the ITO/(Bi0.90Ca0.10)FeO2.95 (BFO10C)/Au can reach 0.0072%, which is larger than 0.0025% observed in the graphene/polycrystalline BFO/Pt films [Zang et al., Appl. Phys. Lett. 99, 132904 (2011)]. A theoretical model based on optically excited current in the depletion region between ITO film and Ca-doped BFO ceramics is used to describe the I-V characteristic, open-circuit voltage, and short-circuit current density as a function of illumination intensity. This work suggests that the Ca-substitution can reduce the rhombohedral distortion and stabilize the single-phase structure.

  15. Charge-density-based analysis of the current–voltage response of polythiophene/fullerene photovoltaic devices

    PubMed Central

    Shuttle, C. G.; Hamilton, R.; O’Regan, B. C.; Nelson, J.; Durrant, J. R.

    2010-01-01

    A key challenge for organic electronics research is to develop device models that correctly account for the structural and energetic disorder typically present in such materials. In this paper we report an approach to analyze the electrical performance of an organic electronic device based upon charge extraction measurements of charge densities and transient optoelectronic measurements of charge carrier dynamics. This approach is applied to a poly(3-hexyl thiophene) (P3HT)/6,6 phenyl C61 butyric acid methyl ester (PCBM) blend photovoltaic device. These measurements are employed to determine the empirical rate law for bimolecular recombination losses, with the energetic disorder present in the materials being accounted for by a charge-density-dependent recombination coefficient. This rate law is then employed to simulate the current/voltage curve. This simulation assumes the only mechanism for the loss of photogenerated charges is bimolecular recombination and employs no fitting parameters. Remarkably the simulation is in good agreement with the experimental current/voltage data over a wide range of operating conditions of the solar cell. We thus demonstrate that the primary determinant of both the open-circuit voltage and fill factor of P3HT∶PCBM devices is bimolecular recombination. We go on to discuss the applicability of this analysis approach to other materials systems, and particularly to emphasize the effectiveness of this approach where the presence of disorder complicates the implementation of more conventional, voltage-based analyses such as the Shockley diode equation. PMID:20823262

  16. Spectral response calibrations of x-ray diode photocathodes in the 50-5900 eV photon energy region

    NASA Astrophysics Data System (ADS)

    Bentley, C. D.; Simmons, A. C.

    2001-01-01

    X-ray diode photocathodes are employed in diagnostic instruments on the Helen laser at the Atomic Weapons Establishment (AWE) Aldermaston, UK. The photocathodes are mainly used in the Dante fast diode array and flat response diodes. These diagnostics enable the soft x-ray spectral emissions of laser irradiated targets to be determined. To derive quantitative spectral information, the quantum efficiency of the photocathodes must be known over the range of x-ray energies of interest. The photocathodes were manufactured in 1982, and were initially calibrated at that time. Since then further measurements have been performed in 1988 and 1999. The photocathodes have been exposed to a wide range of conditions during their lives, ranging from use in experiments to storage in a dry nitrogen environment. Reported here are the results of calibrations performed in 1999 at the soft x-ray calibration facility EXCALIBUR at AWE, Aldermaston, and at the National Synchrotron Light Source in Brookhaven NY. An assessment of their current condition and an evaluation of the change in their response over time, and the possible reasons for these changes, are made.

  17. Photovoltaic Effect and Evidence of Carrier Multiplication in Graphene Vertical Homojunctions with Asymmetrical Metal Contacts.

    PubMed

    Chen, Jing-Jing; Wang, Qinsheng; Meng, Jie; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Bie, Ya-Qing; Liu, Junku; Liu, Kaihui; Liao, Zhi-Min; Sun, Dong; Yu, Dapeng

    2015-09-22

    Graphene exhibits exciting potentials for high-speed wideband photodetection and high quantum efficiency solar energy harvest because of its broad spectral absorption, fast photoelectric response, and potential carrier multiplication. Although photocurrent can be generated near a metal-graphene interface in lateral devices, the photoactive area is usually limited to a tiny one-dimensional line-like interface region. Here, we report photoelectric devices based on vertical graphene two-dimensional homojunction, which is fabricated via vertically stacking four graphene monolayers with asymmetric metal contacts. The devices show excellent photovoltaic output with excitation wavelength ranging from visible light to mid-infrared. The wavelength dependence of the internal quantum efficiency gives direct evidence of the carrier multiplication effect in graphene. The simple fabrication process, easy scale-up, large photoresponsive active area, and broadband response of the vertical graphene device are very promising for practical applications in optoelectronics and photovoltaics. PMID:26279456

  18. High spectral response of self-driven GaN-based detectors by controlling the contact barrier height

    PubMed Central

    Sun, Xiaojuan; Li, Dabing; Li, Zhiming; Song, Hang; Jiang, Hong; Chen, Yiren; Miao, Guoqing; Zhang, Zhiwei

    2015-01-01

    High spectral response of self-driven GaN-based ultraviolet detectors with interdigitated finger geometries were realized using interdigitated Schottky and near-ohmic contacts. Ni/GaN/Cr, Ni/GaN/Ag, and Ni/GaN/Ti/Al detectors were designed with zero bias responsivities proportional to the Schottky barrier difference between the interdigitated contacts of 0.037 A/W, 0.083 A/W, and 0.104 A/W, respectively. Voltage-dependent photocurrent was studied, showing high gain under forward bias. Differences between the electron and hole mobility model and the hole trapping model were considered to be the main photocurrent gain mechanism. These detectors operate in photoconductive mode with large photocurrent gain and depletion mode with high speed, and can extend GaN-based metal-semiconductor-metal detector applications.

  19. Modeling of the Temperature-dependent Spectral Response of In(1-x)Ga(x)Sb Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Gonzalex-Cuevas, Juan A.; Refaat, Tamer F.; Abedin, M. Nurul; Elsayed-Ali, Hani E.

    2006-01-01

    A model of the spectral responsivity of In(1-x) Ga(x) Sb p-n junction infrared photodetectors has been developed. This model is based on calculations of the photogenerated and diffusion currents in the device. Expressions for the carrier mobilities, absorption coefficient and normal-incidence reflectivity as a function of temperature were derived from extensions made to Adachi and Caughey-Thomas models. Contributions from the Auger recombination mechanism, which increase with a rise in temperature, have also been considered. The responsivity was evaluated for different doping levels, diffusion depths, operating temperatures, and photon energies. Parameters calculated from the model were compared with available experimental data, and good agreement was obtained. These theoretical calculations help to better understand the electro-optical behavior of In(1-x) Ga(x) Sb photodetectors, and can be utilized for performance enhancement through optimization of the device structure.

  20. Modelling the spectral response of the desert tree Prosopis tamarugo to water stress

    NASA Astrophysics Data System (ADS)

    Chávez, R. O.; Clevers, J. G. P. W.; Herold, M.; Ortiz, M.; Acevedo, E.

    2013-04-01

    In this paper, we carried out a laboratory experiment to study changes in canopy reflectance of Tamarugo plants under controlled water stress. Tamarugo (Prosopis tamarugo Phil.) is an endemic and endangered tree species adapted to the hyper-arid conditions of the Atacama Desert, Northern Chile. Observed variation in reflectance during the day (due to leaf movements) as well as changes over the experimental period (due to water stress) were successfully modelled by using the Soil-Leaf-Canopy (SLC) radiative transfer model. Empirical canopy reflectance changes were mostly explained by the parameters leaf area index (LAI), leaf inclination distribution function (LIDF) and equivalent water thickness (EWT) as shown by the SLC simulations. Diurnal leaf movements observed in Tamarugo plants (as adaptation to decrease direct solar irradiation at the hottest time of the day) had an important effect on canopy reflectance and were explained by the LIDF parameter. The results suggest that remote sensing based assessment of this desert tree should consider LAI and canopy water content (CWC) as water stress indicators. Consequently, we tested fifteen different vegetation indices and spectral absorption features proposed in literature for detecting changes of LAI and CWC, considering the effect of LIDF variations. A sensitivity analysis was carried out using SLC simulations with a broad range of LAI, LIDF and EWT values. The Water Index was the most sensitive remote sensing feature for estimating CWC for values less than 0.036 g/cm2, while the area under the curve for the spectral range 910-1070 nm was most sensitive for values higher than 0.036 g/cm2. The red-edge chlorophyll index (CIred-edge) performed the best for estimating LAI. Diurnal leaf movements had an effect on all remote sensing features tested, particularly on those for detecting changes in CWC.

  1. Procedures for Wavelength Calibration and Spectral Response Correction of CCD Array Spectrometers

    PubMed Central

    Gaigalas, A. K.; Wang, Lili; He, Hua-Jun; DeRose, Paul

    2009-01-01

    This work describes a procedure for acquiring a spectrum of an analyte over an extended range of wavelengths and validating the wavelength and intensity assignments. To acquire a spectrum over an extended range of wavelengths with a spectrometer with a charge coupled device (CCD) array detector, it is necessary to acquire many partial spectra, each at a different angular position of the grating, and splice the partial spectra into a single extended spectrum. The splicing procedure exposes instrument dependent artifacts. It is demonstrated that by taking a spectrum of a reference irradiance source and making spectral correction, the artifacts exposed by the splicing are removed from the analyte spectrum. This is because the irradiance reference spectrum contains the same artifacts as the analyte spectrum. The artifacts exposed by the splicing depend on the wavelength of the splice; therefore it is important to measure the irradiance reference spectrum for the same range of wavelengths used to measure the spectrum of the analyte solution. In other words, there is no general spectral correction factor which is applicable to spectra taken for different range of wavelengths. The wavelength calibration is also carried out by splicing many partial spectra from a source like a krypton lamp. However the wavelength assignments are not sensitive to the splicing procedure and the same wavelength calibration can be used for spectra acquired over different extended wavelength ranges. The wavelength calibration checks the validity of the setting of the grating angular position, and the assignment of wavelengths to individual pixels on the CCD array detector. The procedure is illustrated by measuring the spectrum of an orange glass and the spectrum of a suspension of microalgae.

  2. Simulation of the long term radiometric responses of the Terra MODIS and EO-1 ALI using Hyperion spectral responses over Railroad Valley Playa in Nevada (RVPN)

    NASA Astrophysics Data System (ADS)

    Choi, Taeyoung; Xiong, Xiaoxiong J.; Angal, Amit; Chander, Gyanesh

    2010-10-01

    The Earth Observing-1 (EO-1) Hyperion instrument provides 220 spectral bands with wavelengths between 400 and 2500 nm at 30 m spatial resolution, which covers a 7.5 km by 100 km area on the ground. The EO-1 spacecraft has another multispectral sensor called the Advanced Land Imager (ALI), which has 10 spectral bands with wavelengths between 400 and 2350 nm at 30 m spatial resolution. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the Terra spacecraft was launched in Dec., 1999, and flies approximately 30 minutes behind EO-1. Nearsimultaneous observations from Terra MODIS, EO-1 ALI and Hyperion over a well characterized Railroad Valley Playa in Nevada (RVPN) target are chosen for this study. A uniform region of interest (ROI) within the playa within latitudes and longitudes of 38.48 and -115.71 to 38.53 and -115.66 was chosen for this analysis. A representation of the ground spectra during every near-simultaneous acquisition of MODIS and ALI is obtained using EO-1 Hyperion data. Using the EO-1 Hyperion derived top-of-atmosphere (TOA) reflectance profile along with the ALI and MODIS relative spectral responses (RSR), simulated reflectance for the matching band pairs is calculated. The Hyperion simulated TOA reflectance results are compared to the measured TOA reflectance trends of ALI and MODIS. The long-term measured versus simulated reflectance results are used to examine the relationships and calibration differences between the ALI and MODIS sensors.

  3. Photovoltaic cell

    SciTech Connect

    Jordan, J. F.; Lampkin, C. M.

    1981-02-03

    A photovoltaic cell is disclosed having an electrically conductive substrate, which may be glass having a film of conductive tin oxide. A first layer contains a suitable semiconductor, which layer has a first component film with an amorphous structure and a second component film with a polycrystalline structure a second layer forms a heterojunction with the first layer suitable electrodes are provided where the heterojunction is formed from a solution containing copper, and the amorphous film component is superposed above an electrically conductive substrate to resist permeation of the copper-containing material to shorting electrical contact with the substrate. The penetration resistant amorphous layer permits a variety of processes to be used in forming the heterojunction with even very thin layers (1-6 mu thick) of underlying polycrystalline semi-conductor materials. In some embodiments, the amorphous-like structure may be formed by the addition of aluminum or zirconium compounds to a solution of cadmium salts sprayed over a heated substrate.

  4. Annoyance response to spectrally modified recorded aircraft noise during television-viewing.

    PubMed

    Gunn, W J; Shigehisa, T; Shepherd, W T

    1977-10-01

    Magnitude estimations of the annoyance of 27 individual noise stimuli were made by 24 Ss while viewing television; 8 different spectrum modifications of a basic aircraft noise were introduced at 3 overall intensities. The basic spectrum was that of an untreated commercial jet aircraft takeoff noise; the other 8 were created by removal of one of two amounts of energy from an octave band centerered at either .315, .8, 1.6, or 4 kc/s. An ANOVA showed significant annoyance differences for spectrum modification, overall noise intensity and their interaction. Annoyance reduction was greatest when energy was removed at the octave band centered at 1.6 kc/s, next at .8, and .315, and least at 4 kc/s. Although greater overall intensity reduction yielded progressively less annoyance with various spectrally-modified noises as well as unmodified noise, the spectrum modification was apparently most effective in reducing annoyance when the overall maximum noise intensity ranged from 88.0 to 89.1 dbA, and was least effective from 83.9 to 85.3 dbA. Annoyance reduction resulting from spectrum modification at a single octave band (centered at either .8 or 1.6 kc/s) was equivalent to that resulting from a 2.7 dbA overall intensity reduction. The results are discussed in terms of speech interference as well as intermodal effects of noise during television viewing. PMID:617812

  5. Spectral analysis of white ash response to emerald ash borer infestations

    NASA Astrophysics Data System (ADS)

    Calandra, Laura

    The emerald ash borer (EAB) (Agrilus planipennis Fairmaire) is an invasive insect that has killed over 50 million ash trees in the US. The goal of this research was to establish a method to identify ash trees infested with EAB using remote sensing techniques at the leaf-level and tree crown level. First, a field-based study at the leaf-level used the range of spectral bands from the WorldView-2 sensor to determine if there was a significant difference between EAB-infested white ash (Fraxinus americana) and healthy leaves. Binary logistic regression models were developed using individual and combinations of wavelengths; the most successful model included 545 and 950 nm bands. The second half of this research employed imagery to identify healthy and EAB-infested trees, comparing pixel- and object-based methods by applying an unsupervised classification approach and a tree crown delineation algorithm, respectively. The pixel-based models attained the highest overall accuracies.

  6. Measurements of spectral responses for developing fiber-optic pH sensor

    NASA Astrophysics Data System (ADS)

    Yoo, Wook Jae; Heo, Ji Yeon; Jang, Kyoung Won; Seo, Jeong Ki; Moon, Jin Soo; Park, Jang-Yeon; Park, Byung Gi; Cho, Seunghyun; Lee, Bongsoo

    2011-01-01

    In this study, we have fabricated a fiber-optic pH sensor, which is composed of a light source, a pH-sensing probe, plastic optical fibers and a spectrometer, for determining the degree of infection by Helicobacter pylori in the stomach. As pH indicators, phenol red and m-cresol purple are used, and pH liquid solutions are prepared by mixing phenol red or m-cresol purple solutions and various kinds of pH buffer solutions. The light emitted by a light source is guided by plastic optical fibers to the pH liquid solution, and the optical characteristic of a reflected light is changed according to the color variations of the pH indicator in the pH-sensing probe. Therefore, we have measured the intensities and wavelength shifts of the reflected lights, which change according to the color variations of indicators at different pH values, by using a spectrometer for spectral analysis. Also, the relationships between the pH values of liquid solutions and the optical properties of the modulated lights are obtained on the basis of the changes of the colors of indicators.

  7. Relative spectral response corrected calibration inter-comparison of S-NPP VIIRS and Aqua MODIS thermal emissive bands

    NASA Astrophysics Data System (ADS)

    Efremova, Boryana; Wu, Aisheng; Xiong, Xiaoxiong

    2014-09-01

    The S-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is built with strong heritage from EOS MODIS, and has very similar thermal emissive bands (TEB) calibration algorithm and on-board calibrating source - a V-grooved blackbody. The calibration of the two instruments can be assessed by comparing the brightness temperatures retrieved from VIIRS and Aqua MODIS simultaneous nadir observations (SNO) from their spectrally matched TEB. However, even though the VIIRS and MODIS bands are similar there are still relative spectral response (RSR) differences and thus some differences in the retrieved brightness temperatures are expected. The differences depend on both the type and the temperature of the observed scene, and contribute to the bias and the scatter of the comparison. In this paper we use S-NPP Cross-track Infrared Sounder (CrIS) data taken simultaneously with the VIIRS data to derive a correction for the slightly different spectral coverage of VIIRS and MODIS TEB bands. An attempt to correct for RSR differences is also made using MODTRAN models, computed with physical parameters appropriate for each scene, and compared to the value derived from actual CrIS spectra. After applying the CrIS-based correction for RSR differences we see an excellent agreement between the VIIRS and Aqua MODIS measurements in the studied band pairs M13-B23, M15-B31, and M16- B32. The agreement is better than the VIIRS uncertainty at cold scenes, and improves with increasing scene temperature up to about 290K.

  8. Spectral and temporal sensitivity of cone-mediated responses in mouse retinal ganglion cells

    PubMed Central

    Wang, Yanbin V.; Weick, Michael; Demb, Jonathan B.

    2011-01-01

    The retina uses two photoreceptor types to encode the wide range of light intensities in the natural environment. Rods mediate vision in dim light, whereas cones mediate vision in bright light. Mouse photoreceptors include only 3% cones, and the majority of these co-express two opsins (S, M), with peak sensitivity to either ultraviolet (360 nm) or green light (508 nm). The M:S opsin ratio varies across the retina but has not been characterized functionally, preventing quantitative study of cone-mediated vision. Furthermore, physiological and behavioral measurements suggested that mouse retina supports relatively slow temporal processing (peak sensitivity, ~2–5 Hz), compared to primates; however, past studies used visible wavelengths that are inefficient at stimulating mouse S opsin. Here, we measured the M:S opsin expression ratio across the mouse retina, as reflected by ganglion cell responses, in vitro, and probed cone-mediated ganglion cell temporal properties using ultraviolet light stimulation and linear systems analysis. From recordings in mice lacking rod function (Gnat1−/−, Rho−/−), we estimate ~70% M-opsin expression in far dorsal retina, dropping to <5% M-opsin expression throughout ventral retina. In mice lacking cone function (Gnat2cpfl3), light-adapted rod-mediated responses peaked at ~5–7 Hz. In wild-type mice, cone-mediated responses peaked at ~10 Hz, with substantial responsiveness up to ~30 Hz. Therefore, despite the small percentage of cones, cone-mediated responses in mouse ganglion cells are fast and robust, similar to those in primates. These measurements enable quantitative analysis of cone-mediated responses at all levels of the visual system. PMID:21613480

  9. Photovoltaic roof construction

    SciTech Connect

    Hawley, W.W.

    1980-02-26

    In a batten-seam roof construction employing at least one photovoltaic cell module, the electrical conduits employed with the at least one photovoltaic cell module are disposed primarily under the battens of the roof.

  10. Monitoring cancer treatment response using photoacoustic and ultrasound spectral analysis in combination with oxygenation measurements (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hysi, Eno; May, Jonathan P.; Wirtzfeld, Lauren; Undzys, Elijus; Li, Shyh-Dar; Kolios, Michael C.

    2016-03-01

    At clinically-relevant depths, the frequency content of photoacoustic signals encodes information about the size, concentration and spatial distribution of non-resolvable blood vessels. This study evaluates whether photoacoustics can detect cancer therapy-induced vascular perturbations. Photoacoustic/ultrasound (PA/US) spectral analysis was combined with functional, PA-based oxygenation and power Doppler (PD) perfusion estimates to assess treatment response. Co-registered, in-vivo US/PA/PD imaging of mice bearing breast cancer tumors was performed pre-treatment and 30m/2h/5h/24h/7d post-treatment (VevoLAZR, Fujifilm VisualSonics). Hyperthermia treatment (1h, 43C) was performed after systemic injections of doxorubicin-loaded thermosensitive liposomes (TSL, n=13) or free doxorubicin (DOX, n=11). Response was classified according to 2h, PA-based oxygenation drop and endpoint (>9d), caliper-based volume reduction. At all time-points/wavelengths (750/850nm), the spectral-slope (SS) was computed from the normalized US/PA power spectra using depth-matched reference phantoms. The percent-vascularity (PV) was estimated for the animal with the largest oxygenation-drop at 2h. TLS-treated responders decreased their PA-SS by 1.9x @750nm and 5.8x @850nm 30m post-treatment and remained constant for 24h; tumor oxygenation followed the same trend. Non-responding SS remained unchanged for 24h. The 750nm SS was 18.7x lower than 850nm suggesting the TSL is sensitive vessel oxygenation. Responder PV decreased 100% when the 30m oxygenation dropped 15% and increased 7x when the 7d oxygenation increased 20%. DOX-responders exhibited similar trends to TSL-responders although the 750nm PA-SS was 1.6x smaller and post-treatment PV was 50% higher. The US-SS remained unchanged until 7d post-treatment suggesting its sensitivity to tumor cell-death. These findings suggest that PA spectral analysis has potential in monitoring cancer treatment response.

  11. Spectral response of crystalline acetanilide and N -methylacetamide: Vibrational self-trapping in hydrogen-bonded crystals

    NASA Astrophysics Data System (ADS)

    Edler, Julian; Hamm, Peter

    2004-06-01

    Femtosecond pump-probe and Fourier transform infrared spectroscopy is applied to compare the spectral response of the amide I band and the NH-stretching band of acetanilide (ACN) and N -methylacetamide (NMA), as well as their deuterated derivatives. Both molecules form hydrogen-bonded molecular crystals that are regarded to be model systems for polypeptides and proteins. The amide I bands of both ACN and NMA show a temperature-dependent sideband, while the NH bands are accompanied by a sequence of equidistantly spaced satellite peaks. These spectral anomalies are interpreted as a signature of vibrational self-trapping. Two different types of states can be identified in both crystals in the pump-probe signal: a delocalized free-exciton state and a set of localized self-trapped states. The phonons that mediate self-trapping in ACN and deuterated ACN are identified by their temperature dependence, confirming our previous results. The study shows that the substructure of the NH band in NMA (amide A and amide B bands) originates, at least partly, from vibrational self-trapping and not, as often assumed, from a Fermi resonance.

  12. Thermionic photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, D. L. (Inventor)

    1985-01-01

    A thermionic photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or gallium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

  13. High photosensitivity and broad spectral response of multi-layered germanium sulfide transistors

    NASA Astrophysics Data System (ADS)

    Ulaganathan, Rajesh Kumar; Lu, Yi-Ying; Kuo, Chia-Jung; Tamalampudi, Srinivasa Reddy; Sankar, Raman; Boopathi, Karunakara Moorthy; Anand, Ankur; Yadav, Kanchan; Mathew, Roshan Jesus; Liu, Chia-Rung; Chou, Fang Cheng; Chen, Yit-Tsong

    2016-01-01

    In this paper, we report the optoelectronic properties of multi-layered GeS nanosheet (~28 nm thick)-based field-effect transistors (called GeS-FETs). The multi-layered GeS-FETs exhibit remarkably high photoresponsivity of Rλ ~ 206 A W-1 under 1.5 μW cm-2 illumination at λ = 633 nm, Vg = 0 V, and Vds = 10 V. The obtained Rλ ~ 206 A W-1 is excellent as compared with a GeS nanoribbon-based and the other family members of group IV-VI-based photodetectors in the layered-materials realm, such as GeSe and SnS2. The gate-dependent photoresponsivity of GeS-FETs was further measured to be able to reach Rλ ~ 655 A W-1 operated at Vg = -80 V. Moreover, the multi-layered GeS photodetector holds high external quantum efficiency (EQE ~ 4.0 × 104%) and specific detectivity (D* ~ 2.35 × 1013 Jones). The measured D* is comparable to those of the advanced commercial Si- and InGaAs-based photodiodes. The GeS photodetector also shows an excellent long-term photoswitching stability over a long period of operation (>1 h). These extraordinary properties of high photocurrent generation, broad spectral range, and long-term stability make the GeS-FET photodetector a highly qualified candidate for future optoelectronic applications.In this paper, we report the optoelectronic properties of multi-layered GeS nanosheet (~28 nm thick)-based field-effect transistors (called GeS-FETs). The multi-layered GeS-FETs exhibit remarkably high photoresponsivity of Rλ ~ 206 A W-1 under 1.5 μW cm-2 illumination at λ = 633 nm, Vg = 0 V, and Vds = 10 V. The obtained Rλ ~ 206 A W-1 is excellent as compared with a GeS nanoribbon-based and the other family members of group IV-VI-based photodetectors in the layered-materials realm, such as GeSe and SnS2. The gate-dependent photoresponsivity of GeS-FETs was further measured to be able to reach Rλ ~ 655 A W-1 operated at Vg = -80 V. Moreover, the multi-layered GeS photodetector holds high external quantum efficiency (EQE ~ 4.0 × 104%) and specific

  14. The transpiration and the spectral response of non-irrigated Haloxylon ammodendron at canopy scale

    NASA Astrophysics Data System (ADS)

    Cao, Xiao-ming; Wang, Juan-le; Gao, Zhiqiang; Chen, Mao-si

    2012-10-01

    Transpiration, an essential component of surface evapotranspiration, is particularly important in the research of surface evapotranspiration in arid areas. The paper explores the spectral information of the arid vegetal evapotranspiration from a semi-empirical perspective by the measured data and the up-scaling method. The paper inverted the transpiration of Haloxylon ammodendronat at the canopy, pixel and regional scales in the southern edge of the Gurbantunggut desert in Xinjiang, China. The results are as follows: At the canopy scale, the optimal exponential model of the sap flow based on the hyperspectrum is Y = 3.65× SR(1580,1600) + 0.76, R2 = 0.72. At the pixel scale, there was a good linear relationship between the sap flow and the SR index, with a linear relationship of Y = 0.0787 X - 0.0724, R2 = 0.604. At the regional scale, based on the optimal exponential model and the EO-1 Hyperion remote sensing data, the transpiration of the study area was inverted. Comparing the results of the SEBAL and SEBS models, the errors of the simulation results were 12.66% and 11.68%. The paper made full use of the knowledge flow at different scales, bridging the scale difference in canopy and remote sensing images to avoid the information bottleneck in the up-scaling. However, there is much limit in the data acquirement, the endmembers determine, the temporal-spatial up-scaling, and the accuracy assessment to be improved in the future studies.

  15. Amorphous silicon photovoltaic devices

    SciTech Connect

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  16. Photovoltaic device and method

    DOEpatents

    Cleereman, Robert J; Lesniak, Michael J; Keenihan, James R; Langmaid, Joe A; Gaston, Ryan; Eurich, Gerald K; Boven, Michelle L

    2015-01-27

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  17. Photovoltaic device and method

    SciTech Connect

    Cleereman, Robert; Lesniak, Michael J.; Keenihan, James R.; Langmaid, Joe A.; Gaston, Ryan; Eurich, Gerald K.; Boven, Michelle L.

    2015-11-24

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  18. Absorption and related optical dispersion effects on the spectral response of a surface plasmon resonance sensor

    SciTech Connect

    Nakkach, Mohamed; Lecaruyer, Pierre; Bardin, Fabrice; Sakly, Jaouhar; Lakhdar, Zohra Ben; Canva, Michael

    2008-11-20

    Surface plasmon resonance (SPR) sensing is an optical technique that allows real time detection of small changes in the physical properties, in particular in the refractive index, of a dielectric medium near a metal film surface. One way to increase the SPR signal shift is then to incorporate a substance possessing a strong dispersive refractive index in the range of the plasmon resonance band. In this paper, we investigate the impact of materials possessing a strong dispersive index integrated to the dielectric medium on the SPR reflectivity profile. We present theoretical results based on chromophore absorption spectra and on their associated refractive index obtained from the Lorentz approach and Kramers-Kroenig equations. As predicted by the theory, the experimental results show an enhancement of the SPR response, maximized when the chromophore absorption band coincides with the plasmon resonant wavelength. This shows that chromophores labeling can provide a potential way for SPR response enhancement.

  19. Excitons and Recombination in Photovoltaic Materials

    SciTech Connect

    Smith, S.; Cheong, H. M.; Fluegel, B. D.; Geisz, J. F.; Olson, J. V.; Dhere, R.; Kazmerski, L. L.; Mascarenhas, A.

    1998-10-16

    High spatial resolution ({approx} 0.7{micro}m) scanning confocal microscopy, combined with low-temperature (5K) photoluminescence (PL) spectroscopy, can be used to probe the spatial variations in the spectral properties of photovoltaic materials with sub- micron spatial resolution ( {approx} 0.7{micro}m). We report on the successful demonstration of this technique applied to two particular photovoltaic systems: a partially ordered GaInP{sub 2} epilayer, and a released (exposing the CdTe/CdS interface) polycrystalline CdTe film.

  20. Temperature dependent spectral response and detectivity of GeSn photoconductors on silicon for short wave infrared detection.

    PubMed

    Conley, Benjamin R; Mosleh, Aboozar; Ghetmiri, Seyed Amir; Du, Wei; Soref, Richard A; Sun, Greg; Margetis, Joe; Tolle, John; Naseem, Hameed A; Yu, Shui-Qing

    2014-06-30

    The GeSn direct gap material system, with Si complementary-metal-oxide semiconductor (CMOS) compatibility, presents a promising solution for direct incorporation of focal plane arrays with short wave infrared detection on Si. A temperature dependence study of GeSn photoconductors with 0.9, 3.2, and 7.0% Sn was conducted using both electrical and optical characterizations from 300 to 77 K. The GeSn layers were grown on Si substrates using a commercially available chemical vapor deposition reactor in a Si CMOS compatible process. Carrier activation energies due to ionization and trap states are extracted from the temperature dependent dark I-V characteristics. The temperature dependent spectral response of each photoconductor was measured, and a maximum long wavelength response to 2.1 μm was observed for the 7.0% Sn sample. The DC responsivity measured at 1.55 μm showed around two orders of magnitude improvement at reduced temperatures for all samples compared to room temperature measurements. The noise current and temperature dependent specific detectivity (D*) were also measured for each sample at 1.55 μm, and a maximum D* value of 1 × 10(9) cm·√Hz/W was observed at 77 K. PMID:24977823

  1. Which way is up? Asymmetric spectral input along the dorsal-ventral axis influences postural responses in an amphibious annelid.

    PubMed

    Jellies, John

    2014-11-01

    Medicinal leeches are predatory annelids that exhibit countershading and reside in aquatic environments where light levels might be variable. They also leave the water and must contend with terrestrial environments. Yet, leeches generally maintain a dorsal upward position despite lacking statocysts. Leeches respond visually to both green and near-ultraviolet (UV) light. I used LEDs to test the hypothesis that ventral, but not dorsal UV would evoke compensatory movements to orient the body. Untethered leeches were tested using LEDs emitting at red (632 nm), green (513 nm), blue (455 nm) and UV (372 nm). UV light evoked responses in 100 % of trials and the leeches often rotated the ventral surface away from it. Visible light evoked no or modest responses (12-15 % of trials) and no body rotation. Electrophysiological recordings showed that ventral sensilla responded best to UV, dorsal sensilla to green. Additionally, a higher order interneuron that is engaged in a variety of parallel networks responded vigorously to UV presented ventrally, and both the visible and UV responses exhibited pronounced light adaptation. These results strongly support the suggestion that a dorsal light reflex in the leech uses spectral comparisons across the dorsal-ventral axis rather than, or in addition to, luminance. PMID:25152938

  2. Can we use the ozone response in a CCM to say which solar spectral irradiance is most likely correct?

    NASA Astrophysics Data System (ADS)

    Ball, William; Rozanov, Eugene; Shapiro, Anna

    2015-04-01

    Ozone plays a key role in the temperature structure of the Earth's atmosphere and absorbs damaging ultraviolet (UV) solar radiation. Evidence suggests that variations in stratospheric ozone resulting from changes in solar UV output may have an important role to play in weather over the North Atlantic and Europe on decadal timescales through a "top-down" coupling with the troposphere. However, the magnitude of the stratospheric response to the Sun over the 11-year solar cycle (SC) depends primarily on how much the UV changes. SC UV changes differ significantly between different observational instruments and the observations and models. The substantial disagreements between existing SSI datasets lead to different atmospheric responses when they are used in climate models and, therefore, we still cannot fully understand and simulate the ozone variability. We use the SOCOL chemistry-climate model, in specified dynamics mode, to calculate the atmospheric response from using different spectral irradiance from the SATIRE-S and NRLSSI models and with SORCE observations and a constant Sun. We compare the ozone and hydroxl results from these runs with observations to try to determine which SSI dataset is most likely to be correct. This is important to get a better understanding of which SSI dataset should be used in climate modelling and what magnitude of UV variability the Sun has. This will lead to a better understanding of the Sun's influence upon our climate and weather.

  3. Simulation of reflectometry Bragg backscattering spectral responses in the absence of a cutoff layer

    SciTech Connect

    Silva, F. da; Graca, S. da; Conway, G. D.; Collaboration: ASDEX Upgrade Team

    2010-10-15

    Experimental reflectometry signals obtained in the absence of a cutoff layer, with the possibility of interferometric operation excluded, show a coherent and recurrent frequency spectrum signature similar to an Alfven cascade signature. A possible explanation resides in the modulation of a resonant Bragg backscattering response by an Alfven mode structure located at the center of the plasma whose frequency of oscillation modulates the backscattered signal in a conformable way. This situation is modeled and simulated using an O-mode full-wave Maxwell finite-difference time-domain code and the resulting signatures are discussed.

  4. Simulation of reflectometry Bragg backscattering spectral responses in the absence of a cutoff layer.

    PubMed

    da Silva, F; da Graça, S; Heuraux, S; Conway, G D

    2010-10-01

    Experimental reflectometry signals obtained in the absence of a cutoff layer, with the possibility of interferometric operation excluded, show a coherent and recurrent frequency spectrum signature similar to an Alfvén cascade signature. A possible explanation resides in the modulation of a resonant Bragg backscattering response by an Alfvén mode structure located at the center of the plasma whose frequency of oscillation modulates the backscattered signal in a conformable way. This situation is modeled and simulated using an O-mode full-wave Maxwell finite-difference time-domain code and the resulting signatures are discussed. PMID:21061482

  5. Transparent ultraviolet photovoltaic cells.

    PubMed

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future. PMID:26872163

  6. Photovoltaic fibers

    NASA Astrophysics Data System (ADS)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  7. Miniature spectrally selective dosimeter

    NASA Technical Reports Server (NTRS)

    Adams, R. R.; Macconochie, I. O.; Poole, B. D., Jr. (Inventor)

    1980-01-01

    A miniature spectrally selective dosimeter capable of measuring selected bandwidths of radiation exposure on small mobile areas is described. This is achieved by the combination of photovoltaic detectors, electrochemical integrators (E-cells) and filters in a small compact case which can be easily attached in close proximity to and substantially parallel to the surface being measured. In one embodiment two photovoltaic detectors, two E-cells, and three filters are packaged in a small case with attaching means consisting of a safety pin. In another embodiment, two detectors, one E-cell, three filters are packaged in a small case with attaching means consisting of a clip to clip over a side piece of an eye glass frame.

  8. Photovoltaic Materials

    SciTech Connect

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and

  9. Extended short-wavelength spectral response of organic/(silver nanoparticles/Si nanoholes nanocomposite films) hybrid solar cells due to localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Liu, Zhixin; Xu, Ling; Zhang, Wengping; Ge, Zhaoyun; Xu, Jun; Su, Weining; Yu, Yao; Ma, Zhongyuan; Chen, Kunji

    2015-04-01

    In this letter, we investigated spectral and opto-electronic conversion properties of the inorganic/organic hybrid cells by using silver nanoparticles (AgNPs)/Si nanoholes (SiNHs) nanocomposite films, which were fabricated by the modified metal-assisted electroless etching (EE) method. It was found that the optical absorption spectra of the films with AgNPs demonstrate a clear peak and show the enhancement of total absorption at the short wavelength. The results of current-voltage (I-V) measurements show that solar cells with AgNPs exhibit an increase of the power conversion efficiency by a factor of 2-3, in comparison with those of the samples without AgNPs. Moreover, higher external quantum efficiency (EQE) values in AgNPs-decorated solar cells were confirmed in the short-wavelength spectral region (400-700 nm), which were essential to achieve high-performance photovoltaic cells. We thought these were mainly attributed to the localized surface plasmon resonance (LSPR) effects and increased light scattering of AgNPs.

  10. Magneto-optical responses of microcavity-integrated graphene photonic crystals in the infrared spectral region

    NASA Astrophysics Data System (ADS)

    Abdi-Ghaleh, Reza; Sattari, Maryam

    2016-09-01

    The magneto-optical responses and photonic band gap properties of the microcavity-integrated graphene photonic crystals were numerically studied. The structure consists of a graphene sheet embedded between two mirror symmetric Bragg reflectors, under the influence of an external static magnetic field. The properties of the microcavity resonance mode were investigated, considering the right- and left-handed circular polarization transmission coefficients and their phases, together with the Faraday rotation angle and ellipticity of the output light. The effects of the repetition number of the Bragg reflectors, thickness of the microcavity central layer and refractive indices of the graphene adjacent layers were considered. The obtained results revealed that a pure linear polarized output light with no ellipticity and high transmittance enhanced Faraday rotation can be achieved. These results can be utilized in designing a variety of graphene based photonic devices and magneto-optical integrated elements, such as miniaturized isolators or circulators.

  11. Spectral response of the solar atmosphere to an X-class flare event

    NASA Astrophysics Data System (ADS)

    Lacatus, Daniela Adriana; Donea, Alina

    2016-05-01

    The only X-class flare of 2015 observed by IRIS occurred at 16:22 UT on 11 March 2015, in AR 12297. This flare generated significant seismic transients in the photosphere at the eastern location of the flare. IRIS observations of the chromosphere and transition region help us understand the physics of the sunquake. In this work we will analyse this event using data from IRIS, SDO, and RHESSI. The IRIS rasters scanned the area between the main footpoints of the solar flare, and a wealth of chromospheric information has been inferred about the dynamics of the event. The main X-ray emission dominates the eastern flare footpoint, being missed by the IRIS slit. Significant enhancements in the chromospheric and TR lines intensities were identified. The forbidden line of Fe XXI 1354.1 Å is detected after the flare peak revealing the coronal responses to the flare. Plasma downflows of up to 300 km/s were identified in the majority of the observed lines, consistent with magnetic field local reconfiguration. We have also analysed an erupting filament developing at an earlier time, which moved rapidly towards the eastern part of the active region. We discuss the possibility that this filament might have pre-conditioned the chromosphere for the flare process.

  12. Dependence of the Startle Response on Temporal and Spectral Characteristics of Acoustic Modulatory Influences in Rats and Gerbils

    PubMed Central

    Steube, Natalie; Nowotny, Manuela; Pilz, Peter K. D.; Gaese, Bernhard H.

    2016-01-01

    The acoustic startle response (ASR) and its modulation by non-startling prepulses, presented shortly before the startle-eliciting stimulus, is a broadly applied test paradigm to determine changes in neural processing related to auditory or psychiatric disorders. Modulation by a gap in background noise as a prepulse is especially used for tinnitus assessment. However, the timing and frequency-related aspects of prepulses are not fully understood. The present study aims to investigate temporal and spectral characteristics of acoustic stimuli that modulate the ASR in rats and gerbils. For noise-burst prepulses, inhibition was frequency-independent in gerbils in the test range between 4 and 18 kHz. Prepulse inhibition (PPI) by noise-bursts in rats was constant in a comparable range (8–22 kHz), but lower outside this range. Purely temporal aspects of prepulse–startle-interactions were investigated for gap-prepulses focusing mainly on gap duration. While very short gaps had no (rats) or slightly facilitatory (gerbils) influence on the ASR, longer gaps always had a strong inhibitory effect. Inhibition increased with durations up to 75 ms and remained at a high level of inhibition for durations up to 1000 ms for both, rats and gerbils. Determining spectral influences on gap-prepulse inhibition (gap-PPI) revealed that gerbils were unaffected in the limited frequency range tested (4–18 kHz). The more detailed analysis in rats revealed a variety of frequency-dependent effects. Gaps in pure-tone background elicited constant and high inhibition (around 75%) over a broad frequency range (4–32 kHz). For gaps in noise-bands, on the other hand, a clear frequency-dependency was found: inhibition was around 50% at lower frequencies (6–14 kHz) and around 70% at high frequencies (16–20 kHz). This pattern of frequency-dependency in rats was specifically resulting from the inhibitory effect by the gaps, as revealed by detailed analysis of the underlying startle amplitudes. An

  13. Dependence of the Startle Response on Temporal and Spectral Characteristics of Acoustic Modulatory Influences in Rats and Gerbils.

    PubMed

    Steube, Natalie; Nowotny, Manuela; Pilz, Peter K D; Gaese, Bernhard H

    2016-01-01

    The acoustic startle response (ASR) and its modulation by non-startling prepulses, presented shortly before the startle-eliciting stimulus, is a broadly applied test paradigm to determine changes in neural processing related to auditory or psychiatric disorders. Modulation by a gap in background noise as a prepulse is especially used for tinnitus assessment. However, the timing and frequency-related aspects of prepulses are not fully understood. The present study aims to investigate temporal and spectral characteristics of acoustic stimuli that modulate the ASR in rats and gerbils. For noise-burst prepulses, inhibition was frequency-independent in gerbils in the test range between 4 and 18 kHz. Prepulse inhibition (PPI) by noise-bursts in rats was constant in a comparable range (8-22 kHz), but lower outside this range. Purely temporal aspects of prepulse-startle-interactions were investigated for gap-prepulses focusing mainly on gap duration. While very short gaps had no (rats) or slightly facilitatory (gerbils) influence on the ASR, longer gaps always had a strong inhibitory effect. Inhibition increased with durations up to 75 ms and remained at a high level of inhibition for durations up to 1000 ms for both, rats and gerbils. Determining spectral influences on gap-prepulse inhibition (gap-PPI) revealed that gerbils were unaffected in the limited frequency range tested (4-18 kHz). The more detailed analysis in rats revealed a variety of frequency-dependent effects. Gaps in pure-tone background elicited constant and high inhibition (around 75%) over a broad frequency range (4-32 kHz). For gaps in noise-bands, on the other hand, a clear frequency-dependency was found: inhibition was around 50% at lower frequencies (6-14 kHz) and around 70% at high frequencies (16-20 kHz). This pattern of frequency-dependency in rats was specifically resulting from the inhibitory effect by the gaps, as revealed by detailed analysis of the underlying startle amplitudes. An interaction

  14. Spectral Selectivity Applied To Hybrid Concentration Systems

    NASA Astrophysics Data System (ADS)

    Hamdy, M. A.; Luttmann, F.; Osborn, D. E.; Jacobson, M. R.; MacLeod, H. A.

    1985-12-01

    The efficiency of conversion of concentrated solar energy can be improved by separating the solar spectrum into portions matched to specific photoquantum processes and the balance used for photothermal conversion. The basic approaches of spectrally selective beam splitters are presented. A detailed simulation analysis using TRNSYS is developed for a spectrally selective hybrid photovoltaic/photothermal concentrating system. The analysis shows definite benefits to a spectrally selective approach.

  15. Proposal for a new parameterisation of the instrumental spectral response function in DOAS retrievals and application to satellite measurements

    NASA Astrophysics Data System (ADS)

    Beirle, Steffen; Lampel, Johannes; Wagner, Thomas

    2016-04-01

    The instrumental spectral response function (ISRF) is a key quantity in spectroscopy. Within DOAS retrievals, the ISRF is needed for an accurate wavelength calibration and for the convolution of trace gas cross-sections to instrumental resolution. DOAS analysis software like QDOAS or DOASIS allow the fitting of a high resolution solar spectrum to a measured spectrum based on a parameterized ISRF with predefined shape (e.g. Gauss, Lorentz, Voigt). For OMI, a more advanced ISRF ("broadened Gauss") was determined which allows for flat-top and asymmetric ISRF; however, this ISRF model is computationally expensive due to the high number of parameters. Here we propose a "Super Gaussian" as further model function for the ISRF, which is similar to a Gaussian, but with the exponent ξ as additional free parameter: F(x) = A ∗ exp(‑(|x|/w)ξ) The parameter w determines the width of F , while ξ basically determines the shape. Optionally, different values for ξ and w can be allowed for the left vs. right branch of F to construct asymmetric ISRFs. This model function was found to be a good compromise between good fit results (i.e., F represents the actual ISRF much better than a Gaussian) for a wide range of tested ISRF shapes on the one hand, and robustness of the fit and low computation time on the other hand due to the low number of free parameters. A further advantage of this description of the ISRF is that the two partial derivatives, representing changes of shape and width, respectively, allow to mimic potential spectral structures caused by temporal changes of the ISRF (e.g. due to changes of the detector temperature) by adding pseudo-absorbers in the DOAS analysis. We investigate how far this affects different trace gas retrievals from satellite measurements.

  16. NREL Photovoltaic Program FY 1993

    SciTech Connect

    Not Available

    1994-08-01

    This report reviews the in-house and subcontracted research and development (R&D) activities under the National Renewable Energy Laboratory (NREL) Photovoltaic (PV) Program from October 1, 1992, through September 30, 1993 (fiscal year [FY] 1993). The NREL PV Program is part of the U.S. Department of Energy`s (DOE`s) National Photovoltaics Program, as described in the DOE Photovoltaics Program Plan, FY 1991 - FY 1995. The FY 1993 budget authority (BA) for carrying out the NREL PV Program was $40.1 million in operating funds and $0.9 million in capital equipment funds. An additional $4.8 million in capital equipment funds were made available for the new Solar Energy Research Facility (SERF) that will house the in-house PV laboratories beginning in FY 1994. Subcontract activities represent a major part of the NREL PV Program, with more than $23.7 million (nearly 59%) of the FY 1993 operating funds going to 70 subcontractors. In FY 1993, DOE assigned certain other PV subcontracting efforts to the DOE Golden Field Office (DOE/GO), and assigned responsibility for their technical support to the NREL PV Program. An example is the PV:BONUS (Building Opportunities in the U.S. for Photovoltaics) Project. These DOE/GO efforts are also reported in this document.

  17. Photoprotective Response in Plants Impacts Estimation of Biophysical Parameters Using Spectral Reflectance

    NASA Astrophysics Data System (ADS)

    Zygielbaum, A. I.; Arkebauer, T. J.; Walter-Shea, E.

    2014-12-01

    Previously, we reported that reflectance increased across the whole PAR spectrum when plants were subjected to water stress. This effect was shown to exist in maize grown under greenhouse conditions and under field conditions. Greenhouse experiments showed that, in addition to leaf water content, the effect was strongly correlated with incident light intensity. Further, through the use of an integrating sphere, we demonstrated that the change in reflectance was due to a change in absorption rather than in a change scattering or other optical path effect. Time lapse microscopy showed lightening between leaf veins analogous to effects measured by researchers observing cross sections of stressed C4 plants. To further refine our study, additional leaf level and canopy level studies were undertaken. Excised leaf sections were separately exposed to red and white light in the laboratory as the leaf dried. Increasing reflectance and transmittance were observed for the section exposed to white light, while little change was observed under red light. Each of these observations can be explained by chloroplast avoidance movement, a photoprotective response causing chloroplasts to aggregate along cell walls effectively hiding chlorophyll from observation. Chloroplast movement, for example, is driven by blue light; explaining the lack of observed change under red light. Estimation of biophysical parameters, such as chlorophyll content and greenness, are affected by the difference between the "apparent" chlorophyll content and the actual chlorophyll content of leaves and canopies. Up to 30% changes in the VARI remote sensing index have been observed morning to afternoon in field-grown maize. Ten percent changes in chlorophyll estimates have been observed in greenhouse maize. We will report on further research and on the extension of our work to include the impact of chloroplast avoidance on remote sensing of C3 plants, specifically soybean, at leaf and canopy levels.

  18. Some advanced testing techniques for concentrator photovoltaic cells and lenses

    SciTech Connect

    Wiczer, J.J.; Chaffin, R.J.; Hibray, R.E.

    1982-09-01

    The authors describe two separate test techniques for evaluating concentrator photovoltaic components. For convenient characterization of concentrator solar cells, they have developed a method for measuring the entire illuminated I-V curve of a photovoltaic cell with a single flash of intense simulated sunlight. This method reduces the heat input to the cell and the time required to test a cell, thus making possible quick indoor measurements of photovoltaic conversion efficiency at concentrated illumination levels without the use of elaborate cell mounting fixtures or heat sink attachments. The other test method provides a technique to analyze the spatially dependent, spectral distribution of intense sunlight collected and focused by lenses designed for use in photovoltaic concentrator systems. This information is important in the design of multijunction photovoltaic receivers, secondary concentrators, and in optimizing the performance of conventional silicon cell concentrator systems.

  19. ASTM Photovoltaic Performance Standards: Their Use at the National Renewable Energy Lab

    SciTech Connect

    Emery, K.

    2007-07-01

    The performance of photovoltaic devices is typically rated in terms of their peak power with respect to a specific spectrum, total irradiance and temperature. The PV Cell and Module Performance Laboratory at the National Renewable Energy Laboratory in Golden, Colo., has been measuring the performance of cells and modules for the U.S. terrestrial PV community since 1980. NREL typically calibrates 200 cells and modules per month. The laboratory follows the procedures described in ASTM International standards for calibrating its primary reference cells (E 1125), spectral responsivity measurements (E 1021), secondary reference cells (E 948), secondary modules (E 1036), concentrator modules (E 2527), and multi-junction cells and modules (E 2236).

  20. Laser induced infrared spectral shift of the MgB2:Cr superconductor films

    NASA Astrophysics Data System (ADS)

    AlZayed, N. S.; Kityk, I. V.; Soltan, S.; El-Naggar, A. M.; Shahabuddin, M.

    2015-02-01

    During illumination of the MgB2:Cr2O3 films it was established substantial spectral shift of the infrared spectra in the vicinity of 20-50 cm-1. The excitations were performed by nanosecond Er:glass laser operating at 1.54 μm and by microsecond 10.6 μm CO2 laser. The spectral shifts of the IR maxima were in opposite spectral directions for the two types of lasers. This one observed difference correlates well with spectral shift of their critical temperatures. The possible explanation is given by performance of DFT calculations of the charge density redistribution and the time kinetics of the photovoltaic response. To understand the kinetics of the photoinduced processes the time kinetics of photoresponse was done for the particular laser wavelengths.

  1. Functional imaging of hemodynamic stimulus response in the rat retina with ultrahigh-speed spectral / Fourier domain OCT

    NASA Astrophysics Data System (ADS)

    Choi, WooJhon; Baumann, Bernhard; Clermont, Allen C.; Feener, Edward P.; Boas, David A.; Fujimoto, James G.

