Science.gov

Sample records for physical weathering processes

  1. Weather Information Processing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Science Communications International (SCI), formerly General Science Corporation, has developed several commercial products based upon experience acquired as a NASA Contractor. Among them are METPRO, a meteorological data acquisition and processing system, which has been widely used, RISKPRO, an environmental assessment system, and MAPPRO, a geographic information system. METPRO software is used to collect weather data from satellites, ground-based observation systems and radio weather broadcasts to generate weather maps, enabling potential disaster areas to receive advance warning. GSC's initial work for NASA Goddard Space Flight Center resulted in METPAK, a weather satellite data analysis system. METPAK led to the commercial METPRO system. The company also provides data to other government agencies, U.S. embassies and foreign countries.

  2. Diagnosing the Systematic Effects of Parametrized Physical Processes in a Numerical Weather Prediction Model

    NASA Astrophysics Data System (ADS)

    Saffin, Leo; Methven, John; Gray, Sue

    2016-04-01

    Numerical models of the atmosphere combine a dynamical core, which approximates solutions to the adiabatic and frictionless governing equations, with the tendencies arising from the parametrization of physical processes. Tracers of potential vorticity (PV) can be used to accumulate the tendencies of parametrized physical processes and diagnose their impacts on the large-scale dynamics. This is due to two key properties of PV, conservation following an air mass and invertibility which relates the PV distribution to the balanced dynamics of the atmosphere. Applying the PV tracers to many short forecasts allows for a systematic investigation of the behaviour of parametrized physical processes. The forecasts are 2.5 day lead time forecasts run using the Met Office Unified Model (MetUM) initialised at 0Z for each day in November/December/January 2013/14. The analysis of the PV tracers has been focussed on regions where diabatic processes can be important (tropopause ridges and troughs, frontal regions and the boundary layer top). The tropopause can be described as a surface of constant PV with a sharp PV gradient. Previous work using the PV tracers in individual case studies has shown that parametrized physical processes act to enhance the tropopause PV contrast which can affect the Rossby wave phase speed. The short forecasts show results consistent with a systematic enhancement of tropopause PV contrast by diabatic processes and show systematically different behaviour between ridges and troughs. The implication of this work is that a failure to correctly represent the effects of diabatic processes on the tropopause in models can lead to poor Rossby wave evolution and potentially downstream forecast busts.

  3. Space Weather: The Physics Behind a Slogan.

    NASA Astrophysics Data System (ADS)

    Scherer, Klaus; Fichtner, Horst; Heber, Bernd; Mall, Urs

    The various processes that connect the physics of the Sun with that of the Earth`s environment has become known as "Space Weather" during recent years, a slogan that has emerged in connection with many other expressions adapted from meteorology, such as solar wind, magnetic clouds or polar rain. This volume is intended as a first graduate-level textbook-style account on the physics of these solar-terrestrial relations and their impact on our natural and technological environment.

  4. Space Weathering Processes on Mercury

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Pieters, C. M.

    2002-01-01

    Like the Moon, Mercury has no atmosphere to protect it from the harsh space environment and therefore it is expected that it will incur the effects of space weathering. These weathering processes are capable of both creating regolith and altering its optical properties. However, there are many important differences between the environments of Mercury and the Moon. These environmental differences will almost certainly affect the weathering processes as well as the products of those processes. It should be possible to observe the effects of these differences in Vis/NIR spectra of the type expected to be returned by MESSENGER. More importantly, understanding these weathering processes and their consequences is essential for evaluating the spectral data returned from MESSENGER and other missions in order to determine the mineralogy and the iron content of the Mercurian surface. Theoretical and experimental work has been undertaken in order to better understand these consequences.

  5. Book Review: Space Weather: Physics and Effects

    NASA Astrophysics Data System (ADS)

    Wilkinson, Phil

    2007-11-01

    At 438 pages, Space Weather: Physics and Effects, edited by Volker Bothmer and Ioannis A. Daglis, seems like a daunting read. But its thickness belies its conversational tone, and its content provides a different presentation of material aimed at drawing in a new audience while satisfying the present space weather audience's interest in their subject. I found reading this book a pleasure.

  6. Soil Genesis and Development, Lesson 2 - Processes of Weathering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weathering processes — which include physical, chemical, and biological — contribute to the development of soil. The learning objectives of the lesson are: 1) Define and distinguish physical, chemical, and biological weathering processes; and 2) Describe how rock and mineral properties and environm...

  7. Physical and chemical weathering. [of Martian surface and rocks

    NASA Technical Reports Server (NTRS)

    Gooding, James L.; Arvidson, Raymond E.; Zolotov, Mikhail IU.

    1992-01-01

    Physical and chemical weathering processes that might be important on Mars are reviewed, and the limited observations, including relevant Viking results and laboratory simulations, are summarized. Physical weathering may have included rock splitting through growth of ice, salt or secondary silicate crystals in voids. Chemical weathering probably involved reactions of minerals with water, oxygen, and carbon dioxide, although predicted products vary sensitively with the abundance and physical form postulated for the water. On the basis of kinetics data for hydration of rock glass on earth, the fate of weathering-rind formation on glass-bearing Martian volcanic rocks is tentatively estimated to have been on the order of 0.1 to 4.5 cm/Gyr; lower rates would be expected for crystalline rocks.

  8. Space Weather: Physics and Effects

    NASA Astrophysics Data System (ADS)

    Hughes, W. Jeffrey

    2009-03-01

    With the launching of Sputnik, Explorer 1, and the other early satellites, the new discipline of space physics was born, about 50 years ago. Although earlier ground-based observations had provided strong hints about the nature of our space environment above the upper atmosphere, those early satellites initiated a series of surprises and discoveries, including Van Allen's discovery of the Earth's radiation belts. Young scientists were attracted to this new field, and it grew quickly. When the Journal of Geophysical Research was divided into two sections, in 1964, one section was devoted to space physics. The field explored not only new regions of space but also a new state of matter: the rarefied, fully ionized plasma that fills space and interacts intimately with magnetic fields.

  9. Physical weathering and modification of a rhyolitic hyaloclastite in Iceland

    NASA Astrophysics Data System (ADS)

    de Vet, S. J.; Mittelmeijer-Hazeleger, M. C.; Braakhekke, J. J. M.; Cammeraat, L. H.

    2014-06-01

    Fragmental volcanic glass or `hyaloclastite' is a common glaciovolcanic eruption product that is formed in large abundance during basaltic, andesitic and rhyolitic subglacial eruptions. The physical weathering of rhyolitic hyaloclastites differs notably from basaltic hyaloclastites due to differences in cementation and edifice consolidation. As rhyolitic glasses are also much rarer, comparatively little is known about their physical weathering and fracturing characteristics. In the presented study, we provide a process-oriented analysis of the physical modification of subglacially erupted rhyolitic hyaloclastites from the Bláhnúkur edifice in Torfajökull (Iceland). Frost weathering experiments were performed to determine how vesicular glass particles fragment to finer particle sizes. The surficial porosity of the glass drives such frost weathering through the process of pore pressurisation and was quantified using high-pressure mercury intrusion. Uniaxial compression experiments were carried out to understand how the glass structure responds to the application of external stress. The observed fracturing in both experimental treatments was found to adhere to fractal statistics, which allowed the compression experiments to be used in conjunction with the frost weathering experiments for inferring the fracturing characteristics of rhyolitic volcanic glasses. Transport processes by wind and gravity were simulated by long-duration abrasion experiments in rock tumblers (through granular avalanching), but these low-energy particle interactions were not found to significantly abrade particles. A notable result from our fragmentation experiments was the production of <10 μm particles. This size range is considered respirable and illustrates how physical weathering can continuously create potentially harmful ash textures; a process which is often overlooked in health hazard assessments after volcanic eruptions. Fragmentation by post-eruptive weathering can lead to

  10. Space Weather: The Physics Behind a Slogan

    NASA Astrophysics Data System (ADS)

    Moldwin, Mark

    2005-09-01

    Space weather is an emerging field of space physics that has as its focus the understanding of the societal and technological impacts of the solar-terrestrial relationship.The variable Sun's electromagnetic and charged particle outflows affect the Earth's space environment and the satellites, communications systems, electrical power grids, astronauts, and airline passengers that operate within it. The energy, mass, and momentum outflow from the Sun changes over all timescales and gives rise to dynamics of the magnetic field and plasma environment around the Earth. Many terms used in space physics have been borrowed from meteorology: The mass outflow of the Sun is called the ``solar wind,'' and the constant drizzle of energetic electrons into the polar cap is called ``polar rain.'' In the last decade, the term ``space weather'' has become the umbrella term to describe space physics research.

  11. A Physically Based Coupled Chemical and Physical Weathering Model for Simulating Soilscape Evolution

    NASA Astrophysics Data System (ADS)

    Willgoose, G. R.; Welivitiya, D.; Hancock, G. R.

    2015-12-01

    A critical missing link in existing landscape evolution models is a dynamic soil evolution models where soils co-evolve with the landform. Work by the authors over the last decade has demonstrated a computationally manageable model for soil profile evolution (soilscape evolution) based on physical weathering. For chemical weathering it is clear that full geochemistry models such as CrunchFlow and PHREEQC are too computationally intensive to be couplable to existing soilscape and landscape evolution models. This paper presents a simplification of CrunchFlow chemistry and physics that makes the task feasible, and generalises it for hillslope geomorphology applications. Results from this simplified model will be compared with field data for soil pedogenesis. Other researchers have previously proposed a number of very simple weathering functions (e.g. exponential, humped, reverse exponential) as conceptual models of the in-profile weathering process. The paper will show that all of these functions are possible for specific combinations of in-soil environmental, geochemical and geologic conditions, and the presentation will outline the key variables controlling which of these conceptual models can be realistic models of in-profile processes and under what conditions. The presentation will finish by discussing the coupling of this model with a physical weathering model, and will show sample results from our SSSPAM soilscape evolution model to illustrate the implications of including chemical weathering in the soilscape evolution model.

  12. Salt-Induced Physical Weathering of Stone

    NASA Astrophysics Data System (ADS)

    Schiro, M.; Ruiz-Agudo, E.; Rodriguez-Navarro, C.

    2010-12-01

    Salt weathering is recognized as an important mechanism that contributes to the modeling and shaping of the earth’s surface, in a range of environments spanning from the Sahara desert to Antarctica. It also contributes to the degradation and loss of cultural heritage, particularly carved stone and historic buildings. Soluble salts have recently been suggested to contribute to the shaping of rock outcrops on Mars and are being identified in other planetary bodies such as the moons of Jupiter (Europa and IO)1. Soluble salts such as sulfates, nitrates, chlorides and carbonates of alkali and alkali earth metals can crystallize within the porous system of rocks and building stones, exerting sufficient pressure against the pore walls to fracture the substrate. This physical damage results in increased porosity, thus providing a higher surface area for salt-enhanced chemical weathering. To better understand how salt-induced physical weathering occurs, we have studied the crystallization of the particularly damaging salt, sodium sulfate2, in a model system (a sintered porous glass of controlled porosity and pore size). For this elusive task of studying sub-surface crystallization in pores, we combined a variety of instruments to identify which phases crystallized during evaporation and calculated the supersaturation and associated crystallization pressure that caused damage. The heat of crystallization was measured using differential scanning calorimetry (DSC), providing the timing of crystallization events and phase transitions3, while the evaporation rate was recorded using thermal gravimetry (TG). These methods enabled calculation of the sodium sulfate concentration in solution at every point during evaporation. Two-dimensional X-ray diffraction (2D-XRD) performs synchrotron-like experiments in a normal lab by using a Molybdenum X-ray source (more than 5 times more penetrative than conventional Copper source). Using this method, we determined that the first phase to

  13. Asteroid Surface Alteration by Space Weathering Processes

    NASA Astrophysics Data System (ADS)

    Brunetto, R.; Loeffler, M. J.; Nesvorný, D.; Sasaki, S.; Strazzulla, G.

    Micrometeorite bombardment and irradiation by solar wind and cosmic-ray ions cause variations in the optical properties of small solar system bodies surfaces, affecting efforts to draw connections between specific meteorites and asteroid types. These space weathering processes have been widely studied for the Moon and S- and V-type asteroids, and they are currently being investigated for other asteroid types. Here we review the laboratory studies performed by several groups on meteorites and asteroid surface analogs, aimed at simulating space weathering by using ion irradiation and laser ablation. Together with direct evidence of weathering of particles from asteroid Itokawa acquired by the Hayabusa mission, these results have provided a fundamental contribution to the spectral interpretation of asteroid observations, to establish a solid asteroids-meteorites link, and to understand the energetic processes affecting the surfaces of minor bodies. A general scheme for asteroid optical maturation is thus emerging. Slope trends from large surveys and in particular of young asteroid families have confirmed that solar wind is the main source of rapid (104-106 yr) weathering, and that a number of rejuvenating processes (impacts by small meteorites, planetary encounters, regolith shaking, etc.) efficiently counterbalance the fast weathering timescales.

  14. Landslides as weathering reactors; links between physical erosion and weathering in rapidly eroding mountain belts

    NASA Astrophysics Data System (ADS)

    Emberson, R.; Hovius, N.; Galy, A.

    2014-12-01

    The link between physical erosion and chemical weathering is generally modelled with a surface-blanketing weathering zone, where the supply of fresh minerals is tied to the average rate of denudation. In very fast eroding environments, however, sediment production is dominated by landsliding, which acts in a stochastic fashion across the landscape, contrasting strongly with more uniform denudation models. If physical erosion is a driver of weathering at the highest erosion rates, then an alternative weathering model is required. Here we show that landslides can be effective 'weathering reactors'. Previous work modelling the effect of landslides on chemical weathering (Gabet 2007) considered the fresh bedrock surfaces exposed in landslide scars. However, fracturing during the landslide motion generates fresh surfaces, the total surface area of which exceeds that of the exposed scar by many orders of magnitude. Moreover, landslides introduce concavity into hillslopes, which acts to catch precipitation. This is funnelled into a deposit of highly fragmented rock mass with large reactive surface area and limited hydraulic conductivity (Lo et al. 2007). This allows percolating water reaction time for chemical weathering; any admixture of macerated organic debris could yield organic acid to further accelerate weathering. In the South island of New Zealand, seepage from recent landslide deposits has systematically high solute concentrations, far outstripping concentration in runoff from locations where soils are present. River total dissolved load in the western Southern Alps is highly correlated with the rate of recent (<35yrs) landsliding, suggesting that landslides are the dominant locus of weathering in this rapidly eroding landscape. A tight link between landsliding and weathering implies that localized weathering migrates through the landscape with physical erosion; this contrasts with persistent and ubiquitous weathering associated with soil production. Solute

  15. Understanding space weather with new physical, mathematical and philosophical approaches

    NASA Astrophysics Data System (ADS)

    Mateev, Lachezar; Velinov, Peter; Tassev, Yordan

    2016-07-01

    The actual problems of solar-terrestrial physics, in particular of space weather are related to the prediction of the space environment state and are solved by means of different analyses and models. The development of these investigations can be considered also from another side. This is the philosophical and mathematical approach towards this physical reality. What does it constitute? We have a set of physical processes which occur in the Sun and interplanetary space. All these processes interact with each other and simultaneously participate in the general process which forms the space weather. Let us now consider the Leibniz's monads (G.W. von Leibniz, 1714, Monadologie, Wien; Id., 1710, Théodicée, Amsterdam) and use some of their properties. There are total 90 theses for monads in the Leibniz's work (1714), f.e. "(1) The Monad, of which we shall here speak, is nothing but a simple substance, which enters into compounds. By 'simple' is meant 'without parts'. (Theod. 10.); … (56) Now this connexion or adaptation of all created things to each and of each to all, means that each simple substance has relations which express all the others, and, consequently, that it is a perpetual living mirror of the universe. (Theod. 130, 360.); (59) … this universal harmony, according to which every substance exactly expresses all others through the relations it has with them. (63) … every Monad is, in its own way, a mirror of the universe, and the universe is ruled according to a perfect order. (Theod. 403.)", etc. Let us introduce in the properties of monads instead of the word "monad" the word "process". We obtain the following statement: Each process reflects all other processes and all other processes reflect this process. This analogy is not formal at all, it reflects accurately the relation between the physical processes and their unity. The category monad which in the Leibniz's Monadology reflects generally the philosophical sense is fully identical with the

  16. Detecting Anthropogenic Disturbance on Weathering and Erosion Processes

    NASA Astrophysics Data System (ADS)

    Vanacker, V.; Schoonejans, J.; Bellin, N.; Ameijeiras-Mariño, Y.; Opfergelt, S.; Christl, M.

    2014-12-01

    Anthropogenic disturbance of natural vegetation can profoundly alter the physical, chemical and biological processes within soils. Rapid removal of topsoil during intense farming can result in an imbalance between soil production through chemical weathering and physical erosion, with direct implications on local biogeochemical cycling. However, the feedback mechanisms between soil erosion, chemical weathering and biogeochemical cycling in response to anthropogenic forcing are not yet fully understood. In this paper, we analyze dynamic soil properties for a rapidly changing anthropogenic landscape in the Spanish Betic Cordillera; and focus on the coupling between physical erosion, soil production and soil chemical weathering. Modern erosion rates were quantified through analysis of sediment deposition volumes behind check dams, and represent catchment-average erosion rates over the last 10 to 50 years. Soil production rates are derived from in-situ produced 10Be nuclide concentrations, and represent long-term flux rates. In each catchment, soil chemical weathering intensities were calculated for two soil-regolith profiles. Although Southeast Spain is commonly reported as the European region that is most affected by land degradation, modern erosion rates are low (140 t ha-1 yr-1). About 50 % of the catchments are losing soils at a rate of less than 60 t km-2 yr-1. Our data show that modern erosion rates are roughly of the same magnitude as the long-term or cosmogenically-derived erosion rates in the Betic Cordillera. Soils developed on weathered metamorphic rocks have no well-developed profile characteristics, and are generally thin and stony. Nevertheless, soil chemical weathering intensities are high; and question the occurrence of past soil truncation.

  17. Olivine Weathering: Abiotic Versus Biotic Processes as Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, T. G.; Wentworth, S. J.; McKay, D. S.; Southam, G.; Clemett, S. J.

    2001-01-01

    A preliminary study to determine how abiotic versus biotic processes affect the weathering of olivine crystals. Perhaps the differences between these weathering processes could be used as biosignatures. Additional information is contained in the original extended abstract.

  18. Physical mechanisms of solar variability influence on weather and climate

    NASA Astrophysics Data System (ADS)

    Avakyan, Sergei

    2010-05-01

    Numerous researches into correlation of weather and climate characteristics with solar and geomagnetic activity confirm that such correlation does exist. However there is some uncertainty in interpretation of the Sun-weather-climate relations. The paper considers the main causes of this uncertainty which are as follows - the lack of permanent monitoring data on ionizing solar EUV/X-ray radiation including periods of flares; and also the data on electron fluxes of keV energy precipitating from radiation belts first of all during geomagnetic storms; - multiplicity of Sun-weather-climate links; - the lack of understanding what are the mechanisms of solar-geomagnetic activity (flares and storms) influence on weather and climate characteristics; By now mainly the research on galactic cosmic rays (GSR) including Forbush effects and solar cosmic rays (SCR) influences on atmosphere transparence characteristics and further on climate-weather characteristics have been carried out. The GCR flux increase causes the growth of low (usually optically thick) cloudness and therefore produces in generally cooling effect on the mean surface air temperature. The appearance of SCR causes the reduction of stratospheric and tropospheric transparence and produces also usually cooling effect However these events are rare and corresponding variations of fluxes energy are small. At the same time such strong and frequent manifestations of solar activity as flares and magnetic storms are not so far taken into account since it is not known what physical mechanisms could be responsible for energy transfer from solar flares and magnetic storms to the lower atmosphere. The paper describes a novel radio-optical mechanism responsible for the solar-terrestrial links which acts as a three-stage trigger and which could be useful for solving the problem "Sun- weather-climate". This physical mechanism is based on taking into account the excitation of Rydberg states of atoms and molecules in generation of

  19. Understanding Space Weather and the Physics Behind It

    NASA Astrophysics Data System (ADS)

    Knipp, D. J.; Gross, N. A.

    2011-12-01

    A new textbook on space weather, Understanding Space Weather and the Physics Behind It, aimed at upper-level undergraduates and beginning graduate students, contains numerous examples of basic physics applications in space weather. We will highlight a few of the examples from the text. In addition, new material is being developed to support the many references to NOAA Space Weather Prediction Center (SWPC) graphics and scales. Our intent is to provide background and improved understanding of the underpinnings of the operational images. In this presentation we provide a set of questions, tools, and exercises that guide inquiry into the observations and proxies behind some of elements on SWPC's home page. Our materials include observation sequences for the types of space weather disturbances discussed in SWPC's Report of Solar and Geophysical Activity and the NOAA Space Weather Scales. Our instructional materials are in standard electronic document formats and in "dashboard" format supported by tools from the Integrated Space Weather Analysis platform at NASA's Community Coordinated Modeling Center.

  20. Multilayer Scintillation Detector for Nuclear Physics Monitoring of Space Weather

    NASA Astrophysics Data System (ADS)

    Batischev, A. G.; Aleksandrin, S. Yu.; Gurov, Yu. B.; Koldashov, S. V.; Lapushkin, S. V.; Mayorov, A. G.

    The physical characteristics of the multilayer scintillation spectrometer (MSS) for identification and energy measurement of cosmic electrons, positrons and nuclei are considered in this paper. This spectrometer is made on the basis of several plastic scintillator plates with various thick viewed by photomultipliers. Two upper layers are strips of orthogonal scintillators. The nuclei energy measurement range is 3 - 100 MeV/nucleon. Spectrometer is planning for space weather monitoring and investigation of solar-magnetospheric and geophysics effects on satellite. MSS time resolution is about 1 microsecond and it can measure the time profiles of fast processes in the Earth's magnetosphere. Spectrometer experimental characteristics were estimated by means of computer simulation. The ionization loss fluctuations, ion charge exchange during pass through detector and, especially, scintillation quenching effect (Bircs effect) were taken into account in calculations.

  1. Coupling processes related to the Sun-weather problem

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Herman, J. R.

    1979-01-01

    Physical mechanisms for coupling the energetics of solar activity to meteorological responses are reviewed. Although several hypotheses have been advanced, none can be said to be sufficiently complete to be applied to weather or climate prediction. Solar activity indicators potentially useful for forecasting are identified, including sunspots, solar flares, and magnetic sector boundary crossings. Additional experiments, studies, and analyses are required before Sun-weather concepts can be utilized for predicting meteorological responses.

  2. Martian weathering processes: Terrestrial analog and theoretical modeling studies

    NASA Astrophysics Data System (ADS)

    McAdam, Amy Catherine

    2008-06-01

    Understanding the role of water in the Martian near-surface, and its implications for possible habitable environments, is among the highest priorities of NASA's Mars Exploration Program. Characterization of alteration signatures in surface materials provides the best opportunity to assess the role of water on Mars. This dissertation investigates Martian alteration processes through analyses of Antarctic analogs and numerical modeling of mineral-fluid interactions. Analog work involved studying an Antarctic diabase, and associated soils, as Mars analogs to understand weathering processes in cold, dry environments. The soils are dominated by primary basaltic minerals, but also contain phyllosilicates, salts, iron oxides/oxyhydroxides, and zeolites. Soil clay minerals and zeolites, formed primarily during deuteric or hydrothermal alteration of the parent rock, were subsequently transferred to the soil by physical rock weathering. Authigenic soil iron oxides/oxyhydroxides and small amounts of poorly-ordered secondary silicates indicate some contributions from low-temperature aqueous weathering. Soil sulfates, which exhibit a sulfate- aerosol-derived mass-independent oxygen isotope signature, suggest contributions from acid aerosol-rock interactions. The complex alteration history of the Antarctic materials resulted in several similarities to Martian materials. The processes that affected the analogs, including deuteric/ hydrothermal clay formation, may be important in producing Martian surface materials. Theoretical modeling focused on investigating the alteration of Martian rocks under acidic conditions and using modeling results to interpret Martian observations. Kinetic modeling of the dissolution of plagioclase-pyroxene mineral mixtures under acidic conditions suggested that surfaces with high plagioclase/pyroxene, such as several northern regions, could have experienced some preferential dissolution of pyroxenes at a pH less than approximately 3-4. Modeling of the

  3. Delving Deeper: How Saprolite And Chemical Weathering Influence The Expression Of Climate On Surface Shaping Processes

    NASA Astrophysics Data System (ADS)

    Dixon, J. L.; Heimsath, A. M.; Amundson, R.

    2008-12-01

    Climate, erosion, chemical weathering, and hillslope form are intricately linked by a set of feedbacks controlling the evolution of soil mantled landscapes. Our current understanding of their functional relationships is hampered by the lack of field data quantifying erosion and weathering variability at a hillslope scale. Here, we examine how climate influences hillslope form and function along a 64 km climate transect up the western front of the southern Sierra Nevada, California. We use cosmogenic 10Be and chemical mass balances to quantify rates of soil production, physical erosion, and chemical weathering. We couple denudation rates with high resolution laser altimetry data and measurements of soil thickness to examine the morphometric expression of climate and dominant soil transport processes. Importantly, we include measurements of deep chemical weathering in saprolites beneath soil, to better understand the role of saprolite in both expressing climate influence and influencing erosion-weathering feedbacks. We test several soil transport laws, which express predictable functional relationships between soil flux and landscape form, based either on the role that gravity or hillslope gradient or on the extent that soil depth may influence soil production and flux. Rates of local soil production range from 31.2 to 160.0 t km-2y-1 across the climate gradient, reflecting average lowering rates of 36.5 ± 2.8 m My-1. Soil production rates decrease with soil thickness at the low elevation grassland site, in agreement with published data from similar landscapes; however, we find limited applicability of existing transport laws to hillslope form at other sites in the Sierra Nevada. Along the studied climate gradient, chemical weathering rates peak at middle elevations (1200-2000 m), averaging 112.3 ± 9.7 t km-2y-1 compared to high and low elevation sites (46.8 ± 5.2 t km-2y-1). Patterns of weathering rates with elevation are similar to those of predicted silica

  4. Sensitivity of mineral dissolution rates to physical weathering : A modeling approach

    NASA Astrophysics Data System (ADS)

    Opolot, Emmanuel; Finke, Peter

    2015-04-01

    There is continued interest on accurate estimation of natural weathering rates owing to their importance in soil formation, nutrient cycling, estimation of acidification in soils, rivers and lakes, and in understanding the role of silicate weathering in carbon sequestration. At the same time a challenge does exist to reconcile discrepancies between laboratory-determined weathering rates and natural weathering rates. Studies have consistently reported laboratory rates to be in orders of magnitude faster than the natural weathering rates (White, 2009). These discrepancies have mainly been attributed to (i) changes in fluid composition (ii) changes in primary mineral surfaces (reactive sites) and (iii) the formation of secondary phases; that could slow natural weathering rates. It is indeed difficult to measure the interactive effect of the intrinsic factors (e.g. mineral composition, surface area) and extrinsic factors (e.g. solution composition, climate, bioturbation) occurring at the natural setting, in the laboratory experiments. A modeling approach could be useful in this case. A number of geochemical models (e.g. PHREEQC, EQ3/EQ6) already exist and are capable of estimating mineral dissolution / precipitation rates as a function of time and mineral mass. However most of these approaches assume a constant surface area in a given volume of water (White, 2009). This assumption may become invalid especially at long time scales. One of the widely used weathering models is the PROFILE model (Sverdrup and Warfvinge, 1993). The PROFILE model takes into account the mineral composition, solution composition and surface area in determining dissolution / precipitation rates. However there is less coupling with other processes (e.g. physical weathering, clay migration, bioturbation) which could directly or indirectly influence dissolution / precipitation rates. We propose in this study a coupling between chemical weathering mechanism (defined as a function of reactive area

  5. Improving the physics models in the Space Weather Modeling Framework

    NASA Astrophysics Data System (ADS)

    Toth, G.; Fang, F.; Frazin, R. A.; Gombosi, T. I.; Ilie, R.; Liemohn, M. W.; Manchester, W. B.; Meng, X.; Pawlowski, D. J.; Ridley, A. J.; Sokolov, I.; van der Holst, B.; Vichare, G.; Yigit, E.; Yu, Y.; Buzulukova, N.; Fok, M. H.; Glocer, A.; Jordanova, V. K.; Welling, D. T.; Zaharia, S. G.

    2010-12-01

    The success of physics based space weather forecasting depends on several factors: we need sufficient amount and quality of timely observational data, we have to understand the physics of the Sun-Earth system well enough, we need sophisticated computational models, and the models have to run faster than real time on the available computational resources. This presentation will focus on a single ingredient, the recent improvements of the mathematical and numerical models in the Space Weather Modeling Framework. We have developed a new physics based CME initiation code using flux emergence from the convection zone solving the equations of radiative magnetohydrodynamics (MHD). Our new lower corona and solar corona models use electron heat conduction, Alfven wave heating, and boundary conditions based on solar tomography. We can obtain a physically consistent solar wind model from the surface of the Sun all the way to the L1 point without artificially changing the polytropic index. The global magnetosphere model can now solve the multi-ion MHD equations and take into account the oxygen outflow from the polar wind model. We have also added the options of solving for Hall MHD and anisotropic pressure. Several new inner magnetosphere models have been added to the framework: CRCM, HEIDI and RAM-SCB. These new models resolve the pitch angle distribution of the trapped particles. The upper atmosphere model GITM has been improved by including a self-consistent equatorial electrodynamics and the effects of solar flares. This presentation will very briefly describe the developments and highlight some results obtained with the improved and new models.

  6. Weathering Processes Across Extreme Erosional Gradients: Do Landslides Matter?

    NASA Astrophysics Data System (ADS)

    Emberson, R.; Hovius, N.; Galy, A.; Marc, O.

    2015-12-01

    A process-based understanding of weathering in actively eroding mountain belts is vital to understand how linkages between erosion and weathering affect global biogeochemical cycles on a range of timescales. Here we present surface water chemistry data from Southern Taiwan that demonstrates the impact of variable erosive processes on weathering budgets on a large range of scales, from tens of metres to large catchments (>50km2). Southern Taiwan is an excellent example of a number of gradients in erosive processes, with relief and median slope increasing from the southernmost small hills to mountainous threshold-hillslopes with up to 2.5km of relief approximately 100km to the north. Furthermore, Typhoon Morakot (2009) triggered extremely extensive landsliding in some catchments within this zone, allowing distinctions to be drawn between average topographic characteristics of catchments and the erosive processes (i.e. mass wasting) at work therein. Landslides play an important role in localising weathering in deposits with high internal surface area and slow throughflow of fluids, creating sites of rapid weathering which can be a first order control on catchment solute budgets in watersheds where landslides deposits and scars exceed 2% of drained area. Variation in the detailed chemistry of landslide seepages - particularly the carbonate/silicate weathering balance - indicates that this process has a different impact on inorganic weathering-driven carbon cycling than slower erosive processes; a strong positive correlation between landslide-affected area and Ca2+:Si ratios on catchment scale suggests rapid erosion is not strongly coupled to CO2 drawdown. Rapid oxidation of sulphides - ubiquitous in many rapidly eroding mountain belts - within highly fragmented landslide deposits, and associated sulphuric-acid driven weathering, further complicates the effect landsliding has on the carbon cycle.

  7. Gombosi Receives 2013 Space Weather and Nonlinear Waves and Processes Prize: Citation

    NASA Astrophysics Data System (ADS)

    McCoy, Robert P.

    2014-08-01

    The Space Physics and Aeronomy section of AGU awards the Space Weather and Nonlinear Waves and Processes Prize to Tamas Gombosi of the University of Michigan. Gombosi, the founding director of the Center for Space Environment Modeling, has been a leader in space weather research, a visionary in space weather numerical modeling for several decades, and a pioneer of international space physics collaboration. Gombosi's major contributions to space weather include the development of the first time-dependent numerical model of the terrestrial polar wind and the creation of the BATS-R-US magnetohydrodynamic model, a powerful and versatile numerical tool widely used today for modeling the global geospace, the heliosphere, and the solar interior.

  8. Physical disintegration of biochar: An overlooked process

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data collected from both artificially and field (naturally) weathered biochar suggest that a potentially significant pathway of biochar disappearance is through physical breakdown of the biochar structure. Through scanning electron microscopy (SEM) we characterized this physical weathering which inc...

  9. Energetic particles in geospace: Physics and space weather effects

    NASA Astrophysics Data System (ADS)

    Daglis, I.

    2013-09-01

    Geospace is populated by charged particles covering a wide range of energies and densities. Influenced by electromagnetic fields and waves, a subset of these particles are accelerated and driven into the inner magnetosphere, creating the storm-time ring current and the radiation belts - the two dominant energetic particle populations in geospace. The acceleration processes are associated with a variety of space weather related phenomena, some of which are detrimental for space infrastructure and ground facilities alike. We present recent advances in our understanding of the complex interplay of particles, fields and waves in geospace, with an emphasis on the role of magnetic storms and wave-particle interactions.

  10. Influence of weather-climatic conditions on biospheric processes

    NASA Astrophysics Data System (ADS)

    Govorushko, S. M.

    2012-12-01

    The significance of meteorological processes and phenomena in the biosphere functioning is revealed. The influence of various weather conditions on human health is considered; the factors and mechanisms of their action are described. The impact of meteorological processes on animals is discussed and concrete examples of such impacts are presented. The influence of meteorological processes and phenomena on plants at different stages of their life (pollination, growth, ripening, transport of seeds, damage, and death) and on some abiotic natural components is shown. It is inferred that weather-climatic conditions have a great influence on biospheric processes.

  11. Future L5 Missions for Solar Physics and Space Weather

    NASA Astrophysics Data System (ADS)

    Auchere, Frederic; Gopalswamy, Nat

    Coronal mass ejections (CMEs) and corotating interaction regions (CIR) are the sources of intense space weather in the heliosphere. Most of the current knowledge on CMEs accumulated over the past few decades has been derived from observations made from the Sun-Earth line, which is not the ideal vantage point to observe Earth-affecting CMEs (Gopalswamy et al., 2011a,b). In this paper, the advantages of remote-sensing and in-situ observations from the Sun-Earth L5 point are discussed. Locating a mission at Sun-Earth L5 has several key benefits for solar physics and space weather: (1) off the Sun-Earth line view is critical in observing Earth-arriving parts of CMEs, (2) L5 coronagraphic observations can also provide near-Sun space speed of CMEs, which is an important input to models that forecast Earth-arrival time of CMEs, (3) backside and frontside CMEs can be readily distinguished even without inner coronal imagers, (4) preceding CMEs in the path of Earth-affecting CMEs can be identified for a better estimate of the travel time, (5) CIRs reach the L5 point a few days before they arrive at Earth, and hence provide significant lead time before CIR arrival, (6) L5 observations can provide advance knowledge of CME and CIR source regions (coronal holes) rotating to Earth view, and (7) magnetograms obtained from L5 can improve the surface magnetic field distribution used as input to MHD models that predict the background solar wind. The paper also discusses L5 mission concepts that can be achieved in the near future. References Gopalswamy, N., Davila, J. M., St. Cyr, O. C., Sittler, E. C., Auchère, F., Duvall, T. L., Hoeksema, J. T., Maksimovic, M., MacDowall, R. J., Szabo, A., Collier, M. R. (2011a), Earth-Affecting Solar Causes Observatory (EASCO): A potential International Living with a Star Mission from Sun-Earth L5 JASTP 73, 658-663, DOI: 10.1016/j.jastp.2011.01.013 Gopalswamy, N., Davila, J. M., Auchère, F., Schou, J., Korendyke, C. M. Shih, A., Johnston, J. C

  12. Weather.

    ERIC Educational Resources Information Center

    Web Feet K-8, 2000

    2000-01-01

    This subject guide to weather resources includes Web sites, CD-ROMs and software, videos, books, audios, magazines, and professional resources. Related disciplines are indicated, age levels are specified, and a student activity is included. (LRW)

  13. Lithium isotopes as a probe of weathering processes: Orinoco River

    NASA Astrophysics Data System (ADS)

    Huh, Youngsook; Chan, Lui-Heung; Edmond, John M.

    2001-12-01

    Lithium isotopes have the potential to be effective tracers of weathering processes due to their large relative mass difference and therefore fractionation. In this study an attempt is made to fill a major gap in the knowledge of Li isotope fractionation during continental weathering and of the mechanisms involved. Finally the relationship between the suspended and dissolved material is made on a basin-wide scale. The Orinoco basin provides a clear contrast in reaction-limited and transport-limited weathering regimes that has already been documented by a comprehensive study on its fluvial geochemistry (Edmond et al., Geochim. Cosmochim. Acta 60 (1996) 2949-2976; Edmond et al., Geochim. Cosmochim. Acta 59 (1995) 3301-3325). Conspicuous in our new results is the difference in δ6Li of the dissolved load between the Andean (-30 to -22‰) and Shield (-22 to -7‰) tributaries, while the δ6Li of the suspended load is similar between the two. To a first approximation, during superficial weathering in high-relief, tectonically active terrains the dissolved load is high in Li and isotopically heavy (more negative δ6Li), whereas in stable Shield regions the concentrations are low and isotopically light in proportion to the increasing degree of weathering.

  14. An Unusual Process of Accelerated Weathering of a Marly Limestone

    NASA Astrophysics Data System (ADS)

    Ercoli, L.; Rizzo, G.; Algozzini, G.

    2003-04-01

    This work deals with a singular case of stone deterioration, which occurred during the restoration of the Cathedral of Cefalù. In particular, a significant process of stone decohesion started after a consolidation treatment on ashlars of the external face of the cloister portico. A study was carried out to characterize the stone and to investigate the deterioration process. Petrographical, chemical and physical analyses were performed on samples taken from the wall. The results indicate that the medieval monument was built using a Pliocene marly limestone, called "trubo", quarried from outcrops of the environs of Cefalù. The rock is soft and uniformely cemented. The carbonatic fraction of the rock is due to foraminifera shells; the rock also contains detritic quartz, feldspate and glauconite. The clay minerals, mainly illite and montmorillonite, are widespread in the rock in the form of thin layers. The use of such a stone in a building of relevant artistic value is definitely unusual. In fact, the "trubo" is a rock subjected to natural decay because of its mineralogical composition and fabric; as effect of natural weathering, in the outcrops the rock disaggregates uniformely, producing silt. In the cloister this effect was magnified by extreme environmental conditions (marine spray, severe excursions of both relative humidity and temperature). Furthermore, after soluble salts removing and subsequent consolidation with ethyl silicate, a significant acceleration of the decay process was observed, producing friable scales detach for a depth of about 3 cm into the ashlars. The stone appeared corroded and uneven. Experimental tests were performed in laboratory in order to evidence any origin of incompatibility between such stone composition and the treatments carried out, which on the other hand are the most generally adopted in restoration interventions.

  15. Validating Physics-based Space Weather Models for Operational Use

    NASA Astrophysics Data System (ADS)

    Gombosi, Tamas; Singer, Howard; Millward, George; Toth, Gabor; Welling, Daniel

    2016-07-01

    The Geospace components of the Space Weather Modeling Framework developed at the University of Michigan is presently transitioned to operational use by the NOAA Space Weather Prediction Center. This talk will discuss the various ways the model is validated and skill scores are calculated.

  16. Stealth CMEs: A Challenge for Solar Physics and Space Weather

    NASA Astrophysics Data System (ADS)

    Nitta, N.; Srivastava, N.

    2013-12-01

    It is commonly believed that coronal mass ejections (CMEs) are a primary driver of intense disturbances in the inner heliosphere. Although many of these CMEs are associated with clear solar transient phenomena such as flares, there have been a number of events without unambiguous solar origin, presenting a significant challenge not only for solar physics research, but also for space weather forecasts. For example, nearly 20% of major geomagnetic storms in solar cycle 23 that involved the interplanetary counterparts of CMEs (i.e., ICMEs) did not leave compelling signatures in EUV or X-ray images. We now tend to consider such orphan CMEs to be 'stealth' CMEs as first identified in data from the Solar Terrestrial Relations Observatory (STEREO) during last solar minimum. In the meantime the sensitivity of coronal observations has been tremendously improved as the Solar Dynamics Observatory (SDO) was launched in February 2010; SDO carries the Atmospheric Imaging Assembly (AIA), which provides high-cadence, full-disk images in a broad temperature range as sampled in EUV wavelengths. In principle, AIA should allow us to trace the origin of every Earth-directed CME observed as a limb event by the coronagraphs (COR-1, COR-2, HI-1 and HI-2) on STEREO. In reality, however, we have at least a handful of ICMEs whose origin may not clearly be tracked down to the low corona. Some of them were indeed geo-effective, further complicated by other factors including co-rotating interaction regions (CIRs). Here we give a survey of these events, discussing AIA and STEREO observations of their onsets and propagations in reference to their in-situ manifestations. We list key questions that should be answered by observational and modeling work in order to get more solid understanding of the origin of geomagnetic storms.

  17. wradlib - An Open Source Library for Weather Radar Data Processing

    NASA Astrophysics Data System (ADS)

    Heistermann, M.; Pfaff, Th.; Jacobi, S.

    2012-04-01

    Weather radar data is potentially useful in meteorology, hydrology, disaster prevention and mitigation. Its ability to provide information on precipitation with high spatial and temporal resolution over large areas makes it an invaluable tool for short term weather forecasting or flash flood forecasting. The indirect method of measuring the precipitation field, however, leads to a significant number of data artifacts, which usually must be removed or dealt with before the data can be used with acceptable quality. Data processing requires e.g. the transformation of measurements from polar to cartesian coordinates and from reflectivity to rainfall intensity, the composition of data from several radar sites in a common grid, clutter identification and removal, attenuation and VPR corrections, gauge adjustment and visualization. The complexity of these processing steps is a major obstacle for many potential users in science and practice. Adequate tools are available either only at significant costs with no access to the uncerlying source code, or they are incomplete, insufficiently documented and intransparent. The wradlib project has been initiated in order to lower the barrier for potential users of weather radar data in the geosciences and to provide a common platform for research on new algorithms. wradlib is an open source library for the full range of weather radar related processing algorithms, which is well documented and easy to use. The main parts of the library are currently implemented in the python programming language. Python is well known both for its ease of use as well as its ability to integrate code written in other programming languages like Fortran or C/C++. The well established Numpy and Scipy packages are used to provide decent performance for pure Python implementations of algorithms. We welcome contributions written in any computer language and will try to make them accessible from Python. We would like to present the current state of this

  18. Process evaluation: Weatherization Residential Assistance Partnership (WRAP Program). [Final report

    SciTech Connect

    Not Available

    1990-10-01

    The ``Weatherization Residential Assistance Partnership,`` or WRAP program, is a fuel-blind conservation program designed to assist Northeast Utilities` low-income customers to use energy safely and efficiently. Innovative with respect to its collaborative approach and its focus on utilizing and strengthening the existing low-income weatherization service delivery network, and WRAP program offers an interesting model to other utilities which traditionally have relied on for-profit energy service contractors and highly centralized program implementation structures. This report presents the findings of a process evaluation and WRAP customer survey conducted by the Technical Development Corporation (TDC). TDC`s work is one part of a multi-part evaluation project being conducted under the management of ICF Resources, Inc.

  19. Process evaluation: Weatherization Residential Assistance Partnership (WRAP Program)

    SciTech Connect

    Not Available

    1990-10-01

    The Weatherization Residential Assistance Partnership,'' or WRAP program, is a fuel-blind conservation program designed to assist Northeast Utilities' low-income customers to use energy safely and efficiently. Innovative with respect to its collaborative approach and its focus on utilizing and strengthening the existing low-income weatherization service delivery network, and WRAP program offers an interesting model to other utilities which traditionally have relied on for-profit energy service contractors and highly centralized program implementation structures. This report presents the findings of a process evaluation and WRAP customer survey conducted by the Technical Development Corporation (TDC). TDC's work is one part of a multi-part evaluation project being conducted under the management of ICF Resources, Inc.

  20. Physical processes in comets

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.; Huebner, W. F.

    1976-01-01

    The paper discusses physical processes in comets which involve solar and nuclear radial forces that affect the motions of gases and icy grains, gas-phase chemistry very close to the nuclei of large comets near the sun, sublimation of icy grains, dissociation of parent molecules into radicals and of radicals into atoms, and ionization by sunlight and collisions. The composition and dimensions of nuclei are examined along with variations in intrinsic brightness, the nature of volatiles, gas production rates in the coma, characteristics of icy grains in the coma, and the structure of streamers, ion tails, and dust tails. The structure of the coma is described in detail on the basis of spectroscopic observations of several comets. The origin of comets is briefly reviewed together with the relation of comets to earth, the interplanetary complex, and the interstellar medium. Desirable future observations are noted, especially by space missions to comets.

  1. Anvil Forecast Tool in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Hood, Doris

    2009-01-01

    Meteorologists from the 45th Weather Squadron (45 WS) and National Weather Service Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the Lightning Launch Commit Criteria and Space Shuttle Flight Rules. As a result, the Applied Meteorology Unit (AMU) was tasked to create a graphical overlay tool for the Meteorological Interactive Data Display System (MIDDS) that indicates the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input. The tool creates a graphic depicting the potential location of thunderstorm anvils one, two, and three hours into the future. The locations are based on the average of the upper level observed or forecasted winds. The graphic includes 10 and 20 n mi standoff circles centered at the location of interest, as well as one-, two-, and three-hour arcs in the upwind direction. The arcs extend outward across a 30 sector width based on a previous AMU study that determined thunderstorm anvils move in a direction plus or minus 15 of the upper-level wind direction. The AMU was then tasked to transition the tool to the Advanced Weather Interactive Processing System (AWIPS). SMG later requested the tool be updated to provide more flexibility and quicker access to model data. This presentation describes the work performed by the AMU to transition the tool into AWIPS, as well as the subsequent improvements made to the tool.

  2. Van Allen Probes Science Gateway and Space Weather Data Processing

    NASA Astrophysics Data System (ADS)

    Romeo, G.; Barnes, R. J.; Weiss, M.; Fox, N. J.; Mauk, B.; Potter, M.; Kessel, R.

    2014-12-01

    The Van Allen Probes Science Gateway acts as a centralized interface to the instrument Science Operation Centers (SOCs), provides mission planning tools, and hosts a number of science related activities such as the mission bibliography. Most importantly, the Gateway acts as the primary site for processing and delivering the VAP Space Weather data to users. Over the past year, the web-site has been completely redesigned with the focus on easier navigation and improvements of the existing tools such as the orbit plotter, position calculator and magnetic footprint tool. In addition, a new data plotting facility has been added. Based on HTML5, which allows users to interactively plot Van Allen Probes summary and space weather data. The user can tailor the tool to display exactly the plot they wish to see and then share this with other users via either a URL or by QR code. Various types of plots can be created, including simple time series, data plotted as a function of orbital location, and time versus L-Shell. We discuss the new Van Allen Probes Science Gateway and the Space Weather Data Pipeline.

  3. Structural control of weathering processes within exhumed granitoids: Compartmentalisation of geophysical properties by faults and fractures

    NASA Astrophysics Data System (ADS)

    Place, J.; Géraud, Y.; Diraison, M.; Herquel, G.; Edel, J.-B.; Bano, M.; Le Garzic, E.; Walter, B.

    2016-03-01

    In the latter stages of exhumation processes, rocks undergo weathering. Weathering halos have been described in the vicinity of structures such as faults, veins or dykes, with a lateral size gradually narrowing with depth, symmetrically around the structures. In this paper, we describe the geophysical characterisation of such alteration patterns on two granitoid outcrops of the Catalan Coastal Ranges (Spain), each of which is affected by one major fault, as well as minor faults and fractures. Seismic, electric and ground penetrating radar surveys were carried out to map the spatial distribution of P-wave velocity, electrical resistivity and to identify reflectors of electromagnetic waves. The analysis of this multi-method and complementary dataset revealed that, at shallow depth, geophysical properties of the materials are compartmentalised and asymmetric with respect to major and subsidiary faults affecting the rock mass. This compartmentalisation and asymmetry both tend to attenuate with depth, whereas the effect of weathering is more symmetric with respect to the major structure of the outcrops. We interpret such compartmentalisation as resulting from the role of hydraulic and mechanical boundaries played by subsidiary faults, which tend to govern both the chemical and physical alterations involved in weathering. Thus, the smoothly narrowing halo model is not always accurate, as weathering halos can be strongly asymmetrical and present highly irregular contours delimiting sharp contrasts of geophysical properties. These results should be considered when investigating and modelling fluid storage and transfer in top crystalline rock settings for groundwater applications, hydrocarbon or geothermal reservoirs, as well as mineral deposits.

  4. The physics of Martian weather and climate: a review

    NASA Astrophysics Data System (ADS)

    Read, P. L.; Lewis, S. R.; Mulholland, D. P.

    2015-12-01

    The planet Mars hosts an atmosphere that is perhaps the closest in terms of its meteorology and climate to that of the Earth. But Mars differs from Earth in its greater distance from the Sun, its smaller size, its lack of liquid oceans and its thinner atmosphere, composed mainly of CO2. These factors give Mars a rather different climate to that of the Earth. In this article we review various aspects of the martian climate system from a physicist’s viewpoint, focusing on the processes that control the martian environment and comparing these with corresponding processes on Earth. These include the radiative and thermodynamical processes that determine the surface temperature and vertical structure of the atmosphere, the fluid dynamics of its atmospheric motions, and the key cycles of mineral dust and volatile transport. In many ways, the climate of Mars is as complicated and diverse as that of the Earth, with complex nonlinear feedbacks that affect its response to variations in external forcing. Recent work has shown that the martian climate is anything but static, but is almost certainly in a continual state of transient response to slowly varying insolation associated with cyclic variations in its orbit and rotation. We conclude with a discussion of the physical processes underlying these long- term climate variations on Mars, and an overview of some of the most intriguing outstanding problems that should be a focus for future observational and theoretical studies.

  5. The physics of Martian weather and climate: a review.

    PubMed

    Read, P L; Lewis, S R; Mulholland, D P

    2015-12-01

    The planet Mars hosts an atmosphere that is perhaps the closest in terms of its meteorology and climate to that of the Earth. But Mars differs from Earth in its greater distance from the Sun, its smaller size, its lack of liquid oceans and its thinner atmosphere, composed mainly of CO(2). These factors give Mars a rather different climate to that of the Earth. In this article we review various aspects of the martian climate system from a physicist's viewpoint, focusing on the processes that control the martian environment and comparing these with corresponding processes on Earth. These include the radiative and thermodynamical processes that determine the surface temperature and vertical structure of the atmosphere, the fluid dynamics of its atmospheric motions, and the key cycles of mineral dust and volatile transport. In many ways, the climate of Mars is as complicated and diverse as that of the Earth, with complex nonlinear feedbacks that affect its response to variations in external forcing. Recent work has shown that the martian climate is anything but static, but is almost certainly in a continual state of transient response to slowly varying insolation associated with cyclic variations in its orbit and rotation. We conclude with a discussion of the physical processes underlying these long- term climate variations on Mars, and an overview of some of the most intriguing outstanding problems that should be a focus for future observational and theoretical studies. PMID:26534887

  6. Evidence for Physical Weathering of Iron Meteorite Meridiani Planum (Heat Shield Rock) on Mars

    NASA Astrophysics Data System (ADS)

    Ashley, J. W.; McCoy, T. J.; Schröder, C.

    2009-12-01

    Meteorites on the surfaces of other solar system bodies can provide natural experiments for monitoring weathering processes. In the case of Mars, clues to the more subtle aspects of water occurrence and reaction may be revealed by the effects of highly sensitive aqueous alteration processes, while physical processes may be recorded through aeolian abrasion effects. Over the past 2000 sols, the two Mars Exploration Rover (MER) spacecraft have formally identified a minimum of 11 meteorite candidates [1-3], with many more unofficial candidates likely, posing an intriguing set of questions concerning their chemical, mineralogical, and morphological conditions. Five meteorite candidates, including the newly discovered MER-B rock Block Island, and one confirmed meteorite [Meridiani Planum (MP; originally Heat Shield Rock)] [4] have been investigated with the rover arm instruments. All contain levels of ferric iron, which should not be present in pristine samples (i.e. without fusion crust and/or alteration phases). Moreover, preliminary morphologic evidence contributes to the case of possible chemical weathering in Block Island. Scrutiny of a Microscopic Imager (MI) mosaic of MP shows clear evidence for both localized aeolian sculpting, and the Widmanstätten pattern common to sliced and acid-etched surfaces of many iron-nickel meteorites. These latter features are manifest as millimeter-sized chevrons and subparallel linearities, most prominent across a partially brushed surface approximately 3 x 2 cm in area. Similar patterns are observed on a number of hot and cold desert meteorites (e.g. Drum Mountain and Ft. Stockton), and are attributed to physical ablation by sand grains differentially weathering the kamacite and taenite lamellae within the rock. A similar or identical process is interpreted as responsible for the features observed in MP. Other macro-scale features on MP are of questionable weathering origin. While some prefer a regmaglypt interpretation for the

  7. Evidence of Space Weathering Processes Across the Surface of Vesta

    NASA Astrophysics Data System (ADS)

    Pieters, C. M.; Blewett, D. T.; Gaffey, M.; Mittlefehldt, D. W.; De sanctis, M.; Reddy, V.; Coradini, A.; Nathues, A.; Denevi, B. W.; Li, J.; McCord, T. B.; Marchi, S.; Palmer, E. E.; Sunshine, J. M.; Filacchione, G.; Ammannito, E.; Raymond, C. A.; Russell, C. T.

    2011-12-01

    As NASA's Dawn spacecraft explores the surface of Vesta, it has become abundantly clear that Vesta is like no other planetary body visited to date. Dawn is collecting global data at increasingly higher spatial resolution during its one-year orbital mission. The bulk properties of Vesta have previously been linked to the HED meteorites through remote mineral characterization of its surface from Earth-based spectroscopy. A principal puzzle has been why Vesta exhibits relatively unweathered diagnostic optical features compared to other large asteroids. Is this due to the composition of this proto-planet or the space environment at Vesta? Alteration or weathering of materials in space normally develops as the products of several processes accumulate on the surface or in an evolving particulate regolith, transforming the bedrock into fragmental material with properties that may be measurably different from the original. Data from Dawn reveal that the regolith of Vesta is exceptionally diverse. Regional surface units are observed that have not been erased by weathering with time. Several morphologically-fresh craters have excavated bright, mafic-rich materials and exhibit bright ray systems. Some of the larger craters have surrounding subdued regions (often asymmetric) that are lower in albedo and relatively red-sloped in the visible while exhibiting weaker mafic signatures. Several other prominent craters have rim exposures containing very dark material and/or display a system of prominent dark rays. Most, but not all, dark areas associated with craters exhibit significantly lower spectral contrast, suggesting that either a Vesta lithology with an opaque component has been exposed locally or that the surface has been contaminated by a relatively dark impactor. Similarly, most, but not all, bright areas associated with craters exhibit enhanced mafic signatures compared to surroundings. On a regional scale, the large south polar structure and surrounding terrain exhibit

  8. Evidence of Space Weathering Processes Across the Surface of Vesta

    NASA Technical Reports Server (NTRS)

    Pieters, Carle M.; Blewett, David T.; Gaffey, Michael; Mittlefehldt, David W.; CristinaDeSanctis, Maria; Reddy, Vishnu; Coradini, Angioletta; Nathues, Andreas; Denevi, Brett W.; Li, Jian-Yang; McCord, Thomas B.; Marchi, Simone; Palmer, Eric E.; Sunshine, Jessica M.; Filacchione, Gianrico; Ammannito, Eleonora; Raymond, Carol A.; Russell, Christopher T.

    2011-01-01

    As NASA s Dawn spacecraft explores the surface of Vesta, it has become abundantly clear that Vesta is like no other planetary body visited to date. Dawn is collecting global data at increasingly higher spatial resolution during its one-year orbital mission. The bulk properties of Vesta have previously been linked to the HED meteorites through remote mineral characterization of its surface from Earth-based spectroscopy. A principal puzzle has been why Vesta exhibits relatively unweathered diagnostic optical features compared to other large asteroids. Is this due to the composition of this proto-planet or the space environment at Vesta? Alteration or weathering of materials in space normally develops as the products of several processes accumulate on the surface or in an evolving particulate regolith, transforming the bedrock into fragmental material with properties that may be measurably different from the original. Data from Dawn reveal that the regolith of Vesta is exceptionally diverse. Regional surface units are observed that have not been erased by weathering with time. Several morphologically-fresh craters have excavated bright, mafic-rich materials and exhibit bright ray systems. Some of the larger craters have surrounding subdued regions (often asymmetric) that are lower in albedo and relatively red-sloped in the visible while exhibiting weaker mafic signatures. Several other prominent craters have rim exposures containing very dark material and/or display a system of prominent dark rays. Most, but not all, dark areas associated with craters exhibit significantly lower spectral contrast, suggesting that either a Vesta lithology with an opaque component has been exposed locally or that the surface has been contaminated by a relatively dark impactor. Similarly, most, but not all, bright areas associated with craters exhibit enhanced mafic signatures compared to surroundings. On a regional scale, the large south polar structure and surrounding terrain exhibit

  9. Distinctive space weathering on Vesta from regolith mixing processes.

    PubMed

    Pieters, C M; Ammannito, E; Blewett, D T; Denevi, B W; De Sanctis, M C; Gaffey, M J; Le Corre, L; Li, J-Y; Marchi, S; McCord, T B; McFadden, L A; Mittlefehldt, D W; Nathues, A; Palmer, E; Reddy, V; Raymond, C A; Russell, C T

    2012-11-01

    The surface of the asteroid Vesta has prominent near-infrared absorption bands characteristic of a range of pyroxenes, confirming a direct link to the basaltic howardite-eucrite-diogenite class of meteorites. Processes active in the space environment produce 'space weathering' products that substantially weaken or mask such diagnostic absorption on airless bodies observed elsewhere, and it has long been a mystery why Vesta's absorption bands are so strong. Analyses of soil samples from both the Moon and the asteroid Itokawa determined that nanophase metallic particles (commonly nanophase iron) accumulate on the rims of regolith grains with time, accounting for an observed optical degradation. These nanophase particles, believed to be related to solar wind and micrometeoroid bombardment processes, leave unique spectroscopic signatures that can be measured remotely but require sufficient spatial resolution to discern the geologic context and history of the surface, which has not been achieved for Vesta until now. Here we report that Vesta shows its own form of space weathering, which is quite different from that of other airless bodies visited. No evidence is detected on Vesta for accumulation of lunar-like nanophase iron on regolith particles, even though distinct material exposed at several fresh craters becomes gradually masked and fades into the background as the craters age. Instead, spectroscopic data reveal that on Vesta a locally homogenized upper regolith is generated with time through small-scale mixing of diverse surface components. PMID:23128227

  10. Geochemical investigation of weathering processes in a forested headwater catchment: Mass-balance weathering fluxes

    USGS Publications Warehouse

    Jones, B.F.; Herman, J.S.

    2008-01-01

    Geochemical research on natural weathering has often been directed towards explanations of the chemical composition of surface water and ground water resulting from subsurface water-rock interactions. These interactions are often defined as the incongruent dissolution of primary silicates, such as feldspar, producing secondary weathering products, such as clay minerals and oxyhydroxides, and solute fluxes (Meunier and Velde, 1979). The chemical composition of the clay-mineral product is often ignored. However, in earlier investigations, the saprolitic weathering profile at the South Fork Brokenback Run (SFBR) watershed, Shenandoah National Park, Virginia, was characterized extensively in terms of its mineralogical and chemical composition (Piccoli, 1987; Pochatila et al., 2006; Jones et al., 2007) and its basic hydrology. O'Brien et al. (1997) attempted to determine the contribution of primary mineral weathering to observed stream chemistry at SFBR. Mass-balance model results, however, could provide only a rough estimate of the weathering reactions because idealized mineral compositions were utilized in the calculations. Making use of detailed information on the mineral occurrence in the regolith, the objective of the present study was to evaluate the effects of compositional variation on mineral-solute mass-balance modelling and to generate plausible quantitative weathering reactions that support both the chemical evolution of the surface water and ground water in the catchment, as well as the mineralogical evolution of the weathering profile. ?? 2008 The Mineralogical Society.

  11. Weathering processes implied from analysis of small Martian avalanche chutes

    NASA Technical Reports Server (NTRS)

    Sullivan, R.

    1992-01-01

    It has been proposed that the smaller features of martian spur and gully slope morphology, located along the upper walls of Valles Marineris, are avalanche chutes. A three-dimensional stability back-analysis technique was developed and applied to these small avalanche chutes, yielding average values of cohesion and angle of internal friction for the mobile layer materials on these slopes at the time of each slope failure. Generally, the analysis showed that at the time of each slope failure material strengths had been reduced to those of moderately cohesive debris down through depths of tens of meters. These results have implications and possible constraints for the nature and rate of martian weathering processes.

  12. Space Weathering on 4 Vesta: Processes and Products

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.; Blewett, D. T.; Gaffey, M.; Mittlefehldt, D. W.; De Sanctis, M. C.; Reddy, V.; Nathues, A.; Denevi, B. W.; Li, J. Y.; McCord, T. B.; Marchi, S.; Palmer, E. E.; Sunshine, J. M.; Ammannito, E.; Raymond, C. A.; Russell, C. T.

    2012-01-01

    The bulk properties of Vesta have previously been linked directly to the howardite, eucrite, and diogenite (HED) meteorites through remote mineral characterization of its surface from Earth-based spectroscopy [e.g., 1]. A long-standing enigma has been why does Vesta s surface appear to have suffered so little alteration from the space environment, whereas materials exposed on the Moon and some S-type asteroids are significantly changed (grains develop rims containing nano-phase opaques [e.g. 2]). The Dawn spacecraft is well suited to address this issue and is half through its extended mapping phase of this remarkable proto-planet [3]. On a local scale Dawn sees evidence of recent exposures at craters, but distinctive surface materials blend into background at older craters. The presence of space weathering processes are thus evident at Vesta, but the character and form are controlled by the unique environment and geologic history of this small body.

  13. Influence of cirrus clouds on weather and climate processes A global perspective

    NASA Technical Reports Server (NTRS)

    Liou, K.-N.

    1986-01-01

    Current understanding and knowledge of the composition and structure of cirrus clouds are reviewed and documented in this paper. In addition, the radiative properties of cirrus clouds as they relate to weather and climate processes are described in detail. To place the relevance and importance of cirrus composition, structure and radiative properties into a global perspective, pertinent results derived from simulation experiments utilizing models with varying degrees of complexity are presented; these have been carried out for the investigation of the influence of cirrus clouds on the thermodynamics and dynamics of the atmosphere. In light of these reviews, suggestions are outlined for cirrus-radiation research activities aimed toward the development and improvement of weather and climate models for a physical understanding of cause and effect relationships and for prediction purposes.

  14. wradlib - an Open Source Library for Weather Radar Data Processing

    NASA Astrophysics Data System (ADS)

    Pfaff, Thomas; Heistermann, Maik; Jacobi, Stephan

    2014-05-01

    Even though weather radar holds great promise for the hydrological sciences, offering precipitation estimates with unrivaled spatial and temporal resolution, there are still problems impeding its widespread use, among which are: almost every radar data set comes with a different data format with public reading software being available only rarely. standard products as issued by the meteorological services often do not serve the needs of original research, having either too many or too few corrections applied. Especially when new correction methods are to be developed, researchers are often forced to start from scratch having to implement many corrections in addition to those they are actually interested in. many algorithms published in the literature cannot be recreated using the corresponding article only. Public codes, providing insight into the actual implementation and how an approach deals with possible exceptions are rare. the radial scanning setup of weather radar measurements produces additional challenges, when it comes to visualization or georeferencing of this type of data. Based on these experiences, and in the hope to spare others at least some of these tedious tasks, wradlib offers the results of the author's own efforts and a growing number of community-supplied methods. wradlib is designed as a Python library of functions and classes to assist users in their analysis of weather radar data. It provides solutions for all tasks along a typical processing chain leading from raw reflectivity data to corrected, georeferenced and possibly gauge adjusted quantitative precipitation estimates. There are modules for data input/output, data transformation including Z/R transformation, clutter identification, attenuation correction, dual polarization and differential phase processing, interpolation, georeferencing, compositing, gauge adjustment, verification and visualization. The interpreted nature of the Python programming language makes wradlib an ideal tool

  15. Anvil Tool in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe, III; Bauman, William, III; Keen, Jeremy

    2007-01-01

    Meteorologists from the 45th Weather Squadron (45 WS) and Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the lightning Launch Commit Criteria and Space Shuttle Flight Rules. As a result, the Applied Meteorology Unit (AMU) created a graphical overlay tool for the Meteorological Interactive Data Display Systems (MIDDS) to indicate the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input. In order for the Anvil Tool to remain available to the meteorologists, the AMU was tasked to transition the tool to the Advanced Weather interactive Processing System (AWIPS). This report describes the work done by the AMU to develop the Anvil Tool for AWIPS to create a graphical overlay depicting the threat from thunderstorm anvil clouds. The AWIPS Anvil Tool is based on the previously deployed AMU MIDDS Anvil Tool. SMG and 45 WS forecasters have used the MIDDS Anvil Tool during launch and landing operations. SMG's primary weather analysis and display system is now AWIPS and the 45 WS has plans to replace MIDDS with AWIPS. The Anvil Tool creates a graphic that users can overlay on satellite or radar imagery to depict the potential location of thunderstorm anvils one, two, and three hours into the future. The locations are based on an average of the upper-level observed or forecasted winds. The graphic includes 10 and 20 nm standoff circles centered at the location of interest, in addition to one-, two-, and three-hour arcs in the upwind direction. The arcs extend outward across a 30 degree sector width based on a previous AMU study which determined thunderstorm anvils move in a direction plus or minus 15 degrees of the upper-level (300- to 150-mb) wind direction. This report briefly describes the history of the MIDDS Anvil Tool and then explains how the initial development of the AWIPS Anvil Tool was carried out. After testing was

  16. The Space Physics of Life: Searching for Biosignatures on Habitable Icy Worlds Affected by Space Weathering

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2006-01-01

    Accessible surfaces of the most likely astrobiological habitats (Mars, Europa, Titan) in the solar system beyond Earth are exposed to various chemical and hydrologic weathering processes directly or indirectly induced by interaction with the overlying space environment. These processes can be both beneficial, through provision of chemical compounds and energy, and destructive, through chemical dissociation or burial, to detectable presence of biosignatures. Orbital, suborbital, and surface platforms carrying astrobiological instrumentation must survive, and preferably exploit, space environment interactions to reach these habitats and search for evidence of life or its precursors. Experience from Mars suggests that any detection of biosignatures must be accompanied by characterization of the local chemical environment and energy sources including irradiation by solar ultraviolet photons and energetic particles from the space environment. Orbital and suborbital surveys of surface chemistry and astrobiological potential in the context of the space environment should precede targeted in-situ measurements to maximize probability of biosignature detection through site selection. The Space Physics of Life (SPOL) investigation has recently been proposed to the NASA Astrobiology Institute and is briefly described in this presentation. SPOL is the astrobiologically relevant study of the interactions and relationships of potentially? or previously inhabited, bodies of the solar system with the surrounding environments. This requires an interdisciplinary effort in space physics, planetary science, and radiation biology. The proposed investigation addresses the search for habitable environments, chemical resources to support life, and techniques for detection of organic and inorganic signs of life in the context of the space environment.

  17. Weathering processes in clayey sediments - on local to catchment scale

    NASA Astrophysics Data System (ADS)

    Ernstsen, Vibeke

    2013-04-01

    In Denmark, postglacial weathering processes have introduced considerable changes in the inherited properties of the young sediments of Weichselian age. Over the last 12.000 years, oxidation and acidification are the main responsible processes for the changes that have taken place in water recharge areas. The distribution of nitrate has been shown to be closely related to the geochemical environment above the interface between the oxidized and reduced sediments and present in the oxic environment only. In the present study, the formation of oxidized geochemical environments was studied at different scales, from local to catchment scale, in areas dominated by clayey till. Sediment samples were collected in the field from surface and down to below the redox interface and described by color, redoximorphic features, and sediment type and analyzed for e.g., total amount of reduced compounds and reduced compounds (pyrite, ferrous iron, and organic matter). The results were used to describe the spatial development of oxidized environments and to identify the smallest possible scale at witch nitrate reduction in the subsurface can be assessed for Danish catchments.

  18. Chronology of Pleistocene weathering processes, southeast Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Feng, Yue-Xing; Vasconcelos, Paulo

    2007-11-01

    40Ar/ 39Ar dating of Mn-oxides from the Upper Kandanga (UKA) Mn deposit, southeast Queensland, Australia shows that the weathering profile overlying the deposit is younger than 1 Ma. Seventy plateau ages obtained for 81 grains from 17 samples fall into three groups: I. 1000-800 ka ( n = 2), II. 630-510 ka ( n = 2), and III. 400-50 ka ( n = 66). The last age group can be further resolved, using the mixture modelling solution by Sambridge and Compston [Sambridge, M.S., Compston, W., 1994. Mixture modeling of multi-component data sets with application to ion-probe zircon ages. Earth Planet. Sci. Lett. 128, 373-390.], into two major age clusters (sub-groups, IIIa and IIIb) with peak values at 313 ± 4 ka ( n = 43, with an outlier) and 213 ± 7 ka ( n = 22), respectively. The results suggest that a supergene blanket in a Mn deposit may develop relatively fast if weathering and erosional conditions are appropriate. The age peaks measured in this study correspond to warm periods identified in SPECMAP (oxygen isotope records of deep-sea sediments) and local paleoclimatic data. The correlation of weathering age peaks with oceanic climatic indicators suggests a climatic control on continental chemical weathering, where warm and humid conditions are conducive to increasing weathering rates. The clustering of supergene Mn-oxide precipitation ages suggests that weathering rates vary with time, supporting an episodic weathering history for the profiles investigated.

  19. Coupling of physical erosion and chemical weathering after phases of intense human activity

    NASA Astrophysics Data System (ADS)

    Schoonejans, Jerome; Vanacker, Veerle; Opfergelt, Sophie; Ameijeiras-Mariño, Yolanda; Kubik, Peter W.

    2014-05-01

    Anthropogenic disturbance of natural vegetation profoundly alters the lateral and vertical fluxes of soil nutrients and particles at the land surface. Human-induced acceleration of soil erosion can thereby result in an imbalance between physical erosion, soil production and chemical weathering. The (de-)coupling between physical erosion and chemical weathering in ecosystems with strong anthropogenic disturbances is not yet fully understood, as earlier studies mostly focused on natural ecosystems. In this study, we explore the chemical weathering intensity for four study sites located in the Internal Zone of the Spanish Betic Cordillera. Most of the sites belong to the Nevado-Filabres complex, but are characterized by different rates of long-term exhumation, 10Be catchment-wide denudation and hill slope morphology. Denudation rates are generally low, but show large variation between the three sites (from 23 to 246 mm kyr-1). The magnitude of denudation rates is consistent with longer-term uplift rates derived from marine deposits, fission-track measurements and vertical fault slip rates. Two to three soil profiles were sampled per study site at exposed ridge tops. All soils overly fractured mica schist, and are very thin (< 60cm). In each soil profile, we sampled 5 depth slices, rock fragments and the (weathered) bedrock. In total, 38 soil and 20 rock samples were analyzed for their chemical composition. The chemical weathering intensity is constrained by the Chemical Depletion Fraction that is based on a chemical mass balance approach using Zr as an immobile element. Chemical weathering accounts for 5 to 35% of the total mass lost due to denudation. We observe systematically higher chemical weathering intensities (CDFs) in sites with lower denudation rates (and vice versa), suggesting that weathering is supply-limited. Our measurements of soil elemental losses from 10 soil profiles suggest that the observed variation in chemical weathering is strongly associated

  20. Understanding Magnetic Reconnection: The Physical Mechanism Driving Space Weather

    NASA Astrophysics Data System (ADS)

    Black, Carrie; Antiochos, Spiro K.; Karpen, Judith T.; Germaschewski, Kai; Bessho, Naoki

    2015-04-01

    The explosive energy release in solar eruptive events is believed to be due to magnetic reconnection. In the standard model for coronal mass ejections (CME) and/or solar flares, the free energy for the event resides in the strongly sheared magnetic field of a filament channel. The pre-eruption force balance consists of an upward force due to the magnetic pressure of the sheared field countered by the downward tension of the overlying unsheared field. Magnetic reconnection disrupts this force balance. Therefore, to understand CME/flare initiation, it is critical to model the onset of reconnection driven by the build-up of magnetic shear. In MHD simulations, the application of a magnetic-field shear is trivial. However, kinetic effects are important in the diffusion region and thus, it is important to examine this process with PIC simulations as well. The implementation of such a driver in PIC methods is nontrivial, however, and indicates the necessity of a true multiscale model for such processes in the solar environment. The field must be sheared self-consistently and indirectly to prevent the generation of waves that destroy the desired system. In the work presented here, we show reconnection in an X-Point geometry due to a velocity shear driver perpendicular to the plane of reconnection.This material is based upon work supported by the National Science Foundation under Award No. AGS-1331356 and NASA's Living With a Star Targeted Research and Technology program.

  1. Zeolite Formation and Weathering Processes in Dry Valleys of Antartica: Martian Analogs

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Wentworth, S. J.; McKay, D. S.; Socki, R. A.

    2004-01-01

    Terrestrial weathering processes in cold-desert climates such as the Dry Valleys of Antarctica may provide an excellent analog to chemical weathering and diagenesis of soils on Mars. Detailed studies of soil development and the chemical and mineralogical alterations occurring within soil columns in Wright Valley, Antarctica show incredible complexity in the upper meter of soil. Previous workers noted the ice-free Dry Valleys are the best terrestrial approximations to contemporary Mars. Images returned from the Pathfinder and Spirit landers show similarities to surfaces observed within the Dry Valleys. Similarities to Mars that exist in these valleys are: mean temperatures always below freezing (-20 C), no rainfall, sparse snowfall-rapidly removed by sublimation, desiccating winds, diurnal freeze-thaw cycles (even during daylight hours), low humidity, oxidative environment, relatively high solar radiation and low magnetic fields . The Dry Valley soils contain irregular distributions and low abundances of soil microorganisms that are somewhat unusual on Earth. Physical processes-such as sand abrasion-are dominant mechanisms of rock weathering in Antarctica. However, chemical weathering is also an important process even in such extreme climates. For example, ionic migration occurs even in frozen soils along liquid films on individual soil particles. It has also been shown that water with liquid-like properties is present in soils at temperatures on the order of approx.-80 C and it has been observed that the percentage of oxidized iron increases with increasing soil age and enrichments in oxidized iron occurs toward the surface. The presence of evaporates is evident and appear similar to "evaporite sites" within the Pathfinder and Spirit sites. Evaporites indicate ionic migration and chemical activity even in the permanently frozen zone. The presence of evaporates indicates that chemical weathering of rocks and possibly soils has been active. Authogenic zeolites have

  2. Novel predictors of soil genesis following natural weathering processes of bauxite residues.

    PubMed

    Zhu, Feng; Xue, Shengguo; Hartley, William; Huang, Ling; Wu, Chuan; Li, Xiaofei

    2016-02-01

    Bauxite residue often has chemical and physical limitations to support plant growth, and improving its matrix properties is crucial to support sustainable vegetation in the long term. Spontaneous vegetation colonization on deposits in Central China, over a period of 20 years, has revealed that natural weathering processes may convert bauxite residue to a soil-like medium. Residue samples from different stacking ages were collected to determine the effect of natural processes on matrix properties over time. It was demonstrated that natural processes decreased pH (10.98 to 9.45), electrical conductivity (EC) (3.73 to 0.36 mS/cm), and exchangeable sodium percentage (ESP) (72.51 to 28.99 %), while increasing bulk density (1.91 to 1.39 g/cm(3)), improving the mean weight diameter (MWD) of water-stable aggregates (0.24 to 0.52 mm), and the proportion of >0.25-mm water-stable aggregates (19.91 to 50.73 %). The accumulation of organic carbon and the reduction of ESP and exchangeable Na had positive effects on soil aggregate formation, while exchangeable Ca and Mg were significantly beneficial to aggregation of water-stable aggregates. Climate, stacking time, and biological factors appear to improve the structure of bauxite residue. Our findings demonstrate soil genesis occurring following natural weathering processes of bauxite residues over time. PMID:26452661

  3. Comparison of different representations of physical erosion on modeling chemical weathering in landslide-dominated region

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Hao; Huang, -Chuan, Jr.; Teng, Tse-Yang; Shih, Yu-Ting; Lee, Tsung-Yu

    2016-04-01

    Chemical weathering, characterized by CO2 consumption, attracts much attention, particularly in landslide-dominated regions where the physical erosion rate (PER) may enhance the chemical weathering rate (CWR) which influences the stability of hillslope and nutrient supply of ecosystem. Recently, a great debate is on the coupling or decoupling with CWR and PER in high erosion area, particularly in the landslide-dominated region. However, the representations of PER either by sediment yield (West et al., 2005) or estimated by landslide distribution (Gabet, 2007) in such regions is rarely evaluated and discussed. Hence, we combined these two models on 29 catchments in Taiwan, famous for rapid erosion and weathering, to clarify how representations of PER affected estimation of chemical weathering in landslide-dominated regions. The results showed that in the sediment yield-based model, the coupling between CWR and PER in terms of power function (α, from CWR=PERα) were 0.09, 0.26, 0.22 for silicate weathering (CWRsil), carbonate weathering (CWRcarb), total chemical weathering (CWRtot), respectively. The R2 values were 0.48, 0.49, 0.57 for CWRsil, CWRcarb and CWRtot, respectively. Meanwhile, in the landslide-based model, α of CWRsil, CWRcarb and CWRtot were 0.78, 0.79, 0.79, respectively. The R2 values were 0.41, 0.58, 0.67, respectively. In sum, both model could perform the linkage between CWR and PER satisfactorily. The sediment yield-based model revealed CWR might be strongly kinetically limited. Besides, despite of lower performance than the landslide-based model, it distinguished relationships between different CWR(CWRsil, CWRcarb, CWRtot) and PER, but simulations of the landslide-based model were reversed. The α of the landslide-based model is significantly higher than previous studies. It implies that on perspective of landslides, PER may enhance CWR and matches with current researches.

  4. Association of Day Length and Weather Conditions with Physical Activity Levels in Older Community Dwelling People

    PubMed Central

    Witham, Miles D.; Donnan, Peter T.; Vadiveloo, Thenmalar; Sniehotta, Falko F.; Crombie, Iain K.; Feng, Zhiqiang; McMurdo, Marion E. T.

    2014-01-01

    Background Weather is a potentially important determinant of physical activity. Little work has been done examining the relationship between weather and physical activity, and potential modifiers of any relationship in older people. We therefore examined the relationship between weather and physical activity in a cohort of older community-dwelling people. Methods We analysed prospectively collected cross-sectional activity data from community-dwelling people aged 65 and over in the Physical Activity Cohort Scotland. We correlated seven day triaxial accelerometry data with daily weather data (temperature, day length, sunshine, snow, rain), and a series of potential effect modifiers were tested in mixed models: environmental variables (urban vs rural dwelling, percentage of green space), psychological variables (anxiety, depression, perceived behavioural control), social variables (number of close contacts) and health status measured using the SF-36 questionnaire. Results 547 participants, mean age 78.5 years, were included in this analysis. Higher minimum daily temperature and longer day length were associated with higher activity levels; these associations remained robust to adjustment for other significant associates of activity: age, perceived behavioural control, number of social contacts and physical function. Of the potential effect modifier variables, only urban vs rural dwelling and the SF-36 measure of social functioning enhanced the association between day length and activity; no variable modified the association between minimum temperature and activity. Conclusions In older community dwelling people, minimum temperature and day length were associated with objectively measured activity. There was little evidence for moderation of these associations through potentially modifiable health, environmental, social or psychological variables. PMID:24497925

  5. Image processing for hazard recognition in on-board weather radar

    NASA Technical Reports Server (NTRS)

    Kelly, Wallace E. (Inventor); Rand, Timothy W. (Inventor); Uckun, Serdar (Inventor); Ruokangas, Corinne C. (Inventor)

    2003-01-01

    A method of providing weather radar images to a user includes obtaining radar image data corresponding to a weather radar image to be displayed. The radar image data is image processed to identify a feature of the weather radar image which is potentially indicative of a hazardous weather condition. The weather radar image is displayed to the user along with a notification of the existence of the feature which is potentially indicative of the hazardous weather condition. Notification can take the form of textual information regarding the feature, including feature type and proximity information. Notification can also take the form of visually highlighting the feature, for example by forming a visual border around the feature. Other forms of notification can also be used.

  6. Physical vs. Chemical Weathering Controls of Soils' Capacity to Store Carbon: Hillslope Transects under Different Climatic Conditions

    NASA Astrophysics Data System (ADS)

    Yoo, K.; Wackett, A.; Amundson, R.; Heimsath, A. M.

    2015-12-01

    Soil C storage is balanced by photosynthetic production and microbial decomposition of organic matter (OM). Recently, this view has been expanded to account for the effects of physical erosion of OM in determining soil C storage. In parallel, the focus on OM quality as a primary determinant of C turnover has shifted to OM-mineral interactions. These recent advances necessitates our ability to discern how physical erosion, which controls the production, breakdown, and removal of colluvial soils, and chemical weathering, which generates secondary phyllosilicate and iron oxides, independently and collaboratively affect soils' capacity to store C. Here we present soil organic C contents and storages as a function of soil properties that are controlled by physical vs. chemical weathering processes. The study site includes two hillslopes under different climates in SW Australia. The wetter site has continuous canopy of eucalyptus, while the drier site is covered by grasses with scattered eucalyptus overstorey. The two hillslope transects share similar granodiorite parent materials and denudation rates. Bioturbation-driven soil creep appears equally effective at both sites. In eroding areas, chemical weathering has created greater mineral surface area in the soils of wetter site, while physical soil production and erosion resulted in forming the eroding soils of similar thicknesses at both sites. In the drier site, however, vegetation density varies significantly with topography-dependent soil moisture, which appears to have resulted in a soil toposequence where impacts of localized overland-flow erosion is evident through soil mineral surface area, texture, and C contents. These soil properties, in contrast, are largely homogeneous across the wetter hillslope transect presumably because of the lack of localized overland-flow erosion. As a result, at the depositional areas, the drier site exhibits greater or similar soil C storages, which sharply contrasts with the

  7. Weathering profiles in granitoid rocks of the Sila Massif uplands, Calabria, southern Italy: New insights into their formation processes and rates

    NASA Astrophysics Data System (ADS)

    Scarciglia, Fabio; Critelli, Salvatore; Borrelli, Luigi; Coniglio, Sabrina; Muto, Francesco; Perri, Francesco

    2016-05-01

    In this paper we characterized several weathering profiles developed on granitoid rocks in the Sila Massif upland (Calabria, southern Italy), integrating detailed macro- and micromorphological observations with physico-mechanical field tests and petrographic, mineralogical and geochemical analyses. We focused our attention on the main weathering and pedogenetic processes, trying to understand apparent discrepancies between weathering grade classes based on field description and geomechanical properties, and two common weathering indices, such as the micropetrographic index (Ip) and the chemical index of alteration (CIA). Our results showed that sericite on plagioclase and biotite chloritization, that represent inherited features formed during late-stage hydrothermal alteration of granitoid rocks, may cause an overestimation of the real degree of weathering of primary mineral grains under meteoric conditions, especially in lower weathering grade classes. Moreover, the frequent identification of Fe-Mn oxides and clay coatings of illuvial origin (rather than or in addition to those formed in situ), both at the macro- and microscale, may also explain an overestimation of the weathering degree with respect to field-based classifications. Finally, some apparent inconsistencies between field geomechanical responses and chemical weathering were interpreted as related to physical weathering processes (cryoclastism and thermoclastism), that lead to rock breakdown even when chemical weathering is not well developed. Hence, our study showed that particular caution is needed for evaluating weathering grades, because traditional field and geochemical-petrographic tools may be biased by inherited hydrothermal alteration, physical weathering and illuvial processes. On the basis of chronological constraints to soil formation obtained from a 42 ka-old volcanic input (mixed to granite parent materials) detected in the soil cover of the Sila Massif upland, a first attempt to estimate

  8. New Space Weather and Nonlinear Waves and Processes Prize announced for 2013

    NASA Astrophysics Data System (ADS)

    Thompson, Victoria

    2012-01-01

    At the 2011 Fall Meeting in San Francisco, Calif., AGU announced the creation of a new award: the Space Weather and Nonlinear Waves and Processes Prize. The prize, which is being made possible by a generous contribution from longtime AGU members and NASA Jet Propulsion Laboratory (JPL), California Institute of Technology, scientists Bruce Tsurutani and Olga Verkhoglyadova, will recognize an AGU member scientist and will come with a $10,000 award. Tsurutani has served as a researcher with JPL since 1972 and is currently a senior research scientist. He was also the president of AGU's Space Physics and Aeronomy section from 1990 to 1992 and is a recipient of AGU's John Adam Fleming Medal, given “for original research and technical leadership in geomagnetism, atmospheric electricity, aeronomy, space physics, and related sciences.” Verkhoglyadova served as a professor of space physics in the Department of Astrophysics and Space Physics at Taras Shevchenko National University of Kyiv, in the Ukraine, prior to coming to the United States. Their leadership and dedication to AGU and to their field are apparent in their passion for this prize.

  9. Weathering processes and pickeringite formation in a sulfidic schist: a consideration in acid precipitation neutralization studies

    SciTech Connect

    Parnell, R.A. Jr.

    1983-01-01

    Extremely low abrasion pH values (2.8-3.3) characterize the weathering products of the Partridge Formation, a Middle-Ordovician metamorphosed, black, sulfidic shale. The local occurrence is observed of two sulfates that are rare in the Northeast: pickeringite and jarosite. X-ray diffraction studies of the weathering residues and the sulfate efflorescences have also identified dioctahedral and trioctahedral illite, kaolinite, vermiculite, and an 11-12 Angstrom phase, thought to be a type of randomly-interstratified biotite-vermiculite. From the mineralogical studies, qualitative weathering processes for the schist are formulated. A probable mechanism for the intense chemical weathering of the schist appears to be oxidation of iron sulfides to form iron oxide-hydroxides, sulfates, and sulfuric acid. This natural weathering process is proposed as an analog to anthropogenic low pH rock weathering resulting from acid precipitation. In the Northeast, natural weathering rates, may, in places, significantly affect the water chemistry and mineralogy used to quantify total (natural plus anthropogenic) weathering and leaching rates. 27 references, 4 figures.

  10. Physical Processing of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Stern, S. Alan

    1997-01-01

    Cometary nuclei preserve a cosmo-chemical record of conditions and processes in the primordial solar nebula, and possibly even the interstellar medium. However, that record is not perfectly preserved over the age of the solar system due to a variety of physical processes which act to modify cometary surfaces and interiors. Possible structural and/or internal processes include: collisional accretion, disruption, and reassembly during formation; internal heating by long and short-lived radionuclides; amorphous to crystalline phase transitions, and thermal stresses. Identified surface modification processes include: irradiation by galactic cosmic rays, solar protons, UV photons, and the Sun's T Tauri stage mass outflow; heating by passing stars and nearby supernovae; gardening by debris impacts; the accretion of interstellar dust and gas and accompanying erosion by hypervelocity dust impacts and sputtering; and solar heating with accompanying crust formation. These modification processes must be taken into account in both the planning and the interpretation of the results of a Comet Nucleus Sample Return Mission. Sampling of nuclei should be done at as great a depth below the surface crust as technically feasible, and at vents or fissures leading to exposed volatiles at depth. Samples of the expected cometary crust and near-surface layers also need to be returned for analysis to achieve a better understanding of the effects of these physical processes. We stress that comets are still likely less modified dm any other solar system bodies, but the degree of modification can vary greatly from one comet to the next.

  11. Effect of Weathering Processes on Mineralogical and Mechanical Properties of Volcanic Rocks Used as Ballast Material for Railway Between Sabuncupinar and Kütahya in Western Turkey

    NASA Astrophysics Data System (ADS)

    Abiddin Erguler, Zeynal; Adıgüzel, Ömer; Derman, Mustafa

    2015-04-01

    Geomaterials used in engineering projects and man-made structures such as railway ballasts, buildings, historical structures, monuments and tombstones naturally weather as a result of various physico-chemical factors. Due to being long-term exposure to the anthroposphere, geomaterials used for these purposes provides important information to the researchers for understanding the effect of weathering processes on their time dependent physical, mineralogical and mechanical changes. Thus, researchers frequently can take advantage of available engineering time of man-made structures to assess weathering properties of the geomaterials used in their construction in terms of time dependent durability and stability of these structures. Considering the fact that railway ballasts produced from natural deposits of limestone, dolomite, granite, basalt etc., supply an important contribution for evaluation weathering processes, a research was carried out to determine the effect of weathering as a function of time on physical, mineralogical and mechanical properties of ballasts used for railway between Kütahya and Sabuncupınar in western Turkey. For this purpose, fresh and weathered rock samples exposed to physical and chemical weathering processes at different times were collected from quarry located in Sabuncupınar and nearby railway. This volcanic rock was previously classified as basalt based on the detailed mineralogical and geochemical analyses performed at the laboratories of the Mineral Research & Exploration General Directorate located in Ankara (Turkey). In-situ characteristics of sampling site were also investigated at different locations of quarry site by line surveying technique to describe the influence of discontinuity conditions on the weathering rate of selected rocks. Several techniques were utilized to determine time dependent deterioration in mineralogical and chemical composition of these samples for understanding their weathering rate. The porosity, water

  12. Chemical Weathering of Soils from the Dry Valleys of Antarctica: a Terrestrial Analog of Martian Weathering Processes

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.

    1985-01-01

    Martian soil subjected to chemical weathering processes could contain the following likely constituents: (1) fresh primary silicate material; (2) partially altered primary silicates; (3) secondary minerals, possibly including clay minerals, evaporites, carbonates, sulfates, hydrates, and zeolites; and (4) altered volcanic glass or impact glass. The soil may also include palogonite and other alteration products and secondary minerals. It is unlikely therefore that an equilibrium assemblage of minerals would be present. From the detailed study of the soils from the Dry Valleys of Antarctica, it is obvious that the complex processes in operation produce major changes in the parent materials, depending upon where the constituents reside and the degree to which weathering and diagenesis operates. It is clear that natural near surface environments, even in very cold and dry regions, may produce extremely complex soils. Extreme caution must be taken when interpreting the results and drawing conclusions, especially about possible processes operating in regoliths in cold, arid environments similar to those of the Dry Valleys or Mars.

  13. Modeling land-surface processes and land-atmosphere interactions in the community weather and regional climate WRF model (Invited)

    NASA Astrophysics Data System (ADS)

    Chen, F.; Barlage, M. J.

    2013-12-01

    The Weather Research and Forecasting (WRF) model has been widely used with high-resolution configuration in the weather and regional climate communities, and hence demands its land-surface models to treat not only fast-response processes, such as plant evapotranspiration that are important for numerical weather prediction but also slow-evolving processes such as snow hydrology and interactions between surface soil water and deep aquifer. Correctly representing urbanization, which has been traditionally ignored in coarse-resolution modeling, is critical for applying WRF to air quality and public health research. To meet these demands, numerous efforts have been undertaken to improve land-surface models (LSM) in WRF, including the recent implementation of the Noah-MP (Noah Multiple-Physics). Noah-MP uses multiple options for key sub-grid land-atmosphere interaction processes (Niu et al., 2011; Yang et al., 2011), and contains a separate vegetation canopy representing within- and under-canopy radiation and turbulent processes, a multilayer physically-based snow model, and a photosynthesis canopy resistance parameterization with a dynamic vegetation model. This paper will focus on the interactions between fast and slow land processes through: 1) a benchmarking of the Noah-MP performance, in comparison to five widely-used land-surface models, in simulating and diagnosing snow evolution for complex terrain forested regions, and 2) the effects of interactions between shallow and deep aquifers on regional weather and climate. Moreover, we will provide an overview of recent improvements of the integrated WRF-Urban modeling system, especially its hydrological enhancements that takes into account the effects of lawn irrigation, urban oasis, evaporation from pavements, anthropogenic moisture sources, and a green-roof parameterization.

  14. Golographic interferometry of physical processes

    NASA Astrophysics Data System (ADS)

    Ostrovskaya, G. V.

    2016-06-01

    This paper is devoted to the contribution of Yuri Ostrovsky to holographic interferometry, one of the fundamental scientific and practical applications of holography. The title of this paper is the same as the title of his doctoral thesis that he defended in 1974, and, as it seems to me, reflects most of the specific features of the majority of his scientific publications, viz., an inseparable link of the methods developed by him with the results obtained with the help of these methods in a wide range of investigations of physical processes and phenomena.

  15. Conversion of bedrock to soil and feedback processes between the surface and the weathering front in a deeply weathered regolith, Central Sri Lankan Highlands

    NASA Astrophysics Data System (ADS)

    Behrens, Ricarda; Bouchez, Julien; Schuessler, Jan A.; Dultz, Stefan; Hewawasam, Tilak; von Blanckenburg, Friedhelm

    2014-05-01

    In the Sri Lankan highlands denudation rates and chemical weathering rates represent the low-end-member in global weathering rates [1, 2]. Here we explore the causes for these low rates by a detailed soil-mineralogical study of a highly weathered deep saprolite profile developed from charnockite bedrock. Spheroidal weathering of the bedrock characterized the weathering front where rounded corestones are produced at the rock-saprolite interface. The first mineral attacked by weathering was found to be pyroxene but plagioclase is the first mineral depleted to near-completion at the corestone-saprolite-boundary. Weathering of pyroxene is initiated by in situ iron oxidation, leading to an increase of porosity due to micro-cracking [3]. The accrued micro cracks allow for fluid transport and the dissolution of biotite and plagioclase. The strong plagioclase weathering leads to formation of high secondary porosity over a small distance and the final disaggregation of bedrock to saprolite. Sequential extraction showed that the first secondary phases are amorphous oxides from which secondary minerals (gibbsite, kaolinite, goethite and minor amounts of smectites) precipitate. Modeling of the strain formation due to increasing volume during iron oxidation in pyroxene and biotite showed that spheroidal weathering can be explained with this process only if the formation of secondary porosity, due to a negative volume budget during primary mineral weathering to secondary phases, occurs. As oxidation is the first occurring reaction, O2 is a rate limiting factor for chemical weathering in this setting. Hence the supply of oxygen and the consumption at depth connects processes at the weathering front with those at the surface as a feedback mechanism. Advective and diffusive transport modeling shows that the feedback will be much more pronounced with dominating diffusive transport. Due to the low porosity of the bedrock the O2 transport in the pristine bedrock occurs via diffusion

  16. TIMBER HARVESTING AND LONG-TERM PRODUCTIVITY: WEATHERING PROCESSES AND SOIL DISTURBANCE

    EPA Science Inventory

    Both timber harvesting and amelioration practices can cause chemical and physical changes in soil. hese changes can affect factors which alter soil mineral stability and weathering rates, potentially changing inputs to the nutrient cycle. his paper discusses possible effects of h...

  17. The Spatial Variability of Weathering Processes in a Peruvian River System

    NASA Astrophysics Data System (ADS)

    Torres, M. A.; Ballew, N.; Clark, K.; West, A.

    2011-12-01

    The role of floodplains in the weathering of sediment exported from mountainous regions is poorly understood and has the potential to play a significant role in the overall weathering budget of large river systems. While high rates of floodplain weathering have been measured in the Himalayan system [1], there are conflicting results concerning the importance of floodplain weathering in the Amazon system [2-3]. To address this issue, the dissolved major element chemistry of the Kosñipata-Madre de Dios river system in Peru was measured monthly in nested catchments spanning the headwater-floodplain transition in order to determine spatially-resolved weathering rates and to examine any associated changes in weathering processes. Analysis of the dissolved major element data reveals a change in the dominant weathering process controlling the Ca2+ and Mg2+ fluxes associated with the headwater-floodplain transition. Based on (Ca2+ + Mg2+) / HCO3- ratios near 0.5, Ca2+ and Mg2+ fluxes in the floodplain are controlled by carbonate dissolution by carbonic acid. In the Andean catchments, variable (Ca2+ + Mg2+) / HCO3- ratios, (Ca2+ + Mg2+) / SO42- ratios near 1, and high SO42- concentrations suggest that either carbonate dissolution by sulfuric acid or sulfate mineral dissolution is the main control on Ca2+ and Mg2+ fluxes. This observed change is significant as it has important implications for the net consumption of CO2 by silicate weathering in this river system. [1] West, AJ et al, 2002, Geology 30: 355-358, [2] Gaillardet, J et al, 2006, Geochim. Cosmochim. Acta 70: 189, [3] Moquet, J et al, 2011, Chem. Geol 287: 1-26

  18. Geochemistry of river-borne clays entering the East China Sea indicates two contrasting types of weathering and sediment transport processes

    NASA Astrophysics Data System (ADS)

    Bi, Lei; Yang, Shouye; Li, Chao; Guo, Yulong; Wang, Quan; Liu, James T.; Yin, Ping

    2015-09-01

    The East China Sea is characterized by wide continental shelf receiving a huge input of terrigenous matter from both large rivers and mountainous rivers, which makes it an ideal natural laboratory for studying sediment source-to-sink transport processes. This paper presents mineralogical and geochemical data of the clays and bulk sediments from the rivers entering the East China Sea, aiming to investigate the general driving mechanism of silicate weathering and sediment transport processes in East Asian continental margin. Two types of river systems, tectonically stable continental rivers and tectonically active mountainous rivers, coexist in East Asia. As the direct weathering products, clays can better reflect the silicate weathering regimes within the two river systems. Provenance rock types are not the dominant factor causing silicate weathering intensity difference existed in the East Asian rivers. The silicate weathering intensity of tectonically stable river basins is primarily driven by monsoon climate, and the sediment transfer is relatively slow because of natural trapping process and increasing damming effect. The geochemistry of these river-borne sediments can thus indicate paleo-weathering intensities in East Asian continent. In contrast, silicate weathering intensity in tectonically active mountainous rivers is greatly limited by strong physical erosion despite the high temperature and highest monsoon rainfall. The factors controlling silicate weathering in tectonically active catchments are complex and thus, it should be prudent to use river sediment records to decipher paleoclimate change. These two different silicate weathering regimes and sediment transport processes are manifestations of the landscape evolution and overall dominate the sedimentation in Asian continental margin.

  19. Anomalous Features on Anomalous Rocks — Deciphering the Physical Weathering History of Iron Meteorites found on Mars using Terrestrial Analogues

    NASA Astrophysics Data System (ADS)

    Ashley, J.

    2015-12-01

    Non-indigenous rocks (meteorites) found on Mars by rover science teams offer insights into probable recent (mid- to late-Amazonian) weathering processes within 15° of the martian equator. While source materials are often in question for indigenous martian alteration scenarios, the starting materials for most meteorites are known as unweathered, curated falls in Earth-based collections. Both chemical and mechanical weathering processes have modified at least 21 confirmed and candidate exogenic rocks found at three rover landing sites. Such processes have been shown to include acidic corrosion, oxide production, and aeolian scouring. The unknown martian surface exposure duration of the meteorites makes separating physical from chemical weathering effects challenging: Saltating sand grains may accomplish alone what oxidation and rust removal by aeolian scouring may accomplish in a shorter time interval, for example. However, aeolian abrasion appears to dominate for at least some of the surface features in martian irons. Iron meteorites are resistant to wind-blown sand relative to silicate rocks, but are malleable and able to preserve aeolian abrasion effects. These include 1) regmaglypts enlarged into hollows with overhanging cornices; 2) surfaces scalloped or deeply fluted by straight-line groves, and/or 3) deep 'boreholes' present across many surfaces. The flutings, boreholes, and scallops have oriented symmetry and are therefore potentially useful as paleo-wind direction indicators. Boreholes tend to be clean-edged, elliptical to round, of varying diameter, and often occur independently of local topography. Ventifacted igneous rocks found at Garnet Hill, San Gorgonio Pass, California, present features that resemble many aspects of those found in the metal masses on Mars. Though of different petrologies and mineralogies, both rock types are massive, homogeneous and unfractured, which may conceivably account for some apparent similarities in mechanical weathering

  20. Digital signal processing of data from conventional weather radar: The DISPLACE method

    NASA Astrophysics Data System (ADS)

    Terblanche, Deon Etienne

    1997-09-01

    This thesis describes the development, testing and implementation of a new method to process the output from a weather radar's logarithmic receiver. The processing method, called DISPLACE, has proven to have many applications, and is computationally efficient and accurate. Its applications include the processing of digitized logarithmic receiver output in order to simulate different receiver transfer functions, the processing of multi-parameter radar measurements and the filtering of ground clutter. It facilitates the computation of CAPPI's and radar-rainfall accumulation. The thesis also deals with the upgrading of South African weather radars since about 1990 through the in-house developed radar data acquisition system and the procedures established to ensure accurate calibrations. In addition, the hydrometeorological infrastructure deployed in the Bethlehem research are is used in an integrated manner to verify data obtained using the new method. This work is well timed to address the needs that are now emerging in South Africa and clearly illustrate the role the NPRP played in reviving radar meteorology. The DISPLACE method is proving once again that the potential of conventional weather radar has not been fully exploited. It has also stimulated the interest of young technicians and scientists in the field of radar meteorology. This augurs well for the future use of weather radar in South Africa, both in the field of rainfall stimulation and as an integral part of systems designed to forecast and to help manage the effects of severe weather conditions.

  1. Space Weather data processing and Science Gateway for the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Romeo, G.; Barnes, R. J.; Weiss, M.; Fox, N. J.; Mauk, B.; Potter, M.; Kessel, R.

    2013-12-01

    A near real-time data processing pipeline for the Space Weather broadcast data from the Van Allen Probes is presented. The Van Allen Probes broadcasts a sub-set of the science data in real-time when not downlinking the principal science data. This broadcast is received by several ground stations and relayed to APL in near real time to be ingested into the space weather processing pipeline. This pipeline processes the available level zero space weather data into higher level science data products. These products are made available to the public via the Van Allen Probes Science Gateway website (http://athena.jhuapl.edu). The website acts as pivotal point though which all other instrument SOC's can be accessed. Several other data products (e.g KP/DST indices) and tools (e.g orbit calculator) are made also available to the general public.

  2. A New Multi-Wavelength Synoptic Network for Solar Physics and Space Weather

    NASA Astrophysics Data System (ADS)

    Hill, Frank; Roth, Markus; Thompson, Michael

    2013-04-01

    Continuous solar observations are important for many research topics in solar physics, such as magnetic field evolution, flare and CME characteristics, and p-mode oscillation measurements. In addition, space weather operations require constant streams of solar data as input. The deployment of a number of identical instruments around the world in a network has proven to be a very effective strategy for obtaining nearly continuous solar observations. The financial costs of a network are 1-2 orders of magnitude lower than space-based platforms; network instrumentation can be easily accessed for maintenance and upgrades; and telemetry bandwidth is readily available. Currently, there are two solar observing networks with consistent instruments: BiSON and GONG, both designed primarily for helioseismology. In addition, GONG has been augmented with continual magnetic field measurements and H-alpha imagery, with both being used for space weather operational purposes. However, GONG is now 18 years old and getting increasingly more challenging to maintain. There are also at least three scientific motivations for a multi-wavelength network: Recent advances in helioseismology have demonstrated the need for multi-wavelength observations to allow more accurate interpretation of the structure and dynamics below sunspots. Vector magnetometry would greatly benefit from multi-wavelength observations to provide height information and resolve the azimuthal ambiguity. Finally, space weather operations always need a consistent reliable source of continual solar data. This presentation will outline the scientific need for a multi-wavelength network, and discuss some concepts for the design of the instrumentation. A workshop on the topic will be held in Boulder this April.

  3. Physical and chemical weathering in modern and Permian proximal fluvial systems

    NASA Astrophysics Data System (ADS)

    Keiser, Leslie Jo

    Chapter 1 Inferring paleoclimate from ancient fluvial strata can be challenging, and conflicting interpretations for a given system are common in the literature. This research uses a combination of physical and chemical weathering signals in an attempt to better define the paleoclimatic interpretations for the proximal Cutler Formation near Gateway, Colorado (Chapter 3) and the Post Oak Conglomerate in the Wichita Mountains, Oklahoma (Chapter 4), both Permian units. Chapter 4 includes a comparison of weathering signals from modern sediments in the Wichita Mountains. A methodology for pretreatment techniques used for grain-size analysis was evaluated during the course of the research and is the topic of Chapter 2. This dissertation is organized as three stand-alone manuscripts and a brief summary of each is presented below. Chapter 2 Pretreatment drying of mud-sized sediment (<63 im) resulted in clayrich (>39%) samples exhibiting more sensitivity to drying techniques than clay-poor (<39%) samples. This demonstrates an influence of the drying technique on the granulometric results. Employing freeze drying for sample drying yielded the most consistent results. However, for samples with <39% clay-sized material, all drying techniques are equally effective, and no apparent need exists for the extra effort (and expense) that accompanies freeze drying. Chapter 3 Scanning Electron Microscopy is a useful tool in the study of quartz grain microtextures. Microtextures on quartz grains from the proximal Cutler Formation near Gateway, CO were documented for the presence/absence of 18 distinct microtextures. Averaging of presence/absence data for the samples provided a means to use more quantitative techniques than previously employed for SEM microtextural analysis. These continuous quantitative variables were utilized for non-metric multidimensional scaling, a purely quantitative technique that does not rely on initial assumptions of what environments produce specific

  4. Mapping Glacial Weathering Processes with Thermal Infrared Remote Sensing: A Case Study at Robertson Glacier, Canada

    NASA Astrophysics Data System (ADS)

    Rutledge, A. M.; Christensen, P. R.; Shock, E.; Canovas, P. A., III

    2014-12-01

    Geologic weathering processes in cold environments, especially subglacial chemical processes acting on rock and sediment, are not well characterized due to the difficulty of accessing these environments. Glacial weathering of geologic materials contributes to the solute flux in meltwater and provides a potential source of energy to chemotrophic microbes, and is thus an important component to understand. In this study, we use Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data to map the extent of glacial weathering in the front range of the Canadian Rockies using remotely detected infrared spectra. We ground-truth our observations using laboratory infrared spectroscopy, x-ray diffraction, and geochemical analyses of field samples. The major goals of the project are to quantify weathering inputs to the glacial energy budget, and to link in situ sampling with remote sensing capabilities. Robertson Glacier, Alberta, Canada is an excellent field site for this technique as it is easily accessible and its retreating stage allows sampling of fresh subglacial and englacial sediments. Infrared imagery of the region was collected with the ASTER satellite instrument. At that same time, samples of glacially altered rock and sediments were collected on a downstream transect of the glacier and outwash plain. Infrared laboratory spectroscopy and x-ray diffraction were used to determine the composition and abundance of minerals present. Geochemical data were also collected at each location, and ice and water samples were analyzed for major and minor elements. Our initial conclusion is that the majority of the weathering seems to be occurring at the glacier-rock interface rather than in the outwash stream. Results from both laboratory and ASTER data indicate the presence of leached weathering rinds. A general trend of decreasing carbonate abundances with elevation (i.e. residence time in ice) is observed, which is consistent with increasing calcium ion

  5. [Role of microscopic fungi in the process of weathering of pegmatite deposit rocks and minerals].

    PubMed

    Avakian, Z A; Karavaiko, G I; Mel'nikova, E O; Krutsko, V S; Ostroushko, Iu I

    1981-01-01

    The object of this work was to study the effect of microscopic fungi isolated from the weathering zone of a pegmatite deposit on the transport of elements and the degradation of rocks and minerals. Regardless of the chemical composition of rocks and minerals, microscopic fungi accelerated the leaching of elements as compared to the purely chemical process. The extraction of Li, Si, Al and Fe under the action of microorganisms increased by factors of 1.4-1.7, 2.7-4.0, 5.0-8.7 and 4-18, respectively. In the case of chemical weathering, the extraction of elements occurred at a high rate only at the beginning; then the process either decelerated or stopped. The mechanism of action of microscopic fungi on rocks and minerals is discussed as well as the role of these microorganisms in the weathering of spodumene and the surrounding rocks, pegmatites an shales, which occurs in the zone of hypergenesis. PMID:7194415

  6. Mismatched Physical and Chemical Weathering of Rocks on Mars: Clues to Past Climate

    NASA Astrophysics Data System (ADS)

    Thomson, B. J.; Hurowitz, J. A.; Baker, L. L.; Bridges, N. T.; Lennon, A.; Paulson, G.; Zacny, K.

    2014-07-01

    Here we quantify the degree of weathering experienced by the Adirondack-class basalts at the MER Spirit site by performing comparative analyses on the strength and chemistry of a series of progressively weathered Columbia River Basalt samples.

  7. Sun, weather, and climate

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Goldberg, R. A.

    1985-01-01

    The general field of sun-weather/climate relationships, that is, apparent weather and climate responses to solar activity is introduced and theoretical and experimental suggestions for further research to identify and investigate the unknown causal mechanisms are provided. Topics of discussion include: (1) solar-related correlation factors and energy sources; (2) long-term climatic trends; (3) short-term meteorological correlations; (4) miscellaneous obscuring influences; (5) physical processes and mechanisms; (6) recapitulation of sun-weather relationships; and (7) guidelines for experiments.

  8. RBSP Space Weather data

    NASA Astrophysics Data System (ADS)

    Weiss, M.; Fox, N. J.; Mauk, B. H.; Barnes, R. J.; Potter, M.; Romeo, G.; Smith, D.

    2012-12-01

    On August 23, 2012, NASA will launch two identical probes into the radiation belts to provide unprecedented insight into the physical processes and dynamics of near-Earth space. The RBSP mission in addition to the scientific data return, provides a 1Kbps real-time space weather broadcast data in support of real time space weather modeling, forecast and prediction efforts. Networks of ground stations have been identified to downlink the space weather data. The RBSP instrument suites have selected space weather data to be broadcast from their collected space data on board the spacecraft, a subset from measurements based on information normally available to the instrument. The data subset includes particle fluxes at a variety of energies, and magnetic and electric field data. This selected space weather data is broadcast at all times through the primary spacecraft science downlink antennas when an observatory is not in a primary mission-related ground contact. The collected data will resolve important scientific issues and help researchers develop and improve various models for the radiation belts that can be used by forecasters to predict space weather phenomena and alert astronauts and spacecraft operators to potential hazards. The near real-time data from RBSP will be available to monitor and analyze current environmental conditions, forecast natural environmental changes and support anomaly resolution. The space weather data will be available on the RBSP Science Gateway at http://athena.jhuapl.edu/ and will provide access to the space weather data received from the RBSP real-time space weather broadcast. The near real-time data will be calibrated and displayed on the web as soon as possible. The CCMC will ingest the RBSP space weather data into real-time models. The raw space weather data will be permanently archived at APL. This presentation will provide a first look at RBSP space weather data products.

  9. The Relationships between Weather-Related Factors and Daily Outdoor Physical Activity Counts on an Urban Greenway

    PubMed Central

    Wolff, Dana; Fitzhugh, Eugene C.

    2011-01-01

    The purpose of this study was to examine relationships between weather and outdoor physical activity (PA). An online weather source was used to obtain daily max temperature [DMT], precipitation, and wind speed. An infra-red trail counter provided data on daily trail use along a greenway, over a 2-year period. Multiple regression analysis was used to examine associations between PA and weather, while controlling for day of the week and month of the year. The overall regression model explained 77.0% of the variance in daily PA (p < 0.001). DMT (b = 10.5), max temp-squared (b = −4.0), precipitation (b = −70.0), and max wind speed (b = 1.9) contributed significantly. Conclusion: Aggregated daily data can detect relationships between weather and outdoor PA. PMID:21556205

  10. Physical Fitness and the Stress Process

    ERIC Educational Resources Information Center

    Ensel, Walter M.; Lin, Nan

    2004-01-01

    In the current paper we focus on the role of physical fitness in the life stress process for both psychological and physical well-being. The major research question posed in the current study is: Does physical fitness deter distress in a model containing the major components of the life stress process? That is, do individuals who exercise show…

  11. Weather Types, temperature and relief relationship in the Iberian Peninsula: A regional adiabatic processes under directional weather types

    NASA Astrophysics Data System (ADS)

    Peña Angulo, Dhais; Trigo, Ricardo; Cortesi, Nicola; Gonzalez-Hidalgo, Jose Carlos

    2016-04-01

    We have analyzed at monthly scale the spatial distribution of Pearson correlation between monthly mean of maximum (Tmax) and minimum (Tmin) temperatures with weather types (WTs) in the Iberian Peninsula (IP), represent them in a high spatial resolution grid (10km x 10km) from MOTEDAS dataset (Gonzalez-Hidalgo et al., 2015a). The WT classification was that developed by Jenkinson and Collison, adapted to the Iberian Peninsula by Trigo and DaCamara, using Sea Level Pressure data from NCAR/NCEP Reanalysis dataset (period 1951-2010). The spatial distribution of Pearson correlations shows a clear zonal gradient in Tmax under the zonal advection produced in westerly (W) and easterly (E) flows, with negative correlation in the coastland where the air mass come from but positive correlation to the inland areas. The same is true under North-West (NW), North-East (NE), South-West (SW) and South-East (SE) WTs. These spatial gradients are coherent with the spatial distribution of the main mountain chain and offer an example of regional adiabatic phenomena that affect the entire IP (Peña-Angulo et al., 2015b). These spatial gradients have not been observed in Tmin. We suggest that Tmin values are less sensitive to changes in Sea Level Pressure and more related to local factors. These directional WT present a monthly frequency over 10 days and could be a valuable tool for downscaling processes. González-Hidalgo J.C., Peña-Angulo D., Brunetti M., Cortesi, C. (2015a): MOTEDAS: a new monthly temperature database for mainland Spain and the trend in temperature (1951-2010). International Journal of Climatology 31, 715-731. DOI: 10.1002/joc.4298 Peña-Angulo, D., Trigo, R., Cortesi, C., González-Hidalgo, J.C. (2015b): The influence of weather types on the monthly average maximum and minimum temperatures in the Iberian Peninsula. Submitted to Hydrology and Earth System Sciences.

  12. Chemical and Physical Weathering in a Hot-arid, Tectonically Active Alluvial System (Anza-Borrego Desert, CA)

    NASA Astrophysics Data System (ADS)

    Joo, Y. J.; Elwood Madden, M.; Soreghan, G. S.

    2014-12-01

    Climate and tectonics are primary controls on bedrock erosion, and sediment production, transport, and deposition. Additionally, silicate weathering in tectonically active regions is known to play a significant role in global climate owing to the high rates of physical erosion and exposure of unweathered bedrock to chemical weathering, which removes CO2 from the atmosphere. Therefore, the feedback between weathering and climate is key to understanding climate change through Earth history. This study investigates chemical and physical weathering of alluvial sediments in the Anza-Borrego Desert, California, located in the southern part of the San Andreas Fault System. This setting provides an ideal opportunity to study weathering in a hot and arid climate with mean annual temperatures of ~23 °C and mean annual precipitation of ~160 mm in the basin. Samples were collected along a proximal-to-distal transect of an alluvial-fan system sourced exclusively from Cretaceous tonalite of the Peninsular Range. The single bedrock lithology enables exploration of the effects of other variables — climate, transport distance, drainage area, and tectonics— on the physical and chemical properties of the sediments. Although minimal overall (CIA = 56-61), the degree of chemical weathering increases down transect, dominated by plagioclase dissolution. BET surface area of the mud (<63µm) fraction decreases distally, which is consistent with coarsening grain-size. Chemical alteration and BET surface area both increase in a distal region, within the active Elsinore Fault zone. Extensive fracturing here, together with a more-humid Pleistocene climate likely facilitated in-situ bedrock weathering; specifically, dissolution of primary minerals (e.g. plagioclase), preceding the arid alluvial erosion, transport, and deposition in the Holocene. This study further seeks to disentangle the complex record of the climate and tectonic signals imprinted in these sediments.

  13. Shenandoah National Park Phenology Project-Weather data collection, description, and processing

    USGS Publications Warehouse

    Jones, John W.; Aiello, Danielle P.; Osborne, Jesse D.

    2010-01-01

    The weather data described in this document are being collected as part of a U.S. Geological Survey (USGS) study of changes in Shenandoah National Park (SNP) landscape phenology (Jones and Osbourne, 2008). Phenology is the study of the timing of biological events, such as annual plant flowering and seasonal bird migration. These events are partially driven by changes in temperature and precipitation; therefore, phenology studies how these events may reflect changes in climate. Landscape phenology is the study of changes in biological events over broad areas and assemblages of vegetation. To study climate-change relations over broad areas (at landscape scale), the timing and amount of annual tree leaf emergence, maximum foliage, and leaf fall for forested areas are of interest. To better link vegetation changes with climate, weather data are necessary. This report documents weather-station data collection and processing procedures used in the Shenandoah National Park Phenology Project.

  14. Major ion chemistry and weathering processes in the Midyan Basin, northwestern Saudi Arabia.

    PubMed

    Ghrefat, Habes A; Batayneh, Awni; Zaman, Haider; Zumlot, Taisser; Elawadi, Eslam; Nazzal, Yousef

    2013-10-01

    Chemical characteristics of 72 groundwater samples collected from Midyan Basin have been studied to evaluate major ion chemistry together with the geochemical and weathering processes controlling the water composition. Water chemistry of the study area is mainly dominated by Na, Ca, SO4, and Cl. The molar ratios of (Ca + Mg)/total cations, (Na + K)/total cations, (Ca + Mg)/(Na + K), (Ca + Mg)/(HCO3 + SO4), (Ca + Mg)/HCO3, and Na/Cl reveal that water chemistry of the Midyan Basin is controlled by evaporite dissolution (gypsum and/or anhydrite, and halite), silicate weathering, and minor contribution of carbonate weathering. The studied groundwater samples are largely undersaturated with respect to dolomite, gypsum, and anhydrite. These waters are capable of dissolving more of these minerals under suitable physicochemical conditions. PMID:23609922

  15. Space-weathering processes and products on volatile-rich asteroids

    NASA Astrophysics Data System (ADS)

    Britt, D.; Schelling, P.; Consolmagno, G.; Bradley, T.

    2014-07-01

    Space weathering is a generic term for the effects on atmosphereless solid bodies in the solar system from a range of processes associated with direct exposure to the space environment. These include impact processes (shock, vaporization, fragmentation, heating, melting, and ejecta formation), radiation damage (from galactic and solar cosmic rays), solar-wind effects (irradiation, ion implantation, and sputtering), and the chemical reactions driven by these processes. The classic example of space weathering is the formation of the lunar spectral red slope associated with the production of nanophase Fe (npFe0) in the dusty lunar regolith (C.R. Chapman, 2004, Annual Review of Earth & Planet. Sci. 32, C.M. Pieters, 2000, MAPS 35). Similar npFe0 has been recovered from asteroid (25143) Itokawa and some asteroid classes do exhibit modest spectral red slopes (T. Noguchi, 2011, Science 333). Space weathering can be thought of as driven by a combination of the chemical environment of space (hard vacuum, low oxygen fugacity, solar-wind implantation of hydrogen) along with thermal energy supplied by micrometeorite impacts. The forward modeling of space weathering as thermodynamically-driven decomposition of common rock-forming minerals suggests the production of a range of daughter products: (1) The silicate products typically lose oxygen, other volatile elements (i.e., sulfur and sodium), and metallic cations, producing minerals that are typically more disordered and less optically active than the original parent materials. (2) The decomposed metallic cations form in nano-sized blebs including npFe0, on the surfaces or in condensing rims of mineral grains. This creates a powerful optical component as seen in the lunar red slope. Surfaces with exposed npFe0 are an ideal environment for catalyzing further reactions. (3) The liberated volatile elements and gases (O, S, Na) may form an observable exosphere (e.g., Moon and Mercury) and can either escape from the body or

  16. Exploring Model Error through Post-processing and an Ensemble Kalman Filter on Fire Weather Days

    NASA Astrophysics Data System (ADS)

    Erickson, Michael J.

    The proliferation of coupling atmospheric ensemble data to models in other related fields requires a priori knowledge of atmospheric ensemble biases specific to the desired application. In that spirit, this dissertation focuses on elucidating atmospheric ensemble model bias and error through a variety of different methods specific to fire weather days (FWDs) over the Northeast United States (NEUS). Other than a handful of studies that use models to predict fire indices for single fire seasons (Molders 2008, Simpson et al. 2014), an extensive exploration of model performance specific to FWDs has not been attempted. Two unique definitions for FWDs are proposed; one that uses pre-existing fire indices (FWD1) and another from a new statistical fire weather index (FWD2) relating fire occurrence and near-surface meteorological observations. Ensemble model verification reveals FWDs to have warmer (> 1 K), moister (~ 0.4 g kg-1) and less windy (~ 1 m s-1) biases than the climatological average for both FWD1 and FWD2. These biases are not restricted to the near surface but exist through the entirety of the planetary boundary layer (PBL). Furthermore, post-processing methods are more effective when previous FWDs are incorporated into the statistical training, suggesting that model bias could be related to the synoptic flow pattern. An Ensemble Kalman Filter (EnKF) is used to explore the effectiveness of data assimilation during a period of extensive FWDs in April 2012. Model biases develop rapidly on FWDs, consistent with the FWD1 and FWD2 verification. However, the EnKF is effective at removing most biases for temperature, wind speed and specific humidity. Potential sources of error in the parameterized physics of the PBL are explored by rerunning the EnKF with simultaneous state and parameter estimation (SSPE) for two relevant parameters within the ACM2 PBL scheme. SSPE helps to reduce the cool temperature bias near the surface on FWDs, with the variability in parameter

  17. Paleopedological reconstruction and quantitative analysis of weathering processes in the Southern Piedmont Province

    SciTech Connect

    Feldman, S.B.; Zelazny, L.W. ); Pavich, M.J. )

    1992-01-01

    Soils and paleosols are commonly used to estimate ages of deposits and geomorphic surfaces, and to infer paleoenvironmental conditions during pedogenesis. Accurate interpretation of these and other parameters is currently limited, however, by considerable uncertainty in many fundamental areas of soils-geomorphic research. These include: (1) lack of accurate estimates of weathering rates for reliably-dated surfaces, (2) inability to quantitatively differentiate between the complex effects of climate vs. geomorphic age on weathering rates, processes, and pedogenic properties, and (3) difficulty in assessing which soil properties persist, alter, or become obliterated in the weathering environment as conditions change. In this paper, the authors discuss a method for assessing, on a regional basis, the quantitative relationships between climate, time, and weathering processes along a soil climosequence in the Southern Piedmont Province. Their approach involves sampling exclusively in areas of granitic plutons that exhibit a high degree of homogeneity with regard to total Fe content, bulk mineralogy, and absence of secondary phyllosilicates or sesquioxides. Independent age control is being established by [sup 10]Be dating, and analytical techniques include, in part, (1) geochemical speciation of soil solution and mineral equilibrium determination, (2) elemental analysis and mass balance calculations of elemental flux during pedogenesis, and (3) detailed analysis of Fe-oxide crystallinity, structure, and Al substitution using selective dissolution analysis, and both X-ray and differential X-ray diffraction.

  18. The relative importance of physical erosion and soil water dynamics on chemical weathering and soil formation: learning from field and model results

    NASA Astrophysics Data System (ADS)

    Vanwalleghem, T.; Román, A.; Giraldez, J. V.

    2015-12-01

    A new model is presented that integrates the effect of landscape evolution and soil formation. This model is based on a daily spatially-explicit soil water balance. Average soil water content, temperature and deep percolation fluxes are linked to weathering and soil formation processes. Model input (temperature and precipitation) for the last 25 000 years was generated on a daily time by combining palaeoclimate data and the WXGEN weather generator. The soil-landscape model was applied to a 48 km2 semi-natural catchment in Southern Spain, with soils developed on granite. Model-generated runoff was used for a first validation against discharge observations. Next, soil formation output was contrasted against experimental data from 10 soil profiles along two catenas. Field data showed an important variation in mobile regolith thickness, between 0,44 and 1,10m, and in chemical weathering along the catena. Southern slopes were characterized by shallower, stonier and carbon-poor soils, while soils on north-facing slopes were deeper, more fine-textured and had a higher carbon content. Chemical depletion fraction was found to vary between 0,41 and 0,72. The lowest overall weathering intensity was found on plateau positions. South facing slopes revealed slightly lower weathering compared to north facing slopes. We attribute this to higher runoff generation and physical erosion rates on north facing slopes, transporting weathered material downslope. Model results corroborate these findings and show continuously wet soils on north-facing slopes with more runoff generation and a steady deep percolation flux during the wet winter season. On south-facing slopes, infiltration is higher and percolation is more erratic over time. Soils on the footslopes then were shown to be significantly impacted by deposition of sediment through lateral erosion fluxes.

  19. Processing multidimensional nuclear physics data

    SciTech Connect

    Becker, J.

    1994-11-15

    Modern Ge detector arrays for gamma-ray spectroscopy are producing data sets unprecedented in size and event multiplicity. Gammasphere, the DOE sponsored array, has the following characteristics: (1) High granularity (110 detectors); (2) High efficiency (10%); and (3) Precision energy measurements (Delta EE = 0.2%). Characteristics of detector line shape, the data set, and the standard practice in the nuclear physics community to the nuclear gamma-ray cascades from the 4096 times 4096 times 4096 data cube will be discussed.

  20. NUMERICAL MODELING OF FINE SEDIMENT PHYSICAL PROCESSES.

    USGS Publications Warehouse

    Schoellhamer, David H.

    1985-01-01

    Fine sediment in channels, rivers, estuaries, and coastal waters undergo several physical processes including flocculation, floc disruption, deposition, bed consolidation, and resuspension. This paper presents a conceptual model and reviews mathematical models of these physical processes. Several general fine sediment models that simulate some of these processes are reviewed. These general models do not directly simulate flocculation and floc disruption, but the conceptual model and existing functions are shown to adequately model these two processes for one set of laboratory data.

  1. Physical Processes Controlling Earth's Climate

    NASA Technical Reports Server (NTRS)

    Genio, Anthony Del

    2013-01-01

    As background for consideration of the climates of the other terrestrial planets in our solar system and the potential habitability of rocky exoplanets, we discuss the basic physics that controls the Earths present climate, with particular emphasis on the energy and water cycles. We define several dimensionless parameters relevant to characterizing a planets general circulation, climate and hydrological cycle. We also consider issues associated with the use of past climate variations as indicators of future anthropogenically forced climate change, and recent advances in understanding projections of future climate that might have implications for Earth-like exoplanets.

  2. Deducing Weathering Processes Using Silicon Isotopes in the Ganges Alluvial Plain, India

    NASA Astrophysics Data System (ADS)

    Frings, P.; De La Rocha, C. L.; Fontorbe, G.; Chakrapani, G.; Clymans, W.; Conley, D. J.

    2014-12-01

    The Ganges Alluvial Plain ('GAP') is the sedimentary infill of the foreland basin created during Himalayan orogeny. Freshly eroded material from the Himalaya and southern cratonic tributaries is deposited into a system with long water-sediment interaction times, creating potential for further generation of river weathering fluxes. To quantify weathering processes in the GAP, 51 sites including all major tributaries were sampled in a September 2013 campaign and analysed for major and minor ions, Ge/Si ratios and δ30Si, δ13C and δ18O. Net dissolved Si (DSi) and major cation yields are 2 to 5 times lower in the GAP than the Himalaya, and at a whole basin scale approximate the global average, indicating that the plain apparently moderates the efficiency of Himalayan weathering rates. Mainstem δ30Si spans 0.81 to 1.93‰ (see figure) and gives the impression of a system buffered to moderate DSi and δ30Si. Ge/Si ratios (µmol/mol) are higher than expected in the Himalaya (>3), reflecting input of Ge-enriched water from hot springs, and decline to ~1.4 in the GAP. For the Himalayan sourced rivers, δ30Si increases with distance from the Himalayan front, and can not be explained entirely by conservative mixing with higher δ30Si peninsular and GAP streams. To a first degree, the δ30Si data suggest incorporation of Si into secondary minerals as the key fractionating process, and that this occurs both in situ during initial weathering and progressively in the GAP. Partitioning of solutes between sources is complicated in the GAP. Consistent with previous work, carbonate weathering dominates the ion fluxes, but with substantial contributions from saline/alkaline soil salts, the chlorination of wastewater and highly variable rainfall chemistry. Due to these contributions, precisely inferring the input from silicate weathering is difficult. We introduce a novel method to infer silicate-weathering rates that exploits the fractionation of Si during clay formation to account

  3. Inclusions in precious Australian opals offer a unique access to Martian-like weathering processes

    NASA Astrophysics Data System (ADS)

    Roberts, Gemma; Rey, Patrice; Carter, Elizabeth

    2015-04-01

    oxidation of biogenic pyrite, and that the quasi absence of carbonates allowed very acidic conditions to take hold at a regional scale. If this model is valid, central Australia may be one of the best terrestrial analogues for the understanding of some of Mars' weathering processes. References Bishop, J.L., Noe Dobrea, E.Z., McKeown, N.K., Parente, M., Ehlmann, B.L., Michalski, J.R., Milliken, R.E., Poulet, F., Swayze, G.A., Mustard, J.F., Murchie, S.L. and Bibring, J.-P. (2008): Phyllosilicate Diversity and Past Aqueous Activity Revealed at Mawrth Vallis, Mars, Science 321(5890), 830-833. Carter, J., Poulet, F., Bibring, J.-P., Mangold, N., Murchie, S. (2013): Hydrous minerals of Mars as seen by the CRISM and OMEGA imaging spectrometer: Updated global view, Journal of Geophysical Research: Planets 118, 831-858. Ehlmann, B. L., Berger, G., Mangold, N., Michalski, J. R., Catling, D. C., Ruff, S. W., Chassefière, E., Niles, P. B., Chevrier, V., Poulet, F. (2013): Geochemical Consequences of Widespread Clay Minerals Formation in Mars' Ancient Crust, Space Science Review 174, 329-364.

  4. Rock-weathering rates as functions of time

    USGS Publications Warehouse

    Colman, Steven M.

    1981-01-01

    The scarcity of documented numerical relations between rock weathering and time has led to a common assumption that rates of weathering are linear. This assumption has been strengthened by studies that have calculated long-term average rates. However, little theoretical or empirical evidence exists to support linear rates for most chemical-weathering processes, with the exception of congruent dissolution processes. The few previous studies of rock-weathering rates that contain quantitative documentation of the relation between chemical weathering and time suggest that the rates of most weathering processes decrease with time. Recent studies of weathering rinds on basaltic and andesitic stones in glacial deposits in the western United States also clearly demonstrate that rock-weathering processes slow with time. Some weathering processes appear to conform to exponential functions of time, such as the square-root time function for hydration of volcanic glass, which conforms to the theoretical predictions of diffusion kinetics. However, weathering of mineralogically heterogeneous rocks involves complex physical and chemical processes that generally can be expressed only empirically, commonly by way of logarithmic time functions. Incongruent dissolution and other weathering processes produce residues, which are commonly used as measures of weathering. These residues appear to slow movement of water to unaltered material and impede chemical transport away from it. If weathering residues impede weathering processes then rates of weathering and rates of residue production are inversely proportional to some function of the residue thickness. This results in simple mathematical analogs for weathering that imply nonlinear time functions. The rate of weathering becomes constant only when an equilibrium thickness of the residue is reached. Because weathering residues are relatively stable chemically, and because physical removal of residues below the ground surface is slight

  5. Anvil Forecast Tool in the Advanced Weather Interactive Processing System (AWIPS)

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Hood, Doris

    2009-01-01

    Launch Weather Officers (LWOs) from the 45th Weather Squadron (45 WS) and forecasters from the National Weather Service (NWS) Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violating the Lightning Launch Commit Criteria (LLCC) (Krider et al. 2006; Space Shuttle Flight Rules (FR), NASA/JSC 2004)). As a result, the Applied Meteorology Unit (AMU) developed a tool that creates an anvil threat corridor graphic that can be overlaid on satellite imagery using the Meteorological Interactive Data Display System (MIDDS, Short and Wheeler, 2002). The tool helps forecasters estimate the locations of thunderstorm anvils at one, two, and three hours into the future. It has been used extensively in launch and landing operations by both the 45 WS and SMG. The Advanced Weather Interactive Processing System (AWIPS) is now used along with MIDDS for weather analysis and display at SMG. In Phase I of this task, SMG tasked the AMU to transition the tool from MIDDS to AWIPS (Barrett et aI., 2007). For Phase II, SMG requested the AMU make the Anvil Forecast Tool in AWIPS more configurable by creating the capability to read model gridded data from user-defined model files instead of hard-coded files. An NWS local AWIPS application called AGRID was used to accomplish this. In addition, SMG needed to be able to define the pressure levels for the model data, instead of hard-coding the bottom level as 300 mb and the top level as 150 mb. This paper describes the initial development of the Anvil Forecast Tool for MIDDS, followed by the migration of the tool to AWIPS in Phase I. It then gives a detailed presentation of the Phase II improvements to the AWIPS tool.

  6. Mathematical and physical modelling of materials processing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Mathematical and physical modeling of turbulence phenomena in metals processing, electromagnetically driven flows in materials processing, gas-solid reactions, rapid solidification processes, the electroslag casting process, the role of cathodic depolarizers in the corrosion of aluminum in sea water, and predicting viscoelastic flows are described.

  7. Laboratory Hydrothermal Alteration of Basaltic Tephra by Acid Sulfate Solutions: An Analog Process for Martian Weathering

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.; Morris, R. V.

    2003-01-01

    The objective of this study is to conduct simulated Mars-like weathering experiments in the laboratory to determine the weathering products that might form during oxidative, acidic weathering of Mars analog materials.

  8. Kinetic Processes in Solar Physics

    NASA Astrophysics Data System (ADS)

    MacKinnon, A.

    2008-09-01

    Non-maxwellian particle distributions seem to occur commonly in the collisionless conditions of the corona and solar wind. The most extreme examples accompany the events of solar flares, when we find ions on occasions attaining energies in the 10 GeV range. In the denser atmosphere, temperature scale lengths comparable to mean free paths will induce strongly non-maxwellian distributions. Even when there is no direct evidence for their presence, we must expect these to be present in low density plasmas. How do we account for these distributions? What roles must they play in energy transport, in equilibrium and stability, in the interpretation of diagnostics? We first review some textbook ideas on the situations that demand kinetic descriptions, and the extent to which this can be achieved via moment descriptions. We next consider some key problems in solar physics: thermal conductivity in steep temperature gradients; energy release and particle acceleration in solar flares; the origin of non-maxwellian velocity distributions in the solar wind; coherent radio emission. In each case we try to characterise the problem in a general way, then discuss some recent advances in understanding. We conclude with some comments on the implications of such distributions in situations where their presence is at first not recognised.

  9. Nanomorphology of Itokawa regolith particles: Application to space-weathering processes affecting the Itokawa asteroid

    NASA Astrophysics Data System (ADS)

    Matsumoto, Toru; Tsuchiyama, Akira; Uesugi, Kentaro; Nakano, Tsukasa; Uesugi, Masayuki; Matsuno, Junya; Nagano, Takashi; Shimada, Akira; Takeuchi, Akihisa; Suzuki, Yoshio; Nakamura, Tomoki; Nakamura, Michihiko; Gucsik, Arnold; Nagaki, Keita; Sakaiya, Tatsuhiro; Kondo, Tadashi

    2016-08-01

    The morphological properties of 26 regolith particles from asteroid Itokawa were observed using scanning electron microscopes in combination with an investigation of their three-dimensional shapes obtained through X-ray microtomography. Surface observations of a cross section of the LL5 chondrite, and of crystals of olivine and pyroxene, were also performed for comparison. Some Itokawa particles have surfaces corresponding to walls of microdruses in the LL chondrite, where concentric polygonal steps develop and euhedral or subhedral grains exist. These formed through vapor growth owing to thermal annealing, which might have been caused by thermal metamorphism or shock-induced heating in Itokawa's parent body. Most of the Itokawa particles have more or less fractured surfaces, indicating that they were formed by disaggregation, probably caused by impacts. Itokawa particles with angular and rounded edges observed in computed tomography images are associated with surfaces exhibiting clear and faint structures, respectively. These surfaces can be interpreted by invoking different degrees of abrasion after regolith formation. A possible mechanism for the abrasion process is grain migration caused by impact-driven seismic waves. Space-weathered rims with blisters are distributed heterogeneously across the Itokawa regolith particles. This heterogeneous distribution can be explained by particle motion and fracturing, combined with solar-wind irradiation of the particle surfaces. The regolith activity-including grain motion, fracturing, and abrasion-might effectively act as refreshing process of Itokawa particles against space-weathered rim formation. The space-weathering processes affecting Itokawa would have developed simultaneously with space-weathered rim formation and regolith particle refreshment.

  10. Personal Insights and Anecdotes about the Weatherization Assistance Program Process Field Study

    SciTech Connect

    Treitler, Inga

    2014-09-01

    The present report is based on the research conducted for the Process Field Study between March and September 2011. The Process Field Study documents how Weatherization Assistance Program (WAP) services were delivered to clients, and the quality with which those services were delivered. The assessments were conducted by visiting 19 agencies in 19 states around the country interviewing agency managers, staff, and contractors; observing program intake along, with 43 audits, 45 measure installation and 37 final inspections; and conducting debriefing interviews with clients and weatherization staff following the observation of service delivery. In this report, we turn to detailed observations of a few field interactions. The client stories from our observations illustrate some of the ways clients and crew interact to build the success of the program, but shows there will always be unanticipated obstacles to building trust and getting the program to the public. Stories of staff and crew career paths indicate that weatherization technology and techniques are being learned and used by technicians out of the new home construction industry and that their new knowledge provides them with technical tools and methods that many hope to take back into the construction industry if and when they return. This report is organized according to the four stages of weatherization: intake, audit, installation, and inspection. It contributes to our understanding of the area where policy, environment, culture, and individual decisions influence social innovation. The anecdotes reveal the realities of implementing programs for the benefit of the greater good at minimal cost and sacrifice in times of ever restricting budgets. As the authors revisited their field notes and compiled memorable narratives to communicate the essence of the weatherization experience, they identified three key takeaways that summarize the major issues. First, in WAP as in all services there will always be

  11. Spatial gradient of chemical weathering and its coupling with physical erosion in the soils of the Betic Cordillera (SE Spain)

    NASA Astrophysics Data System (ADS)

    Schoonejans, Jerome; Vanacker, Veerle; Opfergelt, Sophie; Ameijeiras-Mariño, Yolanda; Kubik, Peter

    2015-04-01

    The production and denudation of soil material are controlled by chemical weathering and physical erosion which influence one another. Better understanding and quantification of this relationship is critical to understand biogeochemical cycles in the critical zone. The intense silicate weathering that is taking place in young mountain ranges is often cited to be a negative feedback that involves a long-term reduction of the atmospheric CO2 and the temperature cooling. However the possible (de)coupling between weathering and erosion is not fully understood for the moment and could reduce the effect of the feedback. This study is conducted in the eastern Betic Cordillera located in southeast Spain. The Betic Cordillera is composed by several mountains ranges or so-called Sierras that are oriented E-W to SE-NW and rise to 2000m.a.s.l. The Sierras differ in topographic setting, tectonic activity, and slightly in climate and vegetation. The mountain ranges located in the northwest, such as the Sierra Estancias, have the lowest uplift rates ( ~20-30 mm/kyr); while those in the southeast, such as the Sierra Cabrera, have the highest uplift rates ( >150mm/kyr). The sampling was realised into four small catchments located in three different Sierras. In each of them, two to three soil profiles were excavated on exposed ridgetops, and samples were taken by depth slices. The long-term denudation rate at the sites is inferred from in-situ 10Be CRN measurements. The chemical weathering intensity is constrained using a mass balance approach that is based on the concentration of immobile elements throughout the soil profile (CDF). Our results show that the soil depth decreases with an increase of the denudation rates. Chemical weathering accounts for 5 to 35% of the total mass lost due to denudation. Higher chemical weathering intensities (CDFs) are observed in sites with lower denudation rates (and vice versa). The data suggest that chemical weathering intensities are strongly

  12. AMS-02 Capabilities in Solar Energetic Particle Measurements for Space Weather Physics

    NASA Astrophysics Data System (ADS)

    Consolandi, Cristina; Bindi, Veronica; Corti, Claudio; Hoffman, Julia; Whitman, Kathryn

    2016-04-01

    The Alpha Magnetic Spectrometer (AMS-02), thanks to its large acceptance of about 0.45 m2 sr, is the biggest Solar Energetic Particle (SEP) detector ever flown in space. AMS-02 was installed on the International Space Station (ISS) on May 19, 2011, where it will measure cosmic rays from 1 GV up to a few TV, for the duration of the ISS, currently extended till 2024. During these years of operation, AMS-02 measured several increases of the protons flux over the Galactic Cosmic Ray (GCR) background associated to the strongest solar events. AMS-02 has observed the related SEP accelerated during M- and X-class flares and fast coronal mass ejections measuring an increase of the proton flux near 1 GV and above. Some of these solar events were also followed by the typical GCR suppression i.e. Forbush decrease, which makes even more evident the measurement of the SEP flux over the GCR background. Thanks to its large acceptance and particle detection capabilities, AMS-02 is able to perform precise measurements in a short period of time which is typical of these transient phenomena and to collect enough statistics to measure fine structures and time evolution of particle spectra. The events observed by AMS-02 since the beginning of its mission will be presented and some of the more interesting events will be shown. AMS-02 observations with their unprecedented resolution and high statistics, will improve the understanding of SEP behavior at high energies to constrain models of SEP production used in space weather physics.

  13. Si transfers during Archean weathering processes traced by silicon isotopes and Ge/Si ratios

    NASA Astrophysics Data System (ADS)

    Delvigne, Camille; Opfergelt, Sophie; Hofmann, Axel; Cardinal, Damien; André, Luc

    2015-04-01

    Weathering conditions in the Mesoarchean are poorly constrained. Recent advances in analytical capabilities have added Si isotopes and Ge/Si ratios to the repertoire of tracers used in the study of soil formation processes: neoformation of secondary clay minerals is associated with large Si isotope and Ge/Si fractionation in response to desilication processes and the weathering degree [1, 2, 3, 4]. Here we combine Si isotopes and Ge/Si ratios of a Mesoarchean paleosol (~2.95 Ga) and of nearly coeval but younger shales as proxies of weathering processes and Si mass transfer at the early Earth's surface. The paleosol is developed on andesite and shows a well defined mineralogical and chemical differentiation. In a first step, similar to modern soils, neoformation of secondary clay minerals in the paleosol was associated with fractionation of Si isotopes and Ge/Si ratios in response to chemical weathering degree and soil desilication. In a second step, the loss of Fe(II)-rich minerals, likely Fe-rich smectites, due to low pO2 conditions produced additional control on Si and Ge mobilities. Opposite fractionation behaviors are observed: products of desilication acted as 28Si and Ge sink while the leaching of Fe(II)-rich minerals released 28Si and Ge to soil solutions. Furthermore, the shales deposited immediately after the paleosol display δ30Si and Ge/Si compositions which may be explained as mixtures of the recognized Archean paleosols components. Their recording within the sedimentary pile suggests that the observed weathering-induced desilication might have been widely effective during the Mesoarchean as well as Fe(II)-rich minerals leaching in a lesser extent and pointing out these processes as determinant in the Si transfers from continents to hydrosphere. [1] Kurtz et al., (2002) Geochim. Cosmochim. Acta 66, 1525-1537 [2] Ziegler et al., (2005) Geochim. Cosmochim. Acta 69, 4597-4610. [3] Opfergelt et al., (2010) Geochim. Cosmochim. Acta 74, 225-240. [4

  14. Weathering processes as predisposing factors of the landscape evolution along plutono-metamorphic profiles of the Sila Massif, Calabria, southern Italy

    NASA Astrophysics Data System (ADS)

    Perri, Francesco; Borrelli, Luigi; Muto, Francesco; Gullà, Giovanni; Critelli, Salvatore; Conforti, Massimo; Filomena, Luciana; Rago, Valeria

    2013-04-01

    This work is aimed to join interdisciplinary research topics of weathering profile stages on plutonic (granitoid) and metamorphic (gneissic) rocks related to tectonic and landscape evolution of the western Sila Grande Massif (southern Italy). The grain-size of the studied samples is related to the parent rocks in response to physical and chemical weathering processes. Weathering processes produce an unconsolidated rock characterized by sand-gravel grain-size fraction for the granitoid rocks and by sand-silt grain-size fraction for the gneissic rocks. Chemical and mineralogical analyses confirm the granulometric observations. The difference between granitoid and gneissic rocks are mainly related to a higher content of quartz and feldspars for the first one rock type, whereas the second rock type shows higher content of neoformed clay minerals as well expandable phases. The main mineralogical changes concern the partial transformation of biotite and the partial destruction of feldspars, associated with the neoformation of secondary minerals (clay minerals and Fe-oxides) during the most advanced weathering stage; these processes also produce a substitution of the original rock fabric. All these petrological, chemical and mineralogical observations associated to microfractures and morphological variations occur on both plutonic and metamorphic original rocks and, thereby, affect the surrounding landscape processes. Generally, the granitoid profiles are regular and simple, characterized by gradual variation in the degree of weathering from bottom to top; where granitoid rocks show strong morphologies characterized by high relief energy and steep slopes, earth and debris slides, soil slips and earth flow can occur especially when fresher granitoids is near the surface and is covered by organic debris, colluvium, or soil. The gneissic profiles are characterized by structural complexity may be related to several factors such as presence of faults, high state of fracturing

  15. Process-based modeling of silicate mineral weathering responses to increasing atmospheric CO2 and climate change

    NASA Astrophysics Data System (ADS)

    Banwart, Steven A.; Berg, Astrid; Beerling, David J.

    2009-12-01

    A mathematical model describes silicate mineral weathering processes in modern soils located in the boreal coniferous region of northern Europe. The process model results demonstrate a stabilizing biological feedback mechanism between atmospheric CO2 levels and silicate weathering rates as is generally postulated for atmospheric evolution. The process model feedback response agrees within a factor of 2 of that calculated by a weathering feedback function of the type generally employed in global geochemical carbon cycle models of the Earth's Phanerozoic CO2 history. Sensitivity analysis of parameter values in the process model provides insight into the key mechanisms that influence the strength of the biological feedback to weathering. First, the process model accounts for the alkalinity released by weathering, whereby its acceleration stabilizes pH at values that are higher than expected. Although the process model yields faster weathering with increasing temperature, because of activation energy effects on mineral dissolution kinetics at warmer temperature, the mineral dissolution rate laws utilized in the process model also result in lower dissolution rates at higher pH values. Hence, as dissolution rates increase under warmer conditions, more alkalinity is released by the weathering reaction, helping maintain higher pH values thus stabilizing the weathering rate. Second, the process model yields a relatively low sensitivity of soil pH to increasing plant productivity. This is due to more rapid decomposition of dissolved organic carbon (DOC) under warmer conditions. Because DOC fluxes strongly influence the soil water proton balance and pH, this increased decomposition rate dampens the feedback between productivity and weathering. The process model is most sensitive to parameters reflecting soil structure; depth, porosity, and water content. This suggests that the role of biota to influence these characteristics of the weathering profile is as important, if not

  16. The Planeterrella: an Analog Model for Teaching About the Invisible Electromagnetic Processes Driving Space Weather

    NASA Astrophysics Data System (ADS)

    Masongsong, E. V.; Glesener, G. B.; Angelopoulos, V.; Lilensten, J.; Bingley, L.

    2015-12-01

    The Planeterrella can be used as an analog to help students visualize and understand the electromagnetic processes driving space weather that affect our daily lives. Solar storms and solar wind charged particles (plasma) cause "space weather" via their interaction with Earth's protective magnetic shield, the magnetosphere. The Planeterrella uses magnetized spheres in a vacuum chamber to demonstrate solar wind energy transfer to Earth and planets, with polar localization of aurora due to charged particles traveling along geomagnetic field lines. The Planeterrella provides a unique opportunity to experience and manipulate plasma, the dominant form of matter in our universe, yet seldom observable on Earth. Severe space weather events produce spectacular auroral displays as well as devastating consequences: radiation exposure to air and space travelers, prolonged radio blackouts, and damage to critical GPS and communications satellites. We will (1) discuss ways in which the Planeterrella may be most useful in classroom settings, including large lecture halls, laboratories, and small discussion sessions; (2) provide information on how instructors can produce their own Planeterrella for their courses; and (3) invite meeting attendees to engage in a discussion on how we might be able to improve on the current design of the Planeterrella, and how to reach students in more parts of the world.

  17. Evaluating sensitivity of silicate mineral dissolution rates to physical weathering using a soil evolution model (SoilGen2.25)

    NASA Astrophysics Data System (ADS)

    Opolot, E.; Finke, P. A.

    2015-08-01

    Silicate mineral dissolution rates depend on the interaction of a number of factors categorized either as intrinsic (e.g. mineral surface area, mineral composition) or extrinsic (e.g. climate, hydrology, biological factors, physical weathering). Estimating the integrated effect of these factors on the silicate mineral dissolution rates therefore necessitates the use of fully mechanistic soil evolution models. This study applies a mechanistic soil evolution model (SoilGen) to explore the sensitivity of silicate mineral dissolution rates to the integrated effect of other soil forming processes and factors. The SoilGen soil evolution model is a 1-D model developed to simulate the time-depth evolution of soil properties as a function of various soil forming processes (e.g. water, heat and solute transport, chemical and physical weathering, clay migration, nutrient cycling and bioturbation) driven by soil forming factors (i.e., climate, organisms, relief, parent material). Results from this study show that although soil solution chemistry (pH) plays a dominant role in determining the silicate mineral dissolution rates, all processes that directly or indirectly influence the soil solution composition equally play an important role in driving silicate mineral dissolution rates. Model results demonstrated a decrease of silicate mineral dissolution rates with time, an obvious effect of texture and an indirect but substantial effect of physical weathering on silicate mineral dissolution rates. Results further indicated that clay migration and plant nutrient recycling processes influence the pH and thus the silicate mineral dissolution rates. Our silicate mineral dissolution rates results fall between field and laboratory rates but were rather high and more close to the laboratory rates owing to the assumption of far from equilibrium reaction used in our dissolution rate mechanism. There is therefore need to include secondary mineral precipitation mechanism in our formulation

  18. Evaluating sensitivity of silicate mineral dissolution rates to physical weathering using a soil evolution model (SoilGen2.25)

    NASA Astrophysics Data System (ADS)

    Opolot, E.; Finke, P. A.

    2015-11-01

    Silicate mineral dissolution rates depend on the interaction of a number of factors categorized either as intrinsic (e.g. mineral surface area, mineral composition) or extrinsic (e.g. climate, hydrology, biological factors, physical weathering). Estimating the integrated effect of these factors on the silicate mineral dissolution rates therefore necessitates the use of fully mechanistic soil evolution models. This study applies a mechanistic soil evolution model (SoilGen) to explore the sensitivity of silicate mineral dissolution rates to the integrated effect of other soil-forming processes and factors. The SoilGen soil evolution model is a 1-D model developed to simulate the time-depth evolution of soil properties as a function of various soil-forming processes (e.g. water, heat and solute transport, chemical and physical weathering, clay migration, nutrient cycling, and bioturbation) driven by soil-forming factors (i.e., climate, organisms, relief, parent material). Results from this study show that although soil solution chemistry (pH) plays a dominant role in determining the silicate mineral dissolution rates, all processes that directly or indirectly influence the soil solution composition play an equally important role in driving silicate mineral dissolution rates. Model results demonstrated a decrease of silicate mineral dissolution rates with time, an obvious effect of texture and an indirect but substantial effect of physical weathering on silicate mineral dissolution rates. Results further indicated that clay migration and plant nutrient recycling processes influence the pH and thus the silicate mineral dissolution rates. Our silicate mineral dissolution rates results fall between field and laboratory rates but were rather high and more close to the laboratory rates possibly due to the assumption of far from equilibrium reaction used in our dissolution rate mechanism. There is therefore a need to include secondary mineral precipitation mechanism in our

  19. Chemical weathering and diagenesis of a cold desert soil from Wright Valley, Antarctica - An analog of Martian weathering processes

    NASA Technical Reports Server (NTRS)

    Gibson, E. K.; Mckay, D. S.; Wentworth, S. J.

    1983-01-01

    Weathering, diagenesis, and chemical alteration of a soil profile from the Dry Valleys of Antarctica are investigated as an analog to soil development within the Martian regolith. Soil samples from a soil pit one meter deep on Prospect Mesa, Wright Valley, are examined for their major element concentrations, water-soluble cations and anions, carbon, sulfur, and water concentrations, and related petrographic characteristics of weathering in a cold, dry environment. A petrographic study of the samples suggests that most silicate mineral and lithic fragments exhibit some degree of alteration. Chemical alteration occurs both in samples above and within the permanently frozen zone. The concentrations of water-soluble cations, for example, Na(+), K(+), Ca(2+), and anions, Cl(-), SO4(2-), NO3(-), are found to decrease significantly from the surface to the permanently frozen zone, suggesting a major movement of water-soluble species. It is also found that enrichments in secondary mineral abundances correlate with the water soluble ion concentrations. The formation of zeolites is seen throughout the soil column; these, it is thought, may be reservoirs for volatile storage within the regolith.

  20. Process Coupling Between Mineral Transformation and U Speciation in Acid Waste Weathered Sediments

    NASA Astrophysics Data System (ADS)

    Perdrial, N.; Kanematsu, M.; Wang, G.; Um, W.; O'Day, P. A.; Chorover, J.

    2013-12-01

    The need for better prediction of contaminant transport motivates multi-faceted lines of inquiry to build a strong bridge between molecular- and field-scale information. At Hanford (WA), millions of liters of U-containing acidic wastes have been discharged to the soil. In order to predict reactive contaminant migration in the soil, it is necessary to determine the process coupling that occurs between mineral transformation and uranium speciation in these acid-uranium waste weathered sediments. Furthermore, we seek to establish linkages between molecular-scale contaminant speciation and meso-scale contaminant lability, release and reactive transport. Unweathered Hanford sediments were reacted for 365 days with acidic (pH 3), uranium bearing waste solutions in batch experiments. The presence and absence of phosphate in the waste as a control on uranium speciation was also investigated. At dedicated reaction times (7, 14, 30, 90, 180 and 365 days) solid and solution chemistry were analyzed to determine weathering trajectories and contaminant speciation. As observed by XRD and U-EXAFS, when present, PO4 exerted a strong controls over uranium speciation at all pH with the rapid precipitation of meta-ankoleite [K(UO2PO4).3H2O] and near complete immobilization of U. Over prolonged reaction time, however, small fractions of boltwoodite [K(UO2)(HSiO4).3H2O] increased in PO4-high U systems. When PO4 was excluded from the reaction systems, U speciation was indirectly controlled by the pH of the reactant solution and its effect on primary mineral weathering. In this case, U immobilization remained limited with 25 to 50% of the uranium precipitated as becquerelite ([Ca(UO2)6O4(OH)6.3H2O] or the K equivalent - compreignacite) and suspected boltwoodite. Differences between the systems are attributed to process coupling between acid chemistry and U geochemistry. Carbonate weathering contributed to rapidly buffer the pH to pH 7-8 in the absence of PO4 and to 6-7 in its presence

  1. Local topography of Mars and its relationship to surface weathering processes

    NASA Technical Reports Server (NTRS)

    Schaefer, M. W.

    1993-01-01

    There is a growing body of evidence in favor of the importance of aqueous sedimentary processes on Mars. It is important to understand the role that surface weathering processes have played in the development of the present morphology of the Martian surface. Such an understanding is important not only for its relevance to the study of volatile sources and sinks on Mars through time, but also for its relevance to Martian geologic and tectonic history. Starting in the fall of this year, the Mars Observer Laser Altimeter will begin sending back to Earth data on the topography of Mars that is of a higher quality than most of the topography data available for the Earth. This data will be invaluable, not only for understanding global and large-scale regional processes and landforms on Mars, but also for the study of local and smaller-scale regional processes and landforms. Digital topography is an important part of geologic and geomorphic studies, useful in distinguishing between different lithologies and between different types of weathering. Digital topography data may be used to study a wide variety of local and regional-scale landforms, including valleys, sand dunes, lava flows, landslides, and slopes. Topography data are also essential to the analysis of spectral response patterns, especially in areas of high topographic relief. Geomorphic classification can be significantly improved by the addition of topographic information.

  2. Real-time Observations of Rock Cracking and Weather Provide Insights into Thermal Stress-Related Processes of Mechanical Weathering.

    NASA Astrophysics Data System (ADS)

    Eppes, M. C.; Magi, B. I.; Keanini, R.

    2015-12-01

    The environmental conditions (weather and/or climate) that limit or drive mechanical weathering via thermal stress are poorly understood. Here we examine acoustic emission (AE) records of rock cracking in boulders sitting on the ground in humid-temperate (~1 year of data) and semi-arid (~3 years) locations. We compare on-site average ambient daily temperature for days in which cracking occurs to the average temperatures for those dates derived from local climate records. The temperatures characterizing days on which cracking occurs is similar for both stations (range = -10 C to +30 C); where 21% and 73% of cracking occurs on hot days (> 20C) in the humid and semi-arid climates respectively while 17% and 0.1% occurs on very cold days (-8C to -3C). When days during which cracking occurs are compared to climate averages, 81% (NC) and 51% (NM) of all cracking occurs on days with absolute temperature anomalies >1, regardless of the temperature. The proportion of cracking that occurs on anomalously hot or cold days rises to 92% and 77% when the data is normalized to account for uneven sampling of the days with extreme temperatures. In order to determine to what extent this trend holds true in a more complex setting, we examined an existing 100+ year record of rock falls from Yosemite Valley. Preliminary results, although more equivocal, are consistent with the boulder cracking AE data. We examine the AE datasets in the context of our previous numerical modeling of insolation-driven thermal stress in rock and hypothesize that there is an increased potential for fracture on days with extreme temperatures because 1) thermal-stress is dependent on temperature variance from far-field and/or average rock temperatures and 2) that days with climatologically extreme air temperatures result in maximums in such variance. An implication of our results is that environments with extreme weather variability may have higher thermal breakdown rates, including certain locations today and

  3. Will Somebody do the Dishes? Weathering Analogies, Geologic Processes and Geologic Time

    NASA Astrophysics Data System (ADS)

    Stelling, P.; Wuotila, S.; Giuliani, M.

    2006-12-01

    A good analogy is one of the most powerful tools in any instructors' arsenal, and encouraging students to explore the links between an analogy and a scientific concept can cement both ideas in a student's mind. A common analogy for weathering and erosion processes is doing the dishes. Oxidation, hydration, and solution reactions can be intimidating on the chalkboard but easily understood in the context of cleaning up after dinner. Rather than present this analogy as a lecture demonstration, students are encouraged to experimentally determine which type of weathering works best on their dirty dishes. The experiment must use at least four identically dirty dishes: three experimental dishes and one control dish. The experimental dishes are subjected to simulated weathering and erosion processes of the student's design. Common techniques developed by students are cold or warm water baths, baths with and without acid (lemon juice or soda), and freeze-thaw cycles. Occasionally creative experiments result in unexpected discoveries, such the inefficiency of abrasion from wind-blown sand, especially when compared to soaking dishes in Canadian Whiskey. The effectiveness of each experimental run is determined by comparison to the control plate after loose debris is removed from each. The dish with the smallest aerial extent of remaining food is the declared the most effective. Discussion sections of the experimental write-up includes a description of which geologic processes were being simulated in each experiment, comparisons of the effectiveness of each techniques, and statements of how these experiments differ from reality. In order to advance this project, a second stage of the assignment, a direct comparison of weathering and erosion techniques on food and on geologic materials, will be added this fall. Ideally, students will empirically derive erosion rates and calculate the time required to remove the volume of material represented by a geologically important feature

  4. Characterization of an Antarctic Mars Analog Soil and Implications for Martian Weathering Processes

    NASA Astrophysics Data System (ADS)

    McAdam, A. C.; Leshin, L. A.; Sharp, T. G.; Harvey, R. P.; Farquhar, J.

    2005-12-01

    Terrestrial analogs can be used to gain insight into potential martian weathering processes and the role of water in the near-surface environment. We are investigating the mineralogy and chemical properties of a fine size fraction of a soil weathered from the Ferrar Dolerite. The soil was collected near Lewis Cliff in the Transantarctic Mountains. The Ferrar exhibits mineralogical similarities to martian basaltic lithologies, as represented by the shergottites [Harvey, 2001]. Production of fines from this parent rock in the cold, arid Antarctic makes the fines a promising Mars analog material. The analog soil fines have been studied with SEM/EDS, IR spectroscopy, XRD, TEM, and Mössbauer spectroscopy. XRD-derived semi-quantitative mineral abundances reveal that the Antarctic fines contain ~30% primary phases (plagioclase feldspar, pyroxenes, a small amount of quartz) and ~70% secondary phases (clays and clay-like mineraloids, zeolites, and ~50% calcium sulfates). The fines' thermal IR spectrum revealed silicate, bound water and sulfate features, consistent with the XRD-derived mineralogy. The significant amount of secondary phases present indicate that even in the Earth's coldest, driest environment, there is enough water and energy to weather some primary minerals. Atmospheric sulfate aerosols may have been important in producing the fines' abundant sulfate salts. Oxygen isotope studies of Antarctic Dry Valleys sulfates have revealed a Δ17O anomaly, which suggests the sulfates are not just from sea salt (Δ17O =0) but also from atmospheric oxidation of gaseous sulfur compounds (e.g. marine biogenic dimethylsulfide) [e.g. Bao et al., 2000]. The anomaly implies that atmospheric sulfur aerosols interact with rocks and soils in Antarctica, similar to the acid fog model for martian weathering [e.g. Banin et al. 1997]. We have obtained an average Δ17O value of +1.67±0.05‰ for the sulfates in the Antarctic fines being investigated here. This indicates that, in this

  5. Space-weathering processes and products on volatile-rich asteroids

    NASA Astrophysics Data System (ADS)

    Britt, D.; Schelling, P.; Consolmagno, G.; Bradley, T.

    2014-07-01

    Space weathering is a generic term for the effects on atmosphereless solid bodies in the solar system from a range of processes associated with direct exposure to the space environment. These include impact processes (shock, vaporization, fragmentation, heating, melting, and ejecta formation), radiation damage (from galactic and solar cosmic rays), solar-wind effects (irradiation, ion implantation, and sputtering), and the chemical reactions driven by these processes. The classic example of space weathering is the formation of the lunar spectral red slope associated with the production of nanophase Fe (npFe0) in the dusty lunar regolith (C.R. Chapman, 2004, Annual Review of Earth & Planet. Sci. 32, C.M. Pieters, 2000, MAPS 35). Similar npFe0 has been recovered from asteroid (25143) Itokawa and some asteroid classes do exhibit modest spectral red slopes (T. Noguchi, 2011, Science 333). Space weathering can be thought of as driven by a combination of the chemical environment of space (hard vacuum, low oxygen fugacity, solar-wind implantation of hydrogen) along with thermal energy supplied by micrometeorite impacts. The forward modeling of space weathering as thermodynamically-driven decomposition of common rock-forming minerals suggests the production of a range of daughter products: (1) The silicate products typically lose oxygen, other volatile elements (i.e., sulfur and sodium), and metallic cations, producing minerals that are typically more disordered and less optically active than the original parent materials. (2) The decomposed metallic cations form in nano-sized blebs including npFe0, on the surfaces or in condensing rims of mineral grains. This creates a powerful optical component as seen in the lunar red slope. Surfaces with exposed npFe0 are an ideal environment for catalyzing further reactions. (3) The liberated volatile elements and gases (O, S, Na) may form an observable exosphere (e.g., Moon and Mercury) and can either escape from the body or

  6. The breath of the rocks: Lake carbon dioxide emissions from weathering processes at the global scale

    NASA Astrophysics Data System (ADS)

    Marcé, R.; Obrador, B.

    2014-12-01

    Most lakes and reservoirs are known to have surface carbon dioxide (CO2) concentrations that are supersaturated with respect to the atmosphere, and hence nearly all of them are net emitters of CO2. Global carbon emissions from lakes account for 0.06 to 0.84 Pg C year-1, a substantial amount relative to other fluxes of the continental C balance. Therefore, a proper understanding of the land carbon cycle and its sensitivity to external perturbations requires detailed knowledge of drivers of global CO2 supersaturation in lakes. CO2 supersaturation has generally been attributed to a widespread imbalance of lake net ecosystem production towards net heterotrophy, but recent findings challenge this interpretation. Here we show that an integrated perspective including lake net ecosystem production together with precipitation and dissolution of carbonate minerals and inputs of dissolved inorganic carbon from the watershed, substantially improves our understanding of the processes leading to CO2 supersaturation in lakes with alkalinity above 1 meq L-1. Our results indicate that CO2 supersaturation is independent of net ecosystem production in many lakes, and that a significant amount of the CO2 evaded through their surface is directly related to weathering processes in the watershed that supply alkalinity to surface waters. After evaluation of the worldwide distribution of alkalinity across lakes we show that CO2 emissions related to weathering processes are relevant in tropical and temperate latitudes, but negligible in boreal regions.

  7. Post Processing Numerical Weather Prediction Model Rainfall Forecasts for Use in Ensemble Streamflow Forecasting in Australia

    NASA Astrophysics Data System (ADS)

    Shrestha, D. L.; Robertson, D.; Bennett, J.; Ward, P.; Wang, Q. J.

    2012-12-01

    Through the water information research and development alliance (WIRADA) project, CSIRO is conducting research to improve flood and short-term streamflow forecasting services delivered by the Australian Bureau of Meteorology. WIRADA aims to build and test systems to generate ensemble flood and short-term streamflow forecasts with lead times of up to 10 days by integrating rainfall forecasts from Numerical Weather Prediction (NWP) models and hydrological modelling. Here we present an overview of the latest progress towards developing this system. Rainfall during the forecast period is a major source of uncertainty in streamflow forecasting. Ensemble rainfall forecasts are used in streamflow forecasting to characterise the rainfall uncertainty. In Australia, NWP models provide forecasts of rainfall and other weather conditions for lead times of up to 10 days. However, rainfall forecasts from Australian NWP models are deterministic and often contain systematic errors. We use a simplified Bayesian joint probability (BJP) method to post-process rainfall forecasts from the latest generation of Australian NWP models. The BJP method generates reliable and skilful ensemble rainfall forecasts. The post-processed rainfall ensembles are then used to force a semi-distributed conceptual rainfall runoff model to produce ensemble streamflow forecasts. The performance of the ensemble streamflow forecasts is evaluated on a number of Australian catchments and the benefits of using post processed rainfall forecasts are demonstrated.

  8. Rock Abrasion as Seen by the MSL Curiosity Rover: Insights on Physical Weathering on Mars

    NASA Astrophysics Data System (ADS)

    Bridges, N.; Day, M. D.; Le Mouelic, S.; Martin-Torres, F. J.; Newsom, H. E.; Sullivan, R. J., Jr.; Ullan, A.; Wiens, R. C.; Zorzano, M. P.

    2014-12-01

    Mars is a dry planet, with actively blowing sand in many regions. In the absence of stable liquid water and an active hydrosphere, rates of chemical weathering are slow, such that aeolian abrasion is a dominant agent of landscape modification where sand is present and winds above threshold occur at sufficient frequency. Reflecting this activity, ventifacts, rocks that have been abraded by windborne particles, and wind-eroded outcrops, are common. They provide invaluable markers of the Martian wind record and insight into climate and landscape modification. Ventifacts are distributed along the traverse of the Mars Science Laboratory Curiosity rover. They contain one or more diagnostic features and textures: Facets, keels, basal sills, elongated pits, scallops/flutes, grooves, rock tails, and lineations. Keels at the junction of facets are sharp enough to pose a hazard MSL's wheels in some areas. Geomorphic and textural patterns on outcrops indicate retreat of windward faces. Moonlight Valley and other depressions are demarcated by undercut walls and scree boulders, with the valley interiors containing fewer rocks, most of which show evidence for significant abrasion. Together, this suggests widening and undercutting of the valley walls, and erosion of interior rocks, by windblown sand. HiRISE images do not show any dark sand dunes in the traverse so far, in contrast to the large dune field to the south that is migrating up to 2 m per year. In addition, ChemCam shows that the rock Bathurst has a rind rich in mobile elements that would be removed in an abrading environment. This indicates that rock abrasion was likely more dominant in the past, a hypothesis consistent with rapid scarp retreat as suggested by the cosmogenic noble gases in Yellowknife Bay. Ventifacts and evidence for bedrock abrasion have also been found at the Pathfinder, Spirit, and Opportunity sites, areas, like the Curiosity traverse so far, that lack evidence for current high sand fluxes. Yardangs

  9. Interface-coupled dissolution-precipitation processes during acidic weathering of multicomponent minerals

    NASA Astrophysics Data System (ADS)

    Ruiz-Agudo, Encarnacion; King, Helen E.; Patiño-López, Luis D.; Putnis, Christine V.; Geisler, Thorsten; Rodriguez-Navarro, Carlos M.; Putnis, Andrew

    2015-04-01

    The chemical weathering of carbonate and silicate minerals on the Earth's surface controls important geochemical processes such as erosion rates and soil formation, ore genesis or climate evolution. The dissolution of most of these minerals is typically incongruent, and results in the formation of surface coatings (altered layers, also known as leached layers). These coatings may significantly affect mineral dissolution rates over geological timescales, and therefore a great deal of research has been conducted on them. However, the mechanism of leached layer formation is a matter of vigorous debate. Here we report on an in situ atomic force microscopy (AFM) and real-time Mach-Zehnder phase-shift interferometry (PSI) study of the dissolution of wollastonite, CaSiO3, and dolomite, CaMg(CO3)2, as an example of surface coating formation during acidic weathering of multicomponent minerals. Our in situ results provide clear direct experimental evidence that leached layers are formed in a tight interface-coupled two-step process: stoichiometric dissolution of the pristine mineral surfaces and subsequent precipitation of a secondary phase (silica in the case of wollastonite, or hydrated magnesium carbonate in the case of dolomite) from a supersaturated boundary layer of fluid in contact with the mineral surface. This occurs despite the bulk solution remaining undersaturated with respect to the secondary phase. The validation of such a mechanism given by the results reported here completely changes the conceptual framework concerning the mechanism of chemical weathering, and differs significantly from the concept of preferential leaching of cations postulated by most currently accepted incongruent dissolution models.

  10. Physical conditions for the r-process

    SciTech Connect

    Wanajo, S.; Tachibana, T.; Goriely, S.

    2012-11-12

    Recent works show that the r-process can proceed by competition between neutron capture and {beta}-decay in low temperature environments (< 5 Multiplication-Sign 10{sup 8} K; cold r-process) where photo-disintegration plays no role. This is in contrast to the traditional picture of the r-process in high temperature environments ({approx} 1 Multiplication-Sign 10{sup 9} K; hot r-process) where the (n, {gamma})-({gamma}, n) equilibrium holds. In this study, we explore nucleosynthesis calculations based on a site-independent model to elucidate the physical conditions leading to cold and hot r-processes.

  11. Major ion chemistry of the Son River, India: Weathering processes, dissolved fluxes and water quality assessment

    NASA Astrophysics Data System (ADS)

    Maharana, Chinmaya; Gautam, Sandeep Kumar; Singh, Abhay Kumar; Tripathi, Jayant K.

    2015-08-01

    River Son, draining diverse lithologies in the subtropical climate of the peninsular sub-basin of the Ganga basin, is one of the major tributaries of the Ganga River. The chemistry of major ions in the surface water of the Son River was studied in detail to determine various source(s) and processes controlling its water chemistry, seasonal and spatial variations in water chemistry, dissolved fluxes and chemical denudation rate (CDR). The study shows that Ca2+, Mg2+ and HCO 3- are major ionic species in the river water. Most of the measured parameters exhibit a relatively lower concentration in the post-monsoon as compared to pre-monsoon season. The water chemistry highlights the influence of continental weathering aided by secondary contributions from ground water, saline/alkaline soils and anthropogenic activities in the catchment. Results also reflect the dominance of carbonate weathering over silicate weathering in controlling water composition. The Son River delivers about 4.2 million tons of dissolved loads annually to the Ganga River, which accounts for ˜6% of the total annual load carried by the Ganga River to the Bay of Bengal. The average CDR of the Son River is 59.5 tons km -2 yr -1, which is less than the reported 72 tons km -2 yr -1 of the Ganga River and higher than the global average of 36 tons km -2 yr -1. The water chemistry for the pre-monsoon and post-monsoon periods shows a strong seasonal control on solute flux and CDR values. The water chemistry indicates that the Son River water is good to excellent in quality for irrigation and also suitable for drinking purposes.

  12. Space Weathering of Small Bodies

    NASA Astrophysics Data System (ADS)

    McFadden, L. A.

    2002-12-01

    Space weathering is defined as any process that wears away and alters surfaces, here confined to small bodies in the Solar System. Mechanisms which possibly alter asteroid and comet surfaces include solar wind bombardment, UV radiation, cosmic ray bombardment, micrometeorite bombardment. These processes are likely to contribute to surface processes differently. For example, solar wind bombardment would be more important on a body closer to the Sun compared to a comet where cosmic ray bombardment might be a more significant weathering mechanism. How can we measure the effects of space weathering? A big problem is that we don't know the nature of the surface before it was weathered. We are in a new era in the study of surface processes on small bodies brought about by the availability of spatially resolved, color and spectral measurements of asteroids from Galileo and NEAR. What processes are active on which bodies? What physics controls surface processes in different regions of the solar system? How do processes differ on different bodies of different physical and chemical properties? What combinations of observable parameters best address the nature of surface processes? Are there alternative explanations for the observed parameters that have been attributed to space weathering? Should we retain the term, space weathering? How can our understanding of space weathering on the Moon help us understand it on asteroids and comets? Finally, we have to leave behind some presuppositions, one being that there is evidence of space weathering based on the fact that the optical properties of S-type asteroids differs from those of ordinary chondrites.

  13. Weathering and weathering rates of natural stone

    SciTech Connect

    Winkler, E.M. )

    1987-01-01

    Physical and chemical weathering were studied as separate processes in the past. Recent research, however, shows that most processes are physicochemical in nature. The rates at which calcite and silica weather by dissolution are dependent on the regional and local climatic environment. The weathering of silicate rocks leaves discolored margins and rinds, a function of the ricks permeability and of the climatic parameters. Salt action, the greatest disruptive factor, is complex and not yet fully understood in all its phases, but some of th causes of disruption are crystallization pressure, hydration pressure, and hygroscopic attraction of excess moisture. The decay of marble is complex, an interaction between dissolution, crack-corrosion, and the expansion-contraction cycles triggered by the release of residual stresses. Thin spalls of granites commonly found near the street level of buildings are generally caused by a combination of stress relief and salt action. To study and determine weathering rates of a variety of commercial stones, the National Bureau of Standards erected a Stone Exposure Test Wall in 1948. Of the many types of stone represented, only a few fossiliferous limestones permit a valid measurement of surface reduction in a polluted urban environment.

  14. Effects of Climate on Long-term Rates of Physical Erosion and Chemical Weathering: Evidence from Cosmogenic Nuclides and Geochemical Mass Balance

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.; Riebe, C. S.; Ferrier, K. L.; Finkel, R. C.

    2004-12-01

    Cosmogenic nuclides such as 10Be and 26Al have recently become important tools for measuring long-term denudation rates. We have recently shown how cosmogenic nuclide measurements of denudation fluxes can be partitioned into their physical and chemical components, using the enrichment of insoluble tracers in regolith relative to its parent rock. We used these methods to measure long-term rates of physical erosion and chemical weathering for 42 sites, encompassing widely varying climates and denudation rates. Across these sites, mean annual temperatures vary from 2 to 25 ° C, average annual precipitation spans a 20-fold range (from 22 to 420 cm/yr), and denudation rates vary by 32-fold (from 23 to 755 t km-2 yr-2). Our measurements show that chemical weathering rates are tightly coupled with physical erosion rates, such that the relationship between climate and chemical weathering rates may be obscured by site-to-site differences in the rate that minerals are supplied to soil by physical erosion of rock. The relative importance of chemical weathering can be quantified using the "Weathering Intensity Factor" (WIF), the ratio of the chemical weathering rate to the physical erosion rate. Over 60 percent of the variance in WIF's can be explained by a simple Arrhenius-like relationship based on mean annual temperature and average annual precipitation. The temperature-dependence of WIF is roughly half of what one would expect from laboratory measurements of activation energies for feldspar weathering and previous inter-comparisons of short-term average weathering rates from the field. Our results imply that the strength of climate change feedbacks between temperature and silicate weathering rates may be weaker than previously thought, at least in actively eroding, unglaciated granitic terrain similar to our study sites.

  15. Water quality mapping and assessment, and weathering processes of selected aflaj in Oman.

    PubMed

    Ghrefat, Habes Ahmad; Jamarh, Ahmad; Al-Futaisi, Ahmed; Al-Abri, Badr

    2011-10-01

    There are more than 4,000 falaj (singular of a peculiar dug channel) distributed in different regions in Oman. The chemical characteristics of the water in 42 falaj were studied to evaluate the major ion chemistry; geochemical processes controlling water composition; and suitability of water for drinking, domestic, and irrigation uses. GIS-based maps indicate that the spatial distribution of chemical properties and concentrations vary within the same region and the different regions as well. The molar ratios of (Ca + Mg)/Total cations, (Na + K)/Total cations, (Ca + Mg)/(Na + K), (Ca + Mg)/(HCO₃ + SO₄), and Na/Cl reveal that the water chemistry of the majority of aflaj are dominated by carbonate weathering and evaporite dissolution, with minor contribution of silicate weathering. The concentrations of most of the elements were less than the permissible limits of Omani standards and WHO guidelines for drinking water and domestic use and do not generally pose any health and environmental problems. Some aflaj in ASH Sharqiyah and Muscat regions can be used for irrigation with slight to severe restriction because of the high levels of electrical conductivity, total dissolved solids, chloride, and sodium absorption ratio. PMID:21210214

  16. Displaying Composite and Archived Soundings in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Volkmer, Matthew R.; Blottman, Peter F.; Sharp, David W.

    2008-01-01

    This presentation describes work done by the Applied Meteorology Unit (AMU) to add composite soundings to the Advanced Weather Interactive Processing System (AWIPS). This allows National Weather Service (NWS) forecasters to compare the current atmospheric state with climatology. In a previous task, the AMU created composite soundings for four rawinsonde observation stations in Florida, for each of eight flow regimes. The composite soundings were delivered to the NWS Melbourne (MLB) office for display using the NSHARP software program. NWS MLB requested that the AMU make the composite soundings available for display in AWIPS. The AMU first created a procedure to customize AWIPS so composite soundings could be displayed. A unique four-character identifier was created for each of the 32 composite soundings. The AMIU wrote a Tool Command Language/Tool Kit (TclITk) software program to convert the composite soundings from NSHARP to Network Common Data Form (NetCDF) format. The NetCDF files were then displayable by AWIPS.

  17. Space plasma physics: I - Stationary processes

    NASA Technical Reports Server (NTRS)

    Hasegawa, Akira; Sato, Tetsuya

    1989-01-01

    The physics of stationary processes in space plasmas is examined theoretically in an introduction intended for graduate students. The approach involves the extensive use of numerical simulations. Chapters are devoted to fundamental principles, small-amplitude waves, and the stationary solar plasma system; typical measurement data and simulation results are presented graphically.

  18. Identifying weathering processes by Si isotopes in two small catchments in the Black Forest (Germany)

    NASA Astrophysics Data System (ADS)

    Steinhoefel, G.; Breuer, J.; von Blanckenburg, F.; Horn, I.; Kaczorek, D.; Sommer, M.

    2013-12-01

    Stable Si isotopes are potentially an ideal proxy to investigate weathering as the release or precipitation of Si during abiotic or biotic processes causes significant shifts in the isotope signature depending on the weathering intensity. In this study, we determine the Si isotope signature of spring and stream waters and of the principle Si pools of typical soil profiles within two small catchments located on sandstone and paragneiss, respectively, in the cold, perhumid Black Forest (Germany). The Si isotope data were obtained on a Neptune MC-ICP-MS in solution for the water samples and in situ by coupling a UV femtosecond laser ablation system for solid samples, respectively. Bulk soils show a largely homogeneous Si isotope signature for different horizons and locations, which is close to those of bulk bedrocks with δ30Si value around -0.3‰. Soil clay formation is associated with limited Si mobility, which preserves initial Si isotope signatures of parental minerals. Biogenic mineral, i.e. phytoliths, exhibit negative Si isotope signature of about -0.4‰. An exception are the topsoil layers in the paragneiss catchment where the organic-rich environment promotes high Si mobility leading to a significant depletion of heavy Si isotopes. Springs and streams, sampled in spring and late summer, vary between -0.7 to 1.1‰ in δ30Si showing spatial and temporal variations dependent on the water pathways. Groundwater originated from sandstone and overlying periglacial debris layers reveals constant δ30Si values of 0.3 to 0.5‰, which is attributed to kaolinite formation. In contrast, water passing the soil zone shows very variable signatures. Low δ30Si values down to -0.7‰ most likely reflects dissolution processes of clay minerals and phytoliths during spring. In late summer, positive δ30Si values expose the impact of preferential uptake of light Si isotopes by plants. In the paragneiss catchment, this effect is likely increased by co-precipitation of

  19. A novel process for recovering rare earth from weathered black earth

    SciTech Connect

    Chi, R.; Zhu, G.; Zhou, Z.; Xu, Z.

    2000-02-01

    A novel process for recovering rare-earth (RE) elements from weathered-black-earth slime is developed. This process involves the initial removal of Mn by reduction leaching using SO{sub 2} followed by ammonium chloride roasting of the residual solids from the leaching process. The controlled roasting selectively converts RE oxides to water-soluble RE chlorides. The roasted materials are then dispersed in warm water (75 C) to extract RE, while water-insoluble iron oxides remain in gangue sludge, minimizing iron impurities in final RE products and hence simplifying the purification process. Lead chloride precipitates are obtained by cooling the leachate to {minus}10 C, and RE is recovered using oxalic acid precipitation. With this new process, a product of 92 pct purity at a RE recovery greater than 65 pct is obtained. In addition, Mn and Pb are recovered as by-products, with a recovery of 64 and 54 pct, respectively. The effect of operating variables on RE recovery is examined and the process chemistry described.

  20. Environmental tracers for elucidating the weathering process in a phosphogypsum disposal site: Implications for restoration

    NASA Astrophysics Data System (ADS)

    Pérez-López, Rafael; Nieto, José M.; de la Rosa, Jesús D.; Bolívar, Juan P.

    2015-10-01

    This study provides geochemical data with the aim of identifying and tracing the weathering of phosphogypsum wastes stack-piled directly on salt-marshes of the Tinto River (Estuary of Huelva, SW Spain). With that purpose, different types of highly-polluted acid solutions were collected in the stack. Connection between these solutions and the estuarine environment was studied by geochemical tracers, such as rare earth elements (REE) and their North American Shale Composite (NASC)-normalized patterns and Cl/Br ratios. Phosphogypsum-related wastewaters include process water stored on the surface, pore-water contained in the phosphogypsum profile and edge outflow water emerging from inside the stack. Edge outflow waters are produced by waterlogging at the contact between phosphogypsum and the nearly impermeable marsh surface and discharge directly into the estuary. Process water shows geochemical characteristics typical of phosphate fertilizers, i.e. REE patterns with an evident enrichment of heavy-REE (HREE) with respect to middle-REE (MREE) and light-REE (LREE). By contrast, REE patterns of deeper pore-water and edge outflows are identical to those of Tinto River estuary waters, with a clear enrichment of MREE relative to LREE and HREE denoting influence of acid mine drainage. Cl/Br ratios of these solutions are very close to that of seawater, which also supports its estuarine origin. These findings clearly show that process water is not chemically connected with edge outflows through pore-waters, as was previously believed. Phosphogypsum weathering likely occurs by an upward flow of seawater from the marsh because of overpressure and permeability differences. Several recommendations are put forward in this study to route restoration actions, such as developing treatment systems to improve the quality of the edge outflow waters before discharging to the receiving environment.

  1. Process for the physical segregation of minerals

    DOEpatents

    Yingling, Jon C.; Ganguli, Rajive

    2004-01-06

    With highly heterogeneous groups or streams of minerals, physical segregation using online quality measurements is an economically important first stage of the mineral beneficiation process. Segregation enables high quality fractions of the stream to bypass processing, such as cleaning operations, thereby reducing the associated costs and avoiding the yield losses inherent in any downstream separation process. The present invention includes various methods for reliably segregating a mineral stream into at least one fraction meeting desired quality specifications while at the same time maximizing yield of that fraction.

  2. Analysis of physical processes via imaging vectors

    NASA Astrophysics Data System (ADS)

    Volovodenko, V.; Efremova, N.; Efremov, V.

    2016-06-01

    Practically, all modeling processes in one way or another are random. The foremost formulated theoretical foundation embraces Markov processes, being represented in different forms. Markov processes are characterized as a random process that undergoes transitions from one state to another on a state space, whereas the probability distribution of the next state depends only on the current state and not on the sequence of events that preceded it. In the Markov processes the proposition (model) of the future by no means changes in the event of the expansion and/or strong information progression relative to preceding time. Basically, modeling physical fields involves process changing in time, i.e. non-stationay processes. In this case, the application of Laplace transformation provides unjustified description complications. Transition to other possibilities results in explicit simplification. The method of imaging vectors renders constructive mathematical models and necessary transition in the modeling process and analysis itself. The flexibility of the model itself using polynomial basis leads to the possible rapid transition of the mathematical model and further analysis acceleration. It should be noted that the mathematical description permits operator representation. Conversely, operator representation of the structures, algorithms and data processing procedures significantly improve the flexibility of the modeling process.

  3. Meteorites on Mars as Planetary Research Tools with Special Considerations for Martian Weathering Processes

    NASA Astrophysics Data System (ADS)

    Ashley, James Warren

    2011-09-01

    The occurrence of exogenic, meteoritic materials on the surface of any world presents opportunities to explore a variety of significant problems in the planetary sciences. In the case of Mars, meteorites found on its surface may help to (1) constrain atmospheric conditions during their time of arrival; (2) provide insights into possible variabilities in meteoroid type sampling between Mars and Earth space environments; (3) aid in our understanding of soil, dust, and sedimentary rock chemistry; (4) assist with the calibration of crater-age dating techniques; and (5) provide witness samples for chemical and mechanical weathering processes. The presence of reduced metallic iron in approximately 88 percent of meteorite falls renders the majority of meteorites particularly sensitive to oxidation by H2O interaction. This makes them excellent markers for H2O occurrence. Several large meteorites have been discovered at Gusev Crater and Meridiani Planum by the Mars Exploration Rovers (MERs). Significant morphologic characteristics interpretable as weathering features in the Meridiani suite of iron meteorites include a (1) large pit lined with delicate iron protrusions suggestive of inclusion removal by corrosive interaction; (2) differentially eroded kamacite and taenite lamellae on three of the meteorites, providing relative timing through cross-cutting relationships with deposition of (3) an iron oxide-rich dark coating; and (4) regmaglypted surfaces testifying to regions of minimal surface modification; with other regions in the same meteorites exhibiting (5) large-scale, cavernous weathering. Iron meteorites found by Mini-TES at both Meridiani Planum and Gusev Crater have prompted laboratory experiments designed to explore elements of reflectivity, dust cover, and potential oxide coatings on their surfaces in the thermal infrared using analog samples. Results show that dust thickness on an iron substrate need be only one tenth as great as that on a silicate rock to

  4. Creating Interactive Graphical Overlays in the Advanced Weather Interactive Processing System Using Shapefiles and DGM Files

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Lafosse, Richard; Hood, Doris; Hoeth, Brian

    2007-01-01

    Graphical overlays can be created in real-time in the Advanced Weather Interactive Processing System (AWIPS) using shapefiles or Denver AWIPS Risk Reduction and Requirements Evaluation (DARE) Graphics Metafile (DGM) files. This presentation describes how to create graphical overlays on-the-fly for AWIPS, by using two examples of AWIPS applications that were created by the Applied Meteorology Unit (AMU) located at Cape Canaveral Air Force Station (CCAFS), Florida. The first example is the Anvil Threat Corridor Forecast Tool, which produces a shapefile that depicts a graphical threat corridor of the forecast movement of thunderstorm anvil clouds, based on the observed or forecast upper-level winds. This tool is used by the Spaceflight Meteorology Group (SMG) at Johnson Space Center, Texas and 45th Weather Squadron (45 WS) at CCAFS to analyze the threat of natural or space vehicle-triggered lightning over a location. The second example is a launch and landing trajectory tool that produces a DGM file that plots the ground track of space vehicles during launch or landing. The trajectory tool can be used by SMG and the 45 WS forecasters to analyze weather radar imagery along a launch or landing trajectory. The presentation will list the advantages and disadvantages of both file types for creating interactive graphical overlays in future AWIPS applications. Shapefiles are a popular format used extensively in Geographical Information Systems. They are usually used in AWIPS to depict static map backgrounds. A shapefile stores the geometry and attribute information of spatial features in a dataset (ESRI 1998). Shapefiles can contain point, line, and polygon features. Each shapefile contains a main file, index file, and a dBASE table. The main file contains a record for each spatial feature, which describes the feature with a list of its vertices. The index file contains the offset of each record from the beginning of the main file. The dBASE table contains records for each

  5. Analyzing the Role of Biofilm in Weathering Processes in the Rhizosphere with Various Microscopic Techniques

    NASA Astrophysics Data System (ADS)

    Niedziela, S.; Greenberg, K. A.; Dohnalkova, A.; Arey, B.; Balogh-Brunstad, Z.

    2011-12-01

    inside of the sample. It also allows preparing a thin section of a selected area, which could be transferred to the TEM for correlative imaging and analyses providing high resolution structural and chemical information of the biofilm-microbe-fungus-mineral interface. Using cryo-SEM complements the above results with preserving the specimen in its real, hydrated state that allows the characterization of the original topography and cross-section. The combinations of these state-of-the-art techniques shed new light on the characteristics of biofilm-microbe-fungus-mineral interface and provide information about weathering processes, rates, and base cation immobilization in soils.

  6. Physical processes in spin polarized plasmas

    SciTech Connect

    Kulsrud, R.M.; Valeo, E.J.; Cowley, S.

    1984-05-01

    If the plasma in a nuclear fusion reactor is polarized, the nuclear reactions are modified in such a way as to enhance the reactor performance. We calculate in detail the modification of these nuclear reactions by different modes of polarization of the nuclear fuel. We also consider in detail the various physical processes that can lead to depolarization and show that they are by and large slow enough that a high degree of polarization can be maintained.

  7. Physical processes causing the formation of penitentes.

    PubMed

    Claudin, P; Jarry, H; Vignoles, G; Plapp, M; Andreotti, B

    2015-09-01

    Snow penitentes form in sublimation conditions by differential ablation. Here we investigate the physical processes at the initial stage of penitente growth and perform the linear stability analysis of a flat surface submitted to the solar heat flux. We show that these patterns do not simply result from the self-illumination of the surface-a scale-free process-but are primarily controlled by vapor diffusion and heat conduction. The wavelength at which snow penitentes emerge is derived and discussed. We found that it is controlled by aerodynamic mixing of vapor above the ice surface. PMID:26465564

  8. Automating the initial physics chart checking process.

    PubMed

    Furhang, Eli E; Dolan, James; Sillanpaa, Jussi K; Harrison, Louis B

    2009-01-01

    The initial physics chart check, an essential quality assurance process, verifies that the physician intent is properly expressed in the treatment plan, the treatment plan is reasonable, and the Record and Verify (RV) system properly captures the plan parameters. In this work the process was automated by characterizing the initial physics chart check as a universal set of steps, compartmentalized into intra-plan and inter-plan reviews. The intra-plan review confirms the diagnosis-prescription-plan correlation, and verifies transfer accuracy of the signed treatment plan parameters into the RV system. The inter-plan review tabulates all RV parameters for similar cases, and highlights outliers. The tabulation of RV parameters for similar cases enables a summation of experience across staff members, and facilitates a comparison using the Statistical Process Control (SPC) formalism. A summary sheet, added to each reviewed chart, automatically documents deviations noted during the review process. Forty-five patient charts were analyzed using the software. The length of time for the entire initial chart-checking process was reduced from about an hour to a few minutes. The code developed in this work allows the user to consider the big picture, trusting the software to track details. PMID:19223834

  9. Reproducibility of Carbon and Water Cycle by an Ecosystem Process Based Model Using a Weather Generator and Effect of Temporal Concentration of Precipitation on Model Outputs

    NASA Astrophysics Data System (ADS)

    Miyauchi, T.; Machimura, T.

    2014-12-01

    GCM is generally used to produce input weather data for the simulation of carbon and water cycle by ecosystem process based models under climate change however its temporal resolution is sometimes incompatible to requirement. A weather generator (WG) is used for temporal downscaling of input weather data for models, where the effect of WG algorithms on reproducibility of ecosystem model outputs must be assessed. In this study simulated carbon and water cycle by Biome-BGC model using weather data measured and generated by CLIMGEN weather generator were compared. The measured weather data (daily precipitation, maximum, minimum air temperature) at a few sites for 30 years was collected from NNDC Online weather data. The generated weather data was produced by CLIMGEN parameterized using the measured weather data. NPP, heterotrophic respiration (HR), NEE and water outflow were simulated by Biome-BGC using measured and generated weather data. In the case of deciduous broad leaf forest in Lushi, Henan Province, China, 30 years average monthly NPP by WG was 10% larger than that by measured weather in the growing season. HR by WG was larger than that by measured weather in all months by 15% in average. NEE by WG was more negative in winter and was close to that by measured weather in summer. These differences in carbon cycle were because the soil water content by WG was larger than that by measured weather. The difference between monthly water outflow by WG and by measured weather was large and variable, and annual outflow by WG was 50% of that by measured weather. The inconsistency in carbon and water cycle by WG and measured weather was suggested be affected by the difference in temporal concentration of precipitation, which was assessed.

  10. Free electron laser physical process code (FELPPC)

    SciTech Connect

    Thode, L.E.; Chan, K.C.D.; Schmitt, M.J.

    1995-02-01

    Even at the conceptual level, the strong coupling between subsystem elements complicates the understanding and design of a free electron laser (FEL). Given the requirements for high-performance FELS, the coupling between subsystems must be included to obtain a realistic picture of the potential operational capability. The concept of an Integrated Numerical Experiment (INEX) was implemented to accurately calculate the coupling between the FEL subsystems. During the late 1980`s, the INEX approach was successfully applied to a large number of accelerator and FEL experiments. Unfortunately, because of significant manpower and computational requirements, the integrated approach is difficult to apply to trade-off and initial design studies. However, the INEX codes provided a base from which realistic accelerator, wiggler, optics, and control models could be developed. The Free Electron Laser Physical Process Code (FELPPC) includes models developed from the INEX codes, provides coupling between the subsystem models, and incorporates application models relevant to a specific study. In other words, FELPPC solves the complete physical process model using realistic physics and technology constraints. FELPPC can calculate complex FEL configurations including multiple accelerator and wiggler combinations. When compared with the INEX codes, the subsystem models have been found to be quite accurate over many orders-of-magnitude. As a result, FELPPC has been used for the initial design studies of a large number of FEL applications: high-average-power ground, space, plane, and ship based FELS; beacon and illuminator FELS; medical and compact FELS; and XUV FELS.

  11. Day Length and Weather Effects on Children’s Physical Activity and Participation in Play, Sports, and Active Travel

    PubMed Central

    Goodman, Anna; Paskins, James; Mackett, Roger

    2013-01-01

    Background Children in primary school are more physically active in the spring/summer. Little is known about the relative contributions of day length and weather, however, or about the underlying behavioral mediators. Methods 325 British children aged 8 to 11 wore accelerometers as an objective measure of physical activity, measured in terms of mean activity counts. Children simultaneously completed diaries in which we identified episodes of out-of-home play, structured sports, and active travel. Our main exposure measures were day length, temperature, rainfall, cloud cover, and wind speed. Results Overall physical activity was higher on long days (≥ 14 hours daylight), but there was no difference between short (< 9.5 hours) and medium days (10.2–12.6 hours). The effect of long day length was largest between 5 PM and 8 PM, and persisted after adjusting for rainfall, cloud cover, and wind. Up to half this effect was explained by a greater duration and intensity of out-of-home play on long days; structured sports and active travel were less affected by day length. Conclusions At least above a certain threshold, longer afternoon/evening daylight may have a causal role in increasing child physical activity. This strengthens the public health arguments for daylight saving measures such as those recently under consideration in Britain. PMID:22826506

  12. Mineralogy of weathering processes on the spoil dumps in the Ostrava-Karvina Coal District

    SciTech Connect

    Matysek, D.; Bielesz, M.

    1994-12-31

    Exploitation of coal in the Ostrava-Karvina Coal District is accompanies by the accumulation of large amounts of waste materials: spoil rocks from mine works, wastes from processing plants, and coal slurries. This waste often is sued for landscape preparation, or it is deposited on spoil dumps. According to their composition, carboniferous materials (siltstones, silt-claystones with admixtures of coal matter prevailing, and fine-grained feldspathic sandstones and subgraywackes) are considered to be relatively harmless to the environment. Problems resulting from reclaiming spoil dumps have resulted in more detailed study of the relationship between carboniferous materials and the environment, specifically, the relationship between spoil dumps and such factors as the ecosystems and acidification, geochemical reactivity of carboniferous rocks,a nd stability of minerals. Geological processes of environmental concern in this case include the mineralogy of weathering products with production of salts (evaporation) and the degradation of clay fractions. Geochemical and botanical factors of origin of soils on spoil dumps were described by Stalmachova and Matysek. The authors report a study in which changes in the clay minerals from dumps are compared with paragneiss of clay minerals on the carboniferous outcrops.

  13. Novel natural and anthropogenic physical mechanisms of weather and climate changes

    NASA Astrophysics Data System (ADS)

    Voronin, Nikolai; Avakyan, Sergei

    2010-05-01

    A unified approach is suggested to the problem of impact of both space and several anthropogenic sources on the weather and climate changes. The united agent of this impact is examined i.e. microwave emission of the ionosphere, which resulted from ionospheric atoms and molecules excitation into highly excited (Rydberg) states by fast ionospheric electrons. Fast electrons with the energies more than 15 eV are formed with the photoionization of the upper atmosphere under the effect of X-ray/EUV solar radiation and with the ionization of the corpuscular precipitations from the radiation belts and magnetosphere both during of geomagnetic storms and under the anthropogenic influences. The latter (the work of powerful navigation and communication radio stations (because the most of them induce very low frequency (VLF) range: from few to few tens kilo Hertz.), electric power lines, starting space rockets, industrial activity) determines the locality of precipitations and accordingly the local action of the microwave radiation of the ionosphere on the weather characteristics. Surface transmitters with such frequency have power up to 1 Mw that cause precipitations and result in optical emission (the aurora of the class IBC II or more) above the transmitter. Indeed results of measurements performed by the satellites Intercosmos-Bulgaria 1300 at 1982 and DEMETER at 2005 confirm very high extent of disturbance of radiation belts and night ionosphere above the zone of work of VLF transmitters both in Northern Hemisphere (transmitters NLK, NAA in USA and UMS, RPS in Russia), and in Southern Hemisphere (transmitter NWC) especially during geomagnetic disturbances. Areas of stimulated electron precipitations and areas of perturbed ionosphere are linked either with the magnetic force line at which the surface VHL transmitter is situated or with the magnetic line at which effect of radio wave on the pitch angle of electron, captured in radiation belt, takes place. This area of

  14. Characterizing the process and quantifying the rate of subaerial rock weathering on desert surfaces using roughness analysis

    NASA Astrophysics Data System (ADS)

    Mushkin, Amit; Sagy, Amir; Trabelci, Eran

    2013-04-01

    Subaerial weathering of rocks is a common process observed on desert surfaces on Earth and other planetary terrestrial surfaces such as on Mars. On Earth, this weathering process has been previously identified as one of the key erosion agent driving geomorphic surface evolution and the development of desert pavements. And yet, fundamental aspects of the process, such as the relative contribution of the different weathering modes that drive it (e.g., mechanical breakdown of rocks, chemical weathering, aeolian abrasion and exfoliation) as well as the rate by which this weathering process occurs have not been systematically examined. Here, we present a new approach for quantitatively addressing these fundamental aspects of process geomorphology on desert surfaces. We focus here on co-genetic desert alluvial surfaces of different ages, i.e. alluvial chronosequences, which provide excellent recorders for the evolution of boulder-strewn surfaces into smooth desert pavements through in-situ subaerial weathering of rocks. Our approach combines independent measures of two different surface attributes: High resolution (mm-scale) 3D ground-based laser scanning (LiDAR) of surface micro-topography, and numerical dating of surface age. Roughness analysis of the LiDAR data in power spectral density (PSD) space allows us to characterize the geometric manifestation of rock weathering on the surface and to distinguish between the different weathering modes. Numerical age constraints provide independent estimates for the time elapsed since the process began. Accordingly, we are able to constrain surface roughness evolution on alluvial fan desert chronosequences through time, and present PSD analysis of surface roughness as a new quantitative tool to examine the process of subaerial rock weathering in desert environments. In this study we present results from two late Quaternary alluvial chronosequences along the Dead Sea Transform in the hyper-arid Negev desert of southern Israel. Li

  15. Clouds, weather, climate, and modeling for K-12 and public audiences from the Center for Multi-scale Modeling of Atmospheric Processes

    NASA Astrophysics Data System (ADS)

    Foster, S. Q.; Johnson, R. M.; Randall, D. A.; Denning, A.; Russell, R. M.; Gardiner, L. S.; Hatheway, B.; Jones, B.; Burt, M. A.; Genyuk, J.

    2010-12-01

    The need for improving the representation of cloud processes in climate models has been one of the most important limitations of the reliability of climate-change simulations. Now in its fifth year, the National Science Foundation-funded Center for Multi-scale Modeling of Atmospheric Processes (CMMAP) at Colorado State University (CSU) is addressing this problem through a revolutionary new approach to representing cloud processes on their native scales, including the cloud-scale interaction processes that are active in cloud systems. CMMAP has set ambitious education and human-resource goals to share basic information about the atmosphere, clouds, weather, climate, and modeling with diverse K-12 and public audiences. This is accomplished through collaborations in resource development and dissemination between CMMAP scientists, CSU’s Little Shop of Physics (LSOP) program, and the Windows to the Universe (W2U) program at University Corporation for Atmospheric Research (UCAR). Little Shop of Physics develops new hands on science activities demonstrating basic science concepts fundamental to understanding atmospheric characteristics, weather, and climate. Videos capture demonstrations of children completing these activities which are broadcast to school districts and public television programs. CMMAP and LSOP educators and scientists partner in teaching a summer professional development workshops for teachers at CSU with a semester's worth of college-level content on the basic physics of the atmosphere, weather, climate, climate modeling, and climate change, as well as dozens of LSOP inquiry-based activities suitable for use in classrooms. The W2U project complements these efforts by developing and broadly disseminating new CMMAP-related online content pages, animations, interactives, image galleries, scientists’ biographies, and LSOP videos to K-12 and public audiences. Reaching nearly 20 million users annually, W2U is highly valued as a curriculum enhancement

  16. Hands-on, online, and workshop-based K-12 weather and climate education resources from the Center for Multi-scale Modeling of Atmospheric Processes

    NASA Astrophysics Data System (ADS)

    Foster, S. Q.; Johnson, R. M.; Randall, D. A.; Denning, A.; Burt, M. A.; Gardiner, L.; Genyuk, J.; Hatheway, B.; Jones, B.; La Grave, M. L.; Russell, R. M.

    2009-12-01

    The need for improving the representation of cloud processes in climate models has been one of the most important limitations of the reliability of climate-change simulations. Now in its fourth year, the National Science Foundation-funded Center for Multi-scale Modeling of Atmospheric Processes (CMMAP) at Colorado State University (CSU) is addressing this problem through a revolutionary new approach to representing cloud processes on their native scales, including the cloud-scale interaction processes that are active in cloud systems. CMMAP has set ambitious education and human-resource goals to share basic information about the atmosphere, clouds, weather, climate, and modeling with diverse K-12 and public audiences. This is accomplished through collaborations in resource development and dissemination between CMMAP scientists, CSU’s Little Shop of Physics (LSOP) program, and the Windows to the Universe (W2U) program at University Corporation for Atmospheric Research (UCAR). Little Shop of Physics develops new hands on science activities demonstrating basic science concepts fundamental to understanding atmospheric characteristics, weather, and climate. Videos capture demonstrations of children completing these activities which are broadcast to school districts and public television programs. CMMAP and LSOP educators and scientists partner in teaching a summer professional development workshops for teachers at CSU with a semester's worth of college-level content on the basic physics of the atmosphere, weather, climate, climate modeling, and climate change, as well as dozens of LSOP inquiry-based activities suitable for use in classrooms. The W2U project complements these efforts by developing and broadly disseminating new CMMAP-related online content pages, animations, interactives, image galleries, scientists’ biographies, and LSOP videos to K-12 and public audiences. Reaching nearly 20 million users annually, W2U is highly valued as a curriculum enhancement

  17. Automated Data Preparation and Physics Mining Tools for Space Weather Studies (Invited)

    NASA Astrophysics Data System (ADS)

    Karimabadi, H.; Sipes, T.

    2009-12-01

    Heliophysics is a data centric field which relies heavily on the use of spacecraft data for further advances. The prevalent approach to analysis of spacecraft data is based on visual inspection of data. As a result, the vast majority of the collected data from various missions has gone unexplored. The computer aided algorithmic approach to data analysis as facilitated through data mining techniques are essential for analysis of large data sets and enable discovery of hidden information and patterns in the data. Many data analysis problems in space weather stand to benefit from the application of data mining techniques. Examples include identifying spacecraft charging signatures in plasma detectors, identifying plasma frequency lines in wave spectrograms (and hence density), detecting and classifying substorm infection features, among others (R. Friedel, private communication). Thus while the need for advanced algorithmic approach to data exploration and knowledge discovery is generally recognized by experimentalists, the adoption of such techniques (“data mining”) has been slow. This has been partly due to the steep learning curve of some of the techniques and/or the requirement to have a working knowledge of statistics. Another factor is the existence of a plethora of data mining approaches, and it is often a daunting task for a scientist to determine the appropriate technique. Our goal has been to make such tools accessible to non-experts and remove it from gee-whiz domain to a practical tool that will become part of the standard arsenal of data analysis. To this end, we have developed an automated data mining technique called MineTool. Its first deployment to analysis of Cluster has been very successful (Karimabadi et al., JGR, 114, A06216 , 2009) and this tool is gaining adoption among experimentalists. In this talk, we will provide an overview of this tool, illustrate its use through examples, and discuss future directions of research.

  18. Physical characteristics of welding arc ignition process

    NASA Astrophysics Data System (ADS)

    Shi, Linan; Song, Yonglun; Xiao, Tianjiao; Ran, Guowei

    2012-07-01

    The existing research of welding arc mainly focuses on the stable combustion state and the research on the mechanism of welding arc ignition process is quite lack. The tungsten inert gas(TIG) touch arc ignition process is observed via a high speed camera and the high time resolution spectral diagnosis system. The changing phenomenon of main ionized element provided the electrons in the arc ignition is found. The metallic element is the main contributor to provide the electrons at the beginning of the discharging, and then the excitated shielding gas element replaces the function of the metallic element. The electron density during the period of the arc ignition is calculated by the Stark-broadened lines of Hα. Through the discussion with the repeatability in relaxation phenomenon, the statistical regularity in the arc ignition process is analyzed. The similar rules as above are observed through the comparison with the laser-assisted arc ignition experiments and the metal inert gas(MIG) arc ignition experiments. This research is helpful to further understanding on the generation mechanism of welding arc ignition and also has a certain academic and practical significance on enriching the welding physical theoretical foundation and improving the precise monitoring on automatic arc welding process.

  19. Physics of the spatially averaged snowmelt process

    NASA Astrophysics Data System (ADS)

    Horne, Federico E.; Kavvas, M. Levent

    1997-04-01

    It has been recognized that the snowmelt models developed in the past do not fully meet current prediction requirements. Part of the reason is that they do not account for the spatial variation in the dynamics of the spatially heterogeneous snowmelt process. Most of the current physics-based distributed snowmelt models utilize point-location-scale conservation equations which do not represent the spatially varying snowmelt dynamics over a grid area that surrounds a computational node. In this study, to account for the spatial heterogeneity of the snowmelt dynamics, areally averaged mass and energy conservation equations for the snowmelt process are developed. As a first step, energy and mass conservation equations that govern the snowmelt dynamics at a point location are averaged over the snowpack depth, resulting in depth averaged equations (DAE). In this averaging, it is assumed that the snowpack has two layers. Then, the point location DAE are averaged over the snowcover area. To develop the areally averaged equations of the snowmelt physics, we make the fundamental assumption that snowmelt process is spatially ergodic. The snow temperature and the snow density are considered as the stochastic variables. The areally averaged snowmelt equations are obtained in terms of their corresponding ensemble averages. Only the first two moments are considered. A numerical solution scheme (Runge-Kutta) is then applied to solve the resulting system of ordinary differential equations. This equation system is solved for the areal mean and areal variance of snow temperature and of snow density, for the areal mean of snowmelt, and for the areal covariance of snow temperature and snow density. The developed model is tested using Scott Valley (Siskiyou County, California) snowmelt and meteorological data. The performance of the model in simulating the observed areally averaged snowmelt is satisfactory.

  20. Sulphur isotope hydrology in Skeidararsandur, Iceland: Identification of sources and implications for weathering processes

    NASA Astrophysics Data System (ADS)

    Robinson, Z. P.; Fairchild, I. J.; Spiro, B.

    2009-04-01

    The hydrochemistry of sulphur in various environments in the active ice-marginal outwash plain of Skeiðarársandur, SE Iceland shows considerable variety reflecting differences in sources and processes, and is investigated in this paper using ^34S values of dissolved sulphate and igneous sulphide minerals, ^18O-H2O, electrical conductivity and ionic concentrations in waters. Seawater-derived sulphate is a notable component only in the lower sandur (^34S-SO4 values of +6.8 o/ooVCDT). Sulphur isotope samples from the Skeiðará glacial melt river range from +3.4 to +8.8 o/oo^34S. The higher values occur during a flood event and reflect geothermal reduced sulphate contributions from the Grímsvötn caldera. Groundwater-fed 'kettle-hole lakes' formed since 1996 form important ecological niches within an otherwise relatively barren region and have the lowest ^34S-SO4values (average -0.8 o/oo ^34S) attributed to bacterially-mediated sulphide oxidation and coupled to carbonate and possibly silicate dissolution. The hydrochemistry of eastern sandur groundwater is influenced by a hydrothermal source of reduced sulphate from the Grímsvötn caldera or an area of geothermal springs routed beneath the Skeiðará river, and contrasts with the hydrochemistry of the Sulá and Gígjukvísl rivers in the western part of the sandur and the majority of the groundwaters. These have lower concentrations of [Ca2++Mg2+], [Na++K+] and SO42- and ^34S values consistent with sulphate derived from the oxidation of igneous sulphides reflecting geochemical evolution and modified weathering processes from that of supraglacial streams. The significant influence of internal contributions of sulphate (rock-derived and geothermal) on Skeiðarársandur means this catchment buffers recent reductions in anthropogenic sulphur emissions.

  1. Bringing life to soil physical processes

    NASA Astrophysics Data System (ADS)

    Hallett, P. D.

    2013-12-01

    When Oklahoma's native prairie grass roots were replaced by corn, the greatest environmental (and social) disaster ever to hit America ensued. The soils lost structure, physical binding by roots was annihilated and when drought came the Great Dust Bowl commenced. This form of environmental disaster has repeated over history and although not always apparent, similar processes drive the degradation of seemingly productive farmland and forests. But just as negative impacts on biology are deleterious to soil physical properties, positive impacts could reverse these trends. In finding solutions to soil sustainability and food security, we should be able to exploit biological processes to improve soil physical properties. This talk will focus on a quantitative understanding of how biology changes soil physical behaviour. Like the Great Dust Bowl, it starts with reinforcement mechanisms by plant roots. We found that binding of soil by cereal (barley) roots within 5 weeks of planting can more than double soil shear strength, with greater plant density causing greater reinforcement. With time, however, the relative impact of root reinforcement diminishes due to root turnover and aging of the seedbed. From mechanical tests of individual roots, reasonable predictions of reinforcement by tree roots are possible with fibre bundle models. With herbaceous plants like cereals, however, the same parameters (root strength, stiffness, size and distribution) result in a poor prediction. We found that root type, root age and abiotic factors such as compaction and waterlogging affect mechanical behaviour, further complicating the understanding and prediction of root reinforcement. For soil physical stability, the interface between root and soil is an extremely important zone in terms of resistance of roots to pull-out and rhizosphere formation. Compounds analogous to root exudates have been found with rheological tests to initially decrease the shear stress where wet soils flow, but

  2. Physical processes in collapse driven supernova

    SciTech Connect

    Mayle, R.W.

    1985-11-01

    A model of the supernova explosion is discussed. The method of neutrino transport is discussed, since the explosive mechanism depends on neutrino heating of the material behind the accretion shock. The core region of these exploding stars becomes unstable to convective motions during the supernova evolution. Convective mixing allows more neutrinos to escape from under the neutrinosphere, and thus increases the amount of heating by neutrinos. An approximate method of incorporating convection is described, and some results of including convection in a computer model is presented. Another phenomena is seen in computer simulations of supernova, oscillations in the neutrino luminosity and mass accretion rate onto the protoneutron star. The last topic discussed in this thesis describes the attempt to understand this oscillation by perturbation of the steady state solution to equations approximating the complex physical processes occurring in the late time supernova. 42 refs., 31 figs.

  3. Coupled modeling of biospheric and chemical weathering processes at the continental scale

    NASA Astrophysics Data System (ADS)

    Roelandt, C.; GoddéRis, Y.; Bonnet, M.-P.; Sondag, F.

    2010-06-01

    In this contribution, a reactive-transport model describing weathering in soil profiles and at the watershed scale is coupled to a dynamic global vegetation model to calculate the dissolved load of continental waters on a 0.5° latitude × 0.5° longitude grid. The so-called Biosphere-Weathering at the Catchment Scale (B-WITCH) model is applied to the Orinoco watershed (South America). We show that B-WITCH is able to reproduce the main cation composition of the surface waters over the watershed. Sensitivity tests demonstrate that clay mineral reactivities are key factors controlling the calculated discharge of dissolved species. More specifically, our simulations show that the dissolution and precipitation rates of clay minerals in the weathering profiles are strongly intertwined, and that this coupling must be accurately described when modeling the weathering fluxes at the continental scale. A second set of sensitivity tests show that, for the tropical environment, land plants control the total base cation discharge through their impact on the soil hydrology, rather than through enhanced soil CO2 pressures. Indeed, the complete removal of the continental vegetation leads to an increase in the dissolved fluxes to the ocean by 80% because of the collapse in the evapotranspiration, resulting in a more efficient drainage of the weathering profiles. On the other hand, neglecting the root respiration and setting the soil CO2 pressure to the atmospheric level forces the total base cation discharge to decrease by only 20%.

  4. Displaying Composite and Archived Soundings in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Volkmer, Matthew R.; Blottman, Peter F.; Sharp, David W.

    2008-01-01

    In a previous task, the Applied Meteorology Unit (AMU) developed spatial and temporal climatologies of lightning occurrence based on eight atmospheric flow regimes. The AMU created climatological, or composite, soundings of wind speed and direction, temperature, and dew point temperature at four rawinsonde observation stations at Jacksonville, Tampa, Miami, and Cape Canaveral Air Force Station, for each of the eight flow regimes. The composite soundings were delivered to the National Weather Service (NWS) Melbourne (MLB) office for display using the National version of the Skew-T Hodograph analysis and Research Program (NSHARP) software program. The NWS MLB requested the AMU make the composite soundings available for display in the Advanced Weather Interactive Processing System (AWIPS), so they could be overlaid on current observed soundings. This will allow the forecasters to compare the current state of the atmosphere with climatology. This presentation describes how the AMU converted the composite soundings from NSHARP Archive format to Network Common Data Form (NetCDF) format, so that the soundings could be displayed in AWl PS. The NetCDF is a set of data formats, programming interfaces, and software libraries used to read and write scientific data files. In AWIPS, each meteorological data type, such as soundings or surface observations, has a unique NetCDF format. Each format is described by a NetCDF template file. Although NetCDF files are in binary format, they can be converted to a text format called network Common data form Description Language (CDL). A software utility called ncgen is used to create a NetCDF file from a CDL file, while the ncdump utility is used to create a CDL file from a NetCDF file. An AWIPS receives soundings in Binary Universal Form for the Representation of Meteorological data (BUFR) format (http://dss.ucar.edu/docs/formats/bufr/), and then decodes them into NetCDF format. Only two sounding files are generated in AWIPS per day. One

  5. Cryptomelane: A tool to determine the age and the physical-chemical regime of a Plio-Pleistocene weathering zone in a granitic terrain (Hagendorf, SE Germany)

    NASA Astrophysics Data System (ADS)

    Dill, H. G.; Hansen, B.; Keck, E.; Weber, B.

    2010-09-01

    Cryptomelane, a K-Mn-bearing oxide, is widespread in the lowermost part of the weathering/supergene alteration zone of the Hagendorf Pegmatite, SE Germany. This supergene Mn mineral has been used in the present study for K/Ar dating of weathering and paleohydraulic processes as young as Plio-Pleistocene. Different cryptomelane age data found in the same weathering and paleohydraulic system resulted from continuous hydraulic processes in the weathering system rather than from a stepwise uplift that shaped the landscape in the granitic area of the NE Bavarian Basement. An almost pure cryptomelane mineralization is indicative of the basal zone of supergene alteration, because a complete separation of Mn from Fe can favorably be achieved only in the infiltration zone under slightly reducing conditions or in the percolation zone under slightly oxidizing conditions. Cryptomelane is precipitated under slightly oxidizing conditions from alkaline solutions in the percolation zone and cast as a marker for fluctuating (paleo)water levels. Manganese oxides, uranyl phosphates and silicates were found at different depths in the weathering zone of this granitic terrain. They were dated by different dating methods (K/Ar and U/Pb) and yielded the same age of formation. Consequently, the 4 Ma signal of both groups of supergene minerals has geomorphological and paleohydraulic connotation and is related to a unique geomorphological process, the Pliocene peneplanation. Gradual hydraulic adjustments gave rise to the younger Pleistocene age found at shallow depth in the weathering zone.

  6. Commercializing Space Weather using GAIM

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Schunk, Robert; Sojka, Jan J.

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the en-ergy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects com-munication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) was organized in 2009 to develop commercial space weather applications. It uses the Global Assimilation of Ionospheric Measurements (GAIM) system as the basis for providing improvements to communication and navigation systems. For example, in August 2009 SWC released, in conjunction with Space Environment Technologies, the world's first real-time space weather via an iPhone app, Space WX. It displays the real-time, current global ionosphere to-tal electron content along with its space weather drivers, is available through the Apple iTunes store, and is used around the world. The GAIM system is run operationally at SWC for global and regional (continental U.S.) conditions. Each run stream continuously ingests up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations in a Kalman filter to adjust the background output from the physics-based Ionosphere Forecast Model (IFM). Additionally, 80 real-time digisonde data streams from around the world provide ionosphere characterization up to the F-region peak. The combination of these data dramatically improves the current epoch ionosphere specification beyond the physics-based solution. The altitudinal range is 90-1500 km for output TEC, electron densities, and other data products with a few degrees resolution in latitude and longitude at 15-minute time granularity. We describe the existing SWC products that are used as commercial space weather information. SWC funding is provided by the State of Utah's Utah Science Technology and Research (USTAR) initiative. The SWC is physically located on the USU campus in Logan, Utah.

  7. Weathering properties of treated southern yellow pine wood examined by X-ray photoelectron spectroscopy, scanning electron microscopy and physical characterization

    NASA Astrophysics Data System (ADS)

    Salaita, Ghaleb N.; Ma, Frank M. S.; Parker, Trudy C.; Hoflund, Gar B.

    2008-04-01

    In this study the weathering behavior of southern yellow pine (SYP) wood samples pretreated in different solutions has been examined using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and various types of physical characterization regarding material loss and discoloration. The treatment solutions include water as a control, a commercially available water repellent (WR) wood treating additive and polyethylene glycol (PEG) products including PEG PLUS™, PEG 8000 solutions and Compound 20M in varying concentrations. All contained the wood preservative chromated copper arsenate (CCA). One sample was treated with a CCA solution only. The treatments were carried out at 20 °C and 150 psig for 1/2 h after exposure to vacuum (28 mmHg) for 15 min. Simulated weathering was achieved in an Atlas 65-W Weather-Ometer for 2000 h with both light and dark periods and rain. The temperature ranged from 23 °C during the dark cycle to 35 °C during the light cycle. With weathering the XPS O/C ratios increase due to oxidation of the surface. Exposure to UV light results in bond breakage and reaction with oxygen in the presence of air to form organic functional groups such as ?, ?, C dbnd O and/or O-C-O. These oxidized products can protect the underlying wood from deterioration if they are insoluble in water and remain on the surface as a protective coating. If soluble, rain washes the compounds away and assists in the degradation. Correlated changes are observed in the XPS O/C ratios, the high-resolution XPS C 1s spectra, the SEM micrographs and physical measurements including thickness alteration, weight loss, and discoloration by yellowing or whitening of the weathered wood. The PEG treatments are effective in protecting wood with the 2% PEG PLUS treatment providing the best weathering behavior similar to that of the CCA treatment. The WR and water treatments yield the poorest weathering properties.

  8. Physical processes in EUV sources for microlithography

    NASA Astrophysics Data System (ADS)

    Banine, V. Y.; Koshelev, K. N.; Swinkels, G. H. P. M.

    2011-06-01

    The source is an integral part of an extreme ultraviolet lithography (EUVL) tool. Such a source, as well as the EUVL tool, has to fulfil very high demands both technical and cost oriented. The EUVL tool operates at a wavelength of 13.5 nm, which requires the following new developments. The light production mechanism changes from conventional lamps and lasers to relatively high-temperature emitting plasmas. The light transport, mainly refractive for deep ultraviolet (DUV), should be reflective for EUV. The source specifications as derived from the customer requirements on wafer throughput mean that the output EUV source power has to be hundreds of watts. This in its turn means that tens to hundreds of kilowatts of dissipated power has to be managed in a relatively small volume. In order to keep lithography costs as low as possible, the lifetime of the components should be as long as possible and at least of the order of thousands of hours. This poses a challenge for the sources, namely how to design and manufacture components robust enough to withstand the intense environment of high heat dissipation, flows of several keV ions as well as the atomic and particular debris within the source vessel. As with all lithography tools, the imaging requirements demand a narrow illumination bandwidth. Absorption of materials at EUV wavelengths is extreme with extinguishing lengths of the order of tens of nanometres, so the balance between high transmission and spectral purity requires careful engineering. All together, EUV lithography sources present technological challenges in various fields of physics such as plasma, optics and material science. These challenges are being tackled by the source manufacturers and investigated extensively in the research facilities around the world. An overview of the published results on the topic as well as the analyses of the physical processes behind the proposed solutions will be presented in this paper.

  9. The Stress Process in Physical Education

    ERIC Educational Resources Information Center

    Blankenship, Bonnie Tjeerdsma

    2007-01-01

    Negative stress in physical education can reduce a student's enjoyment of physical activity and destroy the individual's desire to be a lifelong mover. The purpose of this article is to explore the concept of stress in physical education. Stress is defined as a substantial imbalance between the demand of a situation and the individual's capability…

  10. Physics as an Enterprise of Process Philosophy

    ERIC Educational Resources Information Center

    Rangacharyulu, Chary

    2005-01-01

    Physics, as a discipline, attempts to discern the mysteries of physical universe and it is also an inspiration for technological innovations which contribute to the good or demise of human civilization. While it continues to have tremendous impact on the technological front, one wonders if physics, as an enterprise engaged in providing a coherent…

  11. Impact of physics parameterizations on high-resolution weather prediction over two Chinese megacities

    NASA Astrophysics Data System (ADS)

    Barlage, Michael; Miao, Shiguang; Chen, Fei

    2016-05-01

    The 1 km Institute of Urban Meteorology (IUM) operational model has a high-temperature bias, especially at night, and a high wind speed bias in urbanized areas, limiting the ability of IUM to provide accurate, high-resolution prediction of thermal stress and air quality for the densely populated Beijing-Tianjin metro region. This study provides an assessment of the IUM WRF-based operational model setups and performs a diagnostic analysis to isolate the contributions of model physics parameterization schemes to operational forecast bias over complex urban regions. Results show that non-turbulent kinetic energy (TKE) planetary boundary layers (PBL) schemes perform better than their counterpart TKE-based schemes at night, reducing the warm bias by about 1°C in nonurban areas. However, the best performing urban PBL scheme still produces ~2°C warm bias. Considering aerosol effects in the solar radiation scheme improves downward solar radiation and surface energy budgets but has negligible effect on the simulated temperature. Urban canopy models and the specification of various urban model parameters have comparable or even more significant contributions to forecast biases in temperature and wind speed than PBL schemes. The predicted PBL height using an optimized urban parameter table is lower by about 100-200 m, which is about 50-100% of the interurban scheme effect on the PBL height. Overall, the Building Effect Parameterization urban scheme with the default parameter table, or a parameter table with less urban heat storage, is recommended for the best results in urban areas and shows that most of the urban areas of Beijing and Tianjin have a greater than 4°C improvement in absolute temperature bias and more than 1 m s-1 improvement in absolute wind speed bias.

  12. Weather variability, ecological processes and optimization of soil micro-environment for rangeland restoration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arid and semi-arid rangelands occupy over half of the earth’s surface and are characterized by relatively high variability in seasonal and annual patterns of precipitation. Invasive plants compete for soil and water resources and exacerbate inherent weather limitations for native plant establishmen...

  13. Statistical physics of media processes: Mediaphysics

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Dmitri V.; Mandel, Igor

    2007-04-01

    The processes of mass communications in complicated social or sociobiological systems such as marketing, economics, politics, animal populations, etc. as a subject for the special scientific subbranch-“mediaphysics”-are considered in its relation with sociophysics. A new statistical physics approach to analyze these phenomena is proposed. A keystone of the approach is an analysis of population distribution between two or many alternatives: brands, political affiliations, or opinions. Relative distances between a state of a “person's mind” and the alternatives are measures of propensity to buy (to affiliate, or to have a certain opinion). The distribution of population by those relative distances is time dependent and affected by external (economic, social, marketing, natural) and internal (influential propagation of opinions, “word of mouth”, etc.) factors, considered as fields. Specifically, the interaction and opinion-influence field can be generalized to incorporate important elements of Ising-spin-based sociophysical models and kinetic-equation ones. The distributions were described by a Schrödinger-type equation in terms of Green's functions. The developed approach has been applied to a real mass-media efficiency problem for a large company and generally demonstrated very good results despite low initial correlations of factors and the target variable.

  14. Proton computed tomography from multiple physics processes

    NASA Astrophysics Data System (ADS)

    Bopp, C.; Colin, J.; Cussol, D.; Finck, Ch; Labalme, M.; Rousseau, M.; Brasse, D.

    2013-10-01

    Proton CT (pCT) nowadays aims at improving hadron therapy treatment planning by mapping the relative stopping power (RSP) of materials with respect to water. The RSP depends mainly on the electron density of the materials. The main information used is the energy of the protons. However, during a pCT acquisition, the spatial and angular deviation of each particle is recorded and the information about its transmission is implicitly available. The potential use of those observables in order to get information about the materials is being investigated. Monte Carlo simulations of protons sent into homogeneous materials were performed, and the influence of the chemical composition on the outputs was studied. A pCT acquisition of a head phantom scan was simulated. Brain lesions with the same electron density but different concentrations of oxygen were used to evaluate the different observables. Tomographic images from the different physics processes were reconstructed using a filtered back-projection algorithm. Preliminary results indicate that information is present in the reconstructed images of transmission and angular deviation that may help differentiate tissues. However, the statistical uncertainty on these observables generates further challenge in order to obtain an optimal reconstruction and extract the most pertinent information.

  15. Proton computed tomography from multiple physics processes.

    PubMed

    Bopp, C; Colin, J; Cussol, D; Finck, Ch; Labalme, M; Rousseau, M; Brasse, D

    2013-10-21

    Proton CT (pCT) nowadays aims at improving hadron therapy treatment planning by mapping the relative stopping power (RSP) of materials with respect to water. The RSP depends mainly on the electron density of the materials. The main information used is the energy of the protons. However, during a pCT acquisition, the spatial and angular deviation of each particle is recorded and the information about its transmission is implicitly available. The potential use of those observables in order to get information about the materials is being investigated. Monte Carlo simulations of protons sent into homogeneous materials were performed, and the influence of the chemical composition on the outputs was studied. A pCT acquisition of a head phantom scan was simulated. Brain lesions with the same electron density but different concentrations of oxygen were used to evaluate the different observables. Tomographic images from the different physics processes were reconstructed using a filtered back-projection algorithm. Preliminary results indicate that information is present in the reconstructed images of transmission and angular deviation that may help differentiate tissues. However, the statistical uncertainty on these observables generates further challenge in order to obtain an optimal reconstruction and extract the most pertinent information. PMID:24076769

  16. Contrasting Li and Mg isotope behaviour in small Alpine rivers: tracing seasonal changes in weathering processes (Invited)

    NASA Astrophysics Data System (ADS)

    Tipper, E.; Hindshaw, R. S.; Bourdon, B.; Lemarchand, E.

    2013-12-01

    Seasonal changes in river chemistry offer the potential to assess how weathering processes respond to changing meteorological parameters and ultimately how chemical weathering might respond to climatic parameters. A key observation with time-series data on river waters is that variations in elemental concentrations (typically less than an order of magnitude) are damped compared to variations in discharge (up to several orders of magnitude). This behavior is referred to as chemostatic. However, both radiogenic and stable isotope ratios of the solutes show significant, systematic temporal variations than indicate that there is not a chemostasis in the elemental release of solutes during dissolution. Here we discuss systematic seasonal variations in lithium and magnesium isotope ratios (the 7Li/6Li 26Mg/24Mg ratio expressed as delta7Li and delta26Mg in per mil units) in stream waters from a mono-lithological granitic, weathering-limited, first order catchment from the Swiss Alps (Damma glacier). Rain, ground, and pore-waters, in addition to plants, rocks, mineral separates and soil are also reported. Whilst the concentration response of Li and Mg in the river waters is attenuated compared to the large changes in discharge that occur over an annual cycle the systematic trends in both the Mg and Li isotope data imply that either the source of the Li and Mg changes in a systematic manner, or that the process by which Mg and Li are released into solution changes as a function of discharge. In the first order the Mg and Li isotope data appear to show similar trends. However, when examined in more detail, it is difficult to reconcile the data by one pair of fractionation factors for Li and Mg. This provides an additional constraint on how weathering processes vary over a seasonal cycle, and perhaps indications an incomplete equilibrium or kinetic limitation to weathering. The reasons behind these trends will be discussed in the context of the apparent chemostatic behavior

  17. Weather Watch

    ERIC Educational Resources Information Center

    Bratt, Herschell Marvin

    1973-01-01

    Suggests a number of ways in which Federal Aviation Agency weather report printouts can be used in teaching the weather section of meteorology. These weather sequence reports can be obtained free of charge at most major airports. (JR)

  18. Sun-weather relationships

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The possible processes in the lower atmosphere of the earth initiated or controlled by changes in the output of the sun are investigated. These changes can include solar variation in radiation (as in the constant, or in specific wavelength regions), in particles (as in physical properties of the solar wind, or in solar cosmic rays, or solar-modulated galactic cosmic rays), and in the extended magnetic field of the sun (as in circumstances of the passage of interplanetary sector boundaries). Changes of short term (in the weather) as well as long term (in regional or global climate) are considered.

  19. Factoring in weather variation to capture the influence of urban design and built environment on globally recommended levels of moderate to vigorous physical activity in children

    PubMed Central

    Katapally, Tarun Reddy; Muhajarine, Nazeem

    2015-01-01

    Objectives In curbing physical inactivity, as behavioural interventions directed at individuals have not produced a population-level change, an ecological perspective called active living research has gained prominence. However, active living research consistently underexplores the role played by a perennial phenomenon encompassing all other environmental exposures—variation in weather. After factoring in weather variation, this study investigated the influence of diverse environmental exposures (including urban design and built environment) on the accumulation of globally recommended moderate to vigorous physical activity levels (MVPA) in children. Design This cross-sectional observational study is part of an active living initiative set in the Canadian prairie city of Saskatoon. As part of this study, Saskatoon's neighbourhoods were classified based on urban street design into grid-pattern, fractured grid-pattern and curvilinear types of neighbourhoods. Moreover, diverse environmental exposures were measured including, neighbourhood built environment, and neighbourhood and household socioeconomic environment. Actical accelerometers were deployed between April and June 2010 (spring-summer) to derive MVPA of 331 10–14-year-old children in 25 1-week cycles. Each cycle of accelerometry was conducted on a different cohort of children within the total sample and matched with weather data obtained from Environment Canada. Multilevel modelling using Hierarchical Linear and Non-linear Modelling software was conducted by factoring in weather variation to depict the influence of diverse environmental exposures on the accumulation of recommended MVPA. Results Urban design, including diversity of destinations within neighbourhoods played a significant role in the accumulation of MVPA. After factoring in weather variation, it was observed that children living in neighbourhoods closer to the city centre (with higher diversity of destinations) were more likely to accumulate

  20. Space Weathering of Apollo 16 Sample 62255: Lunar Rocks as Witness Plates for Deciphering Regolith Formation Processes

    NASA Technical Reports Server (NTRS)

    Wentworth, S. J.; McKay, D. S.; Keller, L. P.

    2004-01-01

    Space weathering, or alteration that occurs at the surfaces of materials exposed directly to space, has been one of the primary areas of focus of lunar studies for the past several years. It is caused by processes such as micrometeorite impacts and solar wind bombardment, and effects can include microcraters, spall zones, and vapor deposits. Much of the recent work on space weathering has been concentrated on nanoscale features, especially the amorphous rims commonly found on individual lunar soil grains. The rims typically contain nanophase Fe metal globules, which, along with Fe metal globules in agglutinates, have a profound effect on optical properties of lunar soils. The nanophase metallic iron globules cause the characteristic optical changes (reddening and darkening) found in mature lunar soils.

  1. NASA's Advancements in Space-Based Spectrometry Lead to Improvements in Weather Prediction and Understanding of Climate Processes

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2010-01-01

    AIRS is a precision state of the art High Spectral Resolution Multi-detector IR grating array spectrometer that was launched into a polar orbit on EOS Aqua in 2002. AIRS measures most of the infra-red spectrum with very low noise from 650/cm to 2660/cm with a resolving power of 2400 at a spatial resolution of 13 km. The objectives of AIRS were to perform accurate determination of atmospheric temperature and moisture profiles in up to 90% partial cloud cover conditions for the purpose of improving numerical weather prediction and understanding climate processes. AIRS data has also been used to determine accurate trace gas profiles. A brief overview of the retrieval methodology used to analyze AIRS observations under partial cloud cover will be presented and sample results will be shown from the weather and climate perspectives.

  2. Anvil Forecast Tool in the Advanced Weather Interactive Processing System, Phase II

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III

    2008-01-01

    Meteorologists from the 45th Weather Squadron (45 WS) and Spaceflight Meteorology Group have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the Lightning Launch Commit Criteria and Space Light Rules. As a result, the Applied Meteorology Unit (AMU) created a graphical overlay tool for the Meteorological Interactive Data Display Systems (MIDDS) to indicate the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input.

  3. The weathering and transformation process of lead in China's shooting ranges.

    PubMed

    Li, Yeling; Zhu, Yongbing; Zhao, Sanping; Liu, Xiaodong

    2015-09-01

    Corroding steel-core bullets from three shooting ranges in different climate zones of China were collected. Multiple technical methods (EMPA, SEM, XRD, and ICP-OES) were applied to investigate the structure, morphology, and weathering product of this type of bullet in China to analyze the weathering mechanisms in different types of soils. A scanning electron microscope (SEM) was used to view the morphology and microstructure of corrosion layers. On the corroded lead layer surface, unevenness, micro cracks, and spallation were usually present. Around the micro cracks, many types of euhedral and subhedral crystals of the secondary products of lead were formed, most of which were composed of cerussite (PbCO3), while hydrocerussite (Pb3(CO3)2(OH)2) was predominant in the bullet collected from the humid environment. X-ray power diffraction (XRD) results show that the secondary weathering products in the three shooting range soils are clearly different. In the Fangyan shooting range, which has a neutral and semi-arid soil, the lead weathering product was mainly hydrocerussite (Pb3(CO3)2(OH)2), while no substantial amount of crystal phase of lead compound could be found in acidic, damp soils from the Fenghuang shooting range, possibly due to the enhanced dissolution and mobilization of lead compounds at lower pH and higher content of organic matter in the soil. In hot and arid environment of the Baicheng shooting range, cerussite might have undergone thermal decomposition, thus generating shannonite (Pb2O(CO3)). These results indicate that the formation of secondary Pb minerals is largely affected by the climatic zone or the soil properties, which may have implications for range management practices. PMID:26283517

  4. Clay mineralogical and geochemical constraints on late Pleistocene weathering processes of the Qaidam Basin, northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Miao, WeiLiang; Fan, QiShun; Wei, HaiCheng; Zhang, XiYing; Ma, HaiZhou

    2016-09-01

    At the Qarhan Salt Lake (QSL) on the central-eastern Qaidam Basin, northern Tibetan Plateau, Quaternary lacustrine sediments have a thickness of over 3000 m and mainly composed of organic-rich clay and silty clay with some silt halite and halite. In this study, a 102-m-long sediment core (ISL1A) was obtained from the QSL. Combining with AMS 14C and 230Th dating, clay minerals and major-element concentrations of ISL1A were used to reconstruct the weathering process and trend of the QSL since late Pleistocene. The results reveal that the clay mineral from <2 μm fraction in ISL1A is composed of illite (47-77%), chlorite (8-27%), smectite (including illite-smectite mixed layers, 3-29%) and kaolinite (2-11%). Such clay mineral assemblages in ISL1A derived primarily from felsic igneous rocks, gneisses and schists of Eastern Kunlun Mountains on the south of the QSL. The abundance of illite mineral displays an opposite fluctuation trending with that of smectite, chlorite and kaolinite mineral in ISL1A, which is significantly different from the monsoon-controlled regions. Moreover, higher values of illite, kaolinite/chlorite and illite/chlorite ratios, and lower values of smectite, chlorite and kaolinite minerals occurred in 83-72.5 ka, 68.8-54 ka, 32-24 ka, corresponding to late MIS 5, late MIS 4, early MIS 3 and late MIS 3, respectively. These three phases were almost similarly changed with oxygen isotopes of authigenic carbonates and pollen records in ISL1A, which implies that stronger chemical weathering corresponds to higher effective moisture periods of source region in the Qaidam Basin. Based on chemical weathering index and (Al2O3-(CaO + Na2O)-K2O) diagram, chemical weathering degree in this study area takes a varying process from low to intermediate on the whole.

  5. Thermodynamics of Irreversible Processes. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Levin, Michael; Gallucci, V. F.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module describes the application of irreversible thermodynamics to biology. It begins with…

  6. Probing new physics in rare charm processes

    SciTech Connect

    Hewett, J.L.

    1994-09-01

    The possibility of using the charm system to search for new physics is addressed. Phenomena such as D{sup 0} - {bar D}{sup 0} mixing and rare decays of charmed mesons are first examined in the Standard Model to test the present understanding and to serve as benchmarks for signals from new sources. The effects of new physics from various classes of non-standard dynamical models on D{sup 0} - {bar D}{sup 0} mixing are investigated.

  7. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This article deals with a poster entitled, "Severe Weather," that has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in…

  8. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This month's insert, Severe Weather, has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in this poster are hurricanes,…

  9. Creating Interactive Graphical Overlays in the Advanced Weather Interactive Processing System (AWIPS) Using Shapefiles and DGM Files

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Lafosse, Richard; Hood, Doris; Hoeth, Brian

    2007-01-01

    Graphical overlays can be created in real-time in the Advanced Weather Interactive Processing System (AWIPS) using shapefiles or DARE Graphics Metafile (DGM) files. This presentation describes how to create graphical overlays on-the-fly for AWIPS, by using two examples of AWIPS applications that were created by the Applied Meteorology Unit (AMU). The first example is the Anvil Threat Corridor Forecast Tool, which produces a shapefile that depicts a graphical threat corridor of the forecast movement of thunderstorm anvil clouds, based on the observed or forecast upper-level winds. This tool is used by the Spaceflight Meteorology Group (SMG) and 45th Weather Squadron (45 WS) to analyze the threat of natural or space vehicle-triggered lightning over a location. The second example is a launch and landing trajectory tool that produces a DGM file that plots the ground track of space vehicles during launch or landing. The trajectory tool can be used by SMG and the 45 WS forecasters to analyze weather radar imagery along a launch or landing trajectory. Advantages of both file types will be listed.

  10. Sr isotopes as a tracer of weathering processes and dust inputs in a tropical granitoid watershed, Luquillo Mountains, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, Julie C.; Derry, Louis A.; Kurtz, Andrew C.

    2009-01-01

    Sr isotope data from soils, water, and atmospheric inputs in a small tropical granitoid watershed in the Luquillo Mountains of Puerto Rico constrain soil mineral development, weathering fluxes, and atmospheric deposition. This study provides new information on pedogenic processes and geochemical fluxes that is not apparent in watershed mass balances based on major elements alone. 87Sr/ 86Sr data reveal that Saharan mineral aerosol dust contributes significantly to atmospheric inputs. Watershed-scale Sr isotope mass balance calculations indicate that the dust deposition flux for the watershed is 2100 ± 700 mg cm -2 ka -1. Nd isotope analyses of soil and saprolite samples provide independent evidence for the presence of Saharan dust in the regolith. Watershed-scale Sr isotope mass balance calculations are used to calculate the overall short-term chemical denudation velocity for the watershed, which agrees well with previous denudation rate estimates based on major element chemistry and cosmogenic nuclides. The dissolved streamwater Sr flux is dominated by weathering of plagioclase and hornblende and partial weathering of biotite in the saprock zone. A steep gradient in regolith porewater 87Sr/ 86Sr ratio with depth, from 0.70635 to as high as 0.71395, reflects the transition from primary mineral-derived Sr to a combination of residual biotite-derived Sr and atmospherically-derived Sr near the surface, and allows multiple origins of kaolinite to be identified.

  11. Weathering Processes and Concentration-Discharge Patterns in Granitic Landscapes of the Critical Zone Network

    NASA Astrophysics Data System (ADS)

    Aguirre, A. A.; Derry, L. A.; Mills, T. J.

    2015-12-01

    Concentration-discharge relationships for silica in granitic landscapes vary throughout the critical zone network. In the Rio Icacos, Puerto Rico silica concentrations show strong dilution effects (Shanley et al., 2011). At the Boulder Creek CZO the Gordon Gulch catchment shows nearly constant dissolved silica (DSi) concentrations over three orders of magnitude change in discharge (Q). A major question is what controls the range of dilution to chemostatic behavior in catchments with similar lithology. Given that anything but perfect dilution behavior implies an increase in silica flux with increasing Q, we infer that different sources of DSi may be activated at different Q. Tracer data (Ge/Si) indicate that sources of DSi do change with Q in some systems (Kurtz et al., 2011). The CZO sites at Luquillo (LCZO), Boulder (BCCZO), Southern Sierra (SSCZO) and Santa Catalina-Jemez (SCCZO) share similar granitoid bedrock composition. We want to understand how the variation in climate, hydrology and weathering have influenced their regolith development and reach a better understanding of the DSi-Q patterns. Data from the SSCZO and BCCZO sites indicate that these systems have chemostatic C-Q behavior for Si and other major weathering products. However, Ge/Si and Si relationships between sites vary drastically. At the SSCZO Ge/Si ratios are very low, but increase at lower Si concentrations. This behavior is consistent with release of Si from plagioclase weathering and strong control of DGe by clay neoformation. At BCCZO, Ge/Si increases with increasing Si. In Boulder, DSi (as defined operationally by filtering at 0.45 μm) includes transport as colloidal particles that are important under certain hydrologic states. Thus the hydrochemical mechanisms responsible for chemostatic behavior of DSi differ significantly between the two locations despite similar lithologies and climate. Current work in soil and rock samples from BCCZO and SSCZO will help elaborate how mineralogical

  12. Generation of abnormal trace element abundances in Antarctic eucrites by weathering processes

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Lindstrom, Marilyn M.

    1991-01-01

    Data were obtained on the trace- and major-element compositions of 16 Antarctic abnormal eucrites, many of which exhibiting positive (but sometimes negative) Ce anomalies, positive Eu anomalies, and low abundances of the remainder of the REEs. The results of data analysis suggest that the unusual REE patterns of abnormal Antarctic eucrites arise from weathering effects generated in or on the Antarctic ice. The suggested scenario involves the formation of melt water and its equilibration with the atmosphere, promoting the dissolution of REE-rich phosphates and the oxidation of Ce. As a result, tetravalent Ce is fractionated from the trivalent REE in solution.

  13. Characterization and nultivariate analysis of physical properties of processing peaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Characterization of physical properties of fruits represents the first vital step to ensure optimal performance of fruit processing operations and is also a prerequisite in the development of new processing equipment. In this study, physical properties of engineering significance to processing of th...

  14. On the Rust Products Formed on Weathering and Carbon Steels Exposed to Chloride in Dry-Wet Cyclical Processes

    NASA Astrophysics Data System (ADS)

    García, K. E.; Morales, A. L.; Barrero, C. A.; Greneche, J. M.

    2005-02-01

    The rust products formed on weathering and carbon steels exposed to dry-wet cyclical processes in different chloride-rich solutions are carefully examined by means of different techniques. Special emphasis is given to the methodology of analysis of the data using 300 K and 77 K Mössbauer spectrometry and X-ray diffraction. The rust that is loosely bound to the metal surface and that it is lost during the corrosion process, for both types of steel, was found to be composed of lepidocrocite, superparamagnetic goethite, hematite, and traces of akaganeite. On the other hand, the adherent rust, which is differentiated as scraped and hit according to the way it is obtained, from both steels was found to be composed of akaganeite, spinel phase, goethite exhibiting broad distribution of particle sizes and lepidocrocite. The relative abundances of rust components for both steels were very similar, suggesting similar corrosion processes. Mass loss measurements show that the corrosion rates increases with increasing the chloride concentration. The presence of large quantities of spinel phase and akaganeite are a consequence of a corrosion process under the influence of very high chloride concentrations. Our results are useful for assessing the behavior of weathering steels where the levels of chlorides are high or in contact with sea water.

  15. CHEMICAL AND PHYSICAL PROCESS AND MECHANISM MODELING

    EPA Science Inventory

    The goal of this task is to develop and test chemical and physical mechanisms for use in the chemical transport models of EPA's Models-3. The target model for this research is the Community Multiscale Air Quality (CMAQ) model. These mechanisms include gas and aqueous phase ph...

  16. Weather & Weather Maps. Teacher's Manual.

    ERIC Educational Resources Information Center

    Metro, Peter M.; Green, Rachel E.

    This guide is intended to provide an opportunity for students to work with weather symbols used for reporting weather. Also included are exercises in location of United States cities by latitude and longitude, measurement of distances in miles and kilometers, and prediction of weather associated with various types of weather fronts. (RE)

  17. Weathering in a Cup.

    ERIC Educational Resources Information Center

    Stadum, Carol J.

    1991-01-01

    Two easy student activities that demonstrate physical weathering by expansion are described. The first demonstrates ice wedging and the second root wedging. A list of the needed materials, procedure, and observations are included. (KR)

  18. Geochemical evidence of chemical and physical weathering of mine waste downriver from the New Idria Mercury Mine, San Benito County, California

    NASA Astrophysics Data System (ADS)

    Sharma, R. K.; Weinman, B.

    2014-12-01

    Soil, river bank, and sediment samples were collected from Panoache Creek's mine tailings and its drainages in the Mendota Pool area of California's Central Valley. The samples were collected in order to understand the transport mechanisms of mercury and other heavy metals from the abandoned New Idria Mercury Mine (NIMM) in San Banito County, CA. It is generally thought that materials weathered from the NIMM site flow down gradient into the San Carlos Creek, which then joins Silver Creek and Panoche Creek, before finally ending up in the Valley's Mendota pool and San Joaquin River (SJR). While we know that factors like geology, anthropogenic activities, and weathering can accelerate heavy metal accumulation at downgradient reaches (Chakravarty and Patgiri, 2009), it is unclear how this part of the SJR has responded to the mine's abandonment since the 1970s. To investigate how mercury and other heavy metals are weathering and being transported through this portion of the SJR drainage, gains and losses using "enrichment factors" (EF) were calculated and compared along a gradient downstream. Overall, EF of fine and bank sediments show Hg is being enriched and stored within bank sediments. For example, Hg in banks sediments are up to 5% enriched compared to the bed sediments. There is also an enrichment gain trending downstream, as sediments settling in the Mendota pool have comparatively higher EF for Hg (0.94 ppm to 6.91 ppm) relative to background concentrations. Along with other geochemical indices, which can be used to more highly resolve exactly how mine contaminants like Hg are chemically and physically being weathered, (i.e., Igeo, PLI, and CIA) the overall enrichment trend is interpreted to be the physical transport of erosion material during runoff events from the stream banks of SJR tributaries. This interpretation is also supported by depleted Sr and enriched Rb/Sr ratios, which further support physical transport as a dominating factor in contaminant

  19. Neutron radiography and X-ray computed tomography for quantifying weathering and water uptake processes inside porous limestone used as building material

    SciTech Connect

    Dewanckele, J.; De Kock, T.; Fronteau, G.; Derluyn, H.; Vontobel, P.; Dierick, M.; Van Hoorebeke, L.; Jacobs, P.; Cnudde, V.

    2014-02-15

    Euville and Savonnières limestones were weathered by acid test and this resulted in the formation of a gypsum crust. In order to characterize the crystallization pattern and the evolution of the pore structure below the crust, a combination of high resolution X-ray computed tomography and SEM–EDS was used. A time lapse sequence of the changing pore structure in both stones was obtained and afterwards quantified by using image analysis. The difference in weathering of both stones by the same process could be explained by the underlying microstructure and texture. Because water and moisture play a crucial role in the weathering processes, water uptake in weathered and non-weathered samples was characterized based on neutron radiography. In this way the water uptake was both visualized and quantified in function of the height of the sample and in function of time. In general, the formation of a gypsum crust on limestone slows down the initial water uptake in the materials. - Highlights: • Time lapse sequence in 3D of changing pore structures inside limestone • A combination of X-ray CT, SEM and neutron radiography was used. • Quantification of water content in function of time, height and weathering • Characterization of weathering processes due to gypsum crystallization.

  20. Significance of physical weathering of two-texturally different soils for the saturated transport of Escherichia coli and bromide.

    PubMed

    Safadoust, A; Mahboubi, A A; Mosaddeghi, M R; Gharabaghi, B; Voroney, P; Unc, A; Khodakaramian, Gh

    2012-09-30

    This study was carried out to investigate the transport of Escherichia coli NAR and bromide (Br) through repacked (R) and weathered (W) soil columns. A suspension containing E. coli NAR and Br were leached and the effluent from the weathered soil columns had greater contaminant concentrations than that from the repacked soil columns. The time to the concentration peak of (C(max)) E. coli NAR and Br increased in the order CL-W < SL-W < SL-R < CL-R. The breakthrough sequence suggests the formation of a heterogeneous soil pore network induced by weathering and the importance of accelerated flow in the weathered columns. The dual-permeability model in HYDRUS-1D software was used to simulate the E. coli NAR and Br transport parameters by inverse modeling. Parameters of the attachment-detachment model were calculated using the dual-permeability model parameters fitted to the BTCs of E. coli NAR. A greater attachment coefficient associated with soil repacking and the finer textured clayey soil demonstrated the importance of adsorbent site and smaller pore spacing in these treatments. Smaller attachment and adsorption isotherm coefficients in weathered soil columns suggest the need for further research to validate this as a predictive model for the risks for vadose zone contaminant transport. PMID:22647706

  1. Coral-rubble ridges as dynamic coastal features - short-term reworking and weathering processes

    NASA Astrophysics Data System (ADS)

    Spiske, Michaela

    2016-02-01

    A coral-rubble ridge built by storm waves at Anegada (British Virgin Islands) underwent remarkable changes in shape and weathering in a 23-month period. The ridge is located along the island's north shore, in the lee of a fringing reef and a reef flat. This coarse-clast ridge showed two major changes between March 2013, when first examined, and February 2015, when revisited. First, a trench dug in 2013, and intentionally left open for further examination, was found almost completely infilled in 2015, and the ridge morphology was modified by slumping of clasts down the slope and by reworking attributable to minor storm waves. In size, composition and overall condition, most of the clasts that filled the trench resemble reworked clasts from the ridge itself; only a small portion had been newly brought ashore. Second, a dark gray patina formed on the whitish exteriors of the carbonate clasts that had been excavated in 2013. These biologically weathered, darkened clasts had become indistinguishable from clasts that had been at the ridge surface for a much longer time. The findings have two broader implications. First, coastal coarse-clast ridges respond not solely to major storms, but also to tropical storms or minor hurricanes. The modification and reworking of the ridge on Anegada most probably resulted from hurricane Gonzalo which was at category 1-2 as it passed about 60 km north of the island in October 2014. Second, staining of calcareous clasts by cyanobacteria in the supralittoral zone occurs within a few months. In this setting, the degree of darkening quickly saturates as a measure of exposure age.

  2. Electrical Storm Simulation to Improve the Learning Physics Process

    ERIC Educational Resources Information Center

    Martínez Muñoz, Miriam; Jiménez Rodríguez, María Lourdes; Gutiérrez de Mesa, José Antonio

    2013-01-01

    This work is part of a research project whose main objective is to understand the impact that the use of Information and Communication Technology (ICT) has on the teaching and learning process on the subject of Physics. We will show that, with the use of a storm simulator, physics students improve their learning process on one hand they understand…

  3. Foundations of Physical Theory, I: Force and Energy. Physical Processes in Terrestrial and Aquatic Ecosystems, Fundamentals.

    ERIC Educational Resources Information Center

    Pearson, Nolan E.

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module is one of two units on the foundations of physical theory and the…

  4. Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events

    PubMed Central

    Algeo, T. J.

    1998-01-01

    The Devonian Period was characterized by major changes in both the terrestrial biosphere, e.g. the evolution of trees and seed plants and the appearance of multi-storied forests, and in the marine biosphere, e.g. an extended biotic crisis that decimated tropical marine benthos, especially the stromatoporoid-tabulate coral reef community. Teleconnections between these terrestrial and marine events are poorly understood, but a key may lie in the role of soils as a geochemical interface between the lithosphere and atmosphere/hydrosphere, and the role of land plants in mediating weathering processes at this interface. The effectiveness of terrestrial floras in weathering was significantly enhanced as a consequence of increases in the size and geographic extent of vascular land plants during the Devonian. In this regard, the most important palaeobotanical innovations were (1) arborescence (tree stature), which increased maximum depths of root penetration and rhizoturbation, and (2) the seed habit, which freed land plants from reproductive dependence on moist lowland habitats and allowed colonization of drier upland and primary successional areas. These developments resulted in a transient intensification of pedogenesis (soil formation) and to large increases in the thickness and areal extent of soils. Enhanced chemical weathering may have led to increased riverine nutrient fluxes that promoted development of eutrophic conditions in epicontinental seaways, resulting in algal blooms, widespread bottomwater anoxia, and high sedimentary organic carbon fluxes. Long-term effects included drawdown of atmospheric pCO2 and global cooling, leading to a brief Late Devonian glaciation, which set the stage for icehouse conditions during the Permo-Carboniferous. This model provides a framework for understanding links between early land plant evolution and coeval marine anoxic and biotic events, but further testing of Devonian terrestrial-marine teleconnections is needed.

  5. Space Weathering in the Inner Solar System

    NASA Technical Reports Server (NTRS)

    Noble, Sarah K.

    2010-01-01

    "Space weathering" is the term given to the cumulative effects incurred by surfaces which are exposed to the harsh environment of space. Lunar sample studies over the last decade or so have produced a clear picture of space weathering processes in the lunar environment. By combining laboratory and remote spectra with microanalytical methods (scanning and transmission electron microscopy), we have begun to unravel the various processes (irradiation, micrometeorite bombardment, etc) that contribute to space weathering and the physical and optical consequences of those processes on the Moon. Using the understanding gleaned from lunar samples, it is possible to extrapolate weathering processes to other airless bodies from which we have not yet returned samples (i.e. Mercury, asteroids). Through experiments which simulate various components of weathering, the expected differences in environment (impact rate, distance from Sun, presence of a magnetic field, reduced or enhanced gravity, etc) and composition (particularly iron content) can be explored to understand how space weathering will manifest on a given body.

  6. The Space Weather Reanalysis

    NASA Astrophysics Data System (ADS)

    Kihn, E. A.; Ridley, A. J.; Zhizhin, M.

    2002-12-01

    The objective of this project is to generate a complete 11 year space weather representation using physically consistent data-driven space weather models. The project will create a consistent, integrated historical record of the near Earth space environment by coupling observational data from space environmental monitoring systems archived at NGDC with data-driven, physically based numerical models. The resulting product will be an enhanced look at the space environment on consistent grids, time resolution, coordinate systems and containing key fields allowing an interested user to quickly and easily incorporate the impact of the near-Earth space climate in environmentally sensitive models. Currently there are no easily accessible long term climate archives available for the space-weather environment. Just as with terrestrial weather it is crucial to understand both daily weather forecasts as well as long term climate changes, so this project will demonstrate the ability to generate a meaningful and physically derived space weather climatology. The results of this project strongly support the DOD's Environmental Scenario Generator (ESG) project. The ESG project provides tools for intellegent data mining, classification and event detection which could be applied to a historical space-weather database. The two projects together provide a suite of tools for the user interested in modeling the effect of the near-earth space environment. We will present results and methodologies developed during the first two years of effort in the project.

  7. A New Perspective on Surface Weather Maps

    ERIC Educational Resources Information Center

    Meyer, Steve

    2006-01-01

    A two-dimensional weather map is actually a physical representation of three-dimensional atmospheric conditions at a specific point in time. Abstract thinking is required to visualize this two-dimensional image in three-dimensional form. But once that visualization is accomplished, many of the meteorological concepts and processes conveyed by the…

  8. Physical processes at high field strengths

    SciTech Connect

    Rhodes, C.K.

    1986-01-01

    Measurements of the radiation produced by the high field interaction with the rare gases have revealed the presence of both copious harmonic production and fluorescence. The highest harmonic observed was the seventeenth (14.6 rm) in Ne, the shortest wavelength ever produced by that means. Strong fluorescence was seen in Ar, Kr, and Xe with the shortest wavelengths observed being below 10 nm. Furthermore, radiation from inner-shell excited configurations in Xe, specifically the 4d/sup 9/5s5p ..-->.. 4d/sup 10/5s manifold at approx. 17.7 nm, was detected. The behaviors of the rare gases with respect to multiquantum ionization, harmonic production, and fluorescence were found to be correlated so that the materials fell into two groups, He and Ne in one and Ar, Kr, and Xe in the other. These experimental findings, in alliance with other studies on inner-shell decay processes, give evidence for a role of atomic correlations in a direct nonlinear process of inner-shell excitation. It is expected that an understanding of these high-field processes will enable the generation of stimulated emission in the x-ray range. 59 refs., 6 figs., 5 tabs.

  9. Humps and hollows: basalt weathering in low-latitude mountains

    NASA Astrophysics Data System (ADS)

    Knight, Jasper; Grab, Stefan

    2013-04-01

    Physical, chemical and biological weathering processes are significant contributors to landscape development in mountain blocks worldwide, and over long time scales, but the interplay between different weathering processes is uncertain. Jurassic-age basalt lava flows underlie the Drakensberg mountain range of eastern Lesotho, southern Africa (summits 3200-3400 m asl), and weathered bedrock is commonly exposed on flat plateau surfaces. Subaerial weathering throughout the Quaternary and Holocene has resulted in a range of weathering forms, some of which exploit pre-existing cooling fractures within the basalts, and some of which are independent of geological control. These forms include pseudokarst-style potholes, karren and other microforms. The geometry, chemistry of water contained within the potholes, seasonal presence of ice, sediment and organic residues all suggest that physical, chemical and biological weathering processes are significant at different times and in different ways in subaerial weathering. Moreover, it is also likely that these process-types show pronounced seasonal variability that means that the interplay between different processes is subtle. Aggregated rates of land surface denudation or geomorphic development of single landforms therefore hide this subtle interplay between different processes. Changes in mountain summit soil depth (through soil erosion), ecosystems and climate will change this balance between different processes, and will operate over different spatial and temporal scales.

  10. NASA Connect: 'Plane Weather'

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Excerpt from the NASA Connect show 'Plane Weather' This clip explains what high and low pressure weather systems are, and how these affect weather patterns. Weather affects our daily lives. The elements of weather: rain, wind, fog, ice and snow affect the operation and flight of an airplane. In this program, NASA and FAA researchers will introduce students to math, science, and weather; demonstrate how these elements influence flight; and show how NASA and FAA research is used to limit the effects of these elements on flight. Students will examine: the tools, techniques, and technologies used by engineers and scientists to detect these and other climatological factors affecting aircraft in flight. The lesson and classroom experiment will involve students in the scientific process and emphasizing problem solving, measurement, and reasoning skills.

  11. Space Weathering of Rocks

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  12. Weather impacts on space operations

    NASA Astrophysics Data System (ADS)

    Madura, J.; Boyd, B.; Bauman, W.; Wyse, N.; Adams, M.

    The efforts of the 45th Weather Squadron of the USAF to provide weather support to Patrick Air Force Base, Cape Canaveral Air Force Station, Eastern Range, and the Kennedy Space Center are discussed. Its weather support to space vehicles, particularly the Space Shuttle, includes resource protection, ground processing, launch, and Ferry Flight, as well as consultations to the Spaceflight Meteorology Group for landing forecasts. Attention is given to prelaunch processing weather, launch support weather, Shuttle launch commit criteria, and range safety weather restrictions. Upper level wind requirements are examined. The frequency of hourly surface observations with thunderstorms at the Shuttle landing facility, and lightning downtime at the Titan launch complexes are illustrated.

  13. Human sperm rheotaxis: a passive physical process.

    PubMed

    Zhang, Zhuoran; Liu, Jun; Meriano, Jim; Ru, Changhai; Xie, Shaorong; Luo, Jun; Sun, Yu

    2016-01-01

    A long-standing question in natural reproduction is how mammalian sperm navigate inside female reproductive tract and finally reach the egg cell, or oocyte. Recently, fluid flow was proposed as a long-range guidance cue for sperm navigation. Coitus induces fluid flow from oviduct to uterus, and sperm align themselves against the flow direction and swim upstream, a phenomenon termed rheotaxis. Whether sperm rheotaxis is a passive process dominated by fluid mechanics, or sperm actively sense and adapt to fluid flow remains controversial. Here we report the first quantitative study of sperm flagellar motion during human sperm rheotaxis and provide direct evidence indicating that sperm rheotaxis is a passive process. Experimental results show that there is no significant difference in flagellar beating amplitude and asymmetry between rheotaxis-turning sperm and those sperm swimming freely in the absence of fluid flow. Additionally, fluorescence image tracking shows no Ca(2+) influx during sperm rheotaxis turning, further suggesting there is no active signal transduction during human sperm rheotaxis. PMID:27005727

  14. Human sperm rheotaxis: a passive physical process

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuoran; Liu, Jun; Meriano, Jim; Ru, Changhai; Xie, Shaorong; Luo, Jun; Sun, Yu

    2016-03-01

    A long-standing question in natural reproduction is how mammalian sperm navigate inside female reproductive tract and finally reach the egg cell, or oocyte. Recently, fluid flow was proposed as a long–range guidance cue for sperm navigation. Coitus induces fluid flow from oviduct to uterus, and sperm align themselves against the flow direction and swim upstream, a phenomenon termed rheotaxis. Whether sperm rheotaxis is a passive process dominated by fluid mechanics, or sperm actively sense and adapt to fluid flow remains controversial. Here we report the first quantitative study of sperm flagellar motion during human sperm rheotaxis and provide direct evidence indicating that sperm rheotaxis is a passive process. Experimental results show that there is no significant difference in flagellar beating amplitude and asymmetry between rheotaxis-turning sperm and those sperm swimming freely in the absence of fluid flow. Additionally, fluorescence image tracking shows no Ca2+ influx during sperm rheotaxis turning, further suggesting there is no active signal transduction during human sperm rheotaxis.

  15. Human sperm rheotaxis: a passive physical process

    PubMed Central

    Zhang, Zhuoran; Liu, Jun; Meriano, Jim; Ru, Changhai; Xie, Shaorong; Luo, Jun; Sun, Yu

    2016-01-01

    A long-standing question in natural reproduction is how mammalian sperm navigate inside female reproductive tract and finally reach the egg cell, or oocyte. Recently, fluid flow was proposed as a long–range guidance cue for sperm navigation. Coitus induces fluid flow from oviduct to uterus, and sperm align themselves against the flow direction and swim upstream, a phenomenon termed rheotaxis. Whether sperm rheotaxis is a passive process dominated by fluid mechanics, or sperm actively sense and adapt to fluid flow remains controversial. Here we report the first quantitative study of sperm flagellar motion during human sperm rheotaxis and provide direct evidence indicating that sperm rheotaxis is a passive process. Experimental results show that there is no significant difference in flagellar beating amplitude and asymmetry between rheotaxis-turning sperm and those sperm swimming freely in the absence of fluid flow. Additionally, fluorescence image tracking shows no Ca2+ influx during sperm rheotaxis turning, further suggesting there is no active signal transduction during human sperm rheotaxis. PMID:27005727

  16. TIME SERIES ANALYSIS OF REMOTELY-SENSED TIR EMISSION: linking anomalies to physical processes

    NASA Astrophysics Data System (ADS)

    Pavlidou, E.; van der Meijde, M.; Hecker, C.; van der Werff, H.; Ettema, J.

    2013-12-01

    In the last 15 years, remote sensing has been evaluated for detecting thermal anomalies as precursor to earthquakes. Important issues that need yet to be tackled include definition of: (a) thermal anomaly, taking into account weather conditions, observation settings and ';natural' variability caused by background sources (b) the length of observations required for this purpose; and (c) the location of detected anomalies, which should be physically related to the tectonic activity. To determine whether thermal anomalies are statistical noise, mere meteorological conditions, or actual earthquake-related phenomena, we apply a novel approach. We use brightness temperature (top-of-atmosphere) data from thermal infrared imagery acquired at a hypertemporal (sub-hourly) interval, from geostationary weather satellites over multiple years. The length of the time series allows for analysis of meteorological effects (diurnal, seasonal or annual trends) and background variability, through the application of a combined spatial and temporal filter to distinguish extreme occurrences from trends. The definition of potential anomalies is based on statistical techniques, taking into account published (geo)physical characteristics of earthquake related thermal anomalies. We use synthetic data to test the performance of the proposed detection method and track potential factors affecting the results. Subsequently, we apply the method on original data from Iran and Turkey, in quiescent and earthquake-struck periods alike. We present our findings with main focus to assess resulting anomalies in relation to physical processes thereby considering: (a) meteorological effects, (b) the geographical, geological and environmental settings, and (c) physically realistic distances and potential physical relations with the activity of causative faults.

  17. World weather program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A brief description of the Global Weather Experiment is presented. The world weather watch program plan is described and includes a global observing system, a global data processing system, a global telecommunication system, and a voluntary cooperation program. A summary of Federal Agency plans and programs to meet the challenges of international meteorology for the two year period, FY 1980-1981, is presented.

  18. Home Weatherization Visit

    ScienceCinema

    Chu, Steven

    2013-05-29

    Secretary Steven Chu visits a home that is in the process of being weatherized in Columbus, OH, along with Ohio Governor Ted Strickland and Columbus Mayor Michael Coleman. They discuss the benefits of weatherization and how funding from the recovery act is having a direct impact in communities across America.

  19. Two-Photon Physics in Hadronic Processes

    SciTech Connect

    Carl Carlson; Marc Vanderhaeghen

    2007-11-01

    Two-photon exchange contributions to elastic electron-scattering are reviewed. The apparent discrepancy in the extraction of elastic nucleon form factors between unpolarized Rosenbluth and polarization transfer experiments is discussed, as well as the understanding of this puzzle in terms of two-photon exchange corrections. Calculations of such corrections both within partonic and hadronic frameworks are reviewed. In view of recent spin-dependent electron scattering data, the relation of the two-photon exchange process to the hyperfine splitting in hydrogen is critically examined. The imaginary part of the two-photon exchange amplitude as can be accessed from the beam normal spin asymmetry in elastic electron-nucleon scattering is reviewed. Further extensions and open issues in this field are outlined.

  20. The influence of regional urbanization and abnormal weather conditions on the processes of human climatic adaptation on mountain resorts

    NASA Astrophysics Data System (ADS)

    Artamonova, M.; Golitsyn, G.; Senik, I.; Safronov, A.; Babyakin, A.; Efimenko, N.; Povolotskaya, N.; Topuriya, D.; Chalaya, E.

    2012-04-01

    This work is a further development in the study of weather pathogenic index (WPI) and negative influence of urbanization processes on the state of people's health with adaptation disorder. This problem is socially significant. According to the data of the WHO, in the world there are from 20 to 45% of healthy people and from 40 to 80% of people with chronic diseases who suffer from the raised meteosensitivity. As a result of our researches of meteosensitivity of people during their short-duration on mountain resorts there were used negative adaptive reactions (NAR) under 26 routine tests, stress-reactions under L.H. Garkavi's hemogram, vegetative indices, tests of neuro-vascular reactivity, signs of imbalance of vegetative and neurohumoral regulation according to the data of biorhythm fractal analysis and sudden aggravations of diseases (SAD) as an indicator of negative climatic and urbanization influence. In 2010-2011 the Caucasian mountain resorts were having long periods of climatic anomalies, strengthening of anthropogenic emissions and forest fires when record-breaking high waves of NAR and SAD were noticed. There have also been specified indices ranks of weather pathogenicity from results of comparison of health characteristics with indicators of synoptico-dynamic processes according to Weather Research and Forecasting model (WRF); air ionization N+, N-, N+/N- spectra of aerosol particles (the size from 500 to 20000 nanometers) and concentrations of chemically active gases (O3, NO, NO2, ), volatile phytoorganic substances in the surface atmosphere, bactericidal characteristics of vegetation by criterion χ2 (not above 0,05). It has allowed us to develop new physiological optimum borders, norm and pessimum, to classify emergency ecologo-weather situations, to develop a new techniques of their forecasting and prevention of meteopathic reactions with meteosensitive patients (Method of treatment and the early (emergency) and planned prevention meteopatic reactions

  1. Turbulence and Fluid Flow: Perspectives. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Simpson, James R.

    This module is part of a series on Physical Processes in Terrestrial and Aquatic Ecosystems. The materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process.…

  2. Physical processes in polar stratospheric ice clouds

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Turco, Richard; Jordan, Joseph

    1988-01-01

    A one dimensional model of cloud microphysics was used to simulate the formation and evolution of polar stratospheric ice clouds. Some of the processes which are included in the model are outlined. It is found that the clouds must undergo preferential nucleation upon the existing aerosols just as do tropospheric cirrus clouds. Therefore, there is an energy barrier between stratospheric nitric acid particles and ice particles implying that nitric acid does not form a continuous set of solutions between the trihydrate and ice. The Kelvin barrier is not significant in controlling the rate of formation of ice particles. It was found that the cloud properties are sensitive to the rate at which the air parcels cool. In wave clouds, with cooling rates of hundreds of degrees per day, most of the existing aerosols nucleate and become ice particles. Such clouds have particles with sizes on the order of a few microns, optical depths on order of unity and are probably not efficient at removing materials from the stratosphere. In clouds which form with cooling rates of a few degrees per day or less, only a small fraction of the aerosols become cloud particles. In such clouds the particle radius is larger than 10 microns, the optical depths are low and water vapor is efficiently removed. Seasonal simulations show that the lowest water vapor mixing ratio is determined by the lowest temperature reached, and that the time when clouds disappear is controlled by the time when temperatures begin to rise above the minimum values.

  3. Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach.

    PubMed

    Taylor, Lyla L; Banwart, Steve A; Valdes, Paul J; Leake, Jonathan R; Beerling, David J

    2012-02-19

    Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO(2)) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean-atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal-geosphere interactions at the global scale, which constitutes a first step towards developing 'next-generation' geochemical models. PMID:22232768

  4. Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach

    PubMed Central

    Taylor, Lyla L.; Banwart, Steve A.; Valdes, Paul J.; Leake, Jonathan R.; Beerling, David J.

    2012-01-01

    Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO2) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean–atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal–geosphere interactions at the global scale, which constitutes a first step towards developing ‘next-generation’ geochemical models. PMID:22232768

  5. Redistribution of uranium by physical processes during weathering and implications for radon production.

    PubMed

    Bottrell, S H

    1993-03-01

    Erosion of the Edale shales of Derbyshire during the Tertiary and Quaternary has resulted in sediment deposits in and on the underlying karstified limestones. Sorting during sedimentation has generated clay-rich sediments which are uranium enriched due to a clay association of uranium in the shales. Radon production in these sediments is at or close to equilibrium with their uranium content, and their fine grain-size ensures efficient radon release. Such sediments are therefore potent local sources of environmental radon. PMID:24198078

  6. Physical processes mediating climate impacts in shelf sea ecosystems

    NASA Astrophysics Data System (ADS)

    Holt, Jason; Schrum, Corinna; Cannaby, Heather; Allen, Icarus; Artioli, Yuri; Butenschon, Momme; Daewel, Ute; Fach, Bettina; Pushpadas, Dhanya; Salihoglu, Baris; Wakelin, Sarah

    2013-04-01

    How global scale climate change might impact coastal and shelf seas is far from straightforward. A myriad of physical processes can potentially act as vectors transferring the larger scale oceanic and atmospheric variability and change to shelf sea physics, biogeochemistry and lower trophic level ecosystems. These act on a wide range of time scales, being strongly dependent on the prevailing conditions of an individual shelf sea basin. Examples of the physical processes include upper ocean warming, seasonal/permanent stratification, wind mixing, convective mixing, light climate, terrestrial input, circulation and ocean-shelf exchange. These potentially impact ecosystem processes such as primary production, plankton community structured, bloom timing, and mid-water production. However, different processes often act in a different sense and are not necessarily additive, leading to damping or amplification effects. During the MEECE project (www.meece.eu) we conducted a series of coordinated downscaled coupled physics-ecosystem model experiments to explore these issues. Here, we review the prevailing physical processes, contrasting five very different shelf sea regions: North Sea, Celtic seas, Baltic Sea, Black sea and Barents Sea, using results from three different model systems: POLCOMS-ERSEM, ECOSMO, BIMS-ECO. Using this ensemble of simulations, along with process sensitivity studies and multiple forcing studies, we are able to identify which physical processes are important in which region, and how they interact. This builds up a picture of contrasting vulnerability of these regions to different vectors of change.

  7. Biogenic catalysis in sulphide minerals' weathering processes and acid mine drainage genesis.

    PubMed

    Kušnierová, Mária; Praščáková, Mária; Nowak, Anna K; Gorazda, Katarzyna; Wzorek, Zbigniew

    2014-01-01

    Bioleaching and biogenesis are the main outputs from a large group of environmental processes participating in the natural material cycle, used in raw materials processing. Bio-oxidation reactions are the main basis for bioleaching procedures, often participating in parallel leaching processes. During the leaching processes of polycomponent sulphide substrates, the factor of process selection also plays an important role, being in direct relation to the electric properties and galvanic effect occurring between the individual components of the leaching substrate. This work gives a summary of the results of a research focused on the possibilities of using biotechnological procedures for treatment of Slovak sulphide ores. The object of the research is extraction of valuable metals, undesirable admixtures and degradation of crystal lattice of sulphides for subsequent chemical leaching processing of precious metals. The results of experiments on the existence of biogenic processes in situ on waste dumps from exploitation containing residual sulphides are also presented. The processes result in acid mine drainage water generation. These waters are strongly mineralised (over 48 g/L) and of low pH; that is why they are very caustic. The arsenic content (2.558 mg/L) in outflowing waters from old mines is high and over the limits set by the law. PMID:24445359

  8. The physics of bat echolocation: Signal processing techniques

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2004-12-01

    The physical principles and signal processing techniques underlying bat echolocation are investigated. It is shown, by calculation and simulation, how the measured echolocation performance of bats can be achieved.

  9. On the need for standardisation of data formats and data processing in the framework of space weather applications

    NASA Astrophysics Data System (ADS)

    Heynderickx, Daniel

    Space weather applications and services generally require directly observed or derived data as inputs. As all developers and many users of such applications are aware, locating, acquiring, processing and interpreting space environment data are not always straightforward. One of the issues confronting the user community is the variety of data formats and access methods. For at least two decades, the international community has been striving towards a standardized data format, with little success: the main outcome has been the development of a number of standard formats (e.g. cdf, hdf, flat ASCII, ...) which each require custom written access tools. It does not seem likely that a common standard will ever be developed, let alone accepted; however, given the recent advances in data storage and dissemination techniques, data (file) formats should no longer be an issue. As an example, it is reasonably straightforward to set up a web service to provide access to datasets, in which data queries are processed internally by the service and the required subset is returned as a standard data stream. In such an approach, the need for standardization shifts from the specification of local data storage at the provider's facility, to standardized queries and output streams. A second aspect of data access and dissemination concerns metadata which describe the contents of a dataset. Again, several standards have been (and are being) developed (ISTP and PRBEM guidelines, SPASE dictionary, to name but a few). Consolidation (and appiclation) of a standard set of metadata, ontologies and keywords for the space weather domain is a vital step to take on the road to truly standardized data services.

  10. Distributed System of Processing of Data of Physical Experiments

    NASA Astrophysics Data System (ADS)

    Nazarov, A. A.; Moiseev, A. N.

    2014-11-01

    Complication of physical experiments and increasing volumes of experimental data necessitate the application of supercomputer and distributed computing systems for data processing. Design and development of such systems, their mathematical modeling, and investigation of their characteristics and functional capabilities is an urgent scientific and practical problem. In the present work, the characteristics of operation of such distributed system of processing of data of physical experiments are investigated using the apparatus of theory of queuing networks.

  11. Defining physics: The Nobel Prize selection process, 1901-1937

    NASA Astrophysics Data System (ADS)

    MacLachlan, James

    1991-02-01

    The great prestige of the Nobel Prizes has come virtually to define physics in the public mind. An examination of the nominations and the selections in the first 37 years of Nobel awards shows that those in charge of the selections went through a process of development as they refined their conceptions of the kind of work appropriate to be rewarded. Analyses are presented of the 1800 nominations made by 448 nominators for 213 scientists, of whom 44 received physics prizes between 1901 and 1937, 10 more who were awarded Nobel Prizes in physics after 1937, and 12 in chemistry, although nominated also in physics.

  12. Uranium and thorium isotopes in the rivers of the Amazonian basin: hydrology and weathering processes

    NASA Astrophysics Data System (ADS)

    Marques, Aguinaldo N., Jr.; Al-Gharib, Iyad; Bernat, Michel; Fernex, François

    2003-01-01

    hydroxylamine extracts. As expected, the 1 in the Trombetas and Negro rivers. Such ratios probably result from the binding of dissolved uranium to solid sediment.weathering rate of rocks in the Amazon system, which was estimated to be 2·7 cm 1000 year

  13. Physical Processes in the MAGO/MFT Systems

    SciTech Connect

    Garanin, Sergey F; Reinovsky, Robert E.

    2015-03-23

    The Monograph is devoted to theoretical discussion of the physical effects, which are most significant for the alternative approach to the problem of controlled thermonuclear fusion (CTF): the MAGO/MTF approach. The book includes the description of the approach, its difference from the major CTF systems—magnetic confinement and inertial confinement systems. General physical methods of the processes simulation in this approach are considered, including plasma transport phenomena and radiation, and the theory of transverse collisionless shock waves, the surface discharges theory, important for such kind of research. Different flows and magneto-hydrodynamic plasma instabilities occurring in the frames of this approach are also considered. In virtue of the general physical essence of the considered phenomena the presented results are applicable to a wide range of plasma physics and hydrodynamics processes. The book is intended for the plasma physics and hydrodynamics specialists, post-graduate students, and senior students-physicists.

  14. Cockpit weather information needs

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1992-01-01

    The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe weather notice, AIRMET or SIGMET, is received. The cockpit weather display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical weather system so pilot review of weather along

  15. Ontology of physics for biology: representing physical dependencies as a basis for biological processes

    PubMed Central

    2013-01-01

    Background In prior work, we presented the Ontology of Physics for Biology (OPB) as a computational ontology for use in the annotation and representations of biophysical knowledge encoded in repositories of physics-based biosimulation models. We introduced OPB:Physical entity and OPB:Physical property classes that extend available spatiotemporal representations of physical entities and processes to explicitly represent the thermodynamics and dynamics of physiological processes. Our utilitarian, long-term aim is to develop computational tools for creating and querying formalized physiological knowledge for use by multiscale “physiome” projects such as the EU’s Virtual Physiological Human (VPH) and NIH’s Virtual Physiological Rat (VPR). Results Here we describe the OPB:Physical dependency taxonomy of classes that represent of the laws of classical physics that are the “rules” by which physical properties of physical entities change during occurrences of physical processes. For example, the fluid analog of Ohm’s law (as for electric currents) is used to describe how a blood flow rate depends on a blood pressure gradient. Hooke’s law (as in elastic deformations of springs) is used to describe how an increase in vascular volume increases blood pressure. We classify such dependencies according to the flow, transformation, and storage of thermodynamic energy that occurs during processes governed by the dependencies. Conclusions We have developed the OPB and annotation methods to represent the meaning—the biophysical semantics—of the mathematical statements of physiological analysis and the biophysical content of models and datasets. Here we describe and discuss our approach to an ontological representation of physical laws (as dependencies) and properties as encoded for the mathematical analysis of biophysical processes. PMID:24295137

  16. Impact of weathering on the geomechanical properties of rocks along thermal metamorphic contact belts and morpho-evolutionary processes: The deep-seated gravitational slope deformations of Mt. Granieri Salincriti (Calabria Italy)

    NASA Astrophysics Data System (ADS)

    Pellegrino, A.; Prestininzi, A.

    2007-06-01

    Numerous Deep-Seated Gravitational Slope Deformations (DSGSDs) occur throughout Italy, that originate from particular tectono-stratigraphic settings, relief, seismicity, deglaciation, as well as from intense and deep processes of chemico-physical weathering of crystalline-metamorphic rocks. These DSGSDs are particularly widespread in the Calabrian mountains. This study is focused on the Mt. Granieri-Salincriti slope, on the Ionian side of the Serre Massif, where granites and granodiorites (Stilo Unit, Palaeozoic) are in contact with metamorphites through a thermal-metamorphic aureole. This setting generates deep geochemical processes, inducing intense chemical weathering. These processes are mainly due to the interaction between groundwater and the sulphides that are contained in the local pegmatitic-hydrothermal intrusions, especially along the thermal-metamorphic contact belt. The Mt. Granieri-Salincriti slope has an important DSGSD, which is associated with many active and/or quiescent landslides. Among these landslides, the Salincriti rock avalanche-debris flow (about 2 M m 3) represents the paroxysmal and terminal stage of the deep creep deformations of Mt. Granieri, typifying a geological setting that is common in the Calabrian Arc. This multi-disciplinary study assessed the weathering susceptibility of the local crystalline-metamorphic rocks, especially those lying along thermal-metamorphic contact belts, by characterising the weathering horizons and the spatial distribution of weathering in the rock mass. The study was also aimed at identifying the relations between weathering, above all deep geochemical processes, effects on rocks and slope morphodynamics. The methodology was based on detailed geological data, geological-engineering surveys, geomorphology and surface hydrogeology analyses, as well as physico-mechanical laboratory tests. These investigations, supported by a monitoring program, led to the development of an engineering-geological model of the

  17. NATURAL ARSENIC CONTAMINATION OF HOLOCENE ALLUVIAL AQUIFERS BY LINKED TECTONIC, WEATHERING, AND MICROBIAL PROCESSES

    EPA Science Inventory

    Linked tectonic, geochemical, and biologic processes lead to natural arsenic contamination of groundwater in Holocene alluvial aquifers, which are the main threat to human health around the world. These groundwaters are commonly found a long distance from their ultimate source of...

  18. Frost weathering versus glacial grinding in the micromorphology of quartz sand grains: Processes and geological implications

    NASA Astrophysics Data System (ADS)

    Woronko, Barbara

    2016-04-01

    Micromorphology of quartz sand grains is used to reconstruct processes occurring in the glacial environment and to distinguish the latter from other environments. Two processes dominate in the glacial environment, i.e., crushing and abrasion, or a combination thereof. Their effect is a wide range of microstructures on the surface of quartz grains, e.g., chattermarks, conchoidal fractures and multiple grooves. However, the periglacial environment also effectively modifies the surface of quartz grains. The active layer of permafrost is considered to have a significantly higher contribution to the formation of crushed grains and the number of microstructures resulting from mechanical destruction (e.g., breakage blocks or conchoidal fractures), as compared to deposits which are not affected by freeze-thaw cycles. However, only a few microstructures are found in both environments. At the same time, there are several processes in subglacial environments related to freeze-thaw cycles, e.g., regelation, congelation, basal adfreezing, and glaciohydraulic supercooling. Most likely, therefore, the role of the glacial environment in the destruction of quartz grains has been misinterpreted, and consequently the conclusions regarding environmental processes drawn on the basis of the number of crushed grains and edge-to-edge contacts are erroneous.

  19. Extrapolation of space weathering processes to other small solar system bodies

    NASA Technical Reports Server (NTRS)

    Gaffey, M. J.

    1993-01-01

    A diverse range of processes were invoked as the dominant factor or as important contributory factors in the modification of the optical surface and regolith of the moon. These include impact vitrification by large and small projectiles, solar wind implantation and the reduction of oxidized iron during energetic events, sputtering and crystal lattice damage by energetic cosmic rays, shock metamorphism of minerals, mixing of diverse lithologies by impacts, and contamination by external materials. These processes are also potentially important on the rocky surfaces of other small solar system bodies. For icy bodies, several additional processes are also possible, including formation of complex organic compounds from methane and ammonia-bearing ices by ultraviolet irradiation and the condensation of vapor species to form frost layers in the polar or cooler regions of objects at appropriate heliocentric distances. The lunar case, even when completely understood, will not extend in a simple linear fashion to other small rocky objects, nor will the optical surfaces of those objects all be affected to the same degree by each process. The major factors that will control the relative efficacy of a possible mechanism include the efficiency of ejecta retention and the degree to which the regolith materials experience multiple events (primarily a function of body size, escape velocity, and impactor velocities); the mean duration of typical regolith particle exposure at the optical surface and within reach of the micrometeorite, cosmic ray, solar wind, or UV fluxes (a function of the rate and scale of regolith mixing, production, and removal processes); the incident flux of solar (low energy) cosmic rays, solar wind, or UV radiation (inverse square of heliocentric distance) or of galactic (high energy) cosmic rays (slowly increasing flux with heliocentric distance); and the compositional and mineralogical nature of the surface being affected. In general, those processes that

  20. Enhancing Cloud Radiative Processes and Radiation Efficiency in the Advanced Research Weather Research and Forecasting (WRF) Model

    SciTech Connect

    Iacono, Michael J.

    2015-03-09

    The objective of this research has been to evaluate and implement enhancements to the computational performance of the RRTMG radiative transfer option in the Advanced Research version of the Weather Research and Forecasting (WRF) model. Efficiency is as essential as accuracy for effective numerical weather prediction, and radiative transfer is a relatively time-consuming component of dynamical models, taking up to 30-50 percent of the total model simulation time. To address this concern, this research has implemented and tested a version of RRTMG that utilizes graphics processing unit (GPU) technology (hereinafter RRTMGPU) to greatly improve its computational performance; thereby permitting either more frequent simulation of radiative effects or other model enhancements. During the early stages of this project the development of RRTMGPU was completed at AER under separate NASA funding to accelerate the code for use in the Goddard Space Flight Center (GSFC) Goddard Earth Observing System GEOS-5 global model. It should be noted that this final report describes results related to the funded portion of the originally proposed work concerning the acceleration of RRTMG with GPUs in WRF. As a k-distribution model, RRTMG is especially well suited to this modification due to its relatively large internal pseudo-spectral (g-point) dimension that, when combined with the horizontal grid vector in the dynamical model, can take great advantage of the GPU capability. Thorough testing under several model configurations has been performed to ensure that RRTMGPU improves WRF model run time while having no significant impact on calculated radiative fluxes and heating rates or on dynamical model fields relative to the RRTMG radiation. The RRTMGPU codes have been provided to NCAR for possible application to the next public release of the WRF forecast model.

  1. DOE Workshop; Pan-Gass Conference on the Representation of Atmospheric Processes in Weather and Climate Models

    SciTech Connect

    Morrison, PI Hugh

    2012-09-21

    This is the first meeting of the whole new GEWEX (Global Energy and Water Cycle Experiment) Atmospheric System Study (GASS) project that has been formed from the merger of the GEWEX Cloud System Study (GCSS) Project and the GEWEX Atmospheric Boundary Layer Studies (GABLS). As such, this meeting will play a major role in energizing GEWEX work in the area of atmospheric parameterizations of clouds, convection, stable boundary layers, and aerosol-cloud interactions for the numerical models used for weather and climate projections at both global and regional scales. The representation of these processes in models is crucial to GEWEX goals of improved prediction of the energy and water cycles at both weather and climate timescales. This proposal seeks funds to be used to cover incidental and travel expenses for U.S.-based graduate students and early career scientists (i.e., within 5 years of receiving their highest degree). We anticipate using DOE funding to support 5-10 people. We will advertise the availability of these funds by providing a box to check for interested participants on the online workshop registration form. We will also send a note to our participants' mailing lists reminding them that the funds are available and asking senior scientists to encourage their more junior colleagues to participate. All meeting participants are encouraged to submit abstracts for oral or poster presentations. The science organizing committee (see below) will base funding decisions on the relevance and quality of these abstracts, with preference given to under-represented populations (especially women and minorities) and to early career scientists being actively mentored at the meeting (e.g. students or postdocs attending the meeting with their advisor).

  2. Process Evaluation Results from the HEALTHY Physical Education Intervention

    ERIC Educational Resources Information Center

    Hall, William J.; Zeveloff, Abigail; Steckler, Allan; Schneider, Margaret; Thompson, Deborah; Pham, Trang; Volpe, Stella L.; Hindes, Katie; Sleigh, Adriana; McMurray, Robert G.

    2012-01-01

    Process evaluation is an assessment of the implementation of an intervention. A process evaluation component was embedded in the HEALTHY study, a primary prevention trial for Type 2 diabetes implemented over 3 years in 21 middle schools across the United States. The HEALTHY physical education (PE) intervention aimed at maximizing student…

  3. Physical-chemical processes in a protoplanetary cloud

    NASA Technical Reports Server (NTRS)

    Lavrukhina, Avgusta K.

    1991-01-01

    Physical-chemical processes in a protoplanetary cloud are discussed. The following subject areas are covered: (1) characteristics of the chemical composition of molecular interstellar clouds; (2) properties and physico-chemical process in the genesis of interstellar dust grains; and (3) the isotope composition of volatiles in bodies of the Solar System.

  4. Physical processes within the nocturnal stratus-topped boundary layer

    NASA Technical Reports Server (NTRS)

    Moeng, Chin-Hoh; Shen, Shaohua; Randall, David A.

    1992-01-01

    There are many physical processes involved in the stratus-topped boundary layer: longwave radiation cooling, entrainment, latent heating, surface heating, solar heating, and drizzling, for example. The manner in which the processes combine to maintain the turbulence within the stratus-topped boundary layer remains an unsolved problem. The large eddy simulation technique is used to examine the first four physical processes mentioned above. First, the contribution of each physical process to the thermodynamic differences between the updraft and downdraft branches of turbulent circulations is examined through a conditional sampling. Second, these mean thermodynamic differences are shown to express well the vertical distributions of heat and moisture fluxes within stratus-topped boundary layers. These provide a method to validate the process partitioning technique. (This technique assumes that the net flux profile can be partitioned into different component-flux profiles according to physical processes, and that each partitioned component flux is linear in height.) In this paper, the heat and moisture fluxes are process partitioned, and each component-flux is found to contribute to the net flux in a way that is consistent with its corresponding process contribution to the mean thermodynamic differences between updrafts and downdrafts. Also, the net flux obtained by summing all component-fluxes agrees very well with that obtained directly from the large-eddy simulations.

  5. Physical processes within the nocturnal stratus-topped boundary layer

    SciTech Connect

    Moeng, C.H.; Shen, S. ); Randall, D.A. )

    1992-12-15

    Within the stratus-topped boundary layer many physical processes are involved: longwave radiation cooling, entrainment, latent heating, surface heating, solar heating, drizzling, etc. How all processes combine to maintain the turbulence within the stratus-topped boundary layer remains an unsolved problem. The large-eddy simulation technique is used to examine the first four physical processes mentioned. First, the contribution of each physical process to the thermodynamic differences between the updraft and downdraft branches of turbulent circulations is examined through a conditional sampling. Second, these mean thermodynamic differences are shown to express well the vertical distributions of heat and moisture fluxes within stratus-topped boundary layers. These provide a method to validate the process-partitioning technique. (This technique assumes that the net flux profile can be partitioned into different component-flux profiles according to physical processes and that each partitioned component flux is linear in height.) In this paper, the heat and moisture fluxes are process partitioned, and each component flux is found to contribute to the net flux in a way that is consistent with its corresponding process contribution to the mean thermodynamic differences between updrafts and downdrafts. Also, the net flux obtained by summing all component fluxes agrees well with that obtained directly from the large-eddy simulations.

  6. Process evaluation results from the HEALTHY physical education intervention

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Process evaluation is an assessment of the implementation of an intervention. A process evaluation component was embedded in the HEALTHY study, a primary prevention trial for Type 2 diabetes implemented over 3 years in 21 middle schools across the United States. The HEALTHY physical education (PE) i...

  7. Movement of radionuclides in terrestrial ecosystems by physical processes.

    PubMed

    Anspaugh, Lynn R; Simon, Steven L; Gordeev, Konstantin I; Likhtarev, Ilya A; Maxwell, Reed M; Shinkarev, Sergei M

    2002-05-01

    Physical processes that effect the movement of radionuclides in the temperate environments post-deposition are considered in this paper. The physical processes considered include the interception of radionuclides by vegetation, resuspension, and vertical migration in soil. United States and Russian results on the interception of radionuclides are reviewed and defined in terms of models that are currently undergoing evaluation and revision. New results on resuspension are evaluated, and a preliminary new model for the time-dependent resuspension factor is proposed. Chernobyl-related results on the movement of radionuclides into the soil column are presented, as is a revised model for this process based upon recent results from Ukraine. PMID:12003017

  8. NASA Connect: 'Plane Weather'

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Excerpt from the NASA Connect show 'Plane Weather' This clip explains how our weather occurs, and why Solar radiation is responsible. Weather affects our daily lives. The elements of weather: rain, wind, fog, ice and snow affect the operation and flight of an airplane. In this program, NASA and FAA researchers will introduce students to math, science, and weather; demonstrate how these elements influence flight; and show how NASA and FAA research is used to limit the effects of these elements on flight. Students will examine: the tools, techniques, and technologies used by engineers and scientists to detect these and other climatological factors affecting aircraft in flight. The lesson and classroom experiment will involve students in the scientific process and emphasizing problem solving, measurement, and reasoning skills.

  9. NASA Connect: 'Plane Weather'

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Excerpt from the NASA Connect show 'Plane Weather' This clip explains what high and low pressure weather systems are, and how they form. Weather affects our daily lives. The elements of weather: rain, wind, fog, ice and snow affect the operation and flight of an airplane. In this program, NASA and FAA researchers will introduce students to math, science, and weather; demonstrate how these elements influence flight; and show how NASA and FAA research is used to limit the effects of these elements on flight. Students will examine: the tools, techniques, and technologies used by engineers and scientists to detect these and other climatological factors affecting aircraft in flight. The lesson and classroom experiment will involve students in the scientific process and emphasizing problem solving, measurement, and reasoning skills.

  10. Weather Instruments.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  11. Wacky Weather

    ERIC Educational Resources Information Center

    Sabarre, Amy; Gulino, Jacqueline

    2013-01-01

    What do a leaf blower, water hose, fan, and ice cubes have in common? Ask the students who participated in an integrative science, technology, engineering, and mathematics (I-STEM) education unit, "Wacky Weather," and they will tell say "fun and severe weather"--words one might not have expected! The purpose of the unit…

  12. Space Weather

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis L.

    2010-01-01

    This video provides a narrated exploration of the history and affects of space weather. It includes information the earth's magnetic field, solar radiation, magnetic storms, and how solar winds affect electronics on earth, with specific information on how space weather affects space exploration in the future.

  13. AN overview of the FLYSAFE datalink solution for the exchange of weather information: supporting aircrew decision making processes.

    NASA Astrophysics Data System (ADS)

    Mirza, A.; Drouin, A.

    2009-09-01

    FLYSAFE is an Integrated Project of the 6th framework of the European Commission with the aim to improve flight safety through the development of an avionics solution the Next Generation Integrated Surveillance System (NGISS), which is supported by a ground based network of Weather Information Management Systems (WIMS) and access points in the form of the Ground Weather Processor (GWP). The NGISS provides information to the flight crew on the three major external hazards for aviation: weather, air traffic and terrain. The NGISS has the capability of displaying data about all three hazards on a single display screen, facilitating rapid appreciation of the situation by the flight crew. Weather Information Management Systems (WIMS) were developed to provide the NGISS and the flight crew with weather related information on in-flight icing, thunderstorms and clear-air turbulence. These products are generated on the ground from observations and model forecasts. WIMS will supply relevant information on three different scales: global, regional and local (over airport Terminal Manoeuvring Area). The Ground Weather Processor is a client-server architecture that utilises open source components, which include a geospatial database and web feature services. The GWP stores Weather Objects generated by the WIMS. An aviation user can retrieve on-demand all Weather Objects that intersect the volume of space that is of interest to them. The Weather Objects are fused with in-situ observation data and can be used by the flight management system to propose a route to avoid the hazard. In addition they can be used to display the current hazardous weather to the Flight Crew thereby raising their awareness. Within the FLYSAFE program, around 120 hours of flight trials were performed during February 2008 and August 2008. Two aircraft were involved each with separate objectives: - to assess FLYSAFE's innovative solutions for the data-link, on-board data-fusion and data-display and data

  14. Zeolite Formation and Weathering Processes Within the Martian Regolith: An Antarctic Analog

    NASA Technical Reports Server (NTRS)

    Gibson, E. K.; McKay, D. S.; Wentworth, S. J.; Socki, R. A.

    2003-01-01

    As more information is obtained about the nature of the surface compositions and processes operating on Mars, it is clear that significant erosional and depositional features are present on the surface. Apparent aqueous or other fluid activity on Mars has produced many of the erosional and outflow features observed. Evidence of aqueous activity on Mars has been reported by earlier studies. Gooding and colleagues championed the cause of pre-terrestrial aqueous alteration processes recorded in Martian meteorites. Oxygen isotope studies on Martian meteorites by Karlsson et al. and Romenek et al. gave evidence for two separate water reservoirs on Mars. The oxygen isotopic compositions of the host silicate minerals was different from the oxygen isotopic composition of the secondary alteration products within the SNC meteorites. This implied that the oxygen associated with fluids which produced the secondary alteration was from volatiles which were possibly added to the planetary inventory after formation of the primary silicates from which the SNC s were formed. The source of the oxygen may have been from a cometary or volatile-rich veneer added to the planet in its first 600 million years.

  15. Genesis of karren in Kentucky Lake, Tennessee: Interaction of geologic structure, weathering processes, and bioerosion

    SciTech Connect

    Gibson, M.A.; Smith, W.L. )

    1993-03-01

    While karst features formed along marine coastlines are commonly reported, shoreline karst features produced within lacustrine systems have received little attention. The shoreline of Bond Island'' in Kentucky Lake has evolved a distinctive karren geomorphology not recognized elsewhere in the lake. The karren consist of well-developed clint and grike topography, trench formation, solution pits, flutes, and runnels, and pit and tunnel development. Two processes are responsible for the karren. First, freshwater dissolution and wave action on structurally fractured Decatur Limestone (Silurian) mechanically and chemically weaken the entire exposed surface. Second, a seasonal cycle of winter freeze-thaw and frost wedging followed by spring bioerosion overprints the first set of processes. Bioerosion by chemical dissolution involving a complex association of predominantly chironomids, algae, fungi, and bryozoa results in preferential dissolution along joints, stylolites, and bedding planes to form shallow spindle-shaped solution pits over the entire surface and sides of the karren. The solution pits average 1 cm length by 0.4 cm depth densely covering rock surfaces. This study suggests that seasonal bioerosion may constitute a more important geomorphic factor in lacustrine systems than previously recognized.

  16. Weathering processes in the Rio Icacos and Rio Mameyes watersheds in Eastern Puerto Rico: Chapter I in Water quality and landscape processes of four watersheds in eastern Puerto Rico

    USGS Publications Warehouse

    Buss, Heather L.; White, Arthur F.

    2012-01-01

    Streams draining watersheds of the two dominant lithologies (quartz diorite and volcaniclastic rock) in the Luquillo Experimental Forest of eastern Puerto Rico have very high fluxes of bedrock weathering products. The Río Blanco quartz diorite in the Icacos watershed and the Fajardo volcaniclastic rocks in the Mameyes watershed have some of the fastest documented rates of chemical weathering of siliceous rocks in the world. Rapid weathering produces thick, highly leached saprolites in both watersheds that lie just below the soil and largely isolate subsurface biogeochemical and hydrologic processes from those in the soil. The quartz diorite bedrock in the Icacos watershed weathers spheroidally, leaving large, relatively unweathered corestones that are enveloped by slightly weathered rock layers called rindlets. The rindlets wrap around the corestones like an onionskin. Within the corestones, biotite oxidation is thought to induce the spheroidal fracturing that leads to development of rindlets; plagioclase in the rindlets dissolves, creating additional pore spaces. Near the rindlet-saprolite interface, the remaining plagioclase dissolves, hornblende dissolves to completion, and precipitation of kaolinite, gibbsite, and goethite becomes pervasive. In the saprolite, biotite weathers to kaolinite and quartz begins to dissolve. In the soil layer, both quartz and kaolinite dissolve. The volcaniclastic bedrock of the Mameyes watershed weathers even faster than the quartz diorite bedrock of the Icacos watershed, leaving thicker saprolites that are devoid of all primary minerals except quartz. The quartz content of volcaniclastic bedrock may help to control watershed geomorphology; high-quartz rocks form thick saprolites that blanket ridges. Hydrologic flow paths within the weathering profiles vary with total fluid flux, and they influence the chemistry of streams. Under low-flow conditions, the Río Icacos and its tributaries are fed by rainfall and by groundwater from

  17. Examination of physical processes of convective cell evolved from a MCS - using a different model initialization

    NASA Astrophysics Data System (ADS)

    Spiridonov, Vlado; Ćurić, Mladjen

    2016-06-01

    The present study is focused on examination of the physical processes of convective cell evolved from a MCS occurred on 4 November 2011 over Genoa, Italy. The Quantitative Precipitation Forecasts (QPF) have been performed using WRF v3.6 model under different configurations and cloud permitting simulations. The results indicate underestimation of the amount of precipitation and spatial displacement of the area with a peak 24-h accumulated rainfall in (mm). Our main objective in the research is to test the cloud model ability and performance in simulation of this particular case. For that purpose a set of sensitivity experiments under different model initializations and initial data have been conducted. The results also indicate that the merging process apparently alters the physical processes through low- and middle-level forcing, increasing cloud depth, and enhancing convection. The examination of the microphysical process simulated by the model indicates that dominant production terms are the accretion of rain by graupel and snow, probabilistic freezing of rain to form graupel and dry and wet growth of graupel. Experiment under WRF v3.6 model initialization has shown some advantage in simulation of the physical processes responsible for production and initiation of heavy rainfall compared to other model runs. Most of the precipitation came from ice-phase particles-via accretion processes and the graupel melting at temperature T0 ≥ 0°C. The rainfall intensity and accumulated rainfall calculated by the model closely reflect the amount of rainfall recorded. Thus, the main benefit is to better resolve convective showers or storms which, in extreme cases, can give rise to major flooding events. In such a way, this model may become major contributor to improvements in weather analysis and small-scale atmospheric predictions and early warnings of such subscale processes.

  18. The use of imprecise processing to improve accuracy in weather and climate prediction

    SciTech Connect

    Düben, Peter D.; McNamara, Hugh; Palmer, T.N.

    2014-08-15

    The use of stochastic processing hardware and low precision arithmetic in atmospheric models is investigated. Stochastic processors allow hardware-induced faults in calculations, sacrificing bit-reproducibility and precision in exchange for improvements in performance and potentially accuracy of forecasts, due to a reduction in power consumption that could allow higher resolution. A similar trade-off is achieved using low precision arithmetic, with improvements in computation and communication speed and savings in storage and memory requirements. As high-performance computing becomes more massively parallel and power intensive, these two approaches may be important stepping stones in the pursuit of global cloud-resolving atmospheric modelling. The impact of both hardware induced faults and low precision arithmetic is tested using the Lorenz '96 model and the dynamical core of a global atmosphere model. In the Lorenz '96 model there is a natural scale separation; the spectral discretisation used in the dynamical core also allows large and small scale dynamics to be treated separately within the code. Such scale separation allows the impact of lower-accuracy arithmetic to be restricted to components close to the truncation scales and hence close to the necessarily inexact parametrised representations of unresolved processes. By contrast, the larger scales are calculated using high precision deterministic arithmetic. Hardware faults from stochastic processors are emulated using a bit-flip model with different fault rates. Our simulations show that both approaches to inexact calculations do not substantially affect the large scale behaviour, provided they are restricted to act only on smaller scales. By contrast, results from the Lorenz '96 simulations are superior when small scales are calculated on an emulated stochastic processor than when those small scales are parametrised. This suggests that inexact calculations at the small scale could reduce computation and

  19. Physics-based signal processing algorithms for micromachined cantilever arrays

    DOEpatents

    Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W

    2013-11-19

    A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.

  20. Space Weathering of Lunar Rocks

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2012-01-01

    All materials exposed at the lunar surface undergo space weathering processes. On the Moon, boulders make up only a small percentage of the exposed surface, and areas where such rocks are exposed, like central peaks, are often among the least space weathered regions identified from remote sensing data. Yet space weathered surfaces (patina) are relatively common on returned rock samples, some of which directly sample the surface of larger boulders. Because, as witness plates to lunar space weathering, rocks and boulders experience longer exposure times compared to lunar soil grains, they allow us to develop a deeper perspective on the relative importance of various weathering processes as a function of time.

  1. Canada's physical activity guides: background, process, and development.

    PubMed

    Sharratt, Michael T; Hearst, William E

    2007-01-01

    This historical background paper chronicles the major events leading to the development of Canada's physical activity guides (for children, youth, adults, and older adults). The paper outlines the process and the steps used, including information (where applicable) regarding national partners, project administration, Health Canada communications, product development, endorsement, distribution and implementation, collateral activities, media relations and evaluation framework. Brief summaries of the science that led to the recommended guidelines are included. The paper also summarizes the various physical activity guide assessment and evaluation projects and their findings, particularly as they relate to research carried out on Canada's physical activity guides for children and youth (and the associated support resources). PMID:18213939

  2. [Physical activity guidelines in Canada: context, process and development].

    PubMed

    Sharratt, Michael T; Hearst, William E

    2007-01-01

    This historical background paper chronicles the major events leading to the development of Canada's physical activity guides (for children, youth, adults, and older adults). The paper outlines the process and the steps used, including information (where applicable) regarding national partners, project administration, Health Canada communications, product development, endorsement, distribution and implementation, collateral activities, media relations and evaluation framework. Brief summaries of the science that led to the recommended guidelines are included. The paper also summarizes the various physical activity guide assessment and evaluation projects and their findings, particularly as they relate to research carried out on Canada's physical activity guides for children and youth (and the associated support resources). PMID:19377535

  3. Getting Middle-School Students up and Moving: What's the Role of School and Neighborhood Environments...and the Weather: Studying the Effect of Neighborhood and School Environments on Youth Physical Activity Levels. Program Results

    ERIC Educational Resources Information Center

    Nakashian, Mary

    2008-01-01

    Researchers at the Harvard Prevention Research Center at Harvard University School of Public Health examined how physical and social environments of schools and neighborhoods shape routine physical activities of students attending 10 middle schools in the Boston area. They also analyzed the effect of weather conditions on student physical…

  4. A model of weathering intensity for the Australian continent

    NASA Astrophysics Data System (ADS)

    Wilford, J.

    2013-12-01

    Regolith encompasses all weathered materials in the zone between the Earth's surface and fresh bedrock at depth. This weathered zone includes the soil, which may constitute the whole of the regolith profile or represent only its upper part. Important hydrological and biogeochemical processes operate within the regolith, including the infiltration and storage of near-surface water and nutrients, which sustain agricultural productivity. The degree to which the regolith is weathered (or its weathering intensity) is intrinsically linked to the factors involved in soil formation including parent material, climate, topography, biota and time. The degree to which the bedrock or sediments are weathered has a significant effect on the nature and distribution of regolith materials. There is commonly a strong correlation between weathering intensity and the degree of soil development as well as the depth of the weathering front. Changes in weathering intensity correspond to changes in the geochemical and physical properties of bedrock, ranging from essentially unweathered parent materials through to intensely weathered and leached regolith where all traits of the original protolith (original unweathered rock) are overprinted or lost altogether. With increasing weathering intensity we see mineral and geochemical convergence to more resistant secondary weathered materials including clay, silica, and various oxides. A weathering intensity index (WII) over the Australian continent has been developed at a 100 m resolution using two regression models based on airborne gamma-ray spectrometry imagery and the Shuttle Radar Topography Mission (SRTM) elevation data. Airborne gamma-ray spectrometry measures the concentration of three radioelements -- potassium (K), thorium (Th) and uranium (U) at the Earth's surface. The total gamma-ray flux (dose) is also calculated based on the weighted additions of the three radioelements. In general K is leached with increasing weathering whereas Th

  5. Analysis of weather patterns associated with air quality degradation and potential health impacts

    EPA Science Inventory

    Emissions from anthropogenic and natural sources into the atmosphere are determined in large measure by prevailing weather conditions through complex physical, dynamical and chemical processes. Air pollution episodes are characterized by degradation in air quality as reflected by...

  6. The r-Process Elements: Physics, Origin, and RIA

    NASA Astrophysics Data System (ADS)

    Qian, Yong-Zhong

    2003-10-01

    Approximately half of the heavy elements with A>70 are made via rapid neutron capture, the r-process. The conditions required for this process have been examined in terms of the parameters for adiabatic expansion from high temperature and density. There have been many developments regarding core-collapse supernova and neutron star merger models of the r-process. Meteoritic data and observations of metal-poor stars have demonstrated the diversity of r-process sources. Stellar observations have also found some regularity in r-process abundance patterns and large dispersions in r-process abundances at low metallicities. This talk will summarize the recent results from parametric studies, astrophysical models, and observational studies of the r-process. The interplay between nuclear physics and astrophysics will be emphasized. Possible measurements crucial to r-process studies will be discussed in connection with rare isotope accelerator facilities such as RIA .

  7. Hydrologic regulation of chemical weathering and the geologic carbon cycle.

    PubMed

    Maher, K; Chamberlain, C P

    2014-03-28

    Earth's temperature is thought to be regulated by a negative feedback between atmospheric CO2 levels and chemical weathering of silicate rocks that operates over million-year time scales. To explain variations in the strength of the weathering feedback, we present a model for silicate weathering that regulates climatic and tectonic forcing through hydrologic processes and imposes a thermodynamic limit on weathering fluxes, based on the physical and chemical properties of river basins. Climate regulation by silicate weathering is thus strongest when global topography is elevated, similar to the situation today, and lowest when global topography is more subdued, allowing planetary temperatures to vary depending on the global distribution of topography and mountain belts, even in the absence of appreciable changes in CO2 degassing rates. PMID:24625927

  8. Challenges in Teaching Space Physics to Different Target Groups From Space Weather Forecasters to Heavy-weight Theorists

    NASA Astrophysics Data System (ADS)

    Koskinen, H. E.

    2008-12-01

    Plasma physics as the backbone of space physics is difficult and thus the space physics students need to have strong foundations in general physics, in particular in classical electrodynamics and thermodynamics, and master the basic mathematical tools for physicists. In many universities the number of students specializing in space physics at Master's and Doctoral levels is rather small and the students may have quite different preferences ranging from experimental approach to hard-core space plasma theory. This poses challenges in building up a study program that has both the variety and depth needed to motivate the best students to choose this field. At the University of Helsinki we require all beginning space physics students, regardless whether they enter the field as Master's or Doctoral degree students, to take a one-semester package consisting of plasma physics and its space applications. However, some compromises are necessary. For example, it is not at all clear, how thoroughly Landau damping should be taught at the first run or how deeply should the intricacies of collisionless reconnection be discussed. In both cases we have left the details to an optional course in advanced space physics, even with the risk that the student's appreciation of, e.g., reconnection may remain at the level of a magic wand. For learning experimental work, data analysis or computer simulations we have actively pursued arrangements for the Master's degree students to get a summer employments in active research groups, which usually lead to the Master's theses. All doctoral students are members of research groups and participate in experimental work, data analysis, simulation studies or theory development, or any combination of these. We emphasize strongly "learning by doing" all the way from the weekly home exercises during the lecture courses to the PhD theses which in Finland consist typically of 4-6 peer-reviewed articles with a comprehensive introductory part.

  9. Extraction of convective cloud parameters from Doppler Weather Radar MAX(Z) product using Image Processing Technique

    NASA Astrophysics Data System (ADS)

    Arunachalam, M. S.; Puli, Anil; Anuradha, B.

    2016-07-01

    In the present work continuous extraction of convective cloud optical information and reflectivity (MAX(Z) in dBZ) using online retrieval technique for time series data production from Doppler Weather Radar (DWR) located at Indian Meteorological Department, Chennai has been developed in MATLAB. Reflectivity measurements for different locations within the DWR range of 250 Km radii of circular disc area can be retrieved using this technique. It gives both time series reflectivity of point location and also Range Time Intensity (RTI) maps of reflectivity for the corresponding location. The Graphical User Interface (GUI) developed for the cloud reflectivity is user friendly; it also provides the convective cloud optical information such as cloud base height (CBH), cloud top height (CTH) and cloud optical depth (COD). This technique is also applicable for retrieving other DWR products such as Plan Position Indicator (Z, in dBZ), Plan Position Indicator (Z, in dBZ)-Close Range, Volume Velocity Processing (V, in knots), Plan Position Indicator (V, in m/s), Surface Rainfall Intensity (SRI, mm/hr), Precipitation Accumulation (PAC) 24 hrs at 0300UTC. Keywords: Reflectivity, cloud top height, cloud base, cloud optical depth

  10. Weatherizing America

    ScienceCinema

    Stewart, Zachary; Bergeron, T.J.; Barth, Dale; Qualis, Xavier; Sewall, Travis; Fransen, Richard; Gill, Tony;

    2013-05-29

    As Recovery Act money arrives to expand home weatherization programs across the country, Zachary Stewart of Phoenix, Ariz., and others have found an exciting opportunity not only to start working again, but also to find a calling.

  11. Weatherizing America

    SciTech Connect

    Stewart, Zachary; Bergeron, T.J.; Barth, Dale; Qualis, Xavier; Sewall, Travis; Fransen, Richard; Gill, Tony

    2009-01-01

    As Recovery Act money arrives to expand home weatherization programs across the country, Zachary Stewart of Phoenix, Ariz., and others have found an exciting opportunity not only to start working again, but also to find a calling.

  12. Gendering Processes in the Field of Physical Education

    ERIC Educational Resources Information Center

    Berg, Paivi; Lahelma, Elina

    2010-01-01

    In Finnish secondary schools, girls and boys are taught physical education (PE) in separate groups. A male teacher normally teaches the boys and a female teacher teaches the girls. Focusing on PE teachers' comments in two different ethnographic studies of seventh graders (13-14-year-olds), we examine the processes that reproduce or challenge the…

  13. The Philosophic Process in Physical Education. 3rd Edition.

    ERIC Educational Resources Information Center

    Harper, William A.; And Others

    This book on the process of philosophic thought as it relates to physical education is divided into four parts. The first part, "Philosophy as Action," aims to help the student to develop and refine his ability to philosophize, to direct reasoned beliefs toward a goal, to see that reasoned beliefs derive from thinking, to avoid error and dangers…

  14. Characterizing englacial and subglacial weathering processes in a silicate-carbonate system at Robertson Glacier, Canada: Combining field measurements and remote sensing

    NASA Astrophysics Data System (ADS)

    Rutledge, A. M.; Christensen, P. R.

    2012-12-01

    Geologic weathering processes in cold environments, especially processes acting on subglacial and englacial sediments and rocks, are not well characterized due to the difficulty of accessing these environments. However, subglacial and englacial weathering of geologic materials contributes to the solute flux in meltwater and provides a potential source of energy to chemotrophic microbes, and is thus an important component to understand. In this study, we characterize the weathering products present in a glaciated silicate-carbonate system using infrared spectroscopy, x-ray diffraction, and geochemical analyses. We use Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data to determine whether glacial weathering products can be detected from remotely detected infrared spectra. The major goals of the project are to quantify weathering inputs to the glacial energy budget, and to link in situ sampling with remote sensing capabilities. Robertson Glacier, Alberta, Canada (115°20'W, 50°44'N) provides an excellent field site for this technique as it is accessible, and its retreating stage allows sampling of fresh subglacial and englacial sediments. This site is also of great significance to microbiology studies due to the recent detection of methanogens in the local subglacial till. Samples of glacially altered rock and sediments were collected on a downstream transect of the glacier in September 2011. Infrared laboratory spectroscopy and x-ray diffraction were used to determine the composition and abundance of minerals present. Infrared imagery of the region was collected at the time of sampling with the ASTER satellite instrument. Geochemical data were also collected at each location, and ice and water samples were analyzed for major and minor elements. pH values decreased in the downstream direction, and Ca+2 and SO4-2 in solution increased downstream. This is initially consistent with earlier studies of similar systems; however, the majority of

  15. Rainy Weather Science.

    ERIC Educational Resources Information Center

    Reynolds, Karen

    1996-01-01

    Presents ideas on the use of rainy weather for activities in the earth, life, and physical sciences. Topics include formation and collision of raindrops, amount and distribution of rain, shedding of water by plants, mapping puddles and potholes, rainbow formation, stalking storms online, lightning, and comparing particles in the air before and…

  16. Heat Transfer Processes for the Thermal Energy Balance of Organisms. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Stevenson, R. D.

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module describes heat transfer processes involved in the exchange of heat…

  17. Physics-based model for electro-chemical process

    SciTech Connect

    Zhang, Jinsuo

    2013-07-01

    Considering the kinetics of electrochemical reactions and mass transfer at the surface and near-surface of the electrode, a physics-based separation model for separating actinides from fission products in an electro-refiner is developed. The model, taking into account the physical, chemical and electrochemical processes at the electrode surface, can be applied to study electrorefining kinetics. One of the methods used for validation has been to apply the developed model to the computation of the cyclic voltammetry process of PuCl{sub 3} and UCl{sub 3} at a solid electrode in molten KCl-LiCl. The computed results appear to be similar to experimental measures. The separation model can be applied to predict materials flows under normal and abnormal operation conditions. Parametric studies can be conducted based on the model to identify the most important factors that affect the electrorefining processes.

  18. Remote sensing of atmospheric particulates: Technological innovation and physical limitations in applications to short-range weather prediction

    NASA Technical Reports Server (NTRS)

    Curran, R. J.; Kropfil, R.; Hallett, J.

    1984-01-01

    Techniques for remote sensing of particles, from cloud droplet to hailstone size, using optical and microwave frequencies are reviewed. The inherent variability of atmospheric particulates is examined to delineate conditions when the signal can give information to be effectively utilized in a forecasting context. The physical limitations resulting from the phase, size, orientation and concentration variability of the particulates are assessed.

  19. Light and Sound: Evolutionary Aspects. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Roseman, Leonard D.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module is concerned with the exchange of energy between an organism and its environment in…

  20. Pressure and Buoyancy in Aquatic Ecosystems. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Cowan, Christina E.

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module explores some of the characteristics of aquatic organisms which can be…

  1. Fluid Dynamics Applied to Streams. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Cowan, Christina E.

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module deals specifically with concepts that are basic to fluid flow and…

  2. Transpiration and Leaf Temperature. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Gates, David M.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This report introduces two models of the thermal energy budget of a leaf. Typical values for…

  3. Soil Heat Flow. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Simpson, James R.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Soil heat flow and the resulting soil temperature distributions have ecological consequences…

  4. Biological Production in Lakes. Physical Processes in Terrestrial and Aquatic Ecosystems, Ecological Processes.

    ERIC Educational Resources Information Center

    Walters, R. A.; Carey, G. F.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Primary production in aquatic ecosystems is carried out by phytoplankton, microscopic plants…

  5. Waste glass weathering

    SciTech Connect

    Bates, J.K.; Buck, E.C.

    1993-12-31

    The weathering of glass is reviewed by examining processes that affect the reaction of commercial, historical, natural, and nuclear waste glass under conditions of contact with humid air and slowly dripping water, which may lead to immersion in nearly static solution. Radionuclide release data from weathered glass under conditions that may exist in an unsaturated environment are presented and compared to release under standard leaching conditions. While the comparison between the release under weathering and leaching conditions is not exact, due to variability of reaction in humid air, evidence is presented of radionuclide release under a variety of conditions. These results suggest that both the amount and form of radionuclide release can be affected by the weathering of glass.

  6. Being qua becoming: Aristotle's "Metaphysics", quantum physics, and Process Philosophy

    NASA Astrophysics Data System (ADS)

    Johnson, David Kelley

    In Aristotle's First Philosophy, science and philosophy were partners, but with the rise of empiricism, went their separate ways. Metaphysics combined the rational and irrational (i.e. final cause/unmoved mover) elements of existence to equate being with substance, postulating prime matter as pure potential that was actuated by form to create everything. Modern science reveres pure reason and postulates its theory of being by a rigorous scientific methodology. The Standard Model defines matter as energy formed into fundamental particles via forces contained in fields. Science has proved Aristotle's universe wrong in many ways, but as physics delves deeper into the quantum world, empiricism is reaching its limits concerning fundamental questions of existence. To achieve its avowed mission of explaining existence completely, physics must reunite with philosophy in a metascience modeled on the First Philosophy of Aristotle. One theory of being that integrates quantum physics and metaphysics is Process Philosophy.

  7. Integrated Research and Education in Solar Physics, Space Weather, and Energetic Charged Particles at the University of Arizona

    NASA Astrophysics Data System (ADS)

    Giacalone, J.

    2011-12-01

    I will discuss how a NSF Early-Career Award led to a new emphasis in solar physics at the University of Arizona (UA) that has enabled new opportunities for scientific research in this area, but has also led to new education and public-outreach initiatives. I will discuss the approach used to integrate education with research, emphasizing the importance of the prestige of the CAREER award itself. A particular highlight from this project was a summer school in solar physics that was held for four consecutive years from 2006-2009 aimed at beginning graduate students, but also had a number of advanced undergraduates as well. The award was also used to support workshops for local-area middle-school teachers on topics germane to solar physics that could be instituted in their respective school's curricula. The award also subsidized a number of graduate students and postdoctoral researchers at the UA promoting their career development. While the focus of this presentation will be on the educational and public-outreach aspects of this project, it is important emphasize that this project had a strong research component. The UA is a major research university and the award was instrumental in the development of the principal investigator's career, both in terms of obtaining tenure and promotion to full professor, and also to put him in a good position to secure extramural funding. Therefore, I will also discuss some key research highlights from this project as well.

  8. How Physicists Made Stable Lévy Processes Physically Plausible

    NASA Astrophysics Data System (ADS)

    Schinckus, Christophe

    2013-08-01

    Stable Lévy processes have very interesting properties for describing the complex behaviour of non-equilibrium dissipative systems such as turbulence, anomalous diffusion or financial markets. However, although these processes better fit the empirical data, some of their statistical properties can raise several theoretical problems in empirical applications because they generate infinite variables. Econophysicists have developed statistical solutions to make these processes physically plausible. This paper presents a review of these analytical solutions (truncations) for stable Lévy processes and how econophysicists transformed them into data-driven processes. The evolution of these analytical solutions is presented as a progressive research programme provided by (econo)physicists for theoretical problems encountered in financial economics in the 1960s and the 1970s.

  9. Assessing processes in uncertain, complex physical phenomena and manufacturing

    SciTech Connect

    Booker, J. M.; Kerscher, W. J. III; Smith, R. E.

    2002-01-01

    PREDICT (Performance and Reliability Evaluation with Diverse Information Combination and Tracking) is a set of structured quantitative approaches for the evaluation of system performance based on multiple information sources. The methodology integrates diverse types and sources of information, and their associated uncertainties, to develop full distributions for performance metrics, such as reliability. The successful application of PREDICT has involved system performance assessment in automotive product development, aging nuclear weapons, and fatigued turbine jet engines. In each of these applications, complex physical, mechanical and materials processes affect performance, safety and reliability assessments. Processes also include the physical actions taken during manufacturing, quality control, inspections, assembly, etc. and the steps involved in product design, development and certification. In this paper, we will examine the various types of processes involved in the decision making leading to production in an automotive system reliability example. Analysis of these processes includes not only understanding their impact on performance and reliability, but also the uncertainties associated with them. The automotive example demonstrates some of the tools used in tackling the complex problem of understanding processes. While some tools and methods exist for understanding processes (man made and natural) and the uncertainties associated with them, many of the complex issues discussed are open for continued research efforts.

  10. Levels of processing and picture memory: the physical superiority effect.

    PubMed

    Intraub, H; Nicklos, S

    1985-04-01

    Six experiments studied the effect of physical orienting questions (e.g., "Is this angular?") and semantic orienting questions (e.g., "Is this edible?") on memory for unrelated pictures at stimulus durations ranging from 125-2,000 ms. Results ran contrary to the semantic superiority "rule of thumb," which is based primarily on verbal memory experiments. Physical questions were associated with better free recall and cued recall of a diverse set of visual scenes (Experiments 1, 2, and 4). This occurred both when general and highly specific semantic questions were used (Experiments 1 and 2). Similar results were obtained when more simplistic visual stimuli--photographs of single objects--were used (Experiments 5 and 6). As in the case of the semantic superiority effect with words, the physical superiority effect for pictures was eliminated or reversed when the same physical questions were repeated throughout the session (Experiments 4 and 6). Conflicts with results of previous levels of processing experiments with words and nonverbal stimuli (e.g., faces) are explained in terms of the sensory-semantic model (Nelson, Reed, & McEvoy, 1977). Implications for picture memory research and the levels of processing viewpoint are discussed. PMID:3157769

  11. Physical activity across the curriculum: year one process evaluation results

    PubMed Central

    Gibson, Cheryl A; Smith, Bryan K; DuBose, Katrina D; Greene, J Leon; Bailey, Bruce W; Williams, Shannon L; Ryan, Joseph J; Schmelzle, Kristin H; Washburn, Richard A; Sullivan, Debra K; Mayo, Matthew S; Donnelly, Joseph E

    2008-01-01

    Background Physical Activity Across the Curriculum (PAAC) is a 3-year elementary school-based intervention to determine if increased amounts of moderate intensity physical activity performed in the classroom will diminish gains in body mass index (BMI). It is a cluster-randomized, controlled trial, involving 4905 children (2505 intervention, 2400 control). Methods We collected both qualitative and quantitative process evaluation data from 24 schools (14 intervention and 10 control), which included tracking teacher training issues, challenges and barriers to effective implementation of PAAC lessons, initial and continual use of program specified activities, and potential competing factors, which might contaminate or lessen program effects. Results Overall teacher attendance at training sessions showed exceptional reach. Teachers incorporated active lessons on most days, resulting in significantly greater student physical activity levels compared to controls (p < 0.0001). Enjoyment ratings for classroom-based lessons were also higher for intervention students. Competing factors, which might influence program results, were not carried out at intervention or control schools or were judged to be minimal. Conclusion In the first year of the PAAC intervention, process evaluation results were instrumental in identifying successes and challenges faced by teachers when trying to modify existing academic lessons to incorporate physical activity. PMID:18606013

  12. A combined physical/microbial process for coal beneficiation

    SciTech Connect

    Noah, K.S.; Glenn, A.W.; Stevens, C.J.; McAtee, N.B.; McIlwain, M.E.; Andrews, G.F.

    1993-11-01

    A combined physical/microbial process for the removal of pyritic sulfur from coal was demonstrated in a 200 L aerated trough slurry reactor. The reactor was divided into six sections, each of which acted as both a physical separator and a bioreactor. Settled solids from sections 2 through 6 were recycled to section 1 which acted as a rougher. The objective was physical removal of the larger pyritic inclusions, which would take many days to biodegrade, and biodegradation of the micropyrite, which is difficult to remove physically. The process was operated continuously for 8 months, treating two Illinois No. 6 coals (4 months each). Reduction of 90% in-pyritic sulfur with 90% energy recovery and 35% ash removal was obtained for a low pyrite Monterey coal at a 5 day coal retention time and 20% (w/w) slurry concentration. Increased coal loading reduced performance apparently due to losses of sulfur oxidizing bacteria. A low pyrite Consol coal gave 63--77% pyrite reduction with 23--30% ash removal and 77--90% heating value recovery. Product coal pyritic sulfur analysis indicated no differences between treatments of Consol coal. This suggests that the coal residence time could be further reduced and the slurry concentration increased in future work.

  13. CLARA: A Contemporary Approach to Physics Data Processing

    NASA Astrophysics Data System (ADS)

    Gyurjyan, V.; Abbott, D.; Carbonneau, J.; Gilfoyle, G.; Heddle, D.; Heyes, G.; Paul, S.; Timmer, C.; Weygand, D.; Wolin, E.

    2011-12-01

    CLARA (CLAS12 Reconstruction and Analysis framework) is CLAS12 physics data processing (PDP) application development framework based on a service oriented architecture (SOA). This framework allows users to design and deploy data processing services as well as dynamically compose PDP applications using available services. Services can be written in Java, C++, and Python languages. The PDP service bus provides a layer on top of a distributed pub-sub middleware implementation. This allows complex service composition and integration without writing a code. We believe that by deviating from the traditional self contained, monolithic PDP application models we can improve maintenance, scalability and quality of physics data analysis. The SOA approach also helps us to separate a specific service programmer from a PDP application designer. Examples of service creation and deployment, along with the CLAS12 track reconstruction application design are presented.

  14. Rb Sr and K Ar systems of biotite in surface environments regulated by weathering processes with implications for isotopic dating and hydrological cycles of Sr isotopes

    NASA Astrophysics Data System (ADS)

    Jeong, Gi Young; Cheong, Chang-Sik; Kim, Jeongmin

    2006-09-01

    Biotite is widely used for Rb-Sr and K-Ar isotopic dating and influences Sr isotope geochemistry of hydrological regimes. The isotopic system of biotite behaves diversely in response to surface weathering; i.e. the complete preservation of original Rb-Sr and K-Ar isotopic ages or dramatic reduction. In this study, we have explored the relation between the behavior of isotopic systems and complex weathering processes of biotites in the weathering profiles distributed on the Mesozoic granitoids in South Korea. In the lower parts of the profiles, biotite in the early stages of weathering was transformed into either oxidized biotite or hydrobiotite, with a mass release of 87Sr and 40Ar forced by the rapid oxidation of ferrous iron. During the transformation to oxidized biotite, 87Sr and 40Ar were preferentially released relative to Rb and K, respectively, via solid-state diffusion through the biotite lattice, resulting in a drastic reduction of original isotopic age. The reduction of Rb-Sr age was greater than that of K-Ar age because K was preferentially released over Rb whereas 87Sr and 40Ar were released proportionally to each other. However, during the transformation of biotite to hydrobiotite (i.e., to regularly interstratified biotite-vermiculite), 87Sr, Rb, 40Ar, and K were completely retained in the alternating biotite interlayer, and thus the original isotopic age can be preserved. In the upper parts of the profiles, where iron oxidation was almost completed, 87Sr, Rb, 40Ar, and K were gradually and proportionally released, with no further significant change in isotopic age during the gradual transformation of the early-formed oxidized biotite into hydrobiotite and vermiculite or during their final decomposition to kaolinite. The ratios and amounts of isotopes released from weathered biotites are dependent upon the degree of iron oxidation and the pathways of mineralogical transformation. Regional and local variations in isotopic systems affected by particular

  15. The physical basis of explosion and blast injury processes.

    PubMed

    Proud, W G

    2013-03-01

    Energetic materials are widely used in civilian and military applications, such as quarrying and mining, flares, and in munitions. Recent conflicts have involved the widespread use of improvised explosive devices to attack military, civilians and infrastructure. This article gives a basic overview of explosive technology and the underlying physical processes that produce the injuries encountered. In particular aspects relevant to primary and secondary injuries are discussed. PMID:23631318

  16. Influence of different natural physical fields on biological processes

    NASA Astrophysics Data System (ADS)

    Mashinsky, A. L.

    2001-01-01

    In space flight conditions gravity, magnetic, and electrical fields as well as ionizing radiation change both in size, and in direction. This causes disruptions in the conduct of some physical processes, chemical reactions, and metabolism in living organisms. In these conditions organisms of different phylogenetic level change their metabolic reactions undergo changes such as disturbances in ionic exchange both in lower and in higher plants, changes in cell morphology for example, gyrosity in Proteus ( Proteus vulgaris), spatial disorientation in coleoptiles of Wheat ( Triticum aestivum) and Pea ( Pisum sativum) seedlings, mutational changes in Crepis ( Crepis capillaris) and Arabidopsis ( Arabidopsis thaliana) seedling. It has been found that even in the absence of gravity, gravireceptors determining spatial orientation in higher plants under terrestrial conditions are formed in the course of ontogenesis. Under weightlessness this system does not function and spatial orientation is determined by the light flux gradient or by the action of some other factors. Peculiarities of the formation of the gravireceptor apparatus in higher plants, amphibians, fish, and birds under space flight conditions have been observed. It has been found that the system in which responses were accompanied by phase transition have proven to be gravity-sensitive under microgravity conditions. Such reactions include also the process of photosynthesis which is the main energy production process in plants. In view of the established effects of microgravity and different natural physical fields on biological processes, it has been shown that these processes change due to the absence of initially rigid determination. The established biological effect of physical fields influence on biological processes in organisms is the starting point for elucidating the role of gravity and evolutionary development of various organisms on Earth.

  17. Urgency of evolution-process congruent thinking in physics

    NASA Astrophysics Data System (ADS)

    Roychoudhuri, Chandrasekhar

    2015-09-01

    It is now generally recognized that physics has not been contributing anything conceptually fundamentally new beyond the century old Relativity and 90 years old Quantum Mechanics [1-4]. We have also started recognizing that there is an increasing rate of species extinction all over the world, especially since the last century [5]; and we are beginning to understand that the related problems are being steadily accelerated by human behavior to conquer nature, rather than understanding nature as is and living within its system logics [6,7]. We are beginning to appreciate that our long-term sustainability as a species literally depends upon proactively learning to nurture the entire bio-diversity [8-10]. Thus, humans must consciously become evolution process congruent thinkers. The evolutionary biologists have been crying out loud for us to listen [5,6, 8-10]. Social scientists, political scientists, economic scientists [13] have started chiming in to become consilient thinkers [6] for re-constructing sustainable societies. But, the path to consilient thinking requires us to recognize and accept a common vision based thinking process, which functionally serves as a uniting platform. I am articulating that platform as the "evolution process congruent thinking" (EPCT). Do physicists have any obligation to co-opt this EPCT? Is there any immediate and/or long-term gain for them? This paper argues affirmatively that co-opting EPCT is the best way to re-anchor physics back to reality ontology and develop newer and deeper understanding of natural phenomena based on understanding of the diverse interaction processes going on in nature. Physics is mature enough to acknowledge that all of our theories are "work in progress". This is a good time to start iteratively re-evaluating and re-structuring all the foundational postulates behind all the working theories. This will also consistently energize all the follow-on generation of physicists to keep on fully utilizing their

  18. Process depending morphology and resulting physical properties of TPU

    SciTech Connect

    Frick, Achim Spadaro, Marcel

    2015-12-17

    Thermoplastic polyurethane (TPU) is a rubber like material with outstanding properties, e.g. for seal applications. TPU basically provides high strength, low frictional behavior and excellent wear resistance. Though, due to segmented structure of TPU, which is composed of hard segments (HSs) and soft segments (SSs), physical properties depend strongly on the morphological arrangement of the phase separated HSs at a certain ratio of HSs to SSs. It is obvious that the TPU deforms differently depending on its bulk morphology. Basically, the morphology can either consist of HSs segregated into small domains, which are well dispersed in the SS matrix or of few strongly phase separated large size HS domains embedded in the SS matrix. The morphology development is hardly ruled by the melt processing conditions of the TPU. Depending on the morphology, TPU provides quite different physical properties with respect to strength, deformation behavior, thermal stability, creep resistance and tribological performance. The paper deals with the influence of important melt processing parameters, such as temperature, pressure and shear conditions, on the resulting physical properties tested by tensile and relaxation experiments. Furthermore the morphology is studied employing differential scanning calorimeter (DSC), transmission light microscopy (TLM), scanning electron beam microscopy (SEM) and transmission electron beam microscopy (TEM) investigations. Correlations between processing conditions and resulting TPU material properties are elaborated. Flow and shear simulations contribute to the understanding of thermal and flow induced morphology development.

  19. Process depending morphology and resulting physical properties of TPU

    NASA Astrophysics Data System (ADS)

    Frick, Achim; Spadaro, Marcel

    2015-12-01

    Thermoplastic polyurethane (TPU) is a rubber like material with outstanding properties, e.g. for seal applications. TPU basically provides high strength, low frictional behavior and excellent wear resistance. Though, due to segmented structure of TPU, which is composed of hard segments (HSs) and soft segments (SSs), physical properties depend strongly on the morphological arrangement of the phase separated HSs at a certain ratio of HSs to SSs. It is obvious that the TPU deforms differently depending on its bulk morphology. Basically, the morphology can either consist of HSs segregated into small domains, which are well dispersed in the SS matrix or of few strongly phase separated large size HS domains embedded in the SS matrix. The morphology development is hardly ruled by the melt processing conditions of the TPU. Depending on the morphology, TPU provides quite different physical properties with respect to strength, deformation behavior, thermal stability, creep resistance and tribological performance. The paper deals with the influence of important melt processing parameters, such as temperature, pressure and shear conditions, on the resulting physical properties tested by tensile and relaxation experiments. Furthermore the morphology is studied employing differential scanning calorimeter (DSC), transmission light microscopy (TLM), scanning electron beam microscopy (SEM) and transmission electron beam microscopy (TEM) investigations. Correlations between processing conditions and resulting TPU material properties are elaborated. Flow and shear simulations contribute to the understanding of thermal and flow induced morphology development.

  20. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: A review of competing proxies

    NASA Astrophysics Data System (ADS)

    Clift, Peter D.; Wan, Shiming; Blusztajn, Jerzy

    2014-03-01

    Reconstructing the changing strength of the East Asian summer monsoon has been controversial because different proxies, many being indirect measures of rainfall, tell contrasting stories about how this has varied over long periods of geologic time. Here we present new Sr isotope, grain-size and clastic flux data and synthesize existing proxies to reconstruct changing chemical erosion in the northern South China Sea since the Oligocene, using the links between weathering rates and monsoon strength established in younger sediments as a way to infer intensity. Chemical proxies such as K/Rb, K/Al and the Chemical Index of Alteration (CIA), together with clay proxies like kaolinite/(illite + chlorite) show a steady decline in alteration after a sharp fall following a maximum at the Mid Miocene Climatic Optimum (MMCO; 15.5-17.2 Ma), probably as a result of cooling global temperatures. In contrast, physical erosion proxies, including bulk Ti/Ca and clastic mass accumulation rates (MAR), show peaks at 21-23 Ma, ~ 19 Ma and 15.5-17.2 Ma, implying faster run-off in the absence of drainage capture. Rates increase again, likely driven by slightly increased run-off after 13 Ma, but decrease after 8 Ma, which is identified as a period of summer monsoon weakening. Sr isotope composition correlates with hematite/goethite and the spectral proxy CRAT to show stronger weathering linked to more monsoonal seasonality. These proxies argue for a strengthening of the East Asian Monsoon after 22-23 Ma, followed by an extended period of monsoon maximum between 18 and 10 Ma, then weakening. There is some suggestion that the summer monsoon may have strengthened since 3-4 Ma after reaching a minimum in the Pliocene.

  1. Significant impacts of radiation physics in the Weather Research and Forecasting model on the precipitation and dynamics of the West African Monsoon

    NASA Astrophysics Data System (ADS)

    Li, R.; Jin, J.; Wang, S.-Y.; Gillies, R. R.

    2015-03-01

    Precipitation from the West African Monsoon (WAM) provides food security and supports the economy in the region. As a consequence of the intrinsic complexities of the WAM's evolution, accurate simulations of the WAM and its precipitation regime, through the application of regional climate models, are challenging. We used the coupled Weather Research and Forecasting (WRF) and Community Land Model (CLM) to explore impacts of radiation physics on the precipitation and dynamics of the WAM. Our results indicate that the radiation physics schemes not only produce biases in radiation fluxes impacting radiative forcing, but more importantly, result in large bias in precipitation of the WAM. Furthermore, the different radiation schemes led to variations in the meridional gradient of surface temperature between the north that is the Sahara desert and the south Guinean coastline. Climate diagnostics indicated that the changes in the meridional gradient of surface temperature affect the position and strength of the African Easterly Jet as well as the low-level monsoonal inflow from the Gulf of Guinea. The net result was that each radiation scheme produced differences in the WAM precipitation regime both spatially and in intensity. Such considerable variances in the WAM precipitation regime and dynamics, resulting from radiation representations, likely have strong feedbacks within the climate system and so have inferences when it comes to aspects of predicted climate change both for the region and globally.

  2. Physical Processes of Poloidal Flux Injection in CMEs

    NASA Astrophysics Data System (ADS)

    Chen, James

    2011-05-01

    The erupting flux rope (EFR) model of CMEs has been extensively tested against CME dynamics observed by SOHO and STEREO, demonstrating good agreement between model results and data: the best-fit solutions can reproduce observed CME trajectories from the Sun to 1 AU to within 1-2% of the data, and such solutions yield the poloidal flux injection function whose temporal profiles closely match those of the associated soft X-ray flare emissions. This provides evidence that the flux injection function captures the underlying physical connection between CME acceleration and flare energy release [1]. This mathematical function admits two distinct physical interpretations. In this talk, the physical processes that can contribute to poloidal flux injection are discussed, one involving flux of subphotospheric source and the other of coronal source. Recently, Schuck [2] and earlier, Forbes [3] argued that there is insufficient Poynting flux observable through the photosphere to support the subphotospheric flux injection hypothesis. These calculations, however, impose ad hoc large-scale coherent horizontal fields in the photosphere and do not have any subphotospheric source of flux or any equations of motion describing an ``injection'' process from a source through a medium. That is, these arguments contain no flux injection mechanism that they purport to ``falsify'' and no physical properties of the convection zone. Physically relevant signatures of subphotospheric flux injection are discussed. [1] Chen, J., and Kunkel, V. 2010, ApJ, 717, 1105. [2] Schuck, P. W. 2010, 714, 68. [3] Forbes, T. G. 2001, Eos Trans. AGU, 82(20), SH41C-03.

  3. 57 Fe Mössbauer spectroscopy studies of chondritic meteorites from the Atacama Desert, Chile: Implications for weathering processes

    NASA Astrophysics Data System (ADS)

    Munayco, P.; Munayco, J.; Valenzuela, M.; Rochette, P.; Gattacceca, J.; Scorzelli, R. B.

    2014-01-01

    Some terrestrial areas have climatic and geomorphologic features that favor the preservation, and therefore, accumulation of meteorites. The Atacama Desert in Chile is among the most important of such areas, known as dense collection areas. This desert is the driest on Earth, one of the most arid, uninhabitable locals with semi-arid, arid and hyper-arid conditions. The meteorites studied here were collected from within the dense collection area of San Juan at the Central Depression and Coastal Range of Atacama Desert. 57Fe Mössbauer spectroscopy was used for quantitative analysis of the degree of weathering of the meteorites, through the determination of the proportions of the various Fe-bearing phases and in particular the amount of oxidized iron in the terrestrial alteration products. The abundance of ferric ions in weathered chondrites can be related to specific precursor compositions and to the level of terrestrial weathering. The aim of the study was the identification, quantification and differentiation of the weathering products in the ordinary chondrites found in the San Juan area of Atacama Desert.

  4. TESTING SOLIDS SETTING APPARATUSES FOR DESIGN AND OPERATION OF WET-WEATHER FLOW SOLIDS-LIQUID SEPARATION PROCESSES

    EPA Science Inventory

    This study was a side-by-side comparison of two settling evaluation methods: one traditional and one new. The project investigated whether these column tests were capable of capturing or representing the rapidly settling particles present in wet-weather flows (WWF). The report r...

  5. Fourth National Aeronautics and Space Administration Weather and Climate Program Science Review

    NASA Technical Reports Server (NTRS)

    Kreins, E. R. (Editor)

    1979-01-01

    The NASA Weather and Climate Program has two major thrusts. The first involves the development of experimental and prototype operational satellite systems, sensors, and space facilities for monitoring and understanding the atmosphere. The second thrust involves basic scientific investigation aimed at studying the physical and chemical processes which control weather and climate. This fourth science review concentrated on the scientific research rather than the hardware development aspect of the program. These proceedings contain 65 papers covering the three general areas: severe storms and local weather research, global weather, and climate.

  6. A daily process analysis of intentions and physical activity in college students.

    PubMed

    Conroy, David E; Elavsky, Steriani; Doerksen, Shawna E; Maher, Jaclyn P

    2013-10-01

    Social-cognitive theories, such as the theory of planned behavior, posit intentions as proximal influences on physical activity (PA). This paper extends those theories by examining within-person variation in intentions and moderate-to-vigorous physical activity (MVPA) as a function of the unfolding constraints in people's daily lives (e.g., perceived time availability, fatigue, soreness, weather, overeating). College students (N = 63) completed a 14-day diary study over the Internet that rated daily motivation, contextual constraints, and MVPA. Key findings from multilevel analyses were that (1) between-person differences represented 46% and 33% of the variability in daily MVPA intentions and behavior, respectively; (2) attitudes, injunctive norms, self-efficacy, perceptions of limited time availability, and weekend status predicted daily changes in intention strength; and (3) daily changes in intentions, perceptions of limited time availability, and weekend status predicted day-to-day changes in MVPA. Embedding future motivation and PA research in the context of people's daily lives will advance understanding of individual PA change processes. PMID:24197717

  7. Weathering processes and the composition of inorganic material transported through the orinoco river system, Venezuela and Colombia

    USGS Publications Warehouse

    Stallard, R.F.; Koehnken, L.; Johnsson, M.J.

    1991-01-01

    The composition of river-borne material in the Orinoco River system is related primarily to erosion regime, which in turn is related to tectonic setting; especially notable is the contrast between material derived from tectonically active mountain belts and that from stable cratonic regions. For a particular morpho-tectonic region, the compositional suites of suspended sediment, bed material, overback deposits, and dissolved phases are fairly uniform are are typically distinct from whose of other regions. For each region, a consistent set of chemical weathering reactions can be formulated to explain the composition of dissolved and solid loads. In developing these formulations, erosion on slopes and storage of solids in soils and alluvial sediments are important considerations. Compositionally verymature sediment is derived from areas of thick soils where erosion is transport limited and from areas where sediments are stored for extended periods of time in alluvial deposits. Compositionally immature sediments are derived from tectonically active mountain belts where erosion is weathering limited. Weathering-limited erosion also is important in the elevated parts of the Guayana Shield within areas of sleep topography. Compared to the mountain belts, sediments derived from elevated parts of the Shield are more mature. A greater degree of chemical weathering seems to be needed to erode the rock types typical of the Shield. The major-element chemistry and mineral composition of sediment delivered by the Orinoco River to the ocean are controlled by rivers that have their headwaters in mountain belts and cross the Llanos, a region of alluvial plains within the foreland basin. The composition of sediments in rivers that drain the Shield seems to be established primarily at the site of soil formation, whereas for rivers that drain the mountain belts, additional weathering occurs during s episodes of storage on alluvial plains as sediments are transported across the Llanos

  8. Physical process first law for bifurcate Killing horizons

    SciTech Connect

    Amsel, Aaron J.; Marolf, Donald; Virmani, Amitabh

    2008-01-15

    The physical process version of the first law for black holes states that the passage of energy and angular momentum through the horizon results in a change in area ({kappa}/8{pi}){delta}A={delta}E-{omega}{delta}J, so long as this passage is quasistationary. A similar physical process first law can be derived for any bifurcate Killing horizon in any spacetime dimension d{>=}3 using much the same argument. However, to make this law nontrivial, one must show that sufficiently quasistationary processes do in fact occur. In particular, one must show that processes exist for which the shear and expansion remain small, and in which no new generators are added to the horizon. Thorne, MacDonald, and Price considered related issues when an object falls across a d=4 black hole horizon. By generalizing their argument to arbitrary d{>=}3 and to any bifurcate Killing horizon, we derive a condition under which these effects are controlled and the first law applies. In particular, by providing a nontrivial first law for Rindler horizons, our work completes the parallel between the mechanics of such horizons and those of black holes for d{>=}3. We also comment on the situation for d=2.

  9. Process evaluation results from the HEALTHY physical education intervention.

    PubMed

    Hall, William J; Zeveloff, Abigail; Steckler, Allan; Schneider, Margaret; Thompson, Deborah; Pham, Trang; Volpe, Stella L; Hindes, Katie; Sleigh, Adriana; McMurray, Robert G

    2012-04-01

    Process evaluation is an assessment of the implementation of an intervention. A process evaluation component was embedded in the HEALTHY study, a primary prevention trial for Type 2 diabetes implemented over 3 years in 21 middle schools across the United States. The HEALTHY physical education (PE) intervention aimed at maximizing student engagement in moderate-to-vigorous physical activity through delivery of structured lesson plans by PE teachers. Process evaluation data collected via class observations and interventionist interviews assessed fidelity, dose delivered, implementor participation, dose received and barriers. Process evaluation results indicate a high level of fidelity in implementing HEALTHY PE activities and offering 225 min of PE every 10 school days. Concerning dose delivered, students were active for approximately 33 min of class, representing an average of 61% of the class time. Results also indicate that PE teachers were generally engaged in implementing the HEALTHY PE curriculum. Data on dose received showed that students were highly engaged with the PE intervention; however, student misbehavior was the most common barrier observed during classes. Other barriers included teacher disengagement, large classes, limited gym space and poor classroom management. Findings suggest that the PE intervention was generally implemented and received as intended despite several barriers. PMID:22156231

  10. Process evaluation results from the HEALTHY physical education intervention

    PubMed Central

    Hall, William J.; Zeveloff, Abigail; Steckler, Allan; Schneider, Margaret; Thompson, Deborah; Pham, Trang; Volpe, Stella L.; Hindes, Katie; Sleigh, Adriana; McMurray, Robert G.

    2012-01-01

    Process evaluation is an assessment of the implementation of an intervention. A process evaluation component was embedded in the HEALTHY study, a primary prevention trial for Type 2 diabetes implemented over 3 years in 21 middle schools across the United States. The HEALTHY physical education (PE) intervention aimed at maximizing student engagement in moderate-to-vigorous physical activity through delivery of structured lesson plans by PE teachers. Process evaluation data collected via class observations and interventionist interviews assessed fidelity, dose delivered, implementor participation, dose received and barriers. Process evaluation results indicate a high level of fidelity in implementing HEALTHY PE activities and offering 225 min of PE every 10 school days. Concerning dose delivered, students were active for approximately 33 min of class, representing an average of 61% of the class time. Results also indicate that PE teachers were generally engaged in implementing the HEALTHY PE curriculum. Data on dose received showed that students were highly engaged with the PE intervention; however, student misbehavior was the most common barrier observed during classes. Other barriers included teacher disengagement, large classes, limited gym space and poor classroom management. Findings suggest that the PE intervention was generally implemented and received as intended despite several barriers. PMID:22156231

  11. Upconversion luminescent nanoparticles in physical sensing and in monitoring physical processes in biological samples

    NASA Astrophysics Data System (ADS)

    González-Béjar, María; Pérez-Prieto, Julia

    2015-12-01

    The most frequently used strategy for sensing is based on the emission variation of a photoactive system and it can be classified as chemical or physical depending on its response to either a chemical or a physical stimulus. There are a large number of luminescent nanomaterials that respond to chemical species, but comparatively, with the exception of temperature sensing, to date there are few examples showing the capacity of photoactive nanosystems responsive to physical stimuli, such as magnetic and electric fields, high radiation energy, tension/pressure, viscosity, etc, and very few of them comprise upconversion nanoparticles (UCNPs). These nanomaterials consist of an inorganic matrix doped with rare earth (RE) ions and can be advantageously used in sensing due to their unique optical features: near-infrared excitation, anti-Stokes emission, multiplexed emissions that span over a broad range (i.e. from the UV to NIR region depending on the nature of the RE ions), narrow emission bands, long emission lifetimes, high photostability, and non-photoblinking, among others. In this review we focus on the advances in the application of the luminescence of UCNPs for sensing environmental physical changes and for tracking physical processes in living systems.

  12. High-Silica Rock Coatings on Mars: Constraining Secondary Silicate Mineralogy and Chemical Weathering Processes on Mars.

    NASA Astrophysics Data System (ADS)

    Kraft, M. D.; Michalski, J. R.; Sharp, T. G.

    2003-12-01

    Thermal Emission Spectrometer (TES) data have been fundamental to understanding Martian surface mineralogy. These data, however, require careful modeling based on laboratory spectroscopic measurements, and modeling of some minerals for Mars has been equivocal. Due to high degrees of spectral similarity, it is difficult to distinguishing silicate glass, clay minerals, zeolites, palagonitized glass, and other secondary products such as amorphous silica as components of surface rock spectra. Deciphering the nature of secondary mineral products on Mars is of key importance to understanding the role of water at the Martian surface over time. It is of central interest to distinguish primary glass from secondary silicate minerals, and secondary minerals from one another to better constrain the degree and mechanisms of aqueous alteration. Observations of Martian surface materials indicate some degree of atmosphere-water-rock interaction. These include nanophase ferric-iron oxides from visible/near-infrared spectroscopy, concentrated hematite deposits identified with TES, high water contents of rocks measured by the Alpha Proton X-ray Spectrometer, sulfate and halide minerals inferred from lander geochemical measurements, and carbonate minerals identified in Martian dust with TES data. Mass balance suggests that if there are oxides, salts, and carbonates there must also be secondary silicate phases present on Mars, which may be identifiable with TES. Identifying the types, distribution, and abundance (or absence) of secondary silicates will enable better constrains to be placed on Martian chemical weathering processes and the role water has played at the Martian surface. We suggest that rock coatings dominated by amorphous silica are geologically reasonable for Mars and may be consistent with TES data. Laboratory measurements of silica-coated rocks show that thin, micrometer-scale silica coatings have a substantial impact on rock spectra. Consequently, if authegenic

  13. Health physics aspects of processing EBR-I coolant

    SciTech Connect

    Burke, L.L.; Thalgott, J.O.; Poston, J.W. Jr.

    1998-12-31

    The sodium-potassium reactor coolant removed from the Experimental Breeder Reactor Number One after a partial reactor core meltdown had been stored at the Idaho National Engineering and Environmental Laboratory for 40 years. The State of Idaho considered this waste the most hazardous waste stored in the state and required its processing. The reactor coolant was processed in three phases. The first phase converted the alkali metal into a liquid sodium-potassium hydroxide. The second phase converted this caustic to a liquid sodium-potassium carbonate. The third phase solidified the sodium-potassium carbonate into a form acceptable for land disposal. Health physics aspects and dose received during each phase of the processing are discussed.

  14. Physical processes in the plasma mantle of Venus

    NASA Technical Reports Server (NTRS)

    Szego, K.; Shapiro, V. S.; Shevchenko, V. I.; Sagdeev, R. Z.; Kasprzak, W. T.; Nagy, A. F.

    1991-01-01

    The results are presented of a study, which analyzed data from 10 Pioneer Venus orbits in order to see whether similar wave particle interaction processes also exist in the corresponding region around Venus. The first conclusion is that the apparent physical processes in the mantle are indeed similar around Venus and Mars. The planetary thermal O(+) ions outside the ionopause interact with the shocked solar wind and excite electrostatic waves close to the lower hybrid frequency. These waves propagate inwards, heating first the electron and deeper down in the ionosphere the thermal ion population. The observed superthermal ions are believed to be the product of this wave particle interaction process. It is also concluded that the wave energy transferred to the thermal electrons is of the right magnitude (about 4 x 10 exp 9 eV/sq cm s) to provide the supplemental heat source necessary to reconcile observed and calculated electron temperatures in the ionosphere.

  15. Detectors and signal processing for high-energy physics

    SciTech Connect

    Rehak, P.

    1981-01-01

    Basic principles of the particle detection and signal processing for high-energy physics experiments are presented. It is shown that the optimum performance of a properly designed detector system is not limited by incidental imperfections, but solely by more fundamental limitations imposed by the quantum nature and statistical behavior of matter. The noise sources connected with the detection and signal processing are studied. The concepts of optimal filtering and optimal detector/amplifying device matching are introduced. Signal processing for a liquid argon calorimeter is analyzed in some detail. The position detection in gas counters is studied. Resolution in drift chambers for the drift coordinate measurement as well as the second coordinate measurement is discussed.

  16. Weathering of stony meteorites in Antarctica

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.

    1986-01-01

    Weathering produces undesirable physical, chemical, and isotopic changes that might disturb the records of cosmochemical evolution that are sought in meteorites. Meteorites are physically disintegrated by crack propagation phenomena, including ice riving and secondary mineral riving, and are probably abraded by wind that is laden with ice crystals or dust particles. Chemical weathering proceeds by oxidation, hydration, carbonation, and solution and produces a variety of secondary minerals and mineraloids. Differential weathering under freezing conditions is discussed, as well as, the mineralogy of weathering products. Furthermore, the use of Antarctic alteration of meteorites could be used as an excellent analog for weathering on Mars or on cometary bodies.

  17. Mineralogical, micromorphological and geochemical transformations in the initial steps of the weathering process of charnockite from the Caparaó Range, southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Soares, Caroline Cibele Vieira; Varajão, Angélica Fortes Drummond Chicarino; Varajão, César Augusto Chicarino; Boulangé, Bruno

    2014-12-01

    X-ray diffraction (XRD), X-ray Fluorescence (XRF), optical microscopy, Scanning Electron Microscopy coupled with Energy Dispersive Spectrometry (SEM-EDS) and Electron Probe micro-analyser (EPMA) and Wavelength-Dispersive Spectroscopy (WDS) were conducted on charnockite from the Caparaó Suite and its alteration cortex to determine the mineralogical, micromorphological and geochemical transformations resulting from the weathering process. The hydrolysis of the charnockite occurred in different stages, in accordance with the order of stability of the minerals with respect to weathering: andesine/orthopyroxene, pargasite and alkali feldspar. The rock modifications had begun with the formation of a layer of incipient alteration due to the percolation of weathering solutions first in the pressure relief fractures and then in cleavage and mineral edges. The iron exuded from ferromagnesian minerals precipitated in the intermineral and intramineral discontinuities. The layer of incipient alteration evolves into an inner cortex where the plagioclase changes into gibbsite by direct alitisation, the ferromagnesian minerals initiate the formation of goethitic boxworks with kaolinitic cores, and the alkali feldspar initiates indirect transformation into gibbsite, forming an intermediate phase of illite and kaolinite. In the outer cortex, mostly traces of alkali feldspar remain, and they are surrounded by goethite and gibbsite as alteromorphics, characterising the formation of the isalteritic horizon that occurs along the slope and explains the bauxitization process at the Caparaó Range, SE Brazil.

  18. Weather control

    SciTech Connect

    Leepson, M.

    1980-09-05

    Weather modification, the intentional altering of atmospheric conditions to suit the purposes of humankind, has five basic forms: (1) fog dissipation; (2) rain and snow enhancement; (3) hail suppression; (4) lightning suppression; and (5) the abatement of severe storms such as hurricanes and tornadoes. The dissipation of fog and the seeding of clouds with dry ice or silver iodide to produce rain are the most successful weather modification techniques. Both are used extensively and with varying degrees of success in the United States and around the world. Cloud seeding, though, is not effective in easing the harshness of a drought, such as the one that hit the Southwest, Midwest and Great Plains this summer.

  19. Influence of wheat kernel physical properties on the pulverizing process.

    PubMed

    Dziki, Dariusz; Cacak-Pietrzak, Grażyna; Miś, Antoni; Jończyk, Krzysztof; Gawlik-Dziki, Urszula

    2014-10-01

    The physical properties of wheat kernel were determined and related to pulverizing performance by correlation analysis. Nineteen samples of wheat cultivars about similar level of protein content (11.2-12.8 % w.b.) and obtained from organic farming system were used for analysis. The kernel (moisture content 10 % w.b.) was pulverized by using the laboratory hammer mill equipped with round holes 1.0 mm screen. The specific grinding energy ranged from 120 kJkg(-1) to 159 kJkg(-1). On the basis of data obtained many of significant correlations (p < 0.05) were found between wheat kernel physical properties and pulverizing process of wheat kernel, especially wheat kernel hardness index (obtained on the basis of Single Kernel Characterization System) and vitreousness significantly and positively correlated with the grinding energy indices and the mass fraction of coarse particles (> 0.5 mm). Among the kernel mechanical properties determined on the basis of uniaxial compression test only the rapture force was correlated with the impact grinding results. The results showed also positive and significant relationships between kernel ash content and grinding energy requirements. On the basis of wheat physical properties the multiple linear regression was proposed for predicting the average particle size of pulverized kernel. PMID:25328207

  20. Weather Forecasting Systems and Methods

    NASA Technical Reports Server (NTRS)

    Mecikalski, John (Inventor); MacKenzie, Wayne M., Jr. (Inventor); Walker, John Robert (Inventor)

    2014-01-01

    A weather forecasting system has weather forecasting logic that receives raw image data from a satellite. The raw image data has values indicative of light and radiance data from the Earth as measured by the satellite, and the weather forecasting logic processes such data to identify cumulus clouds within the satellite images. For each identified cumulus cloud, the weather forecasting logic applies interest field tests to determine a score indicating the likelihood of the cumulus cloud forming precipitation and/or lightning in the future within a certain time period. Based on such scores, the weather forecasting logic predicts in which geographic regions the identified cumulus clouds will produce precipitation and/or lighting within during the time period. Such predictions may then be used to provide a weather map thereby providing users with a graphical illustration of the areas predicted to be affected by precipitation within the time period.

  1. The r-process nucleosynthesis: Nuclear physics challenges

    SciTech Connect

    Goriely, S.

    2012-10-20

    About half of the nuclei heavier than iron observed in nature are produced by the socalled rapid neutron capture process, or r-process, of nucleosynthesis. The identification of the astrophysics site and the specific conditions in which the r-process takes place remains, however, one of the still-unsolved mysteries of modern astrophysics. Another underlying difficulty associated with our understanding of the r-process concerns the uncertainties in the predictions of nuclear properties for the few thousands exotic neutron-rich nuclei involved and for which essentially no experimental data exist. The present contribution emphasizes some important future challenges faced by nuclear physics in this problem, particularly in the determination of the nuclear structure properties of exotic neutron-rich nuclei as well as their radiative neutron capture rates and their fission probabilities. These quantities are particularly relevant to determine the composition of the matter resulting from the r-process. Their impact on the r-abundance distribution resulting from the decompression of neutron star matter is discussed.

  2. Space Weather and Management of Environmental Risks and Hazards

    NASA Astrophysics Data System (ADS)

    Pirjola, R.; Kauristie, K.; Lappalainen, H.

    "Space Weather" is defined as electromagnetic and particle conditions in the space environment that can disturb space-borne and ground-based technological systems (e.g. satellite operation, telecommunication, aviation, electric power transmission) and even endanger human health. Thus, space weather is of great importance to the society since people are dependent on reliable operation of modern technology, interruptions of which may lead to large economical and other losses. Physical processes involved in space weather constitute a complicated chain from the Sun to the Earth's surface. Thus, a full understanding of space weather and the risks it produces requires expertise in many different disciplines of science and technology. Space weather is a new subject among the natural risks and hazards which threaten the society and its infrastructure (although the first observations of ground effects of space weather were already made about 150 years ago). Monitoring systems for the management of other risks, such as floods, forest fires, etc., and for security are, to a great extent, based on satellite observations. Spacecraft and the communication between satellites and the ground are vulnerable to space weather. Thus, besides being a direct risk to technological systems, space weather may also be indirectly adverse to risk management. These two aspects of space weather are considered in a proposal to be submitted to EU's Sixth Framework Programme under the "Aeronautics and Space" priority in the "Global Monitoring for Environment and Security (GMES) / Risk Management" area in March 2004. The proposal coordinated by the Finnish Meteorological Institute with five to ten participating institutes is called SW-RISK ("Space Weather - Risk Indices from Scientific Know-how").

  3. Physics students' approaches to learning and cognitive processes in solving physics problems

    NASA Astrophysics Data System (ADS)

    Bouchard, Josee

    This study examined traditional instruction and problem-based learning (PBL) approaches to teaching and the extent to which they foster the development of desirable cognitive processes, including metacognition, critical thinking, physical intuition, and problem solving among undergraduate physics students. The study also examined students' approaches to learning and their perceived role as physics students. The research took place in the context of advanced courses of electromagnetism at a Canadian research university. The cognitive science, expertise, physics and science education, instructional psychology, and discourse processes literature provided the framework and background to conceptualize and structure this study. A within-stage mixed-model design was used and a number of instruments, including a survey, observation grids, and problem sets were developed specifically for this study. A special one-week long problem-based learning (PBL) intervention was also designed. Interviews with the instructors participating in the study provided complementary data. Findings include evidence that students in general engage in metacognitive processes in the organization of their personal study time. However, this potential, including the development of other cognitive processes, might not be stimulated as much as it could in the traditional lecture instructional context. The PBL approach was deemed as more empowering for the students. An unexpected finding came from the realisation that a simple exposure to a structured exercise of problem-solving (pre-test) was sufficient to produce superior planning and solving strategies on a second exposure (post-test) even for the students who had not been exposed to any special treatment. Maturation was ruled out as a potential threat to the validity of this finding. Another promising finding appears to be that the problem-based learning (PBL) intervention tends to foster the development of cognitive competencies, particularly

  4. Ensemble-based diagnosis of the large-scale processes associated with multiple high-impact weather events over North America during late October 2007

    NASA Astrophysics Data System (ADS)

    Moore, B. J.; Bosart, L. F.; Keyser, D.

    2013-12-01

    During late October 2007, the interaction between a deep polar trough and Tropical Cyclone (TC) Kajiki off the eastern Asian coast perturbed the North Pacific jet stream and resulted in the development of a high-amplitude Rossby wave train extending into North America, contributing to three concurrent high-impact weather events in North America: wildfires in southern California associated with strong Santa Ana winds, a cold surge into eastern Mexico, and widespread heavy rainfall (~150 mm) in the south-central United States. Observational analysis indicates that these high-impact weather events were all dynamically linked with the development of a major high-latitude ridge over the eastern North Pacific and western North America and a deep trough over central North America. In this study, global operational ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) obtained from The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) archive are used to characterize the medium-range predictability of the large-scale flow pattern associated with the three events and to diagnose the large-scale atmospheric processes favorable, or unfavorable, for the occurrence of the three events. Examination of the ECMWF forecasts leading up to the time period of the three high-impact weather events (~23-25 October 2007) indicates that ensemble spread (i.e., uncertainty) in the 500-hPa geopotential height field develops in connection with downstream baroclinic development (DBD) across the North Pacific, associated with the interaction between TC Kajiki and the polar trough along the eastern Asian coast, and subsequently moves downstream into North America, yielding considerable uncertainty with respect to the structure, amplitude, and position of the ridge-trough pattern over North America. Ensemble sensitivity analysis conducted for key sensible weather parameters corresponding to the three high

  5. Solar physics applications of computer graphics and image processing

    NASA Technical Reports Server (NTRS)

    Altschuler, M. D.

    1985-01-01

    Computer graphics devices coupled with computers and carefully developed software provide new opportunities to achieve insight into the geometry and time evolution of scalar, vector, and tensor fields and to extract more information quickly and cheaply from the same image data. Two or more different fields which overlay in space can be calculated from the data (and the physics), then displayed from any perspective, and compared visually. The maximum regions of one field can be compared with the gradients of another. Time changing fields can also be compared. Images can be added, subtracted, transformed, noise filtered, frequency filtered, contrast enhanced, color coded, enlarged, compressed, parameterized, and histogrammed, in whole or section by section. Today it is possible to process multiple digital images to reveal spatial and temporal correlations and cross correlations. Data from different observatories taken at different times can be processed, interpolated, and transformed to a common coordinate system.

  6. Framework for Understanding Lenr Processes, Using Conventional Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Chubb, Scott R.

    2006-02-01

    Conventional condensed matter physics provides a unifying framework for understanding low-energy nuclear reactions (LENRs) in solids. In the paper, standard many-body physics techniques are used to illustrate this fact. Specifically, the paper shows that formally the theories by Schwinger, Hagelstein, and Chubb and Chubb (C&C), all can be related to a common set of equations, associated with reaction rate and energy transfer, through a standard many-body physics procedure (R-matrix theory). In each case, particular forms of coherence are used that implicitly provide a mechanism for understanding how LENRs can proceed without the emission of high-energy particles. In addition, additional ideas, associated with Conventional Condensed Matter physics, are used to extend the earlier ion band state (IBS) model by C&C. The general model clarifies the origin of coherent processes that initiate LENRs, through the onset of ion conduction that can occur through ionic fluctuations in nanoscale crystals. In the case of PdDx, these fluctuations begin to occur as x → 1 in sub-lattice structures with characteristic dimensions of 60 nm. The resulting LENRs are triggered by the polarization between injected d's and electrons (immediately above the Fermi energy) that takes place in finite-size PdD crystals. During the prolonged charging of PdDx, the applied, external electric field induces these fluctuations through a form of Zener tunneling that mimics the kind of tunneling, predicted by Zener, that is responsible for possible conduction (referred to as Zener-electric breakdown) in insulators. But because the fluctuations are ionic, and they occur in PdD, nano-scale structures, a more appropriate characterization is Zener-ionic breakdown in nano-crystalline PdD. Using the underlying dynamics, it is possible to relate triggering times that are required for the initiation of the effect, to crystal size and externally applied fields.

  7. Weathering, Soil Production, and Erosion Across Climatic and Tectonic Gradients

    NASA Astrophysics Data System (ADS)

    Norton, K. P.; Larsen, I. J.

    2014-12-01

    Weathering is one of the fundamental processes that sustain life on our planet. Physical weathering breaks down rock for soil production and chemical weathering is thought to operate as the ultimate long-term negative feedback on atmospheric CO2 concentrations. There remains, however, uncertainty as to the relationship between chemical and physical weathering at very fast rates. If chemical weathering becomes kinetically limited at rapid erosion rates, as has been shown in a number of locations around the globe, then the fastest erosion rates will be associated with reduced chemical weathering. This has led to a debate as to whether tectonically active mountain ranges or rolling plains are the main source of CO2 drawdown through silicate weathering. At the heart of this debate is the dearth of chemical weathering data at fast erosion rates. New cosmogenic nuclide-derived denudation rates from the West Coast of the New Zealand Southern Alps are among the fastest in the world and are linearly correlated with chemical weathering rates. The associated soil production rates reach an order of magnitude faster than previous estimates and far exceed the suggested maximum soil production rate. This suggests that very fast weathering and soil production is possible in such active landscapes and extreme climates. We investigate the controls on these rapid rates with a climate-driven soil production model. At the most basic level, soil production requires chemical weathering of primary minerals to secondary minerals. We apply soil production models with both exponential and hump-shaped dependencies on soil thickness. Mean annual temperature and precipitation are incorporated in the form of a modified Arrhenius equation that controls the maximum soil production rate. When applied to the Southern Alps, the model predicts very rapid soil production that matches the magnitude of the cosmogenic nuclide-derived rates. High annual precipitation in the Southern Alps supports rapid

  8. Exploring clouds, weather, climate, and modeling using bilingual content and activities from the Windows to the Universe program and the Center for Multiscale Modeling of Atmospheric Processes

    NASA Astrophysics Data System (ADS)

    Foster, S. Q.; Johnson, R. M.; Randall, D.; Denning, S.; Russell, R.; Gardiner, L.; Hatheway, B.; Genyuk, J.; Bergman, J.

    2008-12-01

    The need for improving the representation of cloud processes in climate models has been one of the most important limitations of the reliability of climate-change simulations. Now in its third year, the National Science Foundation-funded Center for Multi-scale Modeling of Atmospheric Processes (CMMAP) at Colorado State University is addressing this problem through a revolutionary new approach to representing cloud processes on their native scales, including the cloud-scale interaction processes that are active in cloud systems. CMMAP has set ambitious education and human-resource goals to share basic information about the atmosphere, clouds, weather, climate, and modeling with diverse K-12 and public audiences through its affiliation with the Windows to the Universe (W2U) program at University Corporation for Atmospheric Research (UCAR). W2U web pages are written at three levels in English and Spanish. This information targets learners at all levels, educators, and families who seek to understand and share resources and information about the nature of weather and the climate system, and career role models from related research fields. This resource can also be helpful to educators who are building bridges in the classroom between the sciences, the arts, and literacy. Visitors to the W2U's CMMAP web portal can access a beautiful new clouds image gallery; information about each cloud type and the atmospheric processes that produce them; a Clouds in Art interactive; collections of weather-themed poetry, art, and myths; links to games and puzzles for children; and extensive classroom- ready resources and activities for K-12 teachers. Biographies of CMMAP scientists and graduate students are featured. Basic science concepts important to understanding the atmosphere, such as condensation, atmosphere pressure, lapse rate, and more have been developed, as well as 'microworlds' that enable students to interact with experimental tools while building fundamental knowledge

  9. Consistency check of photon beam physical data after recommissioning process

    NASA Astrophysics Data System (ADS)

    Kadman, B.; Chawapun, N.; Ua-apisitwong, S.; Asakit, T.; Chumpu, N.; Rueansri, J.

    2016-03-01

    In radiotherapy, medical linear accelerator (Linac) is the key system used for radiation treatments delivery. Although, recommissioning was recommended after major modification of the machine by AAPM TG53, but it might not be practical in radiotherapy center with heavy workloads. The main purpose of this study was to compare photon beam physical data between initial commissioning and recommissioning of 6 MV Elekta Precise linac. The parameters for comparing were the percentage depth dose (PDD) and beam profiles. The clinical commissioning test cases followed IAEA-TECDOC-1583 were planned on REF 91230 IMRT Dose Verification Phantom by Philips’ Pinnacle treatment planning system. The Delta4PT was used for dose distribution verification with 90% passing criteria of the gamma index (3%/3mm). Our results revealed that the PDDs and beam profiles agreed within a tolerance limit recommended by TRS430. Most of the point doses and dose distribution verification passed the acceptance criteria. This study showed the consistency of photon beam physical data after recommissioning process. There was a good agreement between initial commissioning and recommissioning within a tolerance limit, demonstrated that the full recommissioning process might not be required. However, in the complex treatment planning geometry, the initial data should be applied with great caution.

  10. Physical anthropology: the search for general processes and principles.

    PubMed

    Lasker, G W

    1970-02-01

    Physical anthropology consists of two interdependent types of study: (1) the biological history of man and (2) general biological processes in man (such as mechanisms of evolution and growth). Popular interest may focus on the former, the fascinating story of the origin of man and of specific people, but the latter affords physical anthropology potential practical value in respect to medicine, dentistry, public health, and population policy. The study of general processes is the study of human beings in particular situations, not for what we can learn about these particular populations but for the sake of generalization about mankind anywhere in comparable situations. This is, of course, the purpose of experimental science in general, but in anthropology the method is usually comparative. Long ago the study of the growth of the two sexes and of children in different countries was started on a comparative basis as was the study of the so-called secular change in adult stature. By 1911 Franz Boas had compared the changes in stature and head form of children of several different immigrant groups in the United States. There have since been comparative studies of the amount and distribution of body fat (but not yet adequate comparative measurements of the relation of tissue components to diet and to diseases). Demographic patterns, inbreeding, outbreeding, and their effects are other general problems. The Human Adaptability Project of the International Biological Program promises studies of human response to heat, cold, altitude, and other conditions on a wide international basis. If supported, these could turn physical anthropology's search in a useful direction. The functional biology of people of even out-of-the-way communities will be compared with each other. These studies can yield general statements concerning human response to types of ecological situation including such sociocultural conditions as those of hunting-gathering tribes and urban slums. PMID:19681215

  11. National Weather Service

    MedlinePlus

    ... Lightning Safe Boating Rip Currents Thunderstorms and Tornadoes Space Weather Sun (Ultraviolet Radiation) Safety Campaigns Wind Drought ... Outlook Hurricanes Fire Weather Outlooks UV Alerts Drought Space Weather NOAA Weather Radio NWS CAP Feeds PAST ...

  12. Weather from the Stratosphere?

    NASA Technical Reports Server (NTRS)

    Baldwin, Mark P.; Thompson, David W. J.; Shuckburgh, Emily F.; Norton, Warwick A.; Gillett, Nathan P.

    2006-01-01

    Is the stratosphere, the atmospheric layer between about 10 and 50 km, important for predicting changes in weather and climate? The traditional view is that the stratosphere is a passive recipient of energy and waves from weather systems in the underlying troposphere, but recent evidence suggests otherwise. At a workshop in Whistler, British Columbia (1), scientists met to discuss how the stratosphere responds to forcing from below, initiating feedback processes that in turn alter weather patterns in the troposphere. The lowest layer of the atmosphere, the troposphere, is highly dynamic and rich in water vapor, clouds, and weather. The stratosphere above it is less dense and less turbulent (see the figure). Variability in the stratosphere is dominated by hemispheric-scale changes in airflow on time scales of a week to several months. Occasionally, however, stratospheric air flow changes dramatically within just a day or two, with large-scale jumps in temperature of 20 K or more. The troposphere influences the stratosphere mainly through atmospheric waves that propagate upward. Recent evidence shows that the stratosphere organizes this chaotic wave forcing from below to create long-lived changes in the stratospheric circulation. These stratospheric changes can feed back to affect weather and climate in the troposphere.

  13. The Topographic Control of Chemical Weathering in Hillslope Soils

    NASA Astrophysics Data System (ADS)

    Yoo, K.; Amundson, R.; Heimsath, A. M.; Dietrich, W. E.; Brimhall, G. H.

    2004-12-01

    Chemical weathering drives biogeochemical cycles from local to global scales, and has the power to regulate the earth's climate on geological time scales. However, little is known of the spatial variation in weathering on hillslopes, and the mechanisms behind those variations. This study addresses the topographic control on soil chemical weathering on convex uplands. We developed a process-based mass balance model that integrates chemical mass losses with physical sediment transport. We applied the model along a ˜60 meter long, semi-arid eucalyptus-grassland savanna hillslope underlain by granodiorite, in the southwestern Australian Highlands. Measurements of soil elemental chemistry, cosmogenic isotope-based saprolite-to-soil conversion rates, and a fine scale topographic survey provided model data. The soil weathering rates varied from the losses of ˜35 g m-2 yr-1 on the ridge to the net gains of ˜28 g m-2 yr-1 at the lowest portion of the slope. A net chemical mass loss occurred in all soils along the entire slope, decreasing from ˜65 % near the convex ridge to ˜35 % at the base of the slope. The mechanism for the apparent discrepancy between spatially constrained weathering rates and net weathering losses (relative to saprolite) is that as sediment moves faster with an increasing slope gradient in the downslope direction, soils eroded from upslope positions pass quickly through the downslope zones of chemical gains, which are able to only partially replenish the pre-weathered soil material. Differences in chemical mobility of elements, and biological nutrient demand, significantly modified the spatial redistribution of elements released by weathering: P and Ca, relative to Si, Al, and Fe, were preferentially retained, particularly within an apron of relatively high fertility that mantled the hillslope base. Finally, when chemical weathering losses were subtracted from the overall sediment mass balance, the slope-dependent physical soil transport rate was

  14. CLARA: A Contemporary Approach to Physics Data Processing

    SciTech Connect

    V Gyurjyan, D Abbott, J Carbonneau, G Gilfoyle, D Heddle, G Heyes, S Paul, C Timmer, D Weygand, E Wolin

    2011-12-01

    In traditional physics data processing (PDP) systems, data location is static and is accessed by analysis applications. In comparison, CLARA (CLAS12 Reconstruction and Analysis framework) is an environment where data processing algorithms filter continuously flowing data. In CLARA's domain of loosely coupled services, data is not stored, but rather flows from one service to another, mutating constantly along the way. Agents, performing event processing, can then subscribe to particular data/events at any stage of the data transformation, and make intricate decisions (e.g. particle ID) by correlating events from multiple, parallel data streams and/or services. This paper presents a PDP application development framework based on service oriented and event driven architectures. This system allows users to design (Java, C++, and Python languages are supported) and deploy data processing services, as well as dynamically compose PDP applications using available services. The PDP service bus provides a layer on top of a distributed pub-sub middleware implementation, which allows complex service composition and integration without writing code. Examples of service creation and deployment, along with the CLAS12 track reconstruction application design will be presented.

  15. Guidelines for Automatic Data Processing Physical Security and Risk Management. Federal Information Processing Standards Publication 31.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC.

    These guidelines provide a handbook for use by federal organizations in structuring physical security and risk management programs for their automatic data processing facilities. This publication discusses security analysis, natural disasters, supporting utilities, system reliability, procedural measures and controls, off-site facilities,…

  16. Major ion chemistry of the Ganga-Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal

    SciTech Connect

    Sarin, M.M.; Krishnaswami, S.; Dilli, K.; Somayajulu, B.L.K. ); Moore, W.S. )

    1989-05-01

    The Ganga-Brahmaputra, one of the worlds's largest river systems, is first in terms of sediment transport and fourth in terms of water discharge. A detailed and systematic study of the major ion chemistry of these rivers and their tributaries, as well as the clay mineral composition of the bed sediments has been conducted. The chemistry of the highland rivers are all dominated by carbonate weathering; (Ca + Mg) and HCO{sub 3} account for about 80% of the cations and anions. In the lowland rivers, HCO{sub 3} excess over (Ca + Mg) and a relatively high contribution of (Na + K) to the total cations indicate that silicate weathering and/or contributions from alkaline/saline soils and ground waters could be important sources of major ions to these waters. The chemistry of the Ganga and the Yamuna in the lower reaches is by and large dictated by the chemistry of their tributaries and their mixing proportions. The highland rivers weather acidic rocks, whereas the others flow initially through basic effusives. The Ganga-Brahmaputra river system transports about 130 million tons of dissolved salts to the Bay of Bengal, which is nearly 3% of the global river flux to the oceans. The chemical denudation rates for the Ganga and the Brahmaputra basins are about 72 and 105 tons{center dot}km{sup {minus}2}{center dot}yr{sup {minus}1}, respectively, which are factors of 2 to 3 higher than the global average. The high denudation rate, particularly in the Brahmaputra, is attributable to high relief and heavy rainfall.

  17. Road Weather and Connected Vehicles

    NASA Astrophysics Data System (ADS)

    Pisano, P.; Boyce, B. C.

    2015-12-01

    road weather sensors on their maintenance fleet vehicles to collect vehicular and meteorological data. Data from all three states is sent to a processing system called the Pikalert® Vehicle Data Translator (VDT) that quality checks and uses the data to infer current and forecasted weather conditions.

  18. Pilot based frameworks for Weather Research Forecasting

    NASA Astrophysics Data System (ADS)

    Ganapathi, Dinesh Prasanth

    The Weather Research Forecasting (WRF) domain consists of complex workflows that demand the use of Distributed Computing Infrastructure (DCI). Weather forecasting requires that weather researchers use different set of initial conditions and one or a combination of physics models on the same set of input data. For these type of simulations an ensemble based computing approach becomes imperative. Most DCIs have local job-schedulers that have no smart way of dealing with the execution of an ensemble type of computational problem as the job-schedulers are built to cater to the bare essentials of resource allocation. This means the weather scientists have to submit multiple jobs to the job-scheduler. In this dissertation we use Pilot-Job based tools to decouple work-load submission and resource allocation therefore streamlining the complex workflows in Weather Research and Forecasting domain and reduce their overall time to completion. We also achieve location independent job execution, data movement, placement and processing. Next, we create the necessary enablers to run an ensemble of tasks bearing the capability to run on multiple heterogeneous distributed computing resources there by creating the opportunity to minimize the overall time consumed in running the models. Our experiments show that the tools developed exhibit very good, strong and weak scaling characteristics. These results bear the potential to change the way weather researchers are submitting traditional WRF jobs to the DCIs by giving them a powerful weapon in their arsenal that can exploit the combined power of various heterogeneous DCIs that could otherwise be difficult to harness owing to interoperability issues.

  19. Weather Balloon Ascent Rate

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2016-05-01

    The physics of a weather balloon is analyzed. The surprising aspect of the motion of these balloons is that they ascend to great altitudes (typically 35 km) at a more or less constant rate. Such behavior is not surprising near the ground—say for a helium-filled party balloon rising from street level to the top of the Empire State building—but it is unexpected for a balloon that rises to altitudes where the air is rarefied. We show from elementary physical laws why the ascent rate is approximately constant.

  20. Impact of physical permafrost processes on hydrological change

    NASA Astrophysics Data System (ADS)

    Hagemann, Stefan; Blome, Tanja; Beer, Christian; Ekici, Altug

    2015-04-01

    Permafrost or perennially frozen ground is an important part of the terrestrial cryosphere; roughly one quarter of Earth's land surface is underlain by permafrost. As it is a thermal phenomenon, its characteristics are highly dependent on climatic factors. The impact of the currently observed warming, which is projected to persist during the coming decades due to anthropogenic CO2 input, certainly has effects for the vast permafrost areas of the high northern latitudes. The quantification of these effects, however, is scientifically still an open question. This is partly due to the complexity of the system, where several feedbacks are interacting between land and atmosphere, sometimes counterbalancing each other. Moreover, until recently, many global circulation models (GCMs) and Earth system models (ESMs) lacked the sufficient representation of permafrost physics in their land surface schemes. Within the European Union FP7 project PAGE21, the land surface scheme JSBACH of the Max-Planck-Institute for Meteorology ESM (MPI-ESM) has been equipped with the representation of relevant physical processes for permafrost studies. These processes include the effects of freezing and thawing of soil water for both energy and water cycles, thermal properties depending on soil water and ice contents, and soil moisture movement being influenced by the presence of soil ice. In the present study, it will be analysed how these permafrost relevant processes impact projected hydrological changes over northern hemisphere high latitude land areas. For this analysis, the atmosphere-land part of MPI-ESM, ECHAM6-JSBACH, is driven by prescribed SST and sea ice in an AMIP2-type setup with and without the newly implemented permafrost processes. Observed SST and sea ice for 1979-1999 are used to consider induced changes in the simulated hydrological cycle. In addition, simulated SST and sea ice are taken from a MPI-ESM simulation conducted for CMIP5 following the RCP8.5 scenario. The

  1. Physical Processes Involved In Yellow Sea Solitary Waves

    NASA Astrophysics Data System (ADS)

    Warn-Varnas, A.; Chin-Bing, S.; King, D.; Lamb, K.; Hawkins, J.; Teixeira, M.

    The study area is located south of the Shandong peninsula. In this area, soliton gener- ation and propagation studies are per formed with the Lamb(1994) model. The model is nonhydrostatic and is formulated in 2 1/2 dimensions for terrain following c oordi- nates. In the area, 20 to 30 m topographic variations over distances of 10 to 20 km are found to occur in the digit al atlas of Choi (1999). The area is shallow with maximum depths ranging from 40 m to 70 m. Along the southern boundary of the region the semi-diurnal tidal strength magnitude varies from .6 m/sec to 1.2 m/sec, Fang(1994). We show that, for sum mer conditions, the existing physical processes associated with the semi-diurnal tidal flow over the topographic variations , in the shelfbreak region, lead to the formation of internal bores in the model simulations. Through acting phys- ical proce sses, the internal bores propagate on and off the shelf. A disintegration process of internal bores into solitary waves occ urs through frequency and ampli- tude dispersion. SAR observations of the area show images containing six events con- sisting of internal bores and solitary waves that travel in a well-defined direction for two and a half days. The origin of the trains appeared to be at a point along a steep topo graphic drop. The SAR observations are used for guiding and tuning the model simulations, by comparing spectra of observed and modeled wavelengths. The tuned model yields wavelengths that are within a factor of 2 of the SAR data. The modeled amp litudes are within a factor of 2 of amplitudes obtained with a two-layer model and the SAR data The signature on the acoustical field of ongoing physical processes through the interaction of the resultant oceanic struct ure with the acoustical field is pursued. Internal bore and solitary wave structures interact with the acoustic field. A re distribution of acoustical energy to higher acoustical modes occurs at some fre- quencies. Mode decomposition of the

  2. Insight into the Physical and Dynamical Processes that Control Rapid Increases in Total Flash Rate

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.

    2015-01-01

    Rapid increases in total lightning (also termed "lightning jumps") have been observed for many decades. Lightning jumps have been well correlated to severe and hazardous weather occurrence. The main focus of lightning jump work has been on the development of lightning algorithms to be used in real-time assessment of storm intensity. However, in these studies it is typically assumed that the updraft "increases" without direct measurements of the vertical motion, or specification of which updraft characteristic actually increases (e.g., average speed, maximum speed, or convective updraft volume). Therefore, an end-to-end physical and dynamical basis for coupling rapid increases in total flash rate to increases in updraft speed and volume must be understood in order to ultimately relate lightning occurrence to severe storm metrics. Herein, we use polarimetric, multi-Doppler, and lightning mapping array measurements to provide physical context as to why rapid increases in total lightning are closely tied to severe and hazardous weather.

  3. Innovative Information Technology for Space Weather Research

    NASA Astrophysics Data System (ADS)

    Wang, H.; Qu, M.; Shih, F.; Denker, C.; Gerbessiotis, A.; Lofdahl, M.; Rees, D.; Keller, C.

    2004-05-01

    Solar activity is closely related to the near earth environment -- summarized descriptively as space weather. Changes in space weather have adverse effect on many aspects of life and systems on earth and in space. Real-time, high-quality data and data processing would be a key element to forecast space weather promptly and accurately. Recently, we obtained a funding from US National Science Foundation to apply innovative information technology for space weather prediction. (1) We use the technologies of image processing and pattern recognition, such as image morphology segmentation, Support Vector Machines (SVMs), and neural networks to detect and characterize three important solar activities in real-time: filament eruptions, flares, and emerging flux regions (EFRs). Combining the real time detection with the recent statistical study on the relationship among filament eruptions, flares, EFRs, coronal mass ejections (CMEs), and geomagnetic storms, we are establishing real time report of solar events and automatic forecasting of earth directed CMEs and subsequent geomagnetic storms. (2) We combine state-of-art parallel computing techniques with phase diverse speckle imaging techniques, to yield near real-time diffraction limited images with a cadence of approximately 10 sec. We utilize the multiplicity of parallel paradigms to optimize the calculation of phase diverse speckle imaging to improve calculation speed. With such data, we can monitor flare producing active regions continuously and carry out targeted studies of the evolution and flows in flare producing active regions. (3) We are developing Web based software tools to post our processed data, events and forecasting in real time, and to be integrated with current solar activity and space weather prediction Web pages at BBSO. This will also be a part of Virtual Solar Observatory (VSO) being developed by the solar physics community. This research is supported by NSF ITR program.

  4. Framework for Understanding LENR Processes, Using Ordinary Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Chubb, Scott

    2005-03-01

    As I have emphasizedootnotetextS.R. Chubb, Proc. ICCF10 (in press). Also, http://www.lenr-canr.org/acrobat/ChubbSRnutsandbol.pdf http://www.lenr-canr.org/acrobat/ChubbSRnutsandbol.pdf, S.R. Chubb, Trans. Amer. Nuc. Soc. 88 , 618 (2003)., in discussions of Low Energy Nuclear Reactions(LENRs), mainstream many-body physics ideas have been largely ignored. A key point is that in condensed matter, delocalized, wave-like effects can allow large amounts of momentum to be transferred instantly to distant locations, without any particular particle (or particles) acquiring high velocity through a Broken Gauge Symmetry. Explicit features in the electronic structure explain how this can occur^1 in finite size PdD crystals, with real boundaries. The essential physics^1 can be related to standard many-body techniquesootnotetextBurke,P.G. and K.A. Berrington, Atomic and Molecular Processes:an R matrix Approach (Bristol: IOP Publishing, 1993).. In the paper, I examine this relationship, the relationship of the theory^1 to other LENR theories, and the importance of certain features (for example, boundaries^1) that are not included in the other LENR theories.

  5. Physical processes associated with current collection by plasma contactors

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Davis, Victoria A.

    1990-01-01

    Recent flight data confirms laboratory observations that the release of neutral gas increases plasma sheath currents. Plasma contactors are devices which release a partially ionized gas in order to enhance the current flow between a spacecraft and the space plasma. Ionization of the expellant gas and the formation of a double layer between the anode plasma and the space plasma are the dominant physical processes. A theory is presented of the interaction between the contactor plasma and the background plasma. The conditions for formation of a double layer between the two plasmas are derived. Double layer formation is shown to be a consequence of the nonlinear response of the plasmas to changes in potential. Numerical calculations based upon this model are compared with laboratory measurements of current collection by hollow cathode-based plasma contactors.

  6. Absorption and emission by atmospheric gases - The physical processes

    NASA Astrophysics Data System (ADS)

    McCartney, E. J.

    This book has been written for those who wish to understand better the processes of absorption and emission and their manifold effects. Persons having such interests or needs are the workers in meteorology, atmospheric physics, aerospace surveillance, and air-pollution control. Introductory ideas and useful facts are presented, taking into account an overview of absorption and emission, the electromagnetic spectrum and its parameters, the quantization of energy, the molecular origins of spectra, and the laws of blackbody radiation. Gas properties are considered along with thermodynamics, molecular kinetics, quantized energy states and population, molecular internal energies, spectra of energy transitions, and parameters of line and band absorption. Attention is given to molecular dipole moments, rotational energy and transitions, vibrational energy and transitions, and absorption and emission data.

  7. Convection in the Physical Vapor Transport Process-I: Thermal

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.

    1994-01-01

    The effects of convection on diffusive-convective physical vapor transport process are examined computationally. We analyze conditions ranging from typical laboratory conditions to conditions achievable only in a low gravity environment. This corresponds to thermal Rayleigh numbers Ra, ranging from 1.80 x 10 to 1.92 x 10(exp 6). Our results indicate that the effect of the sublimation and condensation fluxes at the boundaries is to increase the threshold of instability. For typical ground based conditions, time dependent oscillatory convection can occur. This results in unsteady transport, and non- uniform temperature and concentration gradients at the crystal interface. Spectral analysis of the flow field shows parametric regions exhibiting both an oscillatory approach to steady state and a chaotic transient to a periodic state. Low gravity conditions stabilize the flow field. Convective effects are effectively reduced, thus resulting in uniform temperature and concentration gradients at the interface, a desirable condition for crystal growth.

  8. Convection in the Physical Vapor Transport Process. 1; Thermal

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.

    1994-01-01

    The effects of convection on diffusive-convective physical vapor transport process are examined computationally. We analyze conditions ranging from typical laboratory conditions to conditions achievable only in a low gravity environment. This corresponds to thermal Rayleigh numbers Ra(sub tau) ranging from 1.80 x 10 to 1.92 x 10(exp 6). Our results indicate that the effect of the sublimation and condensation fluxes at the boundaries is to increase the threshold of instability. For typical ground based conditions, time dependent oscillatory convection can occur. This results in unsteady transport, and non-uniform temperature and concentration gradients at the crystal interface. Spectral analysis of the flow field shows parametric regions exhibiting both an oscillatory approach to steady state and a chaotic transient to a periodic state. Low gravity conditions stabilize the flow field. Convective effects are effectively reduced, thus resulting in uniform temperature and concentration gradients at the interface, a desirable condition for crystal growth.

  9. Role of the subgrid-scale physical processes in supermodelling

    NASA Astrophysics Data System (ADS)

    Yano, J.

    2011-12-01

    The basic ides of supermodelling is in overcoming deficits of existing models by combining them together to improve our ability of climate simulations and prediction. However, in order to exploit this method better, we have to pay special attention to the common defects of the current climate models. Representation of subgrid-scale physical processes is such a particular example. . The present talk presents the author's point of view on representation of subgrid-scale processes in the above general question in mind. The focus of the talk will be on interplay between traditional parameterizations and recently proposed superparameterization (also often called "multiscale modelling"), but it also covers the issues of downscaling as well as possibilities of introducing mesh-refinement approaches into the context of subgrid-scale modelling. The author's main perspective is that the subgrid-scale parameterization should not be considered as a distinguished approach in contrast to explicit (more direct) modelling, such as superparameterization, but a hierarchy of modelling approaches should be constructed by taking various intermediate approaches. The mass-flux convection parameterization is taken as an example in order to make this point. It will be shown that at the most basic level, the mass-flux parameterization is equivalent to a finite-volume numerical approach, though various additional approximations and hypotheses must be introduced in order to arrive at a classical mass-flux parameterization. At the mathematical level, the multiresolution analysis based on wavelet provides a basic source of inspirations for developing this general perspective. From this perspective, the issue of parameterization is considered as "compression" of a full explicit model in the same sense as the wavelet can be used for the image compression. This perspective also leads to a concept of compression of physics. Compression of cloud microphysics would be the most urgent issue

  10. Space weather: Challenges and Opportunities (Invited)

    NASA Astrophysics Data System (ADS)

    Bogdan, T. J.

    2009-12-01

    The Space Weather Prediction Center (SWPC) has the following legal mandates to: a) Continuously monitor, measure, and specify the space environment, b) Provide timely and accurate space weather data, operational forecasts, alerts, and warnings of hazardous space weather phenomena, c) Provide scientific stewardship of, and public access to, space weather data and products, d) Understand the processes that influence space weather and develop applications for the user community and e) Develop new and improved products and transition them into operations to meet evolving space weather user needs. This presentation will discuss the challenges and opportunities that NOAA and the SWPC face in addressing these mandates. This includes coordination of space environment activities across federal agencies and the strategic planning for NOAA's space weather services, integration of space weather activities as well as critical dependencies of space weather services on current and future operational environmental satellites.

  11. Physical processes mediating climate change impacts on regional sea ecosystems

    NASA Astrophysics Data System (ADS)

    Holt, J.; Schrum, C.; Cannaby, H.; Daewel, U.; Allen, I.; Artioli, Y.; Bopp, L.; Butenschon, M.; Fach, B. A.; Harle, J.; Pushpadas, D.; Salihoglu, B.; Wakelin, S.

    2014-02-01

    Regional seas are exceptionally vulnerable to climate change, yet are the most directly societally important regions of the marine environment. The combination of widely varying conditions of mixing, forcing, geography (coastline and bathymetry) and exposure to the open-ocean makes these seas subject to a wide range of physical processes that mediates how large scale climate change impacts on these seas' ecosystems. In this paper we explore these physical processes and their biophysical interactions, and the effects of atmospheric, oceanic and terrestrial change on them. Our aim is to elucidate the controlling dynamical processes and how these vary between and within regional seas. We focus on primary production and consider the potential climatic impacts: on long term changes in elemental budgets, on seasonal and mesoscale processes that control phytoplankton's exposure to light and nutrients, and briefly on direct temperature response. We draw examples from the MEECE FP7 project and five regional models systems using ECOSMO, POLCOMS-ERSEM and BIMS_ECO. These cover the Barents Sea, Black Sea, Baltic Sea, North Sea, Celtic Seas, and a region of the Northeast Atlantic, using a common global ocean-atmosphere model as forcing. We consider a common analysis approach, and a more detailed analysis of the POLCOMS-ERSEM model. Comparing projections for the end of the 21st century with mean present day conditions, these simulations generally show an increase in seasonal and permanent stratification (where present). However, the first order (low- and mid-latitude) effect in the open ocean projections of increased permanent stratification leading to reduced nutrient levels, and so to reduced primary production, is largely absent, except in the NE Atlantic. Instead, results show a highly heterogeneous picture of positive and negative change arising from the varying mixing and circulation conditions. Even in the two highly stratified, deep water seas (Black and Baltic Seas) the

  12. Multi-initial-conditions and Multi-physics Ensembles in the Weather Research and Forecasting Model to Improve Coastal Stratocumulus Forecasts for Solar Power Integration

    NASA Astrophysics Data System (ADS)

    Yang, H.

    2015-12-01

    In coastal Southern California, variation in solar energy production is predominantly due to the presence of stratocumulus clouds (Sc), as they greatly attenuate surface solar irradiance and cover most distributed photovoltaic systems on summer mornings. Correct prediction of the spatial coverage and lifetime of coastal Sc is therefore vital to the accuracy of solar energy forecasts in California. In Weather Research and Forecasting (WRF) model simulations, underprediction of Sc inherent in the initial conditions directly leads to an underprediction of Sc in the resulting forecasts. Hence, preprocessing methods were developed to create initial conditions more consistent with observational data and reduce spin-up time requirements. Mathiesen et al. (2014) previously developed a cloud data assimilation system to force WRF initial conditions to contain cloud liquid water based on CIMSS GOES Sounder cloud cover. The Well-mixed Preprocessor and Cloud Data Assimilation (WEMPPDA) package merges an initial guess of cloud liquid water content obtained from mixed-layer theory with assimilated CIMSS GOES Sounder cloud cover to more accurately represent the spatial coverage of Sc at initialization. The extent of Sc inland penetration is often constrained topographically; therefore, the low inversion base height (IBH) bias in NAM initial conditions decreases Sc inland penetration. The Inversion Base Height (IBH) package perturbs the initial IBH by the difference between model IBH and the 12Z radiosonde measurement. The performance of these multi-initial-condition configurations was evaluated over June, 2013 against SolarAnywhere satellite-derived surface irradiance data. Four configurations were run: 1) NAM initial conditions, 2) RAP initial conditions, 3) WEMPPDA applied to NAM, and 4) IBH applied to NAM. Both preprocessing methods showed significant improvement in the prediction of both spatial coverage and lifetime of coastal Sc. The best performing configuration was then

  13. Weathering effects on the structure and reactivity of US coals: Final report, July 15, 1984-July 14, 1987. [Many data

    SciTech Connect

    Meuzelaar, H.L.C.; Hill, G.R.; Yun, Yongseung; Jakab, E.; Windig, W.; Urban, D.; Yon, Kyung Yol; Oestreich, J.; East, J.

    1987-01-01

    This report covers the work performed from July 1984 to July 1987 under the project entitled ''Weathering Effects on Structure and Reactivity of US Coals'' (grant number FG22-84PC70798). The main objectives of the study were to investigate the structural changes in coal during the weathering process as well as to develop a simple, reliable weathering index, which can monitor indirectly the weathering-induced changes in physical and chemical properties. Although there have been numerous publications on structure and reactivity of coal, most data reported in the literature thus far have been obtained on coal samples of uncertain weathering status and therefore need to be interpreted with great caution. Weathering has a profound effect on many important coal properties such as heating value, caking characteristics, acidity, flotability and reactivity in liquefaction, combustion and gasification processes. The objective of developing a weathering index is to predict these coal property changes due to weathering without resorting to real-time measurements or pilot plant runs. This report is comprised of four main chapters: I. Structural Changes due to Weathering; II. Material Balance in Weathering Process; III. Development of a Reliable Weathering Index; and IV. Proposed Weathering Mechanisms. A battery of sophisticated analytical tools and techniques was employed during this study. Pyrolysis mass spectrometry in time-integrated, as well as in time-resolved modes with computer-aided data analysis techniques (such as factor and discriminant analysis), gas chromatography, thermogravimetry/mass spectrometry and solvent extraction were used for determining the role of oxygen during the weathering process. Pyrolysis mass spectrometry, Free Swelling Index and a novel slurry pH technique were employed as weathering indicators. 170 refs.

  14. Contaminants from Cretaceous Black Shale Part 1: Natural weathering processes controlling contaminant cycling in Mancos Shale, southwestern United States, with emphasis on salinity and selenium

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Fahy, Juli W.; Elliott, John G.; Grauch, Richard I.; Stillings, Lisa L.

    2013-01-01

    Soils derived from black shale can accumulate high concentrations of elements of environmental concern, especially in regions with semiarid to arid climates. One such region is the Colorado River basin in the southwestern United States where contaminants pose a threat to agriculture, municipal water supplies, endangered aquatic species, and water-quality commitments to Mexico. Exposures of Cretaceous Mancos Shale (MS) in the upper basin are a major contributor of salinity and selenium in the Colorado River. Here, we examine the roles of geology, climate, and alluviation on contaminant cycling (emphasis on salinity and Se) during weathering of MS in a Colorado River tributary watershed. Stage I (incipient weathering) began perhaps as long ago as 20 ka when lowering of groundwater resulted in oxidation of pyrite and organic matter. This process formed gypsum and soluble organic matter that persist in the unsaturated, weathered shale today. Enrichment of Se observed in laterally persistent ferric oxide layers likely is due to selenite adsorption onto the oxides that formed during fluctuating redox conditions at the water table. Stage II weathering (pedogenesis) is marked by a significant decrease in bulk density and increase in porosity as shale disaggregates to soil. Rainfall dissolves calcite and thenardite (Na2SO4) at the surface, infiltrates to about 1 m, and precipitates gypsum during evaporation. Gypsum formation (estimated 390 kg m−2) enriches soil moisture in Na and residual SO4. Transpiration of this moisture to the surface or exposure of subsurface soil (slumping) produces more thenardite. Most Se remains in the soil as selenite adsorbed to ferric oxides, however, some oxidizes to selenate and, during wetter conditions is transported with soil moisture to depths below 3 m. Coupled with little rainfall, relatively insoluble gypsum, and the translocation of soluble Se downward, MS landscapes will be a significant nonpoint source of salinity and Se to the

  15. Physical processes effecting the baryonic matter content of the Universe

    NASA Astrophysics Data System (ADS)

    Panayotova, Mariana

    2015-01-01

    We have discussed physical processes effecting the generation of the matter content of the Universe. First we have studied the processes effecting Big Bang Nucleosynthesis during which the chemical content of the baryonic component of the Universe was produced. We have provided detail numerical analysis of the BBN production of ^4He, Y_p, in the presence of ν_e ← ν_s neutrino oscillations, effective after electron neutrino decoupling. We have accounted for all known effects of neutrino oscillations on cosmological nucleosyntesis. We have obtained cosmological bounds corresponding to δ Y_p/Y_p= 5.2 % in correspondance with the recently found higher uncertainty in ^4He. Iso-helium contours for δ Y_p/Y_p > 5% and population of the ν_s state δ N_s = 0; 0.5; 0.7; 0.9, both for resonant and non-resonant oscillations have been calculated. Next we have studied the processes effecting the formation of the baryon content of the Universe. We have investigated a baryogenesis model based on Affleck and Dine baryogenesis scenario, Scalar Field Condensate (SFC) baryogenesis model. We have provided precise numerical analysis of the SFC baryogenesis model numerically accounting for the particle creation processes by the time varying scalar field. We have numerically obtained the dependence of the field and baryon charge evolution and their final values on the model's parameters, namely: the gauge coupling constant α, the Hubble constant during inflation H_I, the mass of the field m and the self coupling constants λ_i. We have found the range of the model parameters for which a baryon asymmetry value close to the observed one can be generated.

  16. Major ion chemistry of the Ganga-Brahmaputra river system: Weathering processes and fluxes to the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Sarin, M. M.; Krishnaswami, S.; Dilli, K.; Somayajulu, B. L. K.; Moore, W. S.

    1989-05-01

    The Ganga-Brahmaputra, one of the world's largest river systems, is first in terms of sediment transport and fourth in terms of water discharge. A detailed and systematic study of the major ion chemistry of these rivers and their tributaries, as well as the clay mineral composition of the bed sediments has been conducted. The chemistry of the highland rivers (upper reaches of the Ganga, the Yamuna, the Brahmaputra, the Gandak and the Ghaghra) are all dominated by carbonate weathering; (Ca + Mg) and HCO 3 account for about 80% of the cations and anions. In the lowland rivers (the Chambal, the Betwa and the Ken), HCO 3 excess over (Ca + Mg) and a relatively high contribution of (Na + K) to the total cations indicate that silicate weathering and/or contributions from alkaline/saline soils and groundwaters could be important sources of major ions to these waters. The chemistry of the Ganga and the Yamuna in the lower reaches is by and large dictated by the chemistry of their tributaries and their mixing proportions. Illite is the dominant clay mineral (about 80%) in the bedload sediments of the highland rivers. Kaolinite and chlorite together constitute the remaining 20% of the clays. In the Chambal, Betwa and Ken, smectite accounts for about 80% of the clays. This difference in the clay mineral composition of the bed sediments is a reflection of the differences in the geology of their drainage basins. The highland rivers weather acidic rocks, whereas the others flow initially through basic effusives. The Ganga-Brahmaputra river system transports about 130 million tons of dissolved salts to the Bay of Bengal, which is nearly 3% of the global river flux to the oceans. The chemical denudation rates for the Ganga and the Brahmaputra basins are about 72 and 105 tons· km -· yr -1, respectively, which are factors of 2 to 3 higher than the global average. The high denudation rate, particularly in the Brahmaputra, is attributable to high relief and heavy rainfall.

  17. Space Weather - Sun Earth Relations

    NASA Astrophysics Data System (ADS)

    Raman, K. Sundara

    2011-03-01

    Sun, a star of spectral type G2 is the main source of energy to the Earth. Being close to the Earth, Sun produces a resolvable disk of great detail, which is not possible for other stars. Solar flares and coronal mass ejections are the enigmatic phenomena that occur in the solar atmosphere and regularly bombard the Earth's environment in addition to the solar wind. Thus it becomes important for us not only to understand these physical processes of the Sun, but in addition how these activities affect the Earth and it's surrounding. Thus a branch of study called "Space Weather" had emerged in the recent past, which connects the Sun Earth rela-tions. This paper details about the solar activity and associated energetic phenomena that occur in the atmosphere of the Sun and their influence on the Earth.

  18. Indirect consequences of extreme weather and climate events and their associations with physical health in coastal Bangladesh: a cross-sectional study

    PubMed Central

    Beier, Dominik; Brzoska, Patrick; Khan, Mobarak Hossain

    2015-01-01

    Background Bangladesh is one of the countries in the world which is most prone to natural disasters. The overall situation is expected to worsen, since extreme weather and climate events (EWCE) are likely to increase in both frequency and intensity. Indirect consequences caused in the events’ aftermath widen the range of possible adverse health outcomes. Objective To assess the association of indirect consequences of EWCE and physical health. Design We used recent cross-sectional self-reported data from 16 coastal villages in Bangladesh. A total of 980 households were surveyed using a structured questionnaire. The outcome of physical health was categorized into three groups, reflecting the severity of reported diseases by the respective source of treatment as a proxy variable (hospital/clinic for severe disease, other source/no treatment for moderate disease, and no disease). The final statistical analysis was conducted using multinomial logistic regression. Results Severe diseases were significantly associated with drinking water from open sources [odds ratio (OR): 4.26, 95% confidence interval (CI): 2.25–8.09] and tube wells (OR: 2.39, 95% CI: 1.43–4.01), moderate harm by river erosion (OR: 6.24, 95% CI: 2.76–14.11), food scarcity (OR: 1.98, 95% CI: 1.16–3.40), and the perception of increased employment problems (OR: 2.19, 95% CI: 1.18–4.07). Moderate diseases were significantly associated with moderate harm by river erosion (OR: 2.65, 95% CI: 1.28–5.48) and fully experienced food scarcity (OR: 1.75, 95% CI: 1.16–2.63). For both categories, women and the elderly had higher chances for diseases. Conclusions Indirect consequences of EWCE were found to be associated with adverse health outcomes. Basic needs such as drinking water, food production, and employment opportunities are particularly likely to become threatened by EWCE and, thus, may lead to a higher likelihood of ill-health. Intervention strategies should concentrate on protection and

  19. Estuarine Physical Processes Research: Some Recent Studies and Progress

    NASA Astrophysics Data System (ADS)

    Uncles, R. J.

    2002-12-01

    The literature on estuarine physical studies is vast, diverse and contains many valuable case studies in addition to pure, process-based research. This essay is an attempt to summarize both some of the more recent studies that have been undertaken during the last several years, as well as some of the trends in research direction and progress that they represent. The topics covered include field and theoretical studies on hydrodynamics, turbulence, salt and fine sediment transport and morphology. The development and ease-of-application of numerical and analytical models and technical software has been essential for much of the progress, allowing the interpretation of large amounts of data and assisting with the understanding of complex processes. The development of instrumentation has similarly been essential for much of the progress with field studies. From a process viewpoint, much more attention is now being given to interpreting intratidal behaviour, including the effects of tidal straining and suspended fine sediment on water column stratification, stability and turbulence generation and dissipation. Remote sensing from satellites and aircraft, together with fast sampling towed instruments and high frequency radar now provide unique, frequently high resolution views of spatial variability, including currents, frontal and plume phenomena, and tidal and wave-generated turbidity. Observations of fine sediment characteristics (floc size, aggregation mechanisms, organic coatings and settling velocity) are providing better parameterizations for sediment transport models. These models have enhanced our understanding both of the estuarine turbidity maximum and its relationship to fronts and intratidal hydrodynamic and sedimentological variability, as well as that of simple morphological features such as intertidal mudflats. Although few, interdisciplinary studies to examine the relationships between biology and estuarine morphology show that bivalve activity and the

  20. Physical Education for Children: A Focus on the Teaching Process.

    ERIC Educational Resources Information Center

    Logsdon, Bette J.; And Others

    This book is written for the physical education teacher at the elementary school level. In its ten chapters the following topics are covered: (1) an historical and philosophical examination of physical education in the American schools; (2) changes and new goals in the field of physical education; (3) concepts of learning and development in the…

  1. Physical processes in grid control gas discharge device Tacitron

    NASA Astrophysics Data System (ADS)

    Arefiev, Alexander; Vereschagin, Nicolay; Kruglov, Sergey

    2003-10-01

    Physical processes in grid control gas discharge device Tacitron Arefjev A.S., Vereschagin N.M., Kruglov S. A. Radioengineering Academy, Ryazan, Russia Nowdays pulsed power units is getting widely used for cleaning biogas and water. Their parameters and dimension defines by the current commutator, which is used as a switch for interrupting the current in the circuit. Experimental investigations have been carried out to find out the propeties of the one type of the current commutator - the so-called tacitron. It has specific construction of the control grid ,which enables to control the moment of the discharge plasma distinguish and consequently a tacitron has ability to distinguish the discharge, e.i. to interrupt the current, flowing through the device. The grid of a tacitron is constructed of small-mesh metal. The dimension of the small-mesh cell must be compare with Debay radius at the proper discharge conditions. It is stipulated by the fact that if the dimensions of the grid cell are compare with Debay radius then ionic sheaths on the negative electrode as if 'overlap' each other. Then if to supply the controlling impulse to the grid of the tacitron one can ensure interrupting the current through the tacitron. Thus a tacitron is full controlling discharge current commutator. There has been performed experimental investigation of the process of the current interruption.(distinguishing of the gas discharge), taking place in the discharge space between the anode and the cathode of the tacitron. The outcomes of experiments show that the process of the distinguishing may be divided on 4 stages, which differ one from another by elementary processes, going on there : - delay of the distinguishing of the discharge; - so-called 'slow ' stage; - decay of plasma inside the anode - grid gap; - decay of plasma inside the cathode - grid gap. The whole duration of the process of the discharge distinguishing equals mostly the second and the third stages together. The duration

  2. Public Awareness of Space Weather

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis J.

    2009-08-01

    As society increasingly relies on space-based infrastructure for communication and national security, there is a growing need to improve public awareness of the risks space weather poses. The National Space Weather Program (NSWP) should consider this need as it develops new strategic plans. The 2006 “Report of the Assessment Committee for the National Space Weather Program” (http://www.ofcm.gov/r24/fcm-r24.htm) continues to guide this important national program, which aims to improve space weather forecasting services and reduce technological vulnerabilities. NSWP, under the auspices of the Office of the Federal Coordinator for Meteorology (OFCM), is coordinated by the NSWP Council, which consists of eight federal agencies. This council, through its Committee for Space Weather, is in the process of formulating new Strategic and Implementation plans for the NSWP using recommendations from the Assessment Committee.

  3. Twelve testable hypotheses on the geobiology of weathering.

    PubMed

    Brantley, S L; Megonigal, J P; Scatena, F N; Balogh-Brunstad, Z; Barnes, R T; Bruns, M A; Van Cappellen, P; Dontsova, K; Hartnett, H E; Hartshorn, A S; Heimsath, A; Herndon, E; Jin, L; Keller, C K; Leake, J R; McDowell, W H; Meinzer, F C; Mozdzer, T J; Petsch, S; Pett-Ridge, J; Pregitzer, K S; Raymond, P A; Riebe, C S; Shumaker, K; Sutton-Grier, A; Walter, R; Yoo, K

    2011-03-01

    Critical Zone (CZ) research investigates the chemical, physical, and biological processes that modulate the Earth's surface. Here, we advance 12 hypotheses that must be tested to improve our understanding of the CZ: (1) Solar-to-chemical conversion of energy by plants regulates flows of carbon, water, and nutrients through plant-microbe soil networks, thereby controlling the location and extent of biological weathering. (2) Biological stoichiometry drives changes in mineral stoichiometry and distribution through weathering. (3) On landscapes experiencing little erosion, biology drives weathering during initial succession, whereas weathering drives biology over the long term. (4) In eroding landscapes, weathering-front advance at depth is coupled to surface denudation via biotic processes. (5) Biology shapes the topography of the Critical Zone. (6) The impact of climate forcing on denudation rates in natural systems can be predicted from models incorporating biogeochemical reaction rates and geomorphological transport laws. (7) Rising global temperatures will increase carbon losses from the Critical Zone. (8) Rising atmospheric P(CO2) will increase rates and extents of mineral weathering in soils. (9) Riverine solute fluxes will respond to changes in climate primarily due to changes in water fluxes and secondarily through changes in biologically mediated weathering. (10) Land use change will impact Critical Zone processes and exports more than climate change. (11) In many severely altered settings, restoration of hydrological processes is possible in decades or less, whereas restoration of biodiversity and biogeochemical processes requires longer timescales. (12) Biogeochemical properties impart thresholds or tipping points beyond which rapid and irreversible losses of ecosystem health, function, and services can occur. PMID:21231992

  4. Linking stochastic sediment transport to physical processes (Invited)

    NASA Astrophysics Data System (ADS)

    Jerolmack, D. J.; Martin, R.; Paola, C.; Reitz, M. D.; Schumer, R.

    2010-12-01

    Intermittent transport is the rule rather than the exception in sedimentary systems. Avalanching dynamics in granular flows is known to produce stochastic transport fluctuations over a wide range of scales - for example, the well known power-law distributions of landslide magnitudes. Similar stochastic dynamics can occur in multi-phase flows, e.g., bedload transport in rivers. A generalized theoretical framework for understanding stochastic transport is lacking. A pragmatic alternative is the stochastic processes approach: using (fractional) advection-diffusion equations, conditioned with measured statistics from a real system, to make future predictions about transport. Linking the macroscopic statistics described by such models to the microscopic physics of sediment transport will require a new statistical mechanics approach. We propose to begin by delineating generic categories of transport mechanics - universality classes - and determining their statistical signatures through theory and experiment. A first separation may be drawn between periodic and aperiodic transport fluctuations. Periodic transport fluctuations have been observed in both sand piles and river delta experiments, and appear to arise under conditions of a well-defined transport threshold (e.g., an angle of repose) and limited dissipation. Under these conditions, inertia overwhelms system heterogeneity and gives rise to periodic oscillations having a characteristic magnitude. Aperiodic transport fluctuations often imply a strong control of system heterogeneity, and/or significant dissipation or friction capable of “breaking up” sediment pulses. For example, varying soil properties give rise to a range of critical failure slopes for landslides. Transitions in the dominant transport process from small to large time or space scales are expected to result in transitions in scaling. Bedload transport is super-diffusive at short timescales because of correlated motion due to particle momentum. At

  5. Examination of physical processes of convective cell evolved from a MCS — Using a different model initialization

    NASA Astrophysics Data System (ADS)

    Spiridonov, Vlado; Ćurić, Mladjen

    2016-06-01

    The present study is focused on examination of the physical processes of convective cell evolved from a MCS occurred on 4 November 2011 over Genoa, Italy. The Quantitative Precipitation Forecasts (QPF) have been performed using WRF v3.6 model under different configurations and cloud permitting simulations. The results indicate underestimation of the amount of precipitation and spatial displacement of the area with a peak 24-h accumulated rainfall in (mm). Our main objective in the research is to test the cloud model ability and performance in simulation of this particular case. For that purpose a set of sensitivity experiments under different model initializations and initial data have been conducted. The results also indicate that the merging process apparently alters the physical processes through low- and middle-level forcing, increasing cloud depth, and enhancing convection. The examination of the microphysical process simulated by the model indicates that dominant production terms are the accretion of rain by graupel and snow, probabilistic freezing of rain to form graupel and dry and wet growth of graupel. Experiment under WRF v3.6 model initialization has shown some advantage in simulation of the physical processes responsible for production and initiation of heavy rainfall compared to other model runs. Most of the precipitation came from ice-phase particles-via accretion processes and the graupel melting at temperature T0 ≥ 0°C. The rainfall intensity and accumulated rainfall calculated by the model closely reflect the amount of rainfall recorded. Thus, the main benefit is to better resolve convective showers or storms which, in extreme cases, can give rise to major flooding events. In such a way, this model may become major contributor to improvements in weather analysis and small-scale atmospheric predictions and early warnings of such subscale processes.

  6. Carbonate Beaches: A Balance Between Biological and Physical Processes

    NASA Astrophysics Data System (ADS)

    Nairn, R.; Risk, M.

    2004-12-01

    Carbonate beaches are a unique example of the interaction between biological processes, creating the sediments, and physical processes, moving and often removing the sediments. On the sediment supply side, carbonate sediments are born, not made. They exist in dynamic equilibrium between production and destruction. Following the creation of carbonate sediment in coral reef and lagoon environments, the sediments are moved shoreward to the beach, transport along the shore and sometimes, eventually lost offshore, often as the result of tropical storms. Comprehensive studies of the balance between the supply and loss of carbonate sediments and beach dynamics have been completed for the islands of Mauritius and Barbados. Field studies and remote sensing (Compact Airborne Spectrometry Imaging) have been applied to develop carbonate sediment production rates for a range of reef and lagoon conditions. Using GIS, these production rates have been integrated to determine sediment supply rates for different segments of the coastline. 1-D and 2-D models of waves, hydrodynamics, sediment transport and morphodynamics were set-up and tested against observed beach response to storm events or a sequence of storm events. These complex deterministic models are not suitable for application over periods of decades. However, it was possible to characterize storm events by the extent of sand loss, and relate this to key descriptive factors for groups of storm events, thereby encapsulating the erosion response. A long-term predictive tool for evaluating beach erosion and accretion response, over a period of several decades, was developed by combining the supply rates for carbonate sediment and the encapsulated representation of the loss rates through physical processes. The ability of this predictive tool was successfully tested against observed long term beach evolution along sections of the coast in Barbados and Mauritius using air photo analysis in GIS for shoreline change over periods

  7. Identifying weathering sources and processes in an outlet glacier of the Greenland Ice Sheet using Ca and Sr isotope ratios

    NASA Astrophysics Data System (ADS)

    Hindshaw, Ruth S.; Rickli, Jörg; Leuthold, Julien; Wadham, Jemma; Bourdon, Bernard

    2014-11-01

    Chemical and isotope data (ε40Ca, δ44/42Ca, 87Sr/86Sr, δ18O) of river water samples were collected twice daily for 28 days in 2009 from the outlet river of Leverett Glacier, West Greenland. The water chemistry data was combined with detailed geochemical analysis and petrography of bulk rock, mineral separates and sediment samples in order to constrain the mineral weathering sources to the river. The average isotopic compositions measured in the river, with 2SD of all the values measured, were ε40Ca = +4.0 ± 1.4, δ44/42Ca = +0.60 ± 0.10‰ and 87Sr/86Sr = 0.74243 ± 0.00327. Based on changes in bulk meltwater discharge, the hydrochemical data was divided into three hydrological periods. The first period was marked by the tail-end of an outburst event and was characterised by water with decreasing suspended sediment concentrations (SSC), ion concentrations and pH. During the second hydrological period, discharge increased whilst 87Sr/86Sr decreased from 0.74550 to 0.74164. Based on binary mixing diagrams using 87Sr/86Sr with Na/Sr, Ca/Sr and ε40Ca, this is interpreted to reflect an increase in reactive mineral weathering, in particular epidote, as the water residence time decreases. The decrease in water residence time is a result of the evolution from a distributed (long water residence time) to a channelised (short water residence time) subglacial drainage network. The third hydrological period was defined as the period when overall discharge was decreasing. This hydrological period was marked by prominent diurnal cycles in discharge. During this period, significant correlations between δ44/42Ca and SSC and δ18O were observed which are suggestive of fractionation during adsorption. This study demonstrates the potential of radiogenic Ca to both identify temporally changing mineral sources in conjunction with 87Sr/86Sr values and to separate source and fractionation effects in δ44/42Ca values.

  8. Adaptive Numerical Algorithms in Space Weather Modeling

    NASA Technical Reports Server (NTRS)

    Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav

    2010-01-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical

  9. Adaptive numerical algorithms in space weather modeling

    NASA Astrophysics Data System (ADS)

    Tóth, Gábor; van der Holst, Bart; Sokolov, Igor V.; De Zeeuw, Darren L.; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Najib, Dalal; Powell, Kenneth G.; Stout, Quentin F.; Glocer, Alex; Ma, Ying-Juan; Opher, Merav

    2012-02-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different relevant physics in different domains. A multi-physics system can be modeled by a software framework comprising several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamic (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit

  10. Convection in the Physical Vapor Transport Process. Part 2; Thermosolutal

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.

    1994-01-01

    We consider the effect of an inert gas on the diffusive-convective physical vapor transport process. We investigate the case when the temperature gradient is stabilizing and the concentration gradient is destabilizing for a wide parametric range. When an inert gas is present, the thermal and solutal convection oppose each other. The solutal field is destabilizing while the thermal field and the advective-diffusive flux stabilize the flow field. When the pressure of the inert component is increased, the stabilizing effect of the advective-diffusive flux is decreased. The intensity of convection as well as the oscillatory transient time increases. Below, the critical Rayleigh number, the nonlinear dynamics of the flow field show an oscillatory approach to steady state. For parametric values in the neighborhood of the critical Rayleigh number, the flow field undergoes a chaotic transient which settles to a periodic state. The asymptotic state of the flow field shows that growth and amalgamation of cells yields an overturning motion which results in an asymmetric cellular structure. The low gravity environment yields the stabilizing advective-diffusive flow which results in uniform temperature and concentration gradients near the crystal interface.

  11. The science of space weather.

    PubMed

    Eastwood, Jonathan P

    2008-12-13

    The basic physics underpinning space weather is reviewed, beginning with a brief overview of the main causes of variability in the near-Earth space environment. Although many plasma phenomena contribute to space weather, one of the most important is magnetic reconnection, and recent cutting edge research in this field is reviewed. We then place this research in context by discussing a number of specific types of space weather in more detail. As society inexorably increases its dependence on space, the necessity of predicting and mitigating space weather will become ever more acute. This requires a deep understanding of the complexities inherent in the plasmas that fill space and has prompted the development of a new generation of scientific space missions at the international level. PMID:18812302

  12. Physical modelling of the rainfall infiltration processes and related landslide behaviour.

    NASA Astrophysics Data System (ADS)

    Capparelli, Giovanna; Damiano, Emilia; Olivares, Lucio; Spolverino, Gennaro; Versace, Pasquale

    2016-04-01

    The prediction of natural processes, such as weather-induced landslide, an issue that is of great importance. Were held numerous research to understand the processes underlying the triggering of a landslide, and to improve the forecasting systems. A valid prediction model can allow the implementation of an equally valid announcement and warning system, thus reducing the risk caused by such phenomena. The hydraulic and hydrologic modeling of the process that takes place in an unstable slope subjected to rainfall, can be performed using two approaches: through mathematical models or physical models. Our research uses an integrated approach, making system data of experimental sites, with both the results and interpretations of physical models, both with simulations of mathematical models. The intent is to observe and interpret laboratory experiments to reproduce and simulate the phenomenon with mathematical models. The research aims to obtain interpretations of hydrological and hydraulic processes, which occur in the slopes as a result of rain, more and more accurate. For our research we use a scaled-down physical model and a mathematical model FEM. The physical model is a channel with transparent walls composed of two floors at a variable angle (ignition and propagation) 1 meter wide and 3 meters long each. The model is instrumented with sensors that control the hydraulic and geotechnical parameters within the slopes and devices that simulate natural events. The model is equipped with a monitoring system able to keep under observation the physical quantities of interest. In particular, the apparatus is equipped with tensiometers miniaturized, that can be installed in different positions and at different depths, for the measurement of suction within the slope, miniaturized pressure transducers on the bottom of the channel for the measurement of any pressure neutral positive , TDR system for the measurement of the volumetric water content, and displacement transducers

  13. Weather in the News.

    ERIC Educational Resources Information Center

    Markle, Sandra

    1989-01-01

    A discussion of TV weather forecasting introduces this article which features several hands-on science activities involving observing, researching, and experimenting with the weather. A reproducible worksheet on the reliability of weather forecasts is included. (IAH)

  14. Winter Weather Checklists

    MedlinePlus

    ... Planning Information on Specific Types of Emergencies Winter Weather Checklists Language: English Español (Spanish) Recommend on Facebook ... emergency instructions National Oceanic and Atmospheric Administration (NOAA) weather radio receiver for listening to National Weather Service ...

  15. Forecasting the Weather.

    ERIC Educational Resources Information Center

    Bollinger, Richard

    1984-01-01

    Presents a computer program which predicts the weather based on student input of such weather data as wind direction and barometric pressure. Also provides procedures for several hands-on, weather-related activities. (JN)

  16. The Development and Validation of a Process Instrument for a Unit of the Physical Science Study Committee Physics Course.

    ERIC Educational Resources Information Center

    Penny, Maria Bramtot

    The purpose of this study was to prepare a valid and reliable instrument to evaluate the objectives dealing with the behaviors expected in Part 1 of the Physical Science Study Committee (PSSC) physics course. There were six phases to the study: (1) identification of the processes, (2) selection thereof, (3) construction of instrument, (4) pilot…

  17. GEM: Statistical weather forecasting procedure

    NASA Technical Reports Server (NTRS)

    Miller, R. G.

    1983-01-01

    The objective of the Generalized Exponential Markov (GEM) Program was to develop a weather forecast guidance system that would: predict between 0 to 6 hours all elements in the airways observations; respond instantly to the latest observed conditions of the surface weather; process these observations at local sites on minicomputing equipment; exceed the accuracy of current persistence predictions at the shortest prediction of one hour and beyond; exceed the accuracy of current forecast model output statistics inside eight hours; and be capable of making predictions at one location for all locations where weather information is available.

  18. Physical Abuse, Cognitive and Emotional Processes, and Aggressive/Disruptive Behavior Problems

    ERIC Educational Resources Information Center

    Teisl, Michael; Cicchetti, Dante

    2008-01-01

    Cognitive and emotional processes were examined in maltreated children with a history of physical abuse (n = 76), children with a history of maltreatment other than physical abuse (i.e., sexual abuse, physical neglect, and emotional maltreatment; n = 91), and a group of non-maltreated comparison children (N = 100). Physical abuse was associated…

  19. Linking Weathering, Rock Moisture Dynamics, Geochemistry, Runoff, Vegetation and Atmospheric Processes through the Critical Zone: Graduate Student led Research at the Eel River Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Dietrich, W. E.

    2014-12-01

    In the Eel River Critical Zone Observatory lies Rivendell, a heavily-instrumented steep forested hillslope underlain by nearly vertically dipping argillite interbedded with sandstone. Under this convex hillslope lies "Zb", the transition to fresh bedrock, which varies from less than 6 m below the surface near the channel to 20 m at the divide. Rempe and Dietrich (2014, PNAS) show that the Zb profile can be predicted from the assumption that weathering occurs when drainage is induced in the uplifting fresh bedrock under hillslopes by lateral head gradients driven by channel incision at the hillslope boundary. Infiltrating winter precipitation is impeded at the lower conductivity boundary at Zb, generating perched groundwater that dynamically pulses water laterally to the channel, controlling stream runoff. Below the soil and above the water table lies an unsaturated zone through which all recharge to the perched groundwater (and thus all runoff to channels) occurs. It is this zone and the waters in them that profoundly affect critical zone processes. In our seasonally dry environment, the first rains penetrate past the soil and moisten the underlying weathered bedrock (Salve et al., 2012, WRR). It takes about 200 to 400 mm of cumulative rain, however, before the underlying groundwater rises significantly. Oshun et al (in review) show that by this cumulative rainfall the average of the wide-ranging isotopic signature of rain reaches a nearly constant average annual value. Consequently, the recharging perched groundwater shows only minor temporal isotopic variation. Kim et al, (2014, GCA) find that the winter high-flow groundwater chemistry is controlled by relatively fast-reacting cation exchange processes, likely occurring in transit in the unsaturated zone. Oshun also demonstrates that the Douglas fir rely on this rock moisture as a water source, while the broadleaf trees (oaks and madrone) use mostly soil moisture. Link et al (2014 WRR) show that Doug fir declines

  20. Assessing the value of post-processed state-of-the-art long-term weather forecast ensembles for agricultural water management mediated by farmers' behaviours

    NASA Astrophysics Data System (ADS)

    Li, Yu; Giuliani, Matteo; Castelletti, Andrea

    2016-04-01

    Recent advances in modelling of coupled ocean-atmosphere dynamics significantly improved skills of long-term climate forecast from global circulation models (GCMs). These more accurate weather predictions are supposed to be a valuable support to farmers in optimizing farming operations (e.g. crop choice, cropping and watering time) and for more effectively coping with the adverse impacts of climate variability. Yet, assessing how actually valuable this information can be to a farmer is not straightforward and farmers' response must be taken into consideration. Indeed, in the context of agricultural systems potentially useful forecast information should alter stakeholders' expectation, modify their decisions, and ultimately produce an impact on their performance. Nevertheless, long-term forecast are mostly evaluated in terms of accuracy (i.e., forecast quality) by comparing hindcast and observed values and only few studies investigated the operational value of forecast looking at the gain of utility within the decision-making context, e.g. by considering the derivative of forecast information, such as simulated crop yields or simulated soil moisture, which are essential to farmers' decision-making process. In this study, we contribute a step further in the assessment of the operational value of long-term weather forecasts products by embedding these latter into farmers' behavioral models. This allows a more critical assessment of the forecast value mediated by the end-users' perspective, including farmers' risk attitudes and behavioral patterns. Specifically, we evaluate the operational value of thirteen state-of-the-art long-range forecast products against climatology forecast and empirical prediction (i.e. past year climate and historical average) within an integrated agronomic modeling framework embedding an implicit model of the farmers' decision-making process. Raw ensemble datasets are bias-corrected and downscaled using a stochastic weather generator, in

  1. Study of weathering processes developed on old piedmont surfaces in Western Spain: new contributions to the interpretation of the ``Raña'' profiles

    NASA Astrophysics Data System (ADS)

    Molina Ballesteros, E.; Cantano Martín, M.

    2002-01-01

    The Hercynian basement of the Iberian Peninsula was uplifted by the Alpine orogeny during the Tertiary. It gave rise to a set of block mountains and tectonic grabens, one of which is the Ciudad Rodrigo Basin. It is located in Western Spain and forms a westward extension of the great Tertiary Duero Basin. The sediments filling this graben are of continental origin, their ages ranging from Palaeogene to Quaternary. Morphologically, the southern part of this basin forms a set of piedmont surfaces (the "Raña" surfaces) appearing above the terrace system of the present rivers. This paper examines the weathering processes developed over these old piedmont surfaces using micromorphological, XR diffraction, scanning electron microscopy (SEM) and microporosity techniques. The Raña sediments are rich in quartzite pebbles and gravel within a clayey matrix. Once deposited, these materials underwent important in situ weathering processes under somewhat hydromorphic conditions, of which hydrolysis, ferrolysis and xerolysis were the most important. All these processes gave rise to: (1) transformation of most of the clasts of shists and slates into a matrix causing the destruction of the original sedimentary structures and a relative concentration of the resistant lithologies (quartzites and quartz); (2) important changes in the clay fraction, leading to a predominance of kaolinite in the upper levels of the profiles, (3) release of elements from primary minerals, Fe being one of the most important, and (4) redistribution of matter, mainly clay and Fe oxyhydroxides, within the profiles. The coexistence of seasonal periods with pF higher than 4.2 repeated over a long time, together with poor internal and external drainage conditions, are the cause of the special features displayed by Raña deposits.

  2. NASA's Advancements in Space-Based Spectrometry Lead to Improvements in Weather Prediction and Understanding of Climate Processes

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Iredell, Lena

    2010-01-01

    AIRS (Atmospheric Infra-Red Sounder), was launched, in conjunction with AMSU-A (Advanced Microwave Sounding Unit-A) on the NASA polar orbiting research satellite EOS (Earth Observing System) Aqua satellite in May 2002 as a next generation atmospheric sounding system. Atmospheric sounders provide information primarily about the vertical distribution of atmospheric temperature and water vapor distribution. This is achieved by measuring outgoing radiation in discrete channels (spectral intervals) which are sensitive primarily to variations of these geophysical parameters. The primary objectives of AIRS/AMSU were to utilize such information in order to improve the skill of numerical weather prediction as well as to measure climate variability and trends. AIRS is a multi-detector array grating spectrometer with 2378 channels covering the spectral range 650/cm (15 microns) to 2660/cm (3.6 microns) with a resolving power (i/a i) of roughly 1200 where a i is the spectral channel bandpass. Atmospheric temperature profile can be determined from channel observations taken within the 15 micron (the long-wave CO2 absorption band) and within the 4.2 micron (the short-wave CO2 absorption band). Radiances in these (and all other) spectral intervals in the infrared are also sensitive to the presence of clouds in the instrument?s field of view (FOV), which are present about 95% of the time. AIRS was designed so as to allow for the ability to produce accurate Quality Controlled atmospheric soundings under most cloud conditions. This was achieved by having 1) extremely low channel noise values in the shortwave portion of the spectrum and 2) a very flat spatial response function within a channel?s FOV. IASI, the high spectral resolution IR interferometer flying on the European METOP satellite, does not contain either of these important characteristics. The AIRS instrument was also designed to be extremely stabile with regard to its spectral radiometric characteristics, which is

  3. Weather information network including graphical display

    NASA Technical Reports Server (NTRS)

    Leger, Daniel R. (Inventor); Burdon, David (Inventor); Son, Robert S. (Inventor); Martin, Kevin D. (Inventor); Harrison, John (Inventor); Hughes, Keith R. (Inventor)

    2006-01-01

    An apparatus for providing weather information onboard an aircraft includes a processor unit and a graphical user interface. The processor unit processes weather information after it is received onboard the aircraft from a ground-based source, and the graphical user interface provides a graphical presentation of the weather information to a user onboard the aircraft. Preferably, the graphical user interface includes one or more user-selectable options for graphically displaying at least one of convection information, turbulence information, icing information, weather satellite information, SIGMET information, significant weather prognosis information, and winds aloft information.

  4. Solar variability, weather, and climate

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Advances in the understanding of possible effects of solar variations on weather and climate are most likely to emerge by addressing the subject in terms of fundamental physical principles of atmospheric sciences and solar-terrestrial physis. The limits of variability of solar inputs to the atmosphere and the depth in the atmosphere to which these variations have significant effects are determined.

  5. The problems of solar-terrestrial coupling and new processes introduced to the physics of the ionosphere from the physics of atomic collisions

    NASA Astrophysics Data System (ADS)

    Avakyan, Sergei

    2010-05-01

    ionospheric doubly charged positive ions, and Auger effect mainly determines the formation of double- and triple charged ions in the low ionosphere of planets and also comets; - transitions in the Rydberg excited ionospheric atoms and molecules play the main role in generation of new type of upper atmospheric emission - microwave characteristic radiation. The ionospheric O++ ions fill the magnetosphere after geomagnetic storms. These ions scatter the solar radiation in one of the most intense lines with a wavelength of 30.4 nm (He+) and also in the 50.7-, 70.3-, 83.3-83.5-nm lines in geocorona to the nocturnal side, giving rise to additional ionization and optical excitation in the F-region. The first calculations of the excitation rate of Rydberg states by photoelectrons and by auroral electrons (including Auger electrons) were carried out. It was shown that such process can generate the microwave ionospheric radioemission. Such emissions were observed during solar flares and in auroras. We suggest that Rydberg microwave radioemissions which take place during ionospheric disturbances produced by the solar flares and geomagnetic storms can be considered as an agent of influence of solar-geomagnetic activity on the biosphere and also as a factor of Sun-weather-climate links All these results obtained experimental confirmation in space investigations and in some ground-based measurements carried out with radiophysical and optical methods. The new processes which we introduced to the physics of upper atmosphere and ionosphere are now widely used in the ionospheric science for interpretation of spacecraft measurement data (the spacecrafts ISIS, GEOS-1, IMAGE, the satellites DE-1,-B, EXOS-D (AKEBOHO), FAST, Intercosmos-19, -24, -25, the orbital stations "Salut", "Mir"). There is a Russian patent on the method of remote registration of radioactive atmospheric clouds and nuclear weapon tests over the atmosphere by means of optical fluorescence which is based on Auger processes.

  6. Reconnaissance of Field Sites for the Study of Chemical Weathering on the Guayana Shield, South America

    SciTech Connect

    Steefell, C I

    2003-02-01

    Despite the fact that chemical weathering of silicate rocks plays an important role in the draw-down of CO{sub 2} over geologic time scales (Berner and Berner, 1996), the overall controls on the rate of chemical weathering are still not completely understood. Lacking a mechanistic understanding of these controls, it remains difficult to evaluate a hypothesis such as that presented by Raymo and Ruddiman (1992), who suggested that enhanced weathering and CO{sub 2} draw-down resulting from the uplift of the Himalayas contributed to global cooling during the Cenozoic. At an even more fundamental level, the three to four order of magnitude discrepancy between laboratory and field weathering rates is still unresolved (White et al., 1996). There is as yet no comprehensive, mechanistic model for silicate chemical weathering that considers the coupled effects of precipitation, vadose zone flow, and chemical reactions. The absence of robust process models for silicate weathering and the failure to resolve some of these important questions may in fact be related-the controls on the overall rates of weathering cannot be understood without considering the weathering environment as one in which multiple, time-dependent chemical and physical processes are coupled (Malmstrom, 2000). Once chemical weathering is understood at a mechanistic process level, the important controls on chemical weathering (physical erosion, temperature, precipitation) can be folded into larger scale models tracking the global carbon cycle. Our goal in this study was to carry out the preliminary work needed to establish a field research site for chemical weathering om the Cuayana Shield in South America. The Guayana Shield is a Precambrian province greater than 1.5 billion years old covering portions of Venezuela, Guyana (the country), Surinam, French Guiana, and Brazil (Figure 1). More important than the age of the rocks themselves, however, is the age of the erosion surface developed on the Shield, with

  7. Space Weather

    NASA Video Gallery

    This lesson explores the origins, processes and risks associated with solar radiation including how it travels through the solar system, affects the Earth’s magnetosphere and poses a threat to as...

  8. Physical Education Resources, Class Management, and Student Physical Activity Levels: A Structure-Process-Outcome Approach to Evaluating Physical Education Effectiveness

    ERIC Educational Resources Information Center

    Bevans, Katherine B.; Fitzpatrick, Leslie-Anne; Sanchez, Betty M.; Riley, Anne W.; Forrest, Christopher

    2010-01-01

    Background: This study was conducted to empirically evaluate specific human, curricular, and material resources that maximize student opportunities for physical activity during physical education (PE) class time. A structure-process-outcome model was proposed to identify the resources that influence the frequency of PE and intensity of physical…

  9. Weather in Your Life.

    ERIC Educational Resources Information Center

    Kannegieter, Sandy; Wirkler, Linda

    Facts and activities related to weather and meteorology are presented in this unit. Separate sections cover the following topics: (1) the water cycle; (2) clouds; (3) the Beaufort Scale for rating the speed and force of wind; (4) the barometer; (5) weather prediction; (6) fall weather in Iowa (sleet, frost, and fog); (7) winter weather in Iowa…

  10. Fun with Weather

    ERIC Educational Resources Information Center

    Yildirim, Rana

    2007-01-01

    This three-part weather-themed lesson for young learners connects weather, clothing, and feelings vocabulary. The target structures covered are: asking about the weather; comparing weather; using the modal auxiliary, should; and the question word, when. The lessons utilize all four skills and include such activities as going outside, singing,…

  11. Teaching Weather Concepts.

    ERIC Educational Resources Information Center

    Sebastian, Glenn R.

    Ten exercises based on the weather map provided in the national newspaper "U.S.A. Today" are used to teach intermediate grade students about weather. An overview describes the history of "U.S.A. Today," the format of the newspaper's weather map, and the map's suitability for teaching weather concepts. Specific exercises, which are briefly…

  12. The Sounds of Sentences: Differentiating the Influence of Physical Sound, Sound Imagery, and Linguistically Implied Sounds on Physical Sound Processing.

    PubMed

    Dudschig, Carolin; Mackenzie, Ian Grant; Strozyk, Jessica; Kaup, Barbara; Leuthold, Hartmut

    2016-10-01

    Both the imagery literature and grounded models of language comprehension emphasize the tight coupling of high-level cognitive processes, such as forming a mental image of something or language understanding, and low-level sensorimotor processes in the brain. In an electrophysiological study, imagery and language processes were directly compared and the sensory associations of processing linguistically implied sounds or imagined sounds were investigated. Participants read sentences describing auditory events (e.g., "The dog barks"), heard a physical (environmental) sound, or had to imagine such a sound. We examined the influence of the 3 sound conditions (linguistic, physical, imagery) on subsequent physical sound processing. Event-related potential (ERP) difference waveforms indicated that in all 3 conditions, prime compatibility influenced physical sound processing. The earliest compatibility effect was observed in the physical condition, starting in the 80-110 ms time interval with a negative maximum over occipital electrode sites. In contrast, the linguistic and the imagery condition elicited compatibility effects starting in the 180-220 ms time window with a maximum over central electrode sites. In line with the ERPs, the analysis of the oscillatory activity showed that compatibility influenced early theta and alpha band power changes in the physical, but not in the linguistic and imagery, condition. These dissociations were further confirmed by dipole localization results showing a clear separation between the source of the compatibility effect in the physical sound condition (superior temporal area) and the source of the compatibility effect triggered by the linguistically implied sounds or the imagined sounds (inferior temporal area). Implications for grounded models of language understanding are discussed. PMID:27473463

  13. Prediction Techniques in Operational Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Zhukov, Andrei

    2016-07-01

    The importance of forecasting space weather conditions is steadily increasing as our society is becoming more and more dependent on advanced technologies that may be affected by disturbed space weather. Operational space weather forecasting is still a difficult task that requires the real-time availability of input data and specific prediction techniques that are reviewed in this presentation, with an emphasis on solar and interplanetary weather. Key observations that are essential for operational space weather forecasting are listed. Predictions made on the base of empirical and statistical methods, as well as physical models, are described. Their validation, accuracy, and limitations are discussed in the context of operational forecasting. Several important problems in the scientific basis of predicting space weather are described, and possible ways to overcome them are discussed, including novel space-borne observations that could be available in future.

  14. Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study.

    PubMed

    Trindade, P V O; Sobral, L G; Rizzo, A C L; Leite, S G F; Soriano, A U

    2005-01-01

    The facility with which hydrocarbons can be removed from soils varies inversely with aging of soil samples as a result of weathering. Weathering refers to the result of biological, chemical and physical processes that can affect the type of hydrocarbons that remain in a soil. These processes enhance the sorption of hydrophobic organic contaminants (HOCs) to the soil matrix, decreasing the rate and extent of biodegradation. Additionally, pollutant compounds in high concentrations can more easily affect the microbial population of a recently contaminated soil than in a weathered one, leading to inhibition of the biodegradation process. The present work aimed at comparing the biodegradation efficiencies obtained in a recently oil-contaminated soil (spiked one) from Brazil and an weathered one, contaminated for four years, after the application of bioaugmentation and biostimulation techniques. Both soils were contaminated with 5.4% of total petroleum hydrocarbons (TPHs) and the highest biodegradation efficiency (7.4%) was reached for the weathered contaminated soil. It could be concluded that the low biodegradation efficiencies reached for all conditions tested reflect the treatment difficulty of a weathered soil contaminated with a high crude oil concentration. Moreover, both soils (weathered and recently contaminated) submitted to bioaugmentation and biostimulation techniques presented biodegradation efficiencies approximately twice as higher as the ones without the aforementioned treatment (natural attenuation). PMID:15620743

  15. Deeply weathered basement rocks in Norway

    NASA Astrophysics Data System (ADS)

    Bönner, Marco; Knies, Jochen; Fredin, Ola; Olesen, Odleiv; Viola, Giulio

    2014-05-01

    Recent studies show that, in addition to tectonic processes, surface processes have also had a profound impact on the topography of Norway. This is especially obvious for the northernmost part of the Nordland county and for western Norway, where the current immature Alpine-type topography cannot be easily explained by tectonic processes only. Erosion of the sedimentary succession also does not seem sufficient to explain the observed relief. Common remnants of deeply weathered basement rocks, however, indicate a history of deep alteration and later erosion of the bedrock, which needs to be considered as another important factor in the development of the topographic relief. Most of the sites with deeply weathered basement exhibit a clay-poor grussy type of weathering, which is generally considered to be of relatively young age (Plio-/Pleistocene) and thought to represent an intermediate stage of weathering. Unfortunately, small amounts or complete absence of clay minerals in these weathering products precluded the accurate dating of this weathered material. Scandinavia was exposed to a large range of glaciations and the once extensive sedimentary successions have been almost entirely eroded, which impedes a minimum age estimate of the weathering profile. Although several sites preserving remnants of deep weathering can still be observed onshore Norway, they are all covered by Quaternary overburden and the age of the regolith remains thus unconstrained and a matter of debate. The only exception is a small Mesozoic basin on Andøya, northern Norway, where weathered and clay-poor saprolite was found underlying Jurassic and Cretaceous sedimentary rocks. Over the last few years the Geological Survey of Norway (NGU) has mapped and investigated deep weathering onshore Norway to better understand weathering processes and to constrain the age of the weathering remnants. The combined interpretation of geophysical, mineralogical and geochemical data, together with recent

  16. Dimension of physical systems, information processing, and thermodynamics

    NASA Astrophysics Data System (ADS)

    Brunner, Nicolas; Kaplan, Marc; Leverrier, Anthony; Skrzypczyk, Paul

    2014-12-01

    We ask how quantum theory compares to more general physical theories from the point of view of dimension. To do so, we first give two model-independent definitions of the dimension of physical systems, based on measurements and the capacity of storing information. While both definitions are equivalent in classical and quantum mechanics, they are different in generalized probabilistic theories. We discuss in detail the case of a theory known as ‘boxworld’, and show that such a theory features systems with dimension mismatch. This dimension mismatch can be made arbitrarily large using an amplification procedure. Furthermore, we show that the dimension mismatch of boxworld has strong consequences on its power for performing information-theoretic tasks, leading to the collapse of communication complexity and to the violation of information causality. Finally, we discuss the consequences of a dimension mismatch from the perspective of thermodynamics, and ask whether this effect could break Landauer's erasure principle and thus the second law.

  17. The Process of Physics Teaching Assistants' Pedagogical Content Knowledge Development

    ERIC Educational Resources Information Center

    Seung, Eulsun

    2013-01-01

    This study explored the process of physics teaching assistants' (TAs) PCK development in the context of teaching a new undergraduate introductory physics course. "Matter and Interactions" (M&I) has recently adopted a new introductory physics course that focuses on the application of a small number of fundamental physical…

  18. Terminal Doppler weather radar

    NASA Astrophysics Data System (ADS)

    Michelson, M.; Shrader, W. W.; Wieler, J. G.

    1990-02-01

    The terminal Doppler weather radar (TDWR) system, now under development, will provide automatic detection of microbursts and low-level wind shear. This paper discusses the TDWR performance parameters and describes its structural elements, including the antenna subsystem, the transmitter, the receiver/exciter, the digital signal processor, and the radar product generator/remote monitoring subsystem. Attention is also given to the processes of the base data formation, point target removal, signal-to-noise thresholding, and velocity de-aliasing and to the TDWR algorithms and displays. A schematic diagram of the TDWR system is presented.

  19. Space Weather Modeling Services at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2006-01-01

    The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership, which aims at the creation of next generation space weather models. The goal of the CCMC is to support the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to provide models for transition to the Rapid Prototyping Centers at the space weather forecast centers. This goal requires close collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of the National Space Weather Program Implementation Plan, of NASA's Living With a Star (LWS) initiative, and of the Department of Defense Space Weather Transition Plan. CCMC includes a facility at NASA Goddard Space Flight Center. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide a description of the current CCMC status, discuss current plans, research and development accomplishments and goals, and describe the model testing and validation process undertaken as part of the CCMC mandate. Special emphasis will be on solar and heliospheric models currently residing at CCMC, and on plans for validation and verification.

  20. Weather service upgrade too costly?

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    America needs timely and accurate weather forecasting, said Ernest F. Hollings (D-S.C.), chairman of the Senate Committee on Commerce, Science, and Transportation on National Ocean Policy. Calling the existing warning and forecast system dangerously obsolete, Hollings said that new technology “should dramatically improve the accuracy and timeliness of weather predictions,” as we face the new challenge of bringing the National Weather Service into the 21st century. Hollings' committee heard testimony to consider the modernization of the NWS and pending legislation (S98, S916) on June 18.Major components of the Weather Service Modernization program, according to John A. Knauss, administrator of the National Oceanic and Atmospheric Administration, are the Next Generation Weather Radar (NEXRAD), a new generation of Geostationary Operational Environmental Satellites (GOES-NEXT), the Automated Surface Observing System (ASOS), and the Advanced Weather Interactive Processing System (AWIA). The best defense against severe weather—early warnings—is probably hampered by outdated equipment, he added.

  1. Weather data dissemination to aircraft

    NASA Technical Reports Server (NTRS)

    Mcfarland, Richard H.; Parker, Craig B.

    1990-01-01

    Documentation exists that shows weather to be responsible for approximately 40 percent of all general aviation accidents with fatalities. Weather data products available on the ground are becoming more sophisticated and greater in number. Although many of these data are critical to aircraft safety, they currently must be transmitted verbally to the aircraft. This process is labor intensive and provides a low rate of information transfer. Consequently, the pilot is often forced to make life-critical decisions based on incomplete and outdated information. Automated transmission of weather data from the ground to the aircraft can provide the aircrew with accurate data in near-real time. The current National Airspace System Plan calls for such an uplink capability to be provided by the Mode S Beacon System data link. Although this system has a very advanced data link capability, it will not be capable of providing adequate weather data to all airspace users in its planned configuration. This paper delineates some of the important weather data uplink system requirements, and describes a system which is capable of meeting these requirements. The proposed system utilizes a run-length coding technique for image data compression and a hybrid phase and amplitude modulation technique for the transmission of both voice and weather data on existing aeronautical Very High Frequency (VHF) voice communication channels.

  2. Adaptive, maladaptive, mediational, and bidirectional processes of relational and physical aggression, relational and physical victimization, and peer liking.

    PubMed

    Kawabata, Yoshito; Tseng, Wan-Ling; Crick, Nicki R

    2014-01-01

    A three-wave longitudinal study among ethnically diverse preadolescents (N = 597 at Time 1, ages 9-11) was conducted to examine adaptive, maladaptive, mediational, and bidirectional processes of relational and physical aggression, victimization, and peer liking indexed by peer acceptance and friendships. A series of nested structural equation models tested the hypothesized links among these peer-domain factors. It was hypothesized that (1) relational aggression trails both adaptive and maladaptive processes, linking to more peer victimization and more peer liking, whereas physical aggression is maladaptive, resulting in more peer victimization and less peer liking; (2) physical and relational victimization is maladaptive, relating to more aggression and less peer liking; (3) peer liking may be the social context that promotes relational aggression (not physical aggression), whereas peer liking may protect against peer victimization, regardless of its type; and (4) peer liking mediates the link between forms of aggression and forms of peer victimization. Results showed that higher levels of peer liking predicted relative increases in relational aggression (not physical aggression), which in turn led to more peer liking. On the other hand, more peer liking was predictive of relative decreases in relational aggression and relational victimization in transition to the next grade (i.e., fifth grade). In addition, relational victimization predicted relative increases in relational aggression and relative decreases in peer liking. Similarly, physical aggression was consistently and concurrently associated more physical victimization and was marginally predictive of relative increases in physical victimization in transition to the next grade. More peer liking predicted relative decreases in physical victimization, which resulted in lower levels of peer liking. The directionality and magnitude of these paths did not differ between boys and girls. PMID:24318459

  3. Heat Balance of a Sheep in the Sun. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Hatheway, W. H.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Specifically, this module develops a method for calculating the exchange of heat between an…

  4. Animal Thermoregulation and the Operative Environmental (Equivalent) Temperature. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Process.

    ERIC Educational Resources Information Center

    Stevenson, R. D.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Thermoregulation is defined as the ability of an organism to modify its body temperature. This…

  5. The quiet revolution of numerical weather prediction

    NASA Astrophysics Data System (ADS)

    Bauer, Peter; Thorpe, Alan; Brunet, Gilbert

    2015-09-01

    Advances in numerical weather prediction represent a quiet revolution because they have resulted from a steady accumulation of scientific knowledge and technological advances over many years that, with only a few exceptions, have not been associated with the aura of fundamental physics breakthroughs. Nonetheless, the impact of numerical weather prediction is among the greatest of any area of physical science. As a computational problem, global weather prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is performed every day at major operational centres across the world.

  6. Pilot weather advisor

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Seth, S.; Crabill, N. L.; Shipley, S. T.; Graffman, I.; Oneill, J.

    1992-01-01

    The results of the work performed by ViGYAN, Inc., to demonstrate the Pilot Weather Advisor cockpit weather data system using a broadcast satellite communication system are presented. The Pilot Weather Advisor demonstrated that the technical problems involved with transmitting significant amount of weather data to an aircraft in-flight or on-the-ground via satellite are solvable with today's technology. The Pilot Weather Advisor appears to be a viable solution for providing accurate and timely weather information for general aviation aircraft.

  7. Weather Information System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    WxLink is an aviation weather system based on advanced airborne sensors, precise positioning available from the satellite-based Global Positioning System, cockpit graphics and a low-cost datalink. It is a two-way system that uplinks weather information to the aircraft and downlinks automatic pilot reports of weather conditions aloft. Manufactured by ARNAV Systems, Inc., the original technology came from Langley Research Center's cockpit weather information system, CWIN (Cockpit Weather INformation). The system creates radar maps of storms, lightning and reports of surface observations, offering improved safety, better weather monitoring and substantial fuel savings.

  8. Enhanced Weather Radar (EWxR) System

    NASA Technical Reports Server (NTRS)

    Kronfeld, Kevin M. (Technical Monitor)

    2003-01-01

    An airborne weather radar system, the Enhanced Weather Radar (EWxR), with enhanced on-board weather radar data processing was developed and tested. The system features additional weather data that is uplinked from ground-based sources, specialized data processing, and limited automatic radar control to search for hazardous weather. National Weather Service (NWS) ground-based Next Generation Radar (NEXRAD) information is used by the EWxR system to augment the on-board weather radar information. The system will simultaneously display NEXRAD and on-board weather radar information in a split-view format. The on-board weather radar includes an automated or hands-free storm-finding feature that optimizes the radar returns by automatically adjusting the tilt and range settings for the current altitude above the terrain and searches for storm cells near the atmospheric 0-degree isotherm. A rule-based decision aid was developed to automatically characterize cells as hazardous, possibly-hazardous, or non-hazardous based upon attributes of that cell. Cell attributes are determined based on data from the on-board radar and from ground-based radars. A flight path impact prediction algorithm was developed to help pilots to avoid hazardous weather along their flight plan and their mission. During development the system was tested on the NASA B757 aircraft and final tests were conducted on the Rockwell Collins Sabreliner.

  9. Geomorphology's role in the study of weathering of cultural stone

    NASA Astrophysics Data System (ADS)

    Pope, Gregory A.; Meierding, Thomas C.; Paradise, Thomas R.

    2002-10-01

    Great monumental places—Petra, Giza, Angkor, Stonehenge, Tikal, Macchu Picchu, Rapa Nui, to name a few—are links to our cultural past. They evoke a sense of wonderment for their aesthetic fascination if not for their seeming permanence over both cultural and physical landscapes. However, as with natural landforms, human constructs are subject to weathering and erosion. Indeed, many of our cultural resources suffer from serious deterioration, some natural, some enhanced by human impact. Groups from the United Nations to local civic and tourism assemblies are deeply interested in maintaining and preserving such cultural resources, from simple rock art to great temples. Geomorphologists trained in interacting systems, process and response to thresholds, rates of change over time, and spatial variation of weathering processes and effects are able to offer insight into how deterioration occurs and what can be done to ameliorate the impact. Review of recent literature and case studies presented here demonstrate methodological and theoretical advances that have resulted from the study of cultural stone weathering. Because the stone was carved at a known date to a "baseline" or zero-datum level, some of the simplest methods (e.g., assessing surface weathering features or measuring surface recession in the field) provide useful data on weathering rates and processes. Such data are difficult or impossible to obtain in "natural" settings. Cultural stone weathering studies demonstrate the importance of biotic and saline weathering agents and the significance of weathering factors such as exposure (microclimate) and human impact. More sophisticated methods confirm these observations, but also reveal discrepancies between field and laboratory studies. This brings up two important caveats for conservators and geomorphologists. For the conservator, are laboratory and natural setting studies really analogous and useful for assessing stone damage? For the geomorphologist, does

  10. A Library Manager's Guide to the Physical Processing of Nonprint Materials. The Greenwood Library Management Collection.

    ERIC Educational Resources Information Center

    Driessen, Karen C.; Smyth, Shelia A.

    The librarian is presented with a foundation for decision making as it relates to the physical processing of nonprint materials, and with a demonstration of how these decisions move from theoretical to practical physical processing issues. Such issues include packaging and repackaging; treating accompanying materials; labeling; preparing…

  11. Flagella, flexibility and flow: Physical processes in microbial ecology

    NASA Astrophysics Data System (ADS)

    Brumley, D. R.; Rusconi, R.; Son, K.; Stocker, R.

    2015-12-01

    How microorganisms interact with their environment and with their conspecifics depends strongly on their mechanical properties, on the hydrodynamic signatures they generate while swimming and on fluid flows in their environment. The rich fluid-structure interaction between flagella - the appendages microorganisms use for propulsion - and the surrounding flow, has broad reaching effects for both eukaryotic and prokaryotic microorganisms. Here, we discuss selected recent advances in our understanding of the physical ecology of microorganisms, which have hinged on the ability to directly interrogate the movement of individual cells and their swimming appendages, in precisely controlled fluid environments, and to image them at appropriately fast timescales. We review how a flagellar buckling instability can unexpectedly serve a fundamental function in the motility of bacteria, we elucidate the role of hydrodynamics and flexibility in the emergent properties of groups of eukaryotic flagella, and we show how fluid flows characteristic of microbial habitats can strongly bias the migration and spatial distribution of bacteria. The topics covered here are illustrative of the potential inherent in the adoption of experimental methods and conceptual frameworks from physics in understanding the lives of microorganisms.

  12. Perceptual and processing differences between physical and dichorhinic odor mixtures.

    PubMed

    Schütze, M; Negoias, S; Olsson, M J; Hummel, T

    2014-01-31

    Perceptual integration of sensory input from our two nostrils has received little attention in comparison to lateralized inputs for vision and hearing. Here, we investigated whether a binary odor mixture of eugenol and l-carvone (smells of cloves and caraway) would be perceived differently if presented as a mixture in one nostril (physical mixture), vs. the same two odorants in separate nostrils (dichorhinic mixture). In parallel, we investigated whether the different types of presentation resulted in differences in olfactory event-related potentials (OERP). Psychophysical ratings showed that the dichorhinic mixtures were perceived as more intense than the physical mixtures. A tendency for shift in perceived quality was also observed. In line with these perceptual changes, the OERP showed a shift in latencies and amplitudes for early (more "sensory") peaks P1 and N1 whereas no significant differences were observed for the later (more "cognitive") peak P2. The results altogether suggest that the peripheral level is a site of interaction between odorants. Both psychophysical ratings and, for the first time, electrophysiological measurements converge on this conclusion. PMID:24240030

  13. Coupled model of physical and biological processes affecting maize pollination

    NASA Astrophysics Data System (ADS)

    Arritt, R.; Westgate, M.; Riese, J.; Falk, M.; Takle, E.

    2003-04-01

    Controversy over the use of genetically modified (GM) crops has led to increased interest in evaluating and controlling the potential for inadvertent outcrossing in open-pollinated crops such as maize. In response to this problem we have developed a Lagrangian model of pollen dispersion as a component of a coupled end-to-end (anther to ear) physical-biological model of maize pollination. The Lagrangian method is adopted because of its generality and flexibility: first, the method readily accommodates flow fields of arbitrary complexity; second, each element of the material being transported can be identified by its source, time of release, or other properties of interest. The latter allows pollen viability to be estimated as a function of such factors as travel time, temperature, and relative humidity, so that the physical effects of airflow and turbulence on pollen dispersion can be considered together with the biological aspects of pollen release and viability. Predicted dispersion of pollen compares well both to observations and to results from a simpler Gaussian plume model. Ability of the Lagrangian model to handle complex air flows is demonstrated by application to pollen dispersion in the vicinity of an agricultural shelter belt. We also show results indicating that pollen viability can be quantified by an "aging function" that accounts for temperature, humidity, and time of exposure.

  14. Measuring weather for aviation safety in the 1980's

    NASA Technical Reports Server (NTRS)

    Wedan, R. W.

    1980-01-01

    Requirements for an improved aviation weather system are defined and specifically include the need for (1) weather observations at all airports with instrument approaches, (2) more accurate and timely radar detection of weather elements hazardous to aviation, and (3) better methods of timely distribution of both pilot reports and ground weather data. The development of the discrete address beacon system data link, Doppler weather radar network, and various information processing techniques are described.

  15. Questa Baseline and Pre-mining Ground-Water Quality Investigation, 7. A Pictorial Record of Chemical Weathering, Erosional Processes, and Potential Debris-flow Hazards in Scar Areas Developed on Hydrothermally Altered Rocks

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Ludington, Steve; Vincent, Kirk R.; Verplanck, Philip L.; Caine, Jonathan S.; Livo, K. Eric

    2009-01-01

    Erosional scar areas developed along the lower Red River basin, New Mexico, reveal a complex natural history of mineralizing processes, rapid chemical weathering, and intense physical erosion during periodic outbursts of destructive, storm-induced runoff events. The scar areas are prominent erosional features with craggy headwalls and steep, denuded slopes. The largest scar areas, including, from east to west, Hottentot Creek, Straight Creek, Hansen Creek, Lower Hansen Creek, Sulfur Gulch, and Goat Hill Gulch, head along high east-west trending ridges that form the northern and southern boundaries of the lower Red River basin. Smaller, topographically lower scar areas are developed on ridge noses in the inner Red River valley. Several of the natural scar areas have been modified substantially as a result of large-scale open-pit and underground mining at the Questa Mine; for example, much of the Sulfur Gulch scar was removed by open pit mining, and several scars are now partially or completely covered by mine waste dumps.

  16. Earth Observation Services Weather Imaging

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Microprocessor-based systems for processing satellite data offer mariners real-time images of weather systems, day and night, of large areas or allow them to zoom in on a few square miles. Systems West markets these commercial image processing systems, which have significantly decreased the cost of satellite weather stations. The company was assisted by the EOCAP program, which provides government co-funding to encourage private investment in, and to broaden the use of, NASA-developed technology for analyzing information about Earth and ocean resources.

  17. Measuring U-series Disequilibrium in Weathering Rinds to Study the Influence of Environmental Factors to Weathering Rates in Tropical Basse-Terre Island (French Guadeloupe)

    NASA Astrophysics Data System (ADS)

    Guo, J.; Ma, L.; Sak, P. B.; Gaillardet, J.; Chabaux, F. J.; Brantley, S. L.

    2015-12-01

    Chemical weathering is a critical process to global CO2 consumption, river/ocean chemistry, and nutrient import to biosphere. Weathering rinds experience minimal physical erosion and provide a well-constrained system to study the chemical weathering process. Here, we applied U-series disequilibrium dating method to study weathering advance rates on the wet side of Basse-Terre Island, French Guadeloupe, aiming to understand the role of the precipitation in controlling weathering rates and elucidate the behavior and immobilization mechanisms of U-series isotopes during rind formation. Six weathering clasts from 5 watersheds with mean annual precipitation varying from 2000 to 3000 mm/yr were measured for U-series isotope ratios and major element compositions on linear core-to-rind transects. One sample experienced complete core-to-rind transformation, while the rest clasts contain both rinds and unweathered cores. Our results show that the unweathered cores are under U-series secular equilibrium, while all the rind materials show significant U-series disequilibrium. For most rinds, linear core-to-rind increases of (230Th/232Th) activity ratios suggest a simple continuous U addition history. However, (234U/238U) and (238U/232Th) trends in several clasts show evidences of remobilization of Uranium besides the U addition, complicating the use of U-series dating method. The similarity between U/Th ratios and major elements trends like Fe, Al, P in some transects and the ongoing leaching experiments suggest that redox and organic colloids could control the mobilization of U-series isotopes in the rinds. Rind formation ages and weathering advance rate (0.07-0.29mm/kyr) were calculated for those rinds with a simple U-addition history. Our preliminary results show that local precipitation gradient significantly influenced the weathering advance rate, revealing the potential of estimating weathering advance rates at a large spatial scale using the U-series dating method.

  18. Dynamics and materials physics of fault rupture and glacial processes

    NASA Astrophysics Data System (ADS)

    Platt, John Daniel

    This thesis focuses on two main topics, the physics governing how faults rapidly weaken during an earthquake and the thermal and mechanical structure of ice stream shear margins. The common theme linking these two projects is the desire to understand how the complicated interactions between stress and temperature control deformation and failure. All of the problems in this thesis are attacked using a combination of analytic and numerical methods, and the interplay between these two approaches provides a powerful way to understand the different physical balances that dominate in different regimes. We also use aspects of materials science to understand how the often complicated rheologies are controlled by underlying physical phenomena such as melting, phase transitions, diffusion, and dislocation motion. With regards to fault mechanics, we begin by showing how co-seismic weakening mechanisms driven by elevated pore fluid pressures lead to micron-scale strain localization during an earthquake. We solve for the localized zone thickness for a range of fault temperatures, test these predictions using numerical simulations, and show how the onset of localization accelerates fault weakening. Next we present the first solutions to account for thermal decomposition reactions during a dynamic rupture, showing that the activation of thermal decomposition may lead to a larger slip duration and total slip. Finally we present a new set of experiments studying flash heating of serpentinite, highlighting the dependence of friction on normal stress and the presence of gouge, and producing the first model to explain the hysteresis commonly observed in flash heating experiments. With regards to ice stream shear margins, we begin by extending the work of Perol and Rice [2011] to study the formation of temperate ice in shear margins, and quantify the total melt that may be generated within the shear margins. We conclude by investigating how the presence of such a channel alters the

  19. Relativity Based on Physical Processes Rather Than Space-Time

    NASA Astrophysics Data System (ADS)

    Giese, Albrecht

    2013-09-01

    Physicists' understanding of relativity and the way it is handled is at present dominated by the interpretation of Albert Einstein, who related relativity to specific properties of space and time. The principal alternative to Einstein's interpretation is based on a concept proposed by Hendrik A. Lorentz, which uses knowledge of classical physics to explain relativistic phenomena. In this paper, we will show that on the one hand the Lorentz-based interpretation provides a simpler mathematical way of arriving at the known results for both Special and General Relativity. On the other hand, it is able to solve problems which have remained open to this day. Furthermore, a particle model will be presented, based on Lorentzian relativity, which explains the origin of mass without the use of the Higgs mechanism, based on the finiteness of the speed of light, and which provides the classical results for particle properties that are currently only accessible through quantum mechanics.

  20. Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation

    NASA Technical Reports Server (NTRS)

    Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.

    2013-01-01

    Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.

  1. Chemical weathering in active mountain belts controlled by stochastic bedrock landsliding

    NASA Astrophysics Data System (ADS)

    Emberson, Robert; Hovius, Niels; Galy, Albert; Marc, Odin

    2016-01-01

    A link between chemical weathering and physical erosion exists at the catchment scale over a wide range of erosion rates. However, in mountain environments, where erosion rates are highest, weathering may be kinetically limited and therefore decoupled from erosion. In active mountain belts, erosion is driven by bedrock landsliding at rates that depend strongly on the occurrence of extreme rainfall or seismicity. Although landslides affect only a small proportion of the landscape, bedrock landsliding can promote the collection and slow percolation of surface runoff in highly fragmented rock debris and create favourable conditions for weathering. Here we show from analysis of surface water chemistry in the Southern Alps of New Zealand that weathering in bedrock landslides controls the variability in solute load of these mountain rivers. We find that systematic patterns in surface water chemistry are strongly associated with landslide occurrence at scales from a single hillslope to an entire mountain belt, and that landslides boost weathering rates and river solute loads over decades. We conclude that landslides couple erosion and weathering in fast-eroding uplands and, thus, mountain weathering is a stochastic process that is sensitive to climatic and tectonic controls on mass wasting processes.

  2. Boundary-layer turbulent processes and mesoscale variability represented by numerical weather prediction models during the BLLAST campaign

    NASA Astrophysics Data System (ADS)

    Couvreux, Fleur; Bazile, Eric; Canut, Guylaine; Seity, Yann; Lothon, Marie; Lohou, Fabienne; Guichard, Françoise; Nilsson, Erik

    2016-07-01

    This study evaluates the ability of three operational models, with resolution varying from 2.5 to 16 km, to predict the boundary-layer turbulent processes and mesoscale variability observed during the Boundary Layer Late-Afternoon and Sunset Turbulence (BLLAST) field campaign. We analyse the representation of the vertical profiles of temperature and humidity and the time evolution of near-surface atmospheric variables and the radiative and turbulent fluxes over a total of 12 intensive observing periods (IOPs), each lasting 24 h. Special attention is paid to the evolution of the turbulent kinetic energy (TKE), which was sampled by a combination of independent instruments. For the first time, this variable, a central one in the turbulence scheme used in AROME and ARPEGE, is evaluated with observations.In general, the 24 h forecasts succeed in reproducing the variability from one day to another in terms of cloud cover, temperature and boundary-layer depth. However, they exhibit some systematic biases, in particular a cold bias within the daytime boundary layer for all models. An overestimation of the sensible heat flux is noted for two points in ARPEGE and is found to be partly related to an inaccurate simplification of surface characteristics. AROME shows a moist bias within the daytime boundary layer, which is consistent with overestimated latent heat fluxes. ECMWF presents a dry bias at 2 m above the surface and also overestimates the sensible heat flux. The high-resolution model AROME resolves the vertical structures better, in particular the strong daytime inversion and the thin evening stable boundary layer. This model is also able to capture some specific observed features, such as the orographically driven subsidence and a well-defined maximum that arises during the evening of the water vapour mixing ratio in the upper part of the residual layer due to fine-scale advection. The model reproduces the order of magnitude of spatial variability observed at

  3. Processes in karst systems, physics, chemistry, and geology

    SciTech Connect

    Dreybrodt, W.

    1988-01-01

    Dreybrodt deals quantitatively with many of the chemical and hydrological processes involved in the formation of karst systems. The book is divided into 3 major parts. The first part develops the basic chemical and fluid-flow principles needed in modeling karst systems. The second part investigates the experimental kinetics of calcite dissolution and precipitation and applies the resulting kinetic laws to the modeling of these processes in systems both open and closed to carbon dioxide. The last part of the book includes a qualitative examination of karst systems, quantitative modeling of the development of karst features, and an examination and modeling of the growth of spelotherms in caves.

  4. Physical Education Resources, Class Management, and Student Physical Activity Levels: A Structure-Process-Outcome Approach to Evaluating Physical Education Effectiveness

    PubMed Central

    Bevans, Katherine B.; Fitzpatrick, Leslie-Anne; Sanchez, Betty M.; Riley, Anne W.; Forrest, Christopher

    2011-01-01

    BACKGROUND This study was conducted to empirically evaluate specific human, curricular, and material resources that maximize student opportunities for physical activity during physical education (PE) class time. A structure-process-outcome model was proposed to identify the resources that influence the frequency of PE and intensity of physical activity during PE. The proportion of class time devoted to management was evaluated as a potential mediator of the relations between resource availability and student activity levels. METHODS Data for this cross-sectional study were collected from interviews conducted with 46 physical educators and the systematic observation of 184 PE sessions in 34 schools. Regression analyses were conducted to test for the main effects of resource availability and the mediating role of class management. RESULTS Students who attended schools with a low student-to-physical educator ratio had more PE time and engaged in higher levels of physical activity during class time. Access to adequate PE equipment and facilities was positively associated with student activity levels. The availability of a greater number of physical educators per student was found to impact student activity levels by reducing the amount of session time devoted to class management. CONCLUSION The identification of structure and process predictors of student activity levels in PE will support the allocation of resources and encourage instructional practices that best support increased student activity levels in the most cost-effective way possible. Implications for PE policies and programs are discussed. PMID:21087253

  5. Speaking and Speaking Education as Physical Process in Turkish Education

    ERIC Educational Resources Information Center

    Kurudayioglu, Mehmet

    2011-01-01

    Speaking is sending the message which is desired to be transferred to another one with vocal organs and produced by complicated operations in the brain. Speaking, which is a complicated process, is the most common and important means of communication among people. Speaking, which has essential place both individually and socially, affects success…

  6. Simulation of Forming Process as an Educational Tool Using Physical Modeling

    ERIC Educational Resources Information Center

    Abdullah, A. B.; Muda, M. R.; Samad, Z.

    2008-01-01

    Metal forming process simulation requires a very high cost including the cost for dies, machine and material and tight process control since the process involve very huge pressure. A physical modeling technique is developed and initiates a new era of educational tool of simulating the process effectively. Several publications and findings have…

  7. Winter Weather: Indoor Safety

    MedlinePlus

    ... page: About CDC.gov . Natural Disasters and Severe Weather Earthquakes Being Prepared Emergency Supplies Home Hazards Indoor ... Heat Prevention Guide (Part 3 of 3) Hot Weather Tips Heat Stress in Older Adults FAQs Extreme ...

  8. Winter Weather Emergencies

    MedlinePlus

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  9. A physical interpretation for the natural photosynthetic process

    PubMed Central

    Hill, Robert; Rich, Peter R.

    1983-01-01

    The efficiency of the process of photosynthesis is shown to depend on the molecular conversion of power. This requires establishment of a discipline that is now implicit in current thought and that offers a definition of relationship between equilibrium state and power. The quantum aspect for the microscopic process is different from the macroscopic system idealized as the heat engine and is required for the interpretation of molecular machinery. By using three postulates the ideal maximal efficiency for the molecular energy conversion is calculated from the data, which are assembled in the form of the “Z scheme” for photosynthesis. The observed and the calculated efficiencies for a green plant are substantially in agreement. PMID:16593282

  10. Cosmochemical implications of the physical processing of cometary nuclei

    SciTech Connect

    McSween, H.Y. Jr. ); Weissman, P.R. )

    1989-12-01

    Comets are not necessarily pristine nebular and interstellar material, despite a common perception to that effect. Alteration processes may occur during comet formation in the outer planet region, during their dispersal to or residence within the Oort cloud, and after their return to the planetary region. Processes that may have significantly modified cometary nuclei include heating, impacts, and irradiation. Possible consequences include phase changes in ices, hydration reactions in silicates, synthesis of organic compounds, collisional disruption and re-accretion, shock and irradiation effects in minerals and ices, cosmogenic nuclide formation, redistribution or loss of volatiles, and formation of a refractory veneer. A model of cometary nuclei that emerges from these considerations provides a framework for understanding observations of comets and future samples.

  11. Selective effects of physical exercise on choice reaction processes.

    PubMed

    Arcelin, R; Delignieres, D; Brisswalter, J

    1998-08-01

    The aim of the present study was to examine the effects of an exercise of moderate intensity (60% of maximal aerobic power) on specific information-processing mechanisms. 22 students completed 3 10-min. exercise bouts on a bicycle ergometer. Concomitantly, participants performed six manual-choice-reaction tasks manipulating task variables (Signal Intensity, Stimulus-Response Compatibility, and Time Uncertainty) on two levels. Reaction tests, randomly ordered, were administered at rest and during exercise. A significant underadditive interaction between Time Uncertainty and exercise was found for the highest quartiles of the distribution of reaction times. No other interaction effects were obtained for the other variables. These results reasonably support that moderate aerobic exercise showed selective rather than general influences on information processing. PMID:9760644

  12. Eruptive Process, Geochemical Variation, and Weathering Controls on the Hyperspectral Reflectance Properties of the Blue Dragon Lava Flow, Craters of the Moon National Monument

    NASA Astrophysics Data System (ADS)

    Poplawski, J.; Chadwick, D. J.

    2010-12-01

    About 60 eruptive events have occurred at the Craters of the Moon volcanic field (Idaho, US), ranging in age from 15 to 2 ka. The Blue Dragon flow is one of the youngest, a large (280 sq. km) hawaiite flow which erupted from a dike-fed central rift zone, the Great Rift. Airborne Visible Infrared Imaging Spectrometer (AVIRIS) hyperspectral imagery (224-bands, 0.4 to 2.5 micron spectral range, and 15.3 m spatial resolution) shows at least five distinct regions within the Blue Dragon flow that exhibit different spectral reflectance properties. Field observations show these regions to be associated with different eruptive phases of the flow, and in some cases, different flow morphologies (e.g. aa, and ropey, sheet, and hummocky pahoehoe). Airborne Synthetic Aperture Radar (AIRSAR) imagery of the study area also shows average roughness variability among the different spectral regions. We performed petrographic and laboratory spectral analyses on samples from each spectral region to investigate variation in primary surface properties and the effects of weathering and lichen growth on surface reflectance. We also analyzed bulk major elements for several samples from each spectral region to investigate a possible connection between the observed spectral variability and chemical variability in the Blue Dragon eruption over time. Analyses using hydrologic flow accumulation and solar irradiance models provide further information about the effects of post-eruptive processes on spectral reflectance of the flow.

  13. Control of physical properties on solid surface via laser processing

    NASA Astrophysics Data System (ADS)

    Yonemoto, Yukihiro; Nishimura, Akihiko

    2012-07-01

    In a safety operation of a nuclear power plant, vapor conditions such as a droplet or liquid membrane toward a solid surface of a heat exchanger and reactor vessel is important. In the present study, focusing on the droplet, the wettability on solid surface and surface free energy of solid are evaluated. In addition, wettability on a metal plate fabricated by laser processing is also considered for the nuclear engineering application.

  14. Glacial-Interglacial Climatic Controls on Hillslope Processes and Linkages to Fluvial Systems in the Weathering-Limited Landscape of Eastern Grand Canyon

    NASA Astrophysics Data System (ADS)

    Pederson, J. L.; Anders, M. D.

    2002-12-01

    Recent field studies in eastern Grand Canyon have resulted in one of the best-dated and most detailed non-glacial Quaternary stream and hillslope records that exists. A combination of OSL, cosmogenic-surface-exposure, and U-series dating of the mapped stratigraphy paints a picture of geomorphic changes over the past 350 ky as related to climate forcing. The record highlights the sedimentologic linkages, or lack therof, between: a) hillslope, b) tributary, and c) mainstem Colorado River landscape components through time, and is a valuable field data set for understanding dryland landscape responses to climate change. The example of the late Pleistocene record of the different landscape components is reviewed here as an illustration. In the study area, prominent hillslope colluvial mantles are laterally correlated to tributary fill terraces that aggraded between 50-30 ka (OIS 3). Tributary streams must have undergone significant incision into this fill deposit sometime during OIS 2. This stored sediment has been subsequently remobilized by debris-flow and other processes, and stratigraphic evidence indicates a significant tributary stream deposit dated to 12.5-6.5 ka (last deglaciation) was "fed" by this cannibalization of hillslope deposits. In contrast to this evidence of local slopes and tributary streams being linked sedimentologically through time, there is a chronologic and stratigraphic disconnect between local catchments and the "exotic" mainstem Colorado River. A massive fill deposit along the Colorado River corridor dated to 75-60 ka (correlating well to OIS 4) significantly predates the major episode of local tributary aggradation, which is also evident in stratigraphic relations. Known stratigraphy and paleoclimate records in the headwaters of the Colorado River suggest there should be a mainstem fill correlating to the Pinedale glaciation (OIS 2). There is no field evidence for such a deposit, though we speculate that it may be present beneath the

  15. Physical processes affecting the sedimentary environments of Long Island Sound

    USGS Publications Warehouse

    Signell, R.P.; Knebel, H. J.; List, J.H.; Farris, A.S.

    1997-01-01

    A modeling study was undertaken to simulate the bottom tidal-, wave-, and wind-driven currents in Long Island Sound in order to provide a general physical oceanographic framework for understanding the characteristics and distribution of seafloor sedimentary environments. Tidal currents are important in the funnel-shaped eastern part of the Sound, where a strong gradient of tidal-current speed was found. This current gradient parallels the general westward progression of sedimentary environments from erosion or non-deposition, through bedload transport and sediment sorting, to fine-grained deposition. Wave-driven currents, meanwhile, appear to be important along the shallow margins of the basin, explaining the occurrence of relatively coarse sediments in regions where tidal currents alone are not strong enough to move sediment. Finally, westerly wind events are shown to locally enhance bottom currents along the axial depression of the sound, providing a possible explanation for the relatively coarse sediments found in the depression despite tide- and wave-induced currents below the threshold of sediment movement. The strong correlation between the near-bottom current intensity based on the model results and the sediment response as indicated by the distribution of sedimentary environments provides a framework for predicting the long-term effects of anthropogenic activities.

  16. Biocompatible sodium alginate fibers by aqueous processing and physical crosslinking.

    PubMed

    Shen, Wei; Hsieh, You-Lo

    2014-02-15

    Sodium alginate (SA) hybrid fibers have been robustly fabricated by electrospinning of aqueous mixtures containing as high as 60% SA in the presence of polyvinyl alcohol (PVA). Solution viscosities of SA, PVA and their mixtures showed fiber spinning to be strongly influenced by the balance between SA-PVA and PVA-PVA intermolecular polar interaction and SA-SA repulsion. Low viscosity SAl (50 mPas at 1%) enabled higher SA loadings without significantly increasing mixture viscosities, producing more cylindrical fibers. All aqueous mixtures containing 33.3-60% SAl (5.68-7.15% total SAl-PVA) had viscosities ranging from 530 to 3600 mPas and could be electrospun continuously for at least 48 h. The SA-PVA hybrid fibers had diameters ranging from ca. 140 to 350 nm and were rendered stable in water via simultaneous ionic-crosslinking SA and crystallization of PVA (5% CaCl2 in 75% EtOH for 30 min). This aqueous electrospinning and physical crosslinking approach is a green and highly efficient alternative to create alginate hybrid fibers that are biologically compatible and ingestible for potential biomedical, food and other applications. PMID:24507361

  17. Convective Weather Avoidance with Uncertain Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Karahan, Sinan; Windhorst, Robert D.

    2009-01-01

    Convective weather events have a disruptive impact on air traffic both in terminal area and in en-route airspaces. In order to make sure that the national air transportation system is safe and efficient, it is essential to respond to convective weather events effectively. Traffic flow control initiatives in response to convective weather include ground delay, airborne delay, miles-in-trail restrictions as well as tactical and strategic rerouting. The rerouting initiatives can potentially increase traffic density and complexity in regions neighboring the convective weather activity. There is a need to perform rerouting in an intelligent and efficient way such that the disruptive effects of rerouting are minimized. An important area of research is to study the interaction of in-flight rerouting with traffic congestion or complexity and developing methods that quantitatively measure this interaction. Furthermore, it is necessary to find rerouting solutions that account for uncertainties in weather forecasts. These are important steps toward managing complexity during rerouting operations, and the paper is motivated by these research questions. An automated system is developed for rerouting air traffic in order to avoid convective weather regions during the 20- minute - 2-hour time horizon. Such a system is envisioned to work in concert with separation assurance (0 - 20-minute time horizon), and longer term air traffic management (2-hours and beyond) to provide a more comprehensive solution to complexity and safety management. In this study, weather is dynamic and uncertain; it is represented as regions of airspace that pilots are likely to avoid. Algorithms are implemented in an air traffic simulation environment to support the research study. The algorithms used are deterministic but periodically revise reroutes to account for weather forecast updates. In contrast to previous studies, in this study convective weather is represented as regions of airspace that pilots

  18. American Weather Stories.

    ERIC Educational Resources Information Center

    Hughes, Patrick

    Weather has shaped United States' culture, national character and folklore; at times it has changed the course of history. The seven accounts compiled in this publication highlight some of the nation's weather experiences from the hurricanes that threatened Christopher Columbus to the peculiar run of bad weather that has plagued American…

  19. Weather Fundamentals: Meteorology. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) looks at how meteorologists gather and interpret current weather data collected from sources…

  20. Aviation weather services

    NASA Technical Reports Server (NTRS)

    Sprinkle, C. H.

    1983-01-01

    The primary responsibilities of the National Weather Service (NWS) are to: provide warnings of severe weather and flooding for the protection of life and property; provide public forecasts for land and adjacent ocean areas for planning and operation; and provide weather support for: production of food and fiber; management of water resources; production, distribution and use of energy; and efficient and safe air operations.

  1. Severe Weather Perceptions.

    ERIC Educational Resources Information Center

    Abrams, Karol

    Severe weather is an element of nature that cannot be controlled. Therefore, it is important that the general public be aware of severe weather and know how to react quickly and appropriately in a weather emergency. This study, done in the community surrounding the Southern Illinois University at Carbondale, was conducted to compile and analyze…

  2. Improved in Situ Space Weather Data Services from the NOAA National Geophysical Data Center

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. V.; Denig, W. F.; Green, J. C.; Lotoaniu, T. M.; McGuire, R. E.; Redmon, R. J.; Rowland, W. F.; Turner, D. L.; Weigel, R. S.; Wilkinson, D. C.

    2014-12-01

    The international space weather enterprise relies heavily on in situ plasma, particle and magnetic field measurements from U. S. weather satellites. This year marks the 40th anniversary of the launch of the first U. S. geostationary weather satellite (SMS-1), which carried the direct ancestor of the current GOES Space Environment Monitor (SEM) suite. The GOES space weather observations support the issuance of real-time alerts by the NOAA Space Weather Prediction Center (SWPC). The publicly-available archive of space weather observations at the NOAA National Geophysical Data Center (NGDC) includes NOAA geostationary observations since 1974 and POES/MetOp and Air Force DMSP polar-orbiting observations since 1978 and 1982, respectively. This archive supports the retrospective aspect of the space weather enterprise, which includes model development and anomaly resolution efforts. Over the last several years, NGDC has made a concerted effort to improve its data services in cooperation with the broader space weather community. These improvements include (1) taking over the processing of existing products, (2) creating science-quality versions of existing products, (3) developing new products, (4) improving the distribution of these products, and (5) validating products via on-orbit cross-comparisons. Complementing this retrospective role, NGDC is also responsible for the next-generation GOES-R space weather instrument science and is working as part of the GOES-R calibration/validation group to ensure that these new instruments and their products meet NOAA's requirements. This presentation will survey NGDC's efforts in each of these areas, including (1) POES/MetOp SEM-2 fluxes and radiation belt indices, (2) GOES fluxes with data quality flags and error bars, (3) in situ products from GOES-R(S,T,U), (4) cooperative distribution efforts with the NASA Space Physics Data Facility (SPDF) and the Space Physics Environmental Data Analysis System (SPEDAS), and (5) inter

  3. Physical Processes for Driving Ionospheric Outflows in Global Simulations

    NASA Technical Reports Server (NTRS)

    Moore, Thomas Earle; Strangeway, Robert J.

    2009-01-01

    We review and assess the importance of processes thought to drive ionospheric outflows, linking them as appropriate to the solar wind and interplanetary magnetic field, and to the spatial and temporal distribution of their magnetospheric internal responses. These begin with the diffuse effects of photoionization and thermal equilibrium of the ionospheric topside, enhancing Jeans' escape, with ambipolar diffusion and acceleration. Auroral outflows begin with dayside reconnexion and resultant field-aligned currents and driven convection. These produce plasmaspheric plumes, collisional heating and wave-particle interactions, centrifugal acceleration, and auroral acceleration by parallel electric fields, including enhanced ambipolar fields from electron heating by precipitating particles. Observations and simulations show that solar wind energy dissipation into the atmosphere is concentrated by the geomagnetic field into auroral regions with an amplification factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Internal plasmas thus enable electromagnetic driving via coupling to the plasma, neutral gas and by extension, the entire body " We assess the Importance of each of these processes in terms of local escape flux production as well as global outflow, and suggest methods for their implementation within multispecies global simulation codes. We complete 'he survey with an assessment of outstanding obstacles to this objective.

  4. Processing of Speech Signals for Physical and Sensory Disabilities

    NASA Astrophysics Data System (ADS)

    Levitt, Harry

    1995-10-01

    Assistive technology involving voice communication is used primarily by people who are deaf, hard of hearing, or who have speech and/or language disabilities. It is also used to a lesser extent by people with visual or motor disabilities. A very wide range of devices has been developed for people with hearing loss. These devices can be categorized not only by the modality of stimulation [i.e., auditory, visual, tactile, or direct electrical stimulation of the auditory nerve (auditory-neural)] but also in terms of the degree of speech processing that is used. At least four such categories can be distinguished: assistive devices (a) that are not designed specifically for speech, (b) that take the average characteristics of speech into account, (c) that process articulatory or phonetic characteristics of speech, and (d) that embody some degree of automatic speech recognition. Assistive devices for people with speech and/or language disabilities typically involve some form of speech synthesis or symbol generation for severe forms of language disability. Speech synthesis is also used in text-to-speech systems for sightless persons. Other applications of assistive technology involving voice communication include voice control of wheelchairs and other devices for people with mobility disabilities.

  5. A graphical weather system design for the NASA transport systems research vehicle B-737

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1992-01-01

    A graphical weather system was designed for testing in the NASA Transport Systems Research Vehicle B-737 airplane and simulator. The purpose of these tests was to measure the impact of graphical weather products on aircrew decision processes, weather situation awareness, reroute clearances, workload, and weather monitoring. The flight crew graphical weather interface is described along with integration of the weather system with the flight navigation system, and data link transmission methods for sending weather data to the airplane.

  6. Solar and Space Physics PhD Production and Job Availability: Implications for the Future of the Space Weather Research Workforce

    NASA Astrophysics Data System (ADS)

    Moldwin, M.; Morrow, C. A.; Moldwin, L. A.; Torrence, J.

    2012-12-01

    To assess the state-of-health of the field of Solar and Space Physics an analysis of the number of Ph.D.s produced and number of Job Postings each year was done for the decade 2001-2010. To determine the number of Ph.D's produced in the field, the University of Michigan Ph.D. Dissertation Archive (Proquest) was queried for Solar and Space Physics dissertations produced in North America. The field generated about 30 Ph.D. per year from 2001 to 2006, but then saw the number increase to 50 to 70 per year for the rest of the decade. Only 14 institutions account for the majority of Solar and Space Physics PhDs. To estimate the number of jobs available each year in the field, a compilation of the job advertisements listed in the American Astronomical Society's Solar Physics Division (SPD) and the American Geophysical Union's Space Physics and Aeronomy (SPA) electronic newsletters was done. The positions were sorted into four types (Faculty, Post-doctoral Researcher, and Scientist/Researcher or Staff), institution type (academic, government lab, or industry) and if the position was located inside or outside the United States. Overall worldwide, 943 Solar and Space Physics positions were advertised over the decade. Of this total, 52% were for positions outside the US. Within Solar Physics, 44% of the positions were in the US, while in Space Physics 57% of the positions were for US institutions. The annual average for positions in the US were 26.9 for Solar Physics and 31.5 for Space Physics though there is much variability year-to-year particularly in Solar Physics positions outside the US. A disconcerting trend is a decline in job advertisements in the last two years for Solar Physics positions and between 2009 and 2010 for Space Physics positions. For both communities within the US in 2010, the total job ads reached their lowest levels in the decade (14), approximately half the decadal average number of job advertisements.

  7. spatial heterogeneity of bioreductive processes within physically complex media

    NASA Astrophysics Data System (ADS)

    Pallud, C.; Meile, C.; Fendorf, S.

    2006-12-01

    Soils and sediments act as open bio-physico-chemical reactors where chemical changes are driven by the interactions between moving fluids, solid- and aqueous-phase constituents, and microorganisms. They represent complex multiphase environments, with structural and geochemical heterogeneities expressed over spatial scales ranging from the molecular to field scale. In situ rates at which resident microbial populations produce and consume chemical constituents are often dictated by the transport of reactants and products to and from the location of biogeochemical transformation, and by the spatial distribution of microorganisms in the soil environment. In structured media, the distribution of chemical species can be strongly localized due to mass transfer limitations and redox gradients within soil aggregates. A qualitative and quantitative understanding of variations in the redox processes operating at the microscale will therefore be critical in developing comprehensive and predictive models describing the dynamics of biogeochemical systems. Here we present a combination of an experimental and a modeling approaches aimed at the quantification of bioreductive processes at the scale of soil aggregates. Using flow-through reactors containing a single artificial soil aggregate made of ferrihydrite coated-sand, the change in solution composition is monitored over time. The soil aggregate is inoculated with the dissimilatory iron reducing bacterium Shewanella putrefaciens str. CN32, which is also capable of aerobic respiration. Environmental conditions are varied by altering both the carbon source and oxygen content of the input solution, and the initial condition within the soil aggregate. A constant flow rate is imposed by peristaltic pumps and transport characteristics are quantified using bromide as a flow tracer. Iron concentrations, as well as carbon substrates and products in the outflow are monitored over time. At the end of the experiments, aggregates are sliced

  8. Nuclear physics experiments for the astrophysical p process

    NASA Astrophysics Data System (ADS)

    Sauerwein, A.; Elvers, M.; Endres, J.; Hasper, J.; Hennig, A.; Netterdon, L.; Zilges, A.

    2011-04-01

    We studied the two astrophysically interesting reactions 141PrPm and 92MoTc with the activation method and with the in-beam method, respectively. The 141PrPm experiment was performed at the cyclotron of the ‘Physikalisch Technische Bundesanstalt (PTB)’ in Braunschweig, Germany, and the reaction was studied within and just above the so-called Gamow window. In this proceedings, we present the experimental details of this measurement. The proton-capture reaction on the neutron-magic nucleus 92Mo was studied at energies relevant for the astrophysical p process. The reaction was investigated by the in-beam technique using the γ-ray detector array HORUS (High efficient Observatory for γ-Ray Unique Spectroscopy) at the TANDEM ion accelerator at the University of Cologne. The preliminary experimental results are compared to data stemming from other measurements.

  9. Radon: Chemical and physical processes associated with its distribution

    SciTech Connect

    Castleman, A.W. Jr.

    1992-01-01

    Assessing the mechanisms which govern the distribution, fate, and pathways of entry into biological systems, as well as the ultimate hazards associated with the radon progeny and their secondary reaction products, depends on knowledge of their chemistry. Our studies are directed toward developing fundamental information which will provide a basis for modeling studies that are requisite in obtaining a complete picture of growth, attachment to aerosols, and transport to the bioreceptor and ultimate incorporation within. Our program is divided into three major areas of research. These include measurement of the determination of their mobilities, study of the role of radon progeny ions in affecting reactions, including study of the influence of the degree of solvation (clustering), and examination of the important secondary reaction products, with particular attention to processes leading to chemical conversion of either the core ions or the ligands as a function of the degree of clustering.

  10. Evidence of Space Weathering in Regolith Breccias II: Asteroidal Regolith Breccias

    NASA Technical Reports Server (NTRS)

    Noble, Sarah K.; Keller, Lindsay P.; Pieters, Carle M.

    2011-01-01

    Space weathering products, such as agglutinates and nanophaase iron-bearing rims are easily preserved through lithifcation in lunar regolith breccias, thus such products, if produced, should be preserved in asteroidal regotith breccias as well. A study of representative regolith breecia meteorites, Fayetteville (H4) and Kapoeta (howardite), was undertaken to search for physical evidence of space weathering on asteroids. Amorphous or npFe(sup 0)-bearing rim cannot be positively identified in Fayetteville, although possible glass rims were found. Extensive friction melt was discovered in the meteorite that is difficult to differentiate from weathered materials. Several melt products, including spherules and agglutinates, as well as one irradiated rim and one possible npFe(sup 0)-bearing rim were identified in Kapoeta. The existence of these products suggests that lunar-like space weathering processes are, or have been, active on asteroids.

  11. Asteroids: Does Space Weathering Matter?

    NASA Technical Reports Server (NTRS)

    Gaffey, Michael J.

    2001-01-01

    The interpretive calibrations and methodologies used to extract mineralogy from asteroidal spectra appear to remain valid until the space weathering process is advanced to a degree which appears to be rare or absent on asteroid surfaces. Additional information is contained in the original extended abstract.

  12. Weatherization and Intergovernmental Program - Weatherization Assistance Program

    SciTech Connect

    2010-06-01

    The U.S. Department of Energy’s (DOE) Weatherization Assistance Program reduces energy costs for low-income households by increasing the energy efficiency of their homes, while ensuring their health and safety.

  13. Beyond the Weather Chart: Weathering New Experiences.

    ERIC Educational Resources Information Center

    Huffman, Amy Bruno

    1996-01-01

    Describes an early childhood educator's approach to teaching children about rain, rainbows, clouds, precipitation, the sun, air, and wind. Recommends ways to organize study topics and describes experiments that can help children better understand the different elements of weather. (MOK)

  14. CO2-ECBM related coupled physical and mechanical transport processes

    NASA Astrophysics Data System (ADS)

    Gensterblum, Y.; Sartorius, M.; Busch, A.; Krooss, B. M.; Littke, R.

    2012-12-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a subbituminous A coal from the Surat Basin, Queensland Australia (figure). From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg-corrected permeability depends on gas type. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa, with increasing mean pore pressure at lower confining pressure an increase in permeability is observed, which is attributed to a widening of cleat aperture. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane and CO2. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals was significantly lower (by 50%) than that of dry coals, no hysteresis was observed between sorption and desorption on dry and moisture-equilibrated samples and the

  15. [Suicide and weather].

    PubMed

    Breuer, H W; Fischbach-Breuer, B R; Breuer, J; Goeckenjan, G; Curtius, J M

    1984-11-01

    In 151 patients, admitted to an intensive care unit after attempted suicide, the possible influence of weather at the time of the attempt was analysed retrospectively. The "biosynoptic daily analysis" of the German Weather Service provided the weather data. There was a 5% and 1%, respectively, significant level for the positive correlation between the time of the attempted suicide and the weather parameters "stable upslide, labile upslide, fog and thunderstorm" and the summarized parameters "warm air, upslide and weather drier than on the two preceding days". Significantly fewer attempts than expected occurred when the weather description was "low pressure and trough situation, labile ground layer--upslide above" and the summarized parameters "subsidence or downslide motion". Besides the individual factors such as the reaction to conflicts and the spectrum of reactions, exogenous factors like weather must be considered as important for the time of suicidal attempt. PMID:6499669

  16. Application of green IT for physics data processing at INCDTIM

    NASA Astrophysics Data System (ADS)

    Farcas, Felix; Trusca, Radu; Albert, Stefan; Szabo, Izabella; Popeneciu, Gabriel

    2012-02-01

    Green IT is the next generation technology used in all datacenter around the world. Its benefit is of economic and financial interest. The new technologies are energy efficient, reduce cost and avoid potential disruptions to the existing infrastructure. The most important problem appears at the cooling systems which are the most important in the functionality of a datacenter. Green IT used in Grid Network will benefit the environment and is the next phase in computer infrastructure that will fundamentally change the way we think about and use computing power. At the National Institute for Research and Development of Isotopic and Molecular Technologies Cluj-Napoca (INCDTIM) we have implemented such kind of technology and its support helped us in processing multiple data in different domains, which brought INCDTIM on the major Grid domain with the RO-14-ITIM Grid site. In this paper we present benefits that the new technology brought us and the result obtained in the last year after the implementation of the new green technology.

  17. Reviews Book: Marie Curie and Her Daughters Resource: Cumulus Equipment: Alpha Particle Scattering Apparatus Equipment: 3D Magnetic Tube Equipment: National Grid Transmission Model Book: Einstein's Physics Equipment: Barton's Pendulums Equipment: Weather Station Web Watch

    NASA Astrophysics Data System (ADS)

    2013-09-01

    WE RECOMMEND Marie Curie and Her Daughters An insightful study of a resilient and ingenious family and their achievements Cumulus Simple to install and operate and with obvious teaching applications, this weather station 'donationware' is as easy to recommend as it is to use Alpha Particle Scattering Apparatus Good design and construction make for good results National Grid Transmission Model Despite its expense, this resource offers excellent value Einstein's Physics A vivid, accurate, compelling and rigorous treatment, but requiring an investment of time and thought WORTH A LOOK 3D Magnetic Tube Magnetic fields in three dimensions at a low cost Barton's Pendulums A neat, well-made and handy variant, but not a replacement for the more traditional version Weather Station Though not as robust or substantial as hoped for, this can be put to good use with the right software WEB WATCH An online experiment and worksheet are useful for teaching motor efficiency, a glance at CERN, and NASA's interesting information on the alpha-magnetic spectrometer and climate change

  18. CO2-ECBM related coupled physical and mechanical transport processes

    NASA Astrophysics Data System (ADS)

    Gensterblum, Yves; Satorius, Michael; Busch, Andreas; Krooß, Bernhard

    2013-04-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a sub bituminous A coal from the Surat Basin, Queensland Australia. From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg corrected permeability shows a gas type dependence. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa we observe with increasing mean pressure at lower confining pressure an increase in permeability which we attribute to a cleat aperture widening. The cleat volume compressibility (cf) also shows a dependence on the mean pore pressure. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. This permeability hysteresis is in accordance with results reported by Harpalani and McPherson (1985). The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals

  19. CO2-ECBM related coupled physical and mechanical transport processes

    NASA Astrophysics Data System (ADS)

    Gensterblum, Y.; Sartorius, M.; Busch, A.; Cumming, D.; Krooss, B. M.

    2012-04-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a sub bituminous A coal from the Surat Basin, Queensland Australia. From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg corrected permeability shows a gas type dependence. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa we observe with increasing mean pressure at lower confining pressure an increase in permeability which we attribute to a cleat aperture widening. The cleat volume compressibility (cf) also shows a dependence on the mean pore pressure. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. This permeability hysteresis is in accordance with results reported by Harpalani and McPherson (1985). The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals

  20. A Model of the Creative Process Based on Quantum Physics and Vedic Science.

    ERIC Educational Resources Information Center

    Rose, Laura Hall

    1988-01-01

    Using tenets from Vedic science and quantum physics, this model of the creative process suggests that the unified field of creation is pure consciousness, and that the development of the creative process within individuals mirrors the creative process within the universe. Rational and supra-rational creative thinking techniques are also described.…

  1. Mathematical modeling of physical processes in inorganic chemistry

    SciTech Connect

    Chiu, H.L.

    1988-01-01

    The first part deals with the rapid calculation of steady-state concentration profiles in contactors using the Purex Process. Most of the computer codes simulating the reprocessing of spent nuclear fuel generate the steady-state properties by calculating the transient behavior of the contactors. In this study, the author simulates the steady-state concentration profiles directly without first generating the transient behavior. Two computer codes are developed, PUMA (Plutonium-Uranium-Matrix-Algorithm) and PUNE (Plutonium-Uranium-Non-Equilibrium). The first one simulates the steady-state concentration profiles under conditions of equilibrium mass transfer. The second one accounts for deviations from mass transfer equilibrium. The second part of this dissertation shows how to use the classical trajectory method to study the equilibrium and saddle-point geometries of MX{sub n} (n = 2-7) molecules. Two nuclear potential functions that have the property of invariance to the operations of the permutation group of nuclei in molecules of the general formula MX{sub n} are described. Such potential functions allow equivalent isomers to have equal energies so that various statistical mechanical properties can be simply determined. The first function contains two center interactions between pairs of peripheral atoms and its defined by V(r) = 1/2{Sigma}{sub {alpha}}k{triangle}r{sub {alpha}{mu}}{sup 2} + {Sigma}{sub {alpha}< {beta}} QR{sub {alpha}{beta}}{sup {minus}n} (n = 1,2...). The second function contains two and three center interactions and is defined by V({Theta}) = 1/2{Sigma}{sub {alpha}}K{triangle}{sub {alpha}{mu}}{sup 2} + 1/2{Sigma}{sub {alpha}<{beta}}Qr{sub 0}{sup 2} ({Theta}{sub {alpha}{mu}{beta}} - {pi}){sup 2}.

  2. Process monitoring using automatic physical measurement based on electrical and physical variability analysis

    NASA Astrophysics Data System (ADS)

    Shauly, Eitan N.; Levi, Shimon; Schwarzband, Ishai; Adan, Ofer; Latinsky, Sergey

    2015-04-01

    A fully automated silicon-based methodology for systematic analysis of electrical features is shown. The system was developed for process monitoring and electrical variability reduction. A mapping step was created by dedicated structures such as static-random-access-memory (SRAM) array or standard cell library, or by using a simple design rule checking run-set. The resulting database was then used as an input for choosing locations for critical dimension scanning electron microscope images and for specific layout parameter extraction then was input to SPICE compact modeling simulation. Based on the experimental data, we identified two items that must be checked and monitored using the method described here: transistor's sensitivity to the distance between the poly end cap and edge of active area (AA) due to AA rounding, and SRAM leakage due to a too close N-well to P-well. Based on this example, for process monitoring and variability analyses, we extensively used this method to analyze transistor gates having different shapes. In addition, analysis for a large area of high density standard cell library was done. Another set of monitoring focused on a high density SRAM array is also presented. These examples provided information on the poly and AA layers, using transistor parameters such as leakage current and drive current. We successfully define "robust" and "less-robust" transistor configurations included in the library and identified unsymmetrical transistors in the SRAM bit-cells. These data were compared to data extracted from the same devices at the end of the line. Another set of analyses was done to samples after Cu M1 etch. Process monitoring information on M1 enclosed contact was extracted based on contact resistance as a feedback. Guidelines for the optimal M1 space for different layout configurations were also extracted. All these data showed the successful in-field implementation of our methodology as a useful process monitoring method.

  3. Chemical weathering and CO₂ consumption in the Lower Mekong River.

    PubMed

    Li, Siyue; Lu, X X; Bush, Richard T

    2014-02-15

    Data on river water quality from 42 monitoring stations in the Lower Mekong Basin obtained during the period 1972-1996 was used to relate solute fluxes with controlling factors such as chemical weathering processes. The total dissolved solid (TDS) concentration of the Lower Mekong varied from 53 mg/L to 198 mg/L, and the median (114 mg/L) was compared to the world spatial median value (127 mg/L). Total cationic exchange capacity (Tz(+)) ranged from 729 to 2,607 μmolc/L, and the mean (1,572 μmolc/L) was 1.4 times higher than the world discharge-weighted average. Calcium and bicarbonate dominated the annual ionic composition, accounting for ~70% of the solute load that equalled 41.2×10(9)kg/y. TDS and major elements varied seasonally and in a predictable way with river runoff. The chemical weathering rate of 37.7t/(km(2)y), with respective carbonate and silicate weathering rates of 27.5t/(km(2) y) (13.8mm/ky) and 10.2t/(km(2) y) (3.8mm/ky), was 1.5 times higher than the global average. The CO2 consumption rate was estimated at 191×10(3)molCO2/(km(2)y) for silicate weathering, and 286×10(3)molCO2/(km(2)y) by carbonate weathering. In total, the Mekong basin consumed 228×10(9)molCO2/y and 152×10(9)molCO2/y by the combined weathering of carbonate and silicate, constituting 1.85% of the global CO2 consumption by carbonate weathering and 1.75% by silicates. This is marginally higher than its contribution to global water discharge ~1.3% and much higher than (more than three-fold) its contribution to world land surface area. Remarkable CO2 consumed by chemical weathering (380×10(9)mol/y) was similar in magnitude to dissolved inorganic carbon as HCO3(-) (370×10(9)mol/y) exported by the Mekong to the South China Sea. In this landscape, atmospheric CO2 consumption by rock chemical weathering represents an important carbon sink with runoff and physical erosion controlling chemical erosion. PMID:24291559

  4. Explorations of the viability of ARM and Xeon Phi for physics processing

    NASA Astrophysics Data System (ADS)

    Abdurachmanov, David; Arya, Kapil; Bendavid, Josh; Boccali, Tommaso; Cooperman, Gene; Dotti, Andrea; Elmer, Peter; Eulisse, Giulio; Giacomini, Francesco; Jones, Christopher D.; Manzali, Matteo; Muzaffar, Shahzad

    2014-06-01

    We report on our investigations into the viability of the ARM processor and the Intel Xeon Phi co-processor for scientific computing. We describe our experience porting software to these processors and running benchmarks using real physics applications to explore the potential of these processors for production physics processing.

  5. Calculus-Integration. Physical Processes in Terrestrial and Aquatic Ecosystems, Applied Mathematics.

    ERIC Educational Resources Information Center

    Hertzberg, Richard C.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. The module is directed toward intermediate undergraduate students of the ecological sciences…

  6. Applications of the First Law to Ecological Systems. Physical Processes in Terrestrial and Aquatic Ecosystems, Thermodynamics.

    ERIC Educational Resources Information Center

    Stevenson, R. D.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This report describes concepts presented in another module called "The First Law of…

  7. Programmer's Guide for FFORM. Physical Processes in Terrestrial and Aquatic Ecosystems, Computer Programs and Graphics Capabilities.

    ERIC Educational Resources Information Center

    Anderson, Lougenia; Gales, Larry

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. FFORM is a portable format-free input subroutine package written in ANSI Fortran IV…

  8. The First Law of Thermodynamics for Ecosystems. Physical Processes in Terrestrial and Aquatic Ecosystems, Thermodynamics.

    ERIC Educational Resources Information Center

    Stevenson, R. D.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module and a comparison module are concerned with elementary concepts of thermodynamics as…

  9. Cognitive Processes and Knowledge Structures Used in Solving Physics Problems. Final Technical Report.

    ERIC Educational Resources Information Center

    Novak, Gordon S., Jr.

    Cognitive processes and knowledge structures used in physics problem-solving at the high school or freshmen college level were investigated by analysis of expert and novice human problem-solving behavior and by development of computer programs which can solve informally-stated physics problems. Computer representations for the information…

  10. Calculus - Differentiation. Physical Processes in Terrestrial and Aquatic Ecosystems, Applied Mathematics.

    ERIC Educational Resources Information Center

    Hertzberg, Richard C.

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module is used to introduce the biology student to differential calculus, a…

  11. The Kinetics and Thermodynamics of the Phenol from Cumene Process: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Chen, Edward C. M.; Sjoberg, Stephen L.

    1980-01-01

    Presents a physical chemistry experiment demonstrating the differences between thermodynamics and kinetics. The experiment used the formation of phenol and acetone from cumene hydroperoxide, also providing an example of an industrially significant process. (CS)

  12. Discriminating between the physical processes that drive spheroid size evolution

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Bundy, Kevin; Hernquist, Lars; Wuyts, Stijn; Cox, Thomas J.

    2010-01-01

    Observations have shown that massive galaxies at high redshift have much smaller effective radii than galaxies of similar mass today; however, recent work has shown that they have similar central densities. The primary growth of size, therefore, relates to the apparent relative abundance of low-density material at low redshifts. But various models have been proposed to accomplish this, and the exact contribution of these mechanisms, relative to others that would, for example, lower the density of the system uniformly, or relate to possible observational misestimates of the stellar mass distribution, remain uncertain, as does the degree to which this evolution is driven by processes of initial spheroid formation versus subsequent `dry' assembly of spheroids. These different possibilities also yield dramatically different constraints on any possible evolution in the MBH-σ relation. Here, we compile observations of spheroid properties as a function of redshift and use them to test the different proposed models, each of which we have calibrated and studied in a suite of high-resolution hydrodynamic simulations. We show that the evolution in progenitor disc gas fractions with redshift gives rise to the initial formation of smaller spheroids at high redshift. We then consider how these early-forming systems must evolve to be consistent with the larger sizes of old spheroids today. We consider (1) equal-density `dry' mergers, (2) later major or minor `dry' mergers with less dense galaxies, (3) adiabatic expansion, after significant gas mass loss, (4) gradients in stellar mass-to-light ratios from young nuclear stellar populations (yielding smaller Re at early times, which vanish as the system fades), (5) biases in the stellar mass estimation of high-redshift (young) systems (from e.g. uncertain asymptotic giant branch starlight contributions) and (6) observational effects (possible biases in fitting or missed light from surface brightness dimming, or the effects of

  13. Mexican Space Weather Service (SCIESMEX)

    NASA Astrophysics Data System (ADS)

    Gonzalez-Esparza, A.; De la Luz, V.; Mejia-Ambriz, J. C.; Aguilar-Rodriguez, E.; Corona-Romero, P.; Gonzalez, L. X.

    2015-12-01

    Recent modifications of the Civil Protection Law in Mexico include now specific mentions to space hazards and space weather phenomena. During the last few years, the UN has promoted international cooperation on Space Weather awareness, studies and monitoring. Internal and external conditions motivated the creation of a Space Weather Service in Mexico (SCIESMEX). The SCIESMEX (www.sciesmex.unam.mx) is operated by the Geophysics Institute at the National Autonomous University of Mexico (UNAM). The UNAM has the experience of operating several critical national services, including the National Seismological Service (SSN); besides that has a well established scientific group with expertise in space physics and solar- terrestrial phenomena. The SCIESMEX is also related with the recent creation of the Mexican Space Agency (AEM). The project combines a network of different ground instruments covering solar, interplanetary, geomagnetic, and ionospheric observations. The SCIESMEX has already in operation computing infrastructure running the web application, a virtual observatory and a high performance computing server to run numerical models. SCIESMEX participates in the International Space Environment Services (ISES) and in the Inter-progamme Coordination Team on Space Weather (ICTSW) of the Word Meteorological Organization (WMO).

  14. A model for formation of dust, soil, and rock coatings on Mars: Physical and chemical processes on the Martian surface

    NASA Astrophysics Data System (ADS)

    Bishop, Janice L.; Murchie, Scott L.; Pieters, Carlé M.; Zent, Aaron P.

    2002-11-01

    A model is presented here to explain the generation of surface material on Mars using chemical, magnetic, and spectroscopic data from Mars and geologic analogs from terrestrial sites. One basic premise is that the dust/soil units are not derived exclusively from local rocks, but are rather a product of global, and possibly remote, weathering processes. Another assumption in this model is that there are both physical and chemical interactions of the atmosphere with dust particles and that these two processes create distinctly different products. Physical processes distribute dust particles on rocks and drift units, forming physically aggregated layers; these are reversible processes. Chemical reactions of the dust/soil particles create alteration rinds on rock surfaces and cohesive, crusted surface units between rocks, both of which are relatively permanent materials. According to this model the dominant components of the dust/soil particles are derived from alteration of volcanic ash and tephra and contain primarily nanophase and poorly crystalline ferric oxide/oxyhydroxide phases as well as silicates. These phases are the alteration products that formed in a low-moisture environment. These dust/soil particles also contain a smaller amount of material that was exposed to more water and contains crystalline ferric oxides/oxyhydroxides, sulfates, and clay silicates. These components could have formed through hydrothermal alteration at steam vents or fumeroles, thermal fluids, or through evaporite deposits. Wet/dry cycling experiments are presented here on Mars soil analogue mixtures containing poorly crystalline and crystalline components dominated by nanophase to ~2 μm diameter particles. Cemented products of these soil mixtures are formed in these experiments, and variation in the surface texture was observed for samples containing smectites, nonhydrated silicates, or sulfates. Reflectance spectra were measured of the initial particulate mixtures, the cemented

  15. A Model for Formation of Dust, Soil and Rock Coatings on Mars: Physical and Chemical Processes on the Martian Surface

    NASA Technical Reports Server (NTRS)

    Bishop, Janice; Murchie, Scott L.; Pieters, Carle M.; Zent, Aaron P.

    2001-01-01

    This model is one of many possible scenarios to explain the generation of the current surface material on Mars using chemical, magnetic and spectroscopic data From Mars and geologic analogs from terrestrial sites. One basic premise of this model is that the dust/soil units are not derived exclusively from local rocks, but are rather a product of global, and possibly remote, weathering processes. Another assumption in this model is that there are physical and chemical interactions of the atmospheric dust particles and that these two processes create distinctly different results on the surface. Physical processes distribute dust particles on rocks and drift units, forming physically-aggregated layers; these are reversible processes. Chemical reactions of the dust/soil particles create alteration rinds on rock surfaces and cohesive, crusted surface units between rocks, both of which are relatively permanent materials. According to this model the dominant components of the dust/soil particles are derived from alteration of volcanic ash and tephra, and contain primarily nanophase and poorly crystalline ferric oxides/oxyhydroxide phases as well as silicates. These phases are the alteration products that formed in a low moisture environment. These dust/soil particles also contain a smaller amount of material that was exposed to more water and contains crystalline ferric oxides/oxyhydroxides, sulfates and clay silicates. These components could have formed through hydrothermal alteration at steam vents or fumeroles, thermal fluids, or through evaporite deposits. Wet/dry cycling experiments are presented here on mixtures containing poorly crystalline and crystalline ferric oxides/oxyhydroxides, sulfates and silicates that range in size from nanophase to 1-2 pm diameter particles. Cemented products of these soil mixtures are formed in these experiments and variation in the surface texture was observed for samples containing smectites, non-hydrated silicates or sulfates

  16. Re-Assessing The Weathering Signature Of Continental Waters: Constraints from Mg and Li isostope ratios

    NASA Astrophysics Data System (ADS)

    Tipper, E.

    2015-12-01

    Chemical weathering mediates Earth's carbon cycle and hence global climate over geological time-scales. Ca and Mg from silicate minerals are released to the solute phase during dissolution with carbonic acid and subsequenty buried as marine carbonate. This mechanism has provided the climatic feedback that has maintained Earth's climate equable over geological history. Quantitative models of contemporary silicate weathering processes coupled to estimates of modern day carbon fluxes associated with silicate weathering are thus fundamental to understanding the feedbacks between the carbon cycle, climate and chemical weathering. Estimating the Ca and Mg released from silicate weathering is not straightforward because their fluxes are dominated by carbonate weathering. Instead, contemporary silicate weathering fluxes are typically quantified based on Na and K fluxes in river waters because these elements are considered to be derived from silicate weathering. Silicate Ca fluxes are based on the product of the Na flux and an average Ca/Na ratio of silicate rocks. This relies on the assumption that Na and K are predominantly released by silicate mineral dissolution. However, it has been proposed that Na-Ca exchange reactions with clay on mineral surfaces could account for 80% of the Na in rivers waters. At present, none of the methods to estimate silicate weathering fluxes and associated CO2 consumption account for cation-exchange reactions largely because physical and chemical weathering were assumed to be steady state processes implying that cation exchange has no net influence on weathering fluxes. In tandem, there are numerous reports of stable isotope fractionation of the elements Mg and Li that are inferred to be induced by clay minerals. At present it is not clear whether this fractionation is associated with mineral surfaces (exchange) or structural incorporation into the clays. Here we will report Mg and Li isotope analyses on dissolved, exchangeable and

  17. Analysis of physical-chemical processes governing SSME internal fluid flows

    NASA Technical Reports Server (NTRS)

    Singhal, A. K.; Owens, S. F.; Mukerjee, T.; Prakash, C.; Przekwas, A. J.; Kannapel, M.

    1985-01-01

    The basic issues concerning the physical chemical processes of the Space Shuttle Main Engine are discussed. The objectives being to supply the general purpose CFD code PHOENICS and the associated interactive graphics package - GRAFFIC; to demonstrate code usage on SSME related problems; to perform computations and analyses of problems relevant to current and future SSME's; and to participate in the development of new physical models of various processes present in SSME components. These objectives are discussed in detail.

  18. Towards a National Space Weather Predictive Capability

    NASA Astrophysics Data System (ADS)

    Fox, N. J.; Ryschkewitsch, M. G.; Merkin, V. G.; Stephens, G. K.; Gjerloev, J. W.; Barnes, R. J.; Anderson, B. J.; Paxton, L. J.; Ukhorskiy, A. Y.; Kelly, M. A.; Berger, T. E.; Bonadonna, L. C. M. F.; Hesse, M.; Sharma, S.

    2015-12-01

    National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review the space weather system developed for the Van Allen Probes mission, together with other datasets, tools and models that have resulted from research by scientists at JHU/APL. We will look at how these, and results from future missions such as Solar Probe Plus, could be applied to support space weather applications in coordination with other community assets and capabilities.

  19. The Sun and Space Weather

    NASA Astrophysics Data System (ADS)

    Hanslmeier, Arnold

    2002-06-01

    What are the terrestrial effects of solar activity and the solar activity cycle? The modern term used for solar terrestrial relations is `Space Weather'. This term describes all external effects on the space environment of the Earth and the Earth's atmosphere. The main driver for space weather is our Sun. Explosive events on the Sun that are modulated by the solar activity cycle lead to enhanced particle emission and short wavelength radiation. This affects satellites: for example surface charging and enhanced drag forces on satellites in low Earth orbit can cause satellite crashes etc. Enhanced radiation also poses a problem for astronauts, especially for extravehicular activities. Another source of space weather effects is space debris and micrometeoroids. Since the Sun is the main source of space weather effects, the first part of the book is devoted to a general introduction to the physics of the Sun. A better understanding of the phenomena underlying solar activity is also important for prediction of solar outbursts and thus for establishing alert systems for space missions and telecommunication systems. The book contains the following topics: * possible influence of the Sun on the Earth's climate; * the effects of radiation on humans in space and the expected radiation dose from various solar events; * disturbances of the Earth's ionosphere and the implications of radio communication at different wavelength ranges; * possible hazardous asteroids and meteoroids and their detection; and * space debris and special shielding of spacecraft. In the cited literature the reader can find more detailed information about the topics. This book provides an introduction and overview of modern solar-terrestrial physics for students as well as for researchers in the field of astrophysics, solar physics, geophysics, and climate research. Link: http://www.wkap.nl/prod/b/1-4020-0684-5

  20. Student Understanding Of The Physics And Mathematics Of Process Variables In P-V Diagrams

    NASA Astrophysics Data System (ADS)

    Pollock, Evan B.; Thompson, John R.; Mountcastle, Donald B.

    2007-11-01

    Students in an upper-level thermal physics course were asked to compare quantities related to the First Law of Thermodynamics along with similar mathematical questions devoid of all physical context. We report on a comparison of student responses to physics questions involving interpretation of ideal gas processes on P-V diagrams and to analogous mathematical qualitative questions about the signs of and comparisons between the magnitudes of various integrals. Student performance on individual questions combined with performance on the paired questions shows evidence of isolated understanding of physics and mathematics. Some difficulties are addressed by instruction.

  1. Current and future challenges in space weather science

    NASA Astrophysics Data System (ADS)

    Zhukov, Andrei

    The main objective of the space weather science is to provide a scientific basis for reliable space weather forecasting. The importance of space weather forecasting is increasing as our society is becoming more and more dependent on advanced technologies that may be affected by adverse space weather conditions. Space weather forecasting is still a difficult task and requires specific observational inputs that are reviewed in this presentation, with an emphasis on solar and interplanetary weather. A list of key observations that are essential for real-time operational space weather forecasting is established. Further on, the use of observational data to produce reliable predictions requires development of empirical and statistical methods, as well as physical models. Scientific basis of space weather forecasting is briefly described. Several important problems are emphasized, and possible ways of improving our predictive capabilities are discussed, including possible novel space observations to be made in future.

  2. Introduction of a pyramid guiding process for general musculoskeletal physical rehabilitation.

    PubMed

    Stark, Timothy W

    2006-01-01

    Successful instruction of a complicated subject as Physical Rehabilitation demands organization. To understand principles and processes of such a field demands a hierarchy of steps to achieve the intended outcome. This paper is intended to be an introduction to a proposed pyramid scheme of general physical rehabilitation principles. The purpose of the pyramid scheme is to allow for a greater understanding for the student and patient. As the respected Food Guide Pyramid accomplishes, the student will further appreciate and apply supported physical rehabilitation principles and the patient will understand that there is a progressive method to their functional healing process. PMID:16759396

  3. Summary of the NASA/MSFC FY-79 Severe Storm and Local Weather research review. [cloud physics, atmospheric electricity, and mesoscale/storm dynamics reserach

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Significant acomplishments, current focus of work, plans for FY-80, and recommendations for new research are outlined for 36 research projects proposed for technical monitoring by the Atmospheric Sciences Division at Marshall Space Flight Center. Topics of the investigations, which were reviewed at a two-day meeting, relate to cloud physics, atmospheric electricity, and mesoscale/storm dynamics.

  4. Dissolution of Olivine, Siderite, and Basalt at 80 Deg C in 0.1 M H2SO4 in a Flow Through Process: Insights into Acidic Weathering on Mars

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.; Hausrath, E. M.; Morris, R. V.; Niles, P. B.; Achilles, C. N.; Ross, D. K.; Cooper, B. L.; Gonzalex, C. P.; Mertzman, S. A.

    2012-01-01

    The occurrence of jarosite, other sulfates (e.g., Mg-and Ca-sulfates), and hematite along with silicic-lastic materials in outcrops of sedimentary materials at Meridiani Planum (MP) and detection of silica rich deposits in Gusev crater, Mars, are strong indicators of local acidic aqueous processes [1,2,3,4,5]. The formation of sediments at Meridiani Planum may have involved the evaporation of fluids derived from acid weathering of Martian basalts and subsequent diagenesis [6,7]. Also, our previous work on acid weathering of basaltic materials in a closed hydro-thermal system was focused on the mineralogy of the acid weathering products including the formation of jarosite and gray hematite spherules [8,9,10]. The object of this re-search is to extend our earlier qualitative work on acidic weathering of rocks to determine acidic dissolution rates of Mars analog basaltic materials at 80 C using a flow-thru reactor. We also characterized residual phases, including poorly crystalline or amorphous phases and precipitates, that remained after the treatments of olivine, siderite, and basalt which represent likely MP source rocks. This study is a stepping stone for a future simulation of the formation of MP rocks under a range of T and P.

  5. Natural Weathering Rates of Silicate Minerals

    NASA Astrophysics Data System (ADS)

    White, A. F.

    2003-12-01

    Silicates constitute more than 90% of the rocks exposed at Earth's land surface (Garrels and Mackenzie, 1971). Most primary minerals comprising these rocks are thermodynamically unstable at surface pressure/temperature conditions and are therefore susceptible to chemical weathering. Such weathering has long been of interest in the natural sciences. Hartt (1853) correctly attributed chemical weathering to "the efficacy of water containing carbonic acid in promoting the decomposition of igneous rocks." Antecedent to the recent interest in the role of vegetation on chemical weathering, Belt (1874) observed that the most intense weathering of rocks in tropical Nicaragua was confined to forested regions. He attributed this effect to "the percolation through rocks of rain water charged with a little acid from decomposing vegetation." Chamberlin (1899) proposed that the enhanced rates of chemical weathering associated with major mountain building episodes in Earth's history resulted in a drawdown of atmospheric CO2 that led to periods of global cooling. Many of the major characteristics of chemical weathering had been described when Merrill (1906) published the groundbreaking volume Rocks, Rock Weathering, and Soils.The major advances since that time, particularly during the last several decades, have centered on understanding the fundamental chemical, hydrologic, and biologic processes that control weathering and in establishing quantitative weathering rates. This research has been driven by the importance of chemical weathering to a number environmentally and economically important issues. Undoubtedly, the most significant aspect of chemical weathering is the breakdown of rocks to form soils, a process that makes life possible on the surface of the Earth. The availability of many soil macronutrients such as magnesium, calcium, potassium, and PO4 is directly related to the rate at which primary minerals weather. Often such nutrient balances are upset by anthropogenic

  6. Understanding the Interplay Between Neighborhood Structural Factors, Social Processes, and Alcohol Outlets on Child Physical Abuse.

    PubMed

    Freisthler, Bridget; Maguire-Jack, Kathryn

    2015-11-01

    This article seeks to understand the relative influence of neighborhood structural characteristics (e.g., disadvantage) and social processes (e.g., interactions between residents) on child physical abuse. Using multilevel modeling in a sample of 3,023 parents in 194 zip codes, structural characteristics of factor scores representing residential stability and foreign-born Latino males were negatively related to child physical abuse. High proportions of naturalized and Asian/Pacific Islander families were positively related to the frequency of physical abuse. Higher levels of neighborhood social disorder were related to more frequent physical abuse, while higher levels of collective efficacy were related to less frequent physical abuse. Programs designed to alleviate disorder and increase neighborly interactions may be effective at reducing physical abuse. By understanding the relative importance of the demographic characteristics of neighborhoods and the actions and interactions of residents within the neighborhoods, policy and practice can be tailored more effectively to prevent maltreatment. PMID:26251328

  7. Space Weathering in the Mercurian Environment

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Pieters, C. M.

    2001-01-01

    Space weathering processes are known to be important on the Moon. These processes both create the lunar regolith and alter its optical properties. Like the Moon, Mercury has no atmosphere to protect it from the harsh space environment and therefore it is expected that it will also incur the effects of space weathering. However, there are many important differences between the environments of Mercury and the Moon. These environmental differences will almost certainly affect the weathering processes and the products of those processes. It should be possible to observe the effects of these differences in Vis (visible)/NIR (near infrared) spectra of the type expected to be returned by MESSENGER. More importantly, understanding these weathering processes and their consequences is essential for evaluating the spectral data returned from MESSENGER and other missions in order to determine the mineralogy and the Fe content of the Mercurian surface. Additional information is contained in the original extended abstract.

  8. Weather and climate

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Recommendations for using space observations of weather and climate to aid in solving earth based problems are given. Special attention was given to: (1) extending useful forecasting capability of space systems, (2) reducing social, economic, and human losses caused by weather, (3) development of space system capability to manage and control air pollutant concentrations, and (4) establish mechanisms for the national examination of deliberate and inadvertent means for modifying weather and climate.

  9. Weather assessment and forecasting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data management program activities centered around the analyses of selected far-term Office of Applications (OA) objectives, with the intent of determining if significant data-related problems would be encountered and if so what alternative solutions would be possible. Three far-term (1985 and beyond) OA objectives selected for analyses as having potential significant data problems were large-scale weather forecasting, local weather and severe storms forecasting, and global marine weather forecasting. An overview of general weather forecasting activities and their implications upon the ground based data system is provided. Selected topics were specifically oriented to the use of satellites.

  10. Pilot Weather Advisor System

    NASA Technical Reports Server (NTRS)

    Lindamood, Glenn; Martzaklis, Konstantinos Gus; Hoffler, Keith; Hill, Damon; Mehrotra, Sudhir C.; White, E. Richard; Fisher, Bruce D.; Crabill, Norman L.; Tucholski, Allen D.

    2006-01-01

    The Pilot Weather Advisor (PWA) system is an automated satellite radio-broadcasting system that provides nearly real-time weather data to pilots of aircraft in flight anywhere in the continental United States. The system was designed to enhance safety in two distinct ways: First, the automated receipt of information would relieve the pilot of the time-consuming and distracting task of obtaining weather information via voice communication with ground stations. Second, the presentation of the information would be centered around a map format, thereby making the spatial and temporal relationships in the surrounding weather situation much easier to understand

  11. Weather it's Climate Change?

    NASA Astrophysics Data System (ADS)

    Bostrom, A.; Lashof, D.

    2004-12-01

    For almost two decades both national polls and in-depth studies of global warming perceptions have shown that people commonly conflate weather and global climate change. Not only are current weather events such as anecdotal heat waves, droughts or cold spells treated as evidence for or against global warming, but weather changes such as warmer weather and increased storm intensity and frequency are the consequences most likely to come to mind. Distinguishing weather from climate remains a challenge for many. This weather 'framing' of global warming may inhibit behavioral and policy change in several ways. Weather is understood as natural, on an immense scale that makes controlling it difficult to conceive. Further, these attributes contribute to perceptions that global warming, like weather, is uncontrollable. This talk presents an analysis of data from public opinion polls, focus groups, and cognitive studies regarding people's mental models of and 'frames' for global warming and climate change, and the role weather plays in these. This research suggests that priming people with a model of global warming as being caused by a "thickening blanket of carbon dioxide" that "traps heat" in the atmosphere solves some of these communications problems and makes it more likely that people will support policies to address global warming.

  12. PREFACE: First International Workshop on Nonequilibrium Processes in Plasma Physics and Studies of Environment

    NASA Astrophysics Data System (ADS)

    Petrović, Z. Lj; Malović, G.; Tasić, M.; Nikitović, Ž.

    2007-06-01

    This volume is a collection of papers associated with a series of invited lectures presented at the First Workshop on Nonequilibrium processes in Plasma Physics and studies of Environment that was held at Mt Kopaonik in August 2006. The workshop originated as a part of the FP6 COE 026328 which had the basic aim of promoting centers of excellence in Western Balkan countries, to facilitate dissemination of their results and to help them establish themselves in the broader arena of European and international science. So the best way to achieve all those goals was to prepare a workshop associated with the local conference SPIG (Symposium on Physics of Ionized Gases) where the participants could attend sessions in which the host Laboratory presented progress reports and papers and thereby gain a full perspective of our results. At the same time this allowed participants in the COE the opportunity to compare their results with the results of external speakers and to gain new perspectives and knowledge. The program of the workshop was augmented by inviting some of our colleagues who visited the COE in recent years or have an active collaboration with a participating member. In that respect this volume is not only a proceedings of the workshop but a collection of papers related to the topic of the workshop: Non-equilibrium phenomena in plasmas and in the science of our environment. The idea is to offer review articles either summarizing a broader area of published or about to be published work or to give overviews showing preliminary results of the works in progress. The refereeing of the papers consisted of two parts, first in selection of the invitees and second in checking the submitted manuscripts. The papers were refereed to the standard of the Journal. As the program of the COE covers a wide area of topics from application of plasmas in nano- electronics to monitoring and removal of pollutants in the atmosphere, so the program of the workshop covered an even broader

  13. Alternative Processes for Water Reclamation and Solid Waste Processing in a Physical/chemical Bioregenerative Life Support System

    NASA Technical Reports Server (NTRS)

    Rogers, Tom D.

    1990-01-01

    Viewgraphs on alternative processes for water reclamation and solid waste processing in a physical/chemical-bioregenerative life support system are presented. The main objective is to focus attention on emerging influences of secondary factors (i.e., waste composition, type and level of chemical contaminants, and effects of microorganisms, primarily bacteria) and to constructively address these issues by discussing approaches which attack them in a direct manner.

  14. Studies of Fe/sup 2 +/. -->. Fe/sup 3 +/ transitions during the process of rock weathering by nuclear gamma-resonance spectroscopy

    SciTech Connect

    Vasil'ev, S.P.; Babanin, V.F.; Solov'ev, A.A.

    1986-11-01

    This paper presents a method for the mineral and weathering assessment of rocks and carbonaceous matter based in gamma spectroscopy and transitions between iron ions. The method is applied to rocks collected near the Teberda preserve. Four latitudinal bands of rocks parallel to the Greater Caucasus Ridge are identified in this territory. Isomer shift and hyperfine parameters of the Moessbauer spectra are given.

  15. Statistics-related and reliability-physics-related failure processes in electronics devices and products

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    2014-05-01

    The well known and widely used experimental reliability "passport" of a mass manufactured electronic or a photonic product — the bathtub curve — reflects the combined contribution of the statistics-related and reliability-physics (physics-of-failure)-related processes. When time progresses, the first process results in a decreasing failure rate, while the second process associated with the material aging and degradation leads to an increased failure rate. An attempt has been made in this analysis to assess the level of the reliability physics-related aging process from the available bathtub curve (diagram). It is assumed that the products of interest underwent the burn-in testing and therefore the obtained bathtub curve does not contain the infant mortality portion. It has been also assumed that the two random processes in question are statistically independent, and that the failure rate of the physical process can be obtained by deducting the theoretically assessed statistical failure rate from the bathtub curve ordinates. In the carried out numerical example, the Raleigh distribution for the statistical failure rate was used, for the sake of a relatively simple illustration. The developed methodology can be used in reliability physics evaluations, when there is a need to better understand the roles of the statistics-related and reliability-physics-related irreversible random processes in reliability evaluations. The future work should include investigations on how powerful and flexible methods and approaches of the statistical mechanics can be effectively employed, in addition to reliability physics techniques, to model the operational reliability of electronic and photonic products.

  16. Feel Good--Be Good: Subject Content and Governing Processes in Physical Education

    ERIC Educational Resources Information Center

    Ohman, Marie; Quennerstedt, Mikael

    2008-01-01

    Background: In this paper a study of both subject "content" and governing "processes" in Swedish physical education is presented. The reason why an analysis of both content and processes is of special interest is that it makes it possible to understand the encounter between the institutional level and the practice of education. Purpose: The…

  17. Executive Functions in Learning Processes: Do They Benefit from Physical Activity?

    ERIC Educational Resources Information Center

    Barenberg, Jonathan; Berse, Timo; Dutke, Stephan

    2011-01-01

    As executive functions play an essential role in learning processes, approaches capable of enhancing executive functioning are of particular interest to educational psychology. Recently, the hypothesis has been advanced that executive functioning may benefit from changes in neurobiological processes induced by physical activity. The present…

  18. Overland erosion of uranium-mill-tailings impoundments: physical processes and computational methods

    SciTech Connect

    Walters, M.H.

    1983-03-01

    The surface runoff and erosional processes of watersheds caused by rainfall-runoff are reviewed. Soil properties, topography, and rainstorm distribution are discussed with respect to their effects on soil erosion. The effects of climate and vegetation are briefly presented. Regression models and physical process simulation models are reviewed.

  19. The Inclusion of Science Process Skills in Yemeni Secondary School Physics Textbooks

    ERIC Educational Resources Information Center

    Aziz, Majed S.; Zain, Ahmad Nurulazam Md

    2010-01-01

    The aim of this study is to compare and contrast the science process skills (SPS) included in the 10th-12th grade physics textbooks content utilized in Yemeni schools. The study revealed weaknesses and strengths in the textbooks' content. For instance, a number of science process skills (SPS), such as measuring, predicting and hypothesizing, have…

  20. Physical processes involved in strip electrode welding using the method of slatted splicing