Science.gov

Sample records for physcomitrella patens ftsz

  1. Paenibacillus physcomitrellae sp. nov., isolated from the moss Physcomitrella patens.

    PubMed

    Zhou, Xun; Nan Guo, Guan; Qi Wang, Le; Lan Bai, Su; Li Li, Chun; Yu, Rong; Hong Li, Yan

    2015-10-01

    A Gram-stain-positive, facultatively anaerobic and rod-shaped bacterium, designated strain XBT, was isolated from Physcomitrella patens growing in Beijing, China. The isolate was identified as a member of the genus Paenibacillus based on phenotypic characteristics and phylogenetic inferences. The novel strain was spore-forming, motile, catalase-negative and weakly oxidase-positive. Optimal growth of strain XBT occurred at 28°C and pH 7.0-7.5. The major polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and several unidentified components, including one phospholipid, two aminophospholipids, three glycolipids, one aminolipid and one lipid. The predominant isoprenoid quinone was MK-7. The diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid. The major fatty acid components (>5 %) were anteiso-C15 : 0 (51.2 %), anteiso-C17 : 0 (20.6 %), iso-C16 : 0 (8.3 %) and C16 : 0 (6.7 %). The G+C content of the genomic DNA was 53.3 mol%. Phylogenetic analysis, based on the 16S rRNA gene sequence, showed that strain XBT fell within the evolutionary distances encompassed by the genus Paenibacillus; its closest phylogenetic neighbour was Paenibacillus yonginensis DCY84T (96.6 %). Based on phenotypic, chemotaxonomic and phylogenetic properties, strain XBT is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus physcomitrellae sp. nov., is proposed. The type strain is XBT ( = CGMCC 1.15044T = DSM 29851T). PMID:26296580

  2. Biosynthesis of allene oxides in Physcomitrella patens

    PubMed Central

    2012-01-01

    Background The moss Physcomitrella patens contains C18- as well as C20-polyunsaturated fatty acids that can be metabolized by different enzymes to form oxylipins such as the cyclopentenone cis(+)-12-oxo phytodienoic acid. Mutants defective in the biosynthesis of cyclopentenones showed reduced fertility, aberrant sporophyte morphology and interrupted sporogenesis. The initial step in this biosynthetic route is the conversion of a fatty acid hydroperoxide to an allene oxide. This reaction is catalyzed by allene oxide synthase (AOS) belonging as hydroperoxide lyase (HPL) to the cytochrome P450 family Cyp74. In this study we characterized two AOS from P. patens, PpAOS1 and PpAOS2. Results Our results show that PpAOS1 is highly active with both C18 and C20-hydroperoxy-fatty acid substrates, whereas PpAOS2 is fully active only with C20-substrates, exhibiting trace activity (~1000-fold lower kcat/KM) with C18 substrates. Analysis of products of PpAOS1 and PpHPL further demonstrated that both enzymes have an inherent side activity mirroring the close inter-connection of AOS and HPL catalysis. By employing site directed mutagenesis we provide evidence that single amino acid residues in the active site are also determining the catalytic activity of a 9-/13-AOS – a finding that previously has only been reported for substrate specific 13-AOS. However, PpHPL cannot be converted into an AOS by exchanging the same determinant. Localization studies using YFP-labeled AOS showed that PpAOS2 is localized in the plastid while PpAOS1 may be found in the cytosol. Analysis of the wound-induced cis(+)-12-oxo phytodienoic acid accumulation in PpAOS1 and PpAOS2 single knock-out mutants showed that disruption of PpAOS1, in contrast to PpAOS2, results in a significantly decreased cis(+)-12-oxo phytodienoic acid formation. However, the knock-out mutants of neither PpAOS1 nor PpAOS2 showed reduced fertility, aberrant sporophyte morphology or interrupted sporogenesis. Conclusions Our study

  3. Physcomitrella patens Activates Defense Responses against the Pathogen Colletotrichum gloeosporioides

    PubMed Central

    Reboledo, Guillermo; del Campo, Raquel; Alvarez, Alfonso; Montesano, Marcos; Mara, Héctor; Ponce de León, Inés

    2015-01-01

    The moss Physcomitrella patens is a suitable model plant to analyze the activation of defense mechanisms after pathogen assault. In this study, we show that Colletotrichum gloeosporioides isolated from symptomatic citrus fruit infects P. patens and cause disease symptoms evidenced by browning and maceration of tissues. After C. gloeosporioides infection, P. patens reinforces the cell wall by the incorporation of phenolic compounds and induces the expression of a Dirigent-protein-like encoding gene that could lead to the formation of lignin-like polymers. C. gloeosporioides-inoculated protonemal cells show cytoplasmic collapse, browning of chloroplasts and modifications of the cell wall. Chloroplasts relocate in cells of infected tissues toward the initially infected C. gloeosporioides cells. P. patens also induces the expression of the defense genes PAL and CHS after fungal colonization. P. patens reporter lines harboring the auxin-inducible promoter from soybean (GmGH3) fused to β-glucuronidase revealed an auxin response in protonemal tissues, cauloids and leaves of C. gloeosporioides-infected moss tissues, indicating the activation of auxin signaling. Thus, P. patens is an interesting plant to gain insight into defense mechanisms that have evolved in primitive land plants to cope with microbial pathogens. PMID:26389888

  4. Physcomitrella patens Activates Defense Responses against the Pathogen Colletotrichum gloeosporioides.

    PubMed

    Reboledo, Guillermo; Del Campo, Raquel; Alvarez, Alfonso; Montesano, Marcos; Mara, Héctor; Ponce de León, Inés

    2015-01-01

    The moss Physcomitrella patens is a suitable model plant to analyze the activation of defense mechanisms after pathogen assault. In this study, we show that Colletotrichum gloeosporioides isolated from symptomatic citrus fruit infects P. patens and cause disease symptoms evidenced by browning and maceration of tissues. After C. gloeosporioides infection, P. patens reinforces the cell wall by the incorporation of phenolic compounds and induces the expression of a Dirigent-protein-like encoding gene that could lead to the formation of lignin-like polymers. C. gloeosporioides-inoculated protonemal cells show cytoplasmic collapse, browning of chloroplasts and modifications of the cell wall. Chloroplasts relocate in cells of infected tissues toward the initially infected C. gloeosporioides cells. P. patens also induces the expression of the defense genes PAL and CHS after fungal colonization. P. patens reporter lines harboring the auxin-inducible promoter from soybean (GmGH3) fused to β-glucuronidase revealed an auxin response in protonemal tissues, cauloids and leaves of C. gloeosporioides-infected moss tissues, indicating the activation of auxin signaling. Thus, P. patens is an interesting plant to gain insight into defense mechanisms that have evolved in primitive land plants to cope with microbial pathogens. PMID:26389888

  5. Genotoxin induced mutagenesis in the model plant Physcomitrella patens.

    PubMed

    Holá, Marcela; Kozák, Jaroslav; Vágnerová, Radka; Angelis, Karel J

    2013-01-01

    The moss Physcomitrella patens is unique for the high frequency of homologous recombination, haploid state, and filamentous growth during early stages of the vegetative growth, which makes it an excellent model plant to study DNA damage responses. We used single cell gel electrophoresis (comet) assay to determine kinetics of response to Bleomycin induced DNA oxidative damage and single and double strand breaks in wild type and mutant lig4 Physcomitrella lines. Moreover, APT gene when inactivated by induced mutations was used as selectable marker to ascertain mutational background at nucleotide level by sequencing of the APT locus. We show that extensive repair of DSBs occurs also in the absence of the functional LIG4, whereas repair of SSBs is seriously compromised. From analysis of induced mutations we conclude that their accumulation rather than remaining lesions in DNA and blocking progression through cell cycle is incompatible with normal plant growth and development and leads to sensitive phenotype. PMID:24383055

  6. Genotoxin Induced Mutagenesis in the Model Plant Physcomitrella patens

    PubMed Central

    Holá, Marcela; Kozák, Jaroslav; Vágnerová, Radka; Angelis, Karel J.

    2013-01-01

    The moss Physcomitrella patens is unique for the high frequency of homologous recombination, haploid state, and filamentous growth during early stages of the vegetative growth, which makes it an excellent model plant to study DNA damage responses. We used single cell gel electrophoresis (comet) assay to determine kinetics of response to Bleomycin induced DNA oxidative damage and single and double strand breaks in wild type and mutant lig4 Physcomitrella lines. Moreover, APT gene when inactivated by induced mutations was used as selectable marker to ascertain mutational background at nucleotide level by sequencing of the APT locus. We show that extensive repair of DSBs occurs also in the absence of the functional LIG4, whereas repair of SSBs is seriously compromised. From analysis of induced mutations we conclude that their accumulation rather than remaining lesions in DNA and blocking progression through cell cycle is incompatible with normal plant growth and development and leads to sensitive phenotype. PMID:24383055

  7. Cytokinin Biosynthesis in Mutants of the Moss Physcomitrella patens1

    PubMed Central

    Wang, Trevor L.; Beutelmann, Peter; Cove, David J.

    1981-01-01

    Three cytokinin-over-producing mutants of the moss, Physcomitrella patens, have been shown to convert [8-14C]adenine to N6-[14C](Δ2-isopentenyl)adenine, the presence of which was confirmed by thin layer chromatography, high performance liquid chromatography, and recrystallization to constant specific radioactivity. The labeled cytokinin was detected in the culture medium within 6 hours and the tissue itself appears to contain both labeled N6-(Δ2-isopentenyl)adenine and N6-(Δ2-isopentenyl)adenosine monophosphate. Images PMID:16661991

  8. The Physcomitrella patens System for Transient Gene Expression Assays.

    PubMed

    Thévenin, Johanne; Xu, Wenjia; Vaisman, Louise; Lepiniec, Loïc; Dubreucq, Bertrand; Dubos, Christian

    2016-01-01

    Transient expression assays are valuable techniques to study in vivo the transcriptional regulation of gene expression. These methods allow to assess the transcriptional properties of a given transcription factor (TF) or a complex of regulatory proteins against specific DNA motifs, called cis-regulatory elements. Here, we describe a fast, efficient, and reliable method based on the use of Physcomitrella patens protoplasts that allows the study of gene expression in a qualitative and quantitative manner by combining the advantage of GFP (green fluorescent protein) as a marker of promoter activity with flow cytometry for accurate measurement of fluorescence in individual cells. PMID:27557766

  9. Phototropism in gametophytic shoots of the moss Physcomitrella patens

    PubMed Central

    Bao, Liang; Yamamoto, Kotaro T; Fujita, Tomomichi

    2015-01-01

    Shoot phototropism enables plants to position their photosynthetic organs in favorable light conditions and thus benefits growth and metabolism in land plants. To understand the evolution of this response, we established an experimental system to study phototropism in gametophores of the moss Physcomitrella patens. The phototropic response of gametophores occurs slowly; a clear response takes place more than 24 hours after the onset of unilateral light irradiation, likely due to the slow growth rate of gametophores. We also found that red and far-red light can induce phototropism, with blue light being less effective. These results suggest that plants used a broad range of light wavelengths as phototropic signals during the early evolution of land plants. PMID:25848889

  10. Desiccation sensitivity and tolerance in the moss Physcomitrella patens: assessing limits and damage.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The moss Physcomitrella patens is becoming the model of choice for functional genomic studies at the cellular level. Studies report that P. patens survives moderate osmotic and salt stress, and that desiccation tolerance can be induced by exogenous ABA. Our goal was to quantify the extent of dehydr...

  11. Putting Physcomitrella Patens on the Tree of Life: The Evolution and Ecology of Mosses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physcomitrella patens is an important model system for studies of genetics and physiology, and with its newly-sequenced genome, is perfectly placed phylogenetically to serve as a point of comparison for angiosperms. This chapter addresses three main questions. (1) How typical of a moss is P. patens...

  12. A SABATH Methyltransferase from the moss Physcomitrella patens catalyzes

    SciTech Connect

    Zhao, Nan; Ferrer, Jean-Luc; Moon, Hong S; Kapteyn, Jeremy; Zhuang, Xiaofeng; Hasebe, Mitsuyasu; Stewart, Neal C.; Gang, David R.; Chen, Feng

    2012-01-01

    Known SABATH methyltransferases, all of which were identified from seed plants, catalyze methylation of either the carboxyl group of a variety of low molecular weight metabolites or the nitrogen moiety of precursors of caffeine. In this study, the SABATH family from the bryophyte Physcomitrella patens was identified and characterized. Four SABATH-like sequences (PpSABATH1, PpSABATH2, PpSABATH3, and PpSABATH4) were identified from the P. patens genome. Only PpSABATH1 and PpSABATH2 showed expression in the leafy gametophyte of P. patens. Full-length cDNAs of PpSABATH1 and PpSABATH2 were cloned and expressed in soluble form in Escherichia coli. Recombinant PpSABATH1 and PpSABATH2 were tested for methyltransferase activity with a total of 75 compounds. While showing no activity with carboxylic acids or nitrogen-containing compounds, PpSABATH1 displayed methyltransferase activity with a number of thiols. PpSABATH2 did not show activity with any of the compounds tested. Among the thiols analyzed, PpSABATH1 showed the highest level of activity with thiobenzoic acid with an apparent Km value of 95.5 lM, which is comparable to those of known SABATHs. Using thiobenzoic acid as substrate, GC MS analysis indicated that the methylation catalyzed by PpSABATH1 is on the sulfur atom. The mechanism for S-methylation of thiols catalyzed by PpSABATH1 was partially revealed by homology-based structural modeling. The expression of PpSABATH1 was induced by the treatment of thiobenzoic acid. Further transgenic studies showed that tobacco plants overexpressing PpSABATH1 exhibited enhanced tolerance to thiobenzoic acid, suggesting that PpSABATH1 have a role in the detoxification of xenobiotic thiols.

  13. Role of RNA Interference (RNAi) in the Moss Physcomitrella patens

    PubMed Central

    Arif, Muhammad Asif; Frank, Wolfgang; Khraiwesh, Basel

    2013-01-01

    RNA interference (RNAi) is a mechanism that regulates genes by either transcriptional (TGS) or posttranscriptional gene silencing (PTGS), required for genome maintenance and proper development of an organism. Small non-coding RNAs are the key players in RNAi and have been intensively studied in eukaryotes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs are synthesized from a short hairpin structure while siRNAs are derived from long double-stranded RNAs (dsRNA). Both miRNA and siRNAs control the expression of cognate target RNAs by binding to reverse complementary sequences mediating cleavage or translational inhibition of the target RNA. They also act on the DNA and cause epigenetic changes such as DNA methylation and histone modifications. In the last years, the analysis of plant RNAi pathways was extended to the bryophyte Physcomitrella patens, a non-flowering, non-vascular ancient land plant that diverged from the lineage of seed plants approximately 450 million years ago. Based on a number of characteristic features and its phylogenetic key position in land plant evolution P. patens emerged as a plant model species to address basic as well as applied topics in plant biology. Here we summarize the current knowledge on the role of RNAi in P. patens that shows functional overlap with RNAi pathways from seed plants, and also unique features specific to this species. PMID:23344055

  14. Cellulose synthase gene expression profiling of Physcomitrella patens.

    PubMed

    Tran, M L; Roberts, A W

    2016-05-01

    The cellulose synthase (CESA) gene family of seed plants comprises six clades that encode isoforms with conserved expression patterns and distinct functions in cellulose synthesis complex (CSC) formation and primary and secondary cell wall synthesis. In mosses, which have rosette CSCs like those of seed plants but lack lignified secondary cell walls, the CESA gene family diversified independently and includes no members of the six functionally distinct seed plant clades. There are seven CESA isoforms encoded in the genome of the moss Physcomitrella patens. However, only PpCESA5 has been characterised functionally, and little information is available on the expression of other PpCESA family members. We have profiled PpCESA expression through quantitative RT-PCR, analysis of promoter-reporter lines, and cluster analysis of public microarray data in an effort to identify expression and co-expression patterns that could help reveal the functions of PpCESA isoforms in protein complex formation and development of specific tissues. In contrast to the tissue-specific expression observed for seed plant CESAs, each of the PpCESAs was broadly expressed throughout most developing tissues. Although a few statistically significant differences in expression of PpCESAs were noted when some tissues and hormone treatments were compared, no strong co-expression patterns were observed. Along with CESA phylogenies and lack of single PpCESA mutant phenotypes reported elsewhere, broad overlapping expression of the PpCESAs indicates a high degree of inter-changeability and is consistent with a different pattern of functional specialisation in the evolution of the seed plant and moss CESA families. PMID:26572930

  15. PHYSCOMITRELLA PATENS ARABINOGALACTAN PROTEINS CONTAIN ABUNDANT TERMINAL 3-O-METHYL-L-RHAMMOSYL RESIDUES NOT FOUND IN ANGIOSPERMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A biochemical investigation of arabinogalactan proteins (AGPs) in Physcomitrella patens was undertaken with particular emphasis on the glycan chains. Following homogenization and differential centrifugation of moss gametophytes, AGPs were obtained by Arrive phenylglycoside-induced precipitation from...

  16. Composition and structure of photosystem I in the moss Physcomitrella patens

    PubMed Central

    Busch, Andreas; Petersen, Jørgen; Webber-Birungi, Mariam T.; Powikrowska, Marta; Lassen, Lærke Marie Münter; Naumann-Busch, Bianca; Nielsen, Agnieszka Zygadlo; Ye, Juanying; Boekema, Egbert J.; Jensen, Ole Nørregaard; Lunde, Christina; Jensen, Poul Erik

    2013-01-01

    Recently, bryophytes, which diverged from the ancestor of seed plants more than 400 million years ago, came into focus in photosynthesis research as they can provide valuable insights into the evolution of photosynthetic complexes during the adaptation to terrestrial life. This study isolated intact photosystem I (PSI) with its associated light-harvesting complex (LHCI) from the moss Physcomitrella patens and characterized its structure, polypeptide composition, and light-harvesting function using electron microscopy, mass spectrometry, biochemical, and physiological methods. It became evident that Physcomitrella possesses a strikingly high number of isoforms for the different PSI core subunits as well as LHCI proteins. It was demonstrated that all these different subunit isoforms are expressed at the protein level and are incorporated into functional PSI–LHCI complexes. Furthermore, in contrast to previous reports, it was demonstrated that Physcomitrella assembles a light-harvesting complex consisting of four light-harvesting proteins forming a higher-plant-like PSI superstructure. PMID:23682117

  17. Metabolite profiling of the moss Physcomitrella patens reveals evolutionary conservation of osmoprotective substances.

    PubMed

    Erxleben, Anika; Gessler, Arthur; Vervliet-Scheebaum, Marco; Reski, Ralf

    2012-02-01

    The moss Physcomitrella patens is suitable for systems biology studies, as it can be grown axenically under standardised conditions in plain mineral medium and comprises only few cell types. We report on metabolite profiling of two major P. patens tissues, filamentous protonema and leafy gametophores, from different culture conditions. A total of 96 compounds were detected, 21 of them as yet unknown in public databases. Protonema and gametophores had distinct metabolic profiles, especially with regard to saccharides, sugar derivates, amino acids, lignin precursors and nitrogen-rich storage compounds. A hydroponic culture was established for P. patens, and was used to apply drought stress under physiological conditions. This treatment led to accumulation of osmoprotectants, such as altrose, maltitol, ascorbic acid and proline. Thus, these osmoprotectants are not unique to seed plants but have evolved at an early phase of the colonization of land by plants. PMID:22038371

  18. Analyses of Physcomitrella patens Ankyrin Repeat Proteins by Computational Approach

    PubMed Central

    Mahmood, Niaz; Tamanna, Nahid

    2016-01-01

    Ankyrin (ANK) repeat containing proteins are evolutionary conserved and have functions in crucial cellular processes like cell cycle regulation and signal transduction. In this study, through an entirely in silico approach using the first release of the moss genome annotation, we found that at least 54 ANK proteins are present in P. patens. Based on their differential domain composition, the identified ANK proteins were classified into nine subfamilies. Comparative analysis of the different subfamilies of ANK proteins revealed that P. patens contains almost all the known subgroups of ANK proteins found in the other angiosperm species except for the ones having the TPR domain. Phylogenetic analysis using full length protein sequences supported the subfamily classification where the members of the same subfamily almost always clustered together. Synonymous divergence (dS) and nonsynonymous divergence (dN) ratios showed positive selection for the ANK genes of P. patens which probably helped them to attain significant functional diversity during the course of evolution. Taken together, the data provided here can provide useful insights for future functional studies of the proteins from this superfamily as well as comparative studies of ANK proteins. PMID:27429806

  19. Polyphenol oxidases in Physcomitrella: functional PPO1 knockout modulates cytokinin-dependent developmentin the moss Physcomitrella patens

    PubMed Central

    von Schwartzenberg, Klaus

    2012-01-01

    Polyphenol oxidases (PPOs) are copper-binding enzymes of the plant secondary metabolism that oxidize polyphenols to quinones. Although PPOs are nearly ubiquitous in seed plants, knowledge on their evolution and function in other plant groups is missing. This study reports on the PPO gene family in the moss Physcomitrella patens (Hedw.) B.S.G. asan example for an early divergent plant. The P. patens PPO multigene family comprises 13 paralogues. Phylogenetic analyses suggest that plant PPOs evolved with the colonization of land and that PPO duplications within the monophyletic P. patens paralogue clade occurred after the separation of the moss and seed plant lineages. PPO functionality was demonstrated for recombinant PPO6. P. patens was analysed for phenolic compounds and six substances were detected intracellularly by LC-MS analysis: 4-hydroxybenzoic acid, p-cumaric acid, protocatechuic acid, salicylic acid, caffeic acid, and an ester of caffeic acid. Targeted PPO1 knockout (d|ppo1) plants were generated and plants lacking PPO1 exhibited only ~30% of the wild-type PPO activity in the culture medium, thus suggesting extracellular localization of PPO1, which is in contrast to the mostly plastidic PPO localization in seed plants. Further, d|ppo1 lines formed significantly more gametophores with a reduced areal plant size, which could be related to an increase of endogenously produced cytokinins and indicates an impact of PPO1 on plant development. d|ppo1 plants were less tolerant towards applied 4-methylcatechol compared to the wild type, which suggests a role of extracellular PPO1 in establishing appropriate conditions by the removal of inhibitory extracellular phenolic compounds. PMID:22865913

  20. Heterologous stable expression of terpenoid biosynthetic genes using the moss Physcomitrella patens.

    PubMed

    Bach, Søren Spanner; King, Brian Christopher; Zhan, Xin; Simonsen, Henrik Toft; Hamberger, Björn

    2014-01-01

    Heterologous and stable expression of genes encoding terpenoid biosynthetic enzymes in planta is an important tool for functional characterization and is an attractive alternative to expression in microbial hosts for biotechnological production. Despite improvements to the procedure, such as streamlining of large scale Agrobacterium infiltration and upregulation of the upstream pathways, transient in planta heterologous expression quickly reaches limitations when used for production of terpenoids. Stable integration of transgenes into the nuclear genome of the moss Physcomitrella patens has already been widely recognized as a viable alternative for industrial-scale production of biopharmaceuticals. For expression of terpenoid biosynthetic genes, and reconstruction of heterologous pathways, Physcomitrella has unique attributes that makes it a very promising biotechnological host. These features include a high native tolerance to terpenoids, a simple endogenous terpenoid profile, convenient genome editing using homologous recombination, and cultivation techniques that allow up-scaling from single cells in microtiter plates to industrial photo-bioreactors. Beyond its use for functional characterization of terpenoid biosynthetic genes, engineered Physcomitrella can be a green biotechnological platform for production of terpenoids. Here, we describe two complementary and simple procedures for stable nuclear transformation of Physcomitrella with terpenoid biosynthetic genes, selection and cultivation of transgenic lines, and metabolite analysis of terpenoids produced in transgenic moss lines. We also provide tools for metabolic engineering through genome editing using homologous recombination. PMID:24777804

  1. Live Cell Microscopy-Based RNAi Screening in the Moss Physcomitrella patens.

    PubMed

    Miki, Tomohiro; Nakaoka, Yuki; Goshima, Gohta

    2016-01-01

    RNA interference (RNAi) is a powerful technique enabling the identification of the genes involved in a certain cellular process. Here, we discuss protocols for microscopy-based RNAi screening in protonemal cells of the moss Physcomitrella patens, an emerging model system for plant cell biology. Our method is characterized by the use of conditional (inducible) RNAi vectors, transgenic moss lines in which the RNAi vector is integrated, and time-lapse fluorescent microscopy. This method allows for effective and efficient screening of >100 genes involved in various cellular processes such as mitotic cell division, organelle distribution, or cell growth. PMID:27581297

  2. The potential of Physcomitrella patens as a platform for the production of plant-based vaccines.

    PubMed

    Rosales-Mendoza, Sergio; Orellana-Escobedo, Lucía; Romero-Maldonado, Andrea; Decker, Eva L; Reski, Ralf

    2014-02-01

    The moss Physcomitrella patens has a number of advantages for the production of biopharmaceuticals, including: i) availability of standardized conditions for cultivation in bioreactors; ii) not being part of the food chain; iii) high biosafety; iv) availability of highly efficient transformation methods; v) a haploid, fully sequenced genome providing genetic stability and uniform expression; vi) efficient gene targeting at the nuclear level allows for the generation of mutants with specific post-translational modifications (e.g., glycosylation patterns); and vii) oral formulations are a viable approach as no toxic effects are attributed to ingestion of this moss. In the light of this panorama, this opinion paper analyzes the possibilities of using P. patens for the production of oral vaccines and presents some specific cases where its use may represent significant progress in the field of plant-based vaccine development. The advantages represented by putative adjuvant effects of endogenous secondary metabolites and producing specific glycosylation patterns are highlighted. PMID:24405402

  3. An Innate Immunity Pathway in the Moss Physcomitrella patens[OPEN

    PubMed Central

    Bressendorff, Simon; Azevedo, Raquel; Kenchappa, Chandra Shekar; Ponce de León, Inés; Olsen, Jakob V.; Rasmussen, Magnus Wohlfahrt; Erbs, Gitte; Newman, Mari-Anne; Petersen, Morten; Mundy, John

    2016-01-01

    MAP kinase (MPK) cascades in Arabidopsis thaliana and other vascular plants are activated by developmental cues, abiotic stress, and pathogen infection. Much less is known of MPK functions in nonvascular land plants such as the moss Physcomitrella patens. Here, we provide evidence for a signaling pathway in P. patens required for immunity triggered by pathogen associated molecular patterns (PAMPs). This pathway induces rapid growth inhibition, a novel fluorescence burst, cell wall depositions, and accumulation of defense-related transcripts. Two P. patens MPKs (MPK4a and MPK4b) are phosphorylated and activated in response to PAMPs. This activation in response to the fungal PAMP chitin requires a chitin receptor and one or more MAP kinase kinase kinases and MAP kinase kinases. Knockout lines of MPK4a appear wild type but have increased susceptibility to the pathogenic fungi Botrytis cinerea and Alternaria brassisicola. Both PAMPs and osmotic stress activate some of the same MPKs in Arabidopsis. In contrast, abscisic acid treatment or osmotic stress of P. patens does not activate MPK4a or any other MPK, but activates at least one SnRK2 kinase. Signaling via MPK4a may therefore be specific to immunity, and the moss relies on other pathways to respond to osmotic stress. PMID:27268428

  4. IDENTIFICATION AND FUNCTIONAL CHARACTERIZATION OF THE MOSS PHYSCOMITRELLA PATENS DELTA5-DESATURASE GENE INVOLVED IN ARACHIDONIC AND EICOSAPENTAENOIC ACID BIOSYNTHESIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The moss Physcomitrella patens contains high levels of arachidonic acid and lesser amounts of eicosapentaenoic acid. In general, these C20 polyunsaturated fatty acids are synthesized from linoleic and alpha-linolenic acids, respectively, by a series of reactions catalyzed by a delta6-desaturase, an ...

  5. In Silico and Biochemical Analysis of Physcomitrella patens Photosynthetic Antenna: Identification of Subunits which Evolved upon Land Adaptation

    PubMed Central

    Alboresi, Alessandro; Caffarri, Stefano; Nogue, Fabien; Bassi, Roberto; Morosinotto, Tomas

    2008-01-01

    Background In eukaryotes the photosynthetic antenna system is composed of subunits encoded by the light harvesting complex (Lhc) multigene family. These proteins play a key role in photosynthesis and are involved in both light harvesting and photoprotection. The moss Physcomitrella patens is a member of a lineage that diverged from seed plants early after land colonization and therefore by studying this organism, we may gain insight into adaptations to the aerial environment. Principal Findings In this study, we characterized the antenna protein multigene family in Physcomitrella patens, by sequence analysis as well as biochemical and functional investigations. Sequence identification and analysis showed that some antenna polypeptides, such as Lhcb3 and Lhcb6, are present only in land organisms, suggesting they play a role in adaptation to the sub-aerial environment. Our functional analysis which showed that photo-protective mechanisms in Physcomitrella patens are very similar to those in seed plants fits with this hypothesis. In particular, Physcomitrella patens also activates Non Photochemical Quenching upon illumination, consistent with the detection of an ortholog of the PsbS protein. As a further adaptation to terrestrial conditions, the content of Photosystem I low energy absorbing chlorophylls also increased, as demonstrated by differences in Lhca3 and Lhca4 polypeptide sequences, in vitro reconstitution experiments and low temperature fluorescence spectra. Conclusions This study highlights the role of Lhc family members in environmental adaptation and allowed proteins associated with mechanisms of stress resistance to be identified within this large family. PMID:18446222

  6. A Novel Plant Major Intrinsic Protein in Physcomitrella patens Most Similar to Bacterial Glycerol Channels1

    PubMed Central

    Gustavsson, Sofia; Lebrun, Anne-Sophie; Nordén, Kristina; Chaumont, François; Johanson, Urban

    2005-01-01

    A gene encoding a novel fifth type of major intrinsic protein (MIP) in plants has been identified in the moss Physcomitrella patens. Phylogenetic analyses show that this protein, GlpF-like intrinsic protein (GIP1;1), is closely related to a subclass of glycerol transporters in bacteria that in addition to glycerol are highly permeable to water. A likely explanation of the occurrence of this bacterial-like MIP in P. patens is horizontal gene transfer. The expressed P. patens GIP1;1 gene contains five introns and encodes a unique C-loop extension of approximately 110 amino acid residues that has no obvious similarity with any other known protein. Based on alignments and structural comparisons with other MIPs, GIP1;1 is suggested to have retained the permeability for glycerol but not for water. Studies on heterologously expressed GIP1;1 in Xenopus laevis oocytes confirm the predicted substrate specificity. Interestingly, proteins of one of the plant-specific subgroups of MIPs, the NOD26-like intrinsic proteins, are also facilitating the transport of glycerol and have previously been suggested to have evolved from a horizontally transferred bacterial gene. Further studies on localization and searches for GIP1;1 homologs in other plants will clarify the function and significance of this new plant MIP. PMID:16113222

  7. A Transcriptome Atlas of Physcomitrella patens Provides Insights into the Evolution and Development of Land Plants.

    PubMed

    Ortiz-Ramírez, Carlos; Hernandez-Coronado, Marcela; Thamm, Anna; Catarino, Bruno; Wang, Mingyi; Dolan, Liam; Feijó, José A; Becker, Jörg D

    2016-02-01

    Identifying the genetic mechanisms that underpin the evolution of new organ and tissue systems is an aim of evolutionary developmental biology. Comparative functional genetic studies between angiosperms and bryophytes can define those genetic changes that were responsible for developmental innovations. Here, we report the generation of a transcriptome atlas covering most phases in the life cycle of the model bryophyte Physcomitrella patens, including detailed sporophyte developmental progression. We identified a comprehensive set of sporophyte-specific transcription factors, and found that many of these genes have homologs in angiosperms that function in developmental processes such as flowering and shoot branching. Deletion of the PpTCP5 transcription factor results in development of supernumerary sporangia attached to a single seta, suggesting that it negatively regulates branching in the moss sporophyte. Given that TCP genes repress branching in angiosperms, we suggest that this activity is ancient. Finally, comparison of P. patens and Arabidopsis thaliana transcriptomes led us to the identification of a conserved core of transcription factors expressed in tip-growing cells. We identified modifications in the expression patterns of these genes that could account for developmental differences between P. patens tip-growing cells and A. thaliana pollen tubes and root hairs. PMID:26687813

  8. Quantitative analysis of organelle distribution and dynamics in Physcomitrella patens protonemal cells

    PubMed Central

    2012-01-01

    Background In the last decade, the moss Physcomitrella patens has emerged as a powerful plant model system, amenable for genetic manipulations not possible in any other plant. This moss is particularly well suited for plant polarized cell growth studies, as in its protonemal phase, expansion is restricted to the tip of its cells. Based on pollen tube and root hair studies, it is well known that tip growth requires active secretion and high polarization of the cellular components. However, such information is still missing in Physcomitrella patens. To gain insight into the mechanisms underlying the participation of organelle organization in tip growth, it is essential to determine the distribution and the dynamics of the organelles in moss cells. Results We used fluorescent protein fusions to visualize and track Golgi dictyosomes, mitochondria, and peroxisomes in live protonemal cells. We also visualized and tracked chloroplasts based on chlorophyll auto-fluorescence. We showed that in protonemata all four organelles are distributed in a gradient from the tip of the apical cell to the base of the sub-apical cell. For example, the density of Golgi dictyosomes is 4.7 and 3.4 times higher at the tip than at the base in caulonemata and chloronemata respectively. While Golgi stacks are concentrated at the extreme tip of the caulonemata, chloroplasts and peroxisomes are totally excluded. Interestingly, caulonemata, which grow faster than chloronemata, also contain significantly more Golgi dictyosomes and fewer chloroplasts than chloronemata. Moreover, the motility analysis revealed that organelles in protonemata move with low persistency and average instantaneous speeds ranging from 29 to 75 nm/s, which are at least three orders of magnitude slower than those of pollen tube or root hair organelles. Conclusions To our knowledge, this study reports the first quantitative analysis of organelles in Physcomitrella patens and will make possible comparisons of the distribution

  9. Characterization of a PDK1 Homologue from the Moss Physcomitrella patens1[C][W][OA

    PubMed Central

    Dittrich, Anna C. Nelson; Devarenne, Timothy P.

    2012-01-01

    The serine/threonine protein kinase 3-phosphoinositide-dependent protein kinase 1 (PDK1) is a highly conserved eukaryotic kinase that is a central regulator of many AGC kinase subfamily members. Through its regulation of AGC kinases, PDK1 controls many basic cellular processes, from translation to cell survival. While many of these PDK1-regulated processes are conserved across kingdoms, it is not well understood how PDK1 may have evolved within kingdoms. In order to better understand PDK1 evolution within plants, we have isolated and characterized the PDK1 gene from the moss Physcomitrella patens (PpPDK1), a nonvascular representative of early land plants. PpPDK1 is similar to other plant PDK1s in that it can functionally complement a yeast PDK1 knockout line. However, unlike PDK1 from other plants, the P. patens PDK1 protein does not bind phospholipids due to a lack of the lipid-binding pleckstrin homology domain, which is used for lipid-mediated regulation of PDK1 activity. Sequence analysis of several PDK1 proteins suggests that lipid regulation of PDK1 may not commonly occur in algae and nonvascular land plants. PpPDK1 can phosphorylate AGC kinase substrates from tomato (Solanum lycopersicum) and P. patens at the predicted PDK1 phosphorylation site, indicating that the PpPDK1 substrate phosphorylation site is conserved with higher plants. We have also identified residues within the PpPDK1 kinase domain that affect kinase activity and show that a mutant with highly reduced kinase activity can still confer cell viability in both yeast and P. patens. These studies lay the foundation for further analysis of the evolution of PDK1 within plants. PMID:22158524

  10. Exploring the Mechanism of Physcomitrella patens Desiccation Tolerance through a Proteomic Strategy1[W][OA

    PubMed Central

    Wang, Xiao Qin; Yang, Ping Fang; Liu, Zheng; Liu, Wei Zhong; Hu, Yong; Chen, Hui; Kuang, Ting Yun; Pei, Zhen Ming; Shen, Shi Hua; He, Yi Kun

    2009-01-01

    The moss Physcomitrella patens has been shown to tolerate abiotic stresses, including salinity, cold, and desiccation. To better understand this plant's mechanism of desiccation tolerance, we have applied cellular and proteomic analyses. Gametophores were desiccated over 1 month to 10% of their original fresh weight. We report that during the course of dehydration, several related processes are set in motion: plasmolysis, chloroplast remodeling, and microtubule depolymerization. Despite the severe desiccation, the membrane system maintains integrity. Through two-dimensional gel electrophoresis and image analysis, we identified 71 proteins as desiccation responsive. Following identification and functional categorization, we found that a majority of the desiccation-responsive proteins were involved in metabolism, cytoskeleton, defense, and signaling. Degradation of cytoskeletal proteins might result in cytoskeletal disassembly and consequent changes in the cell structure. Late embryogenesis abundant proteins and reactive oxygen species-scavenging enzymes are both prominently induced, and they might help to diminish the damage brought by desiccation. PMID:19211702

  11. Efficient Polyethylene Glycol (PEG) Mediated Transformation of the Moss Physcomitrella patens

    PubMed Central

    Liu, Yen-Chun; Vidali, Luis

    2011-01-01

    A simple and efficient method to transform Physcomitrella pantens protoplasts is described. This method is adapted from protocols for Physocmitrella protonemal protoplast and Arabidopsis mesophyll protoplast transformation1. Due to its capacity to undergo efficient mitotic homologous recombination, Physcomitrella patens has emerged as an important model system in recent years2. This capacity allows high frequencies of gene targeting3-9, which is not seen in other model plants such as Arabidopsis. To take full advantage of this system, we need an effective and easy method to deliver DNA into moss cells. The most common ways to transform this moss are particle bombardment10 and PEG-mediated DNA uptake11. Although particle bombardment can produce a high transformation efficiency12, gene guns are not readily available to many laboratories and the protocol is difficult to standardize. On the other hand, PEG mediated transformation does not require specialized equipments, and can be performed in any laboratory with a sterile hood. Here, we show a simple and highly efficient method for transformation of moss protoplasts. This method can generate more than 120 transient transformants per microgram of DNA, which is an improvement from the most efficient protocol previously reported13. Because of its simplicity, efficiency, and reproducibility, this method can be applied to projects requiring large number of transformants as well as for routine transformation. PMID:21540817

  12. Myosin XI Is Essential for Tip Growth in Physcomitrella patens[W

    PubMed Central

    Vidali, Luis; Burkart, Graham M.; Augustine, Robert C.; Kerdavid, Erin; Tüzel, Erkan; Bezanilla, Magdalena

    2010-01-01

    Class XI myosins are plant specific and responsible for cytoplasmic streaming. Because of the large number of myosin XI genes in angiosperms, it has been difficult to determine their precise role, particularly with respect to tip growth. The moss Physcomitrella patens provides an ideal system to study myosin XI function. P. patens has only two myosin XI genes, and these genes encode proteins that are 94% identical to each other. To determine their role in tip growth, we used RNA interference to specifically silence each myosin XI gene using 5′ untranslated region sequences. We discovered that the two myosin XI genes are functionally redundant, since silencing of either gene does not affect growth or polarity. However, simultaneous silencing of both myosin XIs results in severely stunted plants composed of small rounded cells. Although similar to the phenotype resulting from silencing of other actin-associated proteins, we show that this phenotype is not due to altered actin dynamics. Consistent with a role in tip growth, we show that a functional, full-length fusion of monomeric enhanced green fluorescent protein (mEGFP) to myosin XI accumulates at a subcortical, apical region of actively growing protonemal cells. PMID:20525854

  13. Immuno and Affinity Cytochemical Analysis of Cell Wall Composition in the Moss Physcomitrella patens

    PubMed Central

    Berry, Elizabeth A.; Tran, Mai L.; Dimos, Christos S.; Budziszek, Michael J.; Scavuzzo-Duggan, Tess R.; Roberts, Alison W.

    2016-01-01

    In contrast to homeohydric vascular plants, mosses employ a poikilohydric strategy for surviving in the dry aerial environment. A detailed understanding of the structure, composition, and development of moss cell walls can contribute to our understanding of not only the evolution of overall cell wall complexity, but also the differences that have evolved in response to selection for different survival strategies. The model moss species Physcomitrella patens has a predominantly haploid lifecycle consisting of protonemal filaments that regenerate from protoplasts and enlarge by tip growth, and leafy gametophores composed of cells that enlarge by diffuse growth and differentiate into several different types. Advantages for genetic studies include methods for efficient targeted gene modification and extensive genomic resources. Immuno and affinity cytochemical labeling were used to examine the distribution of polysaccharides and proteins in regenerated protoplasts, protonemal filaments, rhizoids, and sectioned gametophores of P. patens. The cell wall composition of regenerated protoplasts was also characterized by flow cytometry. Crystalline cellulose was abundant in the cell walls of regenerating protoplasts and protonemal cells that developed on media of high osmolarity, whereas homogalactuonan was detected in the walls of protonemal cells that developed on low osmolarity media and not in regenerating protoplasts. Mannan was the major hemicellulose detected in all tissues tested. Arabinogalactan proteins were detected in different cell types by different probes, consistent with structural heterogneity. The results reveal developmental and cell type specific differences in cell wall composition and provide a basis for analyzing cell wall phenotypes in knockout mutants. PMID:27014284

  14. In vivo assembly of DNA-fragments in the moss, Physcomitrella patens.

    PubMed

    King, Brian Christopher; Vavitsas, Konstantinos; Ikram, Nur Kusaira Binti Khairul; Schrøder, Josephine; Scharff, Lars B; Hamberger, Björn; Jensen, Poul Erik; Simonsen, Henrik Toft

    2016-01-01

    Direct assembly of multiple linear DNA fragments via homologous recombination, a phenomenon known as in vivo assembly or transformation associated recombination, is used in biotechnology to assemble DNA constructs ranging in size from a few kilobases to full synthetic microbial genomes. It has also enabled the complete replacement of eukaryotic chromosomes with heterologous DNA. The moss Physcomitrella patens, a non-vascular and spore producing land plant (Bryophyte), has a well-established capacity for homologous recombination. Here, we demonstrate the in vivo assembly of multiple DNA fragments in P. patens with three examples of effective genome editing: we (i) efficiently deleted a genomic locus for diterpenoid metabolism yielding a biosynthetic knockout, (ii) introduced a salt inducible promoter, and (iii) re-routed endogenous metabolism into the formation of amorphadiene, a precursor of high-value therapeutics. These proof-of-principle experiments pave the way for more complex and increasingly flexible approaches for large-scale metabolic engineering in plant biotechnology. PMID:27126800

  15. Giant peroxisomes in a moss (Physcomitrella patens) peroxisomal biogenesis factor 11 mutant.

    PubMed

    Kamisugi, Yasuko; Mitsuya, Shiro; El-Shami, Mahmoud; Knight, Celia D; Cuming, Andrew C; Baker, Alison

    2016-01-01

    Peroxisomal biogenesis factor 11 (PEX11) proteins are found in yeasts, mammals and plants, and play a role in peroxisome morphology and regulation of peroxisome division. The moss Physcomitrella patens has six PEX11 isoforms which fall into two subfamilies, similar to those found in monocots and dicots. We carried out targeted gene disruption of the Phypa_PEX11-1 gene and compared the morphological and cellular phenotypes of the wild-type and mutant strains. The mutant grew more slowly and the development of gametophores was retarded. Mutant chloronemal filaments contained large cellular structures which excluded all other cellular organelles. Expression of fluorescent reporter proteins revealed that the mutant strain had greatly enlarged peroxisomes up to 10 μm in diameter. Expression of a vacuolar membrane marker confirmed that the enlarged structures were not vacuoles, or peroxisomes sequestered within vacuoles as a result of pexophagy. Phypa_PEX11 targeted to peroxisome membranes could rescue the knock out phenotype and interacted with Fission1 on the peroxisome membrane. Moss PEX11 functions in peroxisome division similar to PEX11 in other organisms but the mutant phenotype is more extreme and environmentally determined, making P. patens a powerful system in which to address mechanisms of peroxisome proliferation and division. PMID:26542980

  16. Genome-wide transcriptomic analysis of the sporophyte of the moss Physcomitrella patens

    PubMed Central

    O’Donoghue, Martin-Timothy; Chater, Caspar; Wallace, Simon; Gray, Julie E.; Beerling, David J.; Fleming, Andrew J.

    2013-01-01

    Bryophytes, the most basal of the extant land plants, diverged at least 450 million years ago. A major feature of these plants is the biphasic alternation of generations between a dominant haploid gametophyte and a minor diploid sporophyte phase. These dramatic differences in form and function occur in a constant genetic background, raising the question of whether the switch from gametophyte-to-sporophyte development reflects major changes in the spectrum of genes being expressed or alternatively whether only limited changes in gene expression occur and the differences in plant form are due to differences in how the gene products are put together. This study performed replicated microarray analyses of RNA from several thousand dissected and developmentally staged sporophytes of the moss Physcomitrella patens, allowing analysis of the transcriptomes of the sporophyte and early gametophyte, as well as the early stages of moss sporophyte development. The data indicate that more significant changes in transcript profile occur during the switch from gametophyte to sporophyte than recently reported, with over 12% of the entire transcriptome of P. patens being altered during this major developmental transition. Analysis of the types of genes contributing to these differences supports the view of the early sporophyte being energetically and nutritionally dependent on the gametophyte, provides a profile of homologues to genes involved in angiosperm stomatal development and physiology which suggests a deeply conserved mechanism of stomatal control, and identifies a novel series of transcription factors associated with moss sporophyte development. PMID:23888066

  17. Endogenous Small-Noncoding RNAs and Potential Functions in Desiccation Tolerance in Physcomitrella Patens

    PubMed Central

    Xia, Jing; Wang, Xiaoqin; Perroud, Pierre-François; He, Yikun; Quatrano, Ralph; Zhang, Weixiong

    2016-01-01

    Early land plants like moss Physcomitrella patens have developed remarkable drought tolerance. Phytohormone abscisic acid (ABA) protects seeds during water stress by activating genes through transcription factors such as ABSCISIC ACID INSENSITIVE (ABI3). Small noncoding RNA (sncRNA), including microRNAs (miRNAs) and endogenous small-interfering RNAs (endo-siRNAs), are key gene regulators in eukaryotes, playing critical roles in stress tolerance in plants. Combining next-generation sequencing and computational analysis, we profiled and characterized sncRNA species from two ABI3 deletion mutants and the wild type P. patens that were subject to ABA treatment in dehydration and rehydration stages. Small RNA profiling using deep sequencing helped identify 22 novel miRNAs and 6 genomic loci producing trans-acting siRNAs (ta-siRNAs) including TAS3a to TAS3e and TAS6. Data from degradome profiling showed that ABI3 genes (ABI3a/b/c) are potentially regulated by the plant-specific miR536 and that other ABA-relevant genes are regulated by miRNAs and ta-siRNAs. We also observed broad variations of miRNAs and ta-siRNAs expression across different stages, suggesting that they could potentially influence desiccation tolerance. This study provided evidence on the potential roles of sncRNA in mediating desiccation-responsive pathways in early land plants. PMID:27443635

  18. Immuno and Affinity Cytochemical Analysis of Cell Wall Composition in the Moss Physcomitrella patens

    DOE PAGESBeta

    Berry, Elizabeth A.; Tran, Mai L.; Dimos, Christos S.; Budziszek, Michael J.; Scavuzzo-Duggan, Tess R.; Roberts, Alison W.

    2016-03-08

    In contrast to homeohydric vascular plants, mosses employ a poikilohydric strategy for surviving in the dry aerial environment. A detailed understanding of the structure, composition, and development of moss cell walls can contribute to our understanding of not only the evolution of overall cell wall complexity, but also the differences that have evolved in response to selection for different survival strategies. The model moss species Physcomitrella patens has a predominantly haploid lifecycle consisting of protonemal filaments that regenerate from protoplasts and enlarge by tip growth, and leafy gametophores composed of cells that enlarge by diffuse growth and differentiate into severalmore » different types. Advantages for genetic studies include methods for efficient targeted gene modification and extensive genomic resources. Immuno and affinity cytochemical labeling were used to examine the distribution of polysaccharides and proteins in regenerated protoplasts, protonemal filaments, rhizoids, and sectioned gametophores of P. patens. The cell wall composition of regenerated protoplasts was also characterized by flow cytometry. Crystalline cellulose was abundant in the cell walls of regenerating protoplasts and protonemal cells that developed on media of high osmolarity, whereas homogalactuonan was detected in the walls of protonemal cells that developed on low osmolarity media and not in regenerating protoplasts. Mannan was the major hemicellulose detected in all tissues tested. Arabinogalactan proteins were detected in different cell types by different probes, consistent with structural heterogneity. The results reveal developmental and cell type specific differences in cell wall composition and provide a basis for analyzing cell wall phenotypes in knockout mutants.« less

  19. Endogenous Small-Noncoding RNAs and Potential Functions in Desiccation Tolerance in Physcomitrella Patens.

    PubMed

    Xia, Jing; Wang, Xiaoqin; Perroud, Pierre-François; He, Yikun; Quatrano, Ralph; Zhang, Weixiong

    2016-01-01

    Early land plants like moss Physcomitrella patens have developed remarkable drought tolerance. Phytohormone abscisic acid (ABA) protects seeds during water stress by activating genes through transcription factors such as ABSCISIC ACID INSENSITIVE (ABI3). Small noncoding RNA (sncRNA), including microRNAs (miRNAs) and endogenous small-interfering RNAs (endo-siRNAs), are key gene regulators in eukaryotes, playing critical roles in stress tolerance in plants. Combining next-generation sequencing and computational analysis, we profiled and characterized sncRNA species from two ABI3 deletion mutants and the wild type P. patens that were subject to ABA treatment in dehydration and rehydration stages. Small RNA profiling using deep sequencing helped identify 22 novel miRNAs and 6 genomic loci producing trans-acting siRNAs (ta-siRNAs) including TAS3a to TAS3e and TAS6. Data from degradome profiling showed that ABI3 genes (ABI3a/b/c) are potentially regulated by the plant-specific miR536 and that other ABA-relevant genes are regulated by miRNAs and ta-siRNAs. We also observed broad variations of miRNAs and ta-siRNAs expression across different stages, suggesting that they could potentially influence desiccation tolerance. This study provided evidence on the potential roles of sncRNA in mediating desiccation-responsive pathways in early land plants. PMID:27443635

  20. In vivo assembly of DNA-fragments in the moss, Physcomitrella patens

    PubMed Central

    King, Brian Christopher; Vavitsas, Konstantinos; Ikram, Nur Kusaira Binti Khairul; Schrøder, Josephine; Scharff, Lars B.; Hamberger, Björn; Jensen, Poul Erik; Simonsen, Henrik Toft

    2016-01-01

    Direct assembly of multiple linear DNA fragments via homologous recombination, a phenomenon known as in vivo assembly or transformation associated recombination, is used in biotechnology to assemble DNA constructs ranging in size from a few kilobases to full synthetic microbial genomes. It has also enabled the complete replacement of eukaryotic chromosomes with heterologous DNA. The moss Physcomitrella patens, a non-vascular and spore producing land plant (Bryophyte), has a well-established capacity for homologous recombination. Here, we demonstrate the in vivo assembly of multiple DNA fragments in P. patens with three examples of effective genome editing: we (i) efficiently deleted a genomic locus for diterpenoid metabolism yielding a biosynthetic knockout, (ii) introduced a salt inducible promoter, and (iii) re-routed endogenous metabolism into the formation of amorphadiene, a precursor of high-value therapeutics. These proof-of-principle experiments pave the way for more complex and increasingly flexible approaches for large-scale metabolic engineering in plant biotechnology. PMID:27126800

  1. Defective Kernel 1 (DEK1) is required for three-dimensional growth in Physcomitrella patens

    PubMed Central

    Perroud, Pierre-François; Demko, Viktor; Johansen, Wenche; Wilson, Robert C; Olsen, Odd-Arne; Quatrano, Ralph S

    2014-01-01

    Orientation of cell division is critical for plant morphogenesis. This is evident in the formation and function of meristems and for morphogenetic transitions. Mosses undergo such transitions: from two-dimensional tip-growing filaments (protonema) to the generation of three-dimensional leaf-like structures (gametophores). The Defective Kernel 1 (DEK1) protein plays a key role in the perception of and/or response to positional cues that specify the formation and function of the epidermal layer in developing seeds of flowering plants. The moss Physcomitrella patens contains the highly conserved DEK1 gene. Using efficient gene targeting, we generated a precise PpDEK1 deletion (Δdek1), which resulted in normal filamentous growth of protonema. Two distinct mutant phenotypes were observed: an excess of buds on the protonema, and abnormal cell divisions in the emerging buds resulting in developmental arrest and the absence of three-dimensional growth. Overexpression of a complete PpDEK1 cDNA, or the calpain domain of PpDEK1 alone, successfully complements both phenotypes. These results in P. patens demonstrate the morphogenetic importance of the DEK1 protein in the control of oriented cell divisions. As it is not for protonema, it will allow dissection of the structure/function relationships of the different domains of DEK1 using gene targeting in null mutant background. PMID:24844771

  2. Immuno and Affinity Cytochemical Analysis of Cell Wall Composition in the Moss Physcomitrella patens.

    PubMed

    Berry, Elizabeth A; Tran, Mai L; Dimos, Christos S; Budziszek, Michael J; Scavuzzo-Duggan, Tess R; Roberts, Alison W

    2016-01-01

    In contrast to homeohydric vascular plants, mosses employ a poikilohydric strategy for surviving in the dry aerial environment. A detailed understanding of the structure, composition, and development of moss cell walls can contribute to our understanding of not only the evolution of overall cell wall complexity, but also the differences that have evolved in response to selection for different survival strategies. The model moss species Physcomitrella patens has a predominantly haploid lifecycle consisting of protonemal filaments that regenerate from protoplasts and enlarge by tip growth, and leafy gametophores composed of cells that enlarge by diffuse growth and differentiate into several different types. Advantages for genetic studies include methods for efficient targeted gene modification and extensive genomic resources. Immuno and affinity cytochemical labeling were used to examine the distribution of polysaccharides and proteins in regenerated protoplasts, protonemal filaments, rhizoids, and sectioned gametophores of P. patens. The cell wall composition of regenerated protoplasts was also characterized by flow cytometry. Crystalline cellulose was abundant in the cell walls of regenerating protoplasts and protonemal cells that developed on media of high osmolarity, whereas homogalactuonan was detected in the walls of protonemal cells that developed on low osmolarity media and not in regenerating protoplasts. Mannan was the major hemicellulose detected in all tissues tested. Arabinogalactan proteins were detected in different cell types by different probes, consistent with structural heterogneity. The results reveal developmental and cell type specific differences in cell wall composition and provide a basis for analyzing cell wall phenotypes in knockout mutants. PMID:27014284

  3. Physcomitrella patens activates reinforcement of the cell wall, programmed cell death and accumulation of evolutionary conserved defense signals...upon Botrytis cinerea infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The moss Physcomitrella patens is an evolutionarily basal model system suitable to analyze plant defense responses activated after pathogen assault. Upon infection with the necrotroph Botrytis cinerea (B. cinerea), several defense mechanisms are induced in P. patens, including the fortification of t...

  4. Evolutionary Conservation of Xylan Biosynthetic Genes in Selaginella moellendorffii and Physcomitrella patens.

    PubMed

    Haghighat, Marziyeh; Teng, Quincy; Zhong, Ruiqin; Ye, Zheng-Hua

    2016-08-01

    Xylan is a major cross-linking hemicellulose in secondary walls of vascular tissues, and the recruitment of xylan as a secondary wall component was suggested to be a pivotal event for the evolution of vascular tissues. To decipher the evolution of xylan structure and xylan biosynthetic genes, we analyzed xylan substitution patterns and characterized genes mediating methylation of glucuronic acid (GlcA) side chains in xylan of the model seedless vascular plant, Selaginella moellendorffii, and investigated GT43 genes from S. moellendorffii and the model non-vascular plant, Physcomitrella patens, for their roles in xylan biosynthesis. Using nuclear magentic resonance spectroscopy, we have demonstrated that S. moellendorffii xylan consists of β-1,4-linked xylosyl residues subsituted solely with methylated GlcA residues and that xylans from both S. moellendorffii and P. patens are acetylated at O-2 and O-3. To investigate genes responsible for GlcA methylation of xylan, we identified two DUF579 genes in the S. moellendorffii genome and showed that one of them, SmGXM, encodes a glucuronoxylan methyltransferase capable of adding the methyl group onto the GlcA side chain of xylooligomers. Furthermore, we revealed that the two GT43 genes in S. moellendorffii, SmGT43A and SmGT43B, are functional orthologs of the Arabidopsis xylan backbone biosynthetic genes IRX9 and IRX14, respectively, indicating the evolutionary conservation of the involvement of two functionally non-redundant groups of GT43 genes in xylan backbone biosynthesis between seedless and seed vascular plants. Among the five GT43 genes in P. patens, PpGT43A was found to be a functional ortholog of Arabidopsis IRX9, suggesting that the recruitment of GT43 genes in xylan backbone biosynthesis occurred when non-vascular plants appeared on land. PMID:27345025

  5. Bending of Protonema Cells in a Plastid Glycolate/Glycerate Transporter Knockout Line of Physcomitrella patens

    PubMed Central

    Nakahara, Jin; Takechi, Katsuaki; Myouga, Fumiyoshi; Moriyama, Yasuko; Sato, Hiroshi; Takio, Susumu; Takano, Hiroyoshi

    2015-01-01

    Arabidopsis LrgB (synonym PLGG1) is a plastid glycolate/glycerate transporter associated with recycling of 2-phosphoglycolate generated via the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). We isolated two homologous genes (PpLrgB1 and B2) from the moss Physcomitrella patens. Phylogenetic tree analysis showed that PpLrgB1 was monophyletic with LrgB proteins of land plants, whereas PpLrgB2 was divergent from the green plant lineage. Experiments with PpLrgB–GFP fusion proteins suggested that both PpLrgB1 and B2 proteins were located in chloroplasts. We generated PpLrgB single (∆B1 and ∆B2) and double (∆B1/∆B2)-knockout lines using gene targeting of P. patens. The ∆B1 plants showed decreases in growth and photosynthetic activity, and their protonema cells were bent and accumulated glycolate. However, because ∆B2 and ∆B1/∆B2 plants showed no obvious phenotypic change relative to the wild-type or ∆B1 plants, respectively, the function of PpLrgB2 remains unclear. Arabidopsis LrgB could complement the ∆B1 phenotype, suggesting that the function of PpLrgB1 is the same as that of AtLrgB. When ∆B1 was grown under high-CO2 conditions, all novel phenotypes were suppressed. Moreover, protonema cells of wild-type plants exhibited a bending phenotype when cultured on media containing glycolate or glycerate, suggesting that accumulation of photorespiratory metabolites caused P. patens cells to bend. PMID:25793376

  6. Bending of protonema cells in a plastid glycolate/glycerate transporter knockout line of Physcomitrella patens.

    PubMed

    Nakahara, Jin; Takechi, Katsuaki; Myouga, Fumiyoshi; Moriyama, Yasuko; Sato, Hiroshi; Takio, Susumu; Takano, Hiroyoshi

    2015-01-01

    Arabidopsis LrgB (synonym PLGG1) is a plastid glycolate/glycerate transporter associated with recycling of 2-phosphoglycolate generated via the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). We isolated two homologous genes (PpLrgB1 and B2) from the moss Physcomitrella patens. Phylogenetic tree analysis showed that PpLrgB1 was monophyletic with LrgB proteins of land plants, whereas PpLrgB2 was divergent from the green plant lineage. Experiments with PpLrgB-GFP fusion proteins suggested that both PpLrgB1 and B2 proteins were located in chloroplasts. We generated PpLrgB single (∆B1 and ∆B2) and double (∆B1/∆B2)-knockout lines using gene targeting of P. patens. The ∆B1 plants showed decreases in growth and photosynthetic activity, and their protonema cells were bent and accumulated glycolate. However, because ∆B2 and ∆B1/∆B2 plants showed no obvious phenotypic change relative to the wild-type or ∆B1 plants, respectively, the function of PpLrgB2 remains unclear. Arabidopsis LrgB could complement the ∆B1 phenotype, suggesting that the function of PpLrgB1 is the same as that of AtLrgB. When ∆B1 was grown under high-CO2 conditions, all novel phenotypes were suppressed. Moreover, protonema cells of wild-type plants exhibited a bending phenotype when cultured on media containing glycolate or glycerate, suggesting that accumulation of photorespiratory metabolites caused P. patens cells to bend. PMID:25793376

  7. Genome-wide expression analysis offers new insights into the origin and evolution of Physcomitrella patens stress response.

    PubMed

    Khraiwesh, Basel; Qudeimat, Enas; Thimma, Manjula; Chaiboonchoe, Amphun; Jijakli, Kenan; Alzahmi, Amnah; Arnoux, Marc; Salehi-Ashtiani, Kourosh

    2015-01-01

    Changes in the environment, such as those caused by climate change, can exert stress on plant growth, diversity and ultimately global food security. Thus, focused efforts to fully understand plant response to stress are urgently needed in order to develop strategies to cope with the effects of climate change. Because Physcomitrella patens holds a key evolutionary position bridging the gap between green algae and higher plants, and because it exhibits a well-developed stress tolerance, it is an excellent model for such exploration. Here, we have used Physcomitrella patens to study genome-wide responses to abiotic stress through transcriptomic analysis by a high-throughput sequencing platform. We report a comprehensive analysis of transcriptome dynamics, defining profiles of elicited gene regulation responses to abiotic stress-associated hormone Abscisic Acid (ABA), cold, drought, and salt treatments. We identified more than 20,000 genes expressed under each aforementioned stress treatments, of which 9,668 display differential expression in response to stress. The comparison of Physcomitrella patens stress regulated genes with unicellular algae, vascular and flowering plants revealed genomic delineation concomitant with the evolutionary movement to land, including a general gene family complexity and loss of genes associated with different functional groups. PMID:26615914

  8. Genome-wide expression analysis offers new insights into the origin and evolution of Physcomitrella patens stress response

    PubMed Central

    Khraiwesh, Basel; Qudeimat, Enas; Thimma, Manjula; Chaiboonchoe, Amphun; Jijakli, Kenan; Alzahmi, Amnah; Arnoux, Marc; Salehi-Ashtiani, Kourosh

    2015-01-01

    Changes in the environment, such as those caused by climate change, can exert stress on plant growth, diversity and ultimately global food security. Thus, focused efforts to fully understand plant response to stress are urgently needed in order to develop strategies to cope with the effects of climate change. Because Physcomitrella patens holds a key evolutionary position bridging the gap between green algae and higher plants, and because it exhibits a well-developed stress tolerance, it is an excellent model for such exploration. Here, we have used Physcomitrella patens to study genome-wide responses to abiotic stress through transcriptomic analysis by a high-throughput sequencing platform. We report a comprehensive analysis of transcriptome dynamics, defining profiles of elicited gene regulation responses to abiotic stress-associated hormone Abscisic Acid (ABA), cold, drought, and salt treatments. We identified more than 20,000 genes expressed under each aforementioned stress treatments, of which 9,668 display differential expression in response to stress. The comparison of Physcomitrella patens stress regulated genes with unicellular algae, vascular and flowering plants revealed genomic delineation concomitant with the evolutionary movement to land, including a general gene family complexity and loss of genes associated with different functional groups. PMID:26615914

  9. Identification and characterization of NAGNAG alternative splicing in the moss Physcomitrella patens

    PubMed Central

    2010-01-01

    Background Alternative splicing (AS) involving tandem acceptors that are separated by three nucleotides (NAGNAG) is an evolutionarily widespread class of AS, which is well studied in Homo sapiens (human) and Mus musculus (mouse). It has also been shown to be common in the model seed plants Arabidopsis thaliana and Oryza sativa (rice). In one of the first studies involving sequence-based prediction of AS in plants, we performed a genome-wide identification and characterization of NAGNAG AS in the model plant Physcomitrella patens, a moss. Results Using Sanger data, we found 295 alternatively used NAGNAG acceptors in P. patens. Using 31 features and training and test datasets of constitutive and alternative NAGNAGs, we trained a classifier to predict the splicing outcome at NAGNAG tandem splice sites (alternative splicing, constitutive at the first acceptor, or constitutive at the second acceptor). Our classifier achieved a balanced specificity and sensitivity of ≥ 89%. Subsequently, a classifier trained exclusively on data well supported by transcript evidence was used to make genome-wide predictions of NAGNAG splicing outcomes. By generation of more transcript evidence from a next-generation sequencing platform (Roche 454), we found additional evidence for NAGNAG AS, with altogether 664 alternative NAGNAGs being detected in P. patens using all currently available transcript evidence. The 454 data also enabled us to validate the predictions of the classifier, with 64% (80/125) of the well-supported cases of AS being predicted correctly. Conclusion NAGNAG AS is just as common in the moss P. patens as it is in the seed plants A. thaliana and O. sativa (but not conserved on the level of orthologous introns), and can be predicted with high accuracy. The most informative features are the nucleotides in the NAGNAG and in its immediate vicinity, along with the splice sites scores, as found earlier for NAGNAG AS in animals. Our results suggest that the mechanism behind

  10. Arabidopsis thaliana IRX10 and two related proteins from psyllium and Physcomitrella patens are xylan xylosyltransferases.

    PubMed

    Jensen, Jacob Krüger; Johnson, Nathan Robert; Wilkerson, Curtis Gene

    2014-10-01

    The enzymatic mechanism that governs the synthesis of the xylan backbone polymer, a linear chain of xylose residues connected by β-1,4 glycosidic linkages, has remained elusive. Xylan is a major constituent of many kinds of plant cell walls, and genetic studies have identified multiple genes that affect xylan formation. In this study, we investigate several homologs of one of these previously identified xylan-related genes, IRX10 from Arabidopsis thaliana, by heterologous expression and in vitro xylan xylosyltransferase assay. We find that an IRX10 homolog from the moss Physcomitrella patens displays robust activity, and we show that the xylosidic linkage formed is a β-1,4 linkage, establishing this protein as a xylan β-1,4-xylosyltransferase. We also find lower but reproducible xylan xylosyltransferase activity with A. thaliana IRX10 and with a homolog from the dicot plant Plantago ovata, showing that xylan xylosyltransferase activity is conserved over large evolutionary distance for these proteins. PMID:25139408

  11. Profilin Is Essential for Tip Growth in the Moss Physcomitrella patens[W

    PubMed Central

    Vidali, Luis; Augustine, Robert C.; Kleinman, Ken P.; Bezanilla, Magdalena

    2007-01-01

    The actin cytoskeleton is critical for tip growth in plants. Profilin is the main monomer actin binding protein in plant cells. The moss Physcomitrella patens has three profilin genes, which are monophyletic, suggesting a single ancestor for plant profilins. Here, we used RNA interference (RNAi) to determine the loss-of-function phenotype of profilin. Reduction of profilin leads to a complete loss of tip growth and a partial inhibition of cell division, resulting in plants with small rounded cells and fewer cells. We silenced all profilins by targeting their 3′ untranslated region sequences, enabling complementation analyses by expression of profilin coding sequences. We show that any moss or a lily (Lilium longiflorum) profilin support tip growth. Profilin with a mutation in its actin binding site is unable to rescue profilin RNAi, while a mutation in the poly-l-proline binding site weakly rescues. We show that moss tip growing cells contain a prominent subapical cortical F-actin structure composed of parallel actin cables. Cells lacking profilin lose this structure; instead, their F-actin is disorganized and forms polarized cortical patches. Plants expressing the actin and poly-l-proline binding mutants exhibited similar F-actin disorganization. These results demonstrate that profilin and its binding to actin are essential for tip growth. Additionally, profilin is not needed for formation of F-actin, but profilin and its interactions with actin and poly-l-proline ligands are required to properly organize F-actin. PMID:17981997

  12. Physcomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization

    PubMed Central

    Alboresi, Alessandro; Gerotto, Caterina; Giacometti, Giorgio M.; Bassi, Roberto; Morosinotto, Tomas

    2010-01-01

    Light is the source of energy for photosynthetic organisms; when in excess, however, it also drives the formation of reactive oxygen species and, consequently, photoinhibition. Plants and algae have evolved mechanisms to regulate light harvesting efficiency in response to variable light intensity so as to avoid oxidative damage. Nonphotochemical quenching (NPQ) consists of the rapid dissipation of excess excitation energy as heat. Although widespread among oxygenic photosynthetic organisms, NPQ shows important differences in its machinery. In land plants, such as Arabidopsis thaliana, NPQ depends on the presence of PSBS, whereas in the green alga Chlamydomonas reinhardtii it requires a different protein called LHCSR. In this work, we show that both proteins are present in the moss Physcomitrella patens. By generating KO mutants lacking PSBS and/or LHCSR, we also demonstrate that both gene products are active in NPQ. Plants lacking both proteins are more susceptible to high light stress than WT, implying that they are active in photoprotection. These results suggest that NPQ is a fundamental mechanism for survival in excess light and that upon land colonization, photosynthetic organisms evolved a unique mechanism for excess energy dissipation before losing the ancestral one found in algae. PMID:20505121

  13. Physcomitrella patens DNA methyltransferase 2 is required for recovery from salt and osmotic stress.

    PubMed

    Arya, Deepshikha; Kapoor, Sanjay; Kapoor, Meenu

    2016-02-01

    DNA methyltransferase 2 (DNMT2) unlike other members of the cytosine DNA methyltransferase gene family has dual substrate specificity and it methylates cytosines in both the DNA and transfer RNA (tRNA). Its role in plants, however, has remained obscure to date. In this study, we demonstrate that DNMT2 from Physcomitrella patens accumulates in a temporal manner under salt and osmotic stress showing maximum accumulation during recovery, i.e. 24 h after plants are transferred to normal growth medium. Therefore, to study its role in stress tolerance, we generated PpDNMT2 targeted knockout plants (ppdnmt2ko). Mutant plants show increased sensitivity to salt and osmotic stress and are unable to recover even after 21 days of growth on optimal growth media. ppdnmt2ko, however, accumulate normal levels of dehydrin-like and small heat shock protein encoding transcripts under stress but show dramatic reduction in levels of tRNA(A) (sp-) (GUC) . The levels of tRNA(A) (sp-) (GUC) , in contrast, increase ~ 25-30-fold in ppdnmt2ko under non-stress conditions and > 1200-fold in wild-type plants under stress. The role of PpDNMT2 in modulating biogenesis/stability of tRNA(A) (sp-) (GUC) under salt and osmotic stress is discussed in the light of these observations. PMID:26639858

  14. Metabolic engineering of the moss Physcomitrella patens to produce the sesquiterpenoids patchoulol and α/β-santalene

    PubMed Central

    Zhan, Xin; Zhang, Yu-Hua; Chen, Dong-Fang; Simonsen, Henrik Toft

    2014-01-01

    The moss Physcomitrella patens, has been genetically engineered to produce patchoulol and β-santalene, two valuable sesquiterpenoid ingredients in the fragrance industry. The highest yield of patchoulol achieved was 1.34 mg/g dry weight. This was achieved by non-targeted transformation of the patchoulol synthase and either a yeast or P. patens HMGR gene under the control of a 35S promoter. Santalene synthase targeted to the plastids yielded 0.039 mg/g dry weight of α/β santalene; cytosolic santalene synthase and 35S controlled HMGR afforded 0.022 mg/g dry weight. It has been observed that the final yield of the fragrance molecules is dependent on the expression of the synthase. This is the first report of heterologous production of sesquiterpenes in moss and it opens up a promising source for light-driven production of valuable fragrance ingredients. PMID:25477891

  15. Metabolic engineering of the moss Physcomitrella patens to produce the sesquiterpenoids patchoulol and α/β-santalene.

    PubMed

    Zhan, Xin; Zhang, Yu-Hua; Chen, Dong-Fang; Simonsen, Henrik Toft

    2014-01-01

    The moss Physcomitrella patens, has been genetically engineered to produce patchoulol and β-santalene, two valuable sesquiterpenoid ingredients in the fragrance industry. The highest yield of patchoulol achieved was 1.34 mg/g dry weight. This was achieved by non-targeted transformation of the patchoulol synthase and either a yeast or P. patens HMGR gene under the control of a 35S promoter. Santalene synthase targeted to the plastids yielded 0.039 mg/g dry weight of α/β santalene; cytosolic santalene synthase and 35S controlled HMGR afforded 0.022 mg/g dry weight. It has been observed that the final yield of the fragrance molecules is dependent on the expression of the synthase. This is the first report of heterologous production of sesquiterpenes in moss and it opens up a promising source for light-driven production of valuable fragrance ingredients. PMID:25477891

  16. The Transcriptional Response to DNA-Double-Strand Breaks in Physcomitrella patens.

    PubMed

    Kamisugi, Yasuko; Whitaker, John W; Cuming, Andrew C

    2016-01-01

    The model bryophyte Physcomitrella patens is unique among plants in supporting the generation of mutant alleles by facile homologous recombination-mediated gene targeting (GT). Reasoning that targeted transgene integration occurs through the capture of transforming DNA by the homology-dependent pathway for DNA double-strand break (DNA-DSB) repair, we analysed the genome-wide transcriptomic response to bleomycin-induced DNA damage and generated mutants in candidate DNA repair genes. Massively parallel (Illumina) cDNA sequencing identified potential participants in gene targeting. Transcripts encoding DNA repair proteins active in multiple repair pathways were significantly up-regulated. These included Rad51, CtIP, DNA ligase 1, Replication protein A and ATR in homology-dependent repair, Xrcc4, DNA ligase 4, Ku70 and Ku80 in non-homologous end-joining and Rad1, Tebichi/polymerase theta, PARP in microhomology-mediated end-joining. Differentially regulated cell-cycle components included up-regulated Rad9 and Hus1 DNA-damage-related checkpoint proteins and down-regulated D-type cyclins and B-type CDKs, commensurate with the imposition of a checkpoint at G2 of the cell cycle characteristic of homology-dependent DNA-DSB repair. Candidate genes, including ATP-dependent chromatin remodelling helicases associated with repair and recombination, were knocked out and analysed for growth defects, hypersensitivity to DNA damage and reduced GT efficiency. Targeted knockout of PpCtIP, a cell-cycle activated mediator of homology-dependent DSB resection, resulted in bleomycin-hypersensitivity and greatly reduced GT efficiency. PMID:27537368

  17. The Transcriptional Response to DNA-Double-Strand Breaks in Physcomitrella patens

    PubMed Central

    Kamisugi, Yasuko; Whitaker, John W.

    2016-01-01

    The model bryophyte Physcomitrella patens is unique among plants in supporting the generation of mutant alleles by facile homologous recombination-mediated gene targeting (GT). Reasoning that targeted transgene integration occurs through the capture of transforming DNA by the homology-dependent pathway for DNA double-strand break (DNA-DSB) repair, we analysed the genome-wide transcriptomic response to bleomycin-induced DNA damage and generated mutants in candidate DNA repair genes. Massively parallel (Illumina) cDNA sequencing identified potential participants in gene targeting. Transcripts encoding DNA repair proteins active in multiple repair pathways were significantly up-regulated. These included Rad51, CtIP, DNA ligase 1, Replication protein A and ATR in homology-dependent repair, Xrcc4, DNA ligase 4, Ku70 and Ku80 in non-homologous end-joining and Rad1, Tebichi/polymerase theta, PARP in microhomology-mediated end-joining. Differentially regulated cell-cycle components included up-regulated Rad9 and Hus1 DNA-damage-related checkpoint proteins and down-regulated D-type cyclins and B-type CDKs, commensurate with the imposition of a checkpoint at G2 of the cell cycle characteristic of homology-dependent DNA-DSB repair. Candidate genes, including ATP-dependent chromatin remodelling helicases associated with repair and recombination, were knocked out and analysed for growth defects, hypersensitivity to DNA damage and reduced GT efficiency. Targeted knockout of PpCtIP, a cell-cycle activated mediator of homology-dependent DSB resection, resulted in bleomycin-hypersensitivity and greatly reduced GT efficiency. PMID:27537368

  18. Differential Requirements for RAD51 in Physcomitrella patens and Arabidopsis thaliana Development and DNA Damage Repair[W

    PubMed Central

    Markmann-Mulisch, Ulrich; Wendeler, Edelgard; Zobell, Oliver; Schween, Gabriele; Steinbiss, Hans-Henning; Reiss, Bernd

    2007-01-01

    RAD51, the eukaryotic homolog of the bacterial RecA recombinase, plays a central role in homologous recombination (HR) in yeast and animals. Loss of RAD51 function causes lethality in vertebrates but not in other animals or in the flowering plant Arabidopsis thaliana, suggesting that RAD51 is vital for highly developed organisms but not for others. Here, we found that loss of RAD51 function in the moss Physcomitrella patens, a plant of less complexity, caused a significant vegetative phenotype, indicating an important function for RAD51 in this organism. Moreover, loss of RAD51 caused marked hypersensitivity to the double-strand break-inducing agent bleomycin in P. patens but not in Arabidopsis. Therefore, HR is used for somatic DNA damage repair in P. patens but not in Arabidopsis. These data imply fundamental differences in the use of recombination pathways between plants. Moreover, these data demonstrate that the importance of RAD51 for viability is independent of taxonomic position or complexity of an organism. The involvement of HR in DNA damage repair in the slowly evolving species P. patens but not in fast-evolving Arabidopsis suggests that the choice of the recombination pathway is related to the speed of evolution in plants. PMID:17921313

  19. In silico characterization of a nitrate reductase gene family and analysis of the predicted proteins from the moss Physcomitrella patens

    PubMed Central

    Medina-Andrés, Rigoberto

    2012-01-01

    Assimilatory nitrate reductase (NR; EC 1.7.1.1-3) catalyzes the reduction of nitrate to nitrite. This enzyme has a conserved structure common to fungi, algae and plants. However, some differences in the amino acid sequence between plant and algal NR suggest that the activity regulation mechanisms have changed during plant evolution. Since only NRs from angiosperms have been studied, the search and analysis of NR genes and proteins from the moss Physcomitrella patens, a basal land plant, was performed to widen the knowledge of land plant NR structure. A family of three nr genes, named ppnia1;1, ppnia1;2 and ppnia2, was localized in the P. patens genome. The predicted proteins are canonical NRs with the conserved domains Molybdene-Cytochorme b –Cytochrome b reductase and possess 20 amino acid residues important for the enzymatic function conserved in plant and algal NRs. Interestingly, moss NRs lack a consensus sequence, common to angiosperm NRs, that is a target for posttranslational regulation. A phylogenetic tree with embryophyte and green algae NR sequences was constructed and P. patens NRs localized at the base of embryophyte NR evolution. The data presented here suggest that bryophytes and vascular plants have different systems to regulate NR activity. PMID:22482004

  20. Interaction between the moss Physcomitrella patens and Phytophthora: a novel pathosystem for live-cell imaging of subcellular defence.

    PubMed

    Overdijk, Elysa J R; DE Keijzer, Jeroen; DE Groot, Deborah; Schoina, Charikleia; Bouwmeester, Klaas; Ketelaar, Tijs; Govers, Francine

    2016-08-01

    Live-cell imaging of plant-pathogen interactions is often hampered by the tissue complexity and multicell layered nature of the host. Here, we established a novel pathosystem with the moss Physcomitrella patens as host for Phytophthora. The tip-growing protonema cells of this moss are ideal for visualizing interactions with the pathogen over time using high-resolution microscopy. We tested four Phytophthora species for their ability to infect P. patens and showed that P. sojae and P. palmivora were only rarely capable to infect P. patens. In contrast, P. infestans and P. capsici frequently and successfully penetrated moss protonemal cells, showed intracellular hyphal growth and formed sporangia. Next to these successful invasions, many penetration attempts failed. Here the pathogen was blocked by a barrier of cell wall material deposited in papilla-like structures, a defence response that is common in higher plants. Another common response is the upregulation of defence-related genes upon infection and also in moss we observed this upregulation in tissues infected with Phytophthora. For more advanced analyses of the novel pathosystem we developed a special set-up that allowed live-cell imaging of subcellular defence processes by high-resolution microscopy. With this set-up, we revealed that Phytophthora infection of moss induces repositioning of the nucleus, accumulation of cytoplasm and rearrangement of the actin cytoskeleton, but not of microtubules. PMID:27027911

  1. In silico characterization of a nitrate reductase gene family and analysis of the predicted proteins from the moss Physcomitrella patens.

    PubMed

    Medina-Andrés, Rigoberto; Lira-Ruan, Verónica

    2012-01-01

    Assimilatory nitrate reductase (NR; EC 1.7.1.1-3) catalyzes the reduction of nitrate to nitrite. This enzyme has a conserved structure common to fungi, algae and plants. However, some differences in the amino acid sequence between plant and algal NR suggest that the activity regulation mechanisms have changed during plant evolution. Since only NRs from angiosperms have been studied, the search and analysis of NR genes and proteins from the moss Physcomitrella patens, a basal land plant, was performed to widen the knowledge of land plant NR structure. A family of three nr genes, named ppnia1;1, ppnia1;2 and ppnia2, was localized in the P. patens genome. The predicted proteins are canonical NRs with the conserved domains Molybdene-Cytochorme b -Cytochrome b reductase and possess 20 amino acid residues important for the enzymatic function conserved in plant and algal NRs. Interestingly, moss NRs lack a consensus sequence, common to angiosperm NRs, that is a target for posttranslational regulation. A phylogenetic tree with embryophyte and green algae NR sequences was constructed and P. patens NRs localized at the base of embryophyte NR evolution. The data presented here suggest that bryophytes and vascular plants have different systems to regulate NR activity. PMID:22482004

  2. G6PDH activity highlights the operation of the cyclic electron flow around PSI in Physcomitrella patens during salt stress

    PubMed Central

    Gao, Shan; Zheng, Zhenbing; Huan, Li; Wang, Guangce

    2016-01-01

    Photosynthetic performances and glucose-6-phosphate dehydrogenase (G6PDH) activity in Physcomitrella patens changed greatly during salt stress and recovery. In P. patens, the cyclic electron flow around photosystem (PS) I was much more tolerant to high salt stress than PSII. After high salt stress, the PSII activity recovered much more slowly than that of PSI, which was rapidly restored to pretreatment levels even as PSII was almost inactivate. This result suggested that after salt stress the recovery of the cyclic electron flow around PSI was independent of PSII activity. In addition, G6PDH activity and NADPH content increased under high salt stress. When G6PDH activity was inhibited by glucosamine (Glucm, a G6PDH inhibitor), the cyclic electron flow around PSI and the NADPH content decreased significantly. Additionally, after recovery in liquid medium containing Glucm, the PSI activity was much lower than in liquid medium without Glucm. These results suggested the PSI activity was affected significantly by G6PDH activity and the NADPH content. Based on the above results, we propose that G6PDH in P. patens has a close relationship with the photosynthetic process, possibly providing NADPH for the operation of the cyclic electron flow around PSI during salt stress and promoting the restoration of PSI. PMID:26887288

  3. Moss Pathogenesis-Related-10 Protein Enhances Resistance to Pythium irregulare in Physcomitrella patens and Arabidopsis thaliana

    PubMed Central

    Castro, Alexandra; Vidal, Sabina; Ponce de León, Inés

    2016-01-01

    Plants respond to pathogen infection by activating signaling pathways leading to the accumulation of proteins with diverse roles in defense. Here, we addressed the functional role of PpPR-10, a pathogenesis-related (PR)-10 gene, of the moss Physcomitrella patens, in response to biotic stress. PpPR-10 belongs to a multigene family and encodes a protein twice the usual size of PR-10 proteins due to the presence of two Bet v1 domains. Moss PR-10 genes are differentially regulated during development and inoculation with the fungal pathogen Botrytis cinerea. Specifically, PpPR-10 transcript levels increase significantly by treatments with elicitors of Pectobacterium carotovorum subsp. carotovorum, spores of B. cinerea, and the defense hormone salicylic acid. To characterize the role of PpPR-10 in plant defense against pathogens, we conducted overexpression analysis in P. patens and in Arabidopsis thaliana. We demonstrate that constitutive expression of PpPR-10 in moss tissues increased resistance against the oomycete Pythium irregulare. PpPR-10 overexpressing moss plants developed less symptoms and decreased mycelium growth than wild type plants. In addition, PpPR-10 overexpressing plants constitutively produced cell wall depositions in protonemal tissue. Ectopic expression of PpPR-10 in Arabidopsis resulted in increased resistance against P. irregulare as well, evidenced by smaller lesions and less cellular damage compared to wild type plants. These results indicate that PpPR-10 is functionally active in the defense against the pathogen P. irregulare, in both P. patens and Arabidopsis, two evolutionary distant plants. Thus, P. patens can serve as an interesting source of genes to improve resistance against pathogen infection in flowering plants. PMID:27200053

  4. Phosphatase and Tensin Homolog Is a Growth Repressor of Both Rhizoid and Gametophore Development in the Moss Physcomitrella patens.

    PubMed

    Saavedra, Laura; Catarino, Rita; Heinz, Tobias; Heilmann, Ingo; Bezanilla, Magdalena; Malhó, Rui

    2015-12-01

    Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase implicated in cellular proliferation and survival. In animal cells, loss of PTEN leads to increased levels of phosphatidylinositol (3,4,5)-trisphosphate, stimulation of glucose and lipid metabolism, cellular growth, and morphological changes (related to adaptation and survival). Intriguingly, in plants, phosphatidylinositol (3,4,5)-trisphosphate has not been detected, and the enzymes that synthesize it were never reported. In this study we performed a genetic, biochemical, and functional characterization of the moss Physcomitrella patens PTEN gene family. P. patens has four PTENs, which are ubiquitously expressed during the entire moss life cycle. Using a knock-in approach, we show that all four genes are expressed in growing tissues, namely caulonemal and rhizoid cells. At the subcellular level, PpPTEN-green fluorescent protein fusions localized to the cytosol and the nucleus. Analysis of single and double knockouts revealed no significant phenotypes at different developmental stages, indicative of functional redundancy. However, compared with wild-type triple and quadruple pten knockouts, caulonemal cells grew faster, switched from the juvenile protonemal stage to adult gametophores earlier, and produced more rhizoids. Furthermore, analysis of lipid content and quantitative real-time polymerase chain reaction data performed in quadruple mutants revealed altered phosphoinositide levels [increase in phosphatidylinositol (3,5)-bisphosphate and decrease in phosphatidylinositol 3-phosphate] and up-regulation of marker genes from the synthesis phase of the cell cycle (e.g. P. patens proliferating cell nuclear antigen, ribonucleotide reductase, and minichromosome maintenance) and of the retinoblastoma-related protein gene P. patens retinoblastoma-related protein1. Together, these results suggest that PpPTEN is a suppressor of cell growth and morphogenic development in plants. PMID

  5. The phosphoproteome in regenerating protoplasts from Physcomitrella patens protonemata shows changes paralleling postembryonic development in higher plants

    PubMed Central

    He, Yikun

    2014-01-01

    The moss Physcomitrella patens is an ideal model plant to study plant developmental processes. To better understand the mechanism of protoplast regeneration, a phosphoproteome analysis was performed. Protoplasts were prepared from protonemata. By 4 d of protoplast regeneration, the first cell divisions had ensued. Through a highly selective titanium dioxide (TiO2)-based phosphopeptide enrichment method and mass spectrometric technology, more than 300 phosphoproteins were identified as protoplast regeneration responsive. Of these, 108 phosphoproteins were present on day 4 but not in fresh protoplasts or those cultured for 2 d. These proteins are catalogued here. They were involved in cell-wall metabolism, transcription, signal transduction, cell growth/division, and cell structure. These protein functions are related to cell morphogenesis, organogenesis, and development adjustment. This study presents a comprehensive analysis of phosphoproteome involved in protoplast regeneration and indicates that the mechanism of plant protoplast regeneration is similar to that of postembryonic development. PMID:24700621

  6. MRE11 and RAD50, but not NBS1, are essential for gene targeting in the moss Physcomitrella patens

    PubMed Central

    Kamisugi, Yasuko; Schaefer, Didier G.; Kozak, Jaroslav; Charlot, Florence; Vrielynck, Nathalie; Holá, Marcela; Angelis, Karel J.; Cuming, Andrew C.; Nogué, Fabien

    2012-01-01

    The moss Physcomitrella patens is unique among plant models for the high frequency with which targeted transgene insertion occurs via homologous recombination. Transgene integration is believed to utilize existing machinery for the detection and repair of DNA double-strand breaks (DSBs). We undertook targeted knockout of the Physcomitrella genes encoding components of the principal sensor of DNA DSBs, the MRN complex. Loss of function of PpMRE11 or PpRAD50 strongly and specifically inhibited gene targeting, whilst rates of untargeted transgene integration were relatively unaffected. In contrast, disruption of the PpNBS1 gene retained the wild-type capacity to integrate transforming DNA efficiently at homologous loci. Analysis of the kinetics of DNA-DSB repair in wild-type and mutant plants by single-nucleus agarose gel electrophoresis revealed that bleomycin-induced fragmentation of genomic DNA was repaired at approximately equal rates in each genotype, although both the Ppmre11 and Pprad50 mutants exhibited severely restricted growth and development and enhanced sensitivity to UV-B and bleomycin-induced DNA damage, compared with wild-type and Ppnbs1 plants. This implies that while extensive DNA repair can occur in the absence of a functional MRN complex; this is unsupervised in nature and results in the accumulation of deleterious mutations incompatible with normal growth and development. PMID:22210882

  7. MRE11 and RAD50, but not NBS1, are essential for gene targeting in the moss Physcomitrella patens.

    PubMed

    Kamisugi, Yasuko; Schaefer, Didier G; Kozak, Jaroslav; Charlot, Florence; Vrielynck, Nathalie; Holá, Marcela; Angelis, Karel J; Cuming, Andrew C; Nogué, Fabien

    2012-04-01

    The moss Physcomitrella patens is unique among plant models for the high frequency with which targeted transgene insertion occurs via homologous recombination. Transgene integration is believed to utilize existing machinery for the detection and repair of DNA double-strand breaks (DSBs). We undertook targeted knockout of the Physcomitrella genes encoding components of the principal sensor of DNA DSBs, the MRN complex. Loss of function of PpMRE11 or PpRAD50 strongly and specifically inhibited gene targeting, whilst rates of untargeted transgene integration were relatively unaffected. In contrast, disruption of the PpNBS1 gene retained the wild-type capacity to integrate transforming DNA efficiently at homologous loci. Analysis of the kinetics of DNA-DSB repair in wild-type and mutant plants by single-nucleus agarose gel electrophoresis revealed that bleomycin-induced fragmentation of genomic DNA was repaired at approximately equal rates in each genotype, although both the Ppmre11 and Pprad50 mutants exhibited severely restricted growth and development and enhanced sensitivity to UV-B and bleomycin-induced DNA damage, compared with wild-type and Ppnbs1 plants. This implies that while extensive DNA repair can occur in the absence of a functional MRN complex; this is unsupervised in nature and results in the accumulation of deleterious mutations incompatible with normal growth and development. PMID:22210882

  8. Modified suppression subtractive hybridization identifies an AP2-containing protein involved in metal responses in Physcomitrella patens.

    PubMed

    Cho, Sung Hyun; Hoang, Quoc; Phee, Jeong Won; Kim, Yun Young; Shin, Hyun Young; Shin, Jeong Sheop

    2007-02-28

    The moss Physcomitrella patens has two life cycles, filamentous protonema and leafy gametophore. A modified from of suppression subtractive hybridization (SSH), mirror orientation selection (MOS), was applied to screen genes differentially expressed in the P. patens protonema. Using reverse Northern blot analysis, differentially expressed clones were identified. The identified genes were involved mainly in metal binding and detoxification. One of these genes was an AP2 (APETALA2) domain-containing protein (PpACP1), which was highly up-regulated in the protonema. Alignment with other AP2/EREBPs (Ethylene Responsive Element Binding Proteins) revealed significant sequence homology of the deduced amino acid sequence in the AP2/EREBP DNA binding domain. Northern analysis under various stress conditions showed that PpACP1 was induced by ethephon, cadmium, copper, ABA, IAA, and cold. In addition, it was highly expressed in suspension-cultured protonema. We suggest that PpACP1 is involved in responses to metals, and that suspension culture enhance the expression of genes responding to metals. PMID:17464218

  9. Dehydration stress-induced oscillations in LEA protein transcripts involves abscisic acid in the moss, Physcomitrella patens.

    PubMed

    Shinde, Suhas; Nurul Islam, M; Ng, Carl K-Y

    2012-07-01

    Physcomitrella patens is a bryophyte belonging to early diverging lineages of land plants following colonization of land in the Ordovician period. Mosses are typically found in refugial habitats and can experience rapidly fluctuating environmental conditions. The acquisition of dehydration tolerance by bryophytes is of fundamental importance as they lack water-conducting tissues and are generally one cell layer thick. • Here, we show that dehydration induced oscillations in the steady-state transcript abundances of two group 3 late embryogenesis abundant (LEA) protein genes in P. patens protonemata, and that the amplitudes of these oscillations are reflective of the severity of dehydration stress. • Dehydration stress also induced elevations in the concentrations of abscisic acid (ABA), and ABA alone can also induce dosage-dependent oscillatory increases in the steady-state abundance of LEA protein transcripts. Additionally, removal of ABA resulted in rapid attenuation of these oscillatory increases. • Our data demonstrate that dehydration stress-regulated expression of LEA protein genes is temporally dynamic and highlight the importance of oscillations as a robust mechanism for optimal responses. Our results suggest that dehydration stress-induced oscillations in the steady-state abundance of LEA protein transcripts may constitute an important cellular strategy for adaptation to life in a constantly changing environment. PMID:22591374

  10. In vitro synthesis of cellulose microfibrils by a membrane protein from protoplasts of the non-vascular plant Physcomitrella patens.

    PubMed

    Cho, Sung Hyun; Du, Juan; Sines, Ian; Poosarla, Venkata Giridhar; Vepachedu, Venkata; Kafle, Kabindra; Park, Yong Bum; Kim, Seong H; Kumar, Manish; Nixon, B Tracy

    2015-09-01

    Plant cellulose synthases (CesAs) form a family of membrane proteins that are associated with hexagonal structures in the plasma membrane called CesA complexes (CSCs). It has been difficult to purify plant CesA proteins for biochemical and structural studies. We describe CesA activity in a membrane protein preparation isolated from protoplasts of Physcomitrella patens overexpressing haemagglutinin (HA)-tagged PpCesA5. Incubating the membrane preparation with UDP-glucose predominantly produced cellulose. Negative-stain EM revealed microfibrils. Cellulase bound to and degraded these microfibrils. Vibrational sum frequency generation (SFG) spectroscopic analysis detected the presence of crystalline cellulose in the microfibrils. Putative CesA proteins were frequently observed attached to the microfibril ends. Combined cross-linking and gradient centrifugation showed bundles of cellulose microfibrils with larger particle aggregates, possibly CSCs. These results suggest that P. patens is a useful model system for biochemical and structural characterization of plant CSCs and their components. PMID:26348908

  11. Light-Harvesting Complex Stress-Related Proteins Catalyze Excess Energy Dissipation in Both Photosystems of Physcomitrella patens.

    PubMed

    Pinnola, Alberta; Cazzaniga, Stefano; Alboresi, Alessandro; Nevo, Reinat; Levin-Zaidman, Smadar; Reich, Ziv; Bassi, Roberto

    2015-11-01

    Two LHC-like proteins, Photosystem II Subunit S (PSBS) and Light-Harvesting Complex Stress-Related (LHCSR), are essential for triggering excess energy dissipation in chloroplasts of vascular plants and green algae, respectively. The mechanism of quenching was studied in Physcomitrella patens, an early divergent streptophyta (including green algae and land plants) in which both proteins are active. PSBS was localized in grana together with photosystem II (PSII), but LHCSR was located mainly in stroma-exposed membranes together with photosystem I (PSI), and its distribution did not change upon high-light treatment. The quenched conformation can be preserved by rapidly freezing the high-light-treated tissues in liquid nitrogen. When using green fluorescent protein as an internal standard, 77K fluorescence emission spectra on isolated chloroplasts allowed for independent assessment of PSI and PSII fluorescence yield. Results showed that both photosystems underwent quenching upon high-light treatment in the wild type in contrast to mutants depleted of LHCSR, which lacked PSI quenching. Due to the contribution of LHCII, P. patens had a PSI antenna size twice as large with respect to higher plants. Thus, LHCII, which is highly abundant in stroma membranes, appears to be the target of quenching by LHCSR. PMID:26508763

  12. Enhancement of non-photochemical quenching in the Bryophyte Physcomitrella patens during acclimation to salt and osmotic stress.

    PubMed

    Azzabi, Ghazi; Pinnola, Alberta; Betterle, Nico; Bassi, Roberto; Alboresi, Alessandro

    2012-10-01

    Drought and salt stress are major abiotic constraints affecting plant growth worldwide. Under these conditions, the production of reactive oxygen species (ROS) is a common phenomenon taking place mainly in chloroplasts, peroxisomes, mitochondria and apoplasts, especially when associated with high light stress. ROS are harmful because of their high reactivity to cell components, thereby leading to cytotoxicity and cell death. During the Ordovician and early Devonian period, photosynthetic organisms colonized terrestrial habitats, and the acquisition of desiccation tolerance has been a major component of their evolution. We have studied the capacity for acclimation to drought and salt stress of the moss Physcomitrella patens, a representative of the early land colonization stage. Exposure to high concentrations of NaCl and sorbitol strongly affects chloroplast development, the Chl content and the thylakoid protein composition in this moss. Under sublethal conditions (0.2 M NaCl and 0.4 M sorbitol), the photosynthetic apparatus of P. patens responds to oxidative stress by increasing non-photochemical quenching (NPQ). Surprisingly, the accumulation of PSBS and LHCSR, the two polypeptides essential for NPQ in P. patens, was not up-regulated in these conditions. Rather, an increased NPQ amplitude correlated with the overaccumulation of zeaxanthin and the presence of the enzyme violaxanthin de-epoxidase. These results suggest that the regulation of excess energy dissipation through control of PSBS and LHCSR is mainly driven by light conditions, while osmotic and salt stress act through acclimative regulation of the xanthophyll cycle. We conclude that regulation of the xanthophyll cycle is an important anticipatory strategy against photoinhibition by high light. PMID:22952250

  13. Design and characterization of a modular membrane protein anchor to functionalize the moss Physcomitrella patens with extracellular catalytic and/or binding activities.

    PubMed

    Morath, Volker; Truong, Dong-Jiunn Jeffery; Albrecht, Florian; Polte, Ingmar; Ciccone, Rosario Adriano; Funke, Louise Friederike; Reichart, Leonie; Wolf, Christopher Guy; Brunner, Andreas-David; Fischer, Katrin; Schneider, Philipp Constantin; Brüggenthies, Johanna Barbara; Fröhlich, Fabian; Wiedemann, Gertrud; Reski, Ralf; Skerra, Arne

    2014-12-19

    Heterologous enzymes and binding proteins were secreted by the moss Physcomitrella patens or anchored extracellularly on its cell membrane in order to functionalize the apoplast as a biochemical reaction compartment. This modular membrane anchoring system utilizes the signal peptide and the transmembrane segment of the somatic embryogenesis receptor-like kinase (SERK), which were identified in a comprehensive bioinformatic analysis of the P. patens genome. By fusing the soluble enzyme NanoLuc luciferase to the signal peptide, its secretion capability was confirmed in vivo. The membrane localization of hybrid proteins comprising the SERK signal peptide, NanoLuc or other functional modules, the SERK transmembrane anchor, and a C-terminal GFP reporter was demonstrated using fluorescence microscopy as well as site-specific proteolytic release of the extracellular enzyme domain. Our membrane anchoring system enables the expression of various functional proteins in the apoplast of P. patens, empowering this photoautotrophic organism for biotechnological applications. PMID:25524107

  14. Evaluation of Reference Genes for RT qPCR Analyses of Structure-Specific and Hormone Regulated Gene Expression in Physcomitrella patens Gametophytes

    PubMed Central

    Le Bail, Aude; Scholz, Sebastian; Kost, Benedikt

    2013-01-01

    The use of the moss Physcomitrella patens as a model system to study plant development and physiology is rapidly expanding. The strategic position of P. patens within the green lineage between algae and vascular plants, the high efficiency with which transgenes are incorporated by homologous recombination, advantages associated with the haploid gametophyte representing the dominant phase of the P. patens life cycle, the simple structure of protonemata, leafy shoots and rhizoids that constitute the haploid gametophyte, as well as a readily accessible high-quality genome sequence make this moss a very attractive experimental system. The investigation of the genetic and hormonal control of P. patens development heavily depends on the analysis of gene expression patterns by real time quantitative PCR (RT qPCR). This technique requires well characterized sets of reference genes, which display minimal expression level variations under all analyzed conditions, for data normalization. Sets of suitable reference genes have been described for most widely used model systems including e.g. Arabidopsis thaliana, but not for P. patens. Here, we present a RT qPCR based comparison of transcript levels of 12 selected candidate reference genes in a range of gametophytic P. patens structures at different developmental stages, and in P. patens protonemata treated with hormones or hormone transport inhibitors. Analysis of these RT qPCR data using GeNorm and NormFinder software resulted in the identification of sets of P. patens reference genes suitable for gene expression analysis under all tested conditions, and suggested that the two best reference genes are sufficient for effective data normalization under each of these conditions. PMID:23951063

  15. Epoxycarotenoid-mediated synthesis of abscisic acid in Physcomitrella patens implicating conserved mechanisms for acclimation to hyperosmosis in embryophytes.

    PubMed

    Takezawa, Daisuke; Watanabe, Naoki; Ghosh, Totan Kumar; Saruhashi, Masashi; Suzuki, Atsushi; Ishiyama, Kanako; Somemiya, Shinnosuke; Kobayashi, Masatomo; Sakata, Yoichi

    2015-04-01

    Plants acclimate to environmental stress signals such as cold, drought and hypersalinity, and provoke internal protective mechanisms. Abscisic acid (ABA), a carotenoid-derived phytohormone, which increases in response to the stress signals above, has been suggested to play a key role in the acclimation process in angiosperms, but the role of ABA in basal land plants such as mosses, including its biosynthetic pathways, has not been clarified. Targeted gene disruption of PpABA1, encoding zeaxanthin epoxidase in the moss Physcomitrella patens was conducted to determine the role of endogenous ABA in acclimation processes in mosses. The generated ppaba1 plants were found to accumulate only a small amount of endogenous ABA. The ppaba1 plants showed reduced osmotic acclimation capacity in correlation with reduced dehydration tolerance and accumulation of late embryogenesis abundant proteins. By contrast, cold-induced freezing tolerance was less affected in ppaba1, indicating that endogenous ABA does not play a major role in the regulation of cold acclimation in the moss. Our results suggest that the mechanisms for osmotic acclimation mediated by carotenoid-derived synthesis of ABA are conserved in embryophytes and that acquisition of the mechanisms played a crucial role in terrestrial adaptation and colonization by land plant ancestors. PMID:25545104

  16. Kinesins Have a Dual Function in Organizing Microtubules during Both Tip Growth and Cytokinesis in Physcomitrella patens[W][OPEN

    PubMed Central

    Hiwatashi, Yuji; Sato, Yoshikatsu; Doonan, John H.

    2014-01-01

    Microtubules (MTs) play a crucial role in the anisotropic deposition of cell wall material, thereby affecting the direction of growth. A wide range of tip-growing cells display highly polarized cell growth, and MTs have been implicated in regulating directionality and expansion. However, the molecular machinery underlying MT dynamics in tip-growing plant cells remains unclear. Here, we show that highly dynamic MT bundles form cyclically in the polarized expansion zone of the moss Physcomitrella patens caulonemal cells through the coalescence of growing MT plus ends. Furthermore, the plant-specific kinesins (KINID1) that are is essential for the proper MT organization at cytokinesis also regulate the turnover of the tip MT bundles as well as the directionality and rate of cell growth. The plus ends of MTs grow toward the expansion zone, and KINID1 is necessary for the stability of a single coherent focus of MTs in the center of the zone, whose formation coincides with the accumulation of KINID1. We propose that KINID-dependent MT bundling is essential for the correct directionality of growth as well as for promoting growth per se. Our findings indicate that two localized cell wall deposition processes, tip growth and cytokinesis, previously believed to be functionally and evolutionarily distinct, share common and plant-specific MT regulatory components. PMID:24642939

  17. Actin Interacting Protein1 and Actin Depolymerizing Factor Drive Rapid Actin Dynamics in Physcomitrella patens[W

    PubMed Central

    Augustine, Robert C.; Pattavina, Kelli A.; Tüzel, Erkan; Vidali, Luis; Bezanilla, Magdalena

    2011-01-01

    The remodeling of actin networks is required for a variety of cellular processes in eukaryotes. In plants, several actin binding proteins have been implicated in remodeling cortical actin filaments (F-actin). However, the extent to which these proteins support F-actin dynamics in planta has not been tested. Using reverse genetics, complementation analyses, and cell biological approaches, we assessed the in vivo function of two actin turnover proteins: actin interacting protein1 (AIP1) and actin depolymerizing factor (ADF). We report that AIP1 is a single-copy gene in the moss Physcomitrella patens. AIP1 knockout plants are viable but have reduced expansion of tip-growing cells. AIP1 is diffusely cytosolic and functions in a common genetic pathway with ADF to promote tip growth. Specifically, ADF can partially compensate for loss of AIP1, and AIP1 requires ADF for function. Consistent with a role in actin remodeling, AIP1 knockout lines accumulate F-actin bundles, have fewer dynamic ends, and have reduced severing frequency. Importantly, we demonstrate that AIP1 promotes and ADF is essential for cortical F-actin dynamics. PMID:22003077

  18. Zeaxanthin Binds to Light-Harvesting Complex Stress-Related Protein to Enhance Nonphotochemical Quenching in Physcomitrella patens[W

    PubMed Central

    Pinnola, Alberta; Dall’Osto, Luca; Gerotto, Caterina; Morosinotto, Tomas; Bassi, Roberto; Alboresi, Alessandro

    2013-01-01

    Nonphotochemical quenching (NPQ) dissipates excess energy to protect the photosynthetic apparatus from excess light. The moss Physcomitrella patens exhibits strong NPQ by both algal-type light-harvesting complex stress-related (LHCSR)–dependent and plant-type S subunit of Photosystem II (PSBS)-dependent mechanisms. In this work, we studied the dependence of NPQ reactions on zeaxanthin, which is synthesized under light stress by violaxanthin deepoxidase (VDE) from preexisting violaxanthin. We produced vde knockout (KO) plants and showed they underwent a dramatic reduction in thermal dissipation ability and enhanced photoinhibition in excess light conditions. Multiple mutants (vde lhcsr KO and vde psbs KO) showed that zeaxanthin had a major influence on LHCSR-dependent NPQ, in contrast with previous reports in Chlamydomonas reinhardtii. The PSBS-dependent component of quenching was less dependent on zeaxanthin, despite the near-complete violaxanthin to zeaxanthin exchange in LHC proteins. Consistent with this, we provide biochemical evidence that native LHCSR protein binds zeaxanthin upon excess light stress. These findings suggest that zeaxanthin played an important role in the adaptation of modern plants to the enhanced levels of oxygen and excess light intensity of land environments. PMID:24014548

  19. Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens.

    PubMed

    Pinnola, Alberta; Dall'Osto, Luca; Gerotto, Caterina; Morosinotto, Tomas; Bassi, Roberto; Alboresi, Alessandro

    2013-09-01

    Nonphotochemical quenching (NPQ) dissipates excess energy to protect the photosynthetic apparatus from excess light. The moss Physcomitrella patens exhibits strong NPQ by both algal-type light-harvesting complex stress-related (LHCSR)-dependent and plant-type S subunit of Photosystem II (PSBS)-dependent mechanisms. In this work, we studied the dependence of NPQ reactions on zeaxanthin, which is synthesized under light stress by violaxanthin deepoxidase (VDE) from preexisting violaxanthin. We produced vde knockout (KO) plants and showed they underwent a dramatic reduction in thermal dissipation ability and enhanced photoinhibition in excess light conditions. Multiple mutants (vde lhcsr KO and vde psbs KO) showed that zeaxanthin had a major influence on LHCSR-dependent NPQ, in contrast with previous reports in Chlamydomonas reinhardtii. The PSBS-dependent component of quenching was less dependent on zeaxanthin, despite the near-complete violaxanthin to zeaxanthin exchange in LHC proteins. Consistent with this, we provide biochemical evidence that native LHCSR protein binds zeaxanthin upon excess light stress. These findings suggest that zeaxanthin played an important role in the adaptation of modern plants to the enhanced levels of oxygen and excess light intensity of land environments. PMID:24014548

  20. CHASE domain-containing receptors play an essential role in the cytokinin response of the moss Physcomitrella patens

    PubMed Central

    von Schwartzenberg, Klaus; Lindner, Ann-Cathrin; Gruhn, Njuscha; Šimura, Jan; Novák, Ondřej; Strnad, Miroslav; Gonneau, Martine; Nogué, Fabien; Heyl, Alexander

    2016-01-01

    While the molecular basis for cytokinin action is quite well understood in flowering plants, little is known about the cytokinin signal transduction in early diverging land plants. The genome of the bryophyte Physcomitrella patens (Hedw.) B.S. encodes three classical cytokinin receptors, the CHASE domain-containing histidine kinases, CHK1, CHK2, and CHK3. In a complementation assay with protoplasts of receptor-deficient Arabidopsis thaliana as well as in cytokinin binding assays, we found evidence that CHK1 and CHK2 receptors can function in cytokinin perception. Using gene targeting, we generated a collection of CHK knockout mutants comprising single (Δchk1, Δchk2, Δchk3), double (Δchk1,2, Δchk1,3, Δchk2,3), and triple (Δchk1,2,3) mutants. Mutants were characterized for their cytokinin response and differentiation capacities. While the wild type did not grow on high doses of cytokinin (1 µM benzyladenine), the Δchk1,2,3 mutant exhibited normal protonema growth. Bud induction assays showed that all three cytokinin receptors contribute to the triggering of budding, albeit to different extents. Furthermore, while the triple mutant showed no response in this bioassay, the remaining mutants displayed budding responses in a diverse manner to different types and concentrations of cytokinins. Determination of cytokinin levels in mutants showed no drastic changes for any of the cytokinins; thus, in contrast to Arabidopsis, revealing only small impacts of cytokinin signaling on homeostasis. In summary, our study provides a first insight into the molecular action of cytokinin in an early diverging land plant and demonstrates that CHK receptors play an essential role in bud induction and gametophore development. PMID:26596764

  1. Functional Divergence of the Glutathione S-Transferase Supergene Family in Physcomitrella patens Reveals Complex Patterns of Large Gene Family Evolution in Land Plants1[W][OA

    PubMed Central

    Liu, Yan-Jing; Han, Xue-Min; Ren, Lin-Ling; Yang, Hai-Ling; Zeng, Qing-Yin

    2013-01-01

    Plant glutathione S-transferases (GSTs) are multifunctional proteins encoded by a large gene family that play major roles in the detoxification of xenobiotics and oxidative stress metabolism. To date, studies on the GST gene family have focused mainly on vascular plants (particularly agricultural plants). In contrast, little information is available on the molecular characteristics of this large gene family in nonvascular plants. In addition, the evolutionary patterns of this family in land plants remain unclear. In this study, we identified 37 GST genes from the whole genome of the moss Physcomitrella patens, a nonvascular representative of early land plants. The 37 P. patens GSTs were divided into 10 classes, including two new classes (hemerythrin and iota). However, no tau GSTs were identified, which represent the largest class among vascular plants. P. patens GST gene family members showed extensive functional divergence in their gene structures, gene expression responses to abiotic stressors, enzymatic characteristics, and the subcellular locations of the encoded proteins. A joint phylogenetic analysis of GSTs from P. patens and other higher vascular plants showed that different class GSTs had distinct duplication patterns during the evolution of land plants. By examining multiple characteristics, this study revealed complex patterns of evolutionary divergence among the GST gene family in land plants. PMID:23188805

  2. Comprehensive Annotation of Physcomitrella patens Small RNA Loci Reveals That the Heterochromatic Short Interfering RNA Pathway Is Largely Conserved in Land Plants[OPEN

    PubMed Central

    Coruh, Ceyda; Cho, Sung Hyun; Shahid, Saima; Liu, Qikun; Wierzbicki, Andrzej; Axtell, Michael J.

    2015-01-01

    Many plant small RNAs are sequence-specific negative regulators of target mRNAs and/or chromatin. In angiosperms, the two most abundant endogenous small RNA populations are usually 21-nucleotide microRNAs (miRNAs) and 24-nucleotide heterochromatic short interfering RNAs (siRNAs). Heterochromatic siRNAs are derived from repetitive regions and reinforce DNA methylation at targeted loci. The existence and extent of heterochromatic siRNAs in other land plant lineages has been unclear. Using small RNA-sequencing (RNA-seq) of the moss Physcomitrella patens, we identified 1090 loci that produce mostly 23- to 24-nucleotide siRNAs. These loci are mostly in intergenic regions with dense DNA methylation. Accumulation of siRNAs from these loci depends upon P. patens homologs of DICER-LIKE3 (DCL3), RNA-DEPENDENT RNA POLYMERASE2, and the largest subunit of DNA-DEPENDENT RNA POLYMERASE IV, with the largest subunit of a Pol V homolog contributing to expression at a smaller subset of the loci. A MINIMAL DICER-LIKE (mDCL) gene, which lacks the N-terminal helicase domain typical of DCL proteins, is specifically required for 23-nucleotide siRNA accumulation. We conclude that heterochromatic siRNAs, and their biogenesis pathways, are largely identical between angiosperms and P. patens, with the notable exception of the P. patens-specific use of mDCL to produce 23-nucleotide siRNAs. PMID:26209555

  3. The Nitric Oxide Production in the Moss Physcomitrella patens Is Mediated by Nitrate Reductase

    PubMed Central

    Medina-Andrés, Rigoberto; Solano-Peralta, Alejandro; Saucedo-Vázquez, Juan Pablo; Napsucialy-Mendivil, Selene; Pimentel-Cabrera, Jaime Arturo; Sosa-Torres, Martha Elena; Dubrovsky, Joseph G.; Lira-Ruan, Verónica

    2015-01-01

    During the last 20 years multiple roles of the nitric oxide gas (•NO) have been uncovered in plant growth, development and many physiological processes. In seed plants the enzymatic synthesis of •NO is mediated by a nitric oxide synthase (NOS)-like activity performed by a still unknown enzyme(s) and nitrate reductase (NR). In green algae the •NO production has been linked only to NR activity, although a NOS gene was reported for Ostreococcus tauri and O. lucimarinus, no other Viridiplantae species has such gene. As there is no information about •NO synthesis neither for non-vascular plants nor for non-seed vascular plants, the interesting question regarding the evolution of the enzymatic •NO production systems during land plant natural history remains open. To address this issue the endogenous •NO production by protonema was demonstrated using Electron Paramagnetic Resonance (EPR). The •NO signal was almost eliminated in plants treated with sodium tungstate, which also reduced the NR activity, demonstrating that in P. patens NR activity is the main source for •NO production. The analysis with confocal laser scanning microscopy (CLSM) confirmed endogenous NO production and showed that •NO signal is accumulated in the cytoplasm of protonema cells. The results presented here show for the first time the •NO production in a non-vascular plant and demonstrate that the NR-dependent enzymatic synthesis of •NO is common for embryophytes and green algae. PMID:25742644

  4. The nitric oxide production in the moss Physcomitrella patens is mediated by nitrate reductase.

    PubMed

    Medina-Andrés, Rigoberto; Solano-Peralta, Alejandro; Saucedo-Vázquez, Juan Pablo; Napsucialy-Mendivil, Selene; Pimentel-Cabrera, Jaime Arturo; Sosa-Torres, Martha Elena; Dubrovsky, Joseph G; Lira-Ruan, Verónica

    2015-01-01

    During the last 20 years multiple roles of the nitric oxide gas (•NO) have been uncovered in plant growth, development and many physiological processes. In seed plants the enzymatic synthesis of •NO is mediated by a nitric oxide synthase (NOS)-like activity performed by a still unknown enzyme(s) and nitrate reductase (NR). In green algae the •NO production has been linked only to NR activity, although a NOS gene was reported for Ostreococcus tauri and O. lucimarinus, no other Viridiplantae species has such gene. As there is no information about •NO synthesis neither for non-vascular plants nor for non-seed vascular plants, the interesting question regarding the evolution of the enzymatic •NO production systems during land plant natural history remains open. To address this issue the endogenous •NO production by protonema was demonstrated using Electron Paramagnetic Resonance (EPR). The •NO signal was almost eliminated in plants treated with sodium tungstate, which also reduced the NR activity, demonstrating that in P. patens NR activity is the main source for •NO production. The analysis with confocal laser scanning microscopy (CLSM) confirmed endogenous NO production and showed that •NO signal is accumulated in the cytoplasm of protonema cells. The results presented here show for the first time the •NO production in a non-vascular plant and demonstrate that the NR-dependent enzymatic synthesis of •NO is common for embryophytes and green algae. PMID:25742644

  5. Endogenous Diterpenes Derived from ent-Kaurene, a Common Gibberellin Precursor, Regulate Protonema Differentiation of the Moss Physcomitrella patens1[W][OA

    PubMed Central

    Hayashi, Ken-ichiro; Horie, Keisuke; Hiwatashi, Yuji; Kawaide, Hiroshi; Yamaguchi, Shinjiro; Hanada, Atsushi; Nakashima, Tamotsu; Nakajima, Masatoshi; Mander, Lewis N.; Yamane, Hisakazu; Hasebe, Mitsuyasu; Nozaki, Hiroshi

    2010-01-01

    Gibberellins (GAs) are a group of diterpene-type plant hormones biosynthesized from ent-kaurene via ent-kaurenoic acid. GAs are ubiquitously present in seed plants. The GA signal is perceived and transduced by the GID1 GA receptor/DELLA repressor pathway. The lycopod Selaginella moellendorffii biosynthesizes GA and has functional GID1-DELLA signaling components. In contrast, no GAs or functionally orthologous GID1-DELLA components have been found in the moss Physcomitrella patens. However, P. patens produces ent-kaurene, a common precursor for GAs, and possesses a functional ent-kaurene synthase, PpCPS/KS. To assess the biological role of ent-kaurene in P. patens, we generated a PpCPS/KS disruption mutant that does not accumulate ent-kaurene. Phenotypic analysis demonstrates that the mutant has a defect in the protonemal differentiation of the chloronemata to caulonemata. Gas chromatography-mass spectrometry analysis shows that P. patens produces ent-kaurenoic acid, an ent-kaurene metabolite in the GA biosynthesis pathway. The phenotypic defect of the disruptant was recovered by the application of ent-kaurene or ent-kaurenoic acid, suggesting that ent-kaurenoic acid, or a downstream metabolite, is involved in protonemal differentiation. Treatment with uniconazole, an inhibitor of ent-kaurene oxidase in GA biosynthesis, mimics the protonemal phenotypes of the PpCPS/KS mutant, which were also restored by ent-kaurenoic acid treatment. Interestingly, the GA9 methyl ester, a fern antheridiogen, rescued the protonemal defect of the disruption mutant, while GA3 and GA4, both of which are active GAs in angiosperms, did not. Our results suggest that the moss P. patens utilizes a diterpene metabolite from ent-kaurene as an endogenous developmental regulator and provide insights into the evolution of GA functions in land plants. PMID:20488896

  6. Phosphatase and Tensin Homolog Is a Growth Repressor of Both Rhizoid and Gametophore Development in the Moss Physcomitrella patens1[OPEN

    PubMed Central

    Saavedra, Laura; Heilmann, Ingo

    2015-01-01

    Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase implicated in cellular proliferation and survival. In animal cells, loss of PTEN leads to increased levels of phosphatidylinositol (3,4,5)-trisphosphate, stimulation of glucose and lipid metabolism, cellular growth, and morphological changes (related to adaptation and survival). Intriguingly, in plants, phosphatidylinositol (3,4,5)-trisphosphate has not been detected, and the enzymes that synthesize it were never reported. In this study we performed a genetic, biochemical, and functional characterization of the moss Physcomitrella patens PTEN gene family. P. patens has four PTENs, which are ubiquitously expressed during the entire moss life cycle. Using a knock-in approach, we show that all four genes are expressed in growing tissues, namely caulonemal and rhizoid cells. At the subcellular level, PpPTEN-green fluorescent protein fusions localized to the cytosol and the nucleus. Analysis of single and double knockouts revealed no significant phenotypes at different developmental stages, indicative of functional redundancy. However, compared with wild-type triple and quadruple pten knockouts, caulonemal cells grew faster, switched from the juvenile protonemal stage to adult gametophores earlier, and produced more rhizoids. Furthermore, analysis of lipid content and quantitative real-time polymerase chain reaction data performed in quadruple mutants revealed altered phosphoinositide levels [increase in phosphatidylinositol (3,5)-bisphosphate and decrease in phosphatidylinositol 3-phosphate] and up-regulation of marker genes from the synthesis phase of the cell cycle (e.g. P. patens proliferating cell nuclear antigen, ribonucleotide reductase, and minichromosome maintenance) and of the retinoblastoma-related protein gene P. patens retinoblastoma-related protein1. Together, these results suggest that PpPTEN is a suppressor of cell growth and morphogenic development in plants. PMID

  7. Unique Translation Initiation at the Second AUG Codon Determines Mitochondrial Localization of the Phage-Type RNA Polymerases in the Moss Physcomitrella patens1

    PubMed Central

    Kabeya, Yukihiro; Sato, Naoki

    2005-01-01

    The nuclear genome of the moss Physcomitrella patens contains two genes encoding phage-type RNA polymerases (PpRPOT1 and PpRPOT2). Each of the PpRPOT1 and PpRPOT2 transcripts possesses two in-frame AUG codons at the 5′ terminus that could act as a translational initiation site. Observation of transient and stable Physcomitrella transformants expressing the 5′ terminus of each PpRPOT cDNA fused with the green fluorescent protein gene suggested that both PpRPOT1 and PpRPOT2 are not translated from the first (upstream) AUG codon in the natural context but translated from the second (downstream) one, and that these enzymes are targeted only to mitochondria, although they are potentially targeted to plastids when translation is forced to start from the first AUG codon. The influence of the 5′-upstream sequence on the translation efficiency of the two AUG codons in PpRPOT1 and PpRPOT2 was quantitatively assessed using a β-glucuronidase reporter. The results further supported that the second AUG codon is the sole translation initiation site in Physcomitrella cells. An Arabidopsis (Arabidopsis thaliana) RPOT homolog AtRpoT;2 that possesses two initiation AUG codons in its transcripts, as do the RPOTs of P. patens, has been regarded as a dually targeted protein. When the localization of AtRpoT;2 was tested using green fluorescent protein in a similar way, AtRpoT;2 was also observed only in mitochondria in many Arabidopsis tissues. These results suggest that, despite the presence of two in-frame AUGs at the 5′ termini of RPOTs in Physcomitrella and Arabidopsis, the second AUG is specifically recognized as the initiation site in these organisms, resulting in expression of a protein that is targeted to mitochondria. This finding may change the current framework of thinking about the transcription machinery of plastids in land plants. PMID:15834007

  8. Abiotic stress-induced oscillations in steady-state transcript levels of Group 3 LEA protein genes in the moss, Physcomitrella patens.

    PubMed

    Shinde, Suhas; Shinde, Rupali; Downey, Frances; Ng, Carl K-Y

    2013-01-01

    The moss, Physcomitrella patens is a non-seed land plant belonging to early diverging lineages of land plants following colonization of land in the Ordovician period in Earth's history. Evidence suggests that mosses can be highly tolerant of abiotic stress. We showed previously that dehydration stress and abscisic acid treatments induced oscillations in steady-state levels of LEA (Late Embryogenesis Abundant) protein transcripts, and that removal of ABA resulted in rapid attenuation of oscillatory increases in transcript levels. Here, we show that other abiotic stresses like salt and osmotic stresses also induced oscillations in steady-state transcript levels and that the amplitudes of the oscillatory increases in steady-state transcript levels are reflective of the severity of the abiotic stress treatment. Together, our results suggest that oscillatory increases in transcript levels in response to abiotic stresses may be a general phenomenon in P. patens and that temporally dynamic increases in steady-state transcript levels may be important for adaptation to life in constantly fluctuating environmental conditions. PMID:23221763

  9. Structure and Function of Nucleoside Hydrolases from Physcomitrella patens and Maize Catalyzing the Hydrolysis of Purine, Pyrimidine, and Cytokinin Ribosides1[W

    PubMed Central

    Kopečná, Martina; Blaschke, Hanna; Kopečný, David; Vigouroux, Armelle; Končitíková, Radka; Novák, Ondřej; Kotland, Ondřej; Strnad, Miroslav; Moréra, Solange; von Schwartzenberg, Klaus

    2013-01-01

    We present a comprehensive characterization of the nucleoside N-ribohydrolase (NRH) family in two model plants, Physcomitrella patens (PpNRH) and maize (Zea mays; ZmNRH), using in vitro and in planta approaches. We identified two NRH subclasses in the plant kingdom; one preferentially targets the purine ribosides inosine and xanthosine, while the other is more active toward uridine and xanthosine. Both subclasses can hydrolyze plant hormones such as cytokinin ribosides. We also solved the crystal structures of two purine NRHs, PpNRH1 and ZmNRH3. Structural analyses, site-directed mutagenesis experiments, and phylogenetic studies were conducted to identify the residues responsible for the observed differences in substrate specificity between the NRH isoforms. The presence of a tyrosine at position 249 (PpNRH1 numbering) confers high hydrolase activity for purine ribosides, while an aspartate residue in this position confers high activity for uridine. Bud formation is delayed by knocking out single NRH genes in P. patens, and under conditions of nitrogen shortage, PpNRH1-deficient plants cannot salvage adenosine-bound nitrogen. All PpNRH knockout plants display elevated levels of certain purine and pyrimidine ribosides and cytokinins that reflect the substrate preferences of the knocked out enzymes. NRH enzymes thus have functions in cytokinin conversion and activation as well as in purine and pyrimidine metabolism. PMID:24170203

  10. Insights from the cold transcriptome of Physcomitrella patens: global specialization pattern of conserved transcriptional regulators and identification of orphan genes involved in cold acclimation

    PubMed Central

    Beike, Anna K; Lang, Daniel; Zimmer, Andreas D; Wüst, Florian; Trautmann, Danika; Wiedemann, Gertrud; Beyer, Peter; Decker, Eva L; Reski, Ralf

    2015-01-01

    The whole-genome transcriptomic cold stress response of the moss Physcomitrella patens was analyzed and correlated with phenotypic and metabolic changes. Based on time-series microarray experiments and quantitative real-time polymerase chain reaction, we characterized the transcriptomic changes related to early stress signaling and the initiation of cold acclimation. Transcription-associated protein (TAP)-encoding genes of P. patens and Arabidopsis thaliana were classified using generalized linear models. Physiological responses were monitored with pulse-amplitude-modulated fluorometry, high-performance liquid chromatography and targeted high-performance mass spectrometry. The transcript levels of 3220 genes were significantly affected by cold. Comparative classification revealed a global specialization of TAP families, a transcript accumulation of transcriptional regulators of the stimulus/stress response and a transcript decline of developmental regulators. Although transcripts of the intermediate to later response are from evolutionarily conserved genes, the early response is dominated by species-specific genes. These orphan genes may encode as yet unknown acclimation processes. PMID:25209349

  11. The Polycomb group protein CLF emerges as a specific tri-methylase of H3K27 regulating gene expression and development in Physcomitrella patens.

    PubMed

    Pereman, Idan; Mosquna, Assaf; Katz, Aviva; Wiedemann, Gertrud; Lang, Daniel; Decker, Eva L; Tamada, Yosuke; Ishikawa, Takaaki; Nishiyama, Tomoaki; Hasebe, Mitsuyasu; Reski, Ralf; Ohad, Nir

    2016-07-01

    Packaging of eukaryotic DNA largely depends on histone modifications that affect the accessibility of DNA to transcriptional regulators, thus controlling gene expression. The Polycomb group (PcG) chromatin remodeling complex deposits a methyl group on lysine 27 of histone 3 leading to repressed gene expression. Plants encode homologs of the Enhancer of zeste (E(z)), a component of the PcG complex from Drosophila, one of which is a SET domain protein designated CURLY LEAF (CLF). Although this SET domain protein exhibits a strong correlation with the presence of the H3K27me3 mark in plants, the methyl-transferase activity and specificity of its SET domain have not been directly tested in-vivo. Using the evolutionary early-diverged land plant model species Physcomitrella patens we show that abolishment of a single copy gene PpCLF, as well as an additional member of the PcG complex, FERTILIZATION-INDEPENDENT ENDOSPERM (PpFIE), results in a specific loss of tri-methylation of H3K27. Using site-directed mutagenesis of key residues, we revealed that H3K27 tri-methylation is mediated by the SET domain of the CLF protein. Moreover, the abolishment of H3K27me3 led to enhanced expression of transcription factor genes. This in turn led to the development of fertilization-independent sporophyte-like structures, as observed in PpCLF and PpFIE null mutants. Overall, our results demonstrate the role of PpCLF as a SET protein in tri-methylation of H3K27 in-vivo and the importance of this modification in regulating the expression of transcription factor genes involved in developmental programs of P. patens. PMID:27179444

  12. Reannotation and extended community resources for the genome of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions

    PubMed Central

    2013-01-01

    Background The moss Physcomitrella patens as a model species provides an important reference for early-diverging lineages of plants and the release of the genome in 2008 opened the doors to genome-wide studies. The usability of a reference genome greatly depends on the quality of the annotation and the availability of centralized community resources. Therefore, in the light of accumulating evidence for missing genes, fragmentary gene structures, false annotations and a low rate of functional annotations on the original release, we decided to improve the moss genome annotation. Results Here, we report the complete moss genome re-annotation (designated V1.6) incorporating the increased transcript availability from a multitude of developmental stages and tissue types. We demonstrate the utility of the improved P. patens genome annotation for comparative genomics and new extensions to the cosmoss.org resource as a central repository for this plant “flagship” genome. The structural annotation of 32,275 protein-coding genes results in 8387 additional loci including 1456 loci with known protein domains or homologs in Plantae. This is the first release to include information on transcript isoforms, suggesting alternative splicing events for at least 10.8% of the loci. Furthermore, this release now also provides information on non-protein-coding loci. Functional annotations were improved regarding quality and coverage, resulting in 58% annotated loci (previously: 41%) that comprise also 7200 additional loci with GO annotations. Access and manual curation of the functional and structural genome annotation is provided via the http://www.cosmoss.org model organism database. Conclusions Comparative analysis of gene structure evolution along the green plant lineage provides novel insights, such as a comparatively high number of loci with 5’-UTR introns in the moss. Comparative analysis of functional annotations reveals expansions of moss house-keeping and metabolic genes

  13. Genetic Analysis of DEFECTIVE KERNEL1 Loop Function in Three-Dimensional Body Patterning in Physcomitrella patens1[C][W][OPEN

    PubMed Central

    Demko, Viktor; Perroud, Pierre-François; Johansen, Wenche; Delwiche, Charles F.; Cooper, Endymion D.; Remme, Pål; Ako, Ako Eugene; Kugler, Karl G.; Mayer, Klaus F.X.; Quatrano, Ralph; Olsen, Odd-Arne

    2014-01-01

    DEFECTIVE KERNEL1 (DEK1) of higher plants plays an essential role in position-dependent signaling and consists of a large transmembrane domain (MEM) linked to a protease catalytic domain and a regulatory domain. Here, we show that the postulated sensory Loop of the MEM domain plays an important role in the developmental regulation of DEK1 activity in the moss Physcomitrella patens. Compared with P. patens lacking DEK1 (∆dek1), the dek1∆loop mutant correctly positions the division plane in the bud apical cell. In contrast with an early developmental arrest of ∆dek1 buds, dek1∆loop develops aberrant gametophores lacking expanded phyllids resulting from misregulation of mitotic activity. In contrast with the highly conserved sequence of the protease catalytic domain, the Loop is highly variable in land plants. Functionally, the sequence from Marchantia polymorpha fully complements the dek1∆loop phenotype, whereas sequences from maize (Zea mays) and Arabidopsis (Arabidopsis thaliana) give phenotypes with retarded growth and affected phyllid development. Bioinformatic analysis identifies MEM as a member of the Major Facilitator Superfamily, membrane transporters reacting to stimuli from the external environment. Transcriptome analysis comparing wild-type and ∆dek1 tissues identifies an effect on two groups of transcripts connected to dek1 mutant phenotypes: transcripts related to cell wall remodeling and regulation of the AINTEGUMENTA, PLETHORA, and BABY BOOM2 (APB2) and APB3 transcription factors known to regulate bud initiation. Finally, sequence data support the hypothesis that the advanced charophyte algae that evolved into ancestral land plants lost cytosolic calpains, retaining DEK1 as the sole calpain in the evolving land plant lineage. PMID:25185121

  14. Cytokinins in the Bryophyte Physcomitrella patens: Analyses of Activity, Distribution, and Cytokinin Oxidase/Dehydrogenase Overexpression Reveal the Role of Extracellular Cytokinins1[W

    PubMed Central

    von Schwartzenberg, Klaus; Núñez, Marta Fernández; Blaschke, Hanna; Dobrev, Petre I.; Novák, Ondrej; Motyka, Václav; Strnad, Miroslav

    2007-01-01

    Ultra-performance liquid chromatography-tandem mass spectrometry was used to establish the cytokinin profile of the bryophyte Physcomitrella patens (Hedw.) B.S.G.; of 40 analyzed cytokinins, 20 were detected. cis-Zeatin-riboside-O-glucoside, N6-(Δ2-isopentenyl)adenosine-5′-monophosphate (iPRMP), and trans-zeatin-riboside-O-glucoside were the most abundant intracellular cytokinins. In addition, the aromatic cytokinins N6-benzyladenosine (BAR), N6-benzyladenine, meta-, and ortho-topolin were detected. Unexpectedly, the most abundant extracellular cytokinin was the nucleotide iPRMP, and its identity was confirmed by quadrupole time-of-flight mass spectrometry. The effects of overexpressing a heterologous cytokinin oxidase/dehydrogenase (CKX; EC 1.4.3.18/1.5.99.12) gene (AtCKX2 from Arabidopsis [Arabidopsis thaliana]) on the intracellular and extracellular distribution of cytokinins was assessed. In cultures of CKX-transformed plants, ultra-performance liquid chromatography-tandem mass spectrometry measurements showed that there were pronounced reductions in the extracellular concentrations of N6-(Δ2-isopentenyl)adenine (iP) and N6-(Δ2-isopentenyl)adenosine (iPR), but their intracellular cytokinin concentrations were only slightly affected. In vitro and in vivo measured CKX activity was shown to be strongly increased in the transformants. Major phenotypic changes observed in the CKX-overexpressing plants included reduced and retarded budding, absence of sexual reproduction, and abnormal protonema cells. In bud-induction bioassays with wild-type Physcomitrella, the nucleotides iPRMP, trans-zeatin-riboside-5′-monophosphate, BAR monophosphate, and the cis-zeatin forms cZ and cZR had no detectable effects, while the activities displayed by other selected cytokinins were in the following order: iP > tZ > N6-benzyladenine > BAR > iPR > tZR > meta-topolin > dihydrozeatin > ortho-topolin. The results on wild type and CKX transgenics suggest that extracellular iP and i

  15. Genetic Analysis of Physcomitrella patens Identifies ABSCISIC ACID NON-RESPONSIVE, a Regulator of ABA Responses Unique to Basal Land Plants and Required for Desiccation Tolerance.

    PubMed

    Stevenson, Sean R; Kamisugi, Yasuko; Trinh, Chi H; Schmutz, Jeremy; Jenkins, Jerry W; Grimwood, Jane; Muchero, Wellington; Tuskan, Gerald A; Rensing, Stefan A; Lang, Daniel; Reski, Ralf; Melkonian, Michael; Rothfels, Carl J; Li, Fay-Wei; Larsson, Anders; Wong, Gane K-S; Edwards, Thomas A; Cuming, Andrew C

    2016-06-01

    The anatomically simple plants that first colonized land must have acquired molecular and biochemical adaptations to drought stress. Abscisic acid (ABA) coordinates responses leading to desiccation tolerance in all land plants. We identified ABA nonresponsive mutants in the model bryophyte Physcomitrella patens and genotyped a segregating population to map and identify the ABA NON-RESPONSIVE (ANR) gene encoding a modular protein kinase comprising an N-terminal PAS domain, a central EDR domain, and a C-terminal MAPKKK-like domain. anr mutants fail to accumulate dehydration tolerance-associated gene products in response to drought, ABA, or osmotic stress and do not acquire ABA-dependent desiccation tolerance. The crystal structure of the PAS domain, determined to 1.7-Å resolution, shows a conserved PAS-fold that dimerizes through a weak dimerization interface. Targeted mutagenesis of a conserved tryptophan residue within the PAS domain generates plants with ABA nonresponsive growth and strongly attenuated ABA-responsive gene expression, whereas deleting this domain retains a fully ABA-responsive phenotype. ANR orthologs are found in early-diverging land plant lineages and aquatic algae but are absent from more recently diverged vascular plants. We propose that ANR genes represent an ancestral adaptation that enabled drought stress survival of the first terrestrial colonizers but were lost during land plant evolution. PMID:27194706

  16. Quantitative Analysis of the Mitochondrial and Plastid Proteomes of the Moss Physcomitrella patens Reveals Protein Macrocompartmentation and Microcompartmentation1[W][OPEN

    PubMed Central

    Mueller, Stefanie J.; Lang, Daniel; Hoernstein, Sebastian N.W.; Lang, Erika G.E.; Schuessele, Christian; Schmidt, Anton; Fluck, Melanie; Leisibach, Desirée; Niegl, Christina; Zimmer, Andreas D.; Schlosser, Andreas; Reski, Ralf

    2014-01-01

    Extant eukaryotes are highly compartmentalized and have integrated endosymbionts as organelles, namely mitochondria and plastids in plants. During evolution, organellar proteomes are modified by gene gain and loss, by gene subfunctionalization and neofunctionalization, and by changes in protein targeting. To date, proteomics data for plastids and mitochondria are available for only a few plant model species, and evolutionary analyses of high-throughput data are scarce. We combined quantitative proteomics, cross-species comparative analysis of metabolic pathways, and localizations by fluorescent proteins in the model plant Physcomitrella patens in order to assess evolutionary changes in mitochondrial and plastid proteomes. This study implements data-mining methodology to classify and reliably reconstruct subcellular proteomes, to map metabolic pathways, and to study the effects of postendosymbiotic evolution on organellar pathway partitioning. Our results indicate that, although plant morphologies changed substantially during plant evolution, metabolic integration of organelles is largely conserved, with exceptions in amino acid and carbon metabolism. Retargeting or regulatory subfunctionalization are common in the studied nucleus-encoded gene families of organelle-targeted proteins. Moreover, complementing the proteomic analysis, fluorescent protein fusions revealed novel proteins at organelle interfaces such as plastid stromules (stroma-filled tubules) and highlight microcompartments as well as intercellular and intracellular heterogeneity of mitochondria and plastids. Thus, we establish a comprehensive data set for mitochondrial and plastid proteomes in moss, present a novel multilevel approach to organelle biology in plants, and place our findings into an evolutionary context. PMID:24515833

  17. An ATP Binding Cassette Transporter Is Required for Cuticular Wax Deposition and Desiccation Tolerance in the Moss Physcomitrella patens[W

    PubMed Central

    Buda, Gregory J.; Barnes, William J.; Fich, Eric A.; Park, Sungjin; Yeats, Trevor H.; Zhao, Lingxia; Domozych, David S.; Rose, Jocelyn K.C.

    2013-01-01

    The plant cuticle is thought to be a critical evolutionary adaptation that allowed the first plants to colonize land, because of its key roles in regulating plant water status and providing protection from biotic and abiotic stresses. Much has been learned about cuticle composition and structure through genetic and biochemical studies of angiosperms, as well as underlying genetic pathways, but little is known about the cuticles of early diverging plant lineages. Here, we demonstrate that the moss Physcomitrella patens, an extant relative of the earliest terrestrial plants, has a cuticle that is analogous in both structure and chemical composition to those of angiosperms. To test whether the underlying cuticle biosynthetic pathways were also shared among distant plant lineages, we generated a genetic knockout of the moss ATP binding cassette subfamily G (ABCG) transporter Pp-ABCG7, a putative ortholog of Arabidopsis thaliana ABCG transporters involved in cuticle precursor trafficking. We show that this mutant is severely deficient in cuticular wax accumulation and has a reduced tolerance of desiccation stress compared with the wild type. This work provides evidence that the cuticle was an adaptive feature present in the first terrestrial plants and that the genes involved in their formation have been functionally conserved for over 450 million years. PMID:24163310

  18. Genetic Analysis of Physcomitrella patens Identifies ABSCISIC ACID NON-RESPONSIVE, a Regulator of ABA Responses Unique to Basal Land Plants and Required for Desiccation Tolerance[OPEN

    PubMed Central

    Kamisugi, Yasuko; Trinh, Chi H.; Schmutz, Jeremy; Muchero, Wellington; Melkonian, Michael; Rothfels, Carl J.; Li, Fay-Wei; Larsson, Anders; Edwards, Thomas A.

    2016-01-01

    The anatomically simple plants that first colonized land must have acquired molecular and biochemical adaptations to drought stress. Abscisic acid (ABA) coordinates responses leading to desiccation tolerance in all land plants. We identified ABA nonresponsive mutants in the model bryophyte Physcomitrella patens and genotyped a segregating population to map and identify the ABA NON-RESPONSIVE (ANR) gene encoding a modular protein kinase comprising an N-terminal PAS domain, a central EDR domain, and a C-terminal MAPKKK-like domain. anr mutants fail to accumulate dehydration tolerance-associated gene products in response to drought, ABA, or osmotic stress and do not acquire ABA-dependent desiccation tolerance. The crystal structure of the PAS domain, determined to 1.7-Å resolution, shows a conserved PAS-fold that dimerizes through a weak dimerization interface. Targeted mutagenesis of a conserved tryptophan residue within the PAS domain generates plants with ABA nonresponsive growth and strongly attenuated ABA-responsive gene expression, whereas deleting this domain retains a fully ABA-responsive phenotype. ANR orthologs are found in early-diverging land plant lineages and aquatic algae but are absent from more recently diverged vascular plants. We propose that ANR genes represent an ancestral adaptation that enabled drought stress survival of the first terrestrial colonizers but were lost during land plant evolution. PMID:27194706

  19. MICROTUBULE-ASSOCIATED PROTEIN65 is essential for maintenance of phragmoplast bipolarity and formation of the cell plate in Physcomitrella patens.

    PubMed

    Kosetsu, Ken; de Keijzer, Jeroen; Janson, Marcel E; Goshima, Gohta

    2013-11-01

    The phragmoplast, a plant-specific apparatus that mediates cytokinesis, mainly consists of microtubules (MTs) arranged in a bipolar fashion, such that their plus ends interdigitate at the equator. Membrane vesicles are thought to move along the MTs toward the equator and fuse to form the cell plate. Although several genes required for phragmoplast MT organization have been identified, the mechanisms that maintain the bipolarity of phragmoplasts remain poorly understood. Here, we show that engaging phragmoplast MTs in a bipolar fashion in protonemal cells of the moss Physcomitrella patens requires the conserved MT cross-linking protein MICROTUBULE-ASSOCIATED PROTEIN65 (MAP65). Simultaneous knockdown of the three MAP65s expressed in those cells severely compromised MT interdigitation at the phragmoplast equator after anaphase onset, resulting in the collapse of the phragmoplast in telophase. Cytokinetic vesicles initially localized to the anaphase midzone as normal but failed to further accumulate in the next several minutes, although the bipolarity of the MT array was preserved. Our data indicate that the presence of bipolar MT arrays is insufficient for vesicle accumulation at the equator and further suggest that MAP65-mediated MT interdigitation is a prerequisite for maintenance of bipolarity of the phragmoplast and accumulation and/or fusion of cell plate-destined vesicles at the equatorial plane. PMID:24272487

  20. Large-scale proteome analysis of abscisic acid and ABSCISIC ACID INSENSITIVE3-dependent proteins related to desiccation tolerance in Physcomitrella patens.

    PubMed

    Yotsui, Izumi; Serada, Satoshi; Naka, Tetsuji; Saruhashi, Masashi; Taji, Teruaki; Hayashi, Takahisa; Quatrano, Ralph S; Sakata, Yoichi

    2016-03-18

    Desiccation tolerance is an ancestral feature of land plants and is still retained in non-vascular plants such as bryophytes and some vascular plants. However, except for seeds and spores, this trait is absent in vegetative tissues of vascular plants. Although many studies have focused on understanding the molecular basis underlying desiccation tolerance using transcriptome and proteome approaches, the critical molecular differences between desiccation tolerant plants and non-desiccation plants are still not clear. The moss Physcomitrella patens cannot survive rapid desiccation under laboratory conditions, but if cells of the protonemata are treated by the phytohormone abscisic acid (ABA) prior to desiccation, it can survive 24 h exposure to desiccation and regrow after rehydration. The desiccation tolerance induced by ABA (AiDT) is specific to this hormone, but also depends on a plant transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3). Here we report the comparative proteomic analysis of AiDT between wild type and ABI3 deleted mutant (Δabi3) of P. patens using iTRAQ (Isobaric Tags for Relative and Absolute Quantification). From a total of 1980 unique proteins that we identified, only 16 proteins are significantly altered in Δabi3 compared to wild type after desiccation following ABA treatment. Among this group, three of the four proteins that were severely affected in Δabi3 tissue were Arabidopsis orthologous genes, which were expressed in maturing seeds under the regulation of ABI3. These included a Group 1 late embryogenesis abundant (LEA) protein, a short-chain dehydrogenase, and a desiccation-related protein. Our results suggest that at least three of these proteins expressed in desiccation tolerant cells of both Arabidopsis and the moss are very likely to play important roles in acquisition of desiccation tolerance in land plants. Furthermore, our results suggest that the regulatory machinery of ABA- and ABI3-mediated gene expression for desiccation

  1. Genome-wide transcriptomic analysis of the effects of sub-ambient atmospheric oxygen and elevated atmospheric carbon dioxide levels on gametophytes of the moss, Physcomitrella patens.

    PubMed

    Shinde, Suhas; Behpouri, Ali; McElwain, Jennifer C; Ng, Carl K-Y

    2015-07-01

    It is widely accepted that atmospheric O2 has played a key role in the development of life on Earth, as evident from the coincidence between the rise of atmospheric O2 concentrations in the Precambrian and biological evolution. Additionally, it has also been suggested that low atmospheric O2 is one of the major drivers for at least two of the five mass-extinction events in the Phanerozoic. At the molecular level, our understanding of the responses of plants to sub-ambient O2 concentrations is largely confined to studies of the responses of underground organs, e.g. roots to hypoxic conditions. Oxygen deprivation often results in elevated CO2 levels, particularly under waterlogged conditions, due to slower gas diffusion in water compared to air. In this study, changes in the transcriptome of gametophytes of the moss Physcomitrella patens arising from exposure to sub-ambient O2 of 13% (oxygen deprivation) and elevated CO2 (1500 ppmV) were examined to further our understanding of the responses of lower plants to changes in atmospheric gaseous composition. Microarray analyses revealed that the expression of a large number of genes was affected under elevated CO2 (814 genes) and sub-ambient O2 conditions (576 genes). Intriguingly, the expression of comparatively fewer numbers of genes (411 genes) was affected under a combination of both sub-ambient O2 and elevated CO2 condition (low O2-high CO2). Overall, the results point towards the effects of atmospheric changes in CO2 and O2 on transcriptional reprogramming, photosynthetic regulation, carbon metabolism, and stress responses. PMID:25948702

  2. P-class pentatricopeptide repeat protein PTSF1 is required for splicing of the plastid pre-tRNA(I) (le) in Physcomitrella patens.

    PubMed

    Goto, Seiya; Kawaguchi, Yasuhiro; Sugita, Chieko; Ichinose, Mizuho; Sugita, Mamoru

    2016-06-01

    Pentatricopeptide repeat (PPR) proteins are widely distributed in eukaryotes and are mostly localized in mitochondria or plastids. PPR proteins play essential roles in various RNA processing steps in organelles; however, the function of the majority of PPR proteins remains unknown. To examine the function of plastid PPR proteins, PpPPR_4 gene knock-out mutants were characterized in Physcomitrella patens. The knock-out mosses displayed severe growth retardation and reduced effective quantum yield of photosystem II. Immunoblot analysis showed that knock-out of PpPPR_4 resulted in a strongly reduced level of plastid-encoded proteins, such as photosystem II reaction center protein D1, the β subunit of ATP synthase, and the stromal enzyme, Rubisco. To further investigate whether knock-out of the PpPPR_4 gene affects plastid gene expression, we analyzed steady-state transcript levels of protein- and rRNA-coding genes by quantitative RT-PCR. This analysis showed that the level of many protein-coding transcripts increased in the mutants. In contrast, splicing of a spacer tRNA(I) (le) precursor encoded by the rrn operon was specifically impaired in the mutants, whereas the accumulation of other plastid tRNAs and rRNAs was not largely affected. Thus, the defect in tRNA(I) (le) splicing leads to a considerable reduction of mature tRNA(I) (le) , which may be accountable for the reduced protein level. An RNA mobility shift assay showed that the recombinant PpPPR_4 bound preferentially to domain III of the tRNA(I) (le) group-II intron. These results provide evidence that PpPPR_4 functions in RNA splicing of the tRNA(I) (le) intron, and hence PpPPR_4 was named plastid tRNA splicing factor 1 (PTSF1). PMID:27117879

  3. PpASCL, the Physcomitrella patens Anther-Specific Chalcone Synthase-Like Enzyme Implicated in Sporopollenin Biosynthesis, Is Needed for Integrity of the Moss Spore Wall and Spore Viability

    PubMed Central

    Daku, Rhys M.; Rabbi, Fazle; Buttigieg, Josef; Coulson, Ian M.; Horne, Derrick; Martens, Garnet; Ashton, Neil W.; Suh, Dae-Yeon

    2016-01-01

    Sporopollenin is the main constituent of the exine layer of spore and pollen walls. The anther-specific chalcone synthase-like (ASCL) enzyme of Physcomitrella patens, PpASCL, has previously been implicated in the biosynthesis of sporopollenin, the main constituent of exine and perine, the two outermost layers of the moss spore cell wall. We made targeted knockouts of the corresponding gene, PpASCL, and phenotypically characterized ascl sporophytes and spores at different developmental stages. Ascl plants developed normally until late in sporophytic development, when the spores produced were structurally aberrant and inviable. The development of the ascl spore cell wall appeared to be arrested early in microspore development, resulting in small, collapsed spores with altered surface morphology. The typical stratification of the spore cell wall was absent with only an abnormal perine recognisable above an amorphous layer possibly representing remnants of compromised intine and/or exine. Equivalent resistance of the spore walls of ascl mutants and the control strain to acetolysis suggests the presence of chemically inert, defective sporopollenin in the mutants. Anatomical abnormalities of late-stage ascl sporophytes include a persistent large columella and an air space incompletely filled with spores. Our results indicate that the evolutionarily conserved PpASCL gene is needed for proper construction of the spore wall and for normal maturation and viability of moss spores. PMID:26752629

  4. PpASCL, the Physcomitrella patens Anther-Specific Chalcone Synthase-Like Enzyme Implicated in Sporopollenin Biosynthesis, Is Needed for Integrity of the Moss Spore Wall and Spore Viability.

    PubMed

    Daku, Rhys M; Rabbi, Fazle; Buttigieg, Josef; Coulson, Ian M; Horne, Derrick; Martens, Garnet; Ashton, Neil W; Suh, Dae-Yeon

    2016-01-01

    Sporopollenin is the main constituent of the exine layer of spore and pollen walls. The anther-specific chalcone synthase-like (ASCL) enzyme of Physcomitrella patens, PpASCL, has previously been implicated in the biosynthesis of sporopollenin, the main constituent of exine and perine, the two outermost layers of the moss spore cell wall. We made targeted knockouts of the corresponding gene, PpASCL, and phenotypically characterized ascl sporophytes and spores at different developmental stages. Ascl plants developed normally until late in sporophytic development, when the spores produced were structurally aberrant and inviable. The development of the ascl spore cell wall appeared to be arrested early in microspore development, resulting in small, collapsed spores with altered surface morphology. The typical stratification of the spore cell wall was absent with only an abnormal perine recognisable above an amorphous layer possibly representing remnants of compromised intine and/or exine. Equivalent resistance of the spore walls of ascl mutants and the control strain to acetolysis suggests the presence of chemically inert, defective sporopollenin in the mutants. Anatomical abnormalities of late-stage ascl sporophytes include a persistent large columella and an air space incompletely filled with spores. Our results indicate that the evolutionarily conserved PpASCL gene is needed for proper construction of the spore wall and for normal maturation and viability of moss spores. PMID:26752629

  5. Molecular evidence for convergent evolution and allopolyploid speciation within the Physcomitrium-Physcomitrella species complex

    PubMed Central

    2014-01-01

    Background The moss Physcomitrella patens (Hedw.) Bruch & Schimp. is an important experimental model system for evolutionary-developmental studies. In order to shed light on the evolutionary history of Physcomitrella and related species within the Funariaceae, we analyzed the natural genetic diversity of the Physcomitrium-Physcomitrella species complex. Results Molecular analysis of the nuclear single copy gene BRK1 reveals that three Physcomitrium species feature larger genome sizes than Physcomitrella patens and encode two expressed BRK1 homeologs (polyploidization-derived paralogs), indicating that they may be allopolyploid hybrids. Phylogenetic analyses of BRK1 as well as microsatellite simple sequence repeat (SSR) data confirm a polyphyletic origin for three Physcomitrella lineages. Differences in the conservation of mitochondrial editing sites further support hybridization and cryptic speciation within the Physcomitrium-Physcomitrella species complex. Conclusions We propose a revised classification of the previously described four subspecies of Physcomitrella patens into three distinct species, namely Physcomitrella patens, Physcomitrella readeri and Physcomitrella magdalenae. We argue that secondary reduction of sporophyte complexity in these species is due to the establishment of an ecological niche, namely spores resting in mud and possible spore dispersal by migratory birds. Besides the Physcomitrium-Physcomitrella species complex, the Funariaceae are host to their type species, Funaria hygrometrica, featuring a sporophyte morphology which is more complex. Their considerable developmental variation among closely related lineages and remarkable trait evolution render the Funariaceae an interesting group for evolutionary and genetic research. PMID:25015729

  6. Distinct functions of chloroplast FtsZ1 and FtsZ2 in Z-ring structure and remodeling

    PubMed Central

    TerBush, Allan D.

    2012-01-01

    FtsZ, a cytoskeletal GTPase, forms a contractile ring for cell division in bacteria and chloroplast division in plants. Whereas bacterial Z rings are composed of a single FtsZ, those in chloroplasts contain two distinct FtsZ proteins, FtsZ1 and FtsZ2, whose functional relationship is poorly understood. We expressed fluorescently tagged FtsZ1 and FtsZ2 in fission yeast to investigate their intrinsic assembly and dynamic properties. FtsZ1 and FtsZ2 formed filaments with differing morphologies when expressed separately. FRAP showed that FtsZ2 filaments were less dynamic than FtsZ1 filaments and that GTPase activity was essential for FtsZ2 filament turnover but may not be solely responsible for FtsZ1 turnover. When coexpressed, the proteins colocalized, consistent with coassembly, but exhibited an FtsZ2-like morphology. However, FtsZ1 increased FtsZ2 exchange into coassembled filaments. Our findings suggest that FtsZ2 is the primary determinant of chloroplast Z-ring structure, whereas FtsZ1 facilitates Z-ring remodeling. We also demonstrate that ARC3, a regulator of chloroplast Z-ring positioning, functions as an FtsZ1 assembly inhibitor. PMID:23128242

  7. Physcomitrella HMGA-type proteins display structural differences compared to their higher plant counterparts

    SciTech Connect

    Lyngaard, Carina; Stemmer, Christian; Stensballe, Allan; Graf, Manuela; Gorr, Gilbert; Decker, Eva; Grasser, Klaus D.

    2008-10-03

    High mobility group (HMG) proteins of the HMGA family are chromatin-associated proteins that act as architectural factors in nucleoprotein structures involved in gene transcription. To date, HMGA-type proteins have been studied in various higher plant species, but not in lower plants. We have identified two HMGA-type proteins, HMGA1 and HMGA2, encoded in the genome of the moss model Physcomitrella patens. Compared to higher plant HMGA proteins, the two Physcomitrella proteins display some structural differences. Thus, the moss HMGA proteins have six (rather than four) AT-hook DNA-binding motifs and their N-terminal domain lacks similarity to linker histone H1. HMGA2 is expressed in moss protonema and it localises to the cell nucleus. Typical of HMGA proteins, HMGA2 interacts preferentially with A/T-rich DNA, when compared with G/C-rich DNA. In cotransformation assays in Physcomitrella protoplasts, HMGA2 stimulated reporter gene expression. In summary, our data show that functional HMGA-type proteins occur in Physcomitrella.

  8. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants

    SciTech Connect

    Rensing, Stefan A.; Lang, Daniel; Zimmer, Andreas D.; Terry, Astrid; Salamov, Asaf; Shapiro, Harris; Nishiyama, Tomaoki; Perroud, Pierre-Francois; Lindquist, Erika A.; Kamisugi, Yasuko; Tanahashi, Takako; Sakakibara, Keiko; Fujita, Tomomichi; Oishi, Kazuko; Shin, Tadasu; Kuroki, Yoko; Toyoda, Atsushi; Suzuki, Yutaka; Hashimoto, Shin-ichi; Yamaguchi, Kazuo; Sugano, Sumio; Kohara, Yuji; Fujiyama, Asao; Anterola, Aldwin; Aoki, Setsuyuki; Ashton, Neil; Barbazuk, W. Brad; Barker, Elizabeth; Bennetzen, Jeffrey L.; Blankenship, Robert; Cho, Sung Hyun; Dutcher, Susan K.; Estelle, Mark; Fawcett, Jeffrey A.; Gundlach, Heidrum; Hanada, Kousuke; Melkozernov, Alexander; Murata, Takashi; Nelson, David R.; Pils, Birgit; Prigge, Michael; Reiss, Bernd; Renner, Tanya; Rombauts, Stephane; Rushton, Paul J.; Sanderfoot, Anton; Schween, Gabriele; Shiu, Shin-Han; Stueber, Kurt; Theodoulou, Frederica L.; Tu, Hank; Van de Peer, Yves; Verrier, Paul J.; Waters, Elizabeth; Wood, Andrew; Yang, Lixing; Cove, David; Cuming, Andrew C.; Hasebe, Mitsayasu; Lucas, Susan; Mishler, Brent D.; Reski, Ralf; Grigoriev, Igor V.; Quatrano, Rakph S.; Boore, Jeffrey L.

    2007-09-18

    We report the draft genome sequence of the model moss Physcomitrella patens and compare its features with those of flowering plants, from which it is separated by more than 400 million years, and unicellular aquatic algae. This comparison reveals genomic changes concomitant with the evolutionary movement to land, including a general increase in gene family complexity; loss of genes associated with aquatic environments (e.g., flagellar arms); acquisition of genes for tolerating terrestrial stresses (e.g., variation in temperature and water availability); and the development of the auxin and abscisic acid signaling pathways for coordinating multicellular growth and dehydration response. The Physcomitrella genome provides a resource for phylogenetic inferences about gene function and for experimental analysis of plant processes through this plant's unique facility for reverse genetics.

  9. Ftsz Ring Formation at the Chloroplast Division Site in Plants

    PubMed Central

    Vitha, Stanislav; McAndrew, Rosemary S.; Osteryoung, Katherine W.

    2001-01-01

    Among the events that accompanied the evolution of chloroplasts from their endosymbiotic ancestors was the host cell recruitment of the prokaryotic cell division protein FtsZ to function in chloroplast division. FtsZ, a structural homologue of tubulin, mediates cell division in bacteria by assembling into a ring at the midcell division site. In higher plants, two nuclear-encoded forms of FtsZ, FtsZ1 and FtsZ2, play essential and functionally distinct roles in chloroplast division, but whether this involves ring formation at the division site has not been determined previously. Using immunofluorescence microscopy and expression of green fluorescent protein fusion proteins in Arabidopsis thaliana, we demonstrate here that FtsZ1 and FtsZ2 localize to coaligned rings at the chloroplast midpoint. Antibodies specific for recognition of FtsZ1 or FtsZ2 proteins in Arabidopsis also recognize related polypeptides and detect midplastid rings in pea and tobacco, suggesting that midplastid ring formation by FtsZ1 and FtsZ2 is universal among flowering plants. Perturbation in the level of either protein in transgenic plants is accompanied by plastid division defects and assembly of FtsZ1 and FtsZ2 into filaments and filament networks not observed in wild-type, suggesting that previously described FtsZ-containing cytoskeletal-like networks in chloroplasts may be artifacts of FtsZ overexpression. PMID:11285278

  10. FtsZ Polymerization Assays: Simple Protocols and Considerations

    PubMed Central

    Król, Ewa; Scheffers, Dirk-Jan

    2013-01-01

    During bacterial cell division, the essential protein FtsZ assembles in the middle of the cell to form the so-called Z-ring. FtsZ polymerizes into long filaments in the presence of GTP in vitro, and polymerization is regulated by several accessory proteins. FtsZ polymerization has been extensively studied in vitro using basic methods including light scattering, sedimentation, GTP hydrolysis assays and electron microscopy. Buffer conditions influence both the polymerization properties of FtsZ, and the ability of FtsZ to interact with regulatory proteins. Here, we describe protocols for FtsZ polymerization studies and validate conditions and controls using Escherichia coli and Bacillus subtilis FtsZ as model proteins. A low speed sedimentation assay is introduced that allows the study of the interaction of FtsZ with proteins that bundle or tubulate FtsZ polymers. An improved GTPase assay protocol is described that allows testing of GTP hydrolysis over time using various conditions in a 96-well plate setup, with standardized incubation times that abolish variation in color development in the phosphate detection reaction. The preparation of samples for light scattering studies and electron microscopy is described. Several buffers are used to establish suitable buffer pH and salt concentration for FtsZ polymerization studies. A high concentration of KCl is the best for most of the experiments. Our methods provide a starting point for the in vitro characterization of FtsZ, not only from E. coli and B. subtilis but from any other bacterium. As such, the methods can be used for studies of the interaction of FtsZ with regulatory proteins or the testing of antibacterial drugs which may affect FtsZ polymerization. PMID:24300445

  11. Holophytochrome-Interacting Proteins in Physcomitrella: Putative Actors in Phytochrome Cytoplasmic Signaling

    PubMed Central

    Ermert, Anna Lena; Mailliet, Katharina; Hughes, Jon

    2016-01-01

    Phytochromes are the principle photoreceptors in light-regulated plant development, primarily acting via translocation of the light-activated photoreceptor into the nucleus and subsequent gene regulation. However, several independent lines of evidence indicate unambiguously that an additional cytoplasmic signaling mechanism must exist. Directional responses in filament tip cells of the moss Physcomitrella patens are steered by phy4 which has been shown to interact physically with the blue light receptor phototropin at the plasma membrane. This complex might perceive and transduce vectorial information leading to cytoskeleton reorganization and finally a directional growth response. We developed yeast two-hybrid procedures using photochemically functional, full-length phy4 as bait in Physcomitrella cDNA library screens and growth assays under different light conditions, revealing Pfr-dependent interactions possibly associated with phytochrome cytoplasmic signaling. Candidate proteins were then expressed in planta with fluorescent protein tags to determine their intracellular localization in darkness and red light. Of 14 candidates, 12 were confirmed to interact with phy4 in planta using bimolecular fluorescence complementation. We also used database information to study their expression patterns relative to those of phy4. We discuss the likely functional characteristics of these holophytochrome-interacting proteins (HIP’s) and their possible roles in signaling. PMID:27242820

  12. Orbital experiment ``Gravisensor'': phototropic reactions of the moss Physcomitrella patens to different types of LED lighting.

    NASA Astrophysics Data System (ADS)

    Nikitin, Vladimir; Berkovich, Yuliy A.; Skripnikov, Alexander; Zyablova, Natalya; Mukhoyan, Makar; Emelianov, Grigory

    The experiment was conducted on Russian Biological Satelite Bion-M #1 19.04-19.05 2013. Five transparent plastic cultural flasks were placed in five light isolated sections of Biocont-B2 cylindrical container with inner diameter of 120 mm and height of 230 mm. In four sections the flasks could be illuminated by top or side LED with wavelength of 458 nm, 630 nm, 730 nm, and white (color temperature 5000º К, peaks 453, 559 nm). Photon flux in each variant was 15 umol/(m2c). In the fifth section the flask with the shoots was in conditions of constant dark. Each section was equipped with its own video camera module. Cameras, video recorder and lighting were managed by micro controller. 12 days before launch, 5 tips of the moss shoots were explanted at each of the five flasks on the agar medium with nutrient components and were cultivated under white fluorescent lamps at 12 hour photo period till the launch. After entering the orbit and during next 14 days of flight top LEDs were turned on above the flasks. Then for the following 14 days of flight the side LEDs of similar wavelength were turned on. The moss gametophores were cultivated at 12-h photoperiod. During the experiment on an hourly basis a video recording of the moss was performed. Similar equipment was used for ground control. After the experiment video files were used to produce separate time-lapse films for each flask using AviSynth program. In flight the shoots demonstrated the maximum growth speed with far red lighting and slower speed with white lighting. With blue and red lighting after switching to side light stimuli the growth of shoots almost stopped. In the dark the shoots continued to grow until the 13 day after launch of the satellite, then their growth stopped. In ground control the relation of growth rate with various LEDs remained basically the same, with the exception of side blue lighting, where the shoots demonstrated considerable vertical growth. In flight the angle of inclination towards the light source was maximal (about 90º) with white lighting, and somewhat smaller with 730 nm. Under red and blue light the angle of phototropic inclination was difficult to measure due to poor growth of the shoots.In ground control the growth rate under blue light was several times higher, than in flight and final degree of inclination of the shoot tip came to about 10º. In ground control under side red lighting the growth was weak, while demonstrating a pronounced phototropic bend of 90º. In ground control in the dark a vertical growth of one shoot was observed with the rate somewhat larger, than in flight variant. Data on the dynamics of inclination of experimental and control plants are presented. The acquired data will be used to analyse the mechanisms of phototropic growth changes of moss shoots.

  13. Enzymatic Properties and Mutational Studies of Chalcone Synthase from Physcomitrella patens

    PubMed Central

    Rahman, Raja Noor Zaliha Raja Abdul; Zakaria, Iffah Izzati; Salleh, Abu Bakar; Basri, Mahiran

    2012-01-01

    PpCHS is a member of the type III polyketide synthase family and catalyses the synthesis of the flavonoid precursor naringenin chalcone from p-coumaroyl-CoA. Recent research reports the production of pyrone derivatives using either hexanoyl-CoA or butyryl-CoA as starter molecule. The Cys-His-Asn catalytic triad found in other plant chalcone synthase predicted polypeptides is conserved in PpCHS. Site directed mutagenesis involving these amino acids residing in the active-site cavity revealed that the cavity volume of the active-site plays a significant role in the selection of starter molecules as well as product formation. Substitutions of Cys 170 with Arg and Ser amino acids decreased the ability of the PpCHS to utilize hexanoyl-CoA as a starter molecule, which directly effected the production of pyrone derivatives (products). These substitutions are believed to have a restricted number of elongations of the growing polypeptide chain due to the smaller cavity volume of the mutant’s active site. PMID:22949824

  14. Collective effects of torsion in FtsZ filaments

    NASA Astrophysics Data System (ADS)

    González de Prado Salas, Pablo; Tarazona, Pedro

    2016-04-01

    Recent evidence points to the presence of torsion in FtsZ bonds. In addition, experiments with FtsZ mutants on surfaces resulted in new aggregates that cannot be explained by older models for FtsZ dynamics. We use an interaction model for FtsZ derived from molecular dynamics simulations and expand a fine-grained lattice model used to describe FtsZ aggregates on a surface. This new model includes different anchoring angles for the monomers and allows bond twist, two ingredients that oppose each other resulting in a more dynamic and interesting system. We study the role and importance of these conflicting elements and how the aggregates are characterized by the different interaction parameters.

  15. Chloroplast FtsZ assembles into a contractible ring via tubulin-like heteropolymerization.

    PubMed

    Yoshida, Yamato; Mogi, Yuko; TerBush, Allan D; Osteryoung, Katherine W

    2016-01-01

    Chloroplast division is driven by a ring containing FtsZ1 and FtsZ2 proteins, which originated from bacterial FtsZ, a tubulin-like protein; however, mechanistic details of the chloroplast FtsZ ring remain unclear. Here, we report that FtsZ1 and FtsZ2 can heteropolymerize into a contractible ring ex vivo. Fluorescently labelled FtsZ1 and/or FtsZ2 formed single rings in cells of the yeast Pichia pastoris. Photobleaching experiments indicated that co-assembly of FtsZ1 and FtsZ2 imparts polarity to polymerization. Assembly of FtsZ chimaeras revealed that the protofilaments assemble via heteropolymerization of FtsZ2 and FtsZ1. Contraction of the ring was accompanied by an increase in the filament turnover rate. Our findings suggest that the evolutionary duplication of FtsZ in plants may have increased the mobility and kinetics of FtsZ ring dynamics in chloroplast division. Thus, the gene duplication and heteropolymerization of chloroplast FtsZs may represent convergent evolution with eukaryotic tubulin. PMID:27322658

  16. Isopentenyltransferase-1 (IPT1) knockout in Physcomitrella together with phylogenetic analyses of IPTs provide insights into evolution of plant cytokinin biosynthesis

    PubMed Central

    von Schwartzenberg, Klaus

    2014-01-01

    The moss Physcomitrella patens is part of an early divergent clade of land plants utilizing the plant hormone cytokinin for growth control. The rate-limiting step of cytokinin biosynthesis is mediated by isopentenyltransferases (IPTs), found in land plants either as adenylate-IPTs or as tRNA-IPTs. Although a dominant part of cytokinins in flowering plants are synthesized by adenylate-IPTs, the Physcomitrella genome only encodes homologues of tRNA-IPTs. This study therefore looked into the question of whether cytokinins in moss derive from tRNA exclusively. Targeted gene knockout of ipt1 (d|ipt1) along with localization studies revealed that the chloroplast-bound IPT1 was almost exclusively responsible for the A37 prenylation of tRNA in Physcomitrella. Ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS)-based cytokinin profiling demonstrated that the total amount of all free cytokinins in tissue was almost unaffected. However, the knockout plants showed increased levels of the N 6-isopentenyladenine (iP)- and trans-zeatin (tZ)-type cytokinins, considered to provide active forms, while cis-zeatin (cZ)-type cytokinins were reduced. The data provide evidence for an additional and unexpected tRNA-independent cytokinin biosynthetic pathway in moss. Comprehensive phylogenetic analysis indicates a diversification of tRNA-IPT-like genes in bryophytes probably related to additional functions. PMID:24692654

  17. Oil Bodies and Oleosins in Physcomitrella Possess Characteristics Representative of Early Trends in Evolution1[W][OA

    PubMed Central

    Huang, Chien-Yu; Chung, Chun-I; Lin, Yao-Cheng; Hsing, Yue-Ie Caroline; Huang, Anthony H.C.

    2009-01-01

    Searches of sequenced genomes of diverse organisms revealed that the moss Physcomitrella patens is the most primitive organism possessing oleosin genes. Microscopy examination of Physcomitrella revealed that oil bodies (OBs) were abundant in the photosynthetic vegetative gametophyte and the reproductive spore. Chromatography illustrated the neutral lipids in OBs isolated from the gametophyte to be largely steryl esters and triacylglycerols, and SDS-PAGE showed the major proteins to be oleosins. Reverse transcription-PCR revealed the expression of all three oleosin genes to be tissue specific. This tissue specificity was greatly altered via alternative splicing, a control mechanism of oleosin gene expression unknown in higher plants. During the production of sex organs at the tips of gametophyte branches, the number of OBs in the top gametophyte tissue decreased concomitant with increases in the number of peroxisomes and level of transcripts encoding the glyoxylate cycle enzymes; thus, the OBs are food reserves for gluconeogenesis. In spores during germination, peroxisomes adjacent to OBs, along with transcripts encoding the glyoxylate cycle enzymes, appeared; thus, the spore OBs are food reserves for gluconeogenesis and equivalent to seed OBs. The one-cell-layer gametophyte could be observed easily with confocal microscopy for the subcellular OBs and other structures. Transient expression of various gene constructs transformed into gametophyte cells revealed that all OBs were linked to the endoplasmic reticulum (ER), that oleosins were synthesized in extended regions of the ER, and that two different oleosins were colocated in all OBs. PMID:19420327

  18. AAA+ Chaperone ClpX Regulates Dynamics of Prokaryotic Cytoskeletal Protein FtsZ*

    PubMed Central

    Sugimoto, Shinya; Yamanaka, Kunitoshi; Nishikori, Shingo; Miyagi, Atsushi; Ando, Toshio; Ogura, Teru

    2010-01-01

    AAA+ chaperone ClpX has been suggested to be a modulator of prokaryotic cytoskeletal protein FtsZ, but the details of recognition and remodeling of FtsZ by ClpX are largely unknown. In this study, we have extensively investigated the nature of FtsZ polymers and mechanisms of ClpX-regulated FtsZ polymer dynamics. We found that FtsZ polymerization is inhibited by ClpX in an ATP-independent manner and that the N-terminal domain of ClpX plays a crucial role for the inhibition of FtsZ polymerization. Single molecule analysis with high speed atomic force microscopy directly revealed that FtsZ polymer is in a dynamic equilibrium between polymerization and depolymerization on a time scale of several seconds. ClpX disassembles FtsZ polymers presumably by blocking reassembly of FtsZ. Furthermore, Escherichia coli cells overproducing ClpX and N-terminal domain of ClpX show filamentous morphology with abnormal localization of FtsZ. These data together suggest that ClpX modulates FtsZ polymer dynamics in an ATP-independent fashion, which is achieved by interaction between the N-terminal domain of ClpX and FtsZ monomers or oligomers. PMID:20022957

  19. A novel quinoline derivative that inhibits mycobacterial FtsZ.

    PubMed

    Mathew, Bini; Ross, Larry; Reynolds, Robert C

    2013-07-01

    High throughput phenotypic screening of large commercially available libraries through two NIH programs has produced thousands of potentially interesting hits for further development as antitubercular agents. Unfortunately, these screens do not supply target information, and further follow up target identification is required to allow optimal rational design and development of highly active and selective clinical candidates. Cheminformatic analysis of the quinoline and quinazoline hits from these HTS screens suggested a hypothesis that certain compounds in these two classes may target the mycobacterial tubulin homolog, FtsZ. In this brief communication, activity of a lead quinoline against the target FtsZ from Mycobacterium tuberculosis (Mtb) is confirmed as well as good in vitro whole cell antibacterial activity against Mtb H37Rv. The identification of a putative target of this highly tractable pharmacophore should help medicinal chemists interested in targeting FtsZ and cell division develop a rational design program to optimize this activity toward a novel drug candidate. PMID:23647650

  20. Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins

    PubMed Central

    Lavy, Meirav; Prigge, Michael J; Tao, Sibo; Shain, Stephanie; Kuo, April; Kirchsteiger, Kerstin; Estelle, Mark

    2016-01-01

    The coordinated action of the auxin-sensitive Aux/IAA transcriptional repressors and ARF transcription factors produces complex gene-regulatory networks in plants. Despite their importance, our knowledge of these two protein families is largely based on analysis of stabilized forms of the Aux/IAAs, and studies of a subgroup of ARFs that function as transcriptional activators. To understand how auxin regulates gene expression we generated a Physcomitrella patens line that completely lacks Aux/IAAs. Loss of the repressors causes massive changes in transcription with misregulation of over a third of the annotated genes. Further, we find that the aux/iaa mutant is blind to auxin indicating that auxin regulation of transcription occurs exclusively through Aux/IAA function. We used the aux/iaa mutant as a simplified platform for studies of ARF function and demonstrate that repressing ARFs regulate auxin-induced genes and fine-tune their expression. Further the repressing ARFs coordinate gene induction jointly with activating ARFs and the Aux/IAAs. DOI: http://dx.doi.org/10.7554/eLife.13325.001 PMID:27247276

  1. Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins.

    PubMed

    Lavy, Meirav; Prigge, Michael J; Tao, Sibo; Shain, Stephanie; Kuo, April; Kirchsteiger, Kerstin; Estelle, Mark

    2016-01-01

    The coordinated action of the auxin-sensitive Aux/IAA transcriptional repressors and ARF transcription factors produces complex gene-regulatory networks in plants. Despite their importance, our knowledge of these two protein families is largely based on analysis of stabilized forms of the Aux/IAAs, and studies of a subgroup of ARFs that function as transcriptional activators. To understand how auxin regulates gene expression we generated a Physcomitrella patens line that completely lacks Aux/IAAs. Loss of the repressors causes massive changes in transcription with misregulation of over a third of the annotated genes. Further, we find that the aux/iaa mutant is blind to auxin indicating that auxin regulation of transcription occurs exclusively through Aux/IAA function. We used the aux/iaa mutant as a simplified platform for studies of ARF function and demonstrate that repressing ARFs regulate auxin-induced genes and fine-tune their expression. Further the repressing ARFs coordinate gene induction jointly with activating ARFs and the Aux/IAAs. PMID:27247276

  2. FtsZ Ring Stability: of Bundles, Tubules, Crosslinks, and Curves

    PubMed Central

    Huang, Kuo-Hsiang; Durand-Heredia, Jorge

    2013-01-01

    The first step in bacterial cytokinesis is the assembly of a stable but dynamic cytokinetic ring made up of the essential tubulin homolog FtsZ at the future site of division. Although FtsZ and its role in cytokinesis have been studied extensively, the precise architecture of the in vivo medial FtsZ ring (Z ring) is not well understood. Recent advances in superresolution imaging suggest that the Z ring comprises short, discontinuous, and loosely bundled FtsZ polymers, some of which are tethered to the membrane. A diverse array of regulatory proteins modulate the assembly, stability, and disassembly of the Z ring via direct interactions with FtsZ. Negative regulators of FtsZ play a critical role in ensuring the accurate positioning of FtsZ at the future site of division and in maintaining Z ring dynamics by controlling FtsZ polymer assembly/disassembly processes. Positive regulators of FtsZ are essential for tethering FtsZ polymers to the membrane and promoting the formation of stabilizing lateral interactions, permitting assembly of a mature Z ring. The past decade has seen the identification of several factors that promote FtsZ assembly, presumably through a variety of distinct molecular mechanisms. While a few of these proteins are broadly conserved, many positive regulators of FtsZ assembly are limited to small groups of closely related organisms, suggesting that FtsZ assembly is differentially modulated across bacterial species. In this review, we focus on the roles of positive regulators in Z ring assembly and in maintaining the integrity of the cytokinetic ring during the early stages of division. PMID:23457247

  3. Effects of various kinetic rates of FtsZ filaments on bacterial cytokinesis.

    PubMed

    He, Zi; Liu, Zhuan; Guo, Kunkun; Ding, Lina

    2015-12-21

    Cell morphodynamics during bacterial cytokinesis are theoretically explored by a combination of phase field model for rod-shaped cells and a kinetic description for FtsZ ring maintenance. The division times and cell shapes have been generally decided by the competition between the constriction forces generated by FtsZ rings and the curvature elastic energy for cells. The dependences of cell morphodynamics during bacterial cytokinesis on various kinetic rates of FtsZ filaments are focused in the present study. It is found that the obtained results with the experimental parameters are well comparable to the observed results physiologically. Likewise, the quasi-steady states for FtsZ rings are found to be well consistent with the theoretical results derived from the kinetic description of FtsZ rings. In addition, morphological phase diagram is presented as functions of the membrane associate rate for both short FtsZ filaments and free FtsZ monomers, and the depolymerization rate of GDP-bound FtsZ monomers at the tip of filaments within the ring. Our results would provide a better understanding of the details of in vivo kinetics, including the kinetic rates within FtsZ rings. PMID:26567889

  4. Super-resolution imaging of the bacterial cytokinetic protein FtsZ.

    PubMed

    Jennings, Phoebe C; Cox, Guy C; Monahan, Leigh G; Harry, Elizabeth J

    2011-06-01

    The idea of a bacterial cytoskeleton arose just 10 years ago with the identification of the cell division protein, FtsZ, as a tubulin homolog. FtsZ plays a pivotal role in bacterial division, and is present in virtually all prokaryotes and in some eukaryotic organelles. The earliest stage of bacterial cell division is the assembly of FtsZ into a Z ring at the division site, which subsequently constricts during cytokinesis. FtsZ also assembles into dynamic helical structures along the bacterial cell, which are thought to act as precursors to the Z ring via a cell cycle-mediated FtsZ polymer remodelling. The fine structures of the FtsZ helix and ring are unknown but crucial for identifying the molecular details of Z ring assembly and its regulation. We now reveal using STED microscopy that the FtsZ helical structure in cells of the gram positive bacterium, Bacillus subtilis, is a highly irregular and discontinuous helix of FtsZ; very different to the smooth cable-like appearance observed by conventional fluorescence optics. STED also identifies a novel FtsZ helical structure of smaller pitch that is invisible to standard optical methods, identifying a possible third intermediate in the pathway to Z ring assembly, which commits bacterial cells to divide. PMID:20933427

  5. Identification and Characterization of ZapC, a Stabilizer of the FtsZ Ring in Escherichia coli▿ †

    PubMed Central

    Durand-Heredia, Jorge M.; Yu, Helen H.; De Carlo, Sacha; Lesser, Cammie F.; Janakiraman, Anuradha

    2011-01-01

    In Escherichia coli, spatiotemporal control of cell division occurs at the level of the assembly/disassembly process of the essential cytoskeletal protein FtsZ. A number of regulators interact with FtsZ and modulate the dynamics of the assembled FtsZ ring at the midcell division site. In this article, we report the identification of an FtsZ stabilizer, ZapC (Z-associated protein C), in a protein localization screen conducted with E. coli. ZapC colocalizes with FtsZ at midcell and interacts directly with FtsZ, as determined by a protein-protein interaction assay in yeast. Cells lacking or overexpressing ZapC are slightly elongated and have aberrant FtsZ ring morphologies indicative of a role for ZapC in FtsZ regulation. We also demonstrate the ability of purified ZapC to promote lateral bundling of FtsZ in a sedimentation reaction visualized by transmission electron microscopy. While ZapC lacks sequence similarity with other nonessential FtsZ regulators, ZapA and ZapB, all three Zap proteins appear to play an important role in FtsZ regulation during rapid growth. Taken together, our results suggest a key role for lateral bundling of the midcell FtsZ polymers in maintaining FtsZ ring stability during division. PMID:21216995

  6. The GTPase Activity of Escherichia coli FtsZ Determines the Magnitude of the FtsZ Polymer Bundling by ZapA in Vitro†

    PubMed Central

    2009-01-01

    FtsZ polymerizes in a ring-like structure at mid cell to initiate cell division in Escherichia coli. The ring is stabilized by a number of proteins among which the widely conserved ZapA protein. Using antibodies against ZapA, we found surprisingly that the cellular concentration of ZapA is approximately equal to that of FtsZ. This raised the question of how the cell can prevent their interaction and thereby the premature stabilization of FtsZ protofilaments in nondividing cells. Therefore, we studied the FtsZ−ZapA interaction at the physiological pH of 7.5 instead of pH 6.5 (the optimal pH for FtsZ polymerization), under conditions that stimulate protofilament formation (5 mM MgCl2) and under conditions that stimulate and stabilize protofilaments (10 mM MgCl2). Using pelleting, light scattering, and GTPase assays, it was found that stabilization and bundling of FtsZ polymers by ZapA was inversely correlated to the GTPase activity of FtsZ. As GTP hydrolysis is the rate-limiting factor for depolymerization of FtsZ, we propose that ZapA will only enhance the cooperativity of polymer association during the transition from helical filament to mid cell ring and will not stabilize the short single protofilaments in the cytoplasm. All thus far published in vitro data on the interaction between FtsZ and ZapA have been obtained with His-ZapA. We found that in our case the presence of a His tag fused to ZapA prevented the protein to complement a ΔzapA strain in vivo and that it affected the interaction between FtsZ and ZapA in vitro. PMID:19842714

  7. Localization of an evolutionarily conserved protein proton pyrophosphatase in evolutionarily distant plants oryza sativa and physcomitrella patens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proton Pyrophosphatase (H+-PPase) is a highly evolutionarily conserved protein that is prevalent in the plant kingdom. One of the salient features of H+-PPase expression pattern, at least in vascular plants like Arabidopsis, is its conspicuous localization in both actively dividing cells and the phl...

  8. Cloning and characterization of ftsZ and pyrF from the archaeon Thermoplasma acidophilum

    NASA Technical Reports Server (NTRS)

    Yaoi, T.; Laksanalamai, P.; Jiemjit, A.; Kagawa, H. K.; Alton, T.; Trent, J. D.

    2000-01-01

    To characterize cytoskeletal components of archaea, the ftsZ gene from Thermoplasma acidophilum was cloned and sequenced. In T. acidophilum ftsZ, which is involved in cell division, was found to be in an operon with the pyrF gene, which encodes orotidine-5'-monophosphate decarboxylase (ODC), an essential enzyme in pyrimidine biosynthesis. Both ftsZ and pyrF from T. acidophilum were expressed in Escherichia coli and formed functional proteins. FtsZ expression in wild-type E. coli resulted in the filamentous phenotype characteristic of ftsZ mutants. T. acidophilum pyrF expression in an E. coli mutant lacking pyrF complemented the mutation and rescued the strain. Sequence alignments of ODCs from archaea, bacteria, and eukarya reveal five conserved regions, two of which have homology to 3-hexulose-6-phosphate synthase (HPS), suggesting a common substrate recognition and binding motif. Copyright 2000 Academic Press.

  9. Cloning and characterization of ftsZ and pyrF from the archaeon Thermoplasma acidophilum.

    PubMed

    Yaoi, T; Laksanalamai, P; Jiemjit, A; Kagawa, H K; Alton, T; Trent, J D

    2000-09-01

    To characterize cytoskeletal components of archaea, the ftsZ gene from Thermoplasma acidophilum was cloned and sequenced. In T. acidophilum ftsZ, which is involved in cell division, was found to be in an operon with the pyrF gene, which encodes orotidine-5'-monophosphate decarboxylase (ODC), an essential enzyme in pyrimidine biosynthesis. Both ftsZ and pyrF from T. acidophilum were expressed in Escherichia coli and formed functional proteins. FtsZ expression in wild-type E. coli resulted in the filamentous phenotype characteristic of ftsZ mutants. T. acidophilum pyrF expression in an E. coli mutant lacking pyrF complemented the mutation and rescued the strain. Sequence alignments of ODCs from archaea, bacteria, and eukarya reveal five conserved regions, two of which have homology to 3-hexulose-6-phosphate synthase (HPS), suggesting a common substrate recognition and binding motif. PMID:10973825

  10. [Partial sequence homology of FtsZ in phylogenetics analysis of lactic acid bacteria].

    PubMed

    Zhang, Bin; Dong, Xiu-zhu

    2005-10-01

    FtsZ is a structurally conserved protein, which is universal among the prokaryotes. It plays a key role in prokaryote cell division. A partial fragment of the ftsZ gene about 800bp in length was amplified and sequenced and a partial FtsZ protein phylogenetic tree for the lactic acid bacteria was constructed. By comparing the FtsZ phylogenetic tree with the 16S rDNA tree, it was shown that the two trees were similar in topology. Both trees revealed that Pediococcus spp. were closely related with L. casei group of Lactobacillus spp. , but less related with other lactic acid cocci such as Enterococcus and Streptococcus. The results also showed that the discriminative power of FtsZ was higher than that of 16S rDNA for either inter-species or inter-genus and could be a very useful tool in species identification of lactic acid bacteria. PMID:16342751

  11. FtsZ in Bacterial Cytokinesis: Cytoskeleton and Force Generator All in One†

    PubMed Central

    Erickson, Harold P.; Anderson, David E.; Osawa, Masaki

    2010-01-01

    Summary: FtsZ, a bacterial homolog of tubulin, is well established as forming the cytoskeletal framework for the cytokinetic ring. Recent work has shown that purified FtsZ, in the absence of any other division proteins, can assemble Z rings when incorporated inside tubular liposomes. Moreover, these artificial Z rings can generate a constriction force, demonstrating that FtsZ is its own force generator. Here we review light microscope observations of how Z rings assemble in bacteria. Assembly begins with long-pitch helices that condense into the Z ring. Once formed, the Z ring can transition to short-pitch helices that are suggestive of its structure. FtsZ assembles in vitro into short protofilaments that are ∼30 subunits long. We present models for how these protofilaments might be further assembled into the Z ring. We discuss recent experiments on assembly dynamics of FtsZ in vitro, with particular attention to how two regulatory proteins, SulA and MinC, inhibit assembly. Recent efforts to develop antibacterial drugs that target FtsZ are reviewed. Finally, we discuss evidence of how FtsZ generates a constriction force: by protofilament bending into a curved conformation. PMID:21119015

  12. Transcription of ftsZ oscillates during the cell cycle of Escherichia coli.

    PubMed Central

    Garrido, T; Sánchez, M; Palacios, P; Aldea, M; Vicente, M

    1993-01-01

    The FtsZ protein is a key element controlling cell division in Escherichia coli. A powerful transcription titration assay was used to quantify the ftsZ mRNA present in synchronously dividing cells. The ftsZ mRNA levels oscillate during the cell cycle reaching a maximum at about the time DNA replication initiates. This cell cycle dependency is specifically due to the two proximal ftsZ promoters. A strain was constructed in which expression of ftsZ could be modulated by an exogenous inducer. In this strain cell size and cell division frequency were sensitive to the cellular FtsZ contents, demonstrating the rate-limiting role of this protein in cell division. Transcriptional activity of the ftsZ promoters was found to be independent of DnaA, indicating that DNA replication and cell division may be independently controlled at the time when new rounds of DNA replication are initiated. This suggests a parallelism between the prokaryotic cell cycle signals and the START point of eukaryotic cell cycles. Images PMID:8404863

  13. Tubular Liposomes with Variable Permeability for Reconstitution of FtsZ Rings

    PubMed Central

    Osawa, Masaki; Erickson, Harold P.

    2012-01-01

    We have developed a system for producing tubular multilamellar liposomes that incorporate the protein FtsZ on the inside. We start with a mixture of spherical multilamellar liposomes with FtsZ initially on the outside. Shearing forces generated by applying a coverslip most likely distort some of the spherical liposomes into a tubular shape, and causes some to leak and incorporate FtsZ inside. We describe protocols for liposome preparation, and for preparing membrane-targeted FtsZ that can assemble contractile Z rings inside the tubular liposomes. We also describe the characterization of the multilamellar liposomes in terms of the permeability or leakiness for a small fluorescent dye and larger protein molecules. These liposomes may be useful for reconstitution of other biological systems. PMID:19903547

  14. SB-RA-2001 Inhibits Bacterial Proliferation by Targeting FtsZ Assembly

    PubMed Central

    2015-01-01

    FtsZ has been recognized as a promising antimicrobial drug target because of its vital role in bacterial cell division. In this work, we found that a taxane SB-RA-2001 inhibited the proliferation of Bacillus subtilis 168 and Mycobacterium smegmatis cells with minimal inhibitory concentrations of 38 and 60 μM, respectively. Cell lengths of these microorganisms increased remarkably in the presence of SB-RA-2001, indicating that it inhibits bacterial cytokinesis. SB-RA-2001 perturbed the formation of the FtsZ ring in B. subtilis 168 cells and also affected the localization of the late cell division protein, DivIVA, at the midcell position. Flow cytometric analysis of the SB-RA-2001-treated cells indicated that the compound did not affect the duplication of DNA in B. subtilis 168 cells. Further, SB-RA-2001 treatment did not affect the localization of the chromosomal partitioning protein, Spo0J, along the two ends of the nucleoids and also had no discernible effect on the nucleoid segregation in B. subtilis 168 cells. The agent also did not appear to perturb the membrane potential of B. subtilis 168 cells. In vitro, SB-RA-2001 bound to FtsZ with modest affinity, promoted the assembly and bundling of FtsZ protofilaments, and reduced the GTPase activity of FtsZ. GTP did not inhibit the binding of SB-RA-2001 to FtsZ, suggesting that it does not bind to the GTP binding site on FtsZ. A computational analysis indicated that SB-RA-2001 binds to FtsZ in the cleft region between the C-terminal domain and helix H7, and the binding site of SB-RA-2001 on FtsZ resembled that of PC190723, a well-characterized inhibitor of FtsZ. The findings collectively suggested that SB-RA-2001 inhibits bacterial proliferation by targeting the assembly dynamics of FtsZ, and this can be exploited further to develop potent FtsZ-targeted antimicrobials. PMID:24749867

  15. 3-Methoxysampangine, a novel antifungal copyrine alkaloid from Cleistopholis patens.

    PubMed

    Liu, S C; Oguntimein, B; Hufford, C D; Clark, A M

    1990-04-01

    Further examination of the active ethanolic extract of the root bark of Cleistopholis patens by using bioassay-directed fractionation resulted in the isolation of a new alkaloid, 3-methoxysampangine (compound I), together with three known alkaloids, eupolauridine (compound II), liriodenine (compound III), and eupolauridine N-oxide (compound IV). The proposed structure of compound I was based on its physicochemical properties and spectral data. 3-Methoxysampangine exhibited significant antifungal activity against Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans. This is the first report of the isolation of liriodenine (compound III) from the root bark of C. patens. PMID:2188584

  16. 3-Methoxysampangine, a novel antifungal copyrine alkaloid from Cleistopholis patens.

    PubMed Central

    Liu, S C; Oguntimein, B; Hufford, C D; Clark, A M

    1990-01-01

    Further examination of the active ethanolic extract of the root bark of Cleistopholis patens by using bioassay-directed fractionation resulted in the isolation of a new alkaloid, 3-methoxysampangine (compound I), together with three known alkaloids, eupolauridine (compound II), liriodenine (compound III), and eupolauridine N-oxide (compound IV). The proposed structure of compound I was based on its physicochemical properties and spectral data. 3-Methoxysampangine exhibited significant antifungal activity against Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans. This is the first report of the isolation of liriodenine (compound III) from the root bark of C. patens. PMID:2188584

  17. Rational design of berberine-based FtsZ inhibitors with broad-spectrum antibacterial activity.

    PubMed

    Sun, Ning; Chan, Fung-Yi; Lu, Yu-Jing; Neves, Marco A C; Lui, Hok-Kiu; Wang, Yong; Chow, Ka-Yan; Chan, Kin-Fai; Yan, Siu-Cheong; Leung, Yun-Chung; Abagyan, Ruben; Chan, Tak-Hang; Wong, Kwok-Yin

    2014-01-01

    Inhibition of the functional activity of Filamenting temperature-sensitive mutant Z (FtsZ) protein, an essential and highly conserved bacterial cytokinesis protein, is a promising approach for the development of a new class of antibacterial agents. Berberine, a benzylisoquinoline alkaloid widely used in traditional Chinese and native American medicines for its antimicrobial properties, has been recently reported to inhibit FtsZ. Using a combination of in silico structure-based design and in vitro biological assays, 9-phenoxyalkyl berberine derivatives were identified as potent FtsZ inhibitors. Compared to the parent compound berberine, the derivatives showed a significant enhancement of antibacterial activity against clinically relevant bacteria, and an improved potency against the GTPase activity and polymerization of FtsZ. The most potent compound 2 strongly inhibited the proliferation of Gram-positive bacteria, including methicillin-resistant S. aureus and vancomycin-resistant E. faecium, with MIC values between 2 and 4 µg/mL, and was active against the Gram-negative E. coli and K. pneumoniae, with MIC values of 32 and 64 µg/mL respectively. The compound perturbed the formation of cytokinetic Z-ring in E. coli. Also, the compound interfered with in vitro polymerization of S. aureus FtsZ. Taken together, the chemical modification of berberine with 9-phenoxyalkyl substituent groups greatly improved the antibacterial activity via targeting FtsZ. PMID:24824618

  18. Rational Design of Berberine-Based FtsZ Inhibitors with Broad-Spectrum Antibacterial Activity

    PubMed Central

    Sun, Ning; Chan, Fung-Yi; Lu, Yu-Jing; Neves, Marco A. C.; Lui, Hok-Kiu; Wang, Yong; Chow, Ka-Yan; Chan, Kin-Fai; Yan, Siu-Cheong; Leung, Yun-Chung; Abagyan, Ruben; Chan, Tak-Hang; Wong, Kwok-Yin

    2014-01-01

    Inhibition of the functional activity of Filamenting temperature-sensitive mutant Z (FtsZ) protein, an essential and highly conserved bacterial cytokinesis protein, is a promising approach for the development of a new class of antibacterial agents. Berberine, a benzylisoquinoline alkaloid widely used in traditional Chinese and native American medicines for its antimicrobial properties, has been recently reported to inhibit FtsZ. Using a combination of in silico structure-based design and in vitro biological assays, 9-phenoxyalkyl berberine derivatives were identified as potent FtsZ inhibitors. Compared to the parent compound berberine, the derivatives showed a significant enhancement of antibacterial activity against clinically relevant bacteria, and an improved potency against the GTPase activity and polymerization of FtsZ. The most potent compound 2 strongly inhibited the proliferation of Gram-positive bacteria, including methicillin-resistant S. aureus and vancomycin-resistant E. faecium, with MIC values between 2 and 4 µg/mL, and was active against the Gram-negative E. coli and K. pneumoniae, with MIC values of 32 and 64 µg/mL respectively. The compound perturbed the formation of cytokinetic Z-ring in E. coli. Also, the compound interfered with in vitro polymerization of S. aureus FtsZ. Taken together, the chemical modification of berberine with 9-phenoxyalkyl substituent groups greatly improved the antibacterial activity via targeting FtsZ. PMID:24824618

  19. FtsZ does not initiate membrane constriction at the onset of division

    PubMed Central

    Daley, Daniel O.; Skoglund, Ulf; Söderström, Bill

    2016-01-01

    The source of constriction required for division of a bacterial cell remains enigmatic. FtsZ is widely believed to be a key player, because in vitro experiments indicate that it can deform liposomes when membrane tethered. However in vivo evidence for such a role has remained elusive as it has been challenging to distinguish the contribution of FtsZ from that of peptidoglycan-ingrowth. To differentiate between these two possibilities we studied the early stages of division in Escherichia coli, when FtsZ is present at the division site but peptidoglycan synthesizing enzymes such as FtsI and FtsN are not. Our approach was to use correlative cryo-fluorescence and cryo-electron microscopy (cryo-CLEM) to monitor the localization of fluorescently labeled FtsZ, FtsI or FtsN correlated with the septal ultra-structural geometry in the same cell. We noted that the presence of FtsZ at the division septum is not sufficient to deform membranes. This observation suggests that, although FtsZ can provide a constrictive force, the force is not substantial at the onset of division. Conversely, the presence of FtsN always correlated with membrane invagination, indicating that allosteric activation of peptidoglycan ingrowth is the trigger for constriction of the cell envelope during cell division in E. coli. PMID:27609565

  20. Charged Molecules Modulate the Volume Exclusion Effects Exerted by Crowders on FtsZ Polymerization

    PubMed Central

    Monterroso, Begoña; Reija, Belén; Jiménez, Mercedes; Zorrilla, Silvia; Rivas, Germán

    2016-01-01

    We have studied the influence of protein crowders, either combined or individually, on the GTP-induced FtsZ cooperative assembly, crucial for the formation of the dynamic septal ring and, hence, for bacterial division. It was earlier demonstrated that high concentrations of inert polymers like Ficoll 70, used to mimic the crowded cellular interior, favor the assembly of FtsZ into bundles with slow depolymerization. We have found, by fluorescence anisotropy together with light scattering measurements, that the presence of protein crowders increases the tendency of FtsZ to polymerize at micromolar magnesium concentration, being the effect larger with ovomucoid, a negatively charged protein. Neutral polymers and a positively charged protein also diminished the critical concentration of assembly, the extent of the effect being compatible with that expected according to pure volume exclusion models. FtsZ polymerization was also observed to be strongly promoted by a negatively charged polymer, DNA, and by some unrelated polymers like PEGs at concentrations below the crowding regime. The influence of mixed crowders mimicking the heterogeneity of the intracellular environment on the tendency of FtsZ to assemble was also studied and nonadditive effects were found to prevail. Far from exactly reproducing the bacterial cytoplasm environment, this approach serves as a simplified model illustrating how its intrinsically crowded and heterogeneous nature may modulate FtsZ assembly into a functional Z-ring. PMID:26870947

  1. A benzamide-dependent ftsZ mutant reveals residues crucial for Z-ring assembly.

    PubMed

    Adams, David William; Wu, Ling Juan; Errington, Jeff

    2016-03-01

    In almost all bacteria, cell division is co-ordinated by the essential tubulin homologue FtsZ and represents an attractive but as yet unexploited target for new antibiotics. The benzamides, e.g. PC190723, are potent FtsZ inhibitors that have the potential to yield an important new class of antibiotic. However, the evolution of resistance poses a challenge to their development. Here we show that a collection of PC190723-resistant and -dependent strains of Staphylococcus aureus exhibit severe growth and morphological defects, questioning whether these ftsZ mutations would be clinically relevant. Importantly, we show that the most commonly isolated substitution remains sensitive to the simplest benzamide 3-MBA and likely works by occluding compound binding. Extending this analysis to Bacillus subtilis, we isolated a novel benzamide-dependent strain that divides using unusual helical division events. The ftsZ mutation responsible encodes the substitution of a highly conserved residue, which lies outside the benzamide-binding site and forms part of an interface between the N- and C-terminal domains that we show is necessary for normal FtsZ function. Together with an intragenic suppressor mutation that mimics benzamide binding, the results provide genetic evidence that benzamides restrict conformational changes in FtsZ and also highlights their utility as tools to probe bacterial division. PMID:26601800

  2. FtsZ does not initiate membrane constriction at the onset of division.

    PubMed

    Daley, Daniel O; Skoglund, Ulf; Söderström, Bill

    2016-01-01

    The source of constriction required for division of a bacterial cell remains enigmatic. FtsZ is widely believed to be a key player, because in vitro experiments indicate that it can deform liposomes when membrane tethered. However in vivo evidence for such a role has remained elusive as it has been challenging to distinguish the contribution of FtsZ from that of peptidoglycan-ingrowth. To differentiate between these two possibilities we studied the early stages of division in Escherichia coli, when FtsZ is present at the division site but peptidoglycan synthesizing enzymes such as FtsI and FtsN are not. Our approach was to use correlative cryo-fluorescence and cryo-electron microscopy (cryo-CLEM) to monitor the localization of fluorescently labeled FtsZ, FtsI or FtsN correlated with the septal ultra-structural geometry in the same cell. We noted that the presence of FtsZ at the division septum is not sufficient to deform membranes. This observation suggests that, although FtsZ can provide a constrictive force, the force is not substantial at the onset of division. Conversely, the presence of FtsN always correlated with membrane invagination, indicating that allosteric activation of peptidoglycan ingrowth is the trigger for constriction of the cell envelope during cell division in E. coli. PMID:27609565

  3. FtsZ Protofilament Curvature Is the Opposite of Tubulin Rings.

    PubMed

    Housman, Max; Milam, Sara L; Moore, Desmond A; Osawa, Masaki; Erickson, Harold P

    2016-07-26

    FtsZ protofilaments (pfs) form the bacterial cytokinetic Z ring. Previous work suggested that a conformational change from straight to curved pfs generated the constriction force. In the simplest model, the C-terminal membrane tether is on the outside of the curved pf, facing the membrane. Tubulin, a homologue of FtsZ, also forms pfs with a curved conformation. However, it is well-established that tubulin rings have the C terminus on the inside of the ring. Could FtsZ and tubulin rings have the opposite curvature? In this study, we explored the FtsZ curvature direction by fusing large protein tags to the FtsZ termini. Thin section electron microscopy showed that the C-terminal tag was on the outside, consistent with the bending pf model. This has interesting implications for the evolution of tubulin. Tubulin likely began with the curvature of FtsZ, but evolution managed to reverse direction to produce outward-curving rings, which are useful for pulling chromosomes. PMID:27368355

  4. Decomposition of saltmeadow cordgrass (Spartina patens) in Louisiana coastal marshes

    USGS Publications Warehouse

    Foote, A.L.; Reynolds, K.A.

    1997-01-01

    In Louisiana, plant production rates and associated decomposition rates may be important in offsetting high rates of land loss and subsidence in organic marsh soils. Decomposition of Spartina patens shoot and leaf material was studied by using litter bags in mesohaline marshes in the Barataria and Terrebonne basins of coastal Louisiana. Spartina patens decomposed very slowly with an average decay constant of 0.0007, and approximately 50% of the material remained after 2 years in the field. Material at the Barataria site decomposed faster than did Terrebonne material with trend differences apparent during the first 150 days. This difference might be explained by the higher content of phosphorus in the Barataria material or a flooding period experienced by the Barataria bags during their first 10 days of deployment. Nitrogen and carbon content of the plant material studied did not differ between the two basins. We detected no consistent significant differences in decomposition above, at, or below sediment/water level. Because S. patens is the dominant plant in these marshes, and because it is so slow to decompose, we believe that S. patens shoots are an important addition to vertical accretion and, therefore, marsh elevation.

  5. Transcriptional analysis of ftsZ within the dcw cluster in Bacillus mycoides

    PubMed Central

    2013-01-01

    Background In Bacillus mycoides, as well as in other members of the B. cereus group, the tubulin-like protein of the division septum FtsZ is encoded by the distal gene of the cluster division and cell wall (dcw). Along the cluster the genes coding for structural proteins of the division apparatus are intermingled with those coding for enzymes of peptidoglycan biosynthesis, raising the possibility that genes with this different function might be coexpressed. Transcription of ftsZ in two model bacteria had been reported to differ: in B. subtilis, the ftsZ gene was found transcribed as a bigenic mRNA in the AZ operon; in E. coli, the transcripts of ftsZ were monogenic, expressed by specific promoters. Here we analyzed the size and the initiation sites of RNAs transcribed from ftsZ and from other cluster genes in two B. mycoides strains, DX and SIN, characterized by colonies of different chirality and density, to explore the correlation of the different morphotypes with transcription of the dcw genes. Results In both strains, during vegetative growth, the ftsZ-specific RNAs were composed mainly of ftsZ, ftsA-ftsZ and ftsQ-ftsA-ftsZ transcripts. A low number of RNA molecules included the sequences of the upstream murG and murB genes, which are involved in peptidoglycan synthesis. No cotranscription was detected between ftsZ and the downstream genes of the SpoIIG cluster. The monogenic ftsZ RNA was found in both strains, with the main initiation site located inside the ftsA coding sequence. To confirm the promoter property of the site, a B. mycoides construct carrying the ftsA region in front of the shortened ftsZ gene was inserted into the AmyE locus of B. subtilis 168. The promoter site in the ftsA region was recognized in the heterologous cellular context and expressed as in B. mycoides. Conclusions The DX and SIN strains of B. mycoides display very similar RNA transcription specificity. The ftsZ messenger RNA can be found either as an independent transcript or

  6. A Bactericidal Guanidinomethyl Biaryl That Alters the Dynamics of Bacterial FtsZ Polymerization

    PubMed Central

    Kaul, Malvika; Parhi, Ajit K.; Zhang, Yongzheng; LaVoie, Edmond J.; Tuske, Steve; Arnold, Eddy; Kerrigan, John E.; Pilch, Daniel S.

    2014-01-01

    The prevalence of multidrug resistance among clinically significant bacterial pathogens underscores a critical need for the development of new classes of antibiotics with novel mechanisms of action. Here we describe the synthesis and evaluation of a guanidinomethyl biaryl compound {1-((4′-(tert-butyl)-[1,1′-biphenyl]-3-yl)methyl)guanidine} that targets the bacterial cell division protein FtsZ. In vitro studies with various bacterial FtsZ proteins reveal that the compound alters the dynamics of FtsZ self-polymerization via a stimulatory mechanism, while minimally impacting the polymerization of tubulin, the closest mammalian homologue of FtsZ. The FtsZ binding site of the compound is identified through a combination of computational and mutational approaches. The compound exhibits a broad spectrum of bactericidal activity, including activity against the multidrug-resistant pathogens methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE), while also exhibiting a minimal potential to induce resistance. Taken together, our results highlight the compound as a promising new FtsZ-targeting bactericidal agent. PMID:23050700

  7. Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers.

    PubMed Central

    Erickson, H P; Taylor, D W; Taylor, K A; Bramhill, D

    1996-01-01

    The bacterial cell division protein FtsZ is a homolog of tubulin, but it has not been determined whether FtsZ polymers are structurally related to the microtubule lattice. In the present study, we have obtained high-resolution electron micrographs of two FtsZ polymers that show remarkable similarity to tubulin polymers. The first is a two-dimensional sheet of protofilaments with a lattice very similar to that of the microtubule wall. The second is a miniring, consisting of a single protofilament in a sharply curved, planar conformation. FtsZ minirings are very similar to tubulin rings that are formed upon disassembly of microtubules but are about half the diameter. This suggests that the curved conformation occurs at every FtsZ subunit, but in tubulin rings the conformation occurs at either beta- or alpha-tubulin subunits but not both. We conclude that the functional polymer of FtsZ in bacterial cell division is a long thin sheet of protofilaments. There is sufficient FtsZ in Escherichia coli to form a protofilament that encircles the cell 20 times. The similarity of polymers formed by FtsZ and tubulin implies that the protofilament sheet is an ancient cytoskeletal system, originally functioning in bacterial cell division and later modified to make microtubules. Images Fig. 1 Fig. 2 Fig. 3 PMID:8552673

  8. Characterization of the in vitro assembly of FtsZ in Arthrobacter strain A3 using light scattering.

    PubMed

    Yang, Fan; Zhang, Shanshan; Ding, Shenglong; Hou, Yannan; Yu, Linghui; Chen, Ximing; Xiao, Jianxi

    2016-10-01

    The self-assembly of FtsZ, the bacterial homolog of tubulin, plays an essential role in cell division. Light scattering technique is applied to real-time monitor the in vitro assembly of FtsZ in Arthrobacter strain A3, a newly isolated psychrotrophic bacterium. The critical concentration needed for the assembly is estimated as 6.7μM. The polymerization of FtsZ in Arthrobacter strain A3 requires both GTP and divalent metal ions, while salt is an unfavorable condition for the assembly. The FtsZ polymerizes under a wide range of pHs, with the fastest rate around pH 6.0. The FtsZ from Arthrobacter strain A3 resembles Mycobacterium tuberculosis FtsZ in terms of the dependence on divalent metal ions and the slow polymerization rate, while it is different from M. tuberculosis FtsZ considering the sensitivity to salt and pH. The comparison of FtsZ from different organisms will greatly advance our understanding of the biological role of the key cell division protein. PMID:27164494

  9. A new monoterpenoid oxindole alkaloid from Hamelia patens micropropagated plantlets.

    PubMed

    Paniagua-Vega, David; Cerda-García-Rojas, Carlos M; Ponce-Noyola, Teresa; Ramos-Valdivia, Ana C

    2012-11-01

    Chemical studies on Hamelia patens (Rubiaceae) micropropagated plantlets allowed production of a new monoterpenoid oxindole alkaloid, named (-)-hameline (7), together with eight known alkaloids, tetrahydroalstonine (1), aricine (2), pteropodine (3), isopteropodine (4), uncarine F (5), speciophylline (6), palmirine (8), and rumberine (9). The structure of the new alkaloid was assigned on the basis of 1D and 2D NMR spectroscopy, mass spectrometry, and molecular modeling. PMID:23285803

  10. Evidence That Bacteriophage λ Kil Peptide Inhibits Bacterial Cell Division by Disrupting FtsZ Protofilaments and Sequestering Protein Subunits.

    PubMed

    Hernández-Rocamora, Víctor M; Alfonso, Carlos; Margolin, William; Zorrilla, Silvia; Rivas, Germán

    2015-08-14

    The effects of Kil peptide from bacteriophage λ on the assembly of Escherichia coli FtsZ into one subunit thick protofilaments were studied using combined biophysical and biochemical methods. Kil peptide has recently been identified as the factor from bacteriophage λ responsible for the inhibition of bacterial cell division during lytic cycle, targeting FtsZ polymerization. Here, we show that this antagonist blocks FtsZ assembly into GTP-dependent protofilaments, producing a wide distribution of smaller oligomers compared with the average size of the intact protofilaments. The shortening of FtsZ protofilaments by Kil is detectable at concentrations of the peptide in the low micromolar range, the mid-point of the inhibition being close to its apparent affinity for GDP-bound FtsZ. This antagonist not only interferes with FtsZ assembly but also reverses the polymerization reaction. The negative regulation by Kil significantly reduces the GTPase activity of FtsZ protofilaments, and FtsZ polymers assembled in guanosine-5'-[(α,β)-methyleno]triphosphate are considerably less sensitive to Kil. Our results suggest that, at high concentrations, Kil may use an inhibition mechanism involving the sequestration of FtsZ subunits, similar to that described for other inhibitors like the SOS response protein SulA or the moonlighting enzyme OpgH. This mechanism is different from those employed by the division site selection antagonists MinC and SlmA. This work provides new insight into the inhibition of FtsZ assembly by phages, considered potential tools against bacterial infection. PMID:26124275

  11. FtsZ Cytoskeletal Filaments as a Template for Metallic Nanowire Fabrication.

    PubMed

    Ostrov, Nili; Fichman, Galit; Adler-Abramovich, Lihi; Gazit, Ehud

    2015-01-01

    Supramolecular protein assemblies can serve as templates for the fabrication of inorganic nanowires due to their morphological reproducibility and innate proclivity to form well-ordered structures. Amongst the variety of naturally occurring nano-scale assemblies, cytoskeletal fibers from diverse biological sources represent a unique family of scaffolds for biomimetics as they efficiently self-assemble in vitro in a controllable manner to form stable filaments. Here, we harness the bacterial FtsZ filament system as a scaffold for protein-based metal nanowires, and further demonstrate the control of wire alignment with the use of an external magnetic field. Due to the ease at which the bacterial FtsZ is overexpressed and purified, as well as the extensive studies of its ultrastructural properties and physiological significance, FtsZ filaments are an ideal substrate for large-scale production and chemical manipulation. Using a biologically compatible electroless metal deposition technique initiated by adsorption of platinum as a surface catalyst, we demonstrate the coating of assembled FtsZ filaments with iron, nickel, gold, and copper to fabricate continuous nanowires with diameters ranging from 10-50 nm. Organic-inorganic hybrid wires were analyzed using high-resolution field-emission-gun transmission and scanning electron microscopy, and confirmed by energy-dispersive elemental analysis. We also achieved alignment of ferrofluid-coated FtsZ filaments using an external magnetic field. Overall, we provide evidence for the robustness of the FtsZ filament system as a molecular scaffold, and offer an efficient, biocompatible procedure for facile bottom-up assembly of metallic wires on biological templates. We believe that bottom-up fabrication methods as reported herein significantly contribute to the expanding toolkit available for the incorporation of biological materials in nano-scale devices for electronic and electromechanical applications. PMID:26328401

  12. The ftsZ Gene of Mycobacterium smegmatis is expressed Through Multiple Transcripts

    PubMed Central

    Roy, Sougata; Anand, Deepak; Vijay, Srinivasan; Gupta, Prabuddha; Ajitkumar, Parthasarathi

    2011-01-01

    The principal essential bacterial cell division gene ftsZ is differentially expressed through multiple transcripts in diverse genera of bacteria in order to meet cell division requirements in compliance with the physiological niche of the organism under different environmental conditions. We initiated transcriptional analyses of ftsZ gene of the fast growing saprophytic mycobacterium, Mycobacterium smegmatis, as the first step towards understanding the requirements for FtsZ for cell division under different growth phases and stress conditions. Primer extension analyses identified four transcripts, T1, T2, T3, and T4. Transcriptional fusion studies using gfp showed that the respective putative promoter regions, P1, P2, P3, and P4, possessed promoter activity. T1, T2, and T3 were found to originate from the intergenic region between ftsZ and the upstream gene, ftsQ. T4 was initiated from the 3’ portion of the open reading frame of ftsQ. RT-PCR analyses indicated co-transcription of ftsQ and ftsZ. The four transcripts were present in the cells at all growth phases and at different levels in the cells exposed to a variety of stress conditions in vitro. T2 and T3 were absent under hypoxia and nutrient-depleted stationary phase conditions, while the levels of T1 and T4 remained unaffected. These studies showed that ftsZ gene expression through multiple transcripts and differential expression of the transcripts at different growth phases and under stress conditions are conserved in M. smegmatis, like in other Actinomycetes. PMID:21772930

  13. Perpendicular planes of FtsZ arcs in spheroidal Escherichia coli cells.

    PubMed

    Pas, E; Einav, M; Woldringh, C L; Zaritsky, A

    2001-01-01

    Division planes in Escherichia coli, usually restricted to one dimension of the rod-shaped cell, were induced at all possible planes by transforming the cells to spheroids with mecillinam (inactivating PbpA). Such cells displayed many nucleoids and arcs of FtsZ, genetically tagged to green fluorescent protein, that developed to rings at constriction sites all around their surface. These observations are consistent with the view (Woldringh et al., J. Bacteriol. 176 (1994) 6030-6038) that nucleoids, forced during replication to segregate in the length axis of the cell by the rigid bacillary envelope, induce assembly of FtsZ to division rings in between them. PMID:11254985

  14. The Kil Peptide of Bacteriophage λ Blocks Escherichia coli Cytokinesis via ZipA-Dependent Inhibition of FtsZ Assembly

    PubMed Central

    Haeusser, Daniel P.; Hoashi, Marina; Weaver, Anna; Brown, Nathan; Pan, James; Sawitzke, James A.; Thomason, Lynn C.; Court, Donald L.; Margolin, William

    2014-01-01

    Assembly of the essential, tubulin-like FtsZ protein into a ring-shaped structure at the nascent division site determines the timing and position of cytokinesis in most bacteria and serves as a scaffold for recruitment of the cell division machinery. Here we report that expression of bacteriophage λ kil, either from a resident phage or from a plasmid, induces filamentation of Escherichia coli cells by rapid inhibition of FtsZ ring formation. Mutant alleles of ftsZ resistant to the Kil protein map to the FtsZ polymer subunit interface, stabilize FtsZ ring assembly, and confer increased resistance to endogenous FtsZ inhibitors, consistent with Kil inhibiting FtsZ assembly. Cells with the normally essential cell division gene zipA deleted (in a modified background) display normal FtsZ rings after kil expression, suggesting that ZipA is required for Kil-mediated inhibition of FtsZ rings in vivo. In support of this model, point mutations in the C-terminal FtsZ-interaction domain of ZipA abrogate Kil activity without discernibly altering FtsZ-ZipA interactions. An affinity-tagged-Kil derivative interacts with both FtsZ and ZipA, and inhibits sedimentation of FtsZ filament bundles in vitro. Together, these data inspire a model in which Kil interacts with FtsZ and ZipA in the cell to prevent FtsZ assembly into a coherent, division-competent ring structure. Phage growth assays show that kil+ phage lyse ∼30% later than kil mutant phage, suggesting that Kil delays lysis, perhaps via its interaction with FtsZ and ZipA. PMID:24651041

  15. The pH Dependence of Polymerization and Bundling by the Essential Bacterial Cytoskeltal Protein FtsZ

    PubMed Central

    Pacheco-Gómez, Raúl; Roper, David I.; Dafforn, Timothy R.; Rodger, Alison

    2011-01-01

    There is a growing body of evidence that bacterial cell division is an intricate coordinated process of comparable complexity to that seen in eukaryotic cells. The dynamic assembly of Escherichia coli FtsZ in the presence of GTP is fundamental to its activity. FtsZ polymerization is a very attractive target for novel antibiotics given its fundamental and universal function. In this study our aim was to understand further the GTP-dependent FtsZ polymerization mechanism and our main focus is on the pH dependence of its behaviour. A key feature of this work is the use of linear dichroism (LD) to follow the polymerization of FtsZ monomers into polymeric structures. LD is the differential absorption of light polarized parallel and perpendicular to an orientation direction (in this case that provided by shear flow). It thus readily distinguishes between FtsZ polymers and monomers. It also distinguishes FtsZ polymers and less well-defined aggregates, which light scattering methodologies do not. The polymerization of FtsZ over a range of pHs was studied by right-angled light scattering to probe mass of FtsZ structures, LD to probe real-time formation of linear polymeric fibres, a specially developed phosphate release assay to relate guanosine triphosphate (GTP) hydrolysis to polymer formation, and electron microscopy (EM) imaging of reaction products as a function of time and pH. We have found that lowering the pH from neutral to 6.5 does not change the nature of the FtsZ polymers in solution—it simply facilitates the polymerization so the fibres present are longer and more abundant. Conversely, lowering the pH to 6.0 has much the same effect as introducing divalent cations or the FtsZ-associated protein YgfE (a putative ZapA orthologue in E. coli)—it stablizes associations of protofilaments. PMID:21738567

  16. Dynamic Interaction of the Escherichia coli Cell Division ZipA and FtsZ Proteins Evidenced in Nanodiscs*

    PubMed Central

    Hernández-Rocamora, Víctor M.; Reija, Belén; García, Concepción; Natale, Paolo; Alfonso, Carlos; Minton, Allen P.; Zorrilla, Silvia; Rivas, Germán; Vicente, Miguel

    2012-01-01

    The full-length ZipA protein from Escherichia coli, one of the essential components of the division proto-ring that provides membrane tethering to the septation FtsZ protein, has been incorporated in single copy into nanodiscs formed by a membrane scaffold protein encircling an E. coli phospholipid mixture. This is an acellular system that reproduces the assembly of part of the cell division components. ZipA contained in nanodiscs (Nd-ZipA) retains the ability to interact with FtsZ oligomers and with FtsZ polymers. Interactions with FtsZ occur at similar strengths as those involved in the binding of the soluble form of ZipA, lacking the transmembrane region, suggesting that the transmembrane region of ZipA has little influence on the formation of the ZipA·FtsZ complex. Peptides containing partial sequences of the C terminus of FtsZ compete with FtsZ polymers for binding to Nd-ZipA. The affinity of Nd-ZipA for the FtsZ polymer formed with GTP or GMPCPP (a slowly hydrolyzable analog of GTP) is moderate (micromolar range) and of similar magnitude as for FtsZ-GDP oligomers. Polymerization does not stabilize the binding of FtsZ to ZipA. This supports the role of ZipA as a passive anchoring device for the proto-ring with little implication, if any, in the regulation of its assembly. Furthermore, it indicates that the tethering of FtsZ to the membrane shows sufficient plasticity to allow for its release from noncentral regions of the cytoplasmic membrane and its subsequent relocation to midcell when demanded by the assembly of a division ring. PMID:22787144

  17. Targeting the Wolbachia Cell Division Protein FtsZ as a New Approach for Antifilarial Therapy

    PubMed Central

    Li, Zhiru; Garner, Amanda L.; Gloeckner, Christian; Janda, Kim D.; Carlow, Clotilde K.

    2011-01-01

    The use of antibiotics targeting the obligate bacterial endosymbiont Wolbachia of filarial parasites has been validated as an approach for controlling filarial infection in animals and humans. Availability of genomic sequences for the Wolbachia (wBm) present in the human filarial parasite Brugia malayi has enabled genome-wide searching for new potential drug targets. In the present study, we investigated the cell division machinery of wBm and determined that it possesses the essential cell division gene ftsZ which was expressed in all developmental stages of B. malayi examined. FtsZ is a GTPase thereby making the protein an attractive Wolbachia drug target. We described the molecular characterization and catalytic properties of Wolbachia FtsZ. We also demonstrated that the GTPase activity was inhibited by the natural product, berberine, and small molecule inhibitors identified from a high-throughput screen. Furthermore, berberine was also effective in reducing motility and reproduction in B. malayi parasites in vitro. Our results should facilitate the discovery of selective inhibitors of FtsZ as a novel anti-symbiotic approach for controlling filarial infection. Note The nucleotide sequences reported in this paper are available in GenBank™ Data Bank under the accession number wAlB-FtsZ (JN616286). PMID:22140592

  18. Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ

    NASA Astrophysics Data System (ADS)

    Pilhofer, Martin; Aistleitner, Karin; Biboy, Jacob; Gray, Joe; Kuru, Erkin; Hall, Edward; Brun, Yves V.; Vannieuwenhze, Michael S.; Vollmer, Waldemar; Horn, Matthias; Jensen, Grant J.

    2013-12-01

    Chlamydiae are important pathogens and symbionts with unique cell biological features. They lack the cell-division protein FtsZ, and the existence of peptidoglycan (PG) in their cell wall has been highly controversial. FtsZ and PG together function in orchestrating cell division and maintaining cell shape in almost all other bacteria. Using electron cryotomography, mass spectrometry and fluorescent labelling dyes, here we show that some environmental chlamydiae have cell wall sacculi consisting of a novel PG type. Treatment with fosfomycin (a PG synthesis inhibitor) leads to lower infection rates and aberrant cell shapes, suggesting that PG synthesis is crucial for the chlamydial life cycle. Our findings demonstrate for the first time the presence of PG in a member of the Chlamydiae. They also present a unique example of a bacterium with a PG sacculus but without FtsZ, challenging the current hypothesis that it is the absence of a cell wall that renders FtsZ non-essential.

  19. [Localization of the division protein FtsZ in mycoplasma cells Mycoplasma hominis].

    PubMed

    Vishniakov, I E; Borkhsenius, S N; Basovskiĭ, Iu I; Levitskiĭ, S A; Lazarev, V N; Snigirevskaia, E S; Komissarchik, Ia Iu

    2009-01-01

    Localization of the protein FtsZ in Mycoplasma hominis cells was determined. Ultra thin sections were treated by rabbit polyclonal antibodies against FtsZ M. hominis: a conjugate of protein A with colloidal gold particles was used instead of secondary antibodies. Considerable polymorphism of cells was seen on electron microscopy pictures of M. hominis cells, which is typical for mycoplasmas. Among a wide variety of cell shapes we distinguished dumbbell-shaped dividing cells, and the cells connected with each other with the aid of thin membrane tubules (former constrictions). Dominants distribution of the label in the constriction area of dividing M. hominis cells and in the area of the thin membrane tubules was observed. We revealed the cross septum in the mycoplasma cells for the first time, as well as the gold labeling of this structure. Furthermore, in some rounded and oval cells colloidal gold particles labeled the whole plasma membrane in ring-shaped manner. Probably, the label in these cases marks a submembrane contractile ring (Z-ring). The facts mentioned above confirm that FtsZ of M. hominis plays an active role in the mycoplasma cytokinesis. In a series of cases spiral-like distribution of gold particles was observed. Probably, FtsZ protofilaments in M. hominis cells can form spiral structures similar to Z-spirals of Bacillus subtilis and Escherichia coli. Its presence in mycoplasma cells may be considered as an important argument in favour of model of Z-ring assembling through reorganization of Z-spirals. FtsZ also may participate in maintenance of mycoplasma cell shape (membrane localization). PMID:19435279

  20. MinC Protein Shortens FtsZ Protofilaments by Preferentially Interacting with GDP-bound Subunits*

    PubMed Central

    Hernández-Rocamora, Víctor M.; García-Montañés, Concepción; Reija, Belén; Monterroso, Begoña; Margolin, William; Alfonso, Carlos; Zorrilla, Silvia; Rivas, Germán

    2013-01-01

    The interaction of MinC with FtsZ and its effects on FtsZ polymerization were studied under close to physiological conditions by a combination of biophysical methods. The Min system is a widely conserved mechanism in bacteria that ensures the correct placement of the division machinery at midcell. MinC is the component of this system that effectively interacts with FtsZ and inhibits the formation of the Z-ring. Here we report that MinC produces a concentration-dependent reduction in the size of GTP-induced FtsZ protofilaments (FtsZ-GTP) as demonstrated by analytical ultracentrifugation, dynamic light scattering, fluorescence correlation spectroscopy, and electron microscopy. Our experiments show that, despite being shorter, FtsZ protofilaments maintain their narrow distribution in size in the presence of MinC. The protein had the same effect regardless of its addition prior to or after FtsZ polymerization. Fluorescence anisotropy measurements indicated that MinC bound to FtsZ-GDP with a moderate affinity (apparent KD ∼10 μm at 100 mm KCl and pH 7.5) very close to the MinC concentration corresponding to the midpoint of the inhibition of FtsZ assembly. Only marginal binding of MinC to FtsZ-GTP protofilaments was observed by analytical ultracentrifugation and fluorescence correlation spectroscopy. Remarkably, MinC effects on FtsZ-GTP protofilaments and binding affinity to FtsZ-GDP were strongly dependent on ionic strength, being severely reduced at 500 mm KCl compared with 100 mm KCl. Our results support a mechanism in which MinC interacts with FtsZ-GDP, resulting in smaller protofilaments of defined size and having the same effect on both preassembled and growing FtsZ protofilaments. PMID:23853099

  1. Antioxidant and hepatoprotective activity of Hamelia patens extracts.

    PubMed

    Perez-Meseguer, Jonathan; Delgado-Montemayor, Cecilia; Ortíz-Torres, Tania; Salazar-Aranda, Ricardo; Cordero-Perez, Paula; de Torres, Noemí Waksman

    2016-01-01

    Hamelia patens is widely used in the traditional medicine of Mexico and Central America for the treatment of illnesses associated with inflammatory processes. In this study, antioxidant and hepatoprotective activity were assayed on the methanolic crude (ME), hexane (HE), ethyl acetate (AE), and butanol (BE) extracts of H. patens. The total phenolic content (TPC) as mg of gallic acid equivalents per g of dry extract was determined by Folin-Ciocalteu's method (ME=141.58±11.99, HE=33.96±1.13, AE=375.18±13.09, BE=132.08±3.62), and antioxidant activity by 2,2-diphenyl-1-picryl-hydrazyl (DPPH) free radical-scavenging method (EC(50) ME=77.87±5.67, HE=236.64±26.32, AE=45.87±2.24, BE=50.97±0.85μg/mL). Hepatoprotective activity was evaluated through AST activity on HepG2 cells subjected to damage with CCl(4) (ME=62.5±3.41, HE=72.25±2.87, AE=63.50±4.20, BE=43.74±4.03). BE showed the greater hepatoprotective activity and a good antioxidant capacity, while HE did not show hepatoprotective or antioxidant activity. Cytotoxicity was evaluated on Vero cells cultures; none showed significant toxicity. PMID:27005511

  2. Antibacterial activity of alkyl gallates is a combination of direct targeting of FtsZ and permeabilization of bacterial membranes.

    PubMed

    Król, Ewa; de Sousa Borges, Anabela; da Silva, Isabel; Polaquini, Carlos R; Regasini, Luis O; Ferreira, Henrique; Scheffers, Dirk-Jan

    2015-01-01

    Alkyl gallates are compounds with reported antibacterial activity. One of the modes of action is binding of the alkyl gallates to the bacterial membrane and interference with membrane integrity. However, alkyl gallates also cause cell elongation and disruption of cell division in the important plant pathogen Xanthomonas citri subsp. citri, suggesting that cell division proteins may be targeted by alkyl gallates. Here, we use Bacillus subtilis and purified B. subtilis FtsZ to demonstrate that FtsZ is a direct target of alkyl gallates. Alkyl gallates disrupt the FtsZ-ring in vivo, and cause cell elongation. In vitro, alkyl gallates bind with high affinity to FtsZ, causing it to cluster and lose its capacity to polymerize. The activities of a homologous series of alkyl gallates with alkyl side chain lengths ranging from five to eight carbons (C5-C8) were compared and heptyl gallate was found to be the most potent FtsZ inhibitor. Next to the direct effect on FtsZ, alkyl gallates also target B. subtilis membrane integrity-however the observed anti-FtsZ activity is not a secondary effect of the disruption of membrane integrity. We propose that both modes of action, membrane disruption and anti-FtsZ activity, contribute to the antibacterial activity of the alkyl gallates. We propose that heptyl gallate is a promising hit for the further development of antibacterials that specifically target FtsZ. PMID:25972861

  3. The bacterial tubulin FtsZ requires its intrinsically disordered linker to direct robust cell wall construction

    PubMed Central

    Sundararajan, Kousik; Miguel, Amanda; Desmarais, Samantha M.; Meier, Elizabeth L.; Huang, Kerwyn Casey; Goley, Erin D.

    2015-01-01

    The bacterial GTPase FtsZ forms a cytokinetic ring at midcell, recruits the division machinery, and orchestrates membrane and peptidoglycan cell wall invagination. However, the mechanism for FtsZ regulation of peptidoglycan metabolism is unknown. The FtsZ GTPase domain is separated from its membrane-anchoring C-terminal conserved (CTC) peptide by a disordered C-terminal linker (CTL). Here, we investigate CTL function in Caulobacter crescentus. Strikingly, production of FtsZ lacking the CTL (ΔCTL) is lethal: cells become filamentous, form envelope bulges, and lyse, resembling treatment with β-lactam antibiotics. This phenotype is produced by FtsZ polymers bearing the CTC and a CTL shorter than 14 residues. Peptidoglycan synthesis still occurs downstream of ΔCTL, however cells expressing ΔCTL exhibit reduced peptidoglycan crosslinking and longer glycan strands than wildtype. Importantly, midcell proteins are still recruited to sites of ΔCTL assembly. We propose that FtsZ regulates peptidoglycan metabolism through a CTL-dependent mechanism that extends beyond simple protein recruitment. PMID:26099469

  4. The bacterial tubulin FtsZ requires its intrinsically disordered linker to direct robust cell wall construction.

    PubMed

    Sundararajan, Kousik; Miguel, Amanda; Desmarais, Samantha M; Meier, Elizabeth L; Casey Huang, Kerwyn; Goley, Erin D

    2015-01-01

    The bacterial GTPase FtsZ forms a cytokinetic ring at midcell, recruits the division machinery and orchestrates membrane and peptidoglycan cell wall invagination. However, the mechanism for FtsZ regulation of peptidoglycan metabolism is unknown. The FtsZ GTPase domain is separated from its membrane-anchoring C-terminal conserved (CTC) peptide by a disordered C-terminal linker (CTL). Here we investigate CTL function in Caulobacter crescentus. Strikingly, production of FtsZ lacking the CTL (ΔCTL) is lethal: cells become filamentous, form envelope bulges and lyse, resembling treatment with β-lactam antibiotics. This phenotype is produced by FtsZ polymers bearing the CTC and a CTL shorter than 14 residues. Peptidoglycan synthesis still occurs downstream of ΔCTL; however, cells expressing ΔCTL exhibit reduced peptidoglycan crosslinking and longer glycan strands than wild type. Importantly, midcell proteins are still recruited to sites of ΔCTL assembly. We propose that FtsZ regulates peptidoglycan metabolism through a CTL-dependent mechanism that extends beyond simple protein recruitment. PMID:26099469

  5. Antibacterial activity of alkyl gallates is a combination of direct targeting of FtsZ and permeabilization of bacterial membranes

    PubMed Central

    Król, Ewa; de Sousa Borges, Anabela; da Silva, Isabel; Polaquini, Carlos R.; Regasini, Luis O.; Ferreira, Henrique; Scheffers, Dirk-Jan

    2015-01-01

    Alkyl gallates are compounds with reported antibacterial activity. One of the modes of action is binding of the alkyl gallates to the bacterial membrane and interference with membrane integrity. However, alkyl gallates also cause cell elongation and disruption of cell division in the important plant pathogen Xanthomonas citri subsp. citri, suggesting that cell division proteins may be targeted by alkyl gallates. Here, we use Bacillus subtilis and purified B. subtilis FtsZ to demonstrate that FtsZ is a direct target of alkyl gallates. Alkyl gallates disrupt the FtsZ-ring in vivo, and cause cell elongation. In vitro, alkyl gallates bind with high affinity to FtsZ, causing it to cluster and lose its capacity to polymerize. The activities of a homologous series of alkyl gallates with alkyl side chain lengths ranging from five to eight carbons (C5–C8) were compared and heptyl gallate was found to be the most potent FtsZ inhibitor. Next to the direct effect on FtsZ, alkyl gallates also target B. subtilis membrane integrity—however the observed anti-FtsZ activity is not a secondary effect of the disruption of membrane integrity. We propose that both modes of action, membrane disruption and anti-FtsZ activity, contribute to the antibacterial activity of the alkyl gallates. We propose that heptyl gallate is a promising hit for the further development of antibacterials that specifically target FtsZ. PMID:25972861

  6. Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial ftsZ.

    PubMed Central

    Osteryoung, K W; Stokes, K D; Rutherford, S M; Percival, A L; Lee, W Y

    1998-01-01

    The division of plastids is critical for viability in photosynthetic eukaryotes, but the mechanisms associated with this process are still poorly understood. We previously identified a nuclear gene from Arabidopsis encoding a chloroplast-localized homolog of the bacterial cell division protein FtsZ, an essential cytoskeletal component of the prokaryotic cell division apparatus. Here, we report the identification of a second nuclear-encoded FtsZ-type protein from Arabidopsis that does not contain a chloroplast targeting sequence or other obvious sorting signals and is not imported into isolated chloroplasts, which strongly suggests that it is localized in the cytosol. We further demonstrate using antisense technology that inhibiting expression of either Arabidopsis FtsZ gene (AtFtsZ1-1 or AtFtsZ2-1) in transgenic plants reduces the number of chloroplasts in mature leaf cells from 100 to one, indicating that both genes are essential for division of higher plant chloroplasts but that each plays a distinct role in the process. Analysis of currently available plant FtsZ sequences further suggests that two functionally divergent FtsZ gene families encoding differentially localized products participate in chloroplast division. Our results provide evidence that both chloroplastic and cytosolic forms of FtsZ are involved in chloroplast division in higher plants and imply that important differences exist between chloroplasts and prokaryotes with regard to the roles played by FtsZ proteins in the division process. PMID:9836740

  7. The Nucleoid Occlusion SlmA Protein Accelerates the Disassembly of the FtsZ Protein Polymers without Affecting Their GTPase Activity

    PubMed Central

    Cabré, Elisa J.; Monterroso, Begoña; Alfonso, Carlos; Sánchez-Gorostiaga, Alicia; Reija, Belén; Jiménez, Mercedes

    2015-01-01

    Division site selection is achieved in bacteria by different mechanisms, one of them being nucleoid occlusion, which prevents Z-ring assembly nearby the chromosome. Nucleoid occlusion in E. coli is mediated by SlmA, a sequence specific DNA binding protein that antagonizes FtsZ assembly. Here we show that, when bound to its specific target DNA sequences (SBS), SlmA reduces the lifetime of the FtsZ protofilaments in solution and of the FtsZ bundles when located inside permeable giant vesicles. This effect appears to be essentially uncoupled from the GTPase activity of the FtsZ protofilaments, which is insensitive to the presence of SlmA·SBS. The interaction of SlmA·SBS with either FtsZ protofilaments containing GTP or FtsZ oligomers containing GDP results in the disassembly of FtsZ polymers. We propose that SlmA·SBS complexes control the polymerization state of FtsZ by accelerating the disassembly of the FtsZ polymers leading to their fragmentation into shorter species that are still able to hydrolyze GTP at the same rate. SlmA defines therefore a new class of inhibitors of the FtsZ ring different from the SOS response regulator SulA and from the moonlighting enzyme OpgH, inhibitors of the GTPase activity. SlmA also shows differences compared with MinC, the inhibitor of the division site selection Min system, which shortens FtsZ protofilaments by interacting with the GDP form of FtsZ. PMID:25950808

  8. ZipA is a MAP-Tau homolog and is essential for structural integrity of the cytokinetic FtsZ ring during bacterial cell division.

    PubMed Central

    RayChaudhuri, D

    1999-01-01

    The first visible event in prokaryotic cell division is the assembly of the soluble, tubulin-like FtsZ GTPase into a membrane-associated cytokinetic ring that defines the division plane in bacterial and archaeal cells. In the temperature-sensitive ftsZ84 mutant of Escherichia coli, this ring assembly is impaired at the restrictive temperature causing lethal cell filamentation. Here I present genetic and morphological evidence that a 2-fold higher dosage of the division gene zipA suppresses thermosensitivity of the ftsZ84 mutant by stabilizing the labile FtsZ84 ring structure in vivo. I demonstrate that purified ZipA promotes and stabilizes protofilament assembly of both FtsZ and FtsZ84 in vitro and cosediments with the protofilaments. Furthermore, ZipA organizes FtsZ protofilaments into arrays of long bundles or sheets that probably represent the physiological organization of the FtsZ ring in bacterial cells. The N-terminal cytoplasmic domain of membrane-anchored ZipA contains sequence elements that resemble the microtubule-binding signature motifs in eukaryotic Tau, MAP2 and MAP4 proteins. It is postulated that the MAP-Tau-homologous motifs in ZipA mediate its binding to FtsZ, and that FtsZ-ZipA interaction represents an ancient prototype of the protein-protein interaction that enables MAPs to suppress microtubule catastrophe and/or to promote rescue. PMID:10228152

  9. Architecture of the ring formed by the tubulin homologue FtsZ in bacterial cell division

    PubMed Central

    Szwedziak, Piotr; Wang, Qing; Bharat, Tanmay A M; Tsim, Matthew; Löwe, Jan

    2014-01-01

    Membrane constriction is a prerequisite for cell division. The most common membrane constriction system in prokaryotes is based on the tubulin homologue FtsZ, whose filaments in E. coli are anchored to the membrane by FtsA and enable the formation of the Z-ring and divisome. The precise architecture of the FtsZ ring has remained enigmatic. In this study, we report three-dimensional arrangements of FtsZ and FtsA filaments in C. crescentus and E. coli cells and inside constricting liposomes by means of electron cryomicroscopy and cryotomography. In vivo and in vitro, the Z-ring is composed of a small, single-layered band of filaments parallel to the membrane, creating a continuous ring through lateral filament contacts. Visualisation of the in vitro reconstituted constrictions as well as a complete tracing of the helical paths of the filaments with a molecular model favour a mechanism of FtsZ-based membrane constriction that is likely to be accompanied by filament sliding. DOI: http://dx.doi.org/10.7554/eLife.04601.001 PMID:25490152

  10. The 75-kilodalton antigen of Bartonella bacilliformis is a structural homolog of the cell division protein FtsZ.

    PubMed Central

    Padmalayam, I; Anderson, B; Kron, M; Kelly, T; Baumstark, B

    1997-01-01

    A genomic library of Bartonella bacilliformis was constructed and screened with human anti-Bartonella serum from a patient with the chronic, verruga peruana phase of bartonellosis. An immunoreactive clone isolated from this library was found to code for a 591-amino-acid protein with a high degree of sequence similarity to the FtsZ family of proteins. The degree of amino acid identity between the B. bacilliformis protein (FtsZ[Bb]) and the other FtsZ proteins is especially pronounced over the N-terminal 321 amino acids (N-terminal domain) of the sequence, with values ranging from 45% identity for the homolog from Micrococcus luteus (FtsZ[Ml]) to 91% identity for the homolog from Rhizobium melliloti, (FtsZ[Rm1]). All of the functional domains required for FtsZ activity are conserved in FtsZ(Bb) and are located within the N-terminal domain of the protein. FtsZ(Bb) is approximately twice as large as most of the other FtsZ proteins previously reported, a property it shares with FtsZ(Rm1). Like the Rhizobium homolog, FtsZ(Bb) has a C-terminal region of approximately 256 amino acids that is absent in the other FtsZ proteins. Evidence is presented that implicates this region in the protein's antigenicity and suggests that, unlike most other FtsZ homologs, FtsZ(Bb) is at least partly exposed at the cell surface. PCR analysis revealed that an ftsZ gene similar in size to the B. bacilliformis gene is present in Bartonella henselae, a bacterium that is closely related to B. bacilliformis. PMID:9226264

  11. Bacterial Division Proteins FtsZ and ZipA Induce Vesicle Shrinkage and Cell Membrane Invagination*

    PubMed Central

    Cabré, Elisa J.; Sánchez-Gorostiaga, Alicia; Carrara, Paolo; Ropero, Noelia; Casanova, Mercedes; Palacios, Pilar; Stano, Pasquale; Jiménez, Mercedes; Rivas, Germán; Vicente, Miguel

    2013-01-01

    Permeable vesicles containing the proto-ring anchoring ZipA protein shrink when FtsZ, the main cell division protein, polymerizes in the presence of GTP. Shrinkage, resembling the constriction of the cytoplasmic membrane, occurs at ZipA densities higher than those found in the cell and is modulated by the dynamics of the FtsZ polymer. In vivo, an excess of ZipA generates multilayered membrane inclusions within the cytoplasm and causes the loss of the membrane function as a permeability barrier. Overproduction of ZipA at levels that block septation is accompanied by the displacement of FtsZ and two additional division proteins, FtsA and FtsN, from potential septation sites to clusters that colocalize with ZipA near the membrane. The results show that elementary constriction events mediated by defined elements involved in cell division can be evidenced both in bacteria and in vesicles. PMID:23921390

  12. Characterization of the FtsZ C-Terminal Variable (CTV) Region in Z-Ring Assembly and Interaction with the Z-Ring Stabilizer ZapD in E. coli Cytokinesis.

    PubMed

    Huang, Kuo-Hsiang; Mychack, Aaron; Tchorzewski, Lukasz; Janakiraman, Anuradha

    2016-01-01

    Polymerization of a ring-like cytoskeletal structure, the Z-ring, at midcell is a highly conserved feature in virtually all bacteria. The Z-ring is composed of short protofilaments of the tubulin homolog FtsZ, randomly arranged and held together through lateral interactions. In vitro, lateral associations between FtsZ protofilaments are stabilized by crowding agents, high concentrations of divalent cations, or in some cases, low pH. In vivo, the last 4-10 amino acid residues at the C-terminus of FtsZ (the C-terminal variable region, CTV) have been implicated in mediating lateral associations between FtsZ protofilaments through charge shielding. Multiple Z-ring associated proteins (Zaps), also promote lateral interactions between FtsZ protofilaments to stabilize the FtsZ ring in vivo. Here we characterize the complementary role/s of the CTV of E. coli FtsZ and the FtsZ-ring stabilizing protein ZapD, in FtsZ assembly. We show that the net charge of the FtsZ CTV not only affects FtsZ protofilament bundling, confirming earlier observations, but likely also the length of the FtsZ protofilaments in vitro. The CTV residues also have important consequences for Z-ring assembly and interaction with ZapD in the cell. ZapD requires the FtsZ CTV region for interaction with FtsZ in vitro and for localization to midcell in vivo. Our data suggest a mechanism in which the CTV residues, particularly K380, facilitate a conformation for the conserved carboxy-terminal residues in FtsZ, that lie immediately N-terminal to the CTV, to enable optimal contact with ZapD. Further, phylogenetic analyses suggest a correlation between the nature of FtsZ CTV residues and the presence of ZapD in the β- γ-proteobacterial species. PMID:27088231

  13. Characterization of the FtsZ C-Terminal Variable (CTV) Region in Z-Ring Assembly and Interaction with the Z-Ring Stabilizer ZapD in E. coli Cytokinesis

    PubMed Central

    Huang, Kuo-Hsiang; Mychack, Aaron; Tchorzewski, Lukasz; Janakiraman, Anuradha

    2016-01-01

    Polymerization of a ring-like cytoskeletal structure, the Z-ring, at midcell is a highly conserved feature in virtually all bacteria. The Z-ring is composed of short protofilaments of the tubulin homolog FtsZ, randomly arranged and held together through lateral interactions. In vitro, lateral associations between FtsZ protofilaments are stabilized by crowding agents, high concentrations of divalent cations, or in some cases, low pH. In vivo, the last 4–10 amino acid residues at the C-terminus of FtsZ (the C-terminal variable region, CTV) have been implicated in mediating lateral associations between FtsZ protofilaments through charge shielding. Multiple Z-ring associated proteins (Zaps), also promote lateral interactions between FtsZ protofilaments to stabilize the FtsZ ring in vivo. Here we characterize the complementary role/s of the CTV of E. coli FtsZ and the FtsZ-ring stabilizing protein ZapD, in FtsZ assembly. We show that the net charge of the FtsZ CTV not only affects FtsZ protofilament bundling, confirming earlier observations, but likely also the length of the FtsZ protofilaments in vitro. The CTV residues also have important consequences for Z-ring assembly and interaction with ZapD in the cell. ZapD requires the FtsZ CTV region for interaction with FtsZ in vitro and for localization to midcell in vivo. Our data suggest a mechanism in which the CTV residues, particularly K380, facilitate a conformation for the conserved carboxy-terminal residues in FtsZ, that lie immediately N-terminal to the CTV, to enable optimal contact with ZapD. Further, phylogenetic analyses suggest a correlation between the nature of FtsZ CTV residues and the presence of ZapD in the β- γ-proteobacterial species. PMID:27088231

  14. Differential Regulation of ftsZ Transcription during Septation of Streptomyces griseus

    PubMed Central

    Kwak, Jangyul; Dharmatilake, Amitha J.; Jiang, Hao; Kendrick, Kathleen E.

    2001-01-01

    Streptomyces has been known to form two types of septa. The data in this research demonstrated that Streptomyces griseus forms another type of septum near the base of sporogenic hyphae (basal septum). To understand the regulation of the septation machinery in S. griseus, we investigated the expression of the ftsZ gene. S1 nuclease protection assays revealed that four ftsZ transcripts were differentially expressed during morphological differentiation. The vegetative transcript (emanating from Pveg) is present at a moderate level during vegetative growth, but is switched off within the first 2 h of sporulation. Two sporulation-specific transcripts predominantly accumulated, and the levels increased by approximately fivefold together shortly before sporulation septa begin to form. Consistently, the sporulation-specific transcripts were expressed much earlier and more abundantly in a group of nonsporulating mutants that form their sporulation septa prematurely. Promoter-probe studies with two different reporter systems confirmed the activities of the putative promoters identified from the 5′ end point of the transcripts. The levels and expression timing of promoter activities were consistent with the results of nuclease protection assays. The aseptate phenotype of the Pspo mutant indicated that the increased transcription from Pspo is required for sporulation septation, but not for vegetative or basal septum formation. PMID:11489862

  15. Backbone and side chain NMR assignments of Geobacillus stearothermophilus ZapA allow identification of residues that mediate the interaction of ZapA with FtsZ.

    PubMed

    Nogueira, Maria Luiza C; Sforça, Mauricio Luis; Chin, Yanni K-Y; Mobli, Mehdi; Handler, Aaron; Gorbatyuk, Vitaliy Y; Robson, Scott A; King, Glenn F; Gueiros-Filho, Frederico J; Zeri, Ana Carolina de Mattos

    2015-10-01

    Bacterial division begins with the formation of a contractile protein ring at midcell, which constricts the bacterial envelope to generate two daughter cells. The central component of the division ring is FtsZ, a tubulin-like protein capable of self-assembling into filaments which further associate into a higher order structure known as the Z ring. Proteins that bind to FtsZ play a crucial role in the formation and regulation of the Z ring. One such protein is ZapA, a widely conserved 21 kDa homodimeric protein that associates with FtsZ filaments and promotes their bundling. Although ZapA was discovered more than a decade ago, the structural details of its interaction with FtsZ remain unknown. In this work, backbone and side chain NMR assignments for the Geobacillus stearothermophilus ZapA homodimer are described. We titrated FtsZ into (15)N(2)H-ZapA and mapped ZapA residues whose resonances are perturbed upon FtsZ binding. This information provides a structural understanding of the interaction between FtsZ and ZapA. PMID:25967379

  16. Influence of FtsZ GTPase activity and concentration on nanoscale Z-ring structure in vivo revealed by three-dimensional Superresolution imaging.

    PubMed

    Lyu, Zhixin; Coltharp, Carla; Yang, Xinxing; Xiao, Jie

    2016-10-01

    FtsZ is an essential bacterial cytoskeletal protein that assembles into a ring-like structure (Z-ring) at midcell to carry out cytokinesis. In vitro, FtsZ exhibits polymorphism in polymerizing into different forms of filaments based on its GTPase activity, concentration, and buffer condition. In vivo, the Z-ring appeared to be punctate and heterogeneously organized, although continuous, homogenous Z-ring structures have also been observed. Understanding how the Z-ring is organized in vivo is important because it provides a structural basis for the functional role of the Z-ring in cytokinesis. Here, we assess the effects of both GTPase activity and FtsZ concentration on the organization of the Z-ring in vivo using three-dimensional (3D) superresolution microscopy. We found that the Z-ring became more homogenous when assembled in the presence of a GTPase-deficient mutant, and upon overexpression of either wt or mutant FtsZ. These results suggest that the in vivo organization of the Z-ring is largely dependent on the intrinsic polymerization properties of FtsZ, which are significantly influenced by the GTPase activity and concentration of FtsZ. Our work provides a unifying theme to reconcile previous observations of different Z-ring structures, and supports a model in which the wt Z-ring comprises loosely associated, heterogeneously distributed FtsZ clusters. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 725-734, 2016. PMID:27310678

  17. Antimicrobial activity of a quinuclidine-based FtsZ inhibitor and its synergistic potential with β-lactam antibiotics.

    PubMed

    Chan, Fung-Yi; Sun, Ning; Leung, Yun-Chung; Wong, Kwok-Yin

    2015-04-01

    Filamenting temperature-sensitive mutant Z (FtsZ) is an essential cell division protein that cooperates in the formation of the cytokinetic Z-ring in most bacteria and has thus been recognized as a promising antimicrobial drug target. We have recently used a structure-based virtual screening approach to identify pyrimidine-linked quinuclidines as a novel class of FtsZ inhibitors. In this study, we further investigated the antibacterial properties of one of the most potent compounds (quinuclidine 1) and its synergistic activity with β-lactam antibiotics. Susceptibility results showed that quinuclidine 1 was active against multiple antibiotic-resistant bacterial strains including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium with minimal inhibitory concentrations of 24 μg ml(-1). When quinuclidine 1 was combined with β-lactam antibiotics, synergistic antimicrobial activities against antibiotic-resistant strains of S. aureus were found. Further in vitro studies suggest that prevention of FtsZ protofilament formation by quinuclidine 1 impairs the formation of Z-ring, and thus inhibits bacterial division. These findings open a new approach for development of quinuclidine-based FtsZ inhibitors into potent antimicrobial agents. PMID:25293977

  18. Screening for FtsZ Dimerization Inhibitors Using Fluorescence Cross-Correlation Spectroscopy and Surface Resonance Plasmon Analysis

    PubMed Central

    Mikuni, Shintaro; Kodama, Kota; Sasaki, Akira; Kohira, Naoki; Maki, Hideki; Munetomo, Masaharu; Maenaka, Katsumi; Kinjo, Masataka

    2015-01-01

    FtsZ is an attractive target for antibiotic research because it is an essential bacterial cell division protein that polymerizes in a GTP-dependent manner. To find the seed chemical structure, we established a high-throughput, quantitative screening method combining fluorescence cross-correlation spectroscopy (FCCS) and surface plasmon resonance (SPR). As a new concept for the application of FCCS to polymerization-prone protein, Staphylococcus aureus FtsZ was fragmented into the N-terminal and C-terminal, which were fused with GFP and mCherry (red fluorescent protein), respectively. By this fragmentation, the GTP-dependent head-to-tail dimerization of each fluorescent labeled fragment of FtsZ could be observed, and the inhibitory processes of chemicals could be monitored by FCCS. In the first round of screening by FCCS, 28 candidates were quantitatively and statistically selected from 495 chemicals determined by in silico screening. Subsequently, in the second round of screening by FCCS, 71 candidates were also chosen from 888 chemicals selected via an in silico structural similarity search of the chemicals screened in the first round of screening. Moreover, the dissociation constants between the highest inhibitory chemicals and Staphylococcus aureus FtsZ were determined by SPR. Finally, by measuring the minimum inhibitory concentration, it was confirmed that the screened chemical had antibacterial activity against Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus (MRSA). PMID:26154290

  19. ZipA-Induced Bundling of FtsZ Polymers Mediated by an Interaction between C-Terminal Domains†

    PubMed Central

    Hale, Cynthia A.; Rhee, Amy C.; de Boer, Piet A. J.

    2000-01-01

    FtsZ and ZipA are essential components of the septal ring apparatus, which mediates cell division in Escherichia coli. FtsZ is a cytoplasmic tubulin-like GTPase that forms protofilament-like homopolymers in vitro. In the cell, the protein assembles into a ring structure at the prospective division site early in the division cycle, and this marks the first recognized event in the assembly of the septal ring. ZipA is an inner membrane protein which is recruited to the nascent septal ring at a very early stage through a direct interaction with FtsZ. Using affinity blotting and protein localization techniques, we have determined which domain on each protein is both sufficient and required for the interaction between the two proteins in vitro as well as in vivo. The results show that ZipA binds to residues confined to the 20 C-terminal amino acids of FtsZ. The FtsZ binding (FZB) domain of ZipA is significantly larger and encompasses the C-terminal 143 residues of ZipA. Significantly, we find that the FZB domain of ZipA is also required and sufficient to induce dramatic bundling of FtsZ protofilaments in vitro. Consistent with the notion that the ability to bind and bundle FtsZ polymers is essential to the function of ZipA, we find that ZipA derivatives lacking an intact FZB domain fail to support cell division in cells depleted for the native protein. Interestingly, ZipA derivatives which do contain an intact FZB domain but which lack the N-terminal membrane anchor or in which this anchor is replaced with the heterologous anchor of the DjlA protein also fail to rescue ZipA− cells. Thus, in addition to the C-terminal FZB domain, the N-terminal domain of ZipA is required for ZipA function. Furthermore, the essential properties of the N domain may be more specific than merely acting as a membrane anchor. PMID:10960100

  20. Double incision wound healing bioassay using Hamelia patens from El Salvador.

    PubMed

    Gomez-Beloz, Alfredo; Rucinski, James C; Balick, Michael J; Tipton, Camille

    2003-10-01

    Hamelia patens Jacq. (Rubiaceae) has received little attention in the laboratory for its wound healing ability even though it is commonly used as a treatment for wounds throughout Central America. A double incision wound healing bioassay was carried out with a crude extract of Hamelia patens collected from El Salvador. Animals were divided into three groups. Group I (n = 14) had the left incision treated with 5% (w/w) Hamelia patens and the contralateral side with petroleum jelly (PJ). Group II (n = 14) had the left incision treated with 10% (w/w) ointment and the contralateral side with petroleum jelly. Group III (n = 10) had the left incision treated with petroleum jelly and the contralateral side left untreated. Breaking strength of the incisions was measured on day 7 and day 12. For Groups I and II, there was no significant difference between treatment and control incisions at day 7. On day 12, there was a significant difference between the treated and control incisions for Groups I and II. There was no significant difference between petroleum jelly and untreated incisions for Group III on day 7 and day 12. Hamelia patens does increase breaking strength of wounds significantly more than the control group. Further wound healing studies of this plant are warranted. PMID:12963138

  1. New insights into FtsZ rearrangements during the cell division of Escherichia coli from single-molecule localization microscopy of fixed cells.

    PubMed

    Vedyaykin, Alexey D; Vishnyakov, Innokentii E; Polinovskaya, Vasilisa S; Khodorkovskii, Mikhail A; Sabantsev, Anton V

    2016-06-01

    FtsZ - a prokaryotic tubulin homolog - is one of the central components of bacterial division machinery. At the early stage of cytokinesis FtsZ forms the so-called Z-ring at mid-cell that guides septum formation. Many approaches were used to resolve the structure of the Z-ring, however, researchers are still far from consensus on this question. We utilized single-molecule localization microscopy (SMLM) in combination with immunofluorescence staining to visualize FtsZ in Esherichia coli fixed cells that were grown under slow and fast growth conditions. This approach allowed us to obtain images of FtsZ structures at different stages of cell division and accurately measure Z-ring dimensions. Analysis of these images demonstrated that Z-ring thickness increases during constriction, starting at about 70 nm at the beginning of division and increasing by approximately 25% half-way through constriction. PMID:26840800

  2. Design, synthesis and antibacterial activity of isatin derivatives as FtsZ inhibitors

    NASA Astrophysics Data System (ADS)

    Lian, Zhi-Min; Sun, Juan; Zhu, Hai-Liang

    2016-08-01

    Seven isatin derivatives have been designed, and their chemical structures were characterized by single crystal X-ray diffraction studies, 1H NMR, MS, and elemental analysis. Structural stabilization followed by intramolecular as well as intermolecular H-bonds makes these molecules as perfect examples in molecular recognition with self-complementary donor and acceptor units within a single molecule. These compounds were evaluated for antimicrobial activities. Docking simulations have been performed to position compounds into the FtsZ active site to determine their probable binding models. All of the compounds exhibited better antibacterial activities. Interestingly, compound 5c and 5d exhibited better antibacterial activities with IC50 values of 0.03 and 0.05 μmol/mL against Staphylococcus aureus, respectively. Compound 5g displays antibacterial activity with IC50 values of 0.672 and 0.830 μmol/mL against Escherichia coli and Pseudomonas aeruginosa, respectively.

  3. Structures of the nucleoid occlusion protein SlmA bound to DNA and the C-terminal domain of the cytoskeletal protein FtsZ.

    PubMed

    Schumacher, Maria A; Zeng, Wenjie

    2016-05-01

    Cell division in most prokaryotes is mediated by FtsZ, which polymerizes to create the cytokinetic Z ring. Multiple FtsZ-binding proteins regulate FtsZ polymerization to ensure the proper spatiotemporal formation of the Z ring at the division site. The DNA-binding protein SlmA binds to FtsZ and prevents Z-ring formation through the nucleoid in a process called "nucleoid occlusion" (NO). As do most FtsZ-accessory proteins, SlmA interacts with the conserved C-terminal domain (CTD) that is connected to the FtsZ core by a long, flexible linker. However, SlmA is distinct from other regulatory factors in that it must be DNA-bound to interact with the FtsZ CTD. Few structures of FtsZ regulator-CTD complexes are available, but all reveal the CTD bound as a helix. To deduce the molecular basis for the unique SlmA-DNA-FtsZ CTD regulatory interaction and provide insight into FtsZ-regulator protein complex formation, we determined structures of Escherichia coli, Vibrio cholera, and Klebsiella pneumonia SlmA-DNA-FtsZ CTD ternary complexes. Strikingly, the FtsZ CTD does not interact with SlmA as a helix but binds as an extended conformation in a narrow, surface-exposed pocket formed only in the DNA-bound state of SlmA and located at the junction between the DNA-binding and C-terminal dimer domains. Binding studies are consistent with the structure and underscore key interactions in complex formation. Combined, these data reveal the molecular basis for the SlmA-DNA-FtsZ interaction with implications for SlmA's NO function and underscore the ability of the FtsZ CTD to adopt a wide range of conformations, explaining its ability to bind diverse regulatory proteins. PMID:27091999

  4. Comparison of Small Molecule Inhibitors of the Bacterial Cell Division Protein FtsZ and Identification of a Reliable Cross-Species Inhibitor

    PubMed Central

    Anderson, David E.; Kim, Michelle B.; Moore, Jared T.; O’Brien, Terrence E.; Sorto, Nohemy A.; Grove, Charles I.; Lackner, Laura L.; Ames, James B.; Shaw, Jared T.

    2012-01-01

    FtsZ is a guanosine triphosphatase (GTPase) that mediates cytokinesis in bacteria. FtsZ is homologous in structure to eukaryotic tubulin and polymerizes in a similar head-to-tail fashion. The study of tubulin’s function in eukaryotic cells has benefited greatly from specific and potent small molecule inhibitors, including colchicine and taxol. Although many small molecule inhibitors of FtsZ have been reported, none has emerged as a generally useful probe for modulating bacterial cell division. With the goal of establishing a useful and reliable small molecule inhibitor of FtsZ, a broad biochemical cross-comparison of reported FtsZ inhibitors was undertaken. Several of these molecules, including phenolic natural products, are unselective inhibitors that seem to derive their activity from the formation of microscopic colloids or aggregates. Other compounds, including the natural product viriditoxin and the drug development candidate PC190723, exhibit no inhibition of GTPase activity using protocols in this work or under published conditions. Of the compounds studied, only zantrin Z3 exhibits good levels of inhibition, maintains activity under conditions that disrupt small molecule aggregates, and provides a platform for exploration of structure-activity relationships (SAR). Preliminary SAR studies have identified slight modifications to the two sidechains of this structure that modulate the inhibitory activity of zantrin Z3. Collectively these studies will help focus future investigations toward the establishment of probes for FtsZ that fill the roles of colchicine and taxol in studies of tubulin. PMID:22958099

  5. Domain folding and flexibility of Escherichia coli FtsZ determined by tryptophan site-directed mutagenesis

    PubMed Central

    Díaz-Espinoza, Rodrigo; Garcés, Andrea P.; Arbildua, José J.; Montecinos, Felipe; Brunet, Juan E.; Lagos, Rosalba; Monasterio, Octavio

    2007-01-01

    FtsZ has two domains, the amino GTPase domain with a Rossmann fold, and the carboxyl domain that resembles the chorismate mutase fold. Bioinformatics analyses suggest that the interdomain interaction is stronger than the interaction of the protofilament longitudinal interfaces. Crystal B factor analysis of FtsZ and detected conformational changes suggest a connection between these domains. The unfolding/folding characteristics of each domain of FtsZ were tested by introducing tryptophans into the flexible region of the amino (F135W) and the carboxyl (F275W and I294W) domains. As a control, the mutation F40W was introduced in a more rigid part of the amino domain. These mutants showed a native-like structure with denaturation and renaturation curves similar to wild type. However, the I294W mutant showed a strong loss of functionality, both in vivo and in vitro when compared to the other mutants. The functionality was recovered with the double mutant I294W/F275A, which showed full in vivo complementation with a slight increment of in vitro GTPase activity with respect to the single mutant. The formation of a stabilizing aromatic interaction involving a stacking between the tryptophan introduced at position 294 and phenylalanine 275 could account for these results. Folding/unfolding of these mutants induced by guanidinium chloride was compatible with a mechanism in which both domains within the protein show the same stability during FtsZ denaturation and renaturation, probably because of strong interface interactions. PMID:17656575

  6. ROLE OF MULTIPLE FTSZ RINGS IN CHLOROPLAST DIVISION UNDER OLIGOTROPHIC AND EUTROPHIC CONDITIONS IN THE UNICELLULAR GREEN ALGA NANNOCHLORIS BACILLARIS (CHLOROPHYTA, TREBOUXIOPHYCEAE)(1).

    PubMed

    Sumiya, Nobuko; Owari, Satomi; Watanabe, Koichi; Kawano, Shigeyuki

    2012-10-01

    Chloroplasts of the unicellular green alga Nannochloris bacillaris Naumann cultured under nutrient-enriched conditions have multiple rings of FtsZ, a prokaryote-derived chloroplast division protein. We previously reported that synthesis of excess chloroplast DNA and formation of multiple FtsZ rings occur simultaneously. To clarify the role of multiple FtsZ rings in chloroplast division, we investigated chloroplast DNA synthesis and ring formation in cells cultured under various culture conditions. Cells transferred from a nutrient-enriched medium to an inorganic medium in the light showed a drop in cell division rate, a reduction in chloroplast DNA content, and changes in the shape of chloroplast nucleoids as cells divided. We then examined DNA synthesis by immunodetecting BrdU incorporated into DNA strands using the anti-BrdU antibody. BrdU-labeled nuclei were clearly observed in cells 48 h after transfer into the inorganic medium, while only weak punctate signals were visible in the chloroplasts. In parallel, the number of FtsZ rings decreased from 6 to only 1. When the cells were transferred from an inorganic medium to a nutrient-enriched medium, the number of cells increased only slightly in the first 12 h after transfer; after this time, however, they started to divide more quickly and increased exponentially. Chloroplast nucleoids changed from punctate to rod-like structures, and active chloroplast DNA synthesis and FtsZ ring formation were observed. On the basis of our results, we conclude that multiple FtsZ ring assembly and chloroplast DNA duplication under nutrient-rich conditions facilitate chloroplast division after transfer to oligotrophic conditions without further duplication of chloroplast DNA and formation of new FtsZ rings. PMID:27011278

  7. In Escherichia coli, MreB and FtsZ direct the synthesis of lateral cell wall via independent pathways that require PBP 2.

    PubMed

    Varma, Archana; Young, Kevin D

    2009-06-01

    In Escherichia coli, the cytoplasmic proteins MreB and FtsZ play crucial roles in ensuring that new muropeptide subunits are inserted into the cell wall in a spatially correct way during elongation and division. In particular, to retain a constant diameter and overall shape, new material must be inserted into the wall uniformly around the cell's perimeter. Current thinking is that MreB accomplishes this feat through intermediary proteins that tether peptidoglycan synthases to the outer face of the inner membrane. We tested this idea in E. coli by using a DD-carboxypeptidase mutant that accumulates pentapeptides in its peptidoglycan, allowing us to visualize new muropeptide incorporation. Surprisingly, inhibiting MreB with the antibiotic A22 did not result in uneven insertion of new wall, although the cells bulged and lost their rod shapes. Instead, uneven (clustered) incorporation occurred only if MreB and FtsZ were inactivated simultaneously, providing the first evidence in E. coli that FtsZ can direct murein incorporation into the lateral cell wall independently of MreB. Inhibiting penicillin binding protein 2 (PBP 2) alone produced the same clustered phenotype, implying that MreB and FtsZ tether peptidoglycan synthases via a common mechanism that includes PBP 2. However, cell shape was determined only by the presence or absence of MreB and not by the even distribution of new wall material as directed by FtsZ. PMID:19346310

  8. Characterization of the ftsZ cell division gene of Neisseria gonorrhoeae: expression in Escherichia coli and N. gonorrhoeae.

    PubMed

    Salimnia, H; Radia, A; Bernatchez, S; Beveridge, T J; Dillon, J R

    2000-01-01

    We cloned the cell division gene ftsZ of the gram-negative coccus Neisseria gonorrhoeae (Ng) strain CH811, characterized it genetically and phenotypically, and studied its localization in N. gonorrhoeae and Escherichia coli (Ec). The 1,179-bp ORF of ftsZ(Ng) encodes a protein with a predicted molecular mass of 41.5 kDa. Protein sequence alignments indicate that FtsZ(Ng) is similar to other FtsZ proteins and contains the conserved GTP binding motif. FtsZ homologues were identified in several N. gonorrhoeae strains and in Neisseria lactamica, Neisseria sicca, Neisseria polysaccharae and Neisseria cinerea either by Western blot or by PCR-Southern blot analysis. Attempts to inactivate the ftsZ(Ng) on the chromosome failed, indicating that it is essential for gonococcal growth. FtsZ(Ng) was synthesized in an in vitro transcription/translation system and was shown to be 43 kDa, the same size as in Western blots. Expression of the ftsZ(Ng) gene from nongonococcal promoters resulted in a filamentous phenotype in E. coli. Under controlled expression, the FtsZ(Ng)-GFP fusion protein localized at the mid-cell division site in E. coli. E. coli expressing high levels of the FtsZ(Ng)-GFP fusion protein formed filaments and exhibited different fluorescent structures including helices, spiral tubules extending from pole to pole, and regularly spaced dots or bands that did not localize at the middle of the cell. Expression of the FtsZ(Ng)-GFP fusion protein in N. gonorrhoeae resulted in abnormal cell division as shown by electron microscopy. FtsZ(Ng)-GFP fusions were also expressed in a gonococcal background using a unique shuttle vector. PMID:10648099

  9. Genetic Diversity and Population Structure of the Rare and Endangered Plant Species Pulsatilla patens (L.) Mill in East Central Europe

    PubMed Central

    Szczecińska, Monika; Sramko, Gabor; Wołosz, Katarzyna; Sawicki, Jakub

    2016-01-01

    Pulsatilla patens s.s. is a one of the most endangered plant species in Europe. The present range of this species in Europe is highly fragmented and the size of the populations has been dramatically reduced in the past 50 years. The rapid disappearance of P. patens localities in Europe has prompted the European Commission to initiate active protection of this critically endangered species. The aim of this study was to estimate the degree and distribution of genetic diversity within European populations of this endangered species. We screened 29 populations of P. patens using a set of six microsatellite primers. The results of our study indicate that the analyzed populations are characterized by low levels of genetic diversity (Ho = 0.005) and very high levels of inbreeding (FIS = 0.90). These results suggest that genetic erosion could be partially responsible for the lower fitness in smaller populations of this species. Private allelic richness was very low, being as low as 0.00 for most populations. Average genetic diversity over loci and mean number of alleles in P. patens populations were significantly correlated with population size, suggesting severe genetic drift. The results of AMOVA point to higher levels of variation within populations than between populations.The results of Structure and PCoA analyses suggest that the genetic structure of the studied P. patens populations fall into three clusters corresponding to geographical regions. The most isolated populations (mostly from Romania) formed a separate group with a homogeneous gene pool located at the southern, steppic part of the distribution range. Baltic, mostly Polish, populations fall into two genetic groups which were not fully compatible with their geographic distribution.Our results indicate the serious genetic depauperation of P. patens in the western part of its range, even hinting at an ongoing extinction vortex. Therefore, special conservation attention is required to maintain the populations

  10. Genetic Diversity and Population Structure of the Rare and Endangered Plant Species Pulsatilla patens (L.) Mill in East Central Europe.

    PubMed

    Szczecińska, Monika; Sramko, Gabor; Wołosz, Katarzyna; Sawicki, Jakub

    2016-01-01

    Pulsatilla patens s.s. is a one of the most endangered plant species in Europe. The present range of this species in Europe is highly fragmented and the size of the populations has been dramatically reduced in the past 50 years. The rapid disappearance of P. patens localities in Europe has prompted the European Commission to initiate active protection of this critically endangered species. The aim of this study was to estimate the degree and distribution of genetic diversity within European populations of this endangered species. We screened 29 populations of P. patens using a set of six microsatellite primers. The results of our study indicate that the analyzed populations are characterized by low levels of genetic diversity (Ho = 0.005) and very high levels of inbreeding (FIS = 0.90). These results suggest that genetic erosion could be partially responsible for the lower fitness in smaller populations of this species. Private allelic richness was very low, being as low as 0.00 for most populations. Average genetic diversity over loci and mean number of alleles in P. patens populations were significantly correlated with population size, suggesting severe genetic drift. The results of AMOVA point to higher levels of variation within populations than between populations.The results of Structure and PCoA analyses suggest that the genetic structure of the studied P. patens populations fall into three clusters corresponding to geographical regions. The most isolated populations (mostly from Romania) formed a separate group with a homogeneous gene pool located at the southern, steppic part of the distribution range. Baltic, mostly Polish, populations fall into two genetic groups which were not fully compatible with their geographic distribution.Our results indicate the serious genetic depauperation of P. patens in the western part of its range, even hinting at an ongoing extinction vortex. Therefore, special conservation attention is required to maintain the populations

  11. FtsZ-less prokaryotic cell division as well as FtsZ- and dynamin-less chloroplast and non-photosynthetic plastid division

    PubMed Central

    Miyagishima, Shin-ya; Nakamura, Mami; Uzuka, Akihiro; Era, Atsuko

    2014-01-01

    The chloroplast division machinery is a mixture of a stromal FtsZ-based complex descended from a cyanobacterial ancestor of chloroplasts and a cytosolic dynamin-related protein (DRP) 5B-based complex derived from the eukaryotic host. Molecular genetic studies have shown that each component of the division machinery is normally essential for normal chloroplast division. However, several exceptions have been found. In the absence of the FtsZ ring, non-photosynthetic plastids are able to proliferate, likely by elongation and budding. Depletion of DRP5B impairs, but does not stop chloroplast division. Chloroplasts in glaucophytes, which possesses a peptidoglycan (PG) layer, divide without DRP5B. Certain parasitic eukaryotes possess non-photosynthetic plastids of secondary endosymbiotic origin, but neither FtsZ nor DRP5B is encoded in their genomes. Elucidation of the FtsZ- and/or DRP5B-less chloroplast division mechanism will lead to a better understanding of the function and evolution of the chloroplast division machinery and the finding of the as-yet-unknown mechanism that is likely involved in chloroplast division. Recent studies have shown that FtsZ was lost from a variety of prokaryotes, many of which lost PG by regressive evolution. In addition, even some of the FtsZ-bearing bacteria are able to divide when FtsZ and PG are depleted experimentally. In some cases, alternative mechanisms for cell division, such as budding by an increase of the cell surface-to-volume ratio, are proposed. Although PG is believed to have been lost from chloroplasts other than in glaucophytes, there is some indirect evidence for the existence of PG in chloroplasts. Such information is also useful for understanding how non-photosynthetic plastids are able to divide in FtsZ-depleted cells and the reason for the retention of FtsZ in chloroplast division. Here we summarize information to facilitate analyses of FtsZ- and/or DRP5B-less chloroplast and non-photosynthetic plastid division. PMID

  12. Methanol extracts of Hamelia patens containing oxindole alkaloids relax KCl-induced contraction in rat myometrium.

    PubMed

    Reyes-Chilpa, Ricardo; Rivera, Jesús; Oropeza, Martha; Mendoza, Pilar; Amekraz, Badia; Jankowski, Christopher; Campos, Maria

    2004-10-01

    Hamelia patens JAQC. (Rubiaceae) is a medicinal bush widely distributed in tropical areas of the American continent. It is used in Mexican Traditional Medicine for the treatment of menstrual disorders, therefore suggesting that its chemical constituents may have some effect on myometrium contractility. Physiological effects might differ due to quantitative variations in the content of alkaloids arising from its wide geographical distribution. To test this hypothesis, the content of oxindole alkaloids in methanol extracts of five different samples collected in Mexico was quantified by GC-MS. Each extract was assayed on contractility of estrogen-primed rat myometrium. Variations in the content of alkaloids were observed among the different samples. All samples relaxed in a concentration-dependent manner the high KCl-induced contraction in rat myometrium. Those which lack rumberine and/or maruquine displayed a higher relaxant effect than samples containing them, suggesting that these alkaloids might counteract the effects of isopteropodine. However, in contrast with verapamil, Hamelia patens metanol extracts are poor relaxants. PMID:15467206

  13. The first record of Molineus patens (Dujardin, 1845) (Nematoda, Molineidae) in the ermine (Mustela erminea L.) in Poland.

    PubMed

    Popiołek, Marcin; Jarnecki, Hubert; Łuczyński, Tomasz

    2009-01-01

    A single specimen of the nematode Molineus patens (Dujardin, 1845) was isolated from the intestine of the ermine (Mustela erminea L.) found dead on a road in Lubuskie voivodeship (Western Poland) in July 2008. Since this is the first record of the parasite in the ermine from Poland, description, biometrical data and figures are given. PMID:20209821

  14. Antiplasmodial volatile extracts from Cleistopholis patens Engler & Diels and Uvariastrum pierreanum Engl. (Engl. & Diels) (Annonaceae) growing in Cameroon.

    PubMed

    Boyom, Fabrice Fekam; Ngouana, Vincent; Kemgne, Eugenie Aimée Madiesse; Zollo, Paul Henri Amvam; Menut, Chantal; Bessiere, Jean Marie; Gut, Jiri; Rosenthal, Philip Jon

    2011-05-01

    In a search for alternative treatment for malaria, plant-derived essential oils extracted from the stem barks and leaves of Cleistopholis patens and Uvariastrum pierreanum (Annonaceae) were evaluated in vitro for antiplasmodial activity against the W2 strain of Plasmodium falciparum. The oils were obtained from 500 g each of stem barks and leaves, respectively, by hydrodistillation, using a Clevenger-type apparatus with the following yields: 0.23% and 0.19% for C. patens and 0.1% and 0.3% for U. pierreanum (w/w relative to dried material weight). Analysis of 10% (v/v) oil in hexane by gas chromatography and mass spectrometry identified only terpenoids in the oils, with over 81% sesquiterpene hydrocarbons in C. patens extracts and U. pierreanum stem bark oil, while the leaf oil from the latter species was found to contain a majority of monoterpenes. For C. patens, the major components were α-copaene, δ-cadinene, and germacrene D for the stem bark oil and β-caryophyllene, germacrene D, and germacrene B for the leaf oil. The stem bark oil of U. pierreanum was found to contain mainly β-bisabolene and α-bisabolol, while α- and β-pinenes were more abundant in the leaf extract. Concentrations of oils obtained by diluting 1-mg/mL stock solutions were tested against P. falciparum in culture. The oils were active, with IC(50) values of 9.19 and 15.19 μg/mL for the stem bark and leaf oils, respectively, of C. patens and 6.08 and 13.96 μg/mL, respectively, for those from U. pierreanum. These results indicate that essential oils may offer a promising alternative for the development of new antimalarials. PMID:21107862

  15. Filamentation temperature-sensitive protein Z (FtsZ) of Wolbachia, endosymbiont of Wuchereria bancrofti: a potential target for anti-filarial chemotherapy.

    PubMed

    Sharma, Rohit; Hoti, S L; Vasuki, V; Sankari, T; Meena, R L; Das, P K

    2013-03-01

    Lymphatic filariasis (LF) is a leading cause of morbidity in the tropical world. It is caused by the filarial parasites Wuchereria bancrofti, Brugia malayi and Brugia timori and transmitted by vector mosquitoes. Currently a programme for the elimination of LF, Global programme for Elimination of Lymphatic Filariasis (GPELF), is underway with the strategy of mass administration of single dose of diethylcarbamazine or ivermectin, in combination with an anthelmintic drug, albendazole. However, antifilarial drugs used in the programme are only microfilaricidal but not or only partially macrofilaricidal. Hence, there is a need to identify new targets for developing antifilarial drugs. Filarial parasites harbor rickettsial endosymbionts, Wolbachia sp., which play an important role in their biology and hence are considered as potential targets for antifilarial chemotherapy development. In this study, one of the cell division proteins of Wolbachia of the major lymphatic filarial parasite, W. bancrofti, viz., filamentation temperature-sensitive protein Z (FtsZ), was explored as a drug target. The gene coding for FtsZ protein was amplified from the genomic DNA of W. bancrofti, cloned and sequenced. The derived amino acid sequence of the gene revealed that FtsZ protein is 396 amino acids long and contained the tubulin motif (GGGTGTG) involved in GTP binding and the GTP hydrolyzing motif (NLDFAD). The FtsZ gene of endosymbiont showed limited sequence homology, but exhibited functional homology with β-tubulin of its host, W. bancrofti, as it had both the functional motifs and conserved amino acids that are critical for enzymatic activity. β-tubulin is the target for the anti-helminthic activity of albendazole and since FtsZ shares functional homology with, β-tubulin it may also be sensitive to albendazole. Therefore, the effect of albendazole was tested against Wolbachia occurring in mosquitoes instead of filarial parasites as the drug has lethal effect on the latter. Third

  16. Design, Synthesis and Evaluation of Novel 2,5,6-Trisubstituted Benzimidazoles Targeting FtsZ as Antitubercular Agents

    PubMed Central

    Park, Bora; Awasthi, Divya; Chowdhury, Soumya R.; Melief, Eduard H.; Kumar, Kunal; Knudson, Susan E.; Slayden, Richard A.; Ojima, Iwao

    2014-01-01

    Filamenting temperature-sensitive protein Z (FtsZ), an essential cell division protein, is a promising target for the drug discovery of new-generation antibacterial agents against various bacterial pathogens. As a part of SAR studies on benzimidazoles, we have synthesized a library of 376 novel 2,5,6-trisubstituted benzimidazoles, bearing ether or thioether linkage at the 6-position. In a preliminary HTP screening against Mtb H37Rv, 108 compounds were identified as hits at a cut off concentration of 5 μg/mL. Among those hits, 10 compounds exhibited MIC values in the range of 0.63–12.5 μg/mL. Light scattering assay and TEM analysis with the most potent compound 5a clearly indicate that its molecular target is Mtb-FtsZ. Also, the Kd of 5a with Mtb-FtsZ was determined to be 1.32 μM. PMID:24726304

  17. Network theory inspired analysis of time-resolved expression data reveals key players guiding P. patens stem cell development.

    PubMed

    Busch, Hauke; Boerries, Melanie; Bao, Jie; Hanke, Sebastian T; Hiss, Manuel; Tiko, Theodhor; Rensing, Stefan A

    2013-01-01

    Transcription factors (TFs) often trigger developmental decisions, yet, their transcripts are often only moderately regulated and thus not easily detected by conventional statistics on expression data. Here we present a method that allows to determine such genes based on trajectory analysis of time-resolved transcriptome data. As a proof of principle, we have analysed apical stem cells of filamentous moss (P. patens) protonemata that develop from leaflets upon their detachment from the plant. By our novel correlation analysis of the post detachment transcriptome kinetics we predict five out of 1,058 TFs to be involved in the signaling leading to the establishment of pluripotency. Among the predicted regulators is the basic helix loop helix TF PpRSL1, which we show to be involved in the establishment of apical stem cells in P. patens. Our methodology is expected to aid analysis of key players of developmental decisions in complex plant and animal systems. PMID:23637751

  18. Network Theory Inspired Analysis of Time-Resolved Expression Data Reveals Key Players Guiding P. patens Stem Cell Development

    PubMed Central

    Busch, Hauke; Boerries, Melanie; Rensing, Stefan A.

    2013-01-01

    Transcription factors (TFs) often trigger developmental decisions, yet, their transcripts are often only moderately regulated and thus not easily detected by conventional statistics on expression data. Here we present a method that allows to determine such genes based on trajectory analysis of time-resolved transcriptome data. As a proof of principle, we have analysed apical stem cells of filamentous moss (P. patens) protonemata that develop from leaflets upon their detachment from the plant. By our novel correlation analysis of the post detachment transcriptome kinetics we predict five out of 1,058 TFs to be involved in the signaling leading to the establishment of pluripotency. Among the predicted regulators is the basic helix loop helix TF PpRSL1, which we show to be involved in the establishment of apical stem cells in P. patens. Our methodology is expected to aid analysis of key players of developmental decisions in complex plant and animal systems. PMID:23637751

  19. YeeV is an Escherichia coli Toxin that Inhibits Cell Division by Targeting the Cytoskeleton Proteins, FtsZ and MreB

    PubMed Central

    Tan, Qian; Awano, Naoki; Inouye, Masayori

    2010-01-01

    Summary Toxin-Antitoxin (TA) systems of free-living bacteria have recently, demonstrated that these toxins inhibit cell growth by targeting essential functions of cellular metabolism. Here we show that YeeV toxin inhibits cell division, leads to a change in morphology and lysis of E. coli cells. YeeV interacts with two essential cytoskeleton proteins, FtsZ and MreB. Purified YeeV inhibits both the GTPase activity and the GTP-dependent polymerization of FtsZ. YeeV also inhibits ATP-dependent polymerization of MreB. Truncated C-terminal deletions of YeeV result in elongation of cells, and a deletion of the first 15 amino acids from the N-terminus of YeeV caused lemon shaped cell formation. The YeeV toxin is distinct from other well studied toxins: it directs the binding of two cytoskeletal proteins and inhibits FtsZ and MreB simultaneously. PMID:21166897

  20. Resveratrol antibacterial activity against Escherichia coli is mediated by Z-ring formation inhibition via suppression of FtsZ expression

    PubMed Central

    Hwang, Dahyun; Lim, Young-Hee

    2015-01-01

    Resveratrol exhibits a potent antimicrobial activity. However, the mechanism underlying its antibacterial activity has not been shown. In this study, the antibacterial mechanism of resveratrol was investigated. To investigate induction of the SOS response, a strain containing the lacZ+gene under the control of an SOS-inducible sulA promoter was constructed. DNA damage was measured by pulse-field gel electrophoresis (PFGE). After resveratrol treatment, the cells were observed by confocal microscopy. For the RNA silencing assay, ftsZ-specific antisense peptide nucleic acid (PNA) was used. Reactive oxygen species (ROS) production increased in Escherichia coli after resveratrol treatment; however, cell growth was not recovered by ROS quenching, indicating that, in this experiment, ROS formation and cell death following resveratrol treatment were not directly correlated. Resveratrol treatment increased DNA fragmentation in cells, while SOS response-related gene expression levels increased in a dose-dependent manner. Cell elongation was observed after resveratrol treatment. Elongation was induced by inhibiting FtsZ, an essential cell-division protein in prokaryotes, and resulted in significant inhibition of Z-ring the formation in E. coli. The expression of ftsZ mRNA was suppressed by resveratrol. Our results indicate that resveratrol inhibits bacterial cell growth by suppressing FtsZ expression and Z-ring formation. PMID:25942564

  1. Cytoplasmic Domain of MscS Interacts with Cell Division Protein FtsZ: A Possible Non-Channel Function of the Mechanosensitive Channel in Escherichia Coli

    PubMed Central

    Koprowski, Piotr; Grajkowski, Wojciech; Balcerzak, Marcin; Filipiuk, Iwona; Fabczak, Hanna; Kubalski, Andrzej

    2015-01-01

    Bacterial mechano-sensitive (MS) channels reside in the inner membrane and are considered to act as emergency valves whose role is to lower cell turgor when bacteria enter hypo-osmotic environments. However, there is emerging evidence that members of the Mechano-sensitive channel Small (MscS) family play additional roles in bacterial and plant cell physiology. MscS has a large cytoplasmic C-terminal region that changes its shape upon activation and inactivation of the channel. Our pull-down and co-sedimentation assays show that this domain interacts with FtsZ, a bacterial tubulin-like protein. We identify point mutations in the MscS C-terminal domain that reduce binding to FtsZ and show that bacteria expressing these mutants are compromised in growth on sublethal concentrations of β-lactam antibiotics. Our results suggest that interaction between MscS and FtsZ could occur upon inactivation and/or opening of the channel and could be important for the bacterial cell response against sustained stress upon stationary phase and in the presence of β-lactam antibiotics. PMID:25996836

  2. Ecogeomorphology of Spartina patens-dominated tidal marshes: Soil organic matter accumulation, marsh elevation dynamics, and disturbance

    USGS Publications Warehouse

    Cahoon, D.R.; Ford, M.A.; Hensel, P.F.

    2004-01-01

    Marsh soil development and vertical accretion in Spartina patens (Aiton) Muhl.-dominated tidal marshes is largely dependent on soil organic matter accumulation from root-rhizome production and litter deposition. Yet there are few quantitative data sets on belowground production and the relationship between soil organic matter accumulation and soil elevation dynamics for this marsh type. Spartina patens marshes are subject to numerous stressors, including sea-level rise, water level manipulations (i.e., flooding and draining) by impoundments, and prescribed burning. These stressors could influence long-term marsh sustainability by their effect on root production, soil organic matter accumulation, and soil elevation dynamics. In this review, we summarize current knowledge on the interactions among vegetative production, soil organic matter accumulation and marsh elevation dynamics, or the ecogeomorphology, of Spartina patens-dominated tidal marshes. Additional studies are needed of belowground production/decomposition and soil elevation change (measured simultaneously) to better understand the links among soil organic matter accumulation, soil elevation change, and disturbance in this marsh type. From a management perspective, we need to better understand the impacts of disturbance stressors, both lethal and sub-lethal, and the interactive effect of multiple stressors on soil elevation dynamics in order to develop better management practices to safeguard marsh sustainability as sea level rises.

  3. Penicillin-binding protein 2 inactivation in Escherichia coli results in cell division inhibition, which is relieved by FtsZ overexpression.

    PubMed Central

    Vinella, D; Joseleau-Petit, D; Thévenet, D; Bouloc, P; D'Ari, R

    1993-01-01

    Aminoacyl-tRNA synthetase mutants of Escherichia coli are resistant to amdinocillin (mecillinam), a beta-lactam antibiotic which specifically binds penicillin-binding protein 2 (PBP2) and prevents cell wall elongation with concomitant cell death. The leuS(Ts) strain, in which leucyl-tRNA synthetase is temperature sensitive, was resistant to amdinocillin at 37 degrees C because of an increased guanosine 5'-diphosphate 3'-diphosphate (ppGpp) pool resulting from partial induction of the stringent response, but it was sensitive to amdinocillin at 25 degrees C. We constructed a leuS(Ts) delta (rodA-pbpA)::Kmr strain, in which the PBP2 structural gene is deleted. This strain grew as spherical cells at 37 degrees C but was not viable at 25 degrees C. After a shift from 37 to 25 degrees C, the ppGpp pool decreased and cell division was inhibited; the cells slowly carried out a single division, increased considerably in volume, and gradually lost viability. The cell division inhibition was reversible when the ppGpp pool increased at high temperature, but reversion required de novo protein synthesis, possibly of septation proteins. The multicopy plasmid pZAQ, overproducing the septation proteins FtsZ, FtsA, and FtsQ, conferred amdinocillin resistance on a wild-type strain and suppressed the cell division inhibition in the leuS(Ts) delta (rodA-pbpA)::Kmr strain at 25 degrees C. The plasmid pAQ, in which the ftsZ gene is inactivated, did not confer amdinocillin resistance. These results lead us to hypothesize that the nucleotide ppGpp activates ftsZ expression and thus couples cell division to protein synthesis. PMID:8407846

  4. Anti-inflammatory, free radical scavenging and alpha-glucosidase inhibitory activities of Hamelia patens and its chemical constituents.

    PubMed

    Jiménez-Suárez, Verónica; Nieto-Camacho, Antonio; Jiménez-Estrada, Manuel; Alvarado Sánchez, Brenda

    2016-09-01

    Context Hamelia patens Jacq. (Rubiaceae) is traditionally used to treat wounds, inflammation and diabetes. However, there is still a lack of scientific evidence to support these applications. Objective The objective of this study is to evaluate the anti-inflammatory, antioxidant and antidiabetic activities of Hamelia patens, and identify its bioactive compounds. Materials and methods Four extracts were obtained by maceration and liquid-liquid extraction: HEX, DCM-EtOAc, MeOH-EtOAc and MeOH-Aq. The anti-inflammatory effect was evaluated orally on rat paw carrageenan-induced oedema over 6 h (50, 200 and 500 mg/kg), and topically in mouse ear oedema induced by 12-tetradecanoylphorbol-13-acetate (TPA) after 4 h (0.5 and 1 mg/ear). We also evaluated myeloperoxidase levels in ear tissue, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging ability, and in vitro α-glucosidase inhibition. The chemical compounds were separated by column chromatography and identified by spectroscopic analysis. Results We found that the oral administration of the HEX extract at 500 and 200 mg/kg significantly decreased the carrageenan-induced inflammation after 1 and 3 h, respectively. The MeOH-EtOAc extract significantly inhibited myeloperoxidase activity (83.5%), followed by the DCM-EtOAc extract (76%), β-sitosterol/stigmasterol (72.7%) and the HEX extract (55%), which significantly decreased oedema induced by TPA at both doses, giving a similar effect to indomethacin. We also found that the MeOH-EtOAc, MeOH-Aq and DCM-EtOAc extracts showed good DPPH scavenging activity (IC50 values of 18.6, 93.9 and 158.2 μg/mL, respectively). The HEX extract showed the lowest α-glucosidase inhibition (an IC50 value of 26.07 μg/mL), followed by the MeOH-EtOAc extract (an IC50 value of 30.18 μg/mL), β-sitosterol/stigmasterol (IC50 34.6 μg/mL) and compound A ((6E,10E,14E,18E)-2,6,10,14,18,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene, an IC50 value of 114.6 μg/mL), which were

  5. The Arabidopsis minE mutation causes new plastid and FtsZ1 localization phenotypes in the leaf epidermis

    PubMed Central

    Fujiwara, Makoto T.; Kojo, Kei H.; Kazama, Yusuke; Sasaki, Shun; Abe, Tomoko; Itoh, Ryuuichi D.

    2015-01-01

    Plastids in the leaf epidermal cells of plants are regarded as immature chloroplasts that, like mesophyll chloroplasts, undergo binary fission. While mesophyll chloroplasts have generally been used to study plastid division, recent studies have suggested the presence of tissue- or plastid type-dependent regulation of plastid division. Here, we report the detailed morphology of plastids and their stromules, and the intraplastidic localization of the chloroplast division-related protein AtFtsZ1-1, in the leaf epidermis of an Arabidopsis mutant that harbors a mutation in the chloroplast division site determinant gene AtMinE1. In atminE1, the size and shape of epidermal plastids varied widely, which contrasts with the plastid phenotype observed in atminE1 mesophyll cells. In particular, atminE1 epidermal plastids occasionally displayed grape-like morphology, a novel phenotype induced by a plastid division mutation. Observation of an atminE1 transgenic line harboring an AtMinE1 promoter::AtMinE1-yellow fluorescent protein fusion gene confirmed the expression and plastidic localization of AtMinE1 in the leaf epidermis. Further examination revealed that constriction of plastids and stromules mediated by the FtsZ1 ring contributed to the plastid pleomorphism in the atminE1 epidermis. These results illustrate that a single plastid division mutation can have dramatic consequences for epidermal plastid morphology, thereby implying that plastid division and morphogenesis are differentially regulated in epidermal and mesophyll plastids. PMID:26500667

  6. Comparative phylogenomics of the CBL-CIPK calcium-decoding network in the moss Physcomitrella, Arabidopsis, and other green lineages

    PubMed Central

    Kleist, Thomas J.; Spencley, Andrew L.; Luan, Sheng

    2014-01-01

    Land plants have evolved a host of anatomical and molecular adaptations for terrestrial growth. Many of these adaptations are believed to be elaborations of features that were present in their algal-like progenitors. In the model plant Arabidopsis, 10 Calcineurin B-Like proteins (CBLs) function as calcium sensors and modulate the activity of 26 CBL-Interacting Protein Kinases (CIPKs). The CBL-CIPK network coordinates environmental responses and helps maintain proper ion balances, especially during abiotic stress. We identified and analyzed CBL and CIPK homologs in green lineages, including CBLs and CIPKs from charophyte green algae, the closest living relatives of land plants. Phylogenomic evidence suggests that the network expanded from a small module, likely a single CBL-CIPK pair, present in the ancestor of modern plants and algae. Extreme conservation of the NAF motif, which mediates CBL-CIPK physical interactions, among all identified CIPKs supports the interpretation of CBL and CIPK homologs in green algae and early diverging land plants as functionally linked network components. We identified the full complement of CBL and CIPK loci in the genome of Physcomitrella, a model moss. These analyses demonstrate the strong effects of a recent moss whole genome duplication: CBL and CIPK loci appear in cognate pairs, some of which appear to be pseudogenes, with high sequence similarity. We cloned all full-length transcripts from these loci and performed yeast two-hybrid analyses to demonstrate CBL-CIPK interactions and identify specific connections within the network. Using phylogenomics, we have identified three ancient types of CBLs that are discernible by N-terminal localization motifs and a “green algal-type” clade of CIPKs with members from Physcomitrella and Arabidopsis. PMID:24860579

  7. ZapE Is a Novel Cell Division Protein Interacting with FtsZ and Modulating the Z-Ring Dynamics

    PubMed Central

    Marteyn, Benoit S.; Karimova, Gouzel; Fenton, Andrew K.; Gazi, Anastasia D.; West, Nicholas; Touqui, Lhousseine; Prevost, Marie-Christine; Betton, Jean-Michel; Poyraz, Oemer; Ladant, Daniel; Gerdes, Kenn; Sansonetti, Philippe J.; Tang, Christoph M.

    2014-01-01

    ABSTRACT Bacterial cell division requires the formation of a mature divisome complex positioned at the midcell. The localization of the divisome complex is determined by the correct positioning, assembly, and constriction of the FtsZ ring (Z-ring). Z-ring constriction control remains poorly understood and (to some extent) controversial, probably due to the fact that this phenomenon is transient and controlled by numerous factors. Here, we characterize ZapE, a novel ATPase found in Gram-negative bacteria, which is required for growth under conditions of low oxygen, while loss of zapE results in temperature-dependent elongation of cell shape. We found that ZapE is recruited to the Z-ring during late stages of the cell division process and correlates with constriction of the Z-ring. Overexpression or inactivation of zapE leads to elongation of Escherichia coli and affects the dynamics of the Z-ring during division. In vitro, ZapE destabilizes FtsZ polymers in an ATP-dependent manner. PMID:24595368

  8. Dissolved inorganic nitrogen pools and surface flux under different brackish marsh vegetation types, common reed (Phragmites australis) and salt hay (Spartina patens)

    USGS Publications Warehouse

    Windham-Myers, L.

    2005-01-01

    The current expansion of Phragmites australis into the high marsh shortgrass (Spartina patens, Distichlis spicata) communities of eastern U.S. salt marshes provided an opportunity to identify the influence of vegetation types on pools and fluxes of dissolved inorganic nitrogen (DIN). Two brackish tidal marshes of the National Estuarine Research Reserve system were examined, Piermont Marsh of the Hudson River NERR in New York and Hog Island in the Jacques Coustaeu NERR of New Jersey. Pools of DIN in porewater and rates of DIN surface flux were compared in replicated pairs of recently-expanded P. australis and neighboring S. patens-dominated patches on the high marsh surface. Both marshes generally imported nitrate (NO3-) and exported ammonium (NH4+), such that overall DIN was exported. No differences in surface exchange of NO3- or NH4+ were observed between vegetation types. Depth-averaged porewater NH4+ concentrations over the entire growing season were 56% lower under P. australis than under S. patens (average 1.4 vs. 3.2 mg NH4+ L-1) with the most profound differences in November. Porewater profiles showed an accumulation of NH4+ at depth in S. patens and constant low concentrations in P. australis from the soil surface to 50 cm depth, with no significant differences in porewater salinity. Despite these profound differences in porewater, NH 4+ diffusion from soils of P. australis and S. patens were not measurably different, were similar to other published rates, and were well below estimated rates based on passive diffusion alone. Rapid adsorption and uptake by litter and microbes in surface soils of both communities may buffer NH4+ loss to flooding tides in both communities, thereby reducing the impact of P. australis invasion on NH4+ flux to flooding waters. ?? Springer 2005.

  9. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    USGS Publications Warehouse

    Nyman, J.A.; La Peyre, M.K.; Caldwell, A.; Piazza, S.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable. ?? 2009 Elsevier B.V.

  10. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    USGS Publications Warehouse

    Nyman, J.A.; LaPeyre, Megan K.; Caldwell, Andral W.; Piazza, Sarai C.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable.

  11. In Vivo Pharmacodynamic Evaluation of an FtsZ Inhibitor, TXA-709, and Its Active Metabolite, TXA-707, in a Murine Neutropenic Thigh Infection Model

    PubMed Central

    Lepak, Alexander J.; Parhi, Ajit; Madison, Michaela; Marchillo, Karen; VanHecker, Jamie

    2015-01-01

    Antibiotics with novel mechanisms of action are urgently needed. Processes of cellular division are attractive targets for new drug development. FtsZ, an integral protein involved in cell cytokinesis, is a representative example. In the present study, the pharmacodynamic (PD) activity of an FtsZ inhibitor, TXA-709, and its active metabolite, TXA-707, was evaluated in the neutropenic murine thigh infection model against 5 Staphylococcus aureus isolates, including both methicillin-susceptible and methicillin-resistant isolates. The pharmacokinetics (PK) of the TXA-707 active metabolite were examined after oral administration of the TXA-709 prodrug at 10, 40, and 160 mg/kg of body weight. The half-life ranged from 3.2 to 4.4 h, and the area under the concentration-time curve (AUC) and maximum concentration of drug in serum (Cmax) were relatively linear over the doses studied. All organisms exhibited an MIC of 1 mg/liter. Dose fractionation demonstrated the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC ratio) to be the PD index most closely linked to efficacy (R2 = 0.72). Dose-dependent activity was demonstrated against all 5 isolates, and the methicillin-resistance phenotype did not alter the pharmacokinetic/pharmacodynamic (PK/PD) targets. Net stasis was achieved against all isolates and a 1-log10 kill level against 4 isolates. PD targets included total drug 24-h AUC/MIC values of 122 for net stasis and 243 for 1-log10 killing. TXA-709 and TXA-707 are a promising novel antibacterial class and compound for S. aureus infections. These results should prove useful for design of clinical dosing regimen trials. PMID:26259789

  12. ATG5-knockout mutants of Physcomitrella provide a platform for analyzing the involvement of autophagy in senescence processes in plant cells

    PubMed Central

    Mukae, Kyosuke; Inoue, Yuko; Moriyasu, Yuji

    2015-01-01

    Autophagy is a pathway in which a cell degrades part of its cytoplasm in vacuoles or lysosomes. To identify the physiological functions of autophagy in plants, we disrupted ATG5, an autophagy-related gene, in Physcomitrella, and confirmed that atg5 mutants are deficient in the process of autophagy. On carbon or nitrogen starvation medium, atg5 colonies turned yellow earlier than the wild-type (WT) colonies, showing that Physcomitrella atg5 mutants, like yeast and Arabidopsis, are sensitive to nutrient starvation. In the dark, even under nutrient-sufficient conditions, colonies turned yellow and the net degradation of chlorophyll and Rubisco protein occurred together with the upregulation of several senescence-associated genes. Yellowing reactions were inhibited by the protein synthesis inhibitor cycloheximide, suggesting that protonemal colonies undergo dark-induced senescence like the green leaves of higher plants. Such senescence responses in the dark occurred earlier in atg5 colonies than WT colonies. The sugar content was almost the same between WT and atg5 colonies, indicating that the early-senescence phenotype of atg5 is not explained by sugar deficiency. However, the levels of 7 amino acids showed significantly different alteration between atg5 and WT in the dark: 6 amino acids, particularly arginine and alanine, were much more deficient in the atg5 mutants, irrespective of the early degradation of Rubisco protein. On nutrient-sufficient medium supplemented with casamino acids, the early-senescence phenotype was slightly moderated. We propose that the early-senescence phenotype in atg5 mutants is partly explained by amino acid imbalance because of the lack of cytoplasmic degradation by autophagy in Physcomitrella. PMID:26368055

  13. ATG5-knockout mutants of Physcomitrella provide a platform for analyzing the involvement of autophagy in senescence processes in plant cells.

    PubMed

    Mukae, Kyosuke; Inoue, Yuko; Moriyasu, Yuji

    2015-01-01

    Autophagy is a pathway in which a cell degrades part of its cytoplasm in vacuoles or lysosomes. To identify the physiological functions of autophagy in plants, we disrupted ATG5, an autophagy-related gene, in Physcomitrella, and confirmed that atg5 mutants are deficient in the process of autophagy. On carbon or nitrogen starvation medium, atg5 colonies turned yellow earlier than the wild-type (WT) colonies, showing that Physcomitrella atg5 mutants, like yeast and Arabidopsis, are sensitive to nutrient starvation. In the dark, even under nutrient-sufficient conditions, colonies turned yellow and the net degradation of chlorophyll and Rubisco protein occurred together with the upregulation of several senescence-associated genes. Yellowing reactions were inhibited by the protein synthesis inhibitor cycloheximide, suggesting that protonemal colonies undergo dark-induced senescence like the green leaves of higher plants. Such senescence responses in the dark occurred earlier in atg5 colonies than WT colonies. The sugar content was almost the same between WT and atg5 colonies, indicating that the early-senescence phenotype of atg5 is not explained by sugar deficiency. However, the levels of 7 amino acids showed significantly different alteration between atg5 and WT in the dark: 6 amino acids, particularly arginine and alanine, were much more deficient in the atg5 mutants, irrespective of the early degradation of Rubisco protein. On nutrient-sufficient medium supplemented with casamino acids, the early-senescence phenotype was slightly moderated. We propose that the early-senescence phenotype in atg5 mutants is partly explained by amino acid imbalance because of the lack of cytoplasmic degradation by autophagy in Physcomitrella. PMID:26368055

  14. Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: Morphological and physiological constraints

    USGS Publications Warehouse

    Hester, M.W.; Mendelssohn, I.A.; McKee, K.L.

    2001-01-01

    Panicum hemitomon, Spartina patens, and Spartina alterniflora are wide-spread dominant grasses of fresh, brackish, and salt marsh plant communities, respectively. Our previous research identified significant intraspecific variation in salt tolerance and morphology among populations within each species. In this study our objectives were to determine shorter-term physiological/biochemical responses to salinity stress and identify potential indicators of salt tolerance, with the ultimate goal of discerning similarities and differences in the mechanisms of salinity stress resistance. We subjected a subset of six populations within each species, ranging from high to low salt tolerance, to sublethal salinity levels (4, 20, and 30 ppt, respectively, for species) and monitored physiological and growth responses after 1 week (early harvest) and 5 weeks (late harvest). In all three species sublethal salinity levels generally resulted in significantly reduced net CO2 assimilation, leaf expansion, midday leaf xylem pressure, water use efficiency, and live and total biomass; and significantly increased leaf Na+/K+ ratio, leaf proline, leaf glycine betaine, leaf sucrose, root-to-shoot ratio, and dead:total aboveground biomass ratio. All three species displayed significant population (intraspecific) variation in net CO2 assimilation, leaf expansion, water use efficiency, midday leaf xylem pressure, leaf proline, leaf glycine betaine (except Panicum, where it could not be accurately determined), leaf Na+/K+ ratio, leaf sucrose, total plant biomass, dead:total aboveground biomass ratio, and root-to-shoot ratio. General indicators of salt tolerance (regardless of species) included high net CO2 assimilation rates and water use efficiencies, and low ratios of root-to-shoot and dead:total aboveground biomass. Factor analysis and a-priori linear contrasts revealed some unique differences between species in terms of the relative importance of morphology and physiology in explaining

  15. Antiviral property and mechanisms of a sulphated polysaccharide from the brown alga Sargassum patens against Herpes simplex virus type 1.

    PubMed

    Zhu, W; Chiu, L C M; Ooi, V E C; Chan, P K S; Ang, P O

    2006-11-01

    A sulphated polysaccharide (SP-2a) from the brown alga Sargassum patens (Kütz.) Agardh (Sargassaceae) was found to significantly inhibit the in vitro replication of both the acyclovir (ACV)-sensitive and -resistant strains of Herpes simplex virus type 1 (HSV-1), in dose-dependent manners, with 50% inhibitions occurring with 1.5-5.3 microg/ml of the polysaccharide. SP-2a exhibited extracellular virucidal activity only against the ACV-sensitive strains, but not the resistant strain, at the concentration of 100 microg/ml. The strongest antiviral activities against the different strains of HSV-1 were observed when this polysaccharide was present during and after adsorption of the virus to host cells. The inhibitory effect of SP-2a on virus adsorption occurred dose-dependently in all the HSV-1 strains tested, and the adsorption of the ACV-resistant DM2.1 strain was reduced by 81.9% (relative to control) with 4 microg/ml of the polysaccharide. This study clearly demonstrated that the antiviral mode of action of SP-2a is mediated mainly by inhibiting virus attachment to host cells, and this sulphated polysaccharide might have different modes of action against the ACV-sensitive and -resistant strains of HSV-1. PMID:16427262

  16. Isolation of a new phlorotannin, a potent inhibitor of carbohydrate-hydrolyzing enzymes, from the brown alga Sargassum patens.

    PubMed

    Kawamura-Konishi, Yasuko; Watanabe, Natsuko; Saito, Miki; Nakajima, Noriyuki; Sakaki, Toshiyuki; Katayama, Takane; Enomoto, Toshiki

    2012-06-01

    Ethanol extracts from 15 kinds of marine algae collected from the coast of the Noto Peninsula in Japan were examined for their inhibitory effects on human salivary α-amylase. Four extracts significantly suppressed the enzyme activity. An inhibitor was purified from the extract of Sargassum patens . The compound was a new phloroglucinol derivative, 2-(4-(3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy) benzene-1,3,5-triol (DDBT), which strongly suppressed the hydrolysis of amylopectin by human salivary and pancreatic α-amylases. The 50% inhibitory activity (IC(50)) for α-amylase inhibition of DDBT (3.2 μg/mL) was much lower than that of commercially available α-amylase inhibitors, acarbose (26.3 μg/mL), quercetagetin (764 μg/mL), and α-amylase inhibitor from Triticum aestivum (88.3 μg/mL). A kinetic study indicated that DDBT was a competitive α-amylase inhibitor with a K(i) of 1.8 μg/mL. DDBT also inhibited rat intestinal α-glucosidase with an IC(50) value of 25.4 μg/mL for sucrase activity and 114 μg/mL for maltase activity. These results suggest that DDBT, a potent inhibitor of carbohydrate-hydrolyzing enzymes, may be useful as a natural nutraceutical to prevent diabetes. PMID:22594840

  17. In vitro activity of Triclisia patens and some bisbenzylisoquinoline alkaloids against Leishmania donovani and Trypanosoma brucei brucei.

    PubMed

    del Rayo Camacho, Maria; Phillipson, J David; Croft, Simon L; Rock, Peter; Marshall, Sarah J; Schiff, Paul L

    2002-08-01

    In the search for antiprotozoal compounds from natural sources, Triclisia patens displayed activity against L. donovani promastigotes (IC(50) = 1.5 microg/mL) and T. b. brucei blood stream trypomastigote forms (IC(50) = 31.25 microg/mL). In addition, a total of 20 bisbenzylisoquinoline alkaloids were screened for antileishmanial and antitrypanosomal activity in vitro. Fangchinoline (IC(50) = 0.39 microM) was found to be as active as the standard pentamidine against Leishmania donovani promastigotes. Phaeanthine was three-fold more active (IC(50) = 2.41 microM; 1.5 microg/mL) than the standard drug Pentostam against L. donovani amastigotes, but at this concentration was toxic to murine macrophages. In contrast, cocsoline (IC(50) = 12.3 microM; 6.76 microg/mL) was as active as Pentostam, and was not toxic to macrophages at this concentration. Thalisopidine showed the strongest activity (IC(50) = 1.14 microM) against Trypanosoma brucei brucei blood stream form trypomastigotes, but was less active than pentamidine. PMID:12203262

  18. Dynamic FtsA and FtsZ localization and outer membrane alterations during polar growth and cell division in Agrobacterium tumefaciens.

    PubMed

    Zupan, John R; Cameron, Todd A; Anderson-Furgeson, James; Zambryski, Patricia C

    2013-05-28

    Growth and cell division in rod-shaped bacteria have been primarily studied in species that grow predominantly by peptidoglycan (PG) synthesis along the length of the cell. Rhizobiales species, however, predominantly grow by PG synthesis at a single pole. Here we characterize the dynamic localization of several Agrobacterium tumefaciens components during the cell cycle. First, the lipophilic dye FM 4-64 predominantly stains the outer membranes of old poles versus growing poles. In cells about to divide, however, both poles are equally labeled with FM 4-64, but the constriction site is not. Second, the cell-division protein FtsA alternates from unipolar foci in the shortest cells to unipolar and midcell localization in cells of intermediate length, to strictly midcell localization in the longest cells undergoing septation. Third, the cell division protein FtsZ localizes in a cell-cycle pattern similar to, but more complex than, FtsA. Finally, because PG synthesis is spatially and temporally regulated during the cell cycle, we treated cells with sublethal concentrations of carbenicillin (Cb) to assess the role of penicillin-binding proteins in growth and cell division. Cb-treated cells formed midcell circumferential bulges, suggesting that interrupted PG synthesis destabilizes the septum. Midcell bulges contained bands or foci of FtsA-GFP and FtsZ-GFP and no FM 4-64 label, as in untreated cells. There were no abnormal morphologies at the growth poles in Cb-treated cells, suggesting unipolar growth uses Cb-insensitive PG synthesis enzymes. PMID:23674672

  19. Identification, cloning, and characterization of rcsF, a new regulator gene for exopolysaccharide synthesis that suppresses the division mutation ftsZ84 in Escherichia coli K-12.

    PubMed Central

    Gervais, F G; Drapeau, G R

    1992-01-01

    A new gene, designated rcsF, was located adjacent to drpA at the 5.2-min position of the genetic map of Escherichia coli. The deduced amino acid sequence encoded by the rcsF gene indicates a small protein of 133 amino acid residues with a calculated pI of 10.8 that is rich in proline, serine, alanine, and cysteine residues. When overexpressed as a result of its presence on a multicopy plasmid, rcsF confers a mucoid phenotype and restores colony formation to ftsZ84 mutant cells on L agar medium containing no added NaCl. These two phenotypes are not observed in rcsB mutant cells. Ion mutant cells harboring an rcsF mutation accumulate considerably lower levels of exopolysaccharides, whereas the presence of a multicopy rcsF plasmid not only increases capsule synthesis but also confers a mucoid phenotype at 37 degrees C, a temperature at which ion mutant cells are known not to form mucoid colonies. RcsF does not stimulate the expression of rcsB, indicating that it exerts its action through the RcsB protein, possibly by phosphorylation. It is also shown that RcsF stimulation of capsule synthesis is RcsA-dependent, whereas colony formation of ftsZ84 mutant cells can be restored by RcsF in the absence of RcsA. PMID:1459951

  20. Pythium infection activates conserved plant defense responses in mosses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The moss Physcomitrella patens (P. patens) is a useful model to study abiotic stress responses since it is highly tolerant to drought, salt and osmotic stress. However, little is known about the defense mechanisms activated in this moss after pathogen assault. Here the induction of defense responses...

  1. Inundation and salinity impacts to above- and belowground productivity in Spartina patens and Spartina alterniflora in the Mississippi River Deltaic Plain: implications for using river diversions as restoration tools

    USGS Publications Warehouse

    Snedden, Gregg A.; Cretini, Kari Foster; Patton, Brett

    2015-01-01

    Inundation and salinity directly affect plant productivity and processes that regulate vertical accretion in coastal wetlands, and are expected to increase as sea level continues to rise. In the Mississippi River deltaic plain, river diversions, which are being implemented as ecosystem restoration tools, can also strongly increase inundation in coastal wetlands. We used an in situ mesocosm approach to examine how varying salinity (two levels) and inundation rates (six levels) influenced end-of-season above- and belowground biomass of Spartina patens and Spartina alterniflora during the growing season (March–October) in 2011. Above- and belowground biomass was highest in both species at higher elevations when inundation was minimal, and decreased exponentially with decreased elevation and increased flood duration. This negative biomass response to flooding was more pronounced in S. patens than in S. alterniflora, and S. patens also showed stronger biomass reductions at higher salinities. This salinity effect was absent for belowground biomass in S. alterniflora. These findings suggest that even subtle increases in sea level may lead to substantial reductions in productivity and organic accretion, and also illustrate the importance of considering the inundation tolerance of co-dominant species in receiving areas when utilizing river diversions for delta restoration.

  2. Visualisation of plastids in endosperm, pollen and roots of transgenic wheat expressing modified GFP fused to transit peptides from wheat SSU RubisCO, rice FtsZ and maize ferredoxin III proteins.

    PubMed

    Primavesi, Lucia F; Wu, Huixia; Mudd, Elisabeth A; Day, Anil; Jones, Huw D

    2008-08-01

    The ability to target marker proteins to specific subcellular compartments is a powerful research tool to study the structure and development of organelles. Here transit sequences from nuclear-encoded, plastid proteins, namely rice FtsZ, maize non-photosynthetic ferredoxin III (FdIII) and the small subunit of RubisCO were used to target a modified synthetic GFP (S65G, S72A) to plastids. The localisations of the fusion proteins expressed in transgenic wheat plants and under the control of the rice actin promoter were compared to an untargeted GFP control. GFP fluorescence was localised to non-green plastids in pollen, roots and seed endosperm and detected in isolated leaf chloroplasts using a GFP-specific antibody. Transit peptides appeared to influence the relative fluorescence intensities of plastids in different tissues. This is consistent with differential targeting and/or turnover of GFP fusion proteins in different plastid types. Replacement of GFP sequences with alternative coding regions enables immediate applications of our vectors for academic research and commercial applications. PMID:17710559

  3. PpASCL, a moss ortholog of anther-specific chalcone synthase-like enzymes, is a hydroxyalkylpyrone synthase involved in an evolutionarily conserved sporopollenin biosynthesis pathway.

    PubMed

    Colpitts, Che C; Kim, Sung Soo; Posehn, Sarah E; Jepson, Christina; Kim, Sun Young; Wiedemann, Gertrud; Reski, Ralf; Wee, Andrew G H; Douglas, Carl J; Suh, Dae-Yeon

    2011-12-01

    Sporopollenin is the main constituent of the exine layer of spore and pollen walls. Recently, several Arabidopsis genes, including polyketide synthase A (PKSA), which encodes an anther-specific chalcone synthase-like enzyme (ASCL), have been shown to be involved in sporopollenin biosynthesis. The genome of the moss Physcomitrella patens contains putative orthologs of the Arabidopsis sporopollenin biosynthesis genes. We analyzed available P.patens expressed sequence tag (EST) data for putative moss orthologs of the Arabidopsis genes of sporopollenin biosynthesis and studied the enzymatic properties and reaction mechanism of recombinant PpASCL, the P.patens ortholog of Arabidopsis PKSA. We also generated structure models of PpASCL and Arabidopsis PKSA to study their substrate specificity. Physcomitrella patens orthologs of Arabidopsis genes for sporopollenin biosynthesis were found to be expressed in the sporophyte generation. Similarly to Arabidopsis PKSA, PpASCL condenses hydroxy fatty acyl-CoA esters with malonyl-CoA and produces hydroxyalkyl α-pyrones that probably serve as building blocks of sporopollenin. The ASCL-specific set of Gly-Gly-Ala residues predicted by the models to be located at the floor of the putative active site is proposed to serve as the opening of an acyl-binding tunnel in ASCL. These results suggest that ASCL functions together with other sporophyte-specific enzymes to provide polyhydroxylated precursors of sporopollenin in a pathway common to land plants. PMID:21883237

  4. Moss cell walls: structure and biosynthesis

    PubMed Central

    Roberts, Alison W.; Roberts, Eric M.; Haigler, Candace H.

    2012-01-01

    The genome sequence of the moss Physcomitrella patens has stimulated new research examining the cell wall polysaccharides of mosses and the glycosyl transferases that synthesize them as a means to understand fundamental processes of cell wall biosynthesis and plant cell wall evolution. The cell walls of mosses and vascular plants are composed of the same classes of polysaccharides, but with differences in side chain composition and structure. Similarly, the genomes of P. patens and angiosperms encode the same families of cell wall glycosyl transferases, yet, in many cases these families have diversified independently in each lineage. Our understanding of land plant evolution could be enhanced by more complete knowledge of the relationships among glycosyl transferase functional diversification, cell wall structural and biochemical specialization, and the roles of cell walls in plant adaptation. As a foundation for these studies, we review the features of P. patens as an experimental system, analyses of cell wall composition in various moss species, recent studies that elucidate the structure and biosynthesis of cell wall polysaccharides in P. patens, and phylogenetic analysis of P. patens genes potentially involved in cell wall biosynthesis. PMID:22833752

  5. Involvement of a class III peroxidase and the mitochondrial protein TSPO in oxidative burst upon treatment of moss plants with a fungal elicitor.

    PubMed

    Lehtonen, Mikko T; Akita, Motomu; Frank, Wolfgang; Reski, Ralf; Valkonen, Jari P T

    2012-03-01

    Production of apoplastic reactive oxygen species (ROS), or oxidative burst, is among the first responses of plants upon recognition of microorganisms. It requires peroxidase or NADPH oxidase (NOX) activity and factors maintaining cellular redox homeostasis. Here, PpTSPO1 involved in mitochondrial tetrapyrrole transport and abiotic (salt) stress tolerance was tested for its role in biotic stress in Physcomitrella patens, a nonvascular plant (moss). The fungal elicitor chitin caused an immediate oxidative burst in wild-type P. patens but not in the previously described ΔPrx34 mutants lacking the chitin-responsive secreted class III peroxidase (Prx34). Oxidative burst in P. patens was associated with induction of the oxidative stress-related genes AOX, LOX7, and NOX, and also PpTSPO1. The available ΔPpTSPO1 knockout mutants overexpressed AOX and LOX7 constitutively, produced 2.6-fold more ROS than wild-type P. patens, and exhibited increased sensitivity to a fungal necrotrophic pathogen and a saprophyte. These results indicate that Prx34, which is pivotal for antifungal resistance, catalyzes ROS production in P. patens, while PpTSPO1 controls redox homeostasis. The capacity of TSPO to bind harmful free heme and porphyrins and scavenge them through autophagy, as shown in Arabidopsis under abiotic stress, seems important to maintenance of the homeostasis required for efficient pathogen defense. PMID:22112216

  6. Remote Sensing in Archeology: Classifying Bajos of the Paten, Guatemala

    NASA Technical Reports Server (NTRS)

    Lowry, James D., Jr.

    1998-01-01

    This project focuses on the adaptation of human populations to their environments from prehistoric times to the present. It emphasizes interdisciplinary research to develop ecological baselines through the use of remotely sensed imagery, in situ field work, and the modeling of human population dynamics. It utilizes cultural and biological data from dated archaeological sites to assess the subsistence and settlement patterns of human societies in response to changing climatic and environmental conditions. The utilization of remote sensing techniques in archaeology is relatively new, exciting, and opens many doors.

  7. Alternation of generations - unravelling the underlying molecular mechanism of a 165-year-old botanical observation.

    PubMed

    Horst, N A; Reski, R

    2016-07-01

    Characteristically, land plants exhibit a life cycle with an 'alternation of generations' and thus alternate between a haploid gametophyte and a diploid sporophyte. At meiosis and fertilisation the transitions between these two ontogenies take place in distinct single stem cells. The evolutionary invention of an embryo, and thus an upright multicellular sporophyte, in the ancestor of land plants formed the basis for the evolution of increasingly complex plant morphologies shaping Earth's ecosystems. Recent research employing the moss Physcomitrella patens revealed the homeotic gene BELL1 as a master regulator of the gametophyte-to-sporophyte transition. Here, we discuss these findings in the context of classical botanical observations. PMID:27094475

  8. Estimating the nucleotide diversity in Ceratodon purpureus (Ditrichaceae) from 218 conserved exon-primed, intron-spanning nuclear loci1

    PubMed Central

    McDaniel, Stuart F.; van Baren, Marijke J.; Jones, Kelly S.; Payton, Adam C.; Quatrano, Ralph S.

    2013-01-01

    • Premise of the study: We developed and tested primers for 218 nuclear loci for studying population genetics, phylogeography, and genome evolution in bryophytes. • Methods and Results: We aligned expressed sequence tags (ESTs) from Ceratodon purpureus to the Physcomitrella patens genome sequence, and designed primers that are homologous to conserved exons but span introns in the P. patens genome. We tested these primers on four isolates from New York, USA; Otavalo, Ecuador; and two laboratory isolates from Austria (WT4 and GG1). The median genome-wide nucleotide diversity was 0.008 substitutions/site, but the range was large (0–0.14), illustrating the among-locus heterogeneity in the species. • Conclusions: These loci provide a valuable resource for finely resolved, genome-wide population genetic and species-level phylogenetic analyses of C. purpureus and its relatives. PMID:25202534

  9. Bacteriocin release protein-mediated secretory expression of recombinant chalcone synthase in Escherichia coli.

    PubMed

    Zakaria, Iffah Izzati; Rahman, Raja Noor Zaliha Raja Abdul; Salleh, Abu Bakar; Basri, Mahiran

    2011-09-01

    Flavonoids are secondary metabolites synthesized by plants shown to exhibit health benefits such as anti-inflammatory, antioxidant, and anti-tumor effects. Thus, due to the importance of this compound, several enzymes involved in the flavonoid pathway have been cloned and characterized in Escherichia coli. However, the formation of inclusion bodies has become a major disadvantage of this approach. As an alternative, chalcone synthase from Physcomitrella patens was secreted into the medium using a bacteriocin release protein expression vector. Secretion of P. patens chalcone synthase into the culture media was achieved by co-expression with a psW1 plasmid encoding bacteriocin release protein in E. coli Tuner (DE3) plysS. The optimized conditions, which include the incubation of cells for 20 h with 40 ng/ml mitomycin C at OD(600) induction time of 0.5 was found to be the best condition for chalcone synthase secretion. PMID:21633820

  10. Evolutionary conservation of plant gibberellin signalling pathway components

    PubMed Central

    Vandenbussche, Filip; Fierro, Ana C; Wiedemann, Gertrud; Reski, Ralf; Van Der Straeten, Dominique

    2007-01-01

    Background: Gibberellins (GA) are plant hormones that can regulate germination, elongation growth, and sex determination. They ubiquitously occur in seed plants. The discovery of gibberellin receptors, together with advances in understanding the function of key components of GA signalling in Arabidopsis and rice, reveal a fairly short GA signal transduction route. The pathway essentially consists of GID1 gibberellin receptors that interact with F-box proteins, which in turn regulate degradation of downstream DELLA proteins, suppressors of GA-controlled responses. Results: Arabidopsis sequences of the gibberellin signalling compounds were used to screen databases from a variety of plants, including protists, for homologues, providing indications for the degree of conservation of the pathway. The pathway as such appears completely absent in protists, the moss Physcomitrella patens shares only a limited homology with the Arabidopsis proteins, thus lacking essential characteristics of the classical GA signalling pathway, while the lycophyte Selaginella moellendorffii contains a possible ortholog for each component. The occurrence of classical GA responses can as yet not be linked with the presence of homologues of the signalling pathway. Alignments and display in neighbour joining trees of the GA signalling components confirm the close relationship of gymnosperms, monocotyledonous and dicotyledonous plants, as suggested from previous studies. Conclusion: Homologues of the GA-signalling pathway were mainly found in vascular plants. The GA signalling system may have its evolutionary molecular onset in Physcomitrella patens, where GAs at higher concentrations affect gravitropism and elongation growth. PMID:18047669

  11. Evolution of Plant P-Type ATPases

    PubMed Central

    Pedersen, Christian N. S.; Axelsen, Kristian B.; Harper, Jeffrey F.; Palmgren, Michael G.

    2012-01-01

    Five organisms having completely sequenced genomes and belonging to all major branches of green plants (Viridiplantae) were analyzed with respect to their content of P-type ATPases encoding genes. These were the chlorophytes Ostreococcus tauri and Chlamydomonas reinhardtii, and the streptophytes Physcomitrella patens (a non-vascular moss), Selaginella moellendorffii (a primitive vascular plant), and Arabidopsis thaliana (a model flowering plant). Each organism contained sequences for all five subfamilies of P-type ATPases. Whereas Na+ and H+ pumps seem to mutually exclude each other in flowering plants and animals, they co-exist in chlorophytes, which show representatives for two kinds of Na+ pumps (P2C and P2D ATPases) as well as a primitive H+-ATPase. Both Na+ and H+ pumps also co-exist in the moss P. patens, which has a P2D Na+-ATPase. In contrast to the primitive H+-ATPases in chlorophytes and P. patens, the H+-ATPases from vascular plants all have a large C-terminal regulatory domain as well as a conserved Arg in transmembrane segment 5 that is predicted to function as part of a backflow protection mechanism. Together these features are predicted to enable H+ pumps in vascular plants to create large electrochemical gradients that can be modulated in response to diverse physiological cues. The complete inventory of P-type ATPases in the major branches of Viridiplantae is an important starting point for elucidating the evolution in plants of these important pumps. PMID:22629273

  12. Long-Term Growth of Moss in Microfluidic Devices Enables Subcellular Studies in Development.

    PubMed

    Bascom, Carlisle S; Wu, Shu-Zon; Nelson, Katherine; Oakey, John; Bezanilla, Magdalena

    2016-09-01

    Key developmental processes that occur on the subcellular and cellular level or occur in occluded tissues are difficult to access, let alone image and analyze. Recently, culturing living samples within polydimethylsiloxane (PDMS) microfluidic devices has facilitated the study of hard-to-reach developmental events. Here, we show that an early diverging land plant, Physcomitrella patens, can be continuously cultured within PDMS microfluidic chambers. Because the PDMS chambers are bonded to a coverslip, it is possible to image P. patens development at high resolution over long time periods. Using PDMS chambers, we report that wild-type protonemal tissue grows at the same rate as previously reported for growth on solid medium. Using long-term imaging, we highlight key developmental events, demonstrate compatibility with high-resolution confocal microscopy, and obtain growth rates for a slow-growing mutant. By coupling the powerful genetic tools available to P. patens with long-term growth and imaging provided by PDMS microfluidic chambers, we demonstrate the capability to study cellular and subcellular developmental events in plants directly and in real time. PMID:27406170

  13. Nonflowering plants possess a unique folate-dependent phenylalanine hydroxylase that is localized in chloroplasts.

    PubMed

    Pribat, Anne; Noiriel, Alexandre; Morse, Alison M; Davis, John M; Fouquet, Romain; Loizeau, Karen; Ravanel, Stéphane; Frank, Wolfgang; Haas, Richard; Reski, Ralf; Bedair, Mohamed; Sumner, Lloyd W; Hanson, Andrew D

    2010-10-01

    Tetrahydropterin-dependent aromatic amino acid hydroxylases (AAHs) are known from animals and microbes but not plants. A survey of genomes and ESTs revealed AAH-like sequences in gymnosperms, mosses, and algae. Analysis of full-length AAH cDNAs from Pinus taeda, Physcomitrella patens, and Chlamydomonas reinhardtii indicated that the encoded proteins form a distinct clade within the AAH family. These proteins were shown to have Phe hydroxylase activity by functional complementation of an Escherichia coli Tyr auxotroph and by enzyme assays. The P. taeda and P. patens AAHs were specific for Phe, required iron, showed Michaelian kinetics, and were active as monomers. Uniquely, they preferred 10-formyltetrahydrofolate to any physiological tetrahydropterin as cofactor and, consistent with preferring a folate cofactor, retained activity in complementation tests with tetrahydropterin-depleted E. coli host strains. Targeting assays in Arabidopsis thaliana mesophyll protoplasts using green fluorescent protein fusions, and import assays with purified Pisum sativum chloroplasts, indicated chloroplastic localization. Targeting assays further indicated that pterin-4a-carbinolamine dehydratase, which regenerates the AAH cofactor, is also chloroplastic. Ablating the single AAH gene in P. patens caused accumulation of Phe and caffeic acid esters. These data show that nonflowering plants have functional plastidial AAHs, establish an unprecedented electron donor role for a folate, and uncover a novel link between folate and aromatic metabolism. PMID:20959559

  14. Nonflowering Plants Possess a Unique Folate-Dependent Phenylalanine Hydroxylase That Is Localized in Chloroplasts[W

    PubMed Central

    Pribat, Anne; Noiriel, Alexandre; Morse, Alison M.; Davis, John M.; Fouquet, Romain; Loizeau, Karen; Ravanel, Stéphane; Frank, Wolfgang; Haas, Richard; Reski, Ralf; Bedair, Mohamed; Sumner, Lloyd W.; Hanson, Andrew D.

    2010-01-01

    Tetrahydropterin-dependent aromatic amino acid hydroxylases (AAHs) are known from animals and microbes but not plants. A survey of genomes and ESTs revealed AAH-like sequences in gymnosperms, mosses, and algae. Analysis of full-length AAH cDNAs from Pinus taeda, Physcomitrella patens, and Chlamydomonas reinhardtii indicated that the encoded proteins form a distinct clade within the AAH family. These proteins were shown to have Phe hydroxylase activity by functional complementation of an Escherichia coli Tyr auxotroph and by enzyme assays. The P. taeda and P. patens AAHs were specific for Phe, required iron, showed Michaelian kinetics, and were active as monomers. Uniquely, they preferred 10-formyltetrahydrofolate to any physiological tetrahydropterin as cofactor and, consistent with preferring a folate cofactor, retained activity in complementation tests with tetrahydropterin-depleted E. coli host strains. Targeting assays in Arabidopsis thaliana mesophyll protoplasts using green fluorescent protein fusions, and import assays with purified Pisum sativum chloroplasts, indicated chloroplastic localization. Targeting assays further indicated that pterin-4a-carbinolamine dehydratase, which regenerates the AAH cofactor, is also chloroplastic. Ablating the single AAH gene in P. patens caused accumulation of Phe and caffeic acid esters. These data show that nonflowering plants have functional plastidial AAHs, establish an unprecedented electron donor role for a folate, and uncover a novel link between folate and aromatic metabolism. PMID:20959559

  15. Practical Synthesis of PC190723, An Inhibitor of the Bacterial Cell Division Protein FtsZ

    PubMed Central

    Sorto, Nohemy A.; Olmstead, Marilyn M.; Shaw, Jared T.

    2010-01-01

    A high-yielding and practical synthesis of the bacterial cell division inhibitor PC190723 is described. The synthesis is completed in a longest linear sequence of five steps from commercially available starting materials and can be readily executed on a multi-gram scale. PMID:21033691

  16. RSL genes are sufficient for rhizoid system development in early diverging land plants.

    PubMed

    Jang, Geupil; Yi, Keke; Pires, Nuno D; Menand, Benoît; Dolan, Liam

    2011-06-01

    Land plants are anchored to their substratum from which essential inorganic nutrients are taken up. These functions are carried out by a system of rhizoids in early diverging groups of land plants, such as mosses, liverworts and hornworts. Physcomitrella patens RHD SIX-LIKE1 (PpRSL1) and PpRSL2 transcription factors are necessary for rhizoid development in mosses. Similar proteins, AtRHD6 and AtRSL1, control the development of root hairs in Arabidopsis thaliana. Auxin positively regulates root hair development independently of AtRHD6 and AtRSL1 in A. thaliana but the regulatory interactions between auxin and PpRSL1 and PpRSL2 are unknown. We show here that co-expression of PpRSL1 and PpRSL2 is sufficient for the development of the rhizoid system in the moss P. patens; constitutive expression of PpRSL1 and PpRSL2 converts developing leafy shoot axes (gametophores) into rhizoids. During wild-type development, PpRSL1 and PpRSL2 are expressed in the specialized cells that develop rhizoids, indicating that cell-specific expression of PpRSL1 and PpRSL2 is sufficient to promote rhizoid differentiation during wild-type P. patens development. In contrast to A. thaliana, auxin promotes rhizoid development by positively regulating PpRSL1 and PpRSL2 activity in P. patens. This indicates that even though the same genes control the development of root hairs and rhizoids, the regulation of this transcriptional network by auxin is different in these two species. This suggests that auxin might have controlled the development of the first land plant soil anchoring systems that evolved 465 million years ago by regulating the expression of RSL genes and that this regulatory network has changed since mosses and angiosperms last shared a common ancestor. PMID:21558375

  17. Simple sequence repeats in bryophyte mitochondrial genomes.

    PubMed

    Zhao, Chao-Xian; Zhu, Rui-Liang; Liu, Yang

    2016-01-01

    Simple sequence repeats (SSRs) are thought to be common in plant mitochondrial (mt) genomes, but have yet to be fully described for bryophytes. We screened the mt genomes of two liverworts (Marchantia polymorpha and Pleurozia purpurea), two mosses (Physcomitrella patens and Anomodon rugelii) and two hornworts (Phaeoceros laevis and Nothoceros aenigmaticus), and detected 475 SSRs. Some SSRs are found conserved during the evolution, among which except one exists in both liverworts and mosses, all others are shared only by the two liverworts, mosses or hornworts. SSRs are known as DNA tracts having high mutation rates; however, according to our observations, they still can evolve slowly. The conservativeness of these SSRs suggests that they are under strong selection and could play critical roles in maintaining the gene functions. PMID:24491104

  18. Optical Property Analyses of Plant Cells for Adaptive Optics Microscopy

    NASA Astrophysics Data System (ADS)

    Tamada, Yosuke; Murata, Takashi; Hattori, Masayuki; Oya, Shin; Hayano, Yutaka; Kamei, Yasuhiro; Hasebe, Mitsuyasu

    2014-04-01

    In astronomy, adaptive optics (AO) can be used to cancel aberrations caused by atmospheric turbulence and to perform diffraction-limited observation of astronomical objects from the ground. AO can also be applied to microscopy, to cancel aberrations caused by cellular structures and to perform high-resolution live imaging. As a step toward the application of AO to microscopy, here we analyzed the optical properties of plant cells. We used leaves of the moss Physcomitrella patens, which have a single layer of cells and are thus suitable for optical analysis. Observation of the cells with bright field and phase contrast microscopy, and image degradation analysis using fluorescent beads demonstrated that chloroplasts provide the main source of optical degradations. Unexpectedly, the cell wall, which was thought to be a major obstacle, has only a minor effect. Such information provides the basis for the application of AO to microscopy for the observation of plant cells.

  19. Patterns of tandem repetition in plant whole genome assemblies.

    PubMed

    Navajas-Pérez, Rafael; Paterson, Andrew H

    2009-06-01

    Tandem repeats often confound large genome assemblies. A survey of tandemly arrayed repetitive sequences was carried out in whole genome sequences of the green alga Chlamydomonas reinhardtii, the moss Physcomitrella patens, the monocots rice and sorghum, and the dicots Arabidopsis thaliana, poplar, grapevine, and papaya, in order to test how these assemblies deal with this fraction of DNA. Our results suggest that plant genome assemblies preferentially include tandem repeats composed of shorter monomeric units (especially dinucleotide and 9-30-bp repeats), while higher repetitive units pose more difficulties to assemble. Nevertheless, notwithstanding that currently available sequencing technologies struggle with higher arrays of repeated DNA, major well-known repetitive elements including centromeric and telomeric repeats as well as high copy-number genes, were found to be reasonably well represented. A database including all tandem repeat sequences characterized here was created to benefit future comparative genomic analyses. PMID:19242726

  20. Mitochondrial Dynamics and the ER: The Plant Perspective

    PubMed Central

    Mueller, Stefanie J.; Reski, Ralf

    2015-01-01

    Whereas contact sites between mitochondria and the ER have been in the focus of animal and fungal research for several years, the importance of this organellar interface and the molecular effectors are largely unknown for plants. This work gives an introduction into known evolutionary differences of molecular effectors of mitochondrial dynamics and interactions between animals, fungi, and plants. Using the model plant Physcomitrella patens, we provide microscopic evidence for the existence of mitochondria-ER interactions in plants and their correlation with mitochondrial constriction and fission. We further investigate a previously identified protein of unknown function (MELL1), and show that it modulates the amount of mitochondrial association to the ER, as well as mitochondrial shape and number. PMID:26779478

  1. Smoke signals and seed dormancy

    PubMed Central

    Waters, Mark T; Nelson, David C

    2011-01-01

    The Arabidopsis thaliana F-box protein MAX2 has been discovered in four separate genetic screens, indicating that it has roles in leaf senescence, seedling photosensitivity, shoot outgrowth and seed germination. Both strigolactones and karrikins can regulate A. thaliana seed germination and seedling photomorphogenesis in a MAX2-dependent manner, but only strigolactones inhibit shoot branching. How MAX2 mediates specific responses to both classes of structurally-related signals, and the origin of its dual role remains unknown. The moss Physcomitrella patens utilizes strigolactones and MAX2 orthologs are present across the land plants, suggesting that this signaling system could have an ancient origin. The seed of parasitic Orobanchaceae species germinate preferentially in response to strigolactones over karrikins, and putative Orobanchaceae MAX2 orthologs form a sub-clade distinct from those of other dicots. These observations suggest that lineage-specific evolution of MAX2 may have given rise to specialized responses to these signaling molecules. PMID:22019642

  2. Negative effects of desiccation on the protein sorting and post-translational modification.

    PubMed

    Wang, Xiaoqin; He, Yikun

    2009-05-01

    Bryophytes as the first land plants are believed to have colonized the land from a fresh water origin, requiring adaptive mechanisms that survival of dehydration. Physcomitrella patens is such a non-vascular bryophyte and shows rare desiccation tolerance in its vegetative tissues. Previous studies showed that during the course of dehydration, several related processes are set in motion: plasmolysis, chloroplast remodeling and microtubule depolymerization. And proteomic alteration supported the cellular structural changes in respond to desiccation stress. In this addendum, we report that Golgi bodies are absent and adaptor protein complex AP-1 large subunit is downregulated during the course of dehydration. Those phenomena may be adverse in protein posttranslational modification, protein sorting and cell walls synthesis under the desiccation condition. PMID:19816114

  3. Widespread impact of horizontal gene transfer on plant colonization of land

    PubMed Central

    Yue, Jipei; Hu, Xiangyang; Sun, Hang; Yang, Yongping; Huang, Jinling

    2012-01-01

    In complex multicellular eukaryotes such as animals and plants, horizontal gene transfer is commonly considered rare with very limited evolutionary significance. Here we show that horizontal gene transfer is a dynamic process occurring frequently in the early evolution of land plants. Our genome analyses of the moss Physcomitrella patens identified 57 families of nuclear genes that were acquired from prokaryotes, fungi or viruses. Many of these gene families were transferred to the ancestors of green or land plants. Available experimental evidence shows that these anciently acquired genes are involved in some essential or plant-specific activities such as xylem formation, plant defence, nitrogen recycling as well as the biosynthesis of starch, polyamines, hormones and glutathione. These findings suggest that horizontal gene transfer had a critical role in the transition of plants from aquatic to terrestrial environments. On the basis of these findings, we propose a model of horizontal gene transfer mechanism in nonvascular and seedless vascular plants. PMID:23093189

  4. A method for eliminating bacterial contamination from in vitro moss cultures1

    PubMed Central

    Carey, Sarah B.; Payton, Adam C.; McDaniel, Stuart F.

    2015-01-01

    • Premise of the study: Bacterial contamination is a major problem in plant tissue culture, resulting in loss of experimental strains or preventing use of field-collected isolates. Here we evaluated an agar embedding method for eliminating bacteria from experimental cultures of the mosses Ceratodon purpureus and Physcomitrella patens. • Methods and Results: We blended moss protonema that had been inoculated with bacteria and embedded the cell fragments in antibiotic-containing, low-concentration agar. The plants were placed in a growth chamber and allowed to grow until the moss grew out of the media. The plants were then transferred to new plates and observed for contamination. The embedding method consistently outperformed standard procedures. • Conclusions: The embedding method places moss in direct contact with antibiotics, arresting bacterial replication and allowing moss to outgrow contamination. We anticipate this method will prove valuable for other plants capable of clonal propagation by blending. PMID:25606353

  5. Conservation of AtTZF1, AtTZF2, and AtTZF3 homolog gene regulation by salt stress in evolutionarily distant plant species

    PubMed Central

    D’Orso, Fabio; De Leonardis, Anna M.; Salvi, Sergio; Gadaleta, Agata; Ruberti, Ida; Cattivelli, Luigi; Morelli, Giorgio; Mastrangelo, Anna M.

    2015-01-01

    Arginine-rich tandem zinc-finger proteins (RR-TZF) participate in a wide range of plant developmental processes and adaptive responses to abiotic stress, such as cold, salt, and drought. This study investigates the conservation of the genes AtTZF1-5 at the level of their sequences and expression across plant species. The genomic sequences of the two RR-TZF genes TdTZF1-A and TdTZF1-B were isolated in durum wheat and assigned to chromosomes 3A and 3B, respectively. Sequence comparisons revealed that they encode proteins that are highly homologous to AtTZF1, AtTZF2, and AtTZF3. The expression profiles of these RR-TZF durum wheat and Arabidopsis proteins support a common function in the regulation of seed germination and responses to abiotic stress. In particular, analysis of plants with attenuated and overexpressed AtTZF3 indicate that AtTZF3 is a negative regulator of seed germination under conditions of salt stress. Finally, comparative sequence analyses establish that the RR-TZF genes are encoded by lower plants, including the bryophyte Physcomitrella patens and the alga Chlamydomonas reinhardtii. The regulation of the Physcomitrella AtTZF1-2-3-like genes by salt stress strongly suggests that a subgroup of the RR-TZF proteins has a function that has been conserved throughout evolution. PMID:26136754

  6. Directional auxin transport mechanisms in early diverging land plants.

    PubMed

    Viaene, Tom; Landberg, Katarina; Thelander, Mattias; Medvecka, Eva; Pederson, Eric; Feraru, Elena; Cooper, Endymion D; Karimi, Mansour; Delwiche, Charles F; Ljung, Karin; Geisler, Markus; Sundberg, Eva; Friml, Jiří

    2014-12-01

    The emergence and radiation of multicellular land plants was driven by crucial innovations to their body plans. The directional transport of the phytohormone auxin represents a key, plant-specific mechanism for polarization and patterning in complex seed plants. Here, we show that already in the early diverging land plant lineage, as exemplified by the moss Physcomitrella patens, auxin transport by PIN transporters is operational and diversified into ER-localized and plasma membrane-localized PIN proteins. Gain-of-function and loss-of-function analyses revealed that PIN-dependent intercellular auxin transport in Physcomitrella mediates crucial developmental transitions in tip-growing filaments and waves of polarization and differentiation in leaf-like structures. Plasma membrane PIN proteins localize in a polar manner to the tips of moss filaments, revealing an unexpected relation between polarization mechanisms in moss tip-growing cells and multicellular tissues of seed plants. Our results trace the origins of polarization and auxin-mediated patterning mechanisms and highlight the crucial role of polarized auxin transport during the evolution of multicellular land plants. PMID:25448004

  7. Setting the Record Straight: The Selection, Subordination and Silencing of Maata Patene, Teacher

    ERIC Educational Resources Information Center

    Stephenson, Maxine

    2009-01-01

    Maori women teachers in nineteenth-century New Zealand have been little acknowledged in educational histories, and indeed, in some instances their contributions have been explicitly nullified. Those who have taken leadership roles have been no more visible. This article examines the silencing and exclusion from educational history of a young Maori…

  8. Sea level rise, drought and the decline of Spartina patens in New England marshes

    EPA Science Inventory

    Already heavily impacted by coastal development, estuarine vegetated habitats (seagrasses, salt marshes, and mangroves) are increasingly affected by climate change via accelerated sea level rise, changes in the frequency and intensity of precipitation and storms, and warmer ocean...

  9. Examining effects of sea level rise and marsh crabs on Spartina patens using mesocosms

    EPA Science Inventory

    Coastal salt marshes provide essential ecosystem services but face increasing threats from habitat loss, eutrophication, changing precipitation patterns, and accelerating rates of sea level rise (SLR). Recent studies have suggested that herbivory and burrowing by native salt mars...

  10. A single homeobox gene triggers phase transition, embryogenesis and asexual reproduction.

    PubMed

    Horst, Nelly A; Katz, Aviva; Pereman, Idan; Decker, Eva L; Ohad, Nir; Reski, Ralf

    2016-01-01

    Plants characteristically alternate between haploid gametophytic and diploid sporophytic stages. Meiosis and fertilization respectively initiate these two different ontogenies(1). Genes triggering ectopic embryo development on vegetative sporophytic tissues are well described(2,3); however, a genetic control of embryo development from gametophytic tissues remains elusive. Here, in the moss Physcomitrella patens we show that ectopic overexpression of the homeobox gene BELL1 induces embryo formation and subsequently reproductive diploid sporophytes from specific gametophytic cells without fertilization. In line with this, BELL1 loss-of-function mutants have a wild-type phenotype, except that their egg cells are bigger and unable to form embryos. Our results identify BELL1 as a master regulator for the gametophyte-to-sporophyte transition in P. patens and provide mechanistic insights into the evolution of embryos that can generate multicellular diploid sporophytes. This developmental innovation facilitated the colonization of land by plants about 500 million years ago(4) and thus shaped our current ecosystems. PMID:27250874