    2013-03-01

    Measuring retinal hemodynamics in response to flicker stimulus is important for investigating pathophysiology in small animal models of diabetic retinopathy, because a reduction in the hyperemic response is thought to be one of the earliest changes in diabetic retinopathy. In this study, we investigated functional imaging of retinal hemodynamics in response to flicker stimulus in the rat retina using an ultrahigh speed spectral / Fourier domain OCT system at 840nm with an axial scan rate of 244kHz. At 244kHz the nominal axial velocity range that could be measured without phase wrapping was +/-37.7mm/s. Pulsatile total retinal arterial blood flow as a function of time was measured using an en face Doppler approach where a 200μm × 200μm area centered at the central retinal artery was repeatedly raster scanned at a volume acquisition rate of 55Hz. Three-dimensional capillary imaging was performed using speckle decorrelation which has minimal angle dependency compared to other angiography techniques based on OCT phase information. During OCT imaging, a flicker stimulus could be applied to the retina synchronously by inserting a dichroic mirror in the imaging interface. An acute transient increase in total retinal blood flow could be detected. At the capillary level, an increase in the degree of speckle decorrelation in capillary OCT angiography images could also be observed, which indicates an increase in the velocity of blood at the capillary level. This method promises to be useful for the investigation of small animal models of ocular diseases.

  2. Enhancing mid-infrared spectral response at the LaAlO{sub 3}/SrTiO{sub 3} interface by magnetic field

    SciTech Connect

    Feng, Xin; Zhao, Kun Xi, Jian-Feng; Xiang, Wen-Feng; Lu, Zhi-Qing; Sun, Qi; Wu, Shi-Xiang; Ni, Hao

    2014-12-15

    Many unexpected properties have been found in the LaAlO{sub 3}/SrTiO{sub 3} heterostructure, but the interaction of the many ground states at its interface remains unclear. Here, we demonstrate an optical property of this n-type heterostructure where the mid-infrared spectral responsivity at the interface is enhanced by an external magnetic field. The field intensity ranged from 0.8 to 6 kOe at a low temperature (19 K) as measured with our spectral response measurement system. Two spectral peaks related to the spin-orbit coupling effect were also observed at wavelengths 2400 nm and 3700 nm. The intriguing phenomena relate to changes in the crystallographic structure and subband structure at the interface.

  3. Broad-Spectrum Solution-Processed Photovoltaics

    NASA Astrophysics Data System (ADS)

    Ip, Alexander Halley

    High global demand for energy coupled with dwindling fossil fuel supply has driven the development of sustainable energy sources such as solar photovoltaics. Emerging solar technologies aim for low-cost, solution-processable materials which would allow wide deployment. Colloidal quantum dots (CQDs) are such a materials system which exhibits the ability to absorb across the entire solar spectrum, including in the infrared where many technologies cannot harvest photons. However, due to their nanocrystalline nature, CQDs are susceptible to surface-associated electronic traps which greatly inhibit performance. In this thesis, surface engineering of CQDs is presented through a combined ligand approach which improves the passivation of surface trap states. A metal halide treatment is found to passivate quantum dot surfaces in solution, while bifunctional organic ligands produce a dense film in solid state. This approach reduced midgap trap states fivefold compared with conventional passivation strategies and led to solar cells with a record certified 7.0% power conversion efficiency. The effect of this process on the electronic structure is studied through photoelectron spectroscopy. It is found that while the halide provides deep trap passivation, the nature of the metal cation on the CQD surface affects the density of band tail states. This effect is explored further through a wide survey of materials, and it is found that the coordination ability of the metal cation is responsible for the suppression of shallow traps. With this understanding of CQD surface passivation, broad spectral usage is then explored through a study of visible-absorbing organolead halide perovskite materials as well as narrow-bandgap CQD solar cells. Control over growth conditions and modification of electrode interfaces resulted in efficient perovskite devices with effective usages of visible photons. For infrared-absorbing CQDs, it is found that, in addition to providing surface trap

  4. Multijunction upper subcell cascade photovoltaics for space applications

    SciTech Connect

    Educato, J.L.; Wagner, M.; Leburton, J.P.

    1988-01-15

    A new class of cascade high-efficiency photovoltaics designed for space-based applications is proposed. The design improves upper subcell performance and avoids electrical and optical losses associated with an intercell ohmic contact. Multijunction upper subcells reduce bulk recombination of photogenerated minority carriers by decreasing the average collection distance, yielding improved spectral response and radiation tolerance. A three-terminal design is employed which circumvents the need for a monolithic intercell contact and, thus, the losses associated with such a contact. Problems related to array interconnection of three-terminal devices may be solved by creating a two-terminal cell from complementary pairs (n-p-n and p-n-p) of three-terminal cells. Simulations of lattice-matched AlGaAs-GaAs and lattice-mismatched AlGaAs-InGaAs cascade cells show that one-sun AM0 efficiencies in excess of 26% and 28%, respectively, are possible.

  5. Multijunction upper subcell cascade photovoltaics for space applications

    NASA Technical Reports Server (NTRS)

    Educato, J. L.; Wagner, M.; Leburton, J. P.

    1988-01-01

    A new class of cascade high-efficiency photovoltaics designed for space-based applications is proposed. The design improves upper subcell performance and avoids electrical and optical losses associated with an intercell ohmic contact. Multijunction upper subcells reduce bulk recombination of photogenerated minority carriers by decreasing the average collection distance, yielding improved spectral response and radiation tolerance. A three-terminal design is employed which circumvents the need for a monolithic intercell contact and, thus, the losses associated with such a contact. Problems related to array interconnection of three-terminal devices may be solved by creating a two-terminal cell from complementary pairs (n-p-n and p-n-p) of three-terminal cells. Simulations of lattice-matched AlGaAs-GaAs and lattice-mismatched AlGaAs-InGaAs cascade cells show that one-sun AM0 efficiencies in excess of 26 and 28 percent, respectively, are possible.

  6. Comparison of the spectral response of a thinned, backside illuminated CCD with a CsI coated MCP system and Kodak 101 film

    SciTech Connect

    Li Yuelin; Crespo Lopex-Urrutia, J. R.; Tsakiris, G. D.; Sigel, R.; Volk, R.; Pina, L.

    1995-05-01

    A thinned backside illuminated CCD chip was calibrated by self consistently determining the thickness of its dead layer. Its spectral response and sensitivity were then compared with those of the calibrated Kodak 101 photographic plates and of a CsI coated microchannel plate detection system.

  7. Residential photovoltaic system designs

    SciTech Connect

    Russell, M. C.

    1981-01-01

    A project to develop Residential Photovoltaic Systems has begun at Massachusetts Institute of Technology Lincoln Laboratory with the construction and testing of five Prototype Systems. All of these systems utilize a roof-mounted photovoltaic array and allow excess solar-generated electric energy to be fed back to the local utility grid, eliminating the need for on-site storage. Residential photovoltaic system design issues are discussed and specific features of the five Prototype Systems now under test are presented.

  8. Photovoltaics - The endless spring

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr.

    1984-01-01

    An overview of the developments in the photovoltaic field over the past decade or two is presened. Accomplishments in the terrestrial field are reviewed along with projections and challenges toward meeting cost goals. The contrasts and commonality of space and terrestrial photovoltaics are presented. Finally, a strategic philosophy of photovoltaics research highlighting critical factors, appropriate directions, emerging opportunities, and challenges of the future is given.

  9. Photovoltaics: The endless spring

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr.

    1984-01-01

    An overview of the developments in the photovoltaic field over the past decade or two is presented. Accomplishments in the terrestrial field are reviewed along with projections and challenges toward meeting cost goals. The contrasts and commonality of space and terrestrial photovoltaics are presented. Finally, a strategic philosophy of photovoltaics research highlighting critical factors, appropriate directions, emerging opportunities, and challenges of the future is given.

  10. Photovoltaic technology assessment

    SciTech Connect

    Backus, C.E.

    1981-01-01

    After a brief review of the history of photovoltaic devices and a discussion of the cost goals set for photovoltaic modules, the status of photovoltaic technology is assessed. Included are discussions of: current applications, present industrial production, low-cost silicon production techniques, energy payback periods for solar cells, advanced materials research and development, concentrator systems, balance-of-system components. Also discussed are some nontechnical aspects, including foreign markets, US government program approach, and industry attitudes and approaches. (LEW)

  11. Multiple fiber Bragg grating sensor network with a rapid response and wide spectral dynamic range using code division multiple access

    NASA Astrophysics Data System (ADS)

    Kim, Youngbok; Jeon, Sie-Wook; Park, Chang-Soo

    2011-05-01

    Fiber Bragg grating (FBG) sensor networks have been intensively researched in optical sensor area and it developed in wavelength division multiplexing (WDM) and time division multiplexing (TDM) technologies which was adopted for its interrogating many optical sensors. In particular, WDM technology can be easily employed to interrogate FBG sensor however, the number of FBG sensors is limited. On the other hand, the TDM technique can extremely expand the number of sensor because the FBG sensors have same center wavelength. However, it suffers from a reduced sensor output power due to low reflectivity of FBG sensor. In this paper, we proposed and demonstrated the FBG sensor network based on code division multiple access (CDMA) with a rapid response and wide spectral dynamic range. The reflected semiconductor optical amplifier (RSOA) as a light source was directly modulated by the generated pseudorandom binary sequence (PRBS) code and the modulated signal is amplified and goes through FBG sensors via circulator. When the modulated optical signal experienced FBG sensor array, the optical signal which was consistent with center wavelength of FBGs is reflected and added from each sensors. The added signal goes into dispersion compensating fiber (DCF) as a dispersion medium. After through the DCF, the optical signal is converted into electrical signal by using photodetector (PD). For separate individual reflected sensor signal, the sliding correlation method was used. The proposed method improves the code interference and it also has advantages such as a large number of sensors, continuously measuring individual sensors, and decreasing the complexity of the sensor network.

  12. Estimation of uncertainties in the spectral response function of the water vapor channel of a meteorological imager

    NASA Astrophysics Data System (ADS)

    Ahn, Myoung-Hwan; Lee, Su Jeong; Kim, Dohyeong

    2015-06-01

    The five channel meteorological imager (MI) on-board the geostationary Communication, Ocean, and Meteorological Satellite (COMS) of Korea has been operationally used since April 2011. For a better utilization of the MI data, a rigorous characterization of the four infrared channel data has been conducted using the GSICS (Global Space-based Inter-Calibration System) approach with the IASI (Infrared Atmospheric Sounding Interferometer) on-board the European Metop satellite as the reference instrument. Although all four channels show the uncertainty characteristics that are in line with the results from both the ground tests and the in-orbit-test, there shows an unexpected systematic bias in the water vapor channel of MI, showing a cold bias at the warm target temperature and a warm bias with the cold target temperature. It has been shown that this kind of systematic bias could be introduced by the uncertainties in the spectral response function (SRF) of the specific channel which is similar to the heritage instruments on-board GOES series satellite. An extensive radiative transfer simulation using a radiative transfer model has confirmed that the SRF uncertainty could indeed introduce such a systematic bias. By using the collocated data set consisting of the MI data and the hyperspectral IASI data, the first order correction value for the SRF uncertainty is estimated to be about 2.79 cm-1 shift of the central position of the current SRF.

  13. The influence of cochlear spectral processing on the timing and amplitude of the speech-evoked auditory brain stem response

    PubMed Central

    Nuttall, Helen E.; Moore, David R.; Barry, Johanna G.; Krumbholz, Katrin

    2015-01-01

    The speech-evoked auditory brain stem response (speech ABR) is widely considered to provide an index of the quality of neural temporal encoding in the central auditory pathway. The aim of the present study was to evaluate the extent to which the speech ABR is shaped by spectral processing in the cochlea. High-pass noise masking was used to record speech ABRs from delimited octave-wide frequency bands between 0.5 and 8 kHz in normal-hearing young adults. The latency of the frequency-delimited responses decreased from the lowest to the highest frequency band by up to 3.6 ms. The observed frequency-latency function was compatible with model predictions based on wave V of the click ABR. The frequency-delimited speech ABR amplitude was largest in the 2- to 4-kHz frequency band and decreased toward both higher and lower frequency bands despite the predominance of low-frequency energy in the speech stimulus. We argue that the frequency dependence of speech ABR latency and amplitude results from the decrease in cochlear filter width with decreasing frequency. The results suggest that the amplitude and latency of the speech ABR may reflect interindividual differences in cochlear, as well as central, processing. The high-pass noise-masking technique provides a useful tool for differentiating between peripheral and central effects on the speech ABR. It can be used for further elucidating the neural basis of the perceptual speech deficits that have been associated with individual differences in speech ABR characteristics. PMID:25787954

  14. On the plasmonic photovoltaic.

    PubMed

    Mubeen, Syed; Lee, Joun; Lee, Woo-Ram; Singh, Nirala; Stucky, Galen D; Moskovits, Martin

    2014-06-24

    The conversion of sunlight into electricity by photovoltaics is currently a mature science and the foundation of a lucrative industry. In conventional excitonic solar cells, electron-hole pairs are generated by light absorption in a semiconductor and separated by the "built in" potential resulting from charge transfer accompanying Fermi-level equalization either at a p-n or a Schottky junction, followed by carrier collection at appropriate electrodes. Here we report a stable, wholly plasmonic photovoltaic device in which photon absorption and carrier generation take place exclusively in the plasmonic metal. The field established at a metal-semiconductor Schottky junction separates charges. The negative carriers are high-energy (hot) electrons produced immediately following the plasmon's dephasing. Some of the carriers are energetic enough to clear the Schottky barrier or quantum mechanically tunnel through it, thereby producing the output photocurrent. Short circuit photocurrent densities in the range 70-120 μA cm(-2) were obtained for simulated one-sun AM1.5 illumination with devices based on arrays of parallel gold nanorods, conformally coated with 10 nm TiO2 films and fashioned with a Ti metal collector. For the device with short circuit currents of 120 μA cm(-2), the internal quantum efficiency is ∼2.75%, and its wavelength response tracks the absorption spectrum of the transverse plasmon of the gold nanorods indicating that the absorbed photon-to-electron conversion process resulted exclusively in the Au, with the TiO2 playing a negligible role in charge carrier production. Devices fabricated with 50 nm TiO2 layers had open-circuit voltages as high as 210 mV, short circuit current densities of 26 μA cm(-2), and a fill factor of 0.3. For these devices, the TiO2 contributed a very small but measurable fraction of the charge carriers. PMID:24861280

  15. Photovoltaic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Loudin, James; Mathieson, Keith; Kamins, Ted; Wang, Lele; Galambos, Ludwig; Huie, Philip; Sher, Alexander; Harris, James; Palanker, Daniel

    2011-03-01

    Electronic retinal prostheses seek to restore sight to patients suffering from retinal degenerative disorders. Implanted electrode arrays apply patterned electrical stimulation to surviving retinal neurons, producing visual sensations. All current designs employ inductively coupled coils to transmit power and/or data to the implant. We present here the design and initial testing of a photovoltaic retinal prosthesis fabricated with a pixel density of up to 177 pixels/mm2. Photodiodes within each pixel of the subretinal array directly convert light to stimulation current, avoiding the use of bulky coil implants, decoding electronics, and wiring, and thereby reducing surgical complexity. A goggles-mounted camera captures the visual scene and transmits the data stream to a pocket processor. The resulting images are projected into the eyes by video goggles using pulsed, near infrared (~900 nm) light. Prostheses with three pixel densities (15, 55, and 177 pix/mm2) are being fabricated, and tests indicate a charge injection limit of 1.62 mC/cm2 at 25Hz. In vitro tests of the photovoltaic retinal stimulation using a 512-element microelectrode array have recorded stimulated spikes from the ganglion cells, with latencies in the 1-100ms range, and with peak irradiance stimulation thresholds varying from 0.1 to 1 mW/mm2. With 1ms pulses at 25Hz the average irradiance is more than 100 times below the IR retinal safety limit. Elicited retinal response disappeared upon the addition of synaptic blockers, indicating that the inner retina is stimulated rather than the ganglion cells directly, and raising hopes that the prosthesis will preserve some of the retina's natural signal processing.

  16. Photovoltaics support distribution feeder

    SciTech Connect

    Barker, P.P.; Bailey, B.; Peterson, A.J. Jr.

    1997-03-01

    The concept of supporting the transmission and distribution (T&D) system with a photovoltaic (PV) distributed energy source has gained increasing attention as the cost of PV energy has declined. Locating a PV system at a strategic point on the distribution feeder can enhance the overall T&D system performance and provide a source of renewable power generation. In such applications, the PV system peak output ranges from a few percent up to about 20 percent of the peak feeder load. A good example of one such project on a line supplied by the Pacific Gas & Electric Co.`s Kerman Substation near Fresno, California. Given the success of this and other projects, Niagara Mohawk Power Corp. (NMPC) will be testing a 100 kW ac output system interconnected with a 13.2 kV distribution feeder to demonstrate PV T&D support concepts in its service territory. The demonstration system construction and operation is to be funded by NMPC, Utility Photovoltaics Group (UPVG) and New York State Energy Research and Development Authority (NYSERDA). AWS Scientific will manage the site construction and be responsible for maintaining, operating and monitoring the performance of the system. As a prerequisite to construction of the system, the NMPC research and development department funded AWS Scientific Inc. (Albany, N.Y.) and Power Technologies Inc. (Schenectady, N.Y.) to investigate the use of PV energy for T&D support applications on its system. The study involved reviewing a large number of distribution circuits throughout NMPC`s service territory to find candidate locations for the 100 kW demonstration project. A key focus of the study was to find a feeder whereby the injection of PV energy provided maximum dispersed generation benefits.

  17. A calibration method for the measurement of IR detector spectral responses using a FTIR spectrometer equipped with a DTGS reference cell

    NASA Astrophysics Data System (ADS)

    Gravrand, Olivier; Wlassow, J.; Bonnefond, L.

    2014-07-01

    Various high performance IR detectors are today available on the market from QWIPs to narrow gap semiconductor photodiodes, which exhibit various spectral features. In the astrophysics community, the knowledge of the detector spectral shape is of first importance. This quantity (spectral QE or response) is usually measured by means of a monochromator followed by an integrating sphere and compared to a calibrated reference detector. This approach is usually very efficient in the visible range, where all optical elements are very well known, particularly the reference detector. This setup is also widely used in the near IR (up to 3μm) but as the wavelength increases, it becomes less efficient. For instance, the internal emittance of integrating spheres in the IR, and the bad knowledge of reference detectors for longer wavelengths tend to degrade the measurement reliability. Another approach may therefore be considered, using a Fourier transform IR spectrometer (FTIR). In this case, as opposed to the monochromator, the tested detector is not in low flux condition, the incident light containing a mix of different wavelengths. Therefore, the reference detector has to be to be sensitive (and known) in the whole spectral band of interest, because it will sense all those wavelengths at the same time. A popular detector used in this case is a Deuterated Triglycine Sulfate thermal detector (DTGS). Being a pyro detetector, the spectral response of such a detector is very flat, mainly limited by its window. However, the response of such a detector is very slow, highly depending on the temporal frequency of the input signal. Moreover, being a differential detector, it doesn't work in DC. In commercial FTIR spectrometers, the source luminance is usually continuously modulated by the moving interferometer, and the result is that the interferogram mixes optical spectral information (optical path difference) and temporal variations (temporal frequency) so that the temporal

  18. Effects of Spectral Characteristics of Ganzfeld Stimuli on the Photopic Negative Response (PhNR) of the ERG

    PubMed Central

    Rangaswamy, Nalini V.; Shirato, Suguru; Kaneko, Muneyoshi; Digby, Beth I.; Robson, John G.; Frishman, Laura J.

    2007-01-01

    Purpose To determine flash and background colors that best isolate the photopic negative response (PhNR) and maximize its amplitude in the primate ERG. Methods Photopic full-field flash ERGs were recorded from anesthetized macaque monkeys before and after pharmacologic blockade of Na+-dependent spiking activity with tetrodotoxin (TTX, 1 to 2 μM, n = 3), blockade of ionotropic glutamatergic transmission with cis-2,3 piperidine dicarboxylic acid (PDA, 3.3–3.8 mM, n = 3) or laser-induced monocular experimental glaucoma (n = 6), and from six normal human subjects. Photopically matched colored flashes of increasing stimulus strengths were presented on scotopically matched blue, white, or yellow backgrounds of 100 scot cd/m2 using an LED-based stimulator. Results PhNRs that could be eliminated by TTX or severe experimental glaucoma were present in responses to brief (<5 ms) and long-duration (200 ms) stimuli of all color combinations. In normal monkey and human eyes for brief low-energy flashes, PhNR amplitudes were highest for red flashes on blue backgrounds and blue flashes on yellow backgrounds. For high-energy flashes, amplitudes were more similar for all color combinations. For long-duration stimuli, the PhNRon at light onset in monkeys was larger for red and blue stimuli, regardless of background color, than for spectrally broader flashes, except for stimuli >17.7 cd/m2 when PhNRons were all of similar amplitude. For red flashes, eliminating the PhNRon pharmacologically or by glaucoma removed the slowly recovering negative wave that normally followed the transient b-wave and elevated the whole ON response close to the level of the b-wave peak. However, for white, blue, and green flashes, a lower-amplitude plateau that could be removed by PDA remained. Conclusions For weak to moderate flash strengths, the best stimulus for maximizing PhNR amplitude is one that primarily stimulates one cone type, on a background with minimal adaptive effect on cones. For stronger

  19. Influence of the temperature dependent spectral power distribution of light-emitting Diodes on the illuminance responsivity of a photometer

    NASA Astrophysics Data System (ADS)

    Ying, Shang-Ping; Chou, P. T.; Fu, Han-Kuei

    2013-10-01

    Accurate optical measurements of LEDs are crucial because of the increasing popularity of LEDs. However, a photometer with a V(λ) filter spectrum curve may yield large errors when it is used for photometric measurements of colored LEDs. The junction-dependent light output and spectral distribution of LEDs also introduce measurement errors of the measured photometric characteristics. For the accurate measurements of LEDs, the c(St,Ss) factors were used to estimate the possible deviation in the photometric measurement of colored LEDs with various junction temperatures using commercial and industrial grade photometer heads. The spectral measurements of LEDs with specified junction temperature were conducted using a miniature fiber-optic spectrometer, and the relative spectral power distributions of LEDs were used to calculate the spectral mismatch correction c(St,Ss) factors of the photometer heads. Therefore, the c(St,Ss) factors of colored LEDs were calculated according to the temperature dependent spectral power distributions with various junction temperatures, and these factors were used to estimate the possible deviation in the photometric measurement of colored LEDs. The estimation of the possible deviation in the photometric measurement shows that photometers with excellent relative spectral responsitivities must be used for accurate measurement; otherwise, careful calibration must be conducted when using a photometer with inferior relative spectral responsitivity of the photopic filter.

  20. Calibration of spectral responsivity of IR detectors in the range from 0.6 μm to 24 μm

    NASA Astrophysics Data System (ADS)

    Podobedov, Vyacheslav B.; Eppeldauer, George P.; Hanssen, Leonard M.; Larason, Thomas C.

    2016-05-01

    We report the upgraded performance of the National Institute of Standards and Technology (NIST) facility for spectral responsivity calibrations of infrared (IR) detectors in both radiant power and irradiance measurement modes. The extension of the wavelength range of the previous scale, below 0.8 μm and above 19 μm in radiant power mode as well as above 5.3 μm in irradiance mode, became available as a result of multiple improvements. The calibration facility was optimized for low-level radiant flux. A significantly reduced noise-equivalent-power and a relatively constant spectral response were achieved recently on newly developed pyroelectric detectors. Also, an efficient optical geometry was developed for calibration of the spectral irradiance responsivity without using an integrating sphere. Simultaneously, the upgrade and maintenance of the NIST transfer standards, with an extended spectral range, were supported by spectral reflectance measurements of a transfer standard pyroelectric detector using a custom integrating sphere and a Fourier transform spectrometer. The sphere reflectance measurements performed in a relative mode were compared to a bare gold-coated mirror reference, separately calibrated at the Fourier transform Infrared Spectrophotometry facility to 18 μm. Currently, the reflectance data for the pyroelectric standard, available in the range up to 30 μm, are supporting the absolute power responsivity scale by the propagation of the reflectance curve to the absolute tie-spectrum in the overlapping range. Typical examples of working standard pyroelectric-, Si-, MCT-, InSb- and InGaAs- detectors are presented and their optimal use for scale dissemination is analyzed.

  1. Solar Photovoltaic Energy.

    ERIC Educational Resources Information Center

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  2. Photovoltaics industry profile

    SciTech Connect

    1980-10-01

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  3. Characterization of Photovoltaic Generators

    ERIC Educational Resources Information Center

    Boitier, V.; Cressault, Y.

    2011-01-01

    This paper discusses photovoltaic panel systems and reviews their electrical properties and use in several industrial fields. We explain how different photovoltaic panels may be characterized by undergraduate students at university using simple methods to retrieve their electrical properties (power, current and voltage) and compare these values…

  4. Solar Photovoltaic Cells.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  5. Microsystems Enabled Photovoltaics

    ScienceCinema

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2014-06-23

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  6. Handbook for photovoltaic cabling

    SciTech Connect

    Klein, D. N.

    1980-08-01

    This volume, originally written as part of the Interim Performance Criteria Document Development Implementation Plan and Procedures for Photovoltaic Energy Systems, is an analysis of the several factors to be considered in selecting cabling for photovoltaic purposes. These factors, correspoonding to chapter titles, are electrical, structural, safety, durability/reliability, and installation. A glossary of terms used within the volume is included for reference.

  7. Microsystems Enabled Photovoltaics

    SciTech Connect

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2012-07-02

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  8. Biomechanics of the Cornea Evaluated by Spectral Analysis of Waveforms from Ocular Response Analyzer and Corvis-ST

    PubMed Central

    Tejwani, Sushma; Shetty, Rohit; Kurien, Mathew; Dinakaran, Shoruba; Ghosh, Arkasubhra; Roy, Abhijit Sinha

    2014-01-01

    Purpose In this study, spectral analysis of the deformation signal from Corvis-ST (CoST) and reflected light intensity from ocular response analyzer (ORA) was performed to evaluate biomechanical concordance with each other. Methods The study was non-interventional, observational, cross-sectional and involved 188 eyes from 94 normal subjects. Three measurements were made on each eye with ORA and CoST each and then averaged for each device. The deformation signal from CoST and reflected light intensity (applanation) signal from ORA was compiled for all the eyes. The ORA signal was inverted about a line joining the two applanation peaks. All the signals were analyzed with Fourier series. The area under the signal curves (AUC), root mean square (RMS) of all the harmonics, lower order (LO included 1st and 2nd order harmonic), higher order (HO up to 6th harmonic), CoST deformation amplitude (DA), corneal hysteresis (CH) and corneal resistance factor (CRF) were analyzed. Results The device variables and those calculated by Fourier transform were statistically significantly different between CoST and ORA. These variables also differed between the eyes of the same subject. There was also statistically significant influence of eyes (left vs. right) on the differences in a sub-set of RMS variables only. CH and CRF differed statistically significantly between the eyes of subject (p<0.001) but not DA (p = 0.65). Conclusions CoST was statistically significantly different from ORA. CoST may be useful in delineating true biomechanical differences between the eyes of a subject as it reports deformation. PMID:25162229

  9. Federal policies to promote the widespread utilization of photovoltaic systems. Supplement: Review and critique

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1980-01-01

    Review comments of the Congressional report entitled 'Federal Policies to Promote the Widespread Utilization of Photovoltaic Systems' are presented. Responses to the review comments by the Jet Propulsion Laboratory, preparer of the Congressional report, are also presented. The Congressional report discussed various issues related to promoting the deployment of photovoltaic systems through the Federal Photovoltaic Program. Various program strategies and funding levels were examined.

  10. Middle Atmosphere Response to Different Descriptions of the 11-Year Solar Cycle in Spectral Irradiance in a Chemistry-Climate Model

    NASA Technical Reports Server (NTRS)

    Swartz, W. H.; Stolarski, R. S.; Oman, L. D.; Fleming, E. L.; Jackman, C. H.

    2012-01-01

    The 11-year solar cycle in solar spectral irradiance (SSI) inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE) suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL) SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOS CCM). The results are largely consistent with other recent modeling studies. The modeled ozone response is positive throughout the stratosphere and lower mesosphere using the NRL SSI, while the SORCE SSI produces a response that is larger in the lower stratosphere but out of phase with respect to total solar irradiance above 45 km. The modeled responses in total ozone are similar to those derived from satellite and ground-based measurements, 3-6 Dobson Units per 100 units of 10.7-cm radio flux (F10.7) in the tropics. The peak zonal mean tropical temperature response 50 using the SORCE SSI is nearly 2 K per 100 units 3 times larger than the simulation using the NRL SSI. The GEOS CCM and the Goddard Space Flight Center (GSFC) 2-D coupled model are used to examine how the SSI solar cycle affects the atmosphere through direct solar heating and photolysis processes individually. Middle atmosphere ozone is affected almost entirely through photolysis, whereas the solar cycle in temperature is caused both through direct heating and photolysis feedbacks, processes that are mostly linearly separable. Further, the net ozone response results from the balance of ozone production at wavelengths less than 242 nm and destruction at longer wavelengths, coincidentally corresponding to the wavelength regimes of the SOLar STellar Irradiance Comparison Experiment (SOLSTICE) and Spectral Irradiance Monitor (SIM) on SORCE, respectively. A higher wavelength-resolution analysis of the spectral response could allow for a better prediction of the

  11. Spectral solar radiation data base documentation

    SciTech Connect

    Riordan, C.J.; Myers, D.R.; Hulstrom, R.L.

    1990-01-01

    The Solar Energy Research Institute (SERI), Electric Power Research Institute, Florida Solar Energy Center, and Pacific Gas and Electric Company cooperated to produce a spectral solar radiation data base representing a range of atmospheric conditions. These data will help to characterize the neutral variability in the spectral (color) content to outdoor solar radiation so that the sensitivity of spectrally selective solar devices (such as photovoltaics) to these variations can be studied quantitatively. Volume 1 of this report documents the history, approach, content, and format of the data base; Volume 2 contains graphs and field notes for each of the spectral data sets. The data reside on magnetic tape at SERI.

  12. Spectral responses of virtual Frisch-grid CdZnTe detectors and their relation to IR microscopy and x-ray diffraction topography data

    NASA Astrophysics Data System (ADS)

    Bolotnikov, A. E.; Babalola, S.; Camarda, G. S.; Cui, Y.; Egarievwe, S. U.; Fochuk, P. M.; Hawrami, R.; Hossain, A.; James, J. R.; Nakonechnyj, I. J.; Yang, Ge; James, R. B.

    2008-08-01

    Virtual Frisch-grid CdZnTe detectors potentially can provide energy resolution close to the statistical limit. However, in real detectors, the quality of the crystals used to fabricate the devices primarily determines energy resolution. In this paper, we report our findings on the spectral response of devices and their relation to material-characterization data obtained using IR microscopy and X-ray diffraction topography.

  13. Nanoantennas for nanowire photovoltaics

    SciTech Connect

    Alisafaee, Hossein; Fiddy, Michael A.

    2014-09-15

    We consider the use of plasmonic nanoantenna elements, hemispherical and cylindrical, for application in semiconductor nanowire (NW) vertical arrays. Using Mie theory and a finite element method, scattering and absorption efficiencies are obtained for the desired enhancement of interaction with light in the NWs. We find an optimal mixture of nanoantennae for efficient scattering of solar spectrum in the NW array. Spectral radiation patterns of scattered light are computed, and, for representing the total response of the nanoantenna-equipped NWs to the solar AM1.5G spectrum, the weighted average of scattering patterns for unpolarized normal incidence is obtained showing an advantageous overall directivity toward the NWs.

  14. Bio-Inspired Photon Absorption and Energy Transfer for Next Generation Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Magsi, Komal

    some doubt on the Foster Resonant Energy Transfer mechanism since energy relay dye architecture-photosensitizer mixtures do not broaden the response of solar cells. Spectral absorption characterization of chromophore-Chlorophyll solutions in varying solvent polarity confirm the lack of cooperative absorption via a Foster-like mechanism and point the way to new concepts of cooperative absorption in natural systems and the development of a new photovoltaic paradigm.

  15. Accurate spectral response measurements of a complementary absorbing organic tandem cell with fill factor exceeding the subcells

    SciTech Connect

    Cheyns, David; Kim, Minjae; Verreet, Bregt; Rand, Barry P.

    2014-03-03

    Single heterojunction organic photovoltaic cells based on co-evaporated donor–acceptor layers with power conversion efficiencies (η) above 5.5% are demonstrated, using either high (1.8 eV) or low (1.4 eV) optical gap materials. The high energy absorbing cell utilizes a high fullerene-C{sub 70} content, in combination with a high mobility amorphous donor, while the low energy absorbing cell consists of a donor–acceptor molecule paired with C{sub 60} as the acceptor. The integration of the two cells in an optimized tandem configuration leads to η =7.2%, verified by external quantum efficiency measurements of the subcells. Notably, the fill-factor of the tandem stack is higher than either one of the sub-cells.

  16. Phytochrome-like responses in Euglena: A low fluence response that reorganizes the spectral dependence of the high irradiance response in long-day photoperiodic induction of cell division.

    PubMed

    Bolige, Aoen; Goto, Ken

    2007-02-01

    Irradiance spectra change spatiotemporally, and angiosperms adapt accordingly, mainly through phytochromes. This study challenges the long-held belief that the flagellated alga Euglena gracilis lacks phytochromes and is therefore unaffected by spectral changes. We photoautotrophically cultured the alga under continuous light (LL), then transferred it to darkness. After about 26h in darkness, different irradiations for 3h enabled cell division in dark-arrested G2 cells evoking a high-irradiance response (HIR). The spectral characteristics of the irradiation during the LL period (pre-irradiation) defined the spectral sensitivity in the subsequent dark period. LL with light rich in the red spectrum led to a HIR to the red spectrum (R-HIR), whereas light rich in the far-red spectrum (FR) led to a FR-HIR. Finishing the period of pre-irradiation consisting of continuous cool-white fluorescent light (rich in R) by a FR pulse enhanced the characteristics of the FR-HIR 26h later. By contrast, a R pulse given at the end of the pre-irradiation rich in FR potentiated the R-HIR. The effects were completely photoreversible between R and FR with critical fluences of about 2mmolm(-2), satisfying the classic diagnostic feature of phytochromes. The action spectrum of the FR effect at the end of pre-irradiation consisting of continuous cool-white fluorescent light (rich in R) had a main peak at 740nm and a minor peak at 380nm, whereas antagonization of the FR effect had a main peak at 640nm and a minor peak at 480nm. Wavelengths of 610 and 670nm appeared in both spectra. We also demonstrated the photoreversibility of 380/640, 480/740, and (610 and 670)/(640 and 740) nm. We conclude that Euglena displays phytochrome-like responses similar to the 'shade avoidance' and 'end-of-day FR' effects reported in angiosperms. PMID:17029970

  17. Modality-specific spectral dynamics in response to visual and tactile sequential shape information processing tasks: An MEG study using multivariate pattern classification analysis.

    PubMed

    Gohel, Bakul; Lee, Peter; Jeong, Yong

    2016-08-01

    Brain regions that respond to more than one sensory modality are characterized as multisensory regions. Studies on the processing of shape or object information have revealed recruitment of the lateral occipital cortex, posterior parietal cortex, and other regions regardless of input sensory modalities. However, it remains unknown whether such regions show similar (modality-invariant) or different (modality-specific) neural oscillatory dynamics, as recorded using magnetoencephalography (MEG), in response to identical shape information processing tasks delivered to different sensory modalities. Modality-invariant or modality-specific neural oscillatory dynamics indirectly suggest modality-independent or modality-dependent participation of particular brain regions, respectively. Therefore, this study investigated the modality-specificity of neural oscillatory dynamics in the form of spectral power modulation patterns in response to visual and tactile sequential shape-processing tasks that are well-matched in terms of speed and content between the sensory modalities. Task-related changes in spectral power modulation and differences in spectral power modulation between sensory modalities were investigated at source-space (voxel) level, using a multivariate pattern classification (MVPC) approach. Additionally, whole analyses were extended from the voxel level to the independent-component level to take account of signal leakage effects caused by inverse solution. The modality-specific spectral dynamics in multisensory and higher-order brain regions, such as the lateral occipital cortex, posterior parietal cortex, inferior temporal cortex, and other brain regions, showed task-related modulation in response to both sensory modalities. This suggests modality-dependency of such brain regions on the input sensory modality for sequential shape-information processing. PMID:27134037

  18. Photonic Design for Photovoltaics

    SciTech Connect

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  19. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  20. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  1. Photovoltaic systems test facility

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Facility provides broad and flexible capability for evaluating photovoltaic systems and design concepts. As 'breadboard' system, it can be used to check out complete systems, subsystems, and components before installation in actual service.

  2. Characterizing the marsh dieback spectral response at the plant and canopy level with hyperspectral and temporal remote sensing data

    USGS Publications Warehouse

    Ramsey, E.; Rangoonwala, A.

    2008-01-01

    We describe newly developed remote sensing tools to map the localized occurrences and regional distribution of the marsh dieback in coastal Louisiana (Fig. 1). As a final goal of our research and development, we identified what spectral features accompanied the onset of dieback and could be directly linked to the optical signal measured at the satellite. In order to accomplish our research goal, we carried out two interlinked objectives. First, we determined the spectral features within the hyperspectral spectra of the impacted plant that could be linked to the spectral return. This was accomplished by measuring the differences in leaf optical properties of impacted and non impacted marsh plants in such a way that the measured differences could be linked to the dieback onset and progression. The spectral analyses were constrained to selected wavelengths (bands of reflectance data) historically associated with changes in leaf composition and structure caused by changes in the plant biophysical environment. Second, we determined what changes in the canopy reflectance (canopy signal sensed at the satellite) could be linked to dieback onset and progression. Third, we transformed a suite of six Landsat Thematic Mapper images collected before, during, and in the final stages of dieback to maps of dieback occurrences. ??2008 IEEE.

  3. Avoiding spectral leakage in objective detection of auditory steady-state evoked responses in the inferior colliculus of rat using coherence.

    PubMed

    Felix, Leonardo Bonato; Moraes, José Elvano; Miranda de Sá, Antonio Mauricio Ferreira Leite; Yehia, Hani Camille; Moraes, Márcio Flávio Dutra

    2005-06-15

    Local field potentials (LFP) are bioelectric signals recorded from the brain that reflect neural activity in a high temporal resolution. Separating background activity from that evoked by specific somato-sensory input is a matter of great clinical relevance in neurology. The coherence function is a spectral coefficient that can be used as a detector of periodic responses in noisy environments. Auditory steady-state responses to amplitude-modulated tones generate periodic responses in neural networks that may be accessed by means of coherence between the stimulation signal and the LFP recorded from the auditory pathway. Such signal processing methodology was applied in this work to evaluate in vivo, anaesthetized Wistar rats, activation of neural networks due to single carrier sound stimulation frequencies, as well as to evaluate the effect of different modulating tones in the evoked responses. Our results show that an inappropriate choice of sound stimuli modulating frequencies can compromise coherence analysis, e.g. misleading conclusions due to mathematical artefact of signal processing. Two modulating frequency correction protocols were used: nearest integer and nearest prime number. The nearest prime number correction was successful in avoiding spectral leakage in the coherence analysis of steady-state auditory response, as predicted by Monte Carlo simulations. PMID:15910985

  4. Photovoltaic systems and applications

    SciTech Connect

    Not Available

    1982-01-01

    Abstracts are given of presentations given at a project review meeting held at Albuquerque, NM. The proceedings cover the past accomplishments and current activities of the Photovoltaic Systems Research, Balance-of-System Technology Development and System Application Experiments Projects at Sandia National Laboratories. The status of intermediate system application experiments and residential system analysis is emphasized. Some discussion of the future of the Photovoltaic Program in general, and the Sandia projects in particular is also presented.

  5. Characterization of photovoltaic generators

    NASA Astrophysics Data System (ADS)

    Boitier, V.; Cressault, Y.

    2011-05-01

    This paper discusses photovoltaic panel systems and reviews their electrical properties and use in several industrial fields. We explain how different photovoltaic panels may be characterized by undergraduate students at university using simple methods to retrieve their electrical properties (power, current and voltage) and compare these values with those stated by the manufacturer. We also discuss how the efficiency of solar panels depends upon their construction, temperature, net irradiation and geographic location.

  6. Lightweight Solar Photovoltaic Blankets

    NASA Technical Reports Server (NTRS)

    Ceragioli, R.; Himmler, R.; Nath, P.; Vogeli, C.; Guha, S.

    1995-01-01

    Lightweight, flexible sheets containing arrays of stacked solar photovoltaic cells developed to supply electric power aboard spacecraft. Solar batteries satisfying stringent requirements for operation in outer space also adaptable to terrestrial environment. Attractive for use as long-lived, portable photovoltaic power sources. Cells based on amorphous silicon which offers potential for order-of-magnitude increases in power per unit weight, power per unit volume, and endurance in presence of ionizing radiation.

  7. Photovoltaic module and interlocked stack of photovoltaic modules

    DOEpatents

    Wares, Brian S.

    2014-09-02

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

  8. FEMP Renewable Energy Fact Sheet: Photovoltaics

    SciTech Connect

    1999-10-01

    Photovoltaic energy systems, which convert sunlight to electricity, can meet many different needs in Federal facilities. This fact sheet describes how photovoltaic (PV) energy systems can be used to provide electricity for lighting, communications, refrigeration, fans, signs, pumps, drilling equipment, emergency power packs, and cathodic (corrosion) protection, among others. Applications for PV power in Federal facilities include staff housing, parking areas, campgrounds, marinas, visitor centers, roadside communications equipment, ranger stations, underground pipelines, irrigation and disinfecting systems, and disaster response units. PV systems are particularly suitable and cost-effective for facilities that now use diesel power or that are in remote areas far from electric power lines.

  9. Investigation of X-ray spectral response of D-T fusion produced neutron irradiated PIPS detectors for plasma X-ray diagnostics

    NASA Astrophysics Data System (ADS)

    Vigneshwara Raja, P.; Narasimha Murty, N. V. L.; Rao, C. V. S.; Abhangi, Mitul

    2015-10-01

    This paper describes the fusion-produced neutron irradiation induced changes in the X-ray spectral response of commercially available Passivated Implanted Planar Silicon (PIPS) detectors using the accelerator based D-T generator. After 14.1 MeV neutron irradiation up to a fluence of 3.6× 1010 n/cm2, the energy resolution (i.e. FWHM) of the detectors at room temperature is found to degrade by about 3.8 times that of the pre-irradiated value. From the X-ray spectral characteristics, it has been observed that the room temperature spectral response of PIPS detectors is too poor even at low neutron fluences. Irradiation is also carried out with Am-Be neutron source for studying the effect of scattered neutrons from the reactor walls on the detector performance. Comparative studies of the damage caused by 14.1 MeV neutrons and Am-Be source produced neutrons at the same neutron fluence are carried out by analyzing the irradiated detector characteristics. The degradation in the energy resolution of the detectors is attributed to the radiation induced changes in the detector leakage current. No considerable changes in the full depletion voltage and the effective doping concentration up to the neutron fluence of 3.6× 1010 n/cm2, are observed from the measured C-V characteristics. Partial recovery of the neutron irradiated detector characteristics is discussed.

  10. VIIRS S-NPP Nighttime DNB Spectral Response Function (SRF): The At-launch Characteristics and How the SRF Changes with Time Due to Tungsten Oxides Chromaticity

    NASA Astrophysics Data System (ADS)

    Guenther, B.; Lei, N.; Moeller, C.

    2015-12-01

    The VIIRS Day-Night Band (DNB) is designed with 3 gain stages: Low (LGS), Mid (MGS) and High (HGS) to span bright daytime to moonlit night earth scene signal levels. The published at-launch DNB relative spectral response (RSR) is based upon the LGS spectral measurements, since it was well measured in the pre-launch test program and the LGS can be calibrated by the on-board solar diffuser (MGS and HGS saturate on the SD). The LGS RSR however does not fully represent the spectral characteristics of nighttime DNB data from the MGS and HGS. Nighttime data users who apply the detailed DNB spectral characteristics in their analyses should use modulated RSR appropriate to the MGS and HGS observations. The RSR modulation is due to spectral darkening of the 4 mirrors of the S-NPP VIIRS telescope, which were contaminated with tungsten oxides in fabrication. These tungsten oxides are 'in family' with transition lenses on eyeglasses that darken when exposed to sunlight but do not recover when VIIRS goes into darkness because VIIRS in space is in a vacuum (transition lenses require atmospheric oxygen to recover). The on-going mirror darkening has caused a time-dependent shift in DNB RSR towards blue wavelengths. This presentation will provide access to the correct RSR to use for S-NPP DNB nighttime data over the mission time on-orbit. The changes in characteristics will be described in engineering terms to facilitate clear user understanding of how to handle RSR for nighttime observations over the mission lifetime.

  11. Spectral and Spread Spectral Teleportation

    SciTech Connect

    Humble, Travis S

    2010-01-01

    We report how quantum information encoded into the spectral degree of freedom of a single-photon state is teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of a teleported waveform can be controllably and coherently dilated using a spread spectral variant of teleportation. We present analytical fidelities for spectral and spread spectral teleportation when complex-valued Gaussian states are prepared using a proposed experimental approach, and we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.

  12. Final report on the key comparison CCPR-K2.c-2003: Spectral responsivity in the range of 200 nm to 400 nm

    NASA Astrophysics Data System (ADS)

    Werner, Lutz

    2014-01-01

    The CCPR K2.c key comparison of spectral power responsivity of detectors in the ultraviolet spectral range from 200 nm to 400 nm was carried out in the framework of the CIPM Mutual Recognition Arrangement by 14 participating national metrology institutes. The key comparison was piloted by the Physikalisch-Technische Bundesanstalt (PTB). The comparison was carried out through the calibration of sets of transfer detectors. Three types of transfer detectors based on two types of photodiodes have been used to handle probable changes of the spectral responsivity of the detectors in the ultraviolet spectral range. The results of the key comparison in the wavelength range from 200 nm to 240 nm are based on single-element windowless PtSi/n-Si Schottky photodiodes while in the range from 250 nm to 400 nm the results are based on single-element photodiode detectors and three-element reflection trap detectors, both made up of windowless Si pn junction photodiodes. The comparison was organized in a star pattern and conducted in three groups of participants. The report describes the measurements made by the pilot laboratory, summarizes the reports submitted by the participants and describes the data analysis carried out to determine the key comparison reference values and degrees of equivalence. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCPR, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  13. Vs30 and spectral response from collocated shallow, active- and passive-source Vs data at 27 sites in Puerto Rico

    USGS Publications Warehouse

    Odum, Jack K.; Stephenson, William J.; Williams, Robert A.; von Hillebrandt-Andrade, Christa

    2013-01-01

    Shear‐wave velocity (VS) and time‐averaged shear‐wave velocity to 30 m depth (VS30) are the key parameters used in seismic site response modeling and earthquake engineering design. Where VS data are limited, available data are often used to develop and refine map‐based proxy models of VS30 for predicting ground‐motion intensities. In this paper, we present shallow VS data from 27 sites in Puerto Rico. These data were acquired using a multimethod acquisition approach consisting of noninvasive, collocated, active‐source body‐wave (refraction/reflection), active‐source surface wave at nine sites, and passive‐source surface‐wave refraction microtremor (ReMi) techniques. VS‐versus‐depth models are constructed and used to calculate spectral response plots for each site. Factors affecting method reliability are analyzed with respect to site‐specific differences in bedrock VS and spectral response. At many but not all sites, body‐ and surface‐wave methods generally determine similar depths to bedrock, and it is the difference in bedrock VS that influences site amplification. The predicted resonant frequencies for the majority of the sites are observed to be within a relatively narrow bandwidth of 1–3.5 Hz. For a first‐order comparison of peak frequency position, predictive spectral response plots from eight sites are plotted along with seismograph instrument spectra derived from the time series of the 16 May 2010 Puerto Rico earthquake. We show how a multimethod acquisition approach using collocated arrays compliments and corroborates VS results, thus adding confidence that reliable site characterization information has been obtained.

  14. Photovoltaic roof system

    SciTech Connect

    Nath, P.; Laarman, T.; Singh, A.

    1993-08-03

    A modular batten and seam type photovoltaic roofing system is described comprising: (1) a plurality of photovoltaic panels, each panel including: a base member having a generally planar central portion at least partially bounded by two upturned flanges; a photovoltaic device disposed on the central portion, the device including a positive terminal and a negative terminal; a positive terminal region associated with the base member and including a first electrical conductor in electrical communication with the positive terminal of the photovoltaic device; a negative terminal region associated with the base member and including a second electrical conductor in electrical communication with the negative terminal of the photovoltaic device; a first electrical connector affixed to the positive terminal region, in electrical communication with the first electrical conductor; a second electrical conductor affixed to the negative terminal region, in electrical communication with the second electrical conductor; the roofing system further including: (2) a coupling member having a first end reversibly attachable to one of the electrical connectors on a first one of the plurality of panels and a second end reversibly attachable to one of the electrical connectors on a second one of the panels, the coupling member being operable to establish electrical communication between the first and second panels; (3) a plurality of batten members, each configured to cover one upturned flange of each of two of the plurality of panels, when the two panels are adjacently disposed on a roof.

  15. Spectral and geographical variability in the oceanic response to atmospheric pressure fluctuations, as inferred from “dynamic barometer” Green's functions

    NASA Astrophysics Data System (ADS)

    Dey, N.; Dickman, S. R.

    2010-09-01

    A decade ago, a novel theoretical approach was developed (Dickman, 1998) for determining the dynamic response of the oceans to atmospheric pressure variations, a response nicknamed the "dynamic barometer" (DB), and the effects of that response on Earth's rotation. This approach employed a generalized, spherical harmonic ocean tide model to compute oceanic Green's functions, the oceans' fluid dynamic response to unit-amplitude pressure forcing on various spatial and temporal scales, and then construct rotational Green's functions, representing the rotational effects of that response. When combined with the observed atmospheric pressure field, the rotational Green's functions would yield the effects of the DB on Earth's rotation. The Green's functions reflect in some way the geographical and spectral sensitivity of the oceans to atmospheric pressure forcing. We have formulated a measure of that sensitivity using a simple combination of rotational Green's functions. We find that the DB response of the oceans to atmospheric pressure forcing depends significantly on geographic location and on frequency. Compared to the inverted barometer (IB) (the traditional static model), the DB effects differ slightly at long periods but become very different at shorter periods. Among all the responses, the prograde polar motion effects are the most dynamic, with large portions of the North Atlantic and some of the North Pacific no larger than one third of IB, but most of the Southern Hemisphere oceans at least 50% greater than IB.

  16. On the retrieval of water-related canopy biochemistry from airborne hyperspectral data and its comparison to MODIS spectral response

    NASA Astrophysics Data System (ADS)

    Casas Planes; Riaño, D.; Ustin, S.; Dennison, P. E.; Salas, J.

    2013-12-01

    Quantification of states and rates of water content in vegetation is critical in plant ecology. This work aims to assess the performance of a wide range of methodologies for the retrieval of vegetation biochemical and biophysical properties related to water, including: (i) foliar water content (FWC, cm), (ii) canopy water content (CWC, cm), (iii) fuel moisture content (FMC) and several interrelated variables: (iv) leaf mass per area (LMA, g/cm2), (v) foliar biomass (FB, g/m2), and (vi) leaf area index (LAI, m2/m2). Methods are applied to Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data collected over Stanford University's Jasper Ridge Biological Preserve, California, USA, and derived Moderate Resolution Imaging Spectrometer (MODIS)-like data, within a multitemporal frame and stratified by cover type (i.e. grassland, shrubland and forest). Assessed methods are: (i) spectral fitting techniques applied to AVIRIS data, ii) the use of standard and recently designed indices, iii) AVIRIS PROSAIL and MODIS CWC PROSAIL inversion; and iv) the estimation of best band combination indices calibrated with the experimental dataset. This work shows how CWC retrieved from spectral fitting techniques proved relatively inaccurate. RTM simulations were significantly improved with the incorporation of a soil spectrum particularly in the case of grasslands and only for LAI in forests. Spectral indices provided higher accuracy; however, the most accurate index differed by variable and by cover types. Empirical calibration of indices improved the retrievals significantly in the case of FMC, LMA and FB using bands in the longer wavelength SWIR region.

  17. Real-time criteria based on spectral dynamics of medium response for the detection and identification of substance using THz signal

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.

    2014-10-01

    We propose effective criteria based on the analysis of spectral dynamics of medium response for the detection and identification of dangerous substances at using pulsed THz signal containing a few cycles and fixed absolute phase. These criteria are integral criteria in time. We show the applicability of these criteria for distinguishing the drugs and for drugs detection in the mixture with neutral substances and explosives in transmission mode. We also apply these criteria for the detection of PWM C4 explosive with complicated shape of the surface in reflection mode.

  18. Analysis of multi-layered films. [determining dye densities by applying a regression analysis to the spectral response of the composite transparency

    NASA Technical Reports Server (NTRS)

    Scarpace, F. L.; Voss, A. W.

    1973-01-01

    Dye densities of multi-layered films are determined by applying a regression analysis to the spectral response of the composite transparency. The amount of dye in each layer is determined by fitting the sum of the individual dye layer densities to the measured dye densities. From this, dye content constants are calculated. Methods of calculating equivalent exposures are discussed. Equivalent exposures are a constant amount of energy over a limited band-width that will give the same dye content constants as the real incident energy. Methods of using these equivalent exposures for analysis of photographic data are presented.

  19. Solar simulator for concentrator photovoltaic systems.

    PubMed

    Domínguez, César; Antón, Ignacio; Sala, Gabriel

    2008-09-15

    A solar simulator for measuring performance of large area concentrator photovoltaic (CPV) modules is presented. Its illumination system is based on a Xenon flash light and a large area collimator mirror, which simulates natural sun light. Quality requirements imposed by the CPV systems have been characterized: irradiance level and uniformity at the receiver, light collimation and spectral distribution. The simulator allows indoor fast and cost-effective performance characterization and classification of CPV systems at the production line as well as module rating carried out by laboratories. PMID:18795026

  20. Photovoltaic properties of PSi impregnated with eumelanin

    PubMed Central

    2012-01-01

    A bulk heterojunction of porous silicon and eumelanin, where the columnar pores of porous silicon are filled with eumelanin, is proposed as a new organic-inorganic hybrid material for photovoltaic applications. The addition of eumelanin, whose absorption in the near infrared region is significantly higher than porous silicon, should greatly enhance the light absorption capabilities of the empty porous silicon matrix, which are very low in the low energy side of the visible spectral range (from about 600 nm downwards). The experimental results show that indeed the photocarrier collection efficiency at longer wavelengths in eumelanin-impregnated samples is clearly higher with respect to empty porous silicon matrices. PMID:22776626

  1. Photovoltaic Subcontract Program

    SciTech Connect

    Surek, Thomas; Catalano, Anthony

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  2. Nanowires enabling strained photovoltaics

    SciTech Connect

    Greil, J.; Bertagnolli, E.; Lugstein, A.; Birner, S.

    2014-04-21

    Photovoltaic nano-devices have largely been relying on charge separation in conventional p-n junctions. Junction formation via doping, however, imposes major challenges in process control. Here, we report on a concept for photovoltaic energy conversion at the nano scale without the need for intentional doping. Our approach relies on charge carrier separation in inhomogeneously strained germanium nanowires (Ge NWs). This concept utilizes the strain-induced gradient in bandgap along tapered NWs. Experimental data confirms the feasibility of strain-induced charge separation in individual vapor-liquid-solid grown Ge NW devices with an internal quantum efficiency of ∼5%. The charge separation mechanism, though, is not inherently limited to a distinct material. Our work establishes a class of photovoltaic nano-devices with its opto-electronic properties engineered by size, shape, and applied strain.

  3. Photovoltaic concentrator research progress

    SciTech Connect

    Arvizu, D.E.

    1985-01-01

    This paper provides a review of progress in the DOE sponsored, Sandia managed Photovoltaic Concentrator Research Project. Research status, project goals and a discussion of concentrator economics is presented. Recent research accomplishments that will be discussed include 21% efficient baseline silicon cells by Applied Solar Energy Corporation and Sandia, 26% efficient GaAs cells by Varian Associates, and near 25% mechanically stacked multijunction GaAs/Si cells by Hughes Research, Applied Solar, and Sandia. In addition, improvements in breadboard module units (i.e. single lens/cell combination) such as a 19% GaAs unit by Varian and a near 17% silicon unit by ENTECH will be reviewed. This paper concludes that the photovoltaic concentrator option is making excellent progress toward competitive cost-effectiveness and provides a strong photovoltaic alternative.

  4. Designing future photovoltaic systems

    SciTech Connect

    Jones, G.J.

    1984-01-01

    The large scale use of photovoltaic systems to generate our electricity is a dream for the future; but if this dream is to be realized, we must understand these systems today. As a result, there has been extensive research into the design and economic tradeoffs of utility interconnected photovoltaic applications. The understanding gained in this process has shown that photovoltaic system design can be a very simple and straight-forward endeavor. This paper reviews those past studies and shows how we have reached the present state of system design evolution. The concept of the utility interactive PV system with energy value determined by the utility's avoided cost will be explored. This concept simplifies the screening of potential applications for economic viability, and we will present several rules-of-thumb for this purpose.

  5. Analysis of petroleum contaminated soils by spectral modeling and pure response profile recovery of n-hexane.

    PubMed

    Chakraborty, Somsubhra; Weindorf, David C; Li, Bin; Ali, Md Nasim; Majumdar, K; Ray, D P

    2014-07-01

    This pilot study compared penalized spline regression (PSR) and random forest (RF) regression using visible and near-infrared diffuse reflectance spectroscopy (VisNIR DRS) derived spectra of 164 petroleum contaminated soils after two different spectral pretreatments [first derivative (FD) and standard normal variate (SNV) followed by detrending] for rapid quantification of soil petroleum contamination. Additionally, a new analytical approach was proposed for the recovery of the pure spectral and concentration profiles of n-hexane present in the unresolved mixture of petroleum contaminated soils using multivariate curve resolution alternating least squares (MCR-ALS). The PSR model using FD spectra (r(2) = 0.87, RMSE = 0.580 log10 mg kg(-1), and residual prediction deviation = 2.78) outperformed all other models tested. Quantitative results obtained by MCR-ALS for n-hexane in presence of interferences (r(2) = 0.65 and RMSE 0.261 log10 mg kg(-1)) were comparable to those obtained using FD (PSR) model. Furthermore, MCR ALS was able to recover pure spectra of n-hexane. PMID:24686115

  6. Simulations of a spectral gamma-ray logging tool response to a surface source distribution on the borehole wall

    SciTech Connect

    Wilson, R.D.; Conaway, J.G.

    1991-12-01

    We have developed Monte Carlo and discrete ordinates simulation models for the large-detector spectral gamma-ray (SGR) logging tool in use at the Nevada Test Site. Application of the simulation models produced spectra for source layers on the borehole wall, either from potassium-bearing mudcakes or from plate-out of radon daughter products. Simulations show that the shape and magnitude of gamma-ray spectra from sources distributed on the borehole wall depend on radial position with in the air-filled borehole as well as on hole diameter. No such dependence is observed for sources uniformly distributed in the formation. In addition, sources on the borehole wall produce anisotropic angular fluxes at the higher scattered energies and at the source energy. These differences in borehole effects and in angular flux are important to the process of correcting SGR logs for the presence of potassium mudcakes; they also suggest a technique for distinguishing between spectral contributions from formation sources and sources on the borehole wall. These results imply the existence of a standoff effect not present for spectra measured in air-filled boreholes from formation sources. 5 refs., 11 figs.

  7. Photovoltaic array performance model.

    SciTech Connect

    Kratochvil, Jay A.; Boyson, William Earl; King, David L.

    2004-08-01

    This document summarizes the equations and applications associated with the photovoltaic array performance model developed at Sandia National Laboratories over the last twelve years. Electrical, thermal, and optical characteristics for photovoltaic modules are included in the model, and the model is designed to use hourly solar resource and meteorological data. The versatility and accuracy of the model has been validated for flat-plate modules (all technologies) and for concentrator modules, as well as for large arrays of modules. Applications include system design and sizing, 'translation' of field performance measurements to standard reporting conditions, system performance optimization, and real-time comparison of measured versus expected system performance.

  8. Photovoltaic device and method

    SciTech Connect

    Nath, P.; Barnard, T.J.; Crea, D.

    1986-05-20

    A photovoltaic device is described comprising: an electrically conductive substrate layer; a semiconductor body deposited upon the substrate layer; a transparent conductive layer over at least a portion of the semiconductor body for facilitating collection of electrical current produced by the photovoltaic device; and a bus-grid structure, in contact with the conductive layer, the bus-grid structure comprising a current collecting portion comprising grid fingers and a current carrying portion comprising a busbar structure for carrying current collected by the current collecting portion, the entirety of the current carrying portion which overlies the semiconductor body being electrically insulated from the semiconductor body by a layer of solid material.

  9. High efficiency photovoltaic device

    DOEpatents

    Guha, Subhendu; Yang, Chi C.; Xu, Xi Xiang

    1999-11-02

    An N-I-P type photovoltaic device includes a multi-layered body of N-doped semiconductor material which has an amorphous, N doped layer in contact with the amorphous body of intrinsic semiconductor material, and a microcrystalline, N doped layer overlying the amorphous, N doped material. A tandem device comprising stacked N-I-P cells may further include a second amorphous, N doped layer interposed between the microcrystalline, N doped layer and a microcrystalline P doped layer. Photovoltaic devices thus configured manifest improved performance, particularly when configured as tandem devices.

  10. The DOE photovoltaics program

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.

    1983-01-01

    The considered program of the U.S. Department of Energy (DOE) has the objective to provide federal support for research and development work related to photovoltaics. According to definitions of policy in 1981, a strong emphasis is to be placed on long-term, high-risk research and development that industry could not reasonably be expected to perform using their own funds. Attention is given to the program structure, the photovoltaics program management organization, the advanced research and development subprogram, the collector research and development subprogram, flat-plate collectors, concentrator collectors, and the systems research and technology subprogram.

  11. Concentrating photovoltaic solar panel

    SciTech Connect

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  12. Asphaltene based photovoltaic devices

    DOEpatents

    Chianelli, Russell R.; Castillo, Karina; Gupta, Vipin; Qudah, Ali M.; Torres, Brenda; Abujnah, Rajib E.

    2016-03-22

    Photovoltaic devices and methods of making the same, are disclosed herein. The cell comprises a photovoltaic device that comprises a first electrically conductive layer comprising a photo-sensitized electrode; at least one photoelectrochemical layer comprising metal-oxide particles, an electrolyte solution comprising at least one asphaltene fraction, wherein the metal-oxide particles are optionally dispersed in a surfactant; and a second electrically conductive layer comprising a counter-electrode, wherein the second electrically conductive layer comprises one or more conductive elements comprising carbon, graphite, soot, carbon allotropes or any combinations thereof.

  13. Photovoltaic Powering And Control System For Electrochromic Windows

    DOEpatents

    Schulz, Stephen C.; Michalski, Lech A.; Volltrauer, Hermann N.; Van Dine, John E.

    2000-04-25

    A sealed insulated glass unit is provided with an electrochromic device for modulating light passing through the unit. The electrochromic device is controlled from outside the unit by a remote control electrically unconnected to the device. Circuitry within the unit may be magnetically controlled from outside. The electrochromic device is powered by a photovoltaic cells. The photovoltaic cells may be positioned so that at least a part of the light incident on the cell passes through the electrochromic device, providing a form of feedback control. A variable resistance placed in parallel with the electrochromic element is used to control the response of the electrochromic element to changes in output of the photovoltaic cell.

  14. Photovoltaic power systems and the National Electrical Code: Suggested practices

    SciTech Connect

    Wiles, J.

    1996-12-01

    This guide provides information on how the National Electrical Code (NEC) applies to photovoltaic systems. The guide is not intended to supplant or replace the NEC; it paraphrases the NEC where it pertains to photovoltaic systems and should be used with the full text of the NEC. Users of this guide should be thoroughly familiar with the NEC and know the engineering principles and hazards associated with electrical and photovoltaic power systems. The information in this guide is the best available at the time of publication and is believed to be technically accurate; it will be updated frequently. Application of this information and results obtained are the responsibility of the user.

  15. Applying photovoltaics to disaster relief

    SciTech Connect

    Young, W. Jr.

    1996-11-01

    Hurricanes, floods, tornados, earthquakes and other disasters can happen at any time, often with little or no advance warning. They can be as destructive as Hurricane Andrew leaving several hundred-thousand people homeless or as minor as an afternoon thunderstorm knocking down local power lines to your home. Major disasters leave many people without adequate medical services, potable water, electrical service and communications. In response to a natural disaster, photovoltaic (solar electric) modules offer a source of quiet, safe, pollution-free electrical power. Photovoltaic (PV) power systems are capable of providing the electrical needs for vaccine refrigerators, microscopes, medical equipment, lighting, radios, fans, communications, traffic devices and other general electrical needs. Stand alone PV systems do not require refueling and operate for long period of time from the endless energy supplied by the sun, making them beneficial during recovery efforts. This report discusses the need for electrical power during a disaster, and the capability of PV to fill that need. Applications of PV power used during previous disaster relief efforts are also presented.

  16. Modelling the channel-wise count response of a photon-counting spectral CT detector to a broad x-ray spectrum

    NASA Astrophysics Data System (ADS)

    Liu, Xuejin; Chen, Han; Bornefalk, Hans; Danielsson, Mats; Karlsson, Staffan; Persson, Mats; Xu, Cheng; Huber, Ben

    2015-03-01

    Variations among detector channels in CT very sensitively lead to ring artefacts in the reconstructed images. For material decomposition in the projection domain, the variations can result in intolerable biases in the material line integral estimates. A typical way to overcome these effects is to apply calibration methods that try to unify spectral responses from different detector channels to an ideal response from a detector model. However, the calibration procedure can be rather complex and require excessive calibration measurements for a multitude of combinations of x-ray shapes, tissue combinations and thicknesses. In this paper, we propose a channel-wise model for a multibin photon-counting detector for spectral CT. Predictions of this channel-wise model match well with their physical performances, which can thus be used to eliminate ring artefacts in CT images and achieve projection-basis material decomposition. In an experimental validation, image data show significant improvement with respect to ring artefacts compared to images calibrated with flat-fielding data. Projection-based material decomposition gives basis material images showing good separation among individual materials and good quantification of iodine and gadolinium contrast agents. The work indicates that the channel-wise model can be used for quantitative CT with this detector.

  17. Promotion of nano-anatase TiO 2 on the spectral responses and photochemical activities of D1/D2/Cyt b559 complex of spinach

    NASA Astrophysics Data System (ADS)

    Su, Mingyu; Liu, Huiting; Liu, Chao; Qu, Chunxiang; Zheng, Lei; Hong, Fashui

    2009-06-01

    Previous researches approved that photocatalysis activity of nano-TiO 2 could obviously increase photosynthetic effects of spinach, but the mechanism of improving light energy transfer and conversion is still unclear. In the present we investigated effects of nano-anatase TiO 2 on the spectral responses and photochemical activities of D1/D2/Cyt b559 complex of spinach. Several effects of nano-anatase TiO 2 were observed: (1) UV-vis spectrum was blue shifted in both Soret and Q bands, and the absorption intensity was obviously increased; (2) resonance Raman spectrum showed four main peaks, which are ascribed to carotene, and the Raman peak intensity was as 6.98 times as that of the control; (3) the fluorescence emission peak was blue shifted and the intensity was decreased by 23.59%; (4) the DCPIP photoreduction activity showed 129.24% enhancement; (5) the oxygen-evolving rate of PS II was elevated by 51.89%. Taken together, the studies of the experiments showed that nano-anatase TiO 2 had bound to D1/D2/Cyt b559 complex, promoted the spectral responses, leading to the improvement of primary electron separation, electron transfer and light energy conversion of D1/D2/Cyt b559 complex.

  18. Automatic outdoor monitoring system for photovoltaic panels

    NASA Astrophysics Data System (ADS)

    Stefancich, Marco; Simpson, Lin; Chiesa, Matteo

    2016-05-01

    Long-term acquisition of solar panel performance parameters, for panels operated at maximum power point in their real environment, is of critical importance in the photovoltaic research sector. However, few options exist for the characterization of non-standard panels such as concentrated photovoltaic systems, heavily soiled or shaded panels or those operating under non-standard spectral illumination; certainly, it is difficult to find such a measurement system that is flexible and affordable enough to be adopted by the smaller research institutes or universities. We present here an instrument aiming to fill this gap, autonomously tracking and maintaining any solar panel at maximum power point while continuously monitoring its operational parameters and dissipating the produced energy without connection to the power grid. The instrument allows periodic acquisition of current-voltage curves to verify the employed maximum power point tracking approach. At the same time, with hardware schematics and software code being provided, it provides a flexible open development environment for the monitoring of non-standard generators like concentrator photovoltaic systems and to test novel power tracking approaches. The key issues, and the corresponding solutions, encountered in the design are analyzed in detail and the relevant schematics presented.

  19. Automatic outdoor monitoring system for photovoltaic panels.

    PubMed

    Stefancich, Marco; Simpson, Lin; Chiesa, Matteo

    2016-05-01

    Long-term acquisition of solar panel performance parameters, for panels operated at maximum power point in their real environment, is of critical importance in the photovoltaic research sector. However, few options exist for the characterization of non-standard panels such as concentrated photovoltaic systems, heavily soiled or shaded panels or those operating under non-standard spectral illumination; certainly, it is difficult to find such a measurement system that is flexible and affordable enough to be adopted by the smaller research institutes or universities. We present here an instrument aiming to fill this gap, autonomously tracking and maintaining any solar panel at maximum power point while continuously monitoring its operational parameters and dissipating the produced energy without connection to the power grid. The instrument allows periodic acquisition of current-voltage curves to verify the employed maximum power point tracking approach. At the same time, with hardware schematics and software code being provided, it provides a flexible open development environment for the monitoring of non-standard generators like concentrator photovoltaic systems and to test novel power tracking approaches. The key issues, and the corresponding solutions, encountered in the design are analyzed in detail and the relevant schematics presented. PMID:27250467

  20. Dense two-dimensional silver single and double nanoparticle arrays with plasmonic response in wide spectral range.

    PubMed

    Drozdowicz-Tomsia, Krystyna; Baltar, Henrique T M C M; Goldys, Ewa M

    2012-06-19

    We report the properties of plasmons in dense planar arrays of silver single and double nanostructures with various geometries fabricated by electron beam lithography (EBL) as a function of their size and spacing. We demonstrate a strong plasmon coupling mechanism due to near-field dipolar interactions between adjacent nanostructures, which produces a major red shift of the localized surface plasmon resonance (LSPR) in silver nanoparticles and leads to strong maximum electric field enhancements in a broad spectral range. The extinction spectra and maximum electric field enhancements are theoretically modeled by using the finite element method. Our modeling revealed that strong averaged electric field enhancements of up to 60 in visible range and up to 40 in mid-infrared result from hybridization of multipolar resonances in such dense nanostructures; these are important for applications in surface enhanced spectroscopies. PMID:22439753

  1. Preliminary study of the Suomi NPP VIIRS detector-level spectral response function effects for the long-wave infrared bands M15 and M16

    NASA Astrophysics Data System (ADS)

    Padula, Francis; Cao, Changyong

    2014-09-01

    The Suomi NPP Visible Infrared Imaging Radiometer Suite (VIIRS) Sea Surface Temperature (SST) Environmental Data Record (EDR) team observed an anomalous striping pattern in the SST data. To assess possible causes due to the detector-level Spectral Response Functions (SRFs), a study was conducted to compare the radiometric response of the detector-level and operation band averaged SRFs of VIIRS bands M15 & M16 using simulated blackbody radiance data and clear-sky ocean radiances under different atmospheric conditions. It was concluded that the SST product is likely impacted by small differences in detector-level SRFs, and that if users require optimal system performance detector-level processing is recommended. Future work will investigate potential SDR product improvements through detector-level processing in support of the generation of Suomi NPP VIIRS climate quality SDRs.

  2. Near-infrared photoconductive and photovoltaic devices using single-wall carbon nanotubes in conductive polymer films

    NASA Astrophysics Data System (ADS)

    Kazaoui, S.; Minami, N.; Nalini, B.; Kim, Y.; Hara, K.

    2005-10-01

    We have fabricated prototypical Al/single-wall carbon nanotube (SWNT)-polymer/indium tin oxide thin-film devices that exhibit promising photoconductive and photovoltaic responses in a broad spectral range, typically from 300 to 1600 nm. This achievement was made possible by finely dispersed SWNT powders in polymer matrices such as poly-phenylene-vinylene and poly-thiophene. These devices utilize (i) the intrinsic near-infrared light harvesting properties of semiconducting SWNTs, (ii) the electronic transport properties of both semiconducting and metallic SWNTs in combination with those of the polymer matrices, and (iii) probably charge/energy transfer processes between SWNTs and the polymers. By selecting different sources of SWNTs and polymers, we have shown that the optoelectronic properties of these devices are potentially tunable. To support our investigation, several techniques including spectrally resolved photoconductivity, optical absorption, and photoluminescence spectroscopy were utilized.

  3. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode

    SciTech Connect

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun

    2015-11-15

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.

  4. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode.

    PubMed

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin; Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun

    2015-11-01

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%. PMID:26628136

  5. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode

    NASA Astrophysics Data System (ADS)

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin; Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun

    2015-11-01

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.

  6. Flexible, rollable photovoltaic cell module

    SciTech Connect

    Cull, C.R.; Hartman, R.A.; Koch, P.E.

    1986-03-04

    A photovoltaic module is described consisting of: busbar means; individual photovoltaic cell strips, each cell strip having an electrically conductive substrate layer, a semiconductor body deposited on the substrate layer, and a transparent electrically conductive layer deposited on the semiconductor body, the transparent electrically conductive layer being selectively sectioned to define electrically distinct photovoltaic cells carried by the cell strip; grid means deposited on the transparent electrically conductive layer of each of the photovoltaic cell; continuous electrically conductive filament means alternately and repetitively connected, at contact points, to the electrically conductive substrate layer of one photovoltaic cell strip and to the grid means of another photovoltaic cell strip; wherein the filament means is connected medially of the lateral edges of the respective cell strips; and means for connecting the transparent electrically conductive layer of one photovoltaic cell strip to the busbar means.

  7. Summary of theoretical and experimental investigation of grating type, silicon photovoltaic cells. [using p-n junctions on light receiving surface of base crystal

    NASA Technical Reports Server (NTRS)

    Chen, L. Y.; Loferski, J. J.

    1975-01-01

    Theoretical and experimental aspects are summarized for single crystal, silicon photovoltaic devices made by forming a grating pattern of p/n junctions on the light receiving surface of the base crystal. Based on the general semiconductor equations, a mathematical description is presented for the photovoltaic properties of such grating-like structures in a two dimensional form. The resulting second order elliptical equation is solved by computer modeling to give solutions for various, reasonable, initial values of bulk resistivity, excess carrier concentration, and surface recombination velocity. The validity of the computer model is established by comparison with p/n devices produced by alloying an aluminum grating pattern into the surface of n-type silicon wafers. Current voltage characteristics and spectral response curves are presented for cells of this type constructed on wafers of different resistivities and orientations.

  8. Photovoltaics reading list

    SciTech Connect

    Not Available

    1984-01-01

    The articles, conference papers, monographs and technical reports cited here are meant to provide a basic introduction to photovoltaics, its research, economics, and technology development. In addition to specific articles and books, several directories, bibliographies, journals, and magazines are suggested as additional sources of information.

  9. Photovoltaic module reliability workshop

    NASA Astrophysics Data System (ADS)

    Mrig, L.

    The paper and presentations compiled in this volume form the Proceedings of the fourth in a series of Workshops sponsored by Solar Energy Research Institute (SERI/DOE) under the general theme of photovoltaic module reliability during the period 1986 to 1990. The reliability photovoltaic (PV) modules/systems is exceedingly important along with the initial cost and efficiency of modules if the PV technology has to make a major impact in the power generation market, and for it to compete with the conventional electricity producing technologies. The reliability of photovoltaic modules has progressed significantly in the last few years as evidenced by warrantees available on commercial modules of as long as 12 years. However, there is still need for substantial research and testing required to improve module field reliability to levels of 30 years or more. Several small groups of researchers are involved in this research, development, and monitoring activity around the world. In the U.S., PV manufacturers, DOE laboratories, electric utilities and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in this field were brought together under SERI/DOE sponsorship to exchange the technical knowledge and field experience as related to current information in this important field. The papers presented here reflect this effort.

  10. Multiple gap photovoltaic device

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  11. Photovoltaics (Fact Sheet)

    SciTech Connect

    Not Available

    2012-11-01

    The U.S. Department of Energy (DOE) works with industry, academia, national laboratories, and other government agencies to advance solar photovoltaics (PV) domestically. The SunShot Initiative aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  12. Photovoltaics in Japan

    NASA Technical Reports Server (NTRS)

    Shimada, K.

    1985-01-01

    Report surveys status of research and development on photovoltaics in Japan. Report based on literature searches, private communications, and visits by author to Japanese facilities. Included in survey are Sunshine Project, national program to develop energy sources; industrial development at private firms; and work at academic institutions.

  13. BMDO photovoltaics program overview

    NASA Technical Reports Server (NTRS)

    Caveny, Leonard H.; Allen, Douglas M.

    1994-01-01

    This is an overview of the Ballistic Missile Defense Organization (BMDO) Photovoltaic Program. Areas discussed are: (1) BMDO advanced Solar Array program; (2) Brilliant Eyes type satellites; (3) Electric propulsion; (4) Contractor Solar arrays; (5) Iofee Concentrator and Cell development; (6) Entech linear mini-dome concentrator; and (7) Flight test update/plans.

  14. Photovoltaics (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  15. Photovoltaics (Fact Sheet)

    SciTech Connect

    DOE Solar Energy Technologies Program

    2011-10-13

    DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  16. Photovoltaic radiation detector element

    DOEpatents

    Agouridis, Dimitrios C.

    1983-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein the edge of which closely approaches but is spaced from the current collector strips.

  17. Flexible photovoltaic device

    SciTech Connect

    Berman, E.

    1989-03-28

    A photovoltaic device is described comprising a transparent substrate, a transparent conductive layer adjacent to the transparent substrate, a TFS layer adjacent to the transparent conductive layer, and a conductive layer adjacent to the TFS layer, the transparent substrate being a tetrafluoroethyleneperfluoroalkooxy resin in the form of a flexible film.

  18. Thin film photovoltaic cell

    DOEpatents

    Meakin, John D.; Bragagnolo, Julio

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  19. Formed photovoltaic module busbars

    DOEpatents

    Rose, Douglas; Daroczi, Shan; Phu, Thomas

    2015-11-10

    A cell connection piece for a photovoltaic module is disclosed herein. The cell connection piece includes an interconnect bus, a plurality of bus tabs unitarily formed with the interconnect bus, and a terminal bus coupled with the interconnect bus. The plurality of bus tabs extend from the interconnect bus. The terminal bus includes a non-linear portion.

  20. Photovoltaic radiation detector element

    DOEpatents

    Agouridis, D.C.

    1980-12-17

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips.

  1. Photovoltaic system criteria documents. Volume 2: Quality assurance criteria for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Koenig, John C.; Billitti, Joseph W.; Tallon, John M.

    1979-01-01

    Quality assurance criteria are described for manufacturers and installers of solar photovoltaic tests and applications. Quality oriented activities are outlined to be pursued by the contractor/subcontractor to assure the physical and operational quality of equipment produced is included. In the broad sense, guidelines are provided for establishing a QA organization if none exists. Mainly, criteria is provided to be considered in any PV quality assurance plan selected as appropriate by the responsible Field Center. A framework is established for a systematic approach to ensure that photovoltaic tests and applications are constructed in a timely and cost effective manner.

  2. Spectral stratigraphy

    NASA Technical Reports Server (NTRS)

    Lang, Harold R.

    1991-01-01

    A new approach to stratigraphic analysis is described which uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. The new stratigraphic procedure is illustrated by examples in the literature. The published results demonstrate the potential of spectral stratigraphy for mapping strata, determining dip and strike, measuring and correlating stratigraphic sequences, defining lithofacies, mapping biofacies, and interpreting geological structures.

  3. Soil spectral characterization

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.

    1981-01-01

    The spectral characterization of soils is discussed with particular reference to the bidirectional reflectance factor as a quantitative measure of soil spectral properties, the role of soil color, soil parameters affecting soil reflectance, and field characteristics of soil reflectance. Comparisons between laboratory-measured soil spectra and Landsat MSS data have shown good agreement, especially in discriminating relative drainage conditions and organic matter levels in unvegetated soils. The capacity to measure both visible and infrared soil reflectance provides information on other soil characteristics and makes it possible to predict soil response to different management conditions. Field and laboratory soil spectral characterization helps define the extent to which intrinsic spectral information is available from soils as a consequence of their composition and field characteristics.

  4. Heart rate variability in conscious neonatal swine: spectral features and responses to short-term intermittent hypoxia

    PubMed Central

    Sica, Anthony L; Zhao, Ning

    2006-01-01

    Background Spectral analysis of the cardiac time series has been used as a tool for assessing levels of parasympathetic and sympathetic modulation of the sinoatrial node. In the present investigation we evaluated daily changes in heart rate variability spectra in conscious neonatal piglets that were either neurally intact (n = 5) or had undergone right stellate ganglionectomy (n = 5). The partial stellectomized animals and their intact litter mates were exposed to four days of intermittent hypoxia, each day comprising nine episodes of hypoxia alternating with nine episodes of normoxia. A time control group (n = 7) comprised animals from different litters that were not exposed to intermittent hypoxia. We hypothesized that exposure to intermittent hypoxia would increase sympathetic efferent neuronal modulation of heart rate variability spectra in neurally intact animals and in those with right stellate ganglionectomy, and that his effect would be observed in heart rate variability spectra computed from baseline recordings. Results Overall, heart rate variability spectra during baseline conditions were dominated by high frequency activity, a reflection of parasympathetic efferent neuronal innervation and linkage to the ventilatory cycle manifested as respiratory sinus arrhythmia. Exposure to intermittent hypoxia did not alter daily baseline spectral features that would indicate an increase of sympathetic cardiac activity: low frequency (0.05 – 0.15 Hz) activity was unaffected and the ratio of low- to -high frequency activity remained less than unity indicating a predominance of high frequency activity. The resultant spectra were remarkably similar despite differences in cardiac sympathetic efferent neuronal innervation and experimental treatment. When spectra were computed from cardiac time series during representative hypoxic episodes, significant increases in activity across the low frequency region (0.05 – 0.15 Hz) of heart rate variability spectra were noted

  5. Rapid frequency control of sonar sounds by the FM bat, Miniopterus fuliginosus, in response to spectral overlap.

    PubMed

    Hase, Kazuma; Miyamoto, Takara; Kobayasi, Kohta I; Hiryu, Shizuko

    2016-07-01

    In the presence of multiple flying conspecifics, echolocating bats avoid jamming by adjusting the spectral and/or temporal features of their vocalizations. However, little is known about how bats alter their pulse acoustic characteristics to adapt to an acoustically jamming situation during flight. We investigated echolocation behavior in a bat (Miniopterus fuliginosus) during free flight under acoustic jamming conditions created by downward FM jamming sounds mimicking bat echolocation sounds. In an experimental chamber, the flying bat was exposed to FM jamming sounds with different terminal frequencies (TFs) from loudspeakers. Echolocation pulses emitted by the flying bat were recorded using a telemetry microphone (Telemike) mounted on the back of the bat. The bats immediately (within 150ms) shifted the TFs of emitted pulses upward when FM jamming sounds were presented. Moreover, the amount of upward TF shift differed depending on the TF ranges of the jamming sounds presented. When the TF range was lower than or overlapped the bat's mean TF, the bat TF shifted significantly upward (by 1-2kHz, Student's t-test, P<0.05), corresponding to 3-5% of the total bandwidth of their emitted pulses. These findings indicate that bats actively avoid overlap of the narrow frequency band around the TF. PMID:27157002

  6. Spectral imaging based in vivo model system for characterization of tumor microvessel response to vascular targeting agents

    NASA Astrophysics Data System (ADS)

    Wankhede, Mamta

    Functional vasculature is vital for tumor growth, proliferation, and metastasis. Many tumor-specific vascular targeting agents (VTAs) aim to destroy this essential tumor vasculature to induce indirect tumor cell death via oxygen and nutrition deprivation. The tumor angiogenesis-inhibiting anti-angiogenics (AIs) and the established tumor vessel targeting vascular disrupting agents (VDAs) are the two major players in the vascular targeting field. Combination of VTAs with conventional therapies or with each other, have been shown to have additive or supra-additive effects on tumor control and treatment. Pathophysiological changes post-VTA treatment in terms of structural and vessel function changes are important parameters to characterize the treatment efficacy. Despite the abundance of information regarding these parameters acquired using various techniques, there remains a need for a quantitative, real-time, and direct observation of these phenomenon in live animals. Through this research we aspired to develop a spectral imaging based mouse tumor system for real-time in vivo microvessel structure and functional measurements for VTA characterization. A model tumor system for window chamber studies was identified, and then combinatorial effects of VDA and AI were characterized in model tumor system. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  7. Investigations of the polymer alignment, the nonradiative resonant energy transfer, and the photovoltaic response of poly(3-hexylthiophene)/TiO{sub 2} hybrid solar cells

    SciTech Connect

    Park, Young Ran; Lee, You-Jin; Yu, Chang-Jae; Kim, Jae-Hoon

    2010-08-15

    We report the effects of annealing on the performance of hybrid photovoltaic (PV) cells containing poly(3-hexylthiophene) (P3HT) coated onto TiO{sub 2}/Sn doped In{sub 2}O{sub 3} (ITO) and ITO substrates. In the optimized device, which exhibits a higher efficiency, the backbone axes of the P3HT chains were found to lie within the substrate plane, their conjugated planes are slightly tilted, and their side chains are substantially tilted. The carboxylate group is attached via bidentate or bridging coordination to the TiO{sub 2} surface and enables photoinduced charge transfer between TiO{sub 2} and P3HT. The observed large quenching (with excitation at 488 nm) and enhanced emission (with excitation at 325 nm) indicates that efficient Foerster resonance energy transfer occurs between TiO{sub 2} and P3HT. Thus, the main influences on the high efficiency of the hybrid PV cells are the photon-mediated electronic transition and the photoinduced charge transfer.

  8. Pulsed laser illumination of photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1994-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. Both the radio-frequency (RF) and induction FEL provide FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL pulse format.

  9. Pulsed laser illumination of photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.

  10. Spectral stratigraphy

    NASA Astrophysics Data System (ADS)

    Lang, Harold R.

    1991-09-01

    Stratigraphic and structural studies of the Wind River and Bighorn basins, Wyoming, and the Guerrero-Morelos basin, Mexico, have resulted in development of ''spectral stratigraphy.'' This approach to stratigraphic analysis uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. This paper reviews selected published examples that illustrate this new stratigraphic procedure. Visible to thermal infrared laboratory, spectral measurements of sedimentary rocks are the physical basis for spectral stratigraphy. Results show that laboratory, field, and remote spectroscopy can augment conventional laboratory and field methods for petrologic analysis, stratigraphic correlation, interpretation of depositional environments, and construction of facies models. Landsat thematic mapper data are used to map strata and construct stratigraphic columns and structural cross sections at 1:24,000 scale or less. Experimental multispectral thermal infrared aircraft data facilitate lithofacies/biofacies analyses. Visible short-wavelength infrared imaging spectrometer data allow remote determination of the stratigraphic distribution of iron oxides, quartz, calcite, dolomite, gypsum, specific clay species, and other minerals diagnostic of environments of deposition. Development of a desk-top, computer-based, geologic analysis system that provides for automated application of these approaches to coregistered digital image and topographic data portends major expansion in the use of spectral stratigraphy for purely scientific (lithospheric research) or practical (resource exploration) objectives.

  11. LWS FST: Determine and Quantify the Responses of Atmospheric/Ionospheric Composition and Temperature to Solar XUV Spectral Variability

    NASA Astrophysics Data System (ADS)

    Talaat, E. R.; Fuller-Rowell, T. J.; Qian, L.; Richards, P. G.; Ridley, A. J.

    2010-12-01

    We present a summary of the research plans and preliminary results of our 2009 Living With a Star Focus Science Team. Focus Area Description: With the recent availability of comprehensive solar spectral measurements at X-ray and ultraviolet (XUV) wavelengths, together with upper atmospheric chemistry and transport models, quantification of the full range of solar effects on chemically active minor constituents and ion composition in the ionospherethermosphere- mesosphere (I-T-M) system is now possible. Additional solar-driven variation is caused by the energetic particle environment, ranging from auroral fluxes to galactic cosmic rays. These sources have important influences on the chemistry, energetics, and dynamics of the lower thermosphere and ionosphere (e.g., on nitric oxide and ozone) via direct energy deposition and modulation of ion-neutral frictional heating. Observations of neutral composition and temperature for different phases of the solar cycle and for sporadic events are available through NASA missions like the Upper Atmosphere Research Satellite (UARS) and the Thermosphere Ionosphere Mesosphere Energetics and Dynamics mission (TIMED), as well as from other space- and groundbased instruments. Observations of ionospheric electron density are available through a variety of sources. In view of these advances, models of atmospheric/ionospheric composition and energetics that fully exploit the available estimates of external energetic inputs can now be developed to more accurately quantify solar effects in the middle and upper atmosphere. We seek to determine how well our understanding of atmospheric/ionospheric processes, as incorporated in state-of-the-art models, is able to explain observed compositional and temperature effects in the middle and upper atmosphere caused by external energetic inputs, in order to be able to predict these effects under both normal and extreme conditions.

  12. Photovoltaic module and interlocked stack of photovoltaic modules

    DOEpatents

    Wares, Brian S.

    2012-09-04

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame having at least a top member and a bottom member. A plurality of alignment features are included on the top member of each frame, and a plurality of alignment features are included on the bottom member of each frame. Adjacent photovoltaic modules are interlocked by the alignment features on the top member of a lower module fitting together with the alignment features on the bottom member of an upper module. Other embodiments, features and aspects are also disclosed.

  13. Increased photovoltaic power output via diffractive spectrum separation.

    PubMed

    Kim, Ganghun; Dominguez-Caballero, Jose A; Lee, Howard; Friedman, Daniel J; Menon, Rajesh

    2013-03-22

    In this Letter, we report the preliminary demonstration of a new paradigm for photovoltaic power generation that utilizes a broadband diffractive-optical element (BDOE) to efficiently separate sunlight into laterally spaced spectral bands. These bands are then absorbed by single-junction photovoltaic cells, whose band gaps correspond to the incident spectral bands. We designed such BDOEs by utilizing a modified version of the direct-binary-search algorithm. Gray scale lithography was used to fabricate these multilevel optics. They were experimentally characterized with an overall optical efficiency of 70% over a wavelength range of 350-1100 nm, which was in excellent agreement with simulation predictions. Finally, two prototype devices were assembled: one with a pair of copper indium gallium selenide based photovoltaic devices, and another with GaAs and c-Si photovoltaic devices. These devices demonstrated an increase in output peak electrical power of ∼ 42% and ∼ 22%, respectively, under white-light illumination. Because of the optical versatility and manufacturability of the proposed BDOEs, the reported spectrum-splitting approach provides a new approach toward low-cost solar power. PMID:25166805

  14. Effect of sun and sensor geometry, canopy structure and density, and atmospheric condition on the spectral response of vegetation, with particular emphasis on across-track pointing

    NASA Technical Reports Server (NTRS)

    Schnetzler, C. C.

    1981-01-01

    A computer modeling and simulation study carried out to assess the effects of various sun and sensor geometries and atmospheric conditions on the directional reflected radiance of several vegetated targets is described. Spectral responses at two wavelengths, 0.68 micron and 0.80 micron, are simulated at nine sensor zenith angles, five sensor azimuths, and nine solar zenith angles for six vegetation canopies under three atmspheric conditions. The six canopies comprise two different geometries of grass canopies at low, medium, and high leaf density. The results suggest that off-nadir viewing effects are more pronounced in the red than in the IR. However, the use of such transformations as the normalized difference index is found to reduce much of the variability seen in the bands. The magnitude of off-nadir viewing effects is found to be a function of canopy geometry.

  15. Photovoltaic power generation

    NASA Astrophysics Data System (ADS)

    Schwartz, Richard J.

    1993-03-01

    The wide acceptance and utilization of the photovoltaic generation of electrical power depends on our ability to reduce the cost of photovoltaic systems. This, in turn, largely hinges on our ability to decrease the cost of production of solar cells and panels while at the same time increasing their conversion efficiency. A short tutorial on solar cells is followed by a discussion of the types of solar cells that are presently being investigated for cost reduction and efficiency improvement. Many types of cells are under investigation as are a wide range of materials. Impressive efficiency improvements have been achieved for many types of cells that are potentially low cost in large-volume production.

  16. Temperature compensated photovoltaic array

    DOEpatents

    Mosher, Dan Michael

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  17. Temperature compensated photovoltaic array

    DOEpatents

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  18. Inverted organic photovoltaic cells.

    PubMed

    Wang, Kai; Liu, Chang; Meng, Tianyu; Yi, Chao; Gong, Xiong

    2016-05-21

    The advance in lifestyle, modern industrialization and future technological revolution are always at high expense of energy consumption. Unfortunately, there exist serious issues such as limited storage, high cost and toxic contamination in conventional fossil fuel energy sources. Instead, solar energy represents a renewable, economic and green alternative in the future energy market. Among the photovoltaic technologies, organic photovoltaics (OPVs) demonstrate a cheap, flexible, clean and easy-processing way to convert solar energy into electricity. However, OPVs with a conventional device structure are still far away from industrialization mainly because of their short lifetime and the energy-intensive deposition of top metal electrode. To address the stability and cost issue simultaneously, an inverted device structure has been introduced into OPVs, bridging laboratory research with practical application. In this review, recent progress in device structures, working mechanisms, functions and advances of each component layer as well their correlations with the efficiency and stability of inverted OPVs are reviewed and illustrated. PMID:27087582

  19. CdS/PbSe heterojunction for high temperature mid-infrared photovoltaic detector applications

    SciTech Connect

    Weng, Binbin E-mail: shi@ou.edu; Qiu, Jijun; Zhao, Lihua; Chang, Caleb; Shi, Zhisheng E-mail: shi@ou.edu

    2014-03-24

    n-CdS/p-PbSe heterojunction is investigated. A thin CdS film is deposited by chemical bath deposition on top of epitaxial PbSe film by molecular beam epitaxy on Silicon. Current-voltage measurements demonstrate very good junction characteristics with rectifying ratio of ∼178 and ideality factor of 1.79 at 300 K. Detectors made with such structure exhibit mid-infrared spectral photoresponse at room temperature. The peak responsivity R{sub λ} and specific detectivity D{sup *} are 0.055 A/W and 5.482 × 10{sup 8} cm·Hz{sup 1/2}/W at λ = 4.7 μm under zero-bias photovoltaic mode. Temperature-dependent photoresponse measurements show abnormal intensity variation below ∼200 K. Possible reasons for this phenomenon are also discussed.

  20. The lateral photovoltaic effect in CdS-Cu2S heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Islam, M. N.; Haque, M. A.

    1982-06-01

    The lateral photovoltaic effect has been observed in CdS-Cu2S thin-film solar cells. The effect is more pronounced on the CdS side than on the Cu2S side of the cells. On the CdS side, where the contacts were formed by soldering Cu wire by indium and then applying Ag paint, the photovoltage developed were found to increase as the point of illumination was moved towards the contact. The spectral response of photovoltage for coevaporated cells shows a peak at λ=0.5μm (2.45 eV). But for topotaxial cells two peaks, one at λ=0.5μm and the other at λ=0.65μm (1.89eV) were observed. A band model has been proposed for the heat-treated optimized cells.

  1. The lateral photovoltaic effect in CdS-Cu2S heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Islam, M. N.; Haque, M. A.

    1982-06-01

    The lateral photovoltaic effect has been observed in CdS-Cu2S thin-film solar cells. The effect is more pronounced on the CdS side than on the Cu2S side of the cells. On the CdS side, where the contacts were formed by soldering Cu wire by indium and then applying Ag paint, the photovoltage developed were found to increase as the point of illumination was moved towards the contact. The spectral response of photovoltage for coevaporated cells shows a peak at 0.5 micron (2.45 eV). But for topotaxial cells two peaks, one at 0.5 micron and the other at 0.65 micron (1.89 eV) were observed. A band model has been proposed for the heat-treated optimized cells.

  2. Photovoltaic cell array

    NASA Technical Reports Server (NTRS)

    Eliason, J. T. (Inventor)

    1976-01-01

    A photovoltaic cell array consisting of parallel columns of silicon filaments is described. Each fiber is doped to produce an inner region of one polarity type and an outer region of an opposite polarity type to thereby form a continuous radial semi conductor junction. Spaced rows of electrical contacts alternately connect to the inner and outer regions to provide a plurality of electrical outputs which may be combined in parallel or in series.

  3. Increased voltage photovoltaic cell

    NASA Technical Reports Server (NTRS)

    Ross, B.; Bickler, D. B.; Gallagher, B. D. (Inventor)

    1985-01-01

    A photovoltaic cell, such as a solar cell, is provided which has a higher output voltage than prior cells. The improved cell includes a substrate of doped silicon, a first layer of silicon disposed on the substrate and having opposite doping, and a second layer of silicon carbide disposed on the first layer. The silicon carbide preferably has the same type of doping as the first layer.

  4. Photovoltaic panel support assembly

    SciTech Connect

    Barker, J.M.; Underwood, J.C.; Shingleton, J.

    1993-07-20

    A solar energy electrical power source is described comprising in combination at least two flat photovoltaic panels disposed side-by-side in co-planar relation with one another, a pivot shaft extending transversely across the panels, at least two supports spaced apart lengthwise of the pivot shaft, means for connecting the pivot shaft to the at least two supports, attachment means for connecting the at least two panels to the pivot shaft so that the panels can pivot about the longitudinal axis of the shaft, coupling means mechanically coupling all of the panels together so as to form a unified flat array, and selectively operable drive means for mechanically pivoting the unified flat array about the axis; wherein each of the flat photovoltaic panels comprises at least two modules each comprising a plurality of electrically interconnected photovoltaic cells, the at least two modules being aligned along a line extending at a right angle to the pivot shaft, and the coupling means comprises (a) an elongate member extending parallel to and spaced from the pivot shaft and (b) means for attaching the elongate member to the panels; and further wherein each flat photovoltaic panel comprises a unitary frame consisting of a pair of end frame members extending parallel to the pivot shaft, a pair of side frame members extending between and connected to the end frame members, and a pair of spaced apart cross frame members, with one of the two modules being embraced by and secured to the side frame members and a first one of each of the end and cross frame members, and the other of the two modules being embraced by and secured to the side frame members and the second one of each of the end and cross frame members, whereby the gap created by the spaced apart cross frame members allow air to pass between them in order to reduce the sail effect when the solar array is subjected to buffeting winds.

  5. Photovoltaic-thermal collectors

    DOEpatents

    Cox, III, Charles H.

    1984-04-24

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  6. Advances in photovoltaic technology

    NASA Technical Reports Server (NTRS)

    Landis, G. A.; Bailey, S. G.

    1992-01-01

    The advances in solar cell efficiency, radiation tolerance, and cost in the last 10 years are presented. The potential performance of thin-film solar cells in space is examined, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the needs of satellite solar power systems. Attention is given to single-crystal cells, concentrator and cascade cells, and thin-film solar cells.

  7. Iron Chalcogenide Photovoltaic Absorbers

    SciTech Connect

    Yu, Liping; Lany, Stephan; Kykyneshi, Robert; Jieratum, Vorranutch; Ravichandran, Ram; Pelatt, Brian; Altschul, Emmeline; Platt, Heather A. S.; Wager, John F.; Keszler, Douglas A.; Zunger, Alex

    2011-08-10

    An integrated computational and experimental study of FeS₂ pyrite reveals that phase coexistence is an important factor limiting performance as a thin-film solar absorber. This phase coexistence is suppressed with the ternary materials Fe₂SiS₄ and Fe₂GeS₄, which also exhibit higher band gaps than FeS₂. Thus, the ternaries provide a new entry point for development of thin-film absorbers and high-efficiency photovoltaics.

  8. Photovoltaics and the Environment

    SciTech Connect

    Fthenakis, Vasilis

    2005-09-21

    Over the past five years, solar energy usage has grown by about 43 percent a year, giving rise to a billion-dollar industry in photovoltaics (PV) or getting electricity from light. The word photovoltaics combines the Greek phos, or light, with the “volt” of electricity. PV technologies have distinct environmental advantages over conventional power technologies, such as: no noise, no emissions, no need for fuel and power lines. Compared to burning coal, a gigawatt-hour of PV-generated electricity would prevent the release of about 1,000 tons of carbon dioxide, eight of sulfur dioxide, four of nitrogen oxides, and 0.4 tons of particulates. However, manufacturing the solar cells that transform light to electricity requires the use of some toxic and flammable substances. Addressing the environmental, health, and safety concerns of the PV industry to minimize risk while ensuring economic viability and public support is the work of the National Photovoltaic Environmental Health, & Safety Assistance Center at BNL.

  9. Photovoltaic self-assembly.

    SciTech Connect

    Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.

    2010-10-01

    This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

  10. Quo Vadis photovoltaics 2011

    NASA Astrophysics Data System (ADS)

    Jäger-Waldau, A.

    2011-10-01

    Since more than 10 years photovoltaics is one of the most dynamic industries with growth rates well beyond 40% per annum. This growth is driven not only by the progress in materials knowledge and processing technology, but also by market introduction programmes in many countries around the world. Despite the negative impacts on the economy by the financial crisis since 2009, photovoltaics is still growing at an extraordinary pace and had in 2010 an extraordinary success, as both production and markets doubled. The open question is what will happen in 2011 and the years after as the situation is dominated by huge manufacturing overcapacities and an increasing unpredictability of policy support. How can the PV industry continue their cost reduction to ensure another 10 to 20 years of sustained and strong growth necessary to make PV to one of the main pillars of a sustainable energy supply in 2030. Despite the fact, that globally the share of electricity from photovoltaic systems is still small, at local level it can be already now above 30% of the demand at certain times of the year. Future research in PV has to provide intelligent solutions not only on the solar cell alone, but also on the module and the system integration level in order to permit a 5 to 10% share of electricity in 2020.

  11. Photovoltaics and the automobile

    SciTech Connect

    Young, W.R. Jr.

    1994-12-31

    For years people have been in love with the automobile. Some people just enjoy using the automobile as transportation while others also enjoy the workings and operation of this fascinating machine. The automobile is not without problems of pollution and energy consumption. These problems are changing its design and construction. New clean energy sources are being analyzed and applied to power the modern automobile. A space age energy source now being considered by some and used by others to power the automobile is photovoltaics. Photovoltaics (PV) is the direct conversion of sunlight to electricity. There are a number of devices in the modern car that are electrically powered. PV could provide a clean endless supply of electricity for air conditioning, radios and other electrical components of a car. Most people have never heard of photovoltaics (PV). There has been a great deal of research in PV among energy experts. The automobile is known the world over in both use and operation. The author describes how the merging of these two technologies will benefit mankind and without damaging the environment. 12 refs.

  12. Photovoltaic module reliability workshop

    SciTech Connect

    Mrig, L.

    1990-01-01

    The paper and presentations compiled in this volume form the Proceedings of the fourth in a series of Workshops sponsored by Solar Energy Research Institute (SERI/DOE) under the general theme of photovoltaic module reliability during the period 1986--1990. The reliability Photo Voltaic (PV) modules/systems is exceedingly important along with the initial cost and efficiency of modules if the PV technology has to make a major impact in the power generation market, and for it to compete with the conventional electricity producing technologies. The reliability of photovoltaic modules has progressed significantly in the last few years as evidenced by warranties available on commercial modules of as long as 12 years. However, there is still need for substantial research and testing required to improve module field reliability to levels of 30 years or more. Several small groups of researchers are involved in this research, development, and monitoring activity around the world. In the US, PV manufacturers, DOE laboratories, electric utilities and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in this field were brought together under SERI/DOE sponsorship to exchange the technical knowledge and field experience as related to current information in this important field. The papers presented here reflect this effort.

  13. Analysis methods for photovoltaic applications

    SciTech Connect

    1980-01-01

    Because photovoltaic power systems are being considered for an ever-widening range of applications, it is appropriate for system designers to have knowledge of and access to photovoltaic power systems simulation models and design tools. This brochure gives brief descriptions of a variety of such aids and was compiled after surveying both manufacturers and researchers. Services available through photovoltaic module manufacturers are outlined, and computer codes for systems analysis are briefly described. (WHK)

  14. Comparability of red/near-infrared reflectance and NDVI based on the spectral response function between MODIS and 30 other satellite sensors using rice canopy spectra.

    PubMed

    Huang, Weijiao; Huang, Jingfeng; Wang, Xiuzhen; Wang, Fumin; Shi, Jingjing

    2013-01-01

    Long-term monitoring of regional and global environment changes often depends on the combined use of multi-source sensor data. The most widely used vegetation index is the normalized difference vegetation index (NDVI), which is a function of the red and near-infrared (NIR) spectral bands. The reflectance and NDVI data sets derived from different satellite sensor systems will not be directly comparable due to different spectral response functions (SRF), which has been recognized as one of the most important sources of uncertainty in the multi-sensor data analysis. This study quantified the influence of SRFs on the red and NIR reflectances and NDVI derived from 31 Earth observation satellite sensors. For this purpose, spectroradiometric measurements were performed for paddy rice grown under varied nitrogen levels and at different growth stages. The rice canopy reflectances were convoluted with the spectral response functions of various satellite instruments to simulate sensor-specific reflectances in the red and NIR channels. NDVI values were then calculated using the simulated red and NIR reflectances. The results showed that as compared to the Terra MODIS, the mean relative percentage difference (RPD) ranged from -12.67% to 36.30% for the red reflectance, -8.52% to -0.23% for the NIR reflectance, and -9.32% to 3.10% for the NDVI. The mean absolute percentage difference (APD) compared to the Terra MODIS ranged from 1.28% to 36.30% for the red reflectance, 0.84% to 8.71% for the NIR reflectance, and 0.59% to 9.32% for the NDVI. The lowest APD between MODIS and the other 30 satellite sensors was observed for Landsat5 TM for the red reflectance, CBERS02B CCD for the NIR reflectance and Landsat4 TM for the NDVI. In addition, the largest APD between MODIS and the other 30 satellite sensors was observed for IKONOS for the red reflectance, AVHRR1 onboard NOAA8 for the NIR reflectance and IKONOS for the NDVI. The results also indicated that AVHRRs onboard NOAA7-17 showed

  15. Comparability of Red/Near-Infrared Reflectance and NDVI Based on the Spectral Response Function between MODIS and 30 Other Satellite Sensors Using Rice Canopy Spectra

    PubMed Central

    Huang, Weijiao; Huang, Jingfeng; Wang, Xiuzhen; Wang, Fumin; Shi, Jingjing

    2013-01-01

    Long-term monitoring of regional and global environment changes often depends on the combined use of multi-source sensor data. The most widely used vegetation index is the normalized difference vegetation index (NDVI), which is a function of the red and near-infrared (NIR) spectral bands. The reflectance and NDVI data sets derived from different satellite sensor systems will not be directly comparable due to different spectral response functions (SRF), which has been recognized as one of the most important sources of uncertainty in the multi-sensor data analysis. This study quantified the influence of SRFs on the red and NIR reflectances and NDVI derived from 31 Earth observation satellite sensors. For this purpose, spectroradiometric measurements were performed for paddy rice grown under varied nitrogen levels and at different growth stages. The rice canopy reflectances were convoluted with the spectral response functions of various satellite instruments to simulate sensor-specific reflectances in the red and NIR channels. NDVI values were then calculated using the simulated red and NIR reflectances. The results showed that as compared to the Terra MODIS, the mean relative percentage difference (RPD) ranged from −12.67% to 36.30% for the red reflectance, −8.52% to −0.23% for the NIR reflectance, and −9.32% to 3.10% for the NDVI. The mean absolute percentage difference (APD) compared to the Terra MODIS ranged from 1.28% to 36.30% for the red reflectance, 0.84% to 8.71% for the NIR reflectance, and 0.59% to 9.32% for the NDVI. The lowest APD between MODIS and the other 30 satellite sensors was observed for Landsat5 TM for the red reflectance, CBERS02B CCD for the NIR reflectance and Landsat4 TM for the NDVI. In addition, the largest APD between MODIS and the other 30 satellite sensors was observed for IKONOS for the red reflectance, AVHRR1 onboard NOAA8 for the NIR reflectance and IKONOS for the NDVI. The results also indicated that AVHRRs onboard NOAA7

  16. GOES-R Advanced Baseline Imager: spectral response functions and radiometric biases with the NPP Visible Infrared Imaging Radiometer Suite evaluated for desert calibration sites.

    PubMed

    Pearlman, Aaron; Pogorzala, David; Cao, Changyong

    2013-11-01

    The Advanced Baseline Imager (ABI), which will be launched in late 2015 on the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-series satellite, will be evaluated in terms of its data quality postlaunch through comparisons with other satellite sensors such as the recently launched Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership satellite. The ABI has completed much of its prelaunch characterization and its developers have generated and released its channel spectral response functions (response versus wavelength). Using these responses and constraining a radiative transfer model with ground reflectance, aerosol, and water vapor measurements, we simulate observed top of atmosphere (TOA) reflectances for analogous visible and near infrared channels of the VIIRS and ABI sensors at the Sonoran Desert and White Sands National Monument sites and calculate the radiometric biases and their uncertainties. We also calculate sensor TOA reflectances using aircraft hyperspectral data from the Airborne Visible/Infrared Imaging Spectrometer to validate the uncertainties in several of the ABI and VIIRS channels and discuss the potential for validating the others. Once on-orbit, calibration scientists can use these biases to ensure ABI data quality and consistency to support the numerical weather prediction community and other data users. They can also use the results for ABI or VIIRS anomaly detection and resolution. PMID:24216671

  17. Utility-scale photovoltaic concentrators

    SciTech Connect

    None, None

    2009-01-18

    The photovoltaics concentrators section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  18. Solar photovoltaics for development applications

    SciTech Connect

    Shepperd, L.W.; Richards, E.H.

    1993-08-01

    This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

  19. Do photovoltaics have a future

    NASA Technical Reports Server (NTRS)

    Williams, B. F.

    1979-01-01

    There is major concern as to the economic practicality of widespread terrestrial use because of the high cost of the photovoltaic arrays themselves. Based on their high efficiency, photovoltaic collectors should be one of the cheapest forms of energy generators known. Present photovoltaic panels are violating the trend of lower costs with increasing efficiency due to their reliance on expensive materials. A medium technology solution should provide electricity competitive with the existing medium to high technology energy generators such as oil, coal, gas, and nuclear fission thermal plants. Programs to reduce the cost of silicon and develop reliable thin film materials have a realistic chance of producing cost effective photovoltaic panels.

  20. Modifying ultrafast optical response of sputtered VOX nanostructures in a broad spectral range by altering post annealing atmosphere

    NASA Astrophysics Data System (ADS)

    Kürüm, U.; Yaglioglu, H. G.; Küçüköz, B.; Oksuzoglu, R. M.; Yıldırım, M.; Yağcı, A. M.; Yavru, C.; Özgün, S.; Tıraş, T.; Elmali, A.

    2015-01-01

    Nanostructured VOX thin films were grown in a dc magnetron sputter system under two different Ar:O2 gas flow ratios. The films were annealed under vacuum and various ratios of O2/N2 atmospheres. The insulator-to-metal transition properties of the thin films were investigated by temperature dependent resistance measurement. Photo induced insulator-to-metal transition properties were investigated by Z-scan and ultrafast white light continuum pump probe spectroscopy measurements. Experiments showed that not only insulator-to-metal transition, but also wavelength dependence (from NIR to VIS) and time scale (from ns to ultrafast) of nonlinear optical response of the VOX thin films could be fine tuned by carefully adjusting post annealing atmosphere despite different initial oxygen content in the production. Fabricated VO2 thin films showed reflection change in the visible region due to photo induced phase transition. The results have general implications for easy and more effective fabrication of the nanostructured oxide systems with controllable electrical, optical, and ultrafast optical responses.

  1. ZnTe-CdS thin film photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Pfisterer, F.; Schock, H. W.

    1982-09-01

    ZnTe-CdS heterojunctions, developed for photovoltaic tandem systems, have been fabricated by evaporating ZnTe on polycrystalline CdS films. The CdS films are vacuum deposited onto glass substrates with silver metallization. The deposition of p-type ZnTe is performed by coevaporation of ZnTe and dopants (Cu, Ag, Te) from two individually controlled evaporation boats. The properties of the ZnTe films have been investigated by means of optical transmission, cathodoluminescence, and resistivity measurements. For the characterization of the heterojunction measurements of the I-V characteristics, the spectral response, the electron beam induced current (EBIC), and the photocapacitance have been carried out. The measurements indicate that the largest part of the photocurrent is generated in the CdS layer. The open circuit voltage ranges from 0.5 to 0.93 V with most of the cells near 0.75 V. Short circuit current densities of about 3 mA/cm 2 have been obtained. The I-V characteristics commonly show a "flat-spot" or "broken-knee" effect. The theoretical model assumes multistep tunnelling and recombination processes for carrier transport and, probably in grain boundaries, the formation of Cu 2S(low barrier, low open circuit voltage) and ZnCdTe (high barrier, high open circuit voltage) in some parts of the cells.

  2. Low dark current photovoltaic multiquantum well long wavelength infrared detectors

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Wen, Cheng P.; Sato, R. N.; Hu, M.

    1990-01-01

    The authors have, for the first time, demonstrated photovoltaic detection for an multiple quantum well (MQW) detector. With a blocking layer, the MQW detector exhibits Schottky I-V characteristics with extremely low dark current and excellent ideality factor. The dark current is 5 times 10(exp -14) A for an 100x100 square micron 10 micron detector at 40 K, 8 to 9 orders of magnitude lower than that of a similar 10 micron MQW detector without blocking layer. The ideality factor is about 1.01 to 1.05 at T = 40 to 80 K. The measured barrier height is consistent with the energy difference between first excited states and ground states, or the peak of spectral response. The authors also, for the first time, report the measured effective Richardson constant (A asterisk asterisk) for the GaAs/AlGaAs heterojunction using this blocking layer structure. The A asterisk asterisk is low approx. 2.3 A/sq cm/K(exp 2).

  3. The efficiency of photovoltaic cells exposed to pulsed laser light

    NASA Technical Reports Server (NTRS)

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  4. An effect of the networks of the subgrain boundaries on spectral responses of thick CdZnTe detectors

    SciTech Connect

    Bolotnikov, A.; Butcher, J.; Camarda, G.; Cui, Y.; Egarievwe, S.; Fochuk, P.; Gul,R.; Hamade, M.; Hossain, A.; Kim, K.; Kopach,O.; Petryk, M.; Raghothamachar, B.; Yang, G.; and James, R.B.

    2011-08-12

    CdZnTe (CZT) crystals used for nuclear-radiation detectors often contain high concentrations of subgrain boundaries and networks of poligonized dislocations that can significantly degrade the performance of semiconductor devices. These defects exist in all commercial CZT materials, regardless of their growth techniques and their vendor. We describe our new results from examining such detectors using IR transmission microscopy and white X-ray beam diffraction topography. We emphasize the roles on the devices performances of networks of subgrain boundaries with low dislocation densities, such as poligonized dislocations and mosaic structures. Specifically, we evaluated their effects on the gamma-ray responses of thick, >10 mm, CZT detectors. Our findings set the lower limit on the energy resolution of CZT detectors containing dense networks of subgrain boundaries, and walls of dislocations.

  5. Exciton-blocking phosphonic acid-treated anode buffer layers for organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Zimmerman, Jeramy D.; Song, Byeongseop; Griffith, Olga; Forrest, Stephen R.

    2013-12-01

    We demonstrate significant improvements in power conversion efficiency of bilayer organic photovoltaics by replacing the exciton-quenching MoO3 anode buffer layer with an exciton-blocking benzylphosphonic acid (BPA)-treated MoO3 or NiO layer. We show that the phosphonic acid treatment creates buffers that block up to 70% of excitons without sacrificing the hole extraction efficiency. Compared to untreated MoO3 anode buffers, BPA-treated NiO buffers exhibit a ˜ 25% increase in the near-infrared spectral response in diphenylanilo functionalized squaraine (DPSQ)/C60-based bilayer devices, increasing the power conversion efficiency under 1 sun AM1.5G simulated solar illumination from 4.8 ± 0.2% to 5.4 ± 0.3%. The efficiency can be further increased to 5.9 ± 0.3% by incorporating a highly conductive exciton blocking bathophenanthroline (BPhen):C60 cathode buffer. We find similar increases in efficiency in two other small-molecule photovoltaic systems, indicating the generality of the phosphonic acid-treated buffer approach to enhance exciton blocking.

  6. High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application

    SciTech Connect

    Hubbard, Seth

    2012-09-12

    The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong

  7. Editorial: Photovoltaic Materials and Devices 2014

    SciTech Connect

    Sopori, Bhushan; Rupnowski, Peter; Shet, Sudhakar; Basnyat, Prakash

    2014-12-22

    An ever increasing demand on energy has fostered many new generation technologies, which include photovoltaics. In recent years, photovoltaic industry has grown very rapidly. The installed capacity of PV for 2013 was about 37 GW and 2014 sales are expected to be around 45 GW. However, there has been excess production for last several years, which is responsible in part for the low prices (about 60 c/W). To lower the PV energy costs further, a major strategy appears to be going to high efficiency solar cells. This approach is favored (over lower cost/lower efficiency) because cell efficiency has a very large influence on the acceptable manufacturing cost of a PV module. Hence, the PV industry is moving toward developing processes and equipment to manufacture solar cells that can yield efficiencies >20%. Therefore, further research is needed within existing technologies to accomplish these objectives. Likewise, research will continue to seek new materials and devices.

  8. Estimates of site response based on spectral ratio between horizontal and vertical components of ambient vibrations in the source zone of 2001 Bhuj earthquake

    NASA Astrophysics Data System (ADS)

    Natarajan, Thulasiraman; Rajendran, Kusala

    2015-02-01

    We investigated the site response characteristics of Kachchh rift basin over the meizoseismal area of the 2001, Mw 7.6, Bhuj (NW India) earthquake using the spectral ratio of the horizontal and vertical components of ambient vibrations. Using the available knowledge on the regional geology of Kachchh and well documented ground responses from the earthquake, we evaluated the H/V curves pattern across sediment filled valleys and uplifted areas generally characterized by weathered sandstones. Although our H/V curves showed a largely fuzzy nature, we found that the hierarchical clustering method was useful for comparing large numbers of response curves and identifying the areas with similar responses. Broad and plateau shaped peaks of a cluster of curves within the valley region suggests the possibility of basin effects within valley. Fundamental resonance frequencies (f0) are found in the narrow range of 0.1-2.3 Hz and their spatial distribution demarcated the uplifted regions from the valleys. In contrary, low H/V peak amplitudes (A0 = 2-4) were observed on the uplifted areas and varying values (2-9) were found within valleys. Compared to the amplification factors, the liquefaction indices (kg) were able to effectively indicate the areas which experienced severe liquefaction. The amplification ranges obtained in the current study were found to be comparable to those obtained from earthquake data for a limited number of seismic stations located on uplifted areas; however the values on the valley region may not reflect their true amplification potential due to basin effects. Our study highlights the practical usefulness as well as limitations of the H/V method to study complex geological settings as Kachchh.

  9. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response

    SciTech Connect

    Troussel, Ph.; Villette, B.; Oudot, G.; Tassin, V.; Bridou, F.; Delmotte, F.; Krumrey, M.

    2014-01-15

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV < photon energy < 5 keV) use only a filter and a coaxial detector. A further improvement of DMX consists in flat-response X-ray channels for a precise absolute measurement of the photon flux in the photon energy range from 0.1 keV to 6 keV. Such channels are equipped with a filter, a Multilayer Mirror (MLM), and a coaxial detector. We present as an example the development of channel for the gold M emission lines in the photon energy range from 2 keV to 4 keV which has been successfully used on the OMEGA laser facility. The results of the radiant power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.

  10. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response.

    PubMed

    Troussel, Ph; Villette, B; Emprin, B; Oudot, G; Tassin, V; Bridou, F; Delmotte, F; Krumrey, M

    2014-01-01

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV < photon energy < 5 keV) use only a filter and a coaxial detector. A further improvement of DMX consists in flat-response X-ray channels for a precise absolute measurement of the photon flux in the photon energy range from 0.1 keV to 6 keV. Such channels are equipped with a filter, a Multilayer Mirror (MLM), and a coaxial detector. We present as an example the development of channel for the gold M emission lines in the photon energy range from 2 keV to 4 keV which has been successfully used on the OMEGA laser facility. The results of the radiant power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods. PMID:24517761

  11. Spectral Predictors

    SciTech Connect

    Ibarria, L; Lindstrom, P; Rossignac, J

    2006-11-17

    Many scientific, imaging, and geospatial applications produce large high-precision scalar fields sampled on a regular grid. Lossless compression of such data is commonly done using predictive coding, in which weighted combinations of previously coded samples known to both encoder and decoder are used to predict subsequent nearby samples. In hierarchical, incremental, or selective transmission, the spatial pattern of the known neighbors is often irregular and varies from one sample to the next, which precludes prediction based on a single stencil and fixed set of weights. To handle such situations and make the best use of available neighboring samples, we propose a local spectral predictor that offers optimal prediction by tailoring the weights to each configuration of known nearby samples. These weights may be precomputed and stored in a small lookup table. We show that predictive coding using our spectral predictor improves compression for various sources of high-precision data.

  12. Spectral Dictionaries

    PubMed Central

    Kim, Sangtae; Gupta, Nitin; Bandeira, Nuno; Pevzner, Pavel A.

    2009-01-01

    Database search tools identify peptides by matching tandem mass spectra against a protein database. We study an alternative approach when all plausible de novo interpretations of a spectrum (spectral dictionary) are generated and then quickly matched against the database. We present a new MS-Dictionary algorithm for efficiently generating spectral dictionaries and demonstrate that MS-Dictionary can identify spectra that are missed in the database search. We argue that MS-Dictionary enables proteogenomics searches in six-frame translation of genomic sequences that may be prohibitively time-consuming for existing database search approaches. We show that such searches allow one to correct sequencing errors and find programmed frameshifts. PMID:18703573

  13. Maintenance of photovoltaic power systems

    NASA Astrophysics Data System (ADS)

    Hall, M. R.

    1984-08-01

    This publication establishes standard practices for inspection, testing, and maintenance of photovoltaic power systems at Dept. of the Navy installations. The practices and procedures are recommended to ensure reliable operation of the power systems. The manual covers photovoltaic-array, battery, voltage-regulator, inverter, and wiring subsystems. In addition, this manual provides a troubleshooting guide and self-study questions and answers.

  14. Maintenance of photovoltaic power systems

    SciTech Connect

    Hall, M.R.

    1984-08-01

    This publication establishes standard practices for inspection, testing, and maintenance of photovoltaic power systems at Department of the Navy installations. The practices and procedures are recommended to ensure reliable operation of the power systems. The manual covers photovoltaic-array, battery, voltage-regulator, inverter, and wiring subsystems. In addition, this manual provides a troubleshooting guide and self-study questions and answers.

  15. Photovoltaic conversion of laser energy

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1976-01-01

    The Schottky barrier photovoltaic converter is suggested as an alternative to the p/n junction photovoltaic devices for the conversion of laser energy to electrical energy. The structure, current, output, and voltage output of the Schottky device are summarized. The more advanced concepts of the multilayer Schottky barrier cell and the AMOS solar cell are briefly considered.

  16. Photovoltaics: solar electric power systems

    SciTech Connect

    1980-02-01

    The operation and uses of solar cells and the National Photovoltaic Program are briefly described. Eleven DOE photovoltaic application projects are described including forest lookout towers; Wilcox Memorial Hospital in Hawaii; WBNO daytime AM radio station; Schuchuli Indian Village; Meade, Nebraska, agricultural experiment; Mt. Laguna Air Force Station; public schools and colleges; residential applications; and Sea World of Florida. (WHK)

  17. Graphite-based photovoltaic cells

    DOEpatents

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  18. Interim performance criteria for photovoltaic energy systems. [Glossary included

    SciTech Connect

    DeBlasio, R.; Forman, S.; Hogan, S.; Nuss, G.; Post, H.; Ross, R.; Schafft, H.

    1980-12-01

    This document is a response to the Photovoltaic Research, Development, and Demonstration Act of 1978 (P.L. 95-590) which required the generation of performance criteria for photovoltaic energy systems. Since the document is evolutionary and will be updated, the term interim is used. More than 50 experts in the photovoltaic field have contributed in the writing and review of the 179 performance criteria listed in this document. The performance criteria address characteristics of present-day photovoltaic systems that are of interest to manufacturers, government agencies, purchasers, and all others interested in various aspects of photovoltaic system performance and safety. The performance criteria apply to the system as a whole and to its possible subsystems: array, power conditioning, monitor and control, storage, cabling, and power distribution. They are further categorized according to the following performance attributes: electrical, thermal, mechanical/structural, safety, durability/reliability, installation/operation/maintenance, and building/site. Each criterion contains a statement of expected performance (nonprescriptive), a method of evaluation, and a commentary with further information or justification. Over 50 references for background information are also given. A glossary with definitions relevant to photovoltaic systems and a section on test methods are presented in the appendices. Twenty test methods are included to measure performance characteristics of the subsystem elements. These test methods and other parts of the document will be expanded or revised as future experience and needs dictate.

  19. Photovoltaic evaluation study

    NASA Astrophysics Data System (ADS)

    Johnson, G.; Heikkilae, M.; Melasuo, T.; Spanner, S.

    Realizing the value and potential of PV-power as well as the growing need for increased cooperation and sharing of knowledge in the field of photovoltaics, FINNIDA and UNICEF decided to undertake a study of selected PV-projects. There were two main objectives for the study: To gather, compile, evaluate and share information on the photovoltaic technology appropriate to developing countries, and to promote the interest and competence of Finnish research institutes, consultants and manufacturers in photovoltaic development. For this purpose a joint evaluation of significant, primarily UN-supported projects providing for the basic needs of rural communities was undertaken. The Gambia and Kenya offered a variety of such projects, and were chosen as target countries for the study. The projects were chosen to be both comparable and complimentary. In the Gambia, the main subject was a partially integrated health and telecommunications project, but a long-operating drinking water pumping system was also studied. In Kenya, a health project in the Turkana area was examined, and also a large scale water pumping installation for fish farming. Field visits were made in order to verify and supplement the data gathered through document research and earlier investigations. Individual data gathering sheets for the project form the core of this study and are intended to give the necessary information in an organized and accessible format. The findings could practically be condensed into one sentence: PV-systems work very well, if properly designed and installed, but the resources and requirements of the recipients must be considered to a higher degree.

  20. Photovoltaic Degradation Risk: Preprint

    SciTech Connect

    Jordan, D. C.; Kurtz, S. R.

    2012-04-01

    The ability to accurately predict power delivery over the course of time is of vital importance to the growth of the photovoltaic (PV) industry. Important cost drivers include the efficiency with which sunlight is converted into power, how this relationship changes over time, and the uncertainty in this prediction. An accurate quantification of power decline over time, also known as degradation rate, is essential to all stakeholders - utility companies, integrators, investors, and researchers alike. In this paper we use a statistical approach based on historical data to quantify degradation rates, discern trends and quantify risks related to measurement uncertainties, number of measurements and methodologies.

  1. Thin film photovoltaic device

    DOEpatents

    Catalano, Anthony W.; Bhushan, Manjul

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  2. Photovoltaic energy systems

    NASA Astrophysics Data System (ADS)

    1988-02-01

    An overview is provided of the activities within the National Photovoltaics Program. Tasks conducted by the participating national laboratories or under contract by industrial, academic and other research institutions are highlighted. Activities initiated, renewed, or completed during Fiscal Year 1987 are covered. The listing for each activity provides the task title, objectives, approach, status and accomplishments, milestones, major project reports, the name of the contractor and principal investigator, the directing organization, and the contract funding information. Publications for FY86-87 are also listed.

  3. Bracket for photovoltaic modules

    DOEpatents

    Ciasulli, John; Jones, Jason

    2014-06-24

    Brackets for photovoltaic ("PV") modules are described. In one embodiment, a saddle bracket has a mounting surface to support one or more PV modules over a tube, a gusset coupled to the mounting surface, and a mounting feature coupled to the gusset to couple to the tube. The gusset can have a first leg and a second leg extending at an angle relative to the mounting surface. Saddle brackets can be coupled to a torque tube at predetermined locations. PV modules can be coupled to the saddle brackets. The mounting feature can be coupled to the first gusset and configured to stand the one or more PV modules off the tube.

  4. Thin film photovoltaic device

    DOEpatents

    Catalano, A.W.; Bhushan, M.

    1982-08-03

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  5. Characterization of Photovoltaic Concentrators

    SciTech Connect

    Kiehl, J.; Emery, E.

    2005-01-01

    This paper will describe the resources at the National Renewable Energy Laboratory (NREL) for performing characterization of photovoltaic (PV) materials designed for operation under concentrated light. NREL has the capability to measure devices ranging from very small, unencapsulated research cells to reasonably sized, environmentally protected modules. Data gathering and interpretation are also ongoing areas of revision and improvement. The main goal of the current research is to reduce the measurement uncertainty to the lowest practical value. At present, the state of the art is limited at a ?5% level in measuring efficiency accurately.

  6. Europe's space photovoltaics programme

    NASA Technical Reports Server (NTRS)

    Bogus, Klaus P.

    1994-01-01

    The current space PV (photovoltaic) technology development program of ESA is described. The program is closely coupled to the European space mission scenario for the next 10 year period and has as its main objective to make the most effective use of the limited resources available for technology in the present economical climate. This requires a well-balanced approach between concentration on very few options and keeping the competition alive if more than one promising technology exists. The paper describes ESA's main activities in the areas of solar array technology, solar cell technology, solar cell assembly technology, and special test and verification activities including the in-orbit demonstration of new technologies.

  7. Photovoltaic Manufacturing Technology

    NASA Astrophysics Data System (ADS)

    Easoz, J. R.; Herlocher, R. H.

    1991-12-01

    This report examines the cost-effective manufacture of dendritic-web-based photovoltaic modules. It explains how process changes can increase production and reduce manufacturing costs. Long-range benefits of these improved processes are also discussed. Problems are identified that could impede increasing production and reducing costs; approaches to solve these problems are presented. These approaches involve web growth throughput, cell efficiency, process yield, silicon use, process control, automation, and module efficiency. Also discussed are the benefits of bifacial module design, unique to the dendritic web process.

  8. Photovoltaic concentrator module technology

    NASA Astrophysics Data System (ADS)

    Richards, Elizabeth H.; Chamberlin, Jay L.; Boes, Eldon C.

    Significant developments in the development of photovoltaic (PV) concentrator technology are described. Concentrator cell research, advances in PV concentrator cell technology, and PV concentrator module development are described. Reliability issues currently of concern, including the applicability of wet insulation resistance tests to concentrator modules, correlation of accelerated thermal cycling tests with life expectancy in the field, and the importance of quality assurance during manufacture, are discussed. Two PV concentrator power systems installed in 1989 are discussed. A PV concentrator initiative program established by the DOE is given, and the results of the latest cost study are presented.

  9. Photovoltaic panel clamp

    DOEpatents

    Mittan, Margaret Birmingham; Miros, Robert H. J.; Brown, Malcolm P.; Stancel, Robert

    2012-06-05

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  10. Photovoltaic panel clamp

    DOEpatents

    Brown, Malcolm P.; Mittan, Margaret Birmingham; Miros, Robert H. J.; Stancel, Robert

    2013-03-19

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  11. Photovoltaic system reliability

    SciTech Connect

    Maish, A.B.; Atcitty, C.; Greenberg, D.

    1997-10-01

    This paper discusses the reliability of several photovoltaic projects including SMUD`s PV Pioneer project, various projects monitored by Ascension Technology, and the Colorado Parks project. System times-to-failure range from 1 to 16 years, and maintenance costs range from 1 to 16 cents per kilowatt-hour. Factors contributing to the reliability of these systems are discussed, and practices are recommended that can be applied to future projects. This paper also discusses the methodology used to collect and analyze PV system reliability data.

  12. Photovoltaic manufacturing technology

    SciTech Connect

    Wohlgemuth, J.H.; Whitehouse, D.; Wiedeman, S.; Catalano, A.W.; Oswald, R. )

    1991-12-01

    This report identifies steps leading to manufacturing large volumes of low-cost, large-area photovoltaic (PV) modules. Both crystalline silicon and amorphous silicon technologies were studied. Cost reductions for each step were estimated and compared to Solarex Corporation's manufacturing costs. A cost model, a simple version of the SAMICS methodology developed by the Jet Propulsion Laboratory (JPL), projected PV selling prices. Actual costs of materials, labor, product yield, etc., were used in the cost model. The JPL cost model compared potential ways of lowering costs. Solarex identified the most difficult technical challenges that, if overcome, would reduce costs. Preliminary research plans were developed to solve the technical problems. 13 refs.

  13. Photovoltaic tests and applications project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities and accomplishments of the Photovoltaic Tests and Applications Project during the period April 1976 through June 1977 are summarized. Results of efforts to identify potential near-term photovoltaic applications and users are discussed, including the outcome of an extensive survey of Federal government agencies. The status of application experiments is presented. Various general engineering efforts are reported, including the design and construction of a photovoltaic Systems Test Facility. Efforts to develop a high efficiency 10 kVA self-commutated inverter and controller specifically designed for photovoltaic systems are also discussed. The results of a wide variety of activities in the area of photovoltaic measurements and standards are related. Documents generated by the Project during the reporting period are listed in an Appendix.

  14. Photovoltaic-cell-research priorities

    SciTech Connect

    Bornstein, J.G.; Hien, L.K.; Silberglitt, R.

    1983-09-30

    The current state of research and development on photovoltaic materials and advanced concepts are reviewed, and priority research activities for improved photovoltaic cells in the major individual research areas (i.e., silicon, III-V materials, II-VI materials) are identified. Also noted is the importance of reserving a small but finite portion of photovoltaic research funding for out-of-the-mainstream research. The major features of a research management philosophy aimed at attracting the best available scientific resources and research capabilities to photovoltaic research and development are outlined. The priority research activities in the principal areas of photovoltaic research are then summarized and compared, and the overall conclusions of the assessment are presented. (LEW)

  15. Enlarging photovoltaic effect: combination of classic photoelectric and ferroelectric photovoltaic effects

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjiao; Su, Xiaodong; Shen, Mingrong; Dai, Zhihua; Zhang, Lingjun; He, Xiyun; Cheng, Wenxiu; Cao, Mengyu; Zou, Guifu

    2013-07-01

    Converting light energy to electrical energy in photovoltaic devices relies on the photogenerated electrons and holes separated by the built-in potential in semiconductors. Photo-excited electrons in metal electrodes are usually not considered in this process. Here, we report an enhanced photovoltaic effect in the ferroelectric lanthanum-modified lead zirconate titanate (PLZT) by using low work function metals as the electrodes. We believe that electrons in the metal with low work function could be photo-emitted into PLZT and form the dominant photocurrent in our devices. Under AM1.5 (100 mW/cm2) illumination, the short-circuit current and open-circuit voltage of Mg/PLZT/ITO are about 150 and 2 times of those of Pt/PLZT/ITO, respectively. The photovoltaic response of PLZT capacitor was expanded from ultraviolet to visible spectra, and it may have important impact on design and fabrication of high performance photovoltaic devices based on ferroelectric materials.

  16. Enlarging photovoltaic effect: combination of classic photoelectric and ferroelectric photovoltaic effects

    PubMed Central

    Zhang, Jingjiao; Su, Xiaodong; Shen, Mingrong; Dai, Zhihua; Zhang, Lingjun; He, Xiyun; Cheng, Wenxiu; Cao, Mengyu; Zou, Guifu

    2013-01-01

    Converting light energy to electrical energy in photovoltaic devices relies on the photogenerated electrons and holes separated by the built-in potential in semiconductors. Photo-excited electrons in metal electrodes are usually not considered in this process. Here, we report an enhanced photovoltaic effect in the ferroelectric lanthanum-modified lead zirconate titanate (PLZT) by using low work function metals as the electrodes. We believe that electrons in the metal with low work function could be photo-emitted into PLZT and form the dominant photocurrent in our devices. Under AM1.5 (100 mW/cm2) illumination, the short-circuit current and open-circuit voltage of Mg/PLZT/ITO are about 150 and 2 times of those of Pt/PLZT/ITO, respectively. The photovoltaic response of PLZT capacitor was expanded from ultraviolet to visible spectra, and it may have important impact on design and fabrication of high performance photovoltaic devices based on ferroelectric materials. PMID:23811832

  17. Nanocarbon-based photovoltaics.

    PubMed

    Bernardi, Marco; Lohrman, Jessica; Kumar, Priyank V; Kirkeminde, Alec; Ferralis, Nicola; Grossman, Jeffrey C; Ren, Shenqiang

    2012-10-23

    Carbon materials are excellent candidates for photovoltaic solar cells: they are Earth-abundant, possess high optical absorption, and maintain superior thermal and photostability. Here we report on solar cells with active layers made solely of carbon nanomaterials that present the same advantages of conjugated polymer-based solar cells, namely, solution processable, potentially flexible, and chemically tunable, but with increased photostability and the possibility to revert photodegradation. The device active layer composition is optimized using ab initio density functional theory calculations to predict type-II band alignment and Schottky barrier formation. The best device fabricated is composed of PC(70)BM fullerene, semiconducting single-walled carbon nanotubes, and reduced graphene oxide. This active-layer composition achieves a power conversion efficiency of 1.3%-a record for solar cells based on carbon as the active material-and we calculate efficiency limits of up to 13% for the devices fabricated in this work, comparable to those predicted for polymer solar cells employing PCBM as the acceptor. There is great promise for improving carbon-based solar cells considering the novelty of this type of device, the high photostability, and the availability of a large number of carbon materials with yet untapped potential for photovoltaics. Our results indicate a new strategy for efficient carbon-based, solution-processable, thin film, photostable solar cells. PMID:22953746

  18. NREL Center for Photovoltaics

    ScienceCinema

    None

    2013-05-29

    Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%?about one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%. For a text version of this video visit http://www.nrel.gov/learning/re_photovoltaics_video_text.html

  19. Photovoltaic concentrator research status

    SciTech Connect

    Arvizu, D.E.

    1985-01-01

    This paper describes the most important developments in concentrator research and development since the fifth E.C. Photovoltaic Energy Conference in October 1983. Within the Sandia managed Photovoltaic Concentrator Research Project several record cell efficiencies have been reported. Applied Solar Energy Corporation has fabricated a concentrator silicon cell with 20.9% peak efficiency, at 90X concentration. Varian Associates has demonstrated a 26.0% efficient GaAs cell at 700X concentration. Hughes Research Labs together with Applied Solar Energy Corporation and Sandia has demonstrated a 24.7% efficient, at 70X concentration, mechanically-stacked multijunction device using GaAs on silicon. In addition, a record efficiency for silicon technology has been demonstrated with the Sandia developed 200X silicon module. The module has been measured to have 17% peak efficiency. This paper will review these accomplishments, other research progress, and current research directions in concentrator cells, modules, and arrays. A brief economic assessment is also presented which indicates the potential of concentrator technology.

  20. NREL Center for Photovoltaics

    SciTech Connect

    2009-01-01

    Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%—about one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%. For a text version of this video visit http://www.nrel.gov/learning/re_photovoltaics_video_text.html

  1. Photovoltaics information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marie, T.L.; Reinhardt, C.L.

    1980-10-01

    The results of a series of telephone interviews with groups of users of information on photovoltaics (PV) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. It covers these technological areas: photovoltaics, passive solar heating and cooling, active solar heating and cooling, biomass energy, solar thermal electric power, solar industrial and agricultural process heat, wind energy, ocean energy, and advanced energy storage. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from seven PV groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Researchers Working for Manufacturers, Representatives of Other Manufacturers, Representatives of Utilities, Electric Power Engineers, and Educators.

  2. Advancing colloidal quantum dot photovoltaic technology

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Arinze, Ebuka S.; Palmquist, Nathan; Thon, Susanna M.

    2016-06-01

    Colloidal quantum dots (CQDs) are attractive materials for solar cells due to their low cost, ease of fabrication and spectral tunability. Progress in CQD photovoltaic technology over the past decade has resulted in power conversion efficiencies approaching 10%. In this review, we give an overview of this progress, and discuss limiting mechanisms and paths for future improvement in CQD solar cell technology.We briefly summarize nanoparticle synthesis and film processing methods and evaluate the optoelectronic properties of CQD films, including the crucial role that surface ligands play in materials performance. We give an overview of device architecture engineering in CQD solar cells. The compromise between carrier extraction and photon absorption in CQD photovoltaics is analyzed along with different strategies for overcoming this trade-off. We then focus on recent advances in absorption enhancement through innovative device design and the use of nanophotonics. Several light-trapping schemes, which have resulted in large increases in cell photocurrent, are described in detail. In particular, integrating plasmonic elements into CQD devices has emerged as a promising approach to enhance photon absorption through both near-field coupling and far-field scattering effects. We also discuss strategies for overcoming the single junction efficiency limits in CQD solar cells, including tandem architectures, multiple exciton generation and hybrid materials schemes. Finally, we offer a perspective on future directions for the field and the most promising paths for achieving higher device efficiencies.

  3. Substantial bulk photovoltaic effect enhancement via nanolayering.

    PubMed

    Wang, Fenggong; Young, Steve M; Zheng, Fan; Grinberg, Ilya; Rappe, Andrew M

    2016-01-01

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials' responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)(1-x)). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times due to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. This opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition. PMID:26791545

  4. Substantial bulk photovoltaic effect enhancement via nanolayering

    PubMed Central

    Wang, Fenggong; Young, Steve M.; Zheng, Fan; Grinberg, Ilya; Rappe, Andrew M.

    2016-01-01

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials' responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)1−x). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times due to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. This opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition. PMID:26791545

  5. Design principles of shift current photovoltaics

    NASA Astrophysics Data System (ADS)

    Cook, Ashley; Fregoso, Benjamin; de Juan, Fernando; Moore, Joel

    While the basic principles and limitations of conventional solar cells are well understood, relatively little attention has gone toward evaluating and maximizing the potential efficiency of photovoltaic devices based on shift currents. In this work, a sum rule approach is introduced and used to outline design principles for optimizing shift currents for photon energies near the band gap, which depend on wavefunctions via Berry connections as well as standard band structure. Using these we identify two new classes of shift current photovoltaics, ferroelectric polymer films and orthorhombic monochalcogenides, both of which exhibit peak photoresponsivities larger than predictions for previously-known photovoltaics of this type. Using physically-motivated tight-binding models, the full frequency dependent response of these materials is obtained. Exploring the phase space of these models, we find photoresponsivities that can exceed 100 mA/W. These results show that considering the microscopic origin of shift current via effective models allows one to improve the possible efficiency of devices using this mechanism and better grasp their potential to compete with conventional solar cells. This work was completed with the support of an NSERC Michael Smith Foreign Study Supplement.

  6. Substantial bulk photovoltaic effect enhancement via nanolayering

    DOE PAGESBeta

    Wang, Fenggong; Young, Steve M.; Zheng, Fan; Grinberg, Ilya; Rappe, Andrew M.

    2016-01-21

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials’ responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)1–x). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times duemore » to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. Lastly, this opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition.« less

  7. Natural hybrid organic-inorganic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    De Padova, Paola; Lucci, Massimiliano; Olivieri, Bruno; Quaresima, Claudio; Priori, Sandro; Francini, Roberto; Grilli, Antonio; Hricovini, Karol; Davoli, Ivan

    2009-06-01

    Natural hybrid organic-inorganic photovoltaic devices based on TiO 2 have been realized. Chlorophyll A (from anacystis nidulans algae), chlorophyll B (from spinach), carmic acid (from insect Coccus cacti L.), synthetic trans- β-carotene, natural fresh picked Morus nigra, and their mixtures have been used as an organic photo active layer to fabricate photovoltaic prototypes. In order to reduce the charge's interfacial recombination, different thicknesses (5-45 nm) of Si layers, subsequently oxidized in air, were inserted between the TiO 2 and chlorophyll B. Scanning electron microscopy of TiO 2 and Si/TiO 2 systems shows the coexistence at least of four classes of nanoparticles of 60, 100, 150 and 250 nm in size. Auger electron spectroscopy of the Si L 2,3V V transition demonstrates the presence of silica and SiO x suboxides. Photocurrent measurements versus radiation wavelength in the range 300-800 nm exhibit different peaks according to the absorption spectra of the organic molecules. All realized photovoltaic devices are suitable for solar light electric energy conversion. Those made of a blend of all organic molecules achieved higher current and voltage output. The Si/TiO 2-based devices containing chlorophyll B exhibited an enhanced photocurrent response with respect to those with TiO 2 only.

  8. Analysis of bias voltage dependent spectral response in Ga{sub 0.51}In{sub 0.49}P/Ga{sub 0.99}In{sub 0.01}As/Ge triple junction solar cell

    SciTech Connect

    Sogabe, Tomah Ogura, Akio; Okada, Yoshitaka

    2014-02-21

    Spectral response measurement plays great role in characterizing solar cell device because it directly reflects the efficiency by which the device converts the sunlight into an electrical current. Based on the spectral response results, the short circuit current of each subcell can be quantitatively determined. Although spectral response dependence on wavelength, i.e., the well-known external quantum efficiency (EQE), has been widely used in characterizing multijunction solar cell and has been well interpreted, detailed analysis of spectral response dependence on bias voltage (SR −V{sub bias}) has not been reported so far. In this work, we have performed experimental and numerical studies on the SR −V{sub bias} for Ga{sub 0.51}In{sub 0.49}P/Ga{sub 0.99}In{sub 0.01}As/Ge triple junction solar cell. Phenomenological description was given to clarify the mechanism of operation matching point variation in SR −V{sub bias} measurements. The profile of SR−V{sub bias} curve was explained in detail by solving the coupled two-diode current-voltage characteristic transcend formula for each subcell.

  9. Photovoltaic Product Directory and Buyers Guide

    SciTech Connect

    Watts, R.L.; Smith, S.A.; Dirks, J.A.; Mazzucchi, R.P.; Lee, V.E.

    1984-04-01

    The directory guide explains photovoltaic systems briefly and shows what products are available off-the-shelf. Information is given to assist in designing a photovoltaic system and on financial incentives. Help is given for determining if photovoltaic products can meet a particular buyer's needs, and information is provided on actual photovoltaic user's experiences. Detailed information is appended on various financial incentives available from state and federal governments, sources of additional information on photovoltaics, sources of various photovoltaic products, and a listing of addresses of photovoltaic products suppliers. (LEW)

  10. Cross/bar polymer electro-optic routing switch with broadband flatting spectral response over 130 nm: Principle, design and analysis

    NASA Astrophysics Data System (ADS)

    Zheng, Chuan-Tao; Zheng, Li-Hua; Luo, Qian-Qian; Liang, Lei; Ma, Chun-Sheng; Zhang, Da-Ming

    2013-05-01

    A novel non-resonance 2×2 polymer electro-optic (EO) switch with flatting spectral response is proposed by employing two-section reversed active Mach-Zehnder interferometers (MZIs), a passive middle directional coupler (M-DC) and two passive phase generating couplers (PGCs). Two crosstalk compensations are performed by optimizing the PGCs to broaden the spectrum under bar-state and optimizing the two active MZIs to broaden the spectrum under cross-state. The bar-state and cross-state voltages are 0 and ±4 V, respectively, with the two optimized MZI EO region lengths of 4068 and 5941 μm. Sufficiently considering wavelength dispersion of material and waveguide, a wide spectrum over 130 nm (1473-1603 nm) is achieved for dropping the crosstalk below -30 dB, and within this range, an insertion loss of 1.8-12.3 dB is observed. Under the same crosstalk level, this spectrum is over 2 times of that of the traditional 2×2 MZI switch (60 nm) based on the same materials. This broadband 2×2 switch is more attractive than our previously reported broadband 1×1 switch due to cross/bar routing operations other than simple ON/OFF functions.

  11. Relative Spectral Mixture Analysis for monitoring natural hazards that impact vegetation cover: the importance of the nonphotosynthetic fraction in understanding landscape response to drought, fire, and hurricane damage

    NASA Astrophysics Data System (ADS)

    Okin, G. S.

    2007-12-01

    Remote sensing provides a unique ability to monitor natural hazards that impact vegetation hydrologically. Here, the use of a new multitemporal remote sensing technique that employs free, coarse multispectral remote sensing data is demonstrated in monitoring short- and long-term drought, fire occurrence and recovery, and damage to hurricane-related mangrove ecosystems and subsequent recovery of these systems. The new technique, relative spectral mixture analysis (RSMA), provides information about the nonphotosynthetic fraction (nonphotosynthetic vegetation plus litter) of ground cover in addition to the green vegetation fraction. In some cases, RSMA even provides an improved ability to monitor changes in the green fraction compared to traditional vegetation indices or standard remote sensing products. In arid and semiarid regions, the nonphotosynthetic fraction can vary on an annual basis significantly more than the green fraction and is thus perfectly suited for monitoring drought in these regions. Mortality of evergreen trees due to long-term drought also shows up strongly in the nonphotosynthetic fraction as green vegetation is replaced by dry needles and bare trunks. The response of the nonphotosynthetic fraction to fire is significantly different from that of drought because of the combustion of nonphotosynthetic material. Finally, damage to mangrove ecosystems from hurricane damage, and their subsequent recovery, is readily observable in both the green and nonphotosynthetic fractions as estimated by RSMA.

  12. Photovoltaic Systems Modeling and Analysis

    NASA Astrophysics Data System (ADS)

    Ali, Mir Shahed

    2010-11-01

    This thesis deals with the implementation of generalized photovoltaic model and integration of the same with 7-bus electrical utility system to evaluate the impact that the photovoltaic generator have on the utility system. Among all the impacts that the photovoltaic generator have on the utility system, voltage rise of the power distribution line at the position where the Photovoltaic generator is connected due to reverse power flow from the photovoltaic model has been one of the major problem. Therefore, this thesis proposes the steady-state simulations to evaluate the effectiveness of battery-integrated PV system on avoiding the over voltage problem. Further, fault analysis is done to study the effect of the PV model on the utility network during faults and it is deduced that the impact of the PV model on the utility system voltage during faults is nominal. The photovoltaic model/generator and the 7-bus utility system is developed using Matlab/Simulink software package. The developed photovoltaic model can be represented as PV cell, module or an array. The model is developed with icons that are easy to understand. The developed model takes into consideration cell's working temperature, amount of sunlight (irradiance) available, voltage of the circuit when the circuit is open and current of the circuit when it is shorted. The developed Photovoltaic model is then integrated with a Li-ion battery, over here battery serves two purposes first it will store the excess power from the Photovoltaic generator if any, during the day time and in night the battery acts as an generator and deliver the power to the utility or connected load with the help of an invertors.

  13. Parametric study of laser photovoltaic energy converters

    NASA Technical Reports Server (NTRS)

    Walker, G. H.; Heinbockel, J. H.

    1987-01-01

    Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.

  14. Photovoltaic module with adhesion promoter

    SciTech Connect

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  15. High Performance Photovoltaic Project Overview

    SciTech Connect

    Symko-Davies, M.; McConnell, R.

    2005-01-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and environment in the 21st century. To accomplish this, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. In this paper, we describe the recent research accomplishments in the in-house directed efforts and the research efforts under way in the subcontracted area.

  16. Single nanowire photovoltaics.

    PubMed

    Tian, Bozhi; Kempa, Thomas J; Lieber, Charles M

    2009-01-01

    This tutorial review focuses on recent work addressing the properties and potential of semiconductor nanowires as building blocks for photovoltaic devices based on investigations at the single nanowire level. Two central nanowire motifs involving p-i-n dopant modulation in axial and coaxial geometries serve as platforms for fundamental studies. Research illustrating the synthesis of these structural motifs will be reviewed first, followed by an examination of recent studies of single axial and coaxial p-i-n silicon nanowire solar cells. Finally, challenges and opportunities for improving efficiency enabled by controlled synthesis of more complex nanowire structures will be discussed, as will their potential applications as power sources for emerging nanoelectronic devices. PMID:19088961

  17. Photovoltaic module mounting system

    SciTech Connect

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N.; Holland, Rodney H.

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  18. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  19. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  20. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.