Science.gov

Sample records for physical-chemical co-process application

  1. Magnetic microgels for drug targeting applications: Physical-chemical properties and cytotoxicity evaluation

    NASA Astrophysics Data System (ADS)

    Turcu, Rodica; Craciunescu, Izabell; Garamus, Vasil M.; Janko, Christina; Lyer, Stefan; Tietze, Rainer; Alexiou, Christoph; Vekas, Ladislau

    2015-04-01

    Magnetoresponsive microgels with high saturation magnetization values have been obtained by a strategy based on the miniemulsion method using high colloidal stability organic carrier ferrofluid as primary material. Hydrophobic nanoparticles Fe3O4/oleic acid are densely packed into well-defined spherical nanoparticle clusters coated with polymers with sizes in the range 40-350 nm. Physical-chemical characteristics of magnetic microgels were investigated by TEM, SAXS, XPS and VSM measurements with the focus on the structure-properties relationship. The impact of magnetic microgels loaded with anticancer drug mitoxantrone (MTO) on the non-adherent human T cell leukemia line Jurkat was investigated in multiparameter flow cytometry. We showed that both MTO and microgel-loaded MTO penetrate into cells and both induce apoptosis and later secondary necrosis in a time- and dose dependent manner. In contrast, microgels without MTO are not cytotoxic in the corresponding concentrations. Our results show that MTO-loaded microgels are promising structures for application in magnetic drug targeting.

  2. Physical-chemical and biological characterization of silk fibroin-coated porous membranes for medical applications.

    PubMed

    Cassinelli, C; Cascardo, G; Morra, M; Draghi, L; Motta, A; Catapano, G

    2006-09-01

    Membranes in artificial organs and scaffolds for tissue engineering are often coated with biomimetic molecules (e.g., collagen) to improve their biocompatibility and promote primary cell adhesion and differentiation. However, animal proteins are expensive and may be contaminated with prions. Silk fibroin (SF) made by Bombyx Mori silk worms, used as a scaffold or grafted to other polymers, reportedly promotes the adhesion and growth of many human cell types. This paper describes how commercial porous membranes were physically coated with SF, and their physical-chemical properties were characterized by SEM, AFM, tensile stress analysis and dynamic contact angle measurements. The effect of the SF coating on membrane biocompatibility and resistance to bacterial colonization is also examined. The proposed technique yields SF coats of different thickness that strengthen the membranes and make their surface remarkably more wettable. The SF coat is not cytotoxic, and promotes the adhesion and proliferation of an immortalized fibroblast cell line. Similarly to collagen, SF-coated membranes also exhibit a much better resistance to the adhesion of S. epidermidis bacteria than uncoated membranes. These preliminary results suggest that SF is a feasible alternative to collagen as a biomimetic coating for 3D scaffolds for tissue engineering or bioartificial (as well as artificial) prosthesis. PMID:17033996

  3. In Situ Remediation Integrated Program. In situ physical/chemical treatment technologies for remediation of contaminated sites: Applicability, developing status, and research needs

    SciTech Connect

    Siegrist, R.L.; Gates, D.D.; West, O.R.; Liang, L.; Donaldson, T.L.; Webb, O.F.; Corder, S.L.; Dickerson, K.S.

    1994-06-01

    The U.S. Department of Energy (DOE) In Situ Remediation Integrated Program (ISR IP) was established in June 1991 to facilitate the development and implementation of in situ remediation technologies for environmental restoration within the DOE complex. Within the ISR IP, four subareas of research have been identified: (1) in situ containment, (2) in situ physical/chemical treatment (ISPCT), (3) in situ bioremediation, and (4) subsurface manipulation/electrokinetics. Although set out as individual focus areas, these four are interrelated, and successful developments in one will often necessitate successful developments in another. In situ remediation technologies are increasingly being sought for environmental restoration due to the potential advantages that in situ technologies can offer as opposed to more traditional ex situ technologies. These advantages include limited site disruption, lower cost, reduced worker exposure, and treatment at depth under structures. While in situ remediation technologies can offer great advantages, many technology gaps exist in their application. This document presents an overview of ISPCT technologies and describes their applicability to DOE-complex needs, their development status, and relevant ongoing research. It also highlights research needs that the ISR IP should consider when making funding decisions.

  4. PHYSICAL CHEMICAL TREATMENT OF A COMBINED SEWER IMPACTED SECONDARY EFFLUENT

    EPA Science Inventory

    Physical-chemical treatment of conventional biological secondary effluent for the removal of organic and inorganic pollutants is used and considered applicable in areas where secondary treatment alone is incapable of producing satisfactory effluent quality. This report describes ...

  5. Microbial quality and physical-chemical characteristics of thermal springs.

    PubMed

    Fazlzadeh, Mehdi; Sadeghi, Hadi; Bagheri, Pari; Poureshg, Yusef; Rostami, Roohollah

    2016-04-01

    Microbial quality and physical-chemical properties of recreational spas were surveyed to investigate the health aspect of the spas' water. A total of 195 samples were collected from pools and springs of the spas in five sites from Ardebil Province of Iran. The effects of an independent factor defined as 'condition' and its component sub-factors (i.e., sampling point, location, and sampling date) on microbial quality and physical-chemical properties of the spas were studied by applying path analysis. The influence of physical-chemical properties on microbial quality was also considered. The percentage of samples exceeding the ISIRI (Swimming pool water microbiological specifications (vol 9412), Institute of Standards and Industrial Research of Iran, Tehran, 2007) limits for Staphylococcus (spp.) was up to 55.8 in the springs and 87.8 in the pools, 58.1 and 99.2 for HPC, 90.7 and 97.8 for total coliform and fecal coliform, and 9.3 and 34.4 for Pseudomonas aeruginosa, respectively. There were significant differences between the pools and springs for both physical-chemical properties and microbial quality. From the path analysis, sampling point was the most effective sub-factor of 'condition' on both the physical-chemical properties and microbial quality. Among the physical-chemical properties, water color had the most enhancing or additive influence on microbial pollution, while EC indicated a reducing or subtractive effect. PMID:26072426

  6. Physical-chemical processes in a protoplanetary cloud

    NASA Technical Reports Server (NTRS)

    Lavrukhina, Avgusta K.

    1991-01-01

    Physical-chemical processes in a protoplanetary cloud are discussed. The following subject areas are covered: (1) characteristics of the chemical composition of molecular interstellar clouds; (2) properties and physico-chemical process in the genesis of interstellar dust grains; and (3) the isotope composition of volatiles in bodies of the Solar System.

  7. DEMONSTRATION PHYSICAL CHEMICAL SEWAGE TREATMENT PLANT UTILIZING BIOLOGICAL NITRIFICATION

    EPA Science Inventory

    This demonstration project in a small residential community in Kentucky was initiated to show the feasibility of treating sewage with a physical-chemical type of wastewater treatment plant with a biological process for nitrification. The 50,000 gallon per day system had unit proc...

  8. Bench-Scale Co-Processing

    SciTech Connect

    Piasecki, C.A.; Gatsis, J.G.; Fullerton, H.E.

    1993-11-08

    This topical report is the first for the UOP Bench-Scale Co-processing contract. The objective of this contract is to extend and optimize the UOP single-stage, slurry-catalyzed co-processing scheme. UOP co-processing uses a single-stage, slurry-catalyzed scheme in which petroleum vacuum resid and coal are simultaneously upgraded to a high-quality synthetic oil. A highly active, well-dispersed catalyst permits operations at moderate- and high-severity reaction conditions with minimum detrimental thermal reactions. In this process, finely ground coal, petroleum resid, and catalyst are mixed, combined with hydrogen, and then directed to a single-stage reactor, where the simultaneous upgrading of the petroleum resid and coal occurs. The reactor effluent is directed to a series of separators, where a hydrogen-rich gas is recovered and recycled back to the reactor inlet. The balance of the material is sent to a series of separators, where the light gasses, light oil, vacuum gas on (VGO), catalyst, unconverted coal, ash, and residues are recovered. The catalyst is recycled back to the reactor. The UOP co-processing scheme is designed to be integrated into a conventional petroleum refinery. the hydrocarbon products from the co-processing unit will be sent to the refinery for final upgrading to finished products. A major focus of this contract is to investigate ways to reduce the catalyst and catalyst recovery costs and improve the overall economics of the process. This report documents the work completed under Task 2.0, Laboratory Support. The overall objective of Task 2.0 was to obtain and characterize the feedstocks for the contract and to provide a screening mechanism to test new catalyst systems prior to testing in the continuous pilot plant. The main elements of the experimental program for task 2.0 include: Feedstock procurement and analysis; catalyst improvements; and catalyst recycle screening.

  9. Assessment of Physical, Chemical, and Hydrologic Factors Affecting the Infiltration of Treated Wastewater in theNew Jersey Coastal Plain, with Emphasis on theHammonton Land Application Facility

    USGS Publications Warehouse

    Reilly, Timothy J.; Romanok, Kristin M.; Tessler, Steven; Fischer, Jeffrey M.

    2010-01-01

    A hydrogeologic and water-quality investigation of the Hammonton Land Application Facility (Hammonton LAF) in Hammonton, New Jersey, was conducted to determine the factors that impede the infiltration of treated wastewater and to assess the potential for similar conditions to exist elsewhere in the Coastal Plain of New Jersey (particularly within the Pinelands National Reserve). Gamma logs, sediment cores, and hydraulic-profile testing indicate that extensive fine-grained strata and iron-cemented sands underlying the Hammonton LAF may impede infiltration and lead to the perching of diluted treated wastewater. Perched water was observed in augured holes adjacent to infiltration trenches, and analysis of wastewater loading and infiltration data indicates that infiltration trenches may receive lateral flow from multiple perched-water sources. Analysis of water-quality properties characteristic of treated wastewater show that although infiltrated wastewater is reaching the underlying aquifer, lengthy holding times and a long recharge pathway greatly reduce the concentrations of nitrate, boron, and many organic compounds typical of wastewater. Conditions at two currently operating facilities and one potential future facility in the New Jersey Coastal Plain were compared to those at the Hammonton Land Application Facility (LAF). Facilities operating as designed are not underlain by the restrictive strata that exist at the Hammonton LAF. Careful characterization of the geology and hydrology of the unsaturated zone underlying infiltration structures of future facilities in the New Jersey Coastal Plain and similar hydrogeologic settings will help to avoid constructing infiltration structures over or within low-hydraulic-conductivity strata that will decrease infiltration rates.

  10. Bench-scale co-processing

    SciTech Connect

    Piasecki, C.A.; Gatsis, J.G.

    1992-02-19

    The objective of this contract is to extend and optimize UOP's single-stage, slurry-catalyzed co-processing scheme. The particular emphasis is one evaluating alternative and disposable slurry-catalyst systems. During the current quarter, Lloydminster vacuum resid was processed without the presence of coal. The objective of this study was to evaluate the manner in which the resid is upgraded at high-severity conditions to help understand the function of the resid during co-processing. This report coves Bench-Scale Runs 30 to 34. In Runs 30 to 34, Lloydminster vacuum resid was processed without the presence of coal using a 0.05 wt % molybdenum-based catalyst at 465{degrees}C.

  11. Bench-scale co-processing

    SciTech Connect

    Nafis, D.A.; Gatsis, J.G.; Lea, C.; Miller, M.A.

    1990-03-07

    The objective of this current is to extend and optimize UOP's single-stage slurry-catalyzed co-processing scheme, which has developed under previous Contract AC22-84PC70002. Particular emphasis is given to defining and improving catalyst utilization and costs, evaluating alternative and disposable slurry-catalyst systems, and improving catalyst recycle and recovery techniques. The work during this quarter involved a series of bench-scale runs using a new Mo-based slurry catalyst. The results of bench-scale Runs 24 and 25 are discussed in the following report. 7 refs., 4 figs., 3 tabs.

  12. Peculiarities of Production of Chromium Carbonitride Nanopowder and Its Physical-Chemical Certification

    NASA Astrophysics Data System (ADS)

    Shiryaeva, L. S.; Nozdrin, I. V.; Galevsky, G. V.

    2015-09-01

    Scientific and technological basics of plasma synthesis of chromium carbonitride have been developed, including analysis of the current production state and application of chromium carbon compounds, defining characteristics of three-jet plasma reactor, modeling- mathematical study of interaction of raw materials and plasma streams, prediction of technological parameters of plasma stream based on the modeling results, selection of optimal technological option, implementation of plasma-metallurgical technology of chromium nitride production, its physical-chemical certification and defining technical-economical production factors.

  13. Physical-chemical property based sequence motifs and methods regarding same

    DOEpatents

    Braun, Werner; Mathura, Venkatarajan S.; Schein, Catherine H.

    2008-09-09

    A data analysis system, program, and/or method, e.g., a data mining/data exploration method, using physical-chemical property motifs. For example, a sequence database may be searched for identifying segments thereof having physical-chemical properties similar to the physical-chemical property motifs.

  14. [Studies on new co-processed excipient consisting of lactose and gelatinized starch].

    PubMed

    Wang, Song-tao; Zhang, Jing; Lin, Xiao; Shen, Lan; Feng, Yi

    2014-11-01

    Co-processed excipients withgelatinized or non-gelatinized starch were prepared by spray drying. Powder and tablet properties of corocessed excipients prepared were compared with those of physical mixtures and spray-dried lactose. Their applicability in traditional Chinese medicine (TCM) powder tableting was tested on two TCM extracts, i.e., the gardenia extract and the Herba Sedi extract. It was shown that gelatinizing starch before co-spray drying with lactose could improve the performance and efficiency of starch as a binder, resulting in remarkable improvement in physicomechanical properties of co-processed excipients prepared. Conpared to self-made and commercially available spray-dried lactose, co-processed excipients achieved better compactability and higher drug loading for TCM extracts. In conclusion, the lactose-gelatinized starch co-processed excipient, with excellent physicomechanical properties, is promising to be explored as a new excipient for direct tableting. PMID:25850261

  15. Sheep milk: physical-chemical characteristics and microbiological quality.

    PubMed

    Merlin Junior, Ivandré Antonio; Santos, Joice Sifuentes dos; Costa, Ligia Grecco; Costa, Renan Grecco; Ludovico, Agostinho; Rego, Fabiola Cristine de Almeida; Santana, Elsa Helena Walter de

    2015-09-01

    Sheep milk is the third most consumed milk in Brazil. It is much appreciated for its nutritional status and is important for children that have problems with cow milk. Little information is known about the chemical, physical and microbiological composition of sheep milk from South Brazil. Thus, the aim of this study was to describe chemical and microbiological characteristics of sheep milk produced on two rural properties located in southern Brazil (ParanA and Rio Grande do Sul). The chemical composition of sheep milk was 17.32 g/100 g total solids, 5.86 g/100 g total protein, 4.46 g/100 g casein, 1.08 g/100 g whey protein, 7.28 g/100 g fat, 0.93 g/100 g ash, and 3.41 g/100 g lactose. High somatic cell count (1.7x106 cells/mL), total mesophilic bacterias (16.0 x 106 CFU/mL) and psychrotrophics (5.8 x 106 CFU/mL) were observed. Growth of Staphylococcus aureus, enterobacteria and coliforms occurred in 100% of the samples, and 45% of the samples showed growth of Escherichia coli. The sheep milk physical-chemical and microbiology parameters are similar to those presented in the literature for other countries but somatic cell count presented high levels. PMID:26821492

  16. Evaluation of coal pretreatment prior to co-processing

    SciTech Connect

    Guffey, F.D.; Barbour, F.A.; Blake, R.F.

    1991-12-01

    The Western Research Institute is currently developing a mild gasification process for the recovery of a stabilized char product for use as a fuel. A liquid product of limited value is produced during the mild gasification process that may be suited as a co-processing vehicle for coal-oil co-processing. Research was conducted to evaluate co-processing of this mild gasification liquid with coal. The two major areas of research discussed in this report are: (1) coal pretreatment with a coal-derived liquid to induce coal swelling and promote catalyst dispersion and (2) co-processing coal that has been thermally pretreated in the presence of the mild gasification liquid. The results of the investigation to evaluate co-processing of coal that has been thermally pretreated in the presence of the mild gasification liquid indicate that the thermal pretreatment adversely affected the coal-oil co-processing under hydrogen pressure. Thermally pretreated coals co-processed under a hydrogen atmosphere and without benefit of catalyst exhibited about 86 wt % conversion as compared to 96 wt % for coal that was only thermally dried. The addition of the iron pentacarbonyl catalyst precursor to the thermally pretreated coals did improve the conversion to near that of the dried coal. Results from analysis of the product obtained from co-processing the Illinois No. 6 coal showed it was upgraded in terms of oxygen content and hydrogen to carbon atomic ratio when compared to the mild gasification liquid.

  17. MgB 2 thin films by hybrid physical-chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Xi, X. X.; Pogrebnyakov, A. V.; Xu, S. Y.; Chen, K.; Cui, Y.; Maertz, E. C.; Zhuang, C. G.; Li, Qi; Lamborn, D. R.; Redwing, J. M.; Liu, Z. K.; Soukiassian, A.; Schlom, D. G.; Weng, X. J.; Dickey, E. C.; Chen, Y. B.; Tian, W.; Pan, X. Q.; Cybart, S. A.; Dynes, R. C.

    2007-06-01

    Hybrid physical-chemical vapor deposition (HPCVD) has been the most effective technique for depositing MgB 2 thin films. It generates high magnesium vapor pressures and provides a clean environment for the growth of high purity MgB 2 films. The epitaxial pure MgB 2 films grown by HPCVD show higher-than-bulk Tc due to tensile strain in the films. The HPCVD films are the cleanest MgB 2 materials reported, allowing basic research, such as on magnetoresistance, that reveals the two-band nature of MgB 2. The carbon-alloyed HPCVD films demonstrate record-high Hc2 values promising for high magnetic field applications. The HPCVD films and multilayers have enabled the fabrication of high quality MgB 2 Josephson junctions.

  18. Evaluation of physical-chemical and biological treatment of shale oil retort water

    SciTech Connect

    Mercer, B.W.; Mason, M.J.; Spencer, R.R.; Wong, A.L.; Wakamiya, W.

    1982-09-01

    Bench scale studies were conducted to evaluate conventional physical-chemical and biological treatment processes for removal of pollutants from retort water produced by in situ shale oil recovery methods. Prior to undertaking these studies, very little information had been reported on treatment of retort water. A treatment process train patterned after that generally used throughout the petroleum refining industry was envisioned for application to retort water. The treatment train would consist of processes for removing suspended matter, ammonia, biodegradable organics, and nonbiodegradable or refractory organics. The treatment processes evaluated include anaerobic digestion and activated sludge for removal of biodegradable organics and other oxidizable substances; activated carbon adsorption for removal of nonbiodegradable organics; steam stripping for ammonia removal; and chemical coagulation, sedimentation and filtration for removal of suspended matter. Preliminary cost estimates are provided.

  19. Physical/chemical treatment of mixed waste soils

    SciTech Connect

    Morris, M.I. ); Alperin, E.S.; Fox, R.D. )

    1991-01-01

    This report discusses the results and findings of the demonstration testing of a physical/chemical treatment technology for mixed wastes. The principal objective of the tests was to demonstrate the capability of the low temperature thermal separation (LTTS) technology for rendering PCB-contaminated mixed waste soils as nonhazardous and acceptable for low level radioactive waste disposal. The demonstration testing of this technology was a jointly-conducted project by the US Department of Energy (DOE), the Martin Marietta Energy Systems (Energy Systems) Waste Management Technology Center at the Oak Ridge National Laboratory, and IT Corporation. This pilot-scale demonstration program testing of IT's thermal separator technology in Oak Ridge was conducted as part of the DOE Model Program. This program has private industry, regulators, and universities helping to solve DOE waste management problems. Information gained from the DOE Model is shared with the participating organizations, other federal agencies, and regulatory agencies. The following represent the most significant findings from these demonstration tests: Thermal separation effectively separated PCB contamination from a mixed waste to enable the treated soil to be managed as low level radioactive waste. At the same operating conditions, mercury contamination of 0.8 ppM was reduced to less than 0.1 ppM. The majority of uranium and technetium in the waste feeds oil remained in the treated soil. Radionuclide concentration in cyclone solids is due to carry-over of entrained particles in the exit gas and not due to volatilization/condensation. Thermal separation also effectively treated all identified semi-volatile contaminants in the waste soil to below detection limits with the exception of di-n-butylphthalate in one of the two runs. 4 refs., 1 fig., 6 tabs.

  20. Co-processing as a tool to improve aqueous dispersibility of cellulose ethers.

    PubMed

    Sharma, Payal; Modi, Sameer R; Bansal, Arvind K

    2015-01-01

    Cellulose ethers are important materials with numerous applications in pharmaceutical industry. They are widely employed as stabilizers and viscosity enhancers for dispersed systems, binders in granulation process and as film formers for tablets. These polymers, however, exhibit challenge during preparation of their aqueous dispersions. Rapid hydration of their surfaces causes formation of a gel that prevents water from reaching the inner core of the particle. Moreover, the surfaces of these particles become sticky, thus leading to agglomeration, eventually reducing their dispersion kinetics. Numerous procedures have been tested to improve dispersibility of cellulose ethers. These include the use of cross-linking agents, alteration in the synthesis process, adjustment of water content of cellulose ether, modification by attaching hydrophobic substituents and co-processing using various excipients. Among these, co-processing has provided the most encouraging results. This review focuses on the molecular mechanisms responsible for the poor dispersibility of cellulose ethers and the role of co-processing technologies in overcoming the challenge. An attempt has been made to highlight various co-processing techniques and specific role of excipients used for co-processing. PMID:26161940

  1. Physical, chemical, and mineral properties of the Polonnaruwa stones

    NASA Astrophysics Data System (ADS)

    Wallis, Jamie; Wickramasinghe, N. C.; Wallis, Daryl H.; Miyake, Nori; Wallis, M. K.; Hoover, Richard B.; Samaranayake, Anil; Wickramarathne, Keerthi; Oldroyd, Anthony

    2013-09-01

    We report on the physical, chemical and mineral properties of a series of stone fragments recovered from the North Central Province of Sri Lanka following a witnessed fireball event on 29 December 2012. The stones exhibit highly porous poikilitic textures comprising of isotropic silica-rich/plagioclase-like hosts. Inclusions range in size and shape from mm-sized to smaller subangular grains frequently more fractured than the surrounding host and include ilmenite, olivine (fayalitic), quartz and accessory zircon. Bulk mineral compositions include accessory cristobalite, hercynite, anorthite, wuestite, albite, anorthoclase and the high pressure olivine polymorph wadsleyite, suggesting previous endurance of a shock pressure of ~20 GPa. Further evidence of shock is confirmed by the conversion of all plagioclase to maskelynite. Here the infrared absorption spectra in the region 580 cm-1 to 380 cm-1 due to the Si-O-Si or Si-O-Al absorption band shows a partial shift in the peak at 380 cm-1 towards 480 cm-1 indicating an intermediate position between crystalline and amorphous phase. Host matrix chemical compositions vary between samples, but all are rich in SiO2. Silica-rich melts display a heterogeneous K-enrichment comparable to that reported in a range of non-terrestrial material from rare iron meteorites to LL chondritic breccias and Lunar granites. Bulk chemical compositions of plagioclase-like samples are comparable to reported data e.g. Miller Ranger 05035 (Lunar), while Si-rich samples accord well with mafic and felsic glasses reported in NWA 1664 (Howardite) as well as data for fusion crust present in a variety of meteoritic samples. Triple oxygen isotope results show Δ17O = -0.335 with δ18O (‰ rel. SMOW) values of 17.816 +/- 0.100 and compare well with those of known CI chondrites and are within the range of CI-like (Meta-C) chondrites. Rare earth elemental abundances show a profound Europium anomaly of between 0.7 and 0.9 ppm while CI normalized REE

  2. Coupling entropy of co-processing model on social networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhanli

    2015-08-01

    Coupling entropy of co-processing model on social networks is investigated in this paper. As one crucial factor to determine the processing ability of nodes, the information flow with potential time lag is modeled by co-processing diffusion which couples the continuous time processing and the discrete diffusing dynamics. Exact results on master equation and stationary state are achieved to disclose the formation. In order to understand the evolution of the co-processing and design the optimal routing strategy according to the maximal entropic diffusion on networks, we propose the coupling entropy comprehending the structural characteristics and information propagation on social network. Based on the analysis of the co-processing model, we analyze the coupling impact of the structural factor and information propagating factor on the coupling entropy, where the analytical results fit well with the numerical ones on scale-free social networks.

  3. Dispersed catalysts for co-processing and coal liquefaction

    SciTech Connect

    Bockrath, B.; Parfitt, D.; Miller, R.

    1995-12-31

    The basic goal is to improve dispersed catalysts employed in the production of clean fuels from low value hydrocarbons. The immediate objective is to determine how the properties of the catalysts may be altered to match the demands placed on them by the properties of the feedstock, the qualities of the desired end products, and the economic constraints put upon the process. Several interrelated areas of the application of dispersed catalysts to co-processing and coal conversion are under investigation. The first involves control of the selectivity of MoS{sub 2} catalysts for HDN, HDS, and hydrogenation of aromatics. A second area of research is the development and use of methods to evaluate dispersed catalysts by means of activity and selectivity tests. A micro-flow reactor has been developed for determining intrinsic reactivities using model compounds, and will be used to compare catalysts prepared in different ways. Micro-autoclaves will also be used to develop data in batch experiments at higher partial pressures of hydrogen. The third area under investigation concerns hydrogen spillover reactions between MoS{sub 2} catalysts and carbonaceous supports. Preliminary results obtained by monitoring H{sub 2}/D{sub 2} exchange reactions with a pulse-flow microreactor indicate the presence of spillover between MoS{sub 2} and a graphitic carbon. A more complete study will be made at a later stage of the project. Accomplishments and conclusions are discussed.

  4. Comparison of Physical-chemical and Mechanical Properties of Chlorapatite and Hydroxyapatite Plasma Sprayed Coatings

    PubMed Central

    Demnati, Imane; Grossin, David; Marsan, Olivier; Bertrand, Ghislaine; Collonges, Gérard; Combes, Christèle; Parco, Maria; Braceras, Inigo; Alexis, Joel; Balcaen, Yannick; Rey, Christian

    2015-01-01

    Chlorapatite can be considered a potential biomaterial for orthopaedic applications. Its use as plasma-sprayed coating could be of interest considering its thermal properties and particularly its ability to melt without decomposition unlike hydroxyapatite. Chlorapatite (ClA) was synthesized by a high-temperature ion exchange reaction starting from commercial stoichiometric hydroxyapatites (HA). The ClA powder showed similar characteristics as the original industrial HA powder, and was obtained in the monoclinic form. The HA and ClA powders were plasma-sprayed using a low-energy plasma spraying system with identical processing parameters. The coatings were characterized by physical-chemical methods, i.e. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy, including distribution mapping of the main phases detected such as amorphous calcium phosphate (ACP), oxyapatite (OA), and HA or ClA. The unexpected formation of oxyapatite in ClA coatings was assigned to a side reaction with contaminating oxygenated species (O2, H2O). ClA coatings exhibited characteristics different from HA, showing a lower content of oxyapatite and amorphous phase. Although their adhesion strength was found to be lower than that of HA coatings, their application could be an interesting alternative, offering, in particular, a larger range of spraying conditions without formation of massive impurities. PMID:25893015

  5. Physical, Chemical, Bibological, and Biotechnological sciences are incomplete without each other

    Technology Transfer Automated Retrieval System (TEKTRAN)

    By coupling of mechanics, optics, and mathematics, Theodor Svedberg invented the ultracentrifuge, which allowed separation of important biological materials by high centrifugal force, resulting in physical chemical separation and characterization of atherogenic low density lipoproteins and other bio...

  6. Physical/chemical closed-loop water-recycling

    NASA Technical Reports Server (NTRS)

    Herrmann, Cal C.; Wydeven, Theodore

    1991-01-01

    Water needs, water sources, and means for recycling water are examined in terms appropriate to the water quality requirements of a small crew and spacecraft intended for long duration exploration missions. Inorganic, organic, and biological hazards are estimated for waste water sources. Sensitivities to these hazards for human uses are estimated. The water recycling processes considered are humidity condensation, carbon dioxide reduction, waste oxidation, distillation, reverse osmosis, pervaporation, electrodialysis, ion exchange, carbon sorption, and electrochemical oxidation. Limitations and applications of these processes are evaluated in terms of water quality objectives. Computerized simulation of some of these chemical processes is examined. Recommendations are made for development of new water recycling technology and improvement of existing technology for near term application to life support systems for humans in space. The technological developments are equally applicable to water needs on Earth, in regions where extensive water recycling is needed or where advanced water treatment is essential to meet EPA health standards.

  7. Parallel Visualization Co-Processing of Overnight CFD Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Edwards, David E.; Haimes, Robert

    1999-01-01

    An interactive visualization system pV3 is being developed for the investigation of advanced computational methodologies employing visualization and parallel processing for the extraction of information contained in large-scale transient engineering simulations. Visual techniques for extracting information from the data in terms of cutting planes, iso-surfaces, particle tracing and vector fields are included in this system. This paper discusses improvements to the pV3 system developed under NASA's Affordable High Performance Computing project.

  8. Effects of sterilization methods on the physical, chemical, and biological properties of silk fibroin membranes.

    PubMed

    de Moraes, Mariana Agostini; Weska, Raquel Farias; Beppu, Marisa Masumi

    2014-05-01

    Silk fibroin has been widely explored for many biomedical applications, due to its biocompatibility and biodegradability. Sterilization is a fundamental step in biomaterials processing and it must not jeopardize the functionality of medical devices. The aim of this study was to analyze the influence of different sterilization methods in the physical, chemical, and biological characteristics of dense and porous silk fibroin membranes. Silk fibroin membranes were treated by several procedures: immersion in 70% ethanol solution, ultraviolet radiation, autoclave, ethylene oxide, and gamma radiation, and were analyzed by scanning electron microscopy, Fourier-transformed infrared spectroscopy (FTIR), X-ray diffraction, tensile strength and in vitro cytotoxicity to Chinese hamster ovary cells. The results indicated that the sterilization methods did not cause perceivable morphological changes in the membranes and the membranes were not toxic to cells. The sterilization methods that used organic solvent or an increased humidity and/or temperature (70% ethanol, autoclave, and ethylene oxide) increased the silk II content in the membranes: the dense membranes became more brittle, while the porous membranes showed increased strength at break. Membranes that underwent sterilization by UV and gamma radiation presented properties similar to the nonsterilized membranes, mainly for tensile strength and FTIR results. PMID:24259492

  9. Co-processing of carbonaceous solids and petroleum oil

    DOEpatents

    Gupta, Avinash; Greene, Marvin I.

    1992-01-01

    In a process for producing distillates from coal by a first stage thermal liquefaction followed by a catalytic hydrogenation, liquefaction solvent is added at points spaced over the length of the thermal liquefaction heater. Coal may be co-processed with petroleum oil by adding pre-hydrogenated oil to the first stage or unhydrogenated oil to the second stage.

  10. Physical, chemical and antimicrobial characterization of copper-bearing material

    NASA Astrophysics Data System (ADS)

    Li, Bowen; Hwang, Jiann-Yang; Drelich, Jaroslaw; Popko, Domenic; Bagley, Susan

    2010-12-01

    Arsenic, cadmium, copper, mercury, silver, and zinc are elements with strong antimicrobial properties. Among them, copper is more environmentally friendly and has both good antibacterial and antifungal properties. It has been shown that copper can even be effective against new viruses such as avian influenza (H5N1). Development of copper-bearing materials for various applications, therefore, is receiving increased attention. The Keweenaw Peninsula of Michigan was the largest native copper mining regions of North America at the turn of the 20th century. Copper was extracted by mining the copper-rich basaltic rock, and steamdriven stamp mills were used to process a great volume of low-grade ores, resulting in huge amounts of crushed waste ore called stamp sands. Approximately 500 million tons of stamp sand were discarded. This material is investigated in this study as an example for the development of antimicrobial materials.

  11. Long-term Tillage influences on soil carbon, nitrogen, physical, chemical, and biological properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term tillage influences physical, chemical, and biological properties of the soil environment and thereby crop production and quality. We evaluated the effect of long-term (>20 yrs) tillage no-till, spring till, and fall plus spring till under continuous spring wheat (Triticum aestivum L.) on s...

  12. Properties of MgB2 films grown at various temperatures by hybrid physical chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Chen, Ke; Veldhorst, Menno; Lee, Che-Hui; Lamborn, Daniel R.; DeFrain, Raymond; Redwing, Joan M.; Li, Qi; Xi, X. X.

    2008-09-01

    A hybrid physical-chemical vapour deposition (HPCVD) system consisting of separately controlled Mg-source heater and substrate heater is used to grow MgB2 thin films and thick films at various temperatures. We are able to grow superconducting MgB2 thin films at temperatures as low as 350 °C with a Tc0 of 35.5 K. MgB2 films up to 4 µm in thickness grown at 550 °C have Jc over 106 A cm-2 at 5 K and zero applied field. The low deposition temperature of MgB2 films is desirable for all-MgB2 tunnel junctions and MgB2 thick films are important for applications in coated conductors.

  13. Bench-scale co-processing economic assessment. Final report

    SciTech Connect

    Gala, H.B.; Marker, T.L.; Miller, E.N.

    1994-11-01

    The UOP Co-Processing scheme is a single-stage slurry catalyzed process in which petroleum vacuum resid and coal are simultaneously upgraded to a high-quality synthetic oil. A highly active dispersed catalyst has been developed which enables the operation of the co-processing unit at relatively moderate and high temperatures and relatively high pressure. Under the current contract, a multi-year research program was undertaken to study the technical and economic feasibility of this technology. All the contractual tasks were completed. Autoclave experiments were carried out to evaluate dispersed vanadium catalysts, molybdenum catalysts, and a less costly UOP-proprietary catalyst preparation technique. Autoclave experiments were also carried out in support of the continuous pilot plant unit operation and to study the effects of the process variables (pressure, temperature, and metal loading on the catalyst). A total of 24 continuous pilot plant runs were made. Research and development efforts during the pilot plant operations were concentrated on addressing the cost effectiveness of the UOP single-stage slurry catalyzed co-processing concept based on UOP experience gained in the previous DOE contract. To this end, effect of catalyst metal concentration was studied and a highly-active Mo-based catalyst was developed. This catalyst enabled successful long-term operation (924 hours) of the continuous bench-scale plant at highly severe operating conditions of 3,000 psig, 465{degree}C temperature, and 2:1 resid-to-MAF (moisture- and ash-free) coal ratio with 0.1 wt % active metal. The metal loading of the catalyst was low enough to consider the catalyst as a disposable slurry catalyst. Also, liquid recycle was incorporated in the pilot plant design to increase the, reactor back mixing and to increase the flow of liquid through the reactor (to introduce turbulence in the reactor) and to represent the design of a commercial-scale reactor.

  14. Visualization Co-Processing of a CFD Simulation

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi

    1999-01-01

    OVERFLOW, a widely used CFD simulation code, is combined with a visualization system, pV3, to experiment with an environment for simulation/visualization co-processing on a SGI Origin 2000 computer(O2K) system. The shared memory version of the solver is used with the O2K 'pfa' preprocessor invoked to automatically discover parallelism in the source code. No other explicit parallelism is enabled. In order to study the scaling and performance of the visualization co-processing system, sample runs are made with different processor groups in the range of 1 to 254 processors. The data exchange between the visualization system and the simulation system is rapid enough for user interactivity when the problem size is small. This shared memory version of OVERFLOW, with minimal parallelization, does not scale well to an increasing number of available processors. The visualization task takes about 18 to 30% of the total processing time and does not appear to be a major contributor to the poor scaling. Improper load balancing and inter-processor communication overhead are contributors to this poor performance. Work is in progress which is aimed at obtaining improved parallel performance of the solver and removing the limitations of serial data transfer to pV3 by examining various parallelization/communication strategies, including the use of the explicit message passing.

  15. DAWN (Design Assistant Workstation) for advanced physical-chemical life support systems

    NASA Technical Reports Server (NTRS)

    Rudokas, Mary R.; Cantwell, Elizabeth R.; Robinson, Peter I.; Shenk, Timothy W.

    1989-01-01

    This paper reports the results of a project supported by the National Aeronautics and Space Administration, Office of Aeronautics and Space Technology (NASA-OAST) under the Advanced Life Support Development Program. It is an initial attempt to integrate artificial intelligence techniques (via expert systems) with conventional quantitative modeling tools for advanced physical-chemical life support systems. The addition of artificial intelligence techniques will assist the designer in the definition and simulation of loosely/well-defined life support processes/problems as well as assist in the capture of design knowledge, both quantitative and qualitative. Expert system and conventional modeling tools are integrated to provide a design workstation that assists the engineer/scientist in creating, evaluating, documenting and optimizing physical-chemical life support systems for short-term and extended duration missions.

  16. Using ANN to predict E. coli accumulation in coves based on interaction amongst various physical, chemical and biological factors

    NASA Astrophysics Data System (ADS)

    Dwivedi, D.; Mohanty, B. P.; Lesikar, B. J.

    2008-12-01

    The accumulation of Escherichia Coli (E. coli) in canals, coves and streams is the result of a number of interacting processes operating at multiple spatial and temporal scales. Fate and transport of E. coli in surface water systems is governed by different physical, chemical, and biological processes. Various models developed to quantify each of these processes occurring at different scales are not so far pooled into a single predictive model. At present, very little is known about the fate and transport of E. coli in the environment. We hypothesize that E. coli population heterogeneity in canals and coves is affected by physical factors (average stream width and/ depth, secchi depth, flow and flow severity, day since precipitation, aquatic vegetation, solar radiation, dissolved and total suspended solids etc.); chemical factors (basic water quality, nutrients, organic compounds, pH, and toxicity etc.); and biological factors (type of bacterial strain, predation, and antagonism etc.). The specific objectives of this study are to: (1) examine the interactions between E. coli and various coupled physical, chemical and biological factors; (2) examine the interactions between E. coli and toxic organic pollutants and other pathogens (viruses); and (3) evaluate qualitatively the removal efficiency of E. coli. We suggest that artificial neural networks (ANN) may be used to provide a possible solution to this problem. To demonstrate the application of the approach, we develop an ANN representing E. coli accumulation in two polluted sites at Lake Granbury in the upper part of the Brazos River in North Central Texas. The graphical structure of ANN explicitly represents cause- and-effect relationship between system variables. Each of these relationships can then be quantified independently using an approach suitable for the type and scale of information available. Preliminary results revealed that E. coli concentrations in canals show seasonal variations regardless of change

  17. Analysis of physical-chemical processes governing SSME internal fluid flows

    NASA Technical Reports Server (NTRS)

    Singhal, A. K.; Owens, S. F.; Mukerjee, T.; Prakash, C.; Przekwas, A. J.; Kannapel, M.

    1985-01-01

    The basic issues concerning the physical chemical processes of the Space Shuttle Main Engine are discussed. The objectives being to supply the general purpose CFD code PHOENICS and the associated interactive graphics package - GRAFFIC; to demonstrate code usage on SSME related problems; to perform computations and analyses of problems relevant to current and future SSME's; and to participate in the development of new physical models of various processes present in SSME components. These objectives are discussed in detail.

  18. Influence of Copper Nanoparticles on the Physical-Chemical Properties of Activated Sludge

    PubMed Central

    Chen, Hong; Zheng, Xiong; Chen, Yinguang; Li, Mu; Liu, Kun; Li, Xiang

    2014-01-01

    The physical-chemical properties of activated sludge, such as flocculating ability, hydrophobicity, surface charge, settleability, dewaterability and bacteria extracellular polymer substances (EPS), play vital roles in the normal operation of wastewater treatment plants (WWTPs). The nanoparticles released from commercial products will enter WWTPs and can induce potential adverse effects on activated sludge. This paper focused on the effects of copper nanoparticles (CuNPs) on these specific physical-chemical properties of activated sludge. It was found that most of these properties were unaffected by the exposure to lower CuNPs concentration (5 ppm), but different observation were made at higher CuNPs concentrations (30 and 50 ppm). At the higher CuNPs concentrations, the sludge surface charge increased and the hydrophobicity decreased, which were attributed to more Cu2+ ions released from the CuNPs. The carbohydrate content of EPS was enhanced to defense the toxicity of CuNPs. The flocculating ability was found to be deteriorated due to the increased cell surface charge, the decreased hydrophobicity, and the damaged cell membrane. The worsened flocculating ability made the sludge flocs more dispersed, which further increased the toxicity of the CuNPs by increasing the availability of the CuNPs to the bacteria present in the sludge. Further investigation indicated that the phosphorus removal efficiency decreased at higher CuNPs concentrations, which was consistent with the deteriorated physical-chemical properties of activated sludge. It seems that the physical-chemical properties can be used as an indicator for determining CuNPs toxicity to the bacteria in activated sludge. This work is important because bacteria toxicity effects to the activated sludge caused by nanoparticles may lead to the deteriorated treatment efficiency of wastewater treatment, and it is therefore necessary to find an easy way to indicate this toxicity. PMID:24663333

  19. Physical/chemical and biological treatment of coke-plant wastewater

    SciTech Connect

    Osantowski, R.; Hendriks, R.V.

    1982-01-01

    The production of metallurgical coke is an essential part of the iron and steel industry. In the coke-making by-product recovery business, volatile compounds are recovered from the gas stream and processed into a variety of valuable materials. However, process wastewater streams originate from the various recovery techniques, and these concentrated flows must be treated prior to discharge. Typical pollutants include ammonia, cyanide, phenol, sulfide, thiocyanate, oil and grease, suspended solids, and many toxic pollutants. The objective of this project was to determine the feasibility of treating by-product coke-making wastewater to best available technology (BAT) levels by physical/chemical and biological techniques. Two coke plants were studied as a part of this investigation: the physical/chemical research work was performed at Shenango, Inc., Pittsburgh, PA, while the biological testing was conducted at Wheeling-Pittsburgh Steel Corporation's Follansbee, WV, plant. The studies were performed on a pilot scale using the US Environmental Protection Agency (EPA) mobile physical/chemical and biological treatment systems. These pilot plants are housed in three semi-trailer vans.

  20. Method for co-processing waste rubber and carbonaceous material

    DOEpatents

    Farcasiu, Malvina; Smith, Charlene M.

    1991-01-01

    In a process for the co-processing of waste rubber and carbonaceous material to form a useful liquid product, the rubber and the carbonaceous material are combined and heated to the depolymerization temperature of the rubber in the presence of a source of hydrogen. The depolymerized rubber acts as a liquefying solvent for the carbonaceous material while a beneficial catalytic effect is obtained from the carbon black released on depolymerization the reinforced rubber. The reaction is carried out at liquefaction conditions of 380.degree.-600.degree. C. and 70-280 atmospheres hydrogen pressure. The resulting liquid is separated from residual solids and further processed such as by distillation or solvent extraction to provide a carbonaceous liquid useful for fuels and other purposes.

  1. Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils

    PubMed Central

    Zornoza, R.; Guerrero, C.; Mataix-Solera, J.; Scow, K.M.; Arcenegui, V.; Mataix-Beneyto, J.

    2012-01-01

    The potential of near infrared (NIR) reflectance spectroscopy to predict various physical, chemical and biochemical properties in Mediterranean soils from SE Spain was evaluated. Soil samples (n=393) were obtained by sampling thirteen locations during three years (2003-2005 period). These samples had a wide range of soil characteristics due to variations in land use, vegetation cover and specific climatic conditions. Biochemical properties also included microbial biomarkers based on phospholipid fatty acids (PLFA). Partial least squares (PLS) regression with cross validation was used to establish relationships between the NIR spectra and the reference data from physical, chemical and biochemical analyses. Based on the values of coefficient of determination (r2) and the ratio of standard deviation of validation set to root mean square error of cross validation (RPD), predicted results were evaluated as excellent (r2>0.90 and RPD>3) for soil organic carbon, Kjeldahl nitrogen, soil moisture, cation exchange capacity, microbial biomass carbon, basal soil respiration, acid phosphatase activity, β-glucosidase activity and PLFA biomarkers for total bacteria, Gram positive bacteria, actinomycetes, vesicular-arbuscular mycorrhizal fungi and total PLFA biomass. Good predictions (0.81physical, chemical and biochemical soil properties for

  2. Analysis of physical-chemical processes governing SSME internal fluid flows

    NASA Technical Reports Server (NTRS)

    Singhal, A. K.; Owens, S. F.; Mukerjee, T.; Keeton, L. W.; Tam, L. T.

    1984-01-01

    In order to aid the development of current and future SSME type engines, it is necessary to improve the understanding of basic issues related with physical-chemical processes of SSME internal flows. Accomplishments under each of the following specific objectives are described herein: (1) supplying a state-of-the-art CFD code and graphics package; (2) demonstrating code usage on SSME-related problems to NASA MSFC personnel; and (3) performance computations and analysis of problems relevant to current and future SSME's.

  3. Wine Processing: A Critical Review of Physical, Chemical, and Sensory Implications of Innovative Vinification Procedures.

    PubMed

    Baiano, Antonietta; Scrocco, Carmela; Sepielli, Grazia; Del Nobile, Matteo Alessandro

    2016-10-25

    Wine is one of the most popular alcoholic beverages in the world, although it is mainly consumed in European and South American countries. Several thousand years have passed since the product of grape fermentation was accidentally discovered. Over the last 100-150 years, winemaking has been completely revolutionized in terms of procedures and equipment. This work is aimed to give a comprehensive overview of the consolidated use of winemaking innovations that are still in the development stage or already applied to commercial products. Their effects on physical, chemical, and sensory characteristics of wines will also be discussed in comparison with the consolidated vinification procedures. PMID:25629416

  4. Prototype Commercial Coal/Oil Co-Processing Plant Project

    SciTech Connect

    Not Available

    1990-03-01

    With the successful demonstration of the Co-Processing Process for simultaneously converting and upgrading Ohio coal and Cold Lake atmospheric resid, a hydrotreating program was subcontracted out to Sun Refining and Marketing by Ohio Clean Fuels to define operating conditions that will produce a distillate product meeting 0.05 wt % sulfur and a naphtha product with 1 wppm nitrogen maximum. Two hydrotreating runs were carried out: one on a 350/650{degree}F distillate blend and other on the C5/350{degree}F co-pro naphtha. Both runs scoped process conditions by varying temperature, pressure and space velocity while maintaining hydrogen treat gas rate constant at 1,000 SCF/Barrel. Each run took about 30 days to complete and consisted of a test matrix of 8 conditions and a referee'' condition at the beginning and the end of the run, and as well, several other optimal conditions to define further information. While catalyst life test were originally planned, they were not carried out due to lack of funds. The tests identified hydrotreating conditions that can effectively reduce distillate blend sulfur from 0.55 wt % to as low as 0.15 wt % sulfur. The co-pro naphtha was denitrogenated from 46 wppm to below 1 wppm with mild hydrotreating conditions. There were anomalies in the results in that lower feed space velocities resulted in higher product nitrogen. 3 refs., 9 figs., 16 tabs.

  5. Physical-chemical treatment of wastes: a way to close turnover of elements in LSS

    NASA Astrophysics Data System (ADS)

    Kudenko, Yu A.; Gribovskaya, I. V.; Zolotukhin, I. G.

    2000-05-01

    "Man-plants-physical-chemical unit" system designed for space stations or terrestrial ecohabitats to close steady-state mineral, water and gas exchange is proposed. The physical-chemical unit is to mineralize all inedible plant wastes and physiological human wastes (feces, urine, gray water) by electromagnetically activated hydrogen peroxide in an oxidation reactor. The final product is a mineralized solution containing all elements balanced for plants' requirements. The solution has been successfully used in experiments to grow wheat, beans and radish. The solution was reusable: the evaporated moisture was replenished by the phytotron condensate. Sodium salination of plants was precluded by evaporating reactor-mineralized urine to sodium saturation concentration to crystallize out NaCl which can be used as food for the crew. The remaining mineralized product was brought back for nutrition of plants. The gas composition of the reactor comprises O 2, N 2, CO 2, NH 3, H 2. At the reactor's output hydrogen and oxygen were catalyzed into water, NH 3 was converted in a water trap into NH 4 and used for nutrition of plants. A special accessory at the reactor's output may produce hydrogen peroxide from intrasystem water and gas which makes possible to close gas loops between LSS components.

  6. Improving N(6)-methyladenosine site prediction with heuristic selection of nucleotide physical-chemical properties.

    PubMed

    Zhang, Ming; Sun, Jia-Wei; Liu, Zi; Ren, Ming-Wu; Shen, Hong-Bin; Yu, Dong-Jun

    2016-09-01

    N(6)-methyladenosine (m(6)A) is one of the most common and abundant post-transcriptional RNA modifications found in viruses and most eukaryotes. m(6)A plays an essential role in many vital biological processes to regulate gene expression. Because of its widespread distribution across the genomes, the identification of m(6)A sites from RNA sequences is of significant importance for better understanding the regulatory mechanism of m(6)A. Although progress has been achieved in m(6)A site prediction, challenges remain. This article aims to further improve the performance of m(6)A site prediction by introducing a new heuristic nucleotide physical-chemical property selection (HPCS) algorithm. The proposed HPCS algorithm can effectively extract an optimized subset of nucleotide physical-chemical properties under the prescribed feature representation for encoding an RNA sequence into a feature vector. We demonstrate the efficacy of the proposed HPCS algorithm under different feature representations, including pseudo dinucleotide composition (PseDNC), auto-covariance (AC), and cross-covariance (CC). Based on the proposed HPCS algorithm, we implemented an m(6)A site predictor, called M6A-HPCS, which is freely available at http://csbio.njust.edu.cn/bioinf/M6A-HPCS. Experimental results over rigorous jackknife tests on benchmark datasets demonstrated that the proposed M6A-HPCS achieves higher success rates and outperforms existing state-of-the-art sequence-based m(6)A site predictors. PMID:27293216

  7. Physical-chemical treatment of wastes: a way to close turnover of elements in LSS.

    PubMed

    Kudenko YuA; Gribovskaya, I V; Zolotukhin, I G

    2000-05-01

    "Man-plants-physical-chemical unit" system designed for space stations or terrestrial ecohabitats to close steady-state mineral, water and gas exchange is proposed. The physical-chemical unit is to mineralize all inedible plant wastes and physiological human wastes (feces, urine, gray water) by electromagnetically activated hydrogen peroxide in an oxidation reactor. The final product is a mineralized solution containing all elements balanced for plants' requirements. The solution has been successfully used in experiments to grow wheat, beans and radish. The solution was reusable: the evaporated moisture was replenished by the phytotron condensate. Sodium salination of plants was precluded by evaporating reactor-mineralized urine to sodium saturation concentration to crystallize out NaCl which can be used as food for the crew. The remaining mineralized product was brought back for nutrition of plants. The gas composition of the reactor comprises O2, N2, CO2, NH3, H2. At the reactor's output hydrogen and oxygen were catalyzed into water, NH3 was converted in a water trap into NH4 and used for nutrition of plants. A special accessory at the reactor's output may produce hydrogen peroxide from intrasystem water and gas which makes possible to close gas loops between LSS components. PMID:11543386

  8. Estimating Escherichia coli loads in streams based on various physical, chemical, and biological factors

    PubMed Central

    Dwivedi, Dipankar; Mohanty, Binayak P.; Lesikar, Bruce J.

    2013-01-01

    Microbes have been identified as a major contaminant of water resources. Escherichia coli (E. coli) is a commonly used indicator organism. It is well recognized that the fate of E. coli in surface water systems is governed by multiple physical, chemical, and biological factors. The aim of this work is to provide insight into the physical, chemical, and biological factors along with their interactions that are critical in the estimation of E. coli loads in surface streams. There are various models to predict E. coli loads in streams, but they tend to be system or site specific or overly complex without enhancing our understanding of these factors. Hence, based on available data, a Bayesian Neural Network (BNN) is presented for estimating E. coli loads based on physical, chemical, and biological factors in streams. The BNN has the dual advantage of overcoming the absence of quality data (with regards to consistency in data) and determination of mechanistic model parameters by employing a probabilistic framework. This study evaluates whether the BNN model can be an effective alternative tool to mechanistic models for E. coli loads estimation in streams. For this purpose, a comparison with a traditional model (LOADEST, USGS) is conducted. The models are compared for estimated E. coli loads based on available water quality data in Plum Creek, Texas. All the model efficiency measures suggest that overall E. coli loads estimations by the BNN model are better than the E. coli loads estimations by the LOADEST model on all the three occasions (three-fold cross validation). Thirteen factors were used for estimating E. coli loads with the exhaustive feature selection technique, which indicated that six of thirteen factors are important for estimating E. coli loads. Physical factors included temperature and dissolved oxygen; chemical factors include phosphate and ammonia; biological factors include suspended solids and chlorophyll. The results highlight that the LOADEST model

  9. Biological-physical-chemical aspects of a human life support system for a lunar base.

    PubMed

    Gitelson, J I; Blum, V; Grigoriev, A I; Lisovsky, G M; Manukovsky, N S; Sinyak YuE; Ushakova, S A

    1995-10-01

    To create a life support system based on biological and physical-chemical processes is the optimum solution providing full-valued conditions for existence and efficient work of people at a lunar base. Long-standing experience in experimental research or closed ecosystems and their components allows us to suggest a realistic functional structure of the lunar base and to estimate qualitatively its parameters. The original restrictions are as follows: 1) the basic source of energy to support the biological processes has to be the solar radiation; 2) the initial amount of basic biological elements forming the turnover of substances (C, O, H, P, K, N) has to be delivered from Earth; 3). Moon materials are not to be used in the biological turnover inside the base; 4) the base is to supply the crew fully with atmosphere and water, and with 90% (A scenario) or 40% (B scenario) of food. Experimental data about the plant productivity under the "Moon" rhythm of light and darkness allow us to suggest that the A scenario requires per one human: plant area--40 m2 irradiated during the lunar day by 250-300 W/m2 PAR producing 1250 g of dry biomass a terrestrial day; a heterotrophic component of "biological incineration" of inedible plant biomass (800 g/day) including the aquaculture of fish to produce animal products and contaminating the environment less than birds and mammals, and the culture of edible mushrooms; a component of physical-chemical correction for the LSS environment including the subsystems of: deep oxidation of organic impurities in the atmosphere and of water, organic wastes of human activity and that biological components (420 g/day) CO2 concentration in "Moon" nights, damping O2 in "Moon" days, etc. The stock of prestored or delivered from Earth substances (food additions, seeds, etc.) to be involved in biological turnover is to be about 50 kg/year per man. Increase of the mass of prestored substances per man up to 220 kg/year would reduce twice the plant area

  10. Estimating Escherichia coli loads in streams based on various physical, chemical, and biological factors

    NASA Astrophysics Data System (ADS)

    Dwivedi, Dipankar; Mohanty, Binayak P.; Lesikar, Bruce J.

    2013-05-01

    Microbes have been identified as a major contaminant of water resources. Escherichia coli is a commonly used indicator organism. It is well recognized that the fate of E. coli in surface water systems is governed by multiple physical, chemical, and biological factors. The aim of this work is to provide insight into the physical, chemical, and biological factors along with their interactions that are critical in the estimation of E. coli loads in surface streams. There are various models to predict E. coli loads in streams, but they tend to be system- or site-specific or overly complex without enhancing our understanding of these factors. Hence, based on available data, a Bayesian neural network (BNN) is presented for estimating E. coli loads based on physical, chemical, and biological factors in streams. The BNN has the dual advantage of overcoming the absence of quality data (with regard to consistency in data) and determination of mechanistic model parameters by employing a probabilistic framework. This study evaluates whether the BNN model can be an effective alternative tool to mechanistic models for E. coli load estimation in streams. For this purpose, a comparison with a traditional model (load estimator (LOADEST), U.S. Geological Survey) is conducted. The models are compared for estimated E. coli loads based on available water quality data in Plum Creek, Texas. All the model efficiency measures suggest that overall E. coli load estimations by the BNN model are better than the E. coli load estimations by the LOADEST model on all the three occasions (threefold cross validation). Thirteen factors were used for estimating E. coli loads with the exhaustive feature selection technique, which indicated that 6 of 13 factors are important for estimating E. coli loads. Physical factors included temperature and dissolved oxygen; chemical factors include phosphate and ammonia; and biological factors include suspended solids and chlorophyll. The results highlight that

  11. The Physical/Chemical Closed-Loop Life Support Research Project

    NASA Technical Reports Server (NTRS)

    Bilardo, Vincent J., Jr.

    1990-01-01

    The various elements of the Physical/Chemical Closed-Loop Life Support Research Project (P/C CLLS) are described including both those currently funded and those planned for implementation at ARC and other participating NASA field centers. The plan addresses the entire range of regenerative life support for Space Exploration Initiative mission needs, and focuses initially on achieving technology readiness for the Initial Lunar Outpost by 1995-97. Project elements include water reclamation, air revitalization, solid waste management, thermal and systems control, and systems integration. Current analysis estimates that each occupant of a space habitat will require a total of 32 kg/day of supplies to live and operate comfortably, while an ideal P/C CLLS system capable of 100 percent reclamation of air and water, but excluding recycling of solid wastes or foods, will reduce this requirement to 3.4 kg/day.

  12. Solving Heat Conduction Problems in Movable Boundary Domains under Intensive Physical-Chemical Transformation Conditions

    NASA Astrophysics Data System (ADS)

    Garashchenko, A. N.; Rudzinsky, V. P.; Garashchenko, N. A.

    2016-02-01

    Results of solving problems of simulating temperature fields in domains with movable boundaries of characteristic zones of intensive physical-chemical and thermomechanical transformations to be realized in materials upon high-temperature heating have been presented. Intumescent fire-protective coatings based on organic and mineral materials are the object of study. Features of numerical realization of input equation systems taking into account, in particular, a dynamics of considerable increase and subsequent decrease of the intumescent layer thickness have been considered. Example calculations for structures of metal and wood protected with various coatings are given. Results of calculating two-dimensional temperature fields in polymer composite square-shaped structures with internal cruciform load-bearing elements have been presented. The intumescent coating is arranged on the external surface of a structure. The solution of the above-listed problems is of important significance to provide fire protection of different-purpose structures and products.

  13. Superconducting magnesium diboride coatings for radio frequency cavities fabricated by hybrid physical-chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wolak, M. A.; Tan, T.; Krick, A.; Johnson, E.; Hambe, M.; Chen, Ke; Xi, X. X.

    2014-01-01

    We have investigated the coating of an inner surface of superconducting radio frequency cavities with a magnesium diboride thin film by hybrid physical-chemical vapor deposition (HPCVD). To simulate a 6 GHz rf cavity, a straight stainless steel tube of 1.5-inch inner diameter and a dummy stainless steel cavity were employed, on which small sapphire and metal substrates were mounted at different locations. The MgB2 films on these substrates showed uniformly good superconducting properties including Tc of 37-40 K, residual resistivity ratio of up to 14, and root-mean-square roughness Rq of 20-30 nm. This work demonstrates the feasibility of coating the interior of cylindrical and curved objects with MgB2 by the HPCVD technique, an important step towards superconducting rf cavities with MgB2 coating.

  14. Physical, Chemical and Biochemical Modifications of Protein-Based Films and Coatings: An Extensive Review.

    PubMed

    Zink, Joël; Wyrobnik, Tom; Prinz, Tobias; Schmid, Markus

    2016-01-01

    Protein-based films and coatings are an interesting alternative to traditional petroleum-based materials. However, their mechanical and barrier properties need to be enhanced in order to match those of the latter. Physical, chemical, and biochemical methods can be used for this purpose. The aim of this article is to provide an overview of the effects of various treatments on whey, soy, and wheat gluten protein-based films and coatings. These three protein sources have been chosen since they are among the most abundantly used and are well described in the literature. Similar behavior might be expected for other protein sources. Most of the modifications are still not fully understood at a fundamental level, but all the methods discussed change the properties of the proteins and resulting products. Mastering these modifications is an important step towards the industrial implementation of protein-based films. PMID:27563881

  15. Coupled Physical/Chemical and Biofiltration Technologies to Reduce Air Emissions from Forest Products Industries

    SciTech Connect

    Gary D. McGinnis

    2001-12-31

    The research is a laboratory and bench-scale investigation of a system to concentrate and destroy volatile organic compounds (VOCs), including hazardous air pollutants, formed from the drying of wood and the manufacture of wood board products (e.g., particle board and oriented strandboard). The approach that was investigated involved concentrating the dilute VOCs (<500 ppmv) with a physical/chemical adsorption unit, followed by the treatment of the concentrated voc stream (2,000 to 2,500 ppmv) with a biofiltration unit. The research program lasted three years, and involved three research organizations. Michigan Technological University was the primary recipient of the financial assistance, the USDA Forest Products Laboratory (FPL) and Mississippi State University (MSU) were subcontractors to MTU. The ultimate objective of this research was to develop a pilot-scale demonstration of the technology with sufficient data to provide for the design of an industrial system. No commercialization activities were included in this project.

  16. Physical, chemical, and biological characteristics of Sturgeon Lake, Goodhue County, Minnesota, 2003-04

    USGS Publications Warehouse

    Lee, Kathy E.; Sanocki, Christopher A.; Montz, Gary R.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Prairie Island Indian Community and the Minnesota Department of Natural Resources, conducted a study of Sturgeon Lake (a backwater lake in Navigation Pool 3 of the Mississippi River) during 2003-04 to describe the physical, chemical, and biological characteristics of the lake. Riparian and shoreline areas surrounding Sturgeon Lake consist primarily of deciduous tree and shrub cover with minimal amounts of commercial or residential land use. Woody debris and aquatic vegetation are the major types of physical habitat suitable for fish and invertebrates. Among 10 bottom-sediment sampling sites, 24 organic wastewater compounds, 1 organochlorine pesticide metabolite (p,p’DDE), and total polychlorinated biphenyls (PCBs) were detected in the bottom sediments of Sturgeon Lake. The most prevalent class of compounds detected were polyaromatic hydrocarbons. Other classes of compounds detected include sterols, disinfectants, plastic components, alkylphenols, and fragrances. Three compounds detected (bisphenol A, benzo[a]pyrene, and triclosan) are considered endocrine disrupting compounds. Twenty-one and 49 invertebrate taxa were identified from 10 bottom-sediment and 6 woody-debris/vegetation samples, respectively. Most of the taxa were Diptera in the family Chironomidae. The most common invertebrate in terms of density in bottom-sediment samples was the burrowing mayfly (Hexagenia sp.). Trichoptera in the families Hydropsychidae or Polycentropodidae were common in most of the woody-debris samples. The presence of the Hexagenia larvae in samples indicates that the bottom sediments are stable and that dissolved oxygen concentrations in the lake do not drop to acute or sub-lethal anoxic conditions. Backwater lakes such as Sturgeon Lake are important areas of habitat for aquatic organisms along the Mississippi River, and this report provides baseline physical, chemical, and biological information that resource managers can

  17. Tree Species Traits Influence Soil Physical, Chemical, and Biological Properties in High Elevation Forests

    PubMed Central

    Ayres, Edward; Steltzer, Heidi; Berg, Sarah; Wallenstein, Matthew D.; Simmons, Breana L.; Wall, Diana H.

    2009-01-01

    Background Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. Methodology/Principal Findings We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N) concentration and lowest lignin∶N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin∶N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid mites did not

  18. The OR control system of bacteriophage lambda. A physical-chemical model for gene regulation.

    PubMed

    Shea, M A; Ackers, G K

    1985-01-20

    A quantitative model has been developed for processes in the bacteriophage lambda that control the switchover from lysogenic to lytic modes of growth. These processes include the interactions of cI repressor and cro proteins at the three DNA sites of the right operator, OR, the binding of RNA polymerase at promoters PR and PRM, the synthesis of cI repressor and cro proteins, and the degradative action of recA during induction of lysis. The model is comprised of two major physical-chemical components: a statistical thermodynamic theory for relative probabilities of the various molecular configurations of the control system; and a kinetic model for the coupling of these probabilities to functional events, including synthesis of regulatory proteins cI and cro. Using independently evaluated interaction constants and rate parameters, the model was found capable of predicting essential physiological characteristics of the system over an extended time. Sufficiency of the model to predict known physiological properties lends credence to the physical-chemical assumptions used in its construction. Several major physiological characteristics were found to arise as "system properties" through the non-linear, time-dependent, feedback-modulated combinations of molecular interactions prescribed by the model. These include: maintenance of the lysogenic state in the absence of recA-mediated cI repressor degradation; induction of lysis and the phenomenon of subinduction; and autogenous negative control of cro. We have used the model to determine the roles, within the composite system, of several key molecular processes previously characterized by studies in vitro. These include: co-operativity in cI repressor binding to DNA; interactions between repressors and RNA polymerase (positive control); and the monomer-dimer association of cI repressor molecules. A major role of cI repressor co-operativity is found to be that of guaranteeing stability of the lysogenic state against minor

  19. Development of novel multifunction directly compressible co-processed excipient by melt granulation technique

    PubMed Central

    Garg, Nidhi; Pandey, Parijat; Kaushik, Deepak; Dureja, Harish

    2015-01-01

    Introduction: The objective of the present investigation was to develop a novel multifunctional directly compressible co-processed excipient consisting of dibasic calcium phosphate anhydrous, polyethylene glycol 4000 (PEG 4000) and crospovidone using Box-Behnken design. Materials and Methods: The technique of melt granulation was adopted for the preparation of the co-processed excipient. The percentage of crospovidone (5-10% w/w), percentage of PEG 4000 (5-15% w/w) and the heating time (4-12 min) were selected as independent variables. The co-processed granules were evaluated for bulk density, tapped density, Hausner's ratio and Carr's index. Placebo tablets of co-processed granules were prepared and evaluated for hardness, friability and disintegration time. Multiple linear regression was applied to develop mathematical models for hardness, Carr' index and disintegrating time. ANOVA was applied to study the fitting and significance of the model. The optimized batches (BB) were selected for further studies. The selected batches were characterized for particle size distribution, granular friability index, moisture uptake study, differential scanning calorimetry, Fourier transform infrared spectroscopy and scanning electron microscopy. Aceclofenac was selected as model drug for the preparation of tablets. Results: Aceclofenac tablets prepared using co-processed excipients showed better hardness, disintegration time and in vitro drug release as compared to aceclofenac tablets prepared using conventional wet granulation method. Conclusion: The developed co-processed excipient can serve as a novel co-processed excipient for improvement of tableting characteristics. PMID:26682197

  20. Physical-Chemical Characterization and Formulation Considerations for Solid Lipid Nanoparticles.

    PubMed

    Chauhan, Harsh; Mohapatra, Sarat; Munt, Daniel J; Chandratre, Shantanu; Dash, Alekha

    2016-06-01

    Pure glyceryl mono-oleate (GMO) (lipid) and different batches of GMO commonly used for the preparation of GMO-chitosan nanoparticles were characterized by modulated differential scanning calorimetry (MDSC), cryo-microscopy, and cryo-X-ray powder diffraction techniques. GMO-chitosan nanoparticles containing poloxamer 407 as a stabilizer in the absence and presence of polymers as crystallization inhibitors were prepared by ultrasonication. The effect of polymers (polyvinyl pyrrolidone (PVP), Eudragits, hydroxyl propyl methyl cellulose (HPMC), polyethylene glycol (PEG)), surfactants (poloxamer), and oils (mineral oil and olive oil) on the crystallization of GMO was investigated. GMO showed an exothermic peak at around -10°C while cooling and another exothermic peak at around -12°C while heating. It was followed by two endothermic peaks between 15 and 30 C, indicative of GMO melting. The results are corroborated by cryo-microscopy and cryo-X-ray. Significant differences in exothermic and endothermic transition were observed between different grades of GMO and pure GMO. GMO-chitosan nanoparticles resulted in a significant increase in particle size after lyophilization. MDSC confirmed that nanoparticles showed similar exothermic crystallization behavior of lipid GMO. MDSC experiments showed that PVP inhibits GMO crystallization and addition of PVP showed no significant increase in particle size of solid lipid nanoparticle (SLN) during lyophilization. The research highlights the importance of extensive physical-chemical characterization for successful formulation of SLN. PMID:26292931

  1. Effects of Timber Harvest on River Food Webs: Physical, Chemical and Biological Responses

    PubMed Central

    Wootton, J. Timothy

    2012-01-01

    I compared physical, chemical and biological characteristics of nine rivers running through three timber harvest regimes to investigate the effects of land use on river ecosystems, to determine whether these corresponded to changes linked with downstream location, and to compare the response of different types of indicator variables. Physical variables changed with downstream location, but varied little with timber harvest. Most chemical variables increased strongly with timber harvest, but not with downstream location. Most biological variables did not vary systematically with either timber harvst or downstream location. Dissolved organic carbon did not vary with timber harvest or downstream location, but correlated positively with salmonid abundance. Nutrient manipulations revealed no general pattern of nutrient limitation with timber harvest or downstream location. The results suggest that chemical variables most reliably indicate timber harvest impact in these systems. The biological variables most relevant to human stakeholders were surprisingly insensitive to timber harvest, however, apparently because of decoupling from nutrient responses and unexpectedly weak responses by physical variables. PMID:22957030

  2. Hybrid Physical-Chemical Vapor Deposition of Bi2Se3 Thin films on Sapphire

    NASA Astrophysics Data System (ADS)

    Brom, Joseph; Ke, Yue; Du, Renzhong; Gagnon, Jarod; Li, Qi; Redwing, Joan

    2012-02-01

    High quality thin films of topological insulators continue to garner much interest. We report on the growth of highly-oriented thin films of Bi2Se3 on c-plane sapphire using hybrid physical-chemical vapor deposition (HPCVD). The HPCVD process utilizes the thermal decomposition of trimethyl bismuth (TMBi) and evaporation of elemental selenium in a hydrogen ambient to deposit Bi2Se3. Growth parameters including TMBi flow rate and decomposition temperature and selenium evaporation temperature were optimized, effectively changing the Bi:Se ratio, to produce high quality films. Glancing angle x- ray diffraction measurements revealed that the films were c-axis oriented on sapphire. Trigonal crystal planes were observed in atomic force microscopy images with an RMS surface roughness of 1.24 nm over an area of 2μmx2μm. Variable temperature Hall effect measurements were also carried out on films that were nominally 50-70 nm thick. Over the temperature range from 300K down to 4.2K, the carrier concentration remained constant at approximately 6x10^18 cm-3 while the mobility increased from 480 cm^2/Vs to 900 cm^2/Vs. These results demonstrate that the HPCVD technique can be used to deposit Bi2Se3 films with structural and electrical properties comparable to films produced by molecular beam epitaxy.

  3. Aerosol physical, chemical and optical properties observed in the ambient atmosphere during haze pollution conditions

    NASA Astrophysics Data System (ADS)

    Li, Zhengqiang; Xie, Yisong; Li, Donghui; Li, Kaitao; Zhang, Ying; Li, Li; Lv, Yang; Qie, Lili; Xu, Hua

    Aerosol’s properties in the ambient atmosphere may differ significantly from sampling results due to containing of abundant water content. We performed sun-sky radiometer measurements in Beijing during 2011 and 2012 winter to obtain distribution of spectral and angular sky radiance. The measurements are then used to retrieve aerosol physical, chemical and optical properties, including single scattering albedo, size distribution, complex refractive indices and aerosol component fractions identified as black carbon, brown carbon, mineral dust, ammonium sulfate-like components and water content inside particle matters. We found that during winter haze condition aerosol is dominated by fine particles with center radius of about 0.2 micron. Fine particles contribute about 93% to total aerosol extinction of solar light, and result in serious decrease of atmospheric visibility during haze condition. The percentage of light absorption of haze aerosol can up to about 10% among its total extinction, much higher than that of unpolluted conditions, that causes significant radiative cooling effects suppressing atmospheric convection and dispersion of pollutants. Moreover, the average water content occupies about one third of the ambient aerosol in volume which suggests the important effect of ambient humidity in the formation of haze pollution.

  4. Effects of particle size distribution on some physical, chemical and functional properties of unripe banana flour.

    PubMed

    Savlak, Nazlı; Türker, Burcu; Yeşilkanat, Nazlıcan

    2016-12-15

    The objective of this study was to examine the effect of particle size distribution on physical, chemical and functional properties of unripe banana flour for the first time. A pure triploid (AAA group) of Musa acuminata subgroup Cavendish (°Brix;0.2, pH;4.73, titratable acidity; 0.56g/100g malic acid, total solids; 27.42%) which was supplied from Gazipaşa, Antalya, Turkey from October 2014 to October 2015 was used. Size fractions of <212, 212-315, 316-500 and 501-700μm were characterized for their physical, functional and antioxidant properties. Particle size significantly effected color, water absorbtion index and wettability. L(∗) value decreased, a(∗) and b(∗) values decreased by increasing particle size (r(2)=-0.94, r(2)=0.72, r(2)=0.73 respectively). Particles under 212μm had the lowest rate of wettability (83.40s). A negative correlation between particle size and wettability (r(2)=-0.75) and positive correlation between particle size and water absorption index (r(2)=0.94) was observed. PMID:27451170

  5. Physical-chemical characterization of Tunisian clays for the synthesis of geopolymers materials

    NASA Astrophysics Data System (ADS)

    Selmani, S.; Essaidi, N.; Gouny, F.; Bouaziz, S.; Joussein, E.; Driss, A.; Sdiri, A.; Rossignol, S.

    2015-03-01

    Natural clay materials from Tunisia were examined as an aluminosilicate source for the synthesis of consolidated materials at low temperatures. Three clay samples were collected from the El Kef, Douiret and Gafsa basins and calcined at different temperatures. All of the samples were characterized using chemical and mineralogical analyses, thermogravimetry, dilatometry, and Fourier transform infrared spectroscopy (FTIR) measurements. The chemical (XRF) and mineralogical analyses (XRD and FTIR) indicated that all of the samples contained various amounts of kaolinite and quartz, followed by calcite, mica, palygorskite and gypsum. Curing produced a binder which did not significantly affect the physic-chemical properties of these clays. The obtained materials heterogeneous did not reach the geopolymerization stage, most likely because of their low kaolinite content. The addition of a suitable aluminosilicate to these clays is therefore recommended to produce homogeneous consolidated geopolymers. The synthesized materials obtained after the addition of metakaolin to the formulation to improve reactivity have interesting properties, thereby providing good potential for Tunisian clays in the synthesis of geopolymers.

  6. Active Pharmaceutical Ingredients: Prediction of Physical-Chemical Properties from First Principles

    NASA Astrophysics Data System (ADS)

    Valenzano, Loredana

    2013-03-01

    Polymorphism in active pharmaceutical ingredients (APIs) plays a crucial role both for medical and intellectual property concerns but despite ongoing efforts, experimental and computational investigations of the existence and the physical-chemical properties of the same compound in different forms is still an open question.While comparison between computed and experimental values for properties derived from differences between states is often promising (such as bulk modulus), results are disappointing for absolute values (such as density). Quantum mechanical computational methods describe the systems at 0K, experimentally properties are often evaluated at room temperature. Therefore it is not surprising that results determined from first principles dramatically differ from those obtained experimentally. By applying a quantum mechanical periodic approach that takes into account long range London dispersion forces fitted for solid materials, and by imposing different cell volumes corresponding to different thermodynamic conditions, we show how results from calculations at 0K (structures, vibrational spectra, elastic constants) may be compared to experimental values at higher temperatures, helping to foster a stronger linkage between computational and experimental work on systems such as APIs. Where experimental results are not available, our work represents an innovative approach in addressing the properties of APIs. Our results can also serve as foundation for the developing of new force fields to be adopted within a multi-scale computational approach.

  7. Some physical chemical concepts relevant to coal science. [Dielectric relaxation studies of water present in coals

    SciTech Connect

    Neumann, R.M.

    1984-09-01

    This report discusses approaches to understanding certain physical and physical chemical properties of low-rank coals from a molecular perspective. Dielectric relaxation measurements are described which have identified two distinct modes of water incorporation in lignite. The theoretical aspects of dielectric relaxation are presented along with the experimental details. The need for performing vapor pressure measurements on lignite-water vapor equilibrium systems is examined. In recent years, many researchers have attempted to understand the macromolecular network in coal by means of techniques useful for studying bulk polymers. Here, the underlying theoretical ideas are presented for dynamic mechanical relaxation and rubber elasticity. Researchers have drawn inferences, from the measurement of viscoelastic properties of coals, about the molecular nature of the crosslinking in the organic network. Their conclusions are critically examined and suggestions are made as to how the experimental procedures might be improved. The interpretation of the temperature dependence of slag viscosity is a particularly vexing problem. Here, it is suggested that the theoretical methods used to describe the viscosity of molten glasses may be useful as a point of departure in characterizing slag viscosities. Finally, a brief outline of the Hildebrand theory of liquid-liquid miscibility is presented; the ideas relevent to understanding supercritical solvent extraction of coals in terms of the Hildebrand solubility parameter are discussed. 28 references, 22 figures.

  8. Chlorinated degreasing solvents: Physical-chemical properties affecting aquifer contamination and remediation

    SciTech Connect

    Jackson, R.E.; Dwarakanath, V.

    1999-09-30

    Chlorinated degreasing solvents are multicomponent liquids containing not only the chlorinated hydrocarbons with which their name is associated (e.g., trichloroethylene or [TCE], perchloroethylene or [PCE], 1,1,1-trichloroethane [TCA]) but also a number of organic additives included as corrosion inhibitors and antioxidants. The additives, such as 1,4-dioxane, are likely to be of significant public-health importance as ground water contaminants due to their toxicity, solubility, and mobility. Following their use in vapor degreasing systems by industry, chlorinated degreasing solvents will also contain about 25% solubilized oil and grease. A number of physical-chemical properties become especially important in the light of the multicomponent nature of these solvents. First, the higher aqueous solubility and lower sorption of the additives makes it reasonable to expect that faster moving plumes of these solvent additives will precede plumes of the chlorinated hydrocarbons. Second, due to high losses of chlorinated hydrocarbons by volatilization from vapor degreasers during years in the middle of the century, it is probable that background concentrations of these hydrocarbons are present in ground water flow systems due to their downwind washout. Finally, the solubilized oil and grease may cause profound changes to the wettability of aquifer materials contacted by the solvents during their subsurface migration. It is argued, therefore, that the wettability of aquifer materials contaminated by chlorinated degreasing solvents needs to be experimentally determined before remediation of DNAPL at each site, rather than being simply assumed as water wet.

  9. 76 FR 63304 - Guidance for Industry on Incorporation of Physical-Chemical Identifiers Into Solid Oral Dosage...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... labeling in a future guidance. In the Federal Register of July 14, 2009 (74 FR 34021), FDA announced the... recommendations on design considerations for incorporating physical-chemical identifiers (PCIDs) into solid oral... provides recommendations to pharmaceutical manufacturers on the following topics: (1) Design...

  10. Coupling physical chemical techniques with hydrotalcite-like compounds to exploit their structural features and new multifunctional hybrids with luminescent properties.

    PubMed

    Costantino, Umberto; Costantino, Ferdinando; Elisei, Fausto; Latterini, Loredana; Nocchetti, Morena

    2013-08-28

    Hydrotalcite-like compounds (HTlc), belonging to the large class of Layered Double Hydroxides (LDH), have excited wide interest owing to the incredible number of their potential and achieved applications in physical, chemical and bio-chemical fields. This perspective review deals with recent advances in the application of physical-chemical techniques for the study of HTlc structure and for the design and synthesis, using intercalation chemistry routes, of new hybrid materials. Firstly, a rapid survey on the most common synthetic strategies for the attainment of HTlc with different crystallinity degree and crystal size and for their modification to obtain hybrids has been made, and the use of coupled techniques (XRPD, luminescence, Solid State MAS NMR and Molecular Dynamics) to gain structural information is reported. Then, the design, synthesis and photophysical characterization of azoic dyes-intercalated and co-intercalated HTlc hybrid materials are described. Hybrids constituted of ZnAl-HTlc, co-intercalated with stearate anions and methyl orange or methyl yellow dyes, have been used as nanofillers of hydrophobic polymers. The polymeric nano-composites obtained have been characterized by means of XRPD patterns, Thermo-Gravimetric Analysis and Confocal Fluorescence Microscopy. This latter technique has been found to be an excellent, complementary and non-invasive tool to probe the dispersion degree of the fluorescent fillers into the polymeric matrices and their stability in the compounding process. Finally, the synthesis and spectroscopic characterization of nanoparticle (NP) decorated HTlc for advanced antimicrobial and photo-catalytic applications are also reported. The review terminates with a concluding short note and future trends. PMID:23812233

  11. Physical-Chemical Factors Affecting the Low Quality of Natural Water in the Khibiny Massif

    NASA Astrophysics Data System (ADS)

    Mazukhina, Svetlana; Masloboev, Vladimir; Chudnenko, Konstantin; Maksimova, Viktoriia; Belkina, Natalia

    2014-05-01

    One peculiarity of the Khibiny Massif is its spatial location. Rising over 1000 m above the surrounding hilly land and thus obstructing the passage of air masses, it promotes condensation and accumulation of surface and underground water. Annual precipitation here amounts to 600-700 mm in the valleys and up to 1600 mm on mountainous plateaus. Using this water for drinking and household purposes is problematic due to excess Al and F concentrations and high pH values. Now it is known that in its profile, the Massif is represented by three hydrogeological subzones: the upper (aerated), medium and lower ones. The upper subzone spreads throughout the Massif and is affected by the local drainage network and climatic conditions. The medium subzone is permanently saturated with underground water flowing horizontally to sites of discharge at the level of local river valleys and lakes. The fissure-vein water in the lower subzone is confined to tectonic fractures and faults in the so far underexplored, deeper parts of the Massif. Being abundant, this water ascends under high pressure. At places, water has been observed spurting from as deep as 700 m, and even 960 m. In the latter case, the temperature of ascending water was higher than 18 centigrade (Hydrogeology of the USSR, V. 27, 1971). This work was undertaken to reveal the nature of the low quality of water in the Khibiny by using physical-chemical modeling (software package Selector, Chudnenko, 2010). Processes of surface and underground water formation in the Khibiny were examined within a physical-chemical model (PCM) of the "water-rock-atmosphere-hydrogen" system. In a multi-vessel model used, each vessel represented a geochemical level of the process interpreted as spatiotemporal data - ξ (Karpov, 1981). The flow reactor consisted of 4 tanks. In the first tank, water of the Kuniok River (1000 L) interacted with atmosphere and an organic substance. The resulting solution proceeded to tanks 2-4 containing with

  12. Physical-chemical characterization of binary systems of metformin hydrochloride with triacetyl-beta-cyclodextrin.

    PubMed

    Corti, Giovanna; Capasso, Gaetano; Maestrelli, Francesca; Cirri, Marzia; Mura, Paola

    2007-11-01

    Interaction products of metformin hydrochloride (MF.HCl), an oral anti-hyperglycaemic agent highly soluble in water, with triacetyl-beta-cyclodextrin (TAbetaCyD), a hydrophobic CyD derivative practically insoluble in water, were prepared to evaluate their suitability for the development of a sustained-release dosage form of the drug. Equimolar MF.HCl-TAbetaCyD solid compounds were obtained by different techniques, i.e., physical mixing, kneading, co-grinding, sealed-heating, and spray-drying, in order to investigate and compare their effectiveness and influence on the physical-chemical properties of the final products. Differential scanning calorimetry, X-ray powder diffractometry, Fourier transform infrared spectroscopy and scanning electron microscopy were used for the solid-state characterization of the different MF.HCl-TAbetaCyD systems, whereas their in vitro dissolution properties were determined according to the dispersed amount method. According to the results of solid-state studies, the ability of the different preparation methods to promote effective interactions between drug and CyD varied in the order: spray-drying>co-grinding>kneading>sealed-heating approximately physical mixing. The same effectiveness rank order was observed also in dissolution studies. In fact the time to dissolve 100% drug varied increased from 1 min, for pure drug, to 3, 7, 40, 120 up to 420 min for physically mixed, sealed-heated, kneaded, co-ground and spray-dried products, respectively. Thus the drug-TA(CyD products obtained by spray drying and co-grinding were selected as the best candidates for the future development of a suitable prolonged-release oral dosage form of MF.HCl. PMID:17822867

  13. Temporal changes in physical, chemical and biological sediment parameters in a tropical estuary after mangrove deforestation

    NASA Astrophysics Data System (ADS)

    Ellegaard, Marianne; Nguyen, Ngoc Tuong Giang; Andersen, Thorbjørn Joest; Michelsen, Anders; Nguyen, Ngoc Lam; Doan, Nhu Hai; Kristensen, Erik; Weckström, Kaarina; Son, Tong Phuoc Hoang; Lund-Hansen, Lars Chresten

    2014-04-01

    Dated sediment cores taken near the head and mouth of a tropical estuary, Nha-Phu/Binh Cang, in south central Viet Nam were analyzed for changes over time in physical, chemical and biological proxies potentially influenced by removal of the mangrove forest lining the estuary. A time-series of satellite images was obtained, which showed that the depletion of the mangrove forest at the head of the estuary was relatively recent. Most of the area was converted into aquaculture ponds, mainly in the late 1990's. The sediment record showed a clear increase in sedimentation rate at the head of the estuary at the time of mangrove deforestation and a change in diatom assemblages in the core from the mouth of the estuary indicating an increase in the water column turbidity of the entire estuary at the time of the mangrove deforestation. The proportion of fine-grained sediment and the δ13C signal both increased with distance from the head of the estuary while the carbon content decreased. The nitrogen content and the δ15N signal were more or less constant throughout the estuary. The proportion of fine-grained material and the chemical proxies were more or less stable over time in the core from the mouth while they varied synchronously over time in the core from the head of the estuary. The sediment proxies combined show that mangrove deforestation had large effects on the estuary with regard to both the physical and chemical environment with implications for the biological functioning.

  14. A monolithic 3D integrated nanomagnetic co-processing unit

    NASA Astrophysics Data System (ADS)

    Becherer, M.; Breitkreutz-v. Gamm, S.; Eichwald, I.; Žiemys, G.; Kiermaier, J.; Csaba, G.; Schmitt-Landsiedel, D.

    2016-01-01

    As CMOS scaling becomes more and more challenging there is strong impetus for beyond CMOS device research to add new functionality to ICs. In this article, a promising technology with non-volatile ferromagnetic computing states - the so-called Perpendicular Nanomagnetic Logic (pNML) - is reviewed. After introducing the 2D planar implementation of NML with magnetization perpendicular to the surface, the path to monolithically 3D integrated systems is discussed. Instead of CMOS substitution, additional functionality is added by a co-processor architecture as a prospective back-end-of-line (BEOL) process, where the computing elements are clocked by a soft-magnetic on-chip inductor. The unconventional computation in the ferromagnetic domain can lead to highly dense computing structures without leakage currents, attojoule dissipation per bit operation and data-throughputs comparable to state-of-the-art high-performance CMOS CPUs. In appropriate applications and with specialized computing architectures they might even circumvent the bottleneck of time-consuming memory access, as computation is inherently performed with non-volatile computing states.

  15. Microbial community diversity and physical-chemical features of the Southwestern Atlantic Ocean.

    PubMed

    Alves Junior, Nelson; Meirelles, Pedro Milet; de Oliveira Santos, Eidy; Dutilh, Bas; Silva, Genivaldo G Z; Paranhos, Rodolfo; Cabral, Anderson S; Rezende, Carlos; Iida, Tetsuya; de Moura, Rodrigo L; Kruger, Ricardo Henrique; Pereira, Renato C; Valle, Rogério; Sawabe, Tomoo; Thompson, Cristiane; Thompson, Fabiano

    2015-03-01

    Microbial oceanography studies have demonstrated the central role of microbes in functioning and nutrient cycling of the global ocean. Most of these former studies including at Southwestern Atlantic Ocean (SAO) focused on surface seawater and benthic organisms (e.g., coral reefs and sponges). This is the first metagenomic study of the SAO. The SAO harbors a great microbial diversity and marine life (e.g., coral reefs and rhodolith beds). The aim of this study was to characterize the microbial community diversity of the SAO along the depth continuum and different water masses by means of metagenomic, physical-chemical and biological analyses. The microbial community abundance and diversity appear to be strongly influenced by the temperature, dissolved organic carbon, and depth, and three groups were defined [1. surface waters; 2. sub-superficial chlorophyll maximum (SCM) (48-82 m) and 3. deep waters (236-1,200 m)] according to the microbial composition. The microbial communities of deep water masses [South Atlantic Central water, Antarctic Intermediate water and Upper Circumpolar Deep water] are highly similar. Of the 421,418 predicted genes for SAO metagenomes, 36.7 % had no homologous hits against 17,451,486 sequences from the North Atlantic, South Atlantic, North Pacific, South Pacific and Indian Oceans. From these unique genes from the SAO, only 6.64 % had hits against the NCBI non-redundant protein database. SAO microbial communities share genes with the global ocean in at least 70 cellular functions; however, more than a third of predicted SAO genes represent a unique gene pool in global ocean. This study was the first attempt to characterize the taxonomic and functional community diversity of different water masses at SAO and compare it with the microbial community diversity of the global ocean, and SAO had a significant portion of endemic gene diversity. Microbial communities of deep water masses (236-1,200 m) are highly similar, suggesting that these water

  16. Depleted uranium dust from fired munitions: physical, chemical and biological properties.

    PubMed

    Mitchel, R E J; Sunder, S

    2004-07-01

    This paper reports physical, chemical and biological analyses of samples of dust resulting from munitions containing depleted uranium (DU) that had been live-fired and had impacted an armored target. Mass spectroscopic analysis indicated that the average atom% of U was 0.198 +/- 0.10, consistent with depleted uranium. Other major elements present were iron, aluminum, and silicon. About 47% of the total mass was particles with diameters <300 microm, of which about 14% was <10 microm. X-ray diffraction analysis indicated that the uranium was present in the sample as uranium oxides-mainly U3O7 (47%), U3O8 (44%) and UO2 (9%). Depleted uranium dust, instilled into the lungs or implanted into the muscle of rats, contained a rapidly soluble uranium component and a more slowly soluble uranium component. The fraction that underwent dissolution in 7 d declined exponentially with increasing initial burden. At the lower lung burdens tested (<15 microg DU dust/lung) about 14% of the uranium appeared in urine within 7 d. At the higher lung burdens tested (~80-200 microg DU dust/lung) about 5% of the DU appeared in urine within 7 d. In both cases about 50% of that total appeared in urine within the first day. DU implanted in muscle similarly showed that about half of the total excreted within 7 d appeared in the first day. At the lower muscle burdens tested (<15 microg DU dust/injection site) about 9% was solubilized within 7 d. At muscle burdens >35 microg DU dust/injection site about 2% appeared in urine within 7 d. Natural uranium (NU) ore dust was instilled into rat lungs for comparison. The fraction dissolving in lung showed a pattern of exponential decline with increasing initial burden similar to DU. However, the decline was less steep, with about 14% appearing in urine for lung burdens up to about 200 microg NU dust/lung and 5% at lung burdens >1,100 microg NU dust/lung. NU also showed both a fast and a more slowly dissolving component. At the higher lung burdens of both

  17. Suitability of Gray Water for Hydroponic Crop Production Following Biological and Physical Chemical and Biological Subsystems

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Harper, Lynn D.; Wignarajah, Kanapathipillai; Greene, Catherine

    1994-01-01

    The water present in waste streams from a human habitat must be recycled in Controlled Ecological Life Support Systems (CELSS) to limit resupply needs and attain self-sufficiency. Plants play an important role in providing food, regenerating air, and producing purified water via transpiration. However, we have shown that the surfactants present in hygiene waste water have acute toxic effects on plant growth (Bubenheim et al. 1994; Greene et al., 1994). These phytotoxic affects can be mitigated by allowing the microbial population on the root surface to degrade the surfactant, however, a significant suppression (several days) in crop performance is experienced prior to reaching sub-toxic surfactant levels and plant recovery. An effective alternative is to stabilize the microbial population responsible for degradation of the surfactant on an aerobic bioreactor and process the waste water prior to utilization in the hydroponic solution (Wisniewski and Bubenheim, 1993). A sensitive bioassay indicates that the surfactant phytotoxicity is suppressed by more than 90% within 5 hours of introduction of the gray water to the bioreactor; processing for more than 12 hours degrades more than 99% of the phytotoxin. Vapor Compression Distillation (VCD) is a physical / chemical method for water purification which employees sequential distillation steps to separate water from solids and to volatilize contaminants. The solids from the waste water are concentrated in a brine and the pure product water (70 - 90% of the total waste water volume depending on operating conditions) retains non of the phytotoxic effects. Results of the bioassay were used to guide evaluations of the suitability of recovered gray water following biological and VCD processing for hydroponic lettuce production in controlled environments. Lettuce crops were grown for 28 days with 100% of the input water supplied with recovered water from the biological processor or VCD. When compared with the growth of plants

  18. Physical, Chemical, and Mineralogical Properties of Comet 81P/Wild 2 Particles Collected by Stardust

    SciTech Connect

    Flynn, G.

    2008-01-01

    NASA's Stardust spacecraft collected dust from the coma of Comet 81P/Wild 2 by impact into aerogel capture cells or into Al-foils. The first direct, laboratory measurement of the physical, chemical, and mineralogical properties of cometary dust grains ranging from <10-15 to ?10-4 g were made on this dust. Deposition of material along the entry tracks in aerogel and the presence of compound craters in the Al-foils both indicate that many of the Wild 2 particles in the size range sampled by Stardust are weakly bound aggregates of a diverse range of minerals. Mineralogical characterization of fragments extracted from tracks indicates that most tracks were dominated by olivine, low-Ca pyroxene, or Fe-sulfides, although one track was dominated by refractory minerals similar to Ca-Al inclusions in primitive meteorites. Minor mineral phases, including Cu-Fe-sulfide, Fe-Zn-sulfide, carbonate and metal oxides, were found along some tracks. The high degree of variability of the element/Fe ratios for S, Ca, Ti, Cr, Mn, Ni, Cu, Zn, and Ga among the 23 tracks from aerogel capture cells analyzed during Stardust Preliminary Examination is consistent with the mineralogical variability. This indicates Wild 2 particles have widely varying compositions at the largest size analyzed (>10 ?m). Because Stardust collected particles from several jets, sampling material from different regions of the interior of Wild 2, these particles are expected to be representative of the non-volatile component of the comet over the size range sampled. Thus, the stream of particles associated with Comet Wild 2 contains individual grains of diverse elemental and mineralogical compositions, some rich in Fe and S, some in Mg, and others in Ca and Al. The mean refractory element abundance pattern in the Wild 2 particles that were examined is consistent with the CI meteorite pattern for Mg, Si, Cr, Fe, and Ni to 35%, and for Ca, Ti and Mn to 60%, but S/Si and Fe/Si both show a statistically significant

  19. Novel flame retardants: Estimating the physical-chemical properties and environmental fate of 94 halogenated and organophosphate PBDE replacements.

    PubMed

    Zhang, Xianming; Sühring, Roxana; Serodio, Daniela; Bonnell, Mark; Sundin, Nils; Diamond, Miriam L

    2016-02-01

    In the wake of the listing by the Stockholm Convention of PBDEs, an increasing number of "novel" flame retardants (NFRs) are being used in products. The properties that make for desirable flame retardants can also lead to negative health effects, long environmental residence times and an affinity for organic matrices. While NFRs are currently in use, little information is available regarding their physical-chemical properties and environmental fate. In this study, 94 halogenated and organophosphate NFRs were evaluated for their persistence and long-range transport potential. Physical-chemical properties (namely liquid sub-cooled vapor pressure P(l) and solubility S(l), air-water (K(AW)), octanol-water (K(OW)), and octanol-air (K(OA)) partition coefficients) of the NFRs were predicted using three chemical property estimation tools: EPI Suite, SPARC and Absolv. Physical-chemical properties predicted using these tools were generally within 10(2)-10(3) for compounds with molecular weight < 800 g/mol. Estimated physical-chemical properties of compounds with >800 g/mol, and/or the presence of a heteroatom and/or a polar functional group could deviate by up to 10(12). According to the OECD P(OV) and LRTP Screening Tool, up to 40% of the NFRs have a persistence and/or long range transport potential of medium to high level of concern and up to 60% have persistence and or long range transport potential similar to the PBDEs they are replacing. Long range transport potential could be underestimated by the OECD model since the model under-predicts long range transport potential of some organophosphate compounds. PMID:26613357

  20. Alternative Processes for Water Reclamation and Solid Waste Processing in a Physical/chemical Bioregenerative Life Support System

    NASA Technical Reports Server (NTRS)

    Rogers, Tom D.

    1990-01-01

    Viewgraphs on alternative processes for water reclamation and solid waste processing in a physical/chemical-bioregenerative life support system are presented. The main objective is to focus attention on emerging influences of secondary factors (i.e., waste composition, type and level of chemical contaminants, and effects of microorganisms, primarily bacteria) and to constructively address these issues by discussing approaches which attack them in a direct manner.

  1. Exploration of Novel Co-processed Multifunctional Diluent for the Development of Tablet Dosage Form.

    PubMed

    Gohel, M C; Patel, T M; Parikh, R K; Parejiya, P B; Barot, B S; Ramkishan, A

    2012-09-01

    The aim of this investigation was to develop a novel multifunctional co-processed diluent consisting of microcrystalline cellulose (Avicel PH 102), crospovidone (Polyplasdone XL) and polyethylene glycol 4000. Colloidal silicon dioxide and talc were also incorporated as minor components in the diluent to improve tableting properties. Melt granulation was adopted for preparation of co-processed diluent. Percentage of Avicel PH 102, Polyplasdone XL and polyethylene glycol 4000 were selected as independent variables and disintegration time was chosen as a dependent variable in simplex lattice design. The co-processed diluent was characterised for angle of repose, bulk density, tapped density, Carr's index, percentage of fines and dilution potential study. Acetaminophen and metformin were used as poorly compressible model drugs for preparation of tablets. The blend of granules of drug and extra-granular co-processed diluent exhibited better flow as compared to the blend of drug granules and physical mixture of diluents blend. The diluent exhibited satisfactory tableting properties. The tablets exhibited fairly rapid drug release. In conclusion, melt granulation is proposed as a method of preparing co-processed diluent. The concept can be used to bypass patents on excipient manufacturing. PMID:23716865

  2. Monitoring and physical-chemical modeling of conditions of natural surface and underground waters forming in the Kola North.

    PubMed

    Mazukhina, Svetlana I; Masloboev, Vladimir A; Chudnenko, Konstantin V; Bychinsky, Valeriy A; Svetlov, Anton V; Muraviev, Sergey V

    2012-01-01

    Processes of surface and underground water forming in the Khibiny massif have been studied using a physical-chemical model of the "water-rock-atmosphere-organic substance" system. The obtained model solutions are indicative of the fact that formation of surface and underground water of the Khibiny massif takes place on the whole in the framework of the considered system without attracting a hypothetical outside source of pollutants. The results are of practical and methodological importance for assessment of prediction of the man-induced impact on water systems in conditions of Subarctic. PMID:22416860

  3. Near infrared spectra are more sensitive to land use changes than physical, chemical and biological soil properties

    NASA Astrophysics Data System (ADS)

    Guerrero, C.; Zornoza, R.; Mataix-Solera, J.; Mataix-Beneyto, J.; Scow, K.

    2009-04-01

    We studied the sensibility of the near infrared spectra (NIR) of soils to the changes caused by land use, and we compared with the sensibility of different sets of physical, chemical and biological soil properties. For this purpose, we selected three land uses, constituted by forest, almond trees orchards, and orchards abandoned between 10 and 15 years previously to sampling. Sampling was carried out in four different locations from the province of Alicante (SE Spain). We used discriminant analysis (DA) using different sets of soil properties. The different sets tested in this study using DA were: (1) physical and chemical properties (organic carbon, total nitrogen, available phosphorus, pH, electrical conductivity, cation exchange capacity, aggregate stability, water holding capacity, and available Ca, Mg, K and Na), (2) biochemical properties (microbial biomass carbon, basal respiration and urease, phosphatase and β-glucosidase activities), (3) phospholipids fatty acids (PLFAs), (4) physical, chemical and biochemical properties (all properties of the previous sets), and (5) the NIR spectra of soils (scores of the principal components). In general, all sets of properties were sensible to land use. This was observed in the DAs by the separation (more or less clear) of samples in groups defined by land use (irrespective of site). The worst results were obtained using soil physical and chemical properties. The combination of physical, chemical and biological properties enhanced the separation of samples in groups, indicating higher sensibility. It is accepted than combination of properties of different nature is more effective to evaluate the soil quality. The microbial community structure (PLFAs) was highly sensible to the land use, grouping correctly the 100% of the samples according with the land use. The NIR spectra were also sensitive to land use. The scores of the first 5 components, which explained 99.97% of the variance, grouped correctly the 85% of the soil

  4. PHYSICAL/CHEMICAL TREATMENT OF BLAST FURNACE WASTEWATERS USING MOBILE PILOT UNITS

    EPA Science Inventory

    The report documents an in-depth pilot-plant investigation of the applicability of advanced waste treatment methods for upgrading ironmaking blast furnace wastewaters to Best Available Technology Economically Achievable (BATEA) levels. Mobile treatments facilities, designed to op...

  5. Experimental and modeling studies of the hybrid physical-chemical vapor deposition of superconducting magnesium diboride thin films

    NASA Astrophysics Data System (ADS)

    Lamborn, Daniel Ray

    MgB2, with a Tc of 39 K, is a promising material for superconducting electronics and high field magnet applications. The development of deposition processes for MgB2 has been hampered by the unusually high Mg overpressure required for phase stability at elevated temperatures. Hybrid physical-chemical vapor deposition (HPCVD), a process developed at Penn State, combines thermal decomposition of B2H6 gas with an evaporative Mg flux to deposit MgB2 and is able to provide sufficient Mg overpressure for high temperature MgB2 growth. The HPCVD process does, however, have limitations arising from the original reactor configuration. The substrate and Mg supply are heated on the same inductively heated susceptor, which prevents independent temperature control and limits both the size of substrates and the amount of Mg available for growth. This in turn limits the usable range of deposition parameters such as substrate temperature and restricts the growth time which is problematic for thick films and coatings. The goals of this study were to develop an improved understanding of the HPCVD deposition process and design a new HPCVD reactor that addresses and improves upon the limitations of the original configuration. A combination of computational fluid dynamics simulations and growth experiments were used to study the HPCVD process in the original reactor. A transport and chemistry model for the growth of boron films from B2H6 was developed and used to evaluate new reactor configurations. The simple chemistry model consists of the gas-phase decomposition of B2H6 to BH 3, the adsorption of BH3 onto an activated site to form a BH2-Site complex and the transformation of the complex into a boron film and the growth rates from this model were in quantitative agreement with experimental data. A vertical dual-heater reactor configuration which was interchangeable with the original configuration was then developed to provide independent temperature control of the substrate and Mg

  6. Physical/chemical closed-loop water-recycling for long-duration missions

    NASA Technical Reports Server (NTRS)

    Herrmann, Cal C.; Wydeven, Ted

    1990-01-01

    Water needs, water sources, and means for recycling water are examined in terms appropriate to the water quality requirements of a small crew and spacecraft intended for long duration exploration missions. Inorganic, organic, and biological hazards are estimated for waste water sources. Sensitivities to these hazards for human uses are estimated. The water recycling processes considered are humidity condensation, carbon dioxide reduction, waste oxidation, distillation, reverse osmosis, pervaporation, electrodialysis, ion exchange, carbon sorption, and electrochemical oxidation. Limitations and applications of these processes are evaluated in terms of water quality objectives. Computerized simulation of some of these chemical processes is examined. Recommendations are made for development of new water recycling technology and improvement of existing technology for near term application to life support systems for humans in space. The technological developments are equally applicable to water needs on earth, in regions where extensive water ecycling is needed or where advanced water treatment is essential to meet EPA health standards.

  7. Physical, Chemical and Biological Characteristics in Habitats of High and Low Presence of Anopheline Larvae in Western Kenya Highlands

    PubMed Central

    Ndenga, Bryson A.; Simbauni, Jemimah A.; Mbugi, Jenard P.; Githeko, Andrew K.

    2012-01-01

    Background Characteristics of aquatic habitats determine whether mosquitoes will oviposit, hatch, develop, pupate and successfully emerge into adults or not, thus influencing which mosquito species will occupy a habitat. This study determined whether physiochemical and biological characteristics differ between habitats with high and low presence of anopheline larvae. Methods Physical, chemical and biological characteristics were evaluated in selected habitats twice per month within three highland valleys in western Kenya. Aquatic macro-organisms were sampled using a sweep-net. Colorimetric methods were used to determine levels of iron, phosphate, nitrate, ammonium and nitrite in water samples. Generalized Estimating Equations (GEE) was used to compare parameters between the two categories of anopheline presence. Results Habitats with high anopheline presence had greater abundance of mosquito aquatic stages and tadpoles and two times more levels of nitrate in water, whereas habitats with low anopheline presence had wider biofilm cover and higher levels of iron in water. Conclusion Habitats of high and low presence of anopheline larvae, which differed in a number of physical, chemical and biological characteristics, were identified in valleys within western Kenya highlands. Differences in habitat characteristics are critical in determining the number of anopheline larvae that will fully develop and emerge into adults. PMID:23110145

  8. Phytoplankton and physical-chemical conditions in selected rivers and the coastal zone of Lake Michigan, 1972

    SciTech Connect

    Schelske, C.L.; Feldt, L.E.; Simmons, M.S.

    1980-01-01

    A very large data set was obtained on the nearshore environment of Lake Michigan during 1972. The data set is probably unique in that samples were collected and analyzed for a number of physical-chemical parameters and for phytoplankton standing crop and species composition. Phytoplankton identified during the study totaled 431 taxa of which 306 were diatoms, which serves to illustrate the magnitude of available data. Results are presented for eleven different transects sampled in April and for three of these transects which were sampled in September. In addition, transects for the St. Joseph, Kalamazoo, and Grand Rivers were sampled four or five times and each of these rivers were sampled from seven to eleven times in July. Data collected with depth presented in this report include water temperature. Secchi disc transparency, pH, specific conductance, dissolved reactive silica, nitrate nitrogen, and total phosphorus as physical-chemical variables. On transects samples with depth were obtained at stations 0, .2, .8, 1.6, 3.2, 6.4, 13, 26, and 52 km from shore, although the stations from 13 to 52 km were not sampled on every transect. Data related to phytoplankton include species composition and abundance, species diversity, chlorophyll a, and rates of carbon fixation. All these data were obtained only at 2 meters.

  9. [Changes of soil physical, chemical and ecological factors under mechanized cultivation].

    PubMed

    Xia, Ping

    2002-03-01

    Three-years agricultural mechanization extension project in Huang-Huai-Hai regions showed that the application of comprehensive agricultural technologies which included the return of straw and stalk to field by mechanization, deep application of fertilizer, deep plough and soil no-tillage with mulch, had an obvious biological effects. In comparing with traditional cultivation, the comprehensive mechanized cultivation could decrease soil bulk density by 0.08 g.cm-3, increase soil organic mater by 12%, improve moisture utilization by 10.1-13.6%, and increase the grain yields of wheat and corn by 1218 kg.hm-2. PMID:12132162

  10. Guidelines for measuring the physical, chemical, and biological condition of wilderness ecosystems. General technical report (Final)

    SciTech Connect

    Fox, D.G.; Bernabo, J.C.; Hood, B.

    1987-11-01

    Guidelines include a large number of specific measures to characterize the existing condition of wilderness resources. Measures involve the atmospheric environment, water chemistry and biology, geology and soils, and flora. Where possible, measures are coordinated with existing long-term monitoring programs. Application of the measures will allow more effective evaluation of proposed new air-pollution sources.

  11. Bench-scale co-processing. Quarterly report No. 11, October 1, 1990--December 31, 1990

    SciTech Connect

    Piasecki, C.A.; Gatsis, J.G.

    1992-02-19

    The objective of this contract is to extend and optimize UOP`s single-stage, slurry-catalyzed co-processing scheme. The particular emphasis is one evaluating alternative and disposable slurry-catalyst systems. During the current quarter, Lloydminster vacuum resid was processed without the presence of coal. The objective of this study was to evaluate the manner in which the resid is upgraded at high-severity conditions to help understand the function of the resid during co-processing. This report coves Bench-Scale Runs 30 to 34. In Runs 30 to 34, Lloydminster vacuum resid was processed without the presence of coal using a 0.05 wt % molybdenum-based catalyst at 465{degrees}C.

  12. Coupling centrality and authority of co-processing model on complex networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhanli; Li, Huibin

    2016-04-01

    Coupling centrality and authority of co-processing model on complex networks are investigated in this paper. As one crucial factor to determine the processing ability of nodes, the information flow with potential time lag is modeled by co-processing diffusion which couples the continuous time processing and the discrete diffusing dynamics. Exact results on master equation and stationary state are obtained to disclose the formation. Considering the influence of a node to the global dynamical behavior, coupling centrality and authority are introduced for each node, which determine the relative importance and authority of nodes in the diffusion process. Furthermore, the experimental results on large-scale complex networks confirm our analytical prediction.

  13. New singlet oxygen donors based on naphthalenes: synthesis, physical chemical data, and improved stability.

    PubMed

    Klaper, Matthias; Linker, Torsten

    2015-06-01

    Singlet oxygen donors are of current interest for medical applications, but suffer from a short half-life leading to low singlet oxygen yields and problems with storage. We have synthesized more than 25 new singlet oxygen donors based on differently substituted naphthalenes in only a few steps. The influence of functional groups on the reaction rate of the photooxygenations, thermolysis, half-life, and singlet oxygen yield has been thoroughly studied. We determined various thermodynamic data and compared them with density functional calculations. Interestingly, remarkable stabilities of functional groups during the photooxygenations and stabilizing effects for some endoperoxides during the thermolysis have been found. Furthermore, we give evidence for a partly concerted and partly stepwise thermolysis mechanism leading to singlet and triplet oxygen, respectively. Our results might be interesting for "dark oxygenations" and future applications in medicine. PMID:25919359

  14. Chemical and toxicologic characterization of co-processing and two-stage direct coal liquefaction materials

    SciTech Connect

    Wright, C.W.; Stewart, D.L.; Mahlum, D.D.; Chess, E.K.; Wilson, B.W.

    1986-03-01

    Recent advances in coal liquefaction have included two-stage direct coal liquefaction processes and petroleum resid/coal co-processing technology. Two-stage coal liquefaction processes are generally comprised of a first-stage thermal or liquefaction reactor followed by a second-stage hydrogenation step. Petroleum resids and coal are simultaneously converted to liquefaction products in co-processing technology. The purpose of this paper is to report the prelimianry results of the chemical analysis and toxicological testing of a coal liquefaction co-processing sample set, and to compare these results to those obtained from two-stage coal liquefaction materials. Samples were chemically characterized by chemical class fractionation, gas chromatography, gas chromatography-mass spectrometry, and low-voltage probe-inlet mass spectrometry. Toxicological activity was measured using the standard histidine reversion microbial mutagenicity test and an initiation/promotion assay for mouse skin tumorigenesis. A brief description of these methods are presented and results are discussed. 9 refs., 2 figs., 3 tabs.

  15. An electrochromic painter's palette: color mixing via solution co-processing.

    PubMed

    Bulloch, Rayford H; Kerszulis, Justin A; Dyer, Aubrey L; Reynolds, John R

    2015-01-28

    Electrochromic polymers (ECPs) have been shown to be synthetically tunable, producing a full palette of vibrantly colored to highly transmissive polymers. The development of these colored-to-transmissive ECPs employed synthetic design strategies for broad color targeting; however, due to the subtleties of color perception and the intricacies of polymer structure and color relationships, fine color control is difficult. In contrast, color mixing is a well-established practice in the printing industry. We have identified three colored-to-transmissive switching electrochromic polymers, referred to as ECP-Cyan (ECP-C), ECP-Magenta (ECP-M), and ECP-Yellow (ECP-Y), which, via the co-processing of multicomponent ECP mixtures, follow the CMY color mixing model. The presented work qualitatively assesses the thin film characteristics of solution co-processed ECP mixtures. To quantitatively determine the predictability of the color properties of ECP mixtures, we estimated mass extinction coefficients (εmass) from solution spectra of the CMY ECPs and compared the estimated and experimentally observed color values of blends via a calculated color difference (ΔEab). The values of ΔEab range from 8 to 26 across all mixture compositions, with an average value of 15, representing a reasonable degree of agreement between predicted and observed color values. We demonstrate here the ability to co-process ECP mixtures into vibrantly colored, visually continuous films and the ability to estimate the color properties produced in these mixed ECP films. PMID:25580827

  16. High-field properties of carbon-doped MgB2 thin films by hybrid physical-chemical vapor deposition using different carbon sources

    NASA Astrophysics Data System (ADS)

    Dai, Wenqing; Ferrando, V.; Pogrebnyakov, A. V.; Wilke, R. H. T.; Chen, Ke; Weng, Xiaojun; Redwing, Joan; Wung Bark, Chung; Eom, Chang-Beom; Zhu, Y.; Voyles, P. M.; Rickel, Dwight; Betts, J. B.; Mielke, C. H.; Gurevich, A.; Larbalestier, D. C.; Li, Qi; Xi, X. X.

    2011-12-01

    We have studied the high-field properties of carbon-doped MgB2 thin films prepared by hybrid physical-chemical vapor deposition (HPCVD). Carbon doping was accomplished by adding carbon-containing gas, such as bis(methylcyclopentadienyl)magnesium and trimethylboron, into the hydrogen carrier gas during the deposition. In both cases, Tc drops slowly and residual resistivity increases considerably with carbon doping. Both the a and c lattice constants increase with carbon content in the films, a behavior different from that of bulk carbon-doped MgB2 samples. The films heavily doped with trimethylboron show very high parallel Hc2 over 70 T at low temperatures and a large temperature derivative -\\rmd H_{ {c2}}^{\\parallel } /\\rmd T near Tc. These behaviors are found to depend on the unique microstructure of the films, which consists of MgB2 layers a few-nanometers thick separated by non-superconducting MgB2C2 layers. This leads to an increase in the parallel Hc2 by the geometrical effect, which is in addition to the significant enhancement of Hc2 due to changes in the scattering rates within and between the two bands present in films doped using both carbon sources. The high Hc2 and high-field Jc(H) values observed in this work are very promising for the application of MgB2 in high magnetic fields.

  17. Fortification with iron chelate and substitution of sucrose by sucralose in light uvaia sherbet (Eugenia pyriformis Cambess): physical, chemical and sensory characteristics.

    PubMed

    Giarola, Tales Márcio de Oliveira; Pereira, Cristina Guimarães; de Resende, Jaime Vilela

    2015-09-01

    In this work, iron fortified light uvaia sherbet, with low sucrose content, was developed and its physical, chemical and sensory characteristics were evaluated. The central composite rotational design (CCRD), applicable to the response surface methodology, was used to analyze the formulations. In the formulations, in addition of iron fortification (9 to 15 mg/100 g), the sucrose was substituted by micronized sucralose in a proportion of 66-94 %. The responses were analyzed with respect to changes in pH, total solids, ash, carbohydrates, proteins, calories, overrun, nucleation and thawing temperatures, rheological parameters and sensory attributes. Protein contents and acidity were similar in all formulations. There was a reduction of over 25 % in the caloric value. The rheological results showed pseudoplastic behavior and significant viscosity differences among the tested sherbets. In the overrun and thawing behavior results the sucrose concentration had a significant influence as the formulations with substitution by 28 g of sucralose/kg of sucrose showed greater air incorporation. In the flavor attribute there was not significance in relation to the iron fortification. Sherbets prepared with substitution of sucrose by sucralose and fortified with iron showed good acceptability, more stability and more resistant to thawing. PMID:26344966

  18. Analysis of physical-chemical processes governing SSME internal fluid flows

    NASA Technical Reports Server (NTRS)

    Singhal, A. K.; Owens, S. F.; Mukerjee, T.; Keeton, L. W.; Prakash, C.; Przekwas, A. J.

    1984-01-01

    The efforts to adapt CHAM's computational fluid dynamics code, PHOENICS, to the analysis of flow within the high pressure fuel turbopump (HPFTP) aft-platform seal cavity of the SSME are summarized. In particular, the special purpose PHOENICS satellite and ground station specifically formulated for this application are listed and described, and the preliminary results of the first part two-dimensional analyses are presented and discussed. Planned three-dimensional analyses are also briefly outlined. To further understand the mixing and combustion processes in the SSME fuelside preburners, a single oxygen-hydrogen jet element was investigated.

  19. Preparation, physical-chemical and biological characterization of chitosan nanoparticles loaded with lysozyme.

    PubMed

    Piras, Anna Maria; Maisetta, Giuseppantonio; Sandreschi, Stefania; Esin, Semih; Gazzarri, Matteo; Batoni, Giovanna; Chiellini, Federica

    2014-06-01

    A commercially available chitosan (CS) was employed in the formulation of nanoparticles loaded with lysozyme (LZ) as antimicrobial protein drug model. Due to the variability of commercially available batches of chitosans and to the strict dependence of their physical and biological properties to the molecular weight (Mw) and deacetylation degree (DD) of the material, the CS was fully characterized resulting in weight-average molecular weight of 108,120g/mol and DD of 92%. LZ-loaded nanoparticles (LZ-NPs) of 150nm diameter were prepared by inotropic gelation. The nanoparticles were effectively preserving the antibacterial activity of the loaded enzyme, which was slowly released over 3 weeks in vitro and remained active toward Staphylococcus epidermidis up to 5 days of incubation. Beyond the intrinsic antibacterial activity of CS and LZ, the LZ-NPs evidenced a sustained antibacterial activity that resulted in about 2 log reduction of the number of viable S. epidermidis compared to plain CS nanoparticles. Furthermore, the LZ-NPs showed a full in vitro cytocompatibility toward murine fibroblasts and, in addition to the potential antimicrobial applications of the developed system, the proposed study could serve as an optimal model for development of CS nanoparticles carrying antimicrobial peptides for biomedical applications. PMID:24661890

  20. Luminescent Diamond Nanoparticles: Physical, Chemical and Biological Aspects of the Phenomenon.

    PubMed

    Kratochvílová, Irena; Ashcheulov, Petr; Kovalenko, Alexander; Záliš, Stanislav; Ledvina, Miroslav; Mičová, Júlia

    2015-02-01

    Biosensors based on nanodiamonds are able to penetrate through the cell membrane in a targeted manner and probe changes in real-time in the inner cellular space. In this work we performed exclusive theoretical and experimental study of nanodiamond particles adjusted for application in optically-traceable intracellular nanodiamond sensors. Theoretical and experimental study of specific optical properties of high-pressure high-temperature nanodiamonds containing NV- and NV0 centres were performed. The results are supported by theoretical modeling. The final result of this study was detection of luminescence ND in living cells and in vivo application od luminiscence NDs in chicken embryo, showing the detectability of luminescence ND using a standard confocal microscope. On the level of in cells selectivity numerous clusters of ND particles were present within the cytoplasm and at the same time no particles were absent in the nucleus-ND particles can be used as imaging or delivery system for specific cell parts targeting. From our study we can say that biosensors based on nanodiamonds (NDs) are able to penetrate through the cell membrane in a targeted manner and probe changes in the inner cellular space. PMID:26353605

  1. Morphological and physical - chemical issues of metal nanostructures used in medical field

    NASA Astrophysics Data System (ADS)

    Duceac, L. D.; Velenciuc, N.; Dobre, E. C.

    2016-06-01

    In recent years applications of nanotechnology integrated into nanomedicine and bio-nanotechnology have attracted the attention of many researchers from different fields. Processes from chemical engineering especially nanostructured materials play an important role in medical and pharmaceutical development. Fundamental researches focused on finding simple, easily accomplished synthesis methods, morphological aspects and physico-chemical advanced characterization of nanomaterials. More over, by controlling synthesis conditions textural characteristics and physicochemical properties such as particle size, shape, surface, porosity, aggregation degree and composition can be tailored. Low cytotoxicity and antimicrobial effects of these nanostructured materials makes them be applied in medicine field. The major advantage of metal based nanoparticles is the use either for their antimicrobial properties or as drug-carriers having the potential to be active at low concentrations against infectious agents.

  2. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response

    PubMed Central

    Fraile-Nuez, E.; González-Dávila, M.; Santana-Casiano, J. M.; Arístegui, J.; Alonso-González, I. J.; Hernández-León, S.; Blanco, M. J.; Rodríguez-Santana, A.; Hernández-Guerra, A.; Gelado-Caballero, M. D.; Eugenio, F.; Marcello, J.; de Armas, D.; Domínguez-Yanes, J. F.; Montero, M. F.; Laetsch, D. R.; Vélez-Belchí, P.; Ramos, A.; Ariza, A. V.; Comas-Rodríguez, I.; Benítez-Barrios, V. M.

    2012-01-01

    On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments. PMID:22768379

  3. Selected Physical, Chemical, and Biological Data for 30 Urbanizing Streams in the North Carolina Piedmont Ecoregion, 2002-2003

    USGS Publications Warehouse

    Giddings, E.M.; Moorman, Michelle; Cuffney, Thomas F.; McMahon, Gerard; Harned, Douglas A.

    2007-01-01

    This report provides summarized physical, chemical, and biological data collected during a study of the effects of urbanization on stream ecosystems as part of the U.S. Geological Survey's National Water-Quality Assessment study. The purpose of this study was to examine differences in biological, chemical, and physical characteristics of streams across a gradient of urban intensity. Thirty sites were selected along an urbanization gradient that represents conditions in the North Carolina Piedmont ecoregion, including the cities of Raleigh, Durham, Cary, Greensboro, Winston-Salem, High Point, Asheboro, and Oxford. Data collected included streamflow variability, stream temperature, instream chemistry, instream aquatic habitat, and collections of the algal, macroinvertebrate, and fish communities. In addition, ancillary data describing land use, socioeconomic conditions, and urban infrastructure were compiled for each basin using a geographic information system analysis. All data were processed and summarized for analytical use and are presented in downloadable data tables, along with the methods of data collection and processing.

  4. Effects of xanthan, guar, carrageenan and locust bean gum addition on physical, chemical and sensory properties of meatballs.

    PubMed

    Demirci, Zeynep Ozben; Yılmaz, Ismail; Demirci, Ahmet Şukru

    2014-05-01

    This study evaluated the effects of xanthan gum, guar gum, carrageenan and locust bean gum on physical, chemical and sensory properties of meatballs. Meatball samples were produced with three different formulations including of 0.5, 1, and 1.5% each gum addition and gum added samples were compared with the control meatballs. Physical and chemical analyses were carried out on raw and cooked samples separately. Moisture contents of raw samples decreased by addition of gums. There were significant decreases (p < 0.05) in moisture and fat contents of raw and cooked meatball samples formulated with gum when compared with control. Ash contents and texture values increased with gum addition to meatballs. Meatball redness decreased with more gum addition in raw and cooked meatball samples, which means that addition of gums resulted in a lighter-coloured product. According to sensory analysis results, locust bean gum added (1%) samples were much preferred by the panelists. PMID:24803701

  5. Assessment of the differences in the physical, chemical and phytochemical properties of four strawberry cultivars using principal component analysis.

    PubMed

    Šamec, Dunja; Maretić, Marina; Lugarić, Ivana; Mešić, Aleksandar; Salopek-Sondi, Branka; Duralija, Boris

    2016-03-01

    The worldwide established strawberry cultivar 'Albion' and three recently introduced cultivars in Europe: 'Monterey', 'Capri', and 'Murano', grown hydroponically, were studied to ascertain the influence of cultivar and harvesting date on the physical, chemical, antioxidant and phytochemical properties of their fruits. Interrelationships of investigated parameters and these cultivars were investigated by the statistical approach of principal component analysis (PCA). Results indicated that cultivar had a more significant effect on the analyzed parameters than harvesting date. Thus grouping of the variables in a PCA plot indicated that each cultivar has specific characteristics important for consumer or industrial use. Cultivar 'Monterey' was the richest in phytochemical contents and consequently in antioxidant activity, 'Albion' showed the highest contents of total soluble solids, titratable acidity content and ascorbic acid, 'Capri' had the highest value of firmness, while 'Murano' had lighter color in comparison to others. Potential use of these cultivars has been assessed according to these important measured attributes. PMID:26471624

  6. Structural and electrical properties of epitaxial Bi2Se3 thin films grown by hybrid physical-chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Brom, Joseph E.; Ke, Yue; Du, Renzhong; Won, Dongjin; Weng, Xiaojun; Andre, Kalissa; Gagnon, Jarod C.; Mohney, Suzanne E.; Li, Qi; Chen, Ke; Xi, X. X.; Redwing, Joan M.

    2012-04-01

    We report the epitaxial growth of Bi2Se3 thin films on (0001) Al2O3 substrates by hybrid physical-chemical vapor deposition (HPCVD). The HPCVD technique combines the thermal decomposition of trimethylbismuth with the thermal evaporation of Se and leads to a high Se partial pressure in the growth ambient. The Bi2Se3 films are highly c-axis oriented on sapphire but contain planar defects including stacking faults and twin boundaries. Variable-temperature Hall-effect measurements demonstrate a carrier concentration of 5.8 × 1018 cm-3 and a mobility of 900 cm2/Vs at 4.2 K. These results demonstrate the potential of HPCVD for producing high quality Bi2Se3 films for topological insulator studies.

  7. Successions and diversity of humic-reducing microorganisms and their association with physical-chemical parameters during composting.

    PubMed

    Xi, Beidou; Zhao, Xinyu; He, Xiaosong; Huang, Caihong; Tan, Wenbing; Gao, Rutai; Zhang, Hui; Li, Dan

    2016-11-01

    Humic-reducing microorganisms (HRMs) could utilize humic substances (HS) as terminal electron mediator to promote the biodegradation of recalcitrant pollutants. However, the dynamics of HRMs during composting has not been explored. Here, high throughput sequencing technology was applied to investigate the patterns of HRMs during three composting systems. A total of 30 main genera of HRMs were identified in three composts, with Proteobacteria being the largest phylum. HRMs were detected with increased diversity and abundance and distinct patterns during composting, which were significantly associated with dissolved organic carbon, dissolved organic nitrogen and germination index. Regulating key physical-chemical parameters is a process control of HRMs community composition, thus promoting the redox capability of the compost. The redox capability of HRMs were strengthened during composting, suggesting that HRMs of the compost may play an important role on pollutant degradation of the compost or when they are applied to the contaminated soils. PMID:27494101

  8. Complex, Dynamic Combination of Physical, Chemical and Nutritional Variables Controls Spatio-Temporal Variation of Sandy Beach Community Structure

    PubMed Central

    Ortega Cisneros, Kelly; Smit, Albertus J.; Laudien, Jürgen; Schoeman, David S.

    2011-01-01

    Sandy beach ecological theory states that physical features of the beach control macrobenthic community structure on all but the most dissipative beaches. However, few studies have simultaneously evaluated the relative importance of physical, chemical and biological factors as potential explanatory variables for meso-scale spatio-temporal patterns of intertidal community structure in these systems. Here, we investigate macroinfaunal community structure of a micro-tidal sandy beach that is located on an oligotrophic subtropical coast and is influenced by seasonal estuarine input. We repeatedly sampled biological and environmental variables at a series of beach transects arranged at increasing distances from the estuary mouth. Sampling took place over a period of five months, corresponding with the transition between the dry and wet season. This allowed assessment of biological-physical relationships across chemical and nutritional gradients associated with a range of estuarine inputs. Physical, chemical, and biological response variables, as well as measures of community structure, showed significant spatio-temporal patterns. In general, bivariate relationships between biological and environmental variables were rare and weak. However, multivariate correlation approaches identified a variety of environmental variables (i.e., sampling session, the C∶N ratio of particulate organic matter, dissolved inorganic nutrient concentrations, various size fractions of photopigment concentrations, salinity and, to a lesser extent, beach width and sediment kurtosis) that either alone or combined provided significant explanatory power for spatio-temporal patterns of macroinfaunal community structure. Overall, these results showed that the macrobenthic community on Mtunzini Beach was not structured primarily by physical factors, but instead by a complex and dynamic blend of nutritional, chemical and physical drivers. This emphasises the need to recognise ocean-exposed sandy

  9. Potential Impacts of Spilled Hydraulic Fracturing Fluid Chemicals on Water Resources: Types, Volumes, and Physical-chemical Properties of Chemicals

    NASA Astrophysics Data System (ADS)

    Knightes, C. D.; Daiss, R.; Williams, L.; Singer, A.

    2015-12-01

    Hydraulic fracturing (HF) fluid chemicals spilled on-site may impact drinking water resources. While chemicals generally make up <2% of the total injected fluid composition by mass, spills may have undiluted concentrations. HF fluids typically consist of a mixture of base fluid, proppant, and additives. Additives, comprised of one or more chemicals, are serve a specific engineering purpose (e.g., friction reducer, scale inhibitor, biocide). As part of the USEPA's Draft Assessment of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources, we investigated the different types, volumes injected, and physical-chemical properties of HF fluid chemicals. The USEPA identified 1,076 chemicals used in HF fluids, based on 10 sources covering chemical use from 2005 to 2013. These chemicals fall into different classes: acids, alcohols, aromatic hydrocarbons, bases, hydrocarbon mixtures, polysaccharides, and surfactants. The physical-chemical properties of these chemicals vary, which affects their movement through the environment if spilled. Properties range from fully miscible to insoluble, from highly hydrophobic to highly hydrophilic. Most of these chemicals are not volatile. HF fluid composition varies from site to site depending on a range of factors. No single chemical or set of chemicals are used at every site. A median of 14 chemicals are used per well, with a range of four to 28 (5th and 95th percentiles). Methanol was the chemical most commonly reported in FracFocus 1.0 (72% of disclosures), and hydrotreated light petroleum distillates and hydrochloric acid were both reported in over half the disclosures. Operators store chemicals on-site, often in multiple containers (typically in 760 to 1,500 L totes). We estimated that the total volume of all chemicals used per well ranges from approximately 10,000 to 110,000 L. The views expressed here are those of the authors and do not necessarily represent the views or policies of the USEPA.

  10. Effects of antecedent land cover on physical, chemical, and biological responses to urbanization in streams across the conterminous United States

    NASA Astrophysics Data System (ADS)

    Cuffney, T. F.; Qian, S.

    2012-12-01

    The effects of urbanization on physical, chemical, and biological characteristics of streams were assessed across gradients of urbanization in 9 metropolitan areas of the conterminous US (Boston, MA; Raleigh; NC, Birmingham, AL; Atlanta, GA; Milwaukee-Green Bay, WI; Denver, CO; Dallas-Fort Worth, TX; Salt Lake City, UT; and Portland, OR) as a part of the U.S. Geological Survey's National Water Quality Assessment Program. Gradients of urbanization were established on the basis of a multimetric index of urban intensity that combined land cover, population, and road density. Simple regression models established that the condition of biological communities (e.g., invertebrate responses) showed statistically significant degradation as urbanization increased in six (Boston, Raleigh, Birmingham, Atlanta, Salt Lake, and Portland) of the nine metropolitan areas. Multiple regression models incorporating basin-scale land cover (e.g., forest, agricultural land) and environmental variables (e.g., water temperature, chemistry, hydrology) did not substantially improve the explanatory power of the regressions and could not explain differences in responses among metropolitan areas. Multilevel hierarchical models incorporating basin- and regional-scale predictors demonstrated that regional-scale climate (air temperature and precipitation) and antecedent land cover (i.e., land cover being converted to urban) predicted invertebrate responses to urbanization. The lack of identifiable urban responses for Milwaukee-Green Bay, Denver, and Dallas-Fort Worth were associated with high levels of antecedent agriculture (row crops and grazing) that degraded the biological communities and obscured the effects of urbanization. Urbanization was associated with increases in conductivity, nutrients, pesticides, and hydrologic variability. Levels of these variables at background sites were higher in regions with high antecedent agriculture; consequently, the effects of urbanization appeared to be

  11. Complex, dynamic combination of physical, chemical and nutritional variables controls spatio-temporal variation of sandy beach community structure.

    PubMed

    Ortega Cisneros, Kelly; Smit, Albertus J; Laudien, Jürgen; Schoeman, David S

    2011-01-01

    Sandy beach ecological theory states that physical features of the beach control macrobenthic community structure on all but the most dissipative beaches. However, few studies have simultaneously evaluated the relative importance of physical, chemical and biological factors as potential explanatory variables for meso-scale spatio-temporal patterns of intertidal community structure in these systems. Here, we investigate macroinfaunal community structure of a micro-tidal sandy beach that is located on an oligotrophic subtropical coast and is influenced by seasonal estuarine input. We repeatedly sampled biological and environmental variables at a series of beach transects arranged at increasing distances from the estuary mouth. Sampling took place over a period of five months, corresponding with the transition between the dry and wet season. This allowed assessment of biological-physical relationships across chemical and nutritional gradients associated with a range of estuarine inputs. Physical, chemical, and biological response variables, as well as measures of community structure, showed significant spatio-temporal patterns. In general, bivariate relationships between biological and environmental variables were rare and weak. However, multivariate correlation approaches identified a variety of environmental variables (i.e., sampling session, the C∶N ratio of particulate organic matter, dissolved inorganic nutrient concentrations, various size fractions of photopigment concentrations, salinity and, to a lesser extent, beach width and sediment kurtosis) that either alone or combined provided significant explanatory power for spatio-temporal patterns of macroinfaunal community structure. Overall, these results showed that the macrobenthic community on Mtunzini Beach was not structured primarily by physical factors, but instead by a complex and dynamic blend of nutritional, chemical and physical drivers. This emphasises the need to recognise ocean-exposed sandy

  12. Supramolecular disassembly of facially amphiphilic dendrimer assemblies in response to physical, chemical, and biological stimuli.

    PubMed

    Raghupathi, Krishna R; Guo, Jing; Munkhbat, Oyuntuya; Rangadurai, Poornima; Thayumanavan, S

    2014-07-15

    CONSPECTUS: Supramolecular assemblies formed from spontaneous self-assembly of amphiphilic macromolecules are explored as biomimetic architectures and for applications in areas such as sensing, drug delivery, and diagnostics. Macromolecular assemblies are usually preferred, compared with their simpler small molecule counterparts, due to their low critical aggregate concentrations (CAC) and high thermodynamic stability. This Account focuses on the structural and functional aspects of assemblies formed from dendrimers, specifically facially amphiphilic dendrons that form micelle or inverse micelle type supramolecular assemblies depending on the nature of the solvent medium. The micelle type assemblies formed from facially amphiphilic dendrons sequester hydrophobic guest molecules in their interiors. The stability of these assemblies is dependent on the relative compatibility of the hydrophilic and hydrophobic functionalities with water, often referred to as hydrophilic-lipophilic balance (HLB). Disruption of the HLB, using an external stimulus, could lead to disassembly of the aggregates, which can then be utilized to cause an actuation event, such as guest molecule release. Studying these possibilities has led to (i) a robust and general strategy for stimulus-induced disassembly and molecular release and (ii) the introduction of a new approach to protein-responsive supramolecular disassembly. The latter strategy provides a particularly novel avenue for impacting biomedical applications. Most of the stimuli-sensitive supramolecular assemblies have been designed to be responsive to factors such pH, temperature, and redox conditions. The reason for this interest stems from the fact that certain disease microenvironments have aberrations in these factors. However, these variations are the secondary imbalances in biology. Imbalances in protein activity are the primary reasons for most, if not all, human pathology. There have been no robust strategies in stimulus

  13. Preparation, physical-chemical characterization, and cytocompatibility of polymeric calcium phosphate cements.

    PubMed

    Khashaba, Rania M; Moussa, Mervet; Koch, Christopher; Jurgensen, Arthur R; Missimer, David M; Rutherford, Ronny L; Chutkan, Norman B; Borke, James L

    2011-01-01

    Aim. Physicochemical mechanical and in vitro biological properties of novel formulations of polymeric calcium phosphate cements (CPCs) were investigated. Methods. Monocalcium phosphate, calcium oxide, and synthetic hydroxyapatite were combined with either modified polyacrylic acid, light activated polyalkenoic acid, or polymethyl vinyl ether maleic acid to obtain Types I, II, and III CPCs. Setting time, compressive and diametral strength of CPCs was compared with zinc polycarboxylate cement (control). Specimens were characterized using X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. In vitro cytotoxicity of CPCs and control was assessed. Results. X-ray diffraction analysis showed hydroxyapatite, monetite, and brushite. Acid-base reaction was confirmed by the appearance of stretching peaks in IR spectra of set cements. SEM revealed rod-like crystals and platy crystals. Setting time of cements was 5-12 min. Type III showed significantly higher strength values compared to control. Type III yielded high biocompatibility. Conclusions. Type III CPCs show promise for dental applications. PMID:21941551

  14. Preparation, Physical-Chemical Characterization, and Cytocompatibility of Polymeric Calcium Phosphate Cements

    PubMed Central

    Khashaba, Rania M.; Moussa, Mervet; Koch, Christopher; Jurgensen, Arthur R.; Missimer, David M.; Rutherford, Ronny L.; Chutkan, Norman B.; Borke, James L.

    2011-01-01

    Aim. Physicochemical mechanical and in vitro biological properties of novel formulations of polymeric calcium phosphate cements (CPCs) were investigated. Methods. Monocalcium phosphate, calcium oxide, and synthetic hydroxyapatite were combined with either modified polyacrylic acid, light activated polyalkenoic acid, or polymethyl vinyl ether maleic acid to obtain Types I, II, and III CPCs. Setting time, compressive and diametral strength of CPCs was compared with zinc polycarboxylate cement (control). Specimens were characterized using X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. In vitro cytotoxicity of CPCs and control was assessed. Results. X-ray diffraction analysis showed hydroxyapatite, monetite, and brushite. Acid-base reaction was confirmed by the appearance of stretching peaks in IR spectra of set cements. SEM revealed rod-like crystals and platy crystals. Setting time of cements was 5–12 min. Type III showed significantly higher strength values compared to control. Type III yielded high biocompatibility. Conclusions. Type III CPCs show promise for dental applications. PMID:21941551

  15. Temporal changes of soil physic-chemical properties at different soil depths during larch afforestation by multivariate analysis of covariance

    PubMed Central

    Wang, Hui-Mei; Wang, Wen-Jie; Chen, Huanfeng; Zhang, Zhonghua; Mao, Zijun; Zu, Yuan-Gang

    2014-01-01

    Soil physic-chemical properties differ at different depths; however, differences in afforestation-induced temporal changes at different soil depths are seldom reported. By examining 19 parameters, the temporal changes and their interactions with soil depth in a large chronosequence dataset (159 plots; 636 profiles; 2544 samples) of larch plantations were checked by multivariate analysis of covariance (MANCOVA). No linear temporal changes were found in 9 parameters (N, K, N:P, available forms of N, P, K and ratios of N: available N, P: available P and K: available K), while marked linear changes were found in the rest 10 parameters. Four of them showed divergent temporal changes between surface and deep soils. At surface soils, changing rates were 262.1 g·kg−1·year−1 for SOM, 438.9 mg·g−1·year−1 for C:P, 5.3 mg·g−1·year−1 for C:K, and −3.23 mg·cm−3·year−1 for bulk density, while contrary tendencies were found in deeper soils. These divergences resulted in much moderated or no changes in the overall 80-cm soil profile. The other six parameters showed significant temporal changes for overall 0–80-cm soil profile (P: −4.10 mg·kg−1·year−1; pH: −0.0061 unit·year−1; C:N: 167.1 mg·g−1·year−1; K:P: 371.5 mg·g−1 year−1; N:K: −0.242 mg·g−1·year−1; EC: 0.169 μS·cm−1·year−1), but without significant differences at different soil depths (P > 0.05). Our findings highlight the importance of deep soils in studying physic-chemical changes of soil properties, and the temporal changes occurred in both surface and deep soils should be fully considered for forest management and soil nutrient balance. PMID:24772281

  16. Bench-scale co-processing. Technical progress report No. 23, January 1, 1994--March 31, 1994

    SciTech Connect

    Gatsis, J.G.; Gala, H.B.

    1994-07-01

    UOP`s second co-processing contract, DE-AC22-87PC79818, began in April 1988. The major objective of this contract is to establish a database for the optimization of the co-processing concept by improving the effectiveness of the co-processing catalyst system. Two major mechanisms for improving the catalyst system are to be investigated: employment of more effective catalysts and utilization of improved catalytic environments. These two mechanisms are defined in the contract Statement of Work. Work on Task 2.0, Laboratory Support, and Task 4.0, process Assessment, was carried out. A design basis for the process assessment task was established and cost estimation of the UOP co-processing scheme was initiated.

  17. [Effect of short- and long-time space flights on some biochemical and physical-chemical parameters of cosmonauts' blood].

    PubMed

    Grigorév, A I; Larina, I M; Noskov, V B; Menshtkin, V V; Natochkin, I V

    1996-01-01

    The purpose of the present investigation was to look for original approaches to the analysis of physical-chemical (osmolality, sodium, potassium, and calcium concentrations) and hormonal (cortisol, aldosterone, vasopressin, parathormone, calcitonin) parameters of cosmonauts' serum. To this event, we investigated 35 cosmonauts who had made either short- (up to 8 days) or long-term (up to 366 days) space flights. The dispersion factor of these parameters was found to be a criterion for assessment of the reaction of human regulatory systems to extreme impacts. No evident correlative link between the preflight and postflight concentrations of inorganic serum components was established; however, there was a high correlation of parathormone and cortisol concentrations inferring the participation of these hormones in readaptation. Integral analysis of all the mineral and hormonal parameters of blood serum shapes them into something unique apt to change after flight. Our data alludes to the fact that the approaches used for evaluation of the data resulting from conventional techniques open up new possibilities for prediction of changes in and identification of the character of individual reaction of humans to the spaceflight factors. PMID:8963264

  18. Improvement of physical, chemical, and biological properties of aridisol from Botswana by the incorporation of torrefied biomass.

    PubMed

    Ogura, Tatsuki; Date, Yasuhiro; Masukujane, Masego; Coetzee, Tidimalo; Akashi, Kinya; Kikuchi, Jun

    2016-01-01

    Effective use of agricultural residual biomass may be beneficial for both local and global ecosystems. Recently, biochar has received attention as a soil enhancer, and its effects on plant growth and soil microbiota have been investigated. However, there is little information on how the physical, chemical, and biological properties of soil amended with biochar are affected. In this study, we evaluated the effects of the incorporation of torrefied plant biomass on physical and structural properties, elemental profiles, initial plant growth, and metabolic and microbial dynamics in aridisol from Botswana. Hemicellulose in the biomass was degraded while cellulose and lignin were not, owing to the relatively low-temperature treatment in the torrefaction preparation. Water retentivity and mineral availability for plants were improved in soils with torrefied biomass. Furthermore, fertilization with 3% and 5% of torrefied biomass enhanced initial plant growth and elemental uptake. Although the metabolic and microbial dynamics of the control soil were dominantly associated with a C1 metabolism, those of the 3% and 5% torrefied biomass soils were dominantly associated with an organic acid metabolism. Torrefied biomass was shown to be an effective soil amendment by enhancing water retentivity, structural stability, and plant growth and controlling soil metabolites and microbiota. PMID:27313139

  19. Membranes as programmable matter: modulating physical-chemical behavior in lipid ensembles derived from archaea and eukaryotes

    NASA Astrophysics Data System (ADS)

    Gilmore, Sean Fitzpatrick

    Lipid membranes are of general interest to the scientific community due to their roles as cellular membranes, and because of their interesting material properties, such as tendencies to self-assemble into two- and three-dimensional structures. Further, there is interest in using lipid membranes as a self-assembling template or substrate for other materials, such as membrane proteins. The work presented here explores the physical-chemical interactions in and around artificial lipid membranes. In the first two chapters, lipid membranes are investigated as a form of programmable matter that responds to environmental changes. These responses manifest as two- and three-dimensional reorganization. In the subsequent chapters, the lipids of an extremophilic archaeon are examined in synthetic configurations to 1) identify how ensembles of lipids originating from organisms of different domains on the tree of life may behave in similar ways, and 2) to examine how the lipids of a desiccation-tolerant organism may be used to create robust lipid (bilayer) membranes that do not rely on liquid water to retain their structure. These collected findings expand how living membranes may be modulated or reorganized in vivo, and also suggest new ways to create programmable lipid-based materials.

  20. [Dependence of the genotypic characteristics of Acidithiobacillus ferrooxidans on the physical, chemical, and electrophysical properties of pyrites].

    PubMed

    Tupikina, O V; Kondrat'eva, T F; Karavaĭko, G I

    2005-01-01

    This study focused on the effect of physical, chemical, and electrophysical properties of two pyrites, pyrite 1, which had hole-type (p-type) conductivity, and pyrite 2, with electron-type (n-type) conductivity, on the genotypic characteristics of Acidithiobacillus ferrooxidans strains TFV-1 and TFBk, which were isolated from different substrates. After the adaptation of the strains to the pyrites at a pulp density of 1%, pulsed-field electrophoresis revealed changes in the chromosomal DNA of strain TFV-1 adapted to pyrite 1 and strain TFBk adapted to either of the pyrite types. In pyrite-adapted strain TFBk, the plasmid composition was the same as after growth on a medium containing ferrous iron, whereas, in strain TFV-1, changes in plasmid sizes or both in plasmid sizes and plasmid number occurred. After an increase in the density of the pyrite 2 pulp from 1 to 10%, the plasmid number increased from three to four, and, after an increase in the density of the pyrite 1 pulp from 1 to 7%, the plasmid number increased from two to six. PMID:16315978

  1. Improvement of physical, chemical, and biological properties of aridisol from Botswana by the incorporation of torrefied biomass

    PubMed Central

    Ogura, Tatsuki; Date, Yasuhiro; Masukujane, Masego; Coetzee, Tidimalo; Akashi, Kinya; Kikuchi, Jun

    2016-01-01

    Effective use of agricultural residual biomass may be beneficial for both local and global ecosystems. Recently, biochar has received attention as a soil enhancer, and its effects on plant growth and soil microbiota have been investigated. However, there is little information on how the physical, chemical, and biological properties of soil amended with biochar are affected. In this study, we evaluated the effects of the incorporation of torrefied plant biomass on physical and structural properties, elemental profiles, initial plant growth, and metabolic and microbial dynamics in aridisol from Botswana. Hemicellulose in the biomass was degraded while cellulose and lignin were not, owing to the relatively low-temperature treatment in the torrefaction preparation. Water retentivity and mineral availability for plants were improved in soils with torrefied biomass. Furthermore, fertilization with 3% and 5% of torrefied biomass enhanced initial plant growth and elemental uptake. Although the metabolic and microbial dynamics of the control soil were dominantly associated with a C1 metabolism, those of the 3% and 5% torrefied biomass soils were dominantly associated with an organic acid metabolism. Torrefied biomass was shown to be an effective soil amendment by enhancing water retentivity, structural stability, and plant growth and controlling soil metabolites and microbiota. PMID:27313139

  2. The submarine volcano eruption at the island of El Hierro: physical-chemical perturbation and biological response

    NASA Astrophysics Data System (ADS)

    Fraile-Nuez, E.; Santana-Casiano, J.; Gonzalez-Davila, M.

    2013-12-01

    On October 10 2011 an underwater eruption gave rise to a novel shallow submarine volcano south of the island of El Hierro, Canary Islands, Spain. During the eruption large quantities of mantle-derived gases, solutes and heat were released into the surrounding waters. In order to monitor the impact of the eruption on the marine ecosystem, periodic multidisciplinary cruises were carried out. Here, we present an initial report of the extreme physical-chemical perturbations caused by this event, comprising thermal changes, water acidification, deoxygenation and metal-enrichment, which resulted in significant alterations to the activity and composition of local plankton communities. Our findings highlight the potential role of this eruptive process as a natural ecosystem-scale experiment for the study of extreme effects of global change stressors on marine environments. (A) Natural color composite from the MEdium Resolution Imaging Spectrometer (MERIS) instrument aboard ENVISAT Satellite (European Space Agency), (November 9, 2011 at 14:45 UTC). Remote sensing data have been used to monitor the evolution of the volcanic emissions, playing a fundamental role during field cruises in guiding the Spanish government oceanographic vessel to the appropriate sampling areas. The inset map shows the position of Canary Islands west of Africa and the study area (solid white box). (B) Location of the stations carried out from November 2011 to February 2012 at El Hierro. Black lines denote transects A-B and C-D.

  3. MgB2UltrathinFilms Fabricated by Hybrid Physical Chemical Vapor Deposition and Subsequent Ion Milling

    NASA Astrophysics Data System (ADS)

    Acharya, Narendra; Wolak, Matthaeus; Tan, Teng; Cunnane, Daniel; Karasik, Boris; Xi, Xiaoxing

    Hot electron bolometer (HEB) mixers are a great tool for measuring high-resolution spectroscopy at Terahertz frequencies. MgB2offers a higher critical temperature (39 K) compared to commonly used Nb and NbN and boasts a shorter intrinsic electron-phonon relaxation time, giving rise to a broader intermediate frequency (IF) bandwidth. We have fabricated high quality ultrathin MgB2films using hybrid physical-chemical vapor deposition (HPCVD) and employing ion milling to achieve thickness down to 2 nm. The thinnest achieved films show high Tc of 28 K with residual resistivity below 28 µ Ωcm and high critical current Jcof 1x106 A/cm2at 20 K. As a result of the employed low angle ion milling process, the films remain well connected even after being thinned down since the initial thick films offer a better connectivity than as-grown thin films. The established process offers a way to realize MgB2 based HEB mixers of extremely low thickness and therefore small local oscillator power requirements and increased IF bandwidth.

  4. Physical, chemical, and biological data for detailed study of irrigation drainage in the Salton Sea area, California, 1988-90

    USGS Publications Warehouse

    Schroeder, R.A.; Rivera, Mick

    1993-01-01

    This report contains physical, chemical, and biological data associated with irrigation drainage in the Salton Sea area collected during the late 1980's. The data were collected in support of the u.S. Department of the Interior's National Irrigation Water Quality Program in the Western United States to evaluate effects on the environment from potential toxics in irrigation-induced drainage. The data have been used to support interpretations in several recent publications. This data report is the companion to a comprehensive U.S. Geological Survey interpretive report that describes the geochemical and biological pathways of potential toxics, especially selenium, in the study area. The report contains data on concentra- tions of a broad suite of trace elements in soil, irrigation (Colorado River) water, drainwater, surface water (including the Salton Sea), ground- water, aquatic plants, invertebrates, amphibians, reptiles, fish, birds, bird eggs, and turtle eggs. Included, also, are light stable isotope (hydrogen, oxygen, carbon, nitrogen, and sulfur), tritium, and radiocarbon data for selected aqueous samples and organochlorine-pesticide concentrations in biota. Geochemical samples were collected from more than 100 drainwater-collection sites, several surface- water locations, 15 fields, 3 multiple-depth lysimeter and piezometer installations, and the Alamo River Delta on the southeastern shore of the Salton Sea, and from laboratory evaporations of Colorado River water. Biological samples were collected from 39 sites, including 16 Salton Sea shore locations, 5 streams, 7 freshwater impound- ments, 11 drainwater ditches, and 2 additional locations in the Imperial Valley. (USGS)

  5. Physical, Chemical, Ecological, and Age Data and Trench Logs from Surficial Deposits at Hatch Point, Southeastern Utah

    USGS Publications Warehouse

    Goldstein, Harland L.; Miller, Mark E.; Yount, James C.; Reheis, Marith C.; Reynolds, Richard L.; Belnap, Jayne; Lamothe, Paul J.; McGeehan, John P.

    2009-01-01

    This report presents data and describes the methodology for physical, chemical and ecological measurements of sediment, soil, and vegetation, as well as age determinations of surficial deposits at Hatch Point, Canyon Rims area, Colorado Plateau, southeastern Utah. The results presented in this report support a study that examines geomorphic and soil factors that may influence boundaries between shrubland and grassland ecosystems in the study area. Shrubland ecosystems dominated by sagebrush (Artemisia tridentata) and grassland ecosystems dominated by native perennial grasses (for example, Hilaria jamesii and Sporabolis sp.) are high-priority conservation targets for the Federal Bureau of Land Management (BLM) and other resource managers because of their diversity, productivity, and vital importance as wildlife habitat. These ecosystems have been recognized as imperiled on a regional scale since at least the mid-1990s due to habitat loss (type conversions), land-use practices, and invasive exotic plants. In the Intermountain West, the exotic annual cheatgrass (Bromus tectorum) is recognized as one of the most pervasive and serious threats to the health of native sagebrush and grassland ecosystems through effects on fire regimes and resource conditions experienced by native species.

  6. Improvement of physical, chemical, and biological properties of aridisol from Botswana by the incorporation of torrefied biomass

    NASA Astrophysics Data System (ADS)

    Ogura, Tatsuki; Date, Yasuhiro; Masukujane, Masego; Coetzee, Tidimalo; Akashi, Kinya; Kikuchi, Jun

    2016-06-01

    Effective use of agricultural residual biomass may be beneficial for both local and global ecosystems. Recently, biochar has received attention as a soil enhancer, and its effects on plant growth and soil microbiota have been investigated. However, there is little information on how the physical, chemical, and biological properties of soil amended with biochar are affected. In this study, we evaluated the effects of the incorporation of torrefied plant biomass on physical and structural properties, elemental profiles, initial plant growth, and metabolic and microbial dynamics in aridisol from Botswana. Hemicellulose in the biomass was degraded while cellulose and lignin were not, owing to the relatively low-temperature treatment in the torrefaction preparation. Water retentivity and mineral availability for plants were improved in soils with torrefied biomass. Furthermore, fertilization with 3% and 5% of torrefied biomass enhanced initial plant growth and elemental uptake. Although the metabolic and microbial dynamics of the control soil were dominantly associated with a C1 metabolism, those of the 3% and 5% torrefied biomass soils were dominantly associated with an organic acid metabolism. Torrefied biomass was shown to be an effective soil amendment by enhancing water retentivity, structural stability, and plant growth and controlling soil metabolites and microbiota.

  7. Inhibition of retrogressive reactions in coal/petroleum co-processing

    SciTech Connect

    Schobert, H.H.; Tomic, J.

    1992-01-01

    The overall objective of this project is to develop a fundamental understanding of the reactions occurring at the onset of coke formation during the co-processing of coals with petroleum residua. The specific objectives include examination of chemical components, or groups of components, in coals and petroleum feedstocks to quantify and rank the effects of these components in retarding or enhancement of coke formation. The work involves bench scale reactions in microautoclaves, supplemented by studies of the carbonaceous residues by such techniques as diffuse reflectance Fourier transform infrared spectroscopy and {sup 13}C nuclear magnetic resonance spectrometry. During this reporting period work focused on identification of mechanisms of coke formation. The objective of this task is to identify those compounds or components which are specifically responsible for initiating coke formation.

  8. Process and analytical studies of enhanced low severity co-processing using selective coal pretreatment

    SciTech Connect

    Baldwin, R.M.; Miller, R.L.

    1991-12-01

    The findings in the first phase were as follows: 1. Both reductive (non-selective) alkylation and selective oxygen alkylation brought about an increase in liquefaction reactivity for both coals. 2. Selective oxygen alkylation is more effective in enhancing the reactivity of low rank coals. In the second phase of studies, the major findings were as follows: 1. Liquefaction reactivity increases with increasing level of alkylation for both hydroliquefaction and co-processing reaction conditions. 2. the increase in reactivity found for O-alkylated Wyodak subbituminous coal is caused by chemical changes at phenolic and carboxylic functional sites. 3. O-methylation of Wyodak subbituminous coal reduced the apparent activation energy for liquefaction of this coal.

  9. PREPARATION AND CHARACTERIZATION OF ORALLY DISINTEGRATING LORATADINE TABLETS MANUFACTURED WITH CO-PROCESSED MIXTURES.

    PubMed

    Amelian, Aleksandra; Szekalska, Marta; Wilczewska, Agnieszka Zofia; Basa, Anna; Winnicka, Katarzyna

    2016-01-01

    The aim of this study was to develop orally disintegrated tablets (ODT) with loratadine using Parteck ODT and Ludiflash--new commercially available tableting excipients based on co-processed mannitol. ODT containing loratadine were prepared with 3% addition of various superdisintegrants (AcDiSol, Kollidon CL-F and Kollidon CL-SF) by direct compression method. Obtained tablets were characterized for friability, pore structure, and wetting and disintegration time measured by four independents methods. In order to identify possible interactions between loratadine and the excipients, differential scanning calorimetry was used. The results showed that all formulated ODT were characterized by appropriate mechanical properties (friability < 1%), the uniform content of the drug substance and pleasant mouth feeling. Disintegration time below 30 s was observed in formulations with crospovidones as disintegrant. PMID:27180438

  10. The saccadic system more readily co-processes orthogonal than co-linear saccades.

    PubMed

    Ram-Tsur, R; Caspi, A; Gordon, C R; Zivotofsky, A Z

    2005-01-01

    Real-life visual tasks such as tracking jumping objects and scanning visual scenes often require a sequence of saccadic eye movements. The ability of the ocular motor system to parallel process saccades has been previously demonstrated. We recorded the monocular eye movements of five normal human subjects using the magnetic search coil technique in a double step paradigm. Initial target jumps were always purely horizontal or purely vertical. We were interested in the latency to onset of the second saccade as a function of direction in relation to the first saccade. When the inter stimulus interval (ISI) was 150 or 180 ms orthogonal second saccades were of significantly shorter latency than second co-linear saccades. When the ISI was 250 ms the latencies of orthogonal and co-linear second saccades were statistically indistinguishable. Based on these findings it is postulated that the ocular motor system can more readily co-process orthogonal than co-linear saccades. PMID:15645227

  11. Comparison of physical, chemical, and sensorial characteristics between U.S.-imported and Northwestern Mexico retail beef.

    PubMed

    González-Rios, H; Peña-Ramos, A; Valenzuela, M; Zamorano-García, L; Cumplido-Barbeitia, G; González-Méndez, N F; Huerta-Leidenz, N

    2010-01-01

    To compare beef from Northwestern Mexico (NMEX) and that imported from the United States in physical-chemical (PC) and sensory traits, samples of ribeye (m. Longissimus dorsi thoracis, LDT) and knuckle (m. Vastus lateralis, VL) of Mexican (64 LDT; 51 VL) and U.S. (28 LDT; 25 VL) origin were purchased randomly from select retail stores located in 3 cities of NMEX. PC evaluation measured contents of moisture, fat and cholesterol, Warner-Bratzler shear force (WBSF), pH, CIE L*, a*, and b*, cooking loss, and normalized fatty acid profile (FAP). Trained panelists evaluated raw and cooked samples for 2 and 6 different organoleptic traits, respectively. Mexican and U.S.-imported LDT steaks did not differ (P>0.05) in PC traits. VL samples differed in L*, b*, hue*, WBSF, and fat content by country of origin (COO). The WBSF for cooked VL samples from the United States was lower (P < 0.05) and fat content was greater (P<0.05) than those for NMEX steaks. The FAP varied between muscles; Mexican LDT had a higher content of C18:0, while VL from the United States had a higher proportion of polyunsaturated fatty acids (PUFA) and a higher PUFA/Saturated ratio (P<0.05). Although sensory traits tended to be rated higher for Mexican LDT and VL steaks, no statistical differences with U.S.-imported samples were detected (P > 0.05). Results indicated that domestic and U.S. retail steaks sold in the NMEX are similar in eating quality and PC, whereas differences observed in FAP deserve further attention from a nutritional standpoint. PMID:21535586

  12. Scanning electrochemical microscopy of graphene/polymer hybrid thin films as supercapacitors: Physical-chemical interfacial processes

    NASA Astrophysics Data System (ADS)

    Gupta, Sanju; Price, Carson

    2015-10-01

    Hybrid electrode comprising an electric double-layer capacitor of graphene nanosheets and a pseudocapacitor of the electrically conducting polymers namely, polyaniline; PAni and polypyrrole; PPy are constructed that exhibited synergistic effect with excellent electrochemical performance as thin film supercapacitors for alternative energy. The hybrid supercapacitors were prepared by layer-by-layer (LbL) assembly based on controlled electrochemical polymerization followed by reduction of graphene oxide electrochemically producing ErGO, for establishing intimate electronic contact through nanoscale architecture and chemical stability, producing a single bilayer of (PAni/ErGO)1, (PPy/ErGO)1, (PAni/GO)1 and (PPy/GO)1. The rationale design is to create thin films that possess interconnected graphene nanosheets (GNS) with polymer nanostructures forming well-defined tailored interfaces allowing sufficient surface adsorption and faster ion transport due to short diffusion distances. We investigated their electrochemical properties and performance in terms of gravimetric specific capacitance, Cs, from cyclic voltammograms. The LbL-assembled bilayer films exhibited an excellent Cs of ≥350 F g-1 as compared with constituents (˜70 F g-1) at discharge current density of 0.3 A g-1 that outperformed many other hybrid supercapacitors. To gain deeper insights into the physical-chemical interfacial processes occurring at the electrode/electrolyte interface that govern their operation, we have used scanning electrochemical microscopy (SECM) technique in feedback and probe approach modes. We present our findings from viewpoint of reinforcing the role played by heterogeneous electrode surface composed of nanoscale graphene sheets (conducting) and conducting polymers (semiconducting) backbone with ordered polymer chains via higher/lower probe current distribution maps. Also targeted is SECM imaging that allowed to determine electrochemical (re)activity of surface ion adsorption sites

  13. Scanning electrochemical microscopy of graphene/polymer hybrid thin films as supercapacitors: Physical-chemical interfacial processes

    SciTech Connect

    Gupta, Sanju Price, Carson

    2015-10-15

    Hybrid electrode comprising an electric double-layer capacitor of graphene nanosheets and a pseudocapacitor of the electrically conducting polymers namely, polyaniline; PAni and polypyrrole; PPy are constructed that exhibited synergistic effect with excellent electrochemical performance as thin film supercapacitors for alternative energy. The hybrid supercapacitors were prepared by layer-by-layer (LbL) assembly based on controlled electrochemical polymerization followed by reduction of graphene oxide electrochemically producing ErGO, for establishing intimate electronic contact through nanoscale architecture and chemical stability, producing a single bilayer of (PAni/ErGO){sub 1}, (PPy/ErGO){sub 1}, (PAni/GO){sub 1} and (PPy/GO){sub 1}. The rationale design is to create thin films that possess interconnected graphene nanosheets (GNS) with polymer nanostructures forming well-defined tailored interfaces allowing sufficient surface adsorption and faster ion transport due to short diffusion distances. We investigated their electrochemical properties and performance in terms of gravimetric specific capacitance, C{sub s}, from cyclic voltammograms. The LbL-assembled bilayer films exhibited an excellent C{sub s} of ≥350 F g{sup −1} as compared with constituents (∼70 F g{sup −1}) at discharge current density of 0.3 A g{sup −1} that outperformed many other hybrid supercapacitors. To gain deeper insights into the physical-chemical interfacial processes occurring at the electrode/electrolyte interface that govern their operation, we have used scanning electrochemical microscopy (SECM) technique in feedback and probe approach modes. We present our findings from viewpoint of reinforcing the role played by heterogeneous electrode surface composed of nanoscale graphene sheets (conducting) and conducting polymers (semiconducting) backbone with ordered polymer chains via higher/lower probe current distribution maps. Also targeted is SECM imaging that allowed to determine

  14. Modeling pCO{sub 2} in the upper ocean: A review of relevant physical, chemical, and biological processes

    SciTech Connect

    1990-12-01

    The pCO{sub 2} of the surface ocean is controlled by a combination of physical, chemical, and biological processes. Modeling surface ocean pCO{sub 2} is analogous to modeling sea surface temperature (SST), in that sea surface pCO{sub 2} is affected by fluxes across the air-sea interface and by exchange with deeper water. However, pCO{sub 2} is also affected by chemical and biological processes which have no analog in SST. Seawater pCO{sub 2} is buffered by pH equilibrium reactions between the species CO{sub 2}, HCO{sub 3}-, and CO{sub 3}{sup =}. This effect provides an effective reservoir for CO{sub 2} in seawater that is 10 times larger than it would be for an unbuffered gas. The equilibrium between dissolved and atmospheric CO{sub 2} is sensitive to temperature, tending to higher pCO{sub 2} in warmer water. Biological export of carbon as sinking particles maintains a gradient of pCO{sub 2}, with lower values near the surface (this processes is called the {open_quotes}biological pump{close_quotes}). In most of the ocean, biological activity removes all of the available nutrients from the surface water; that is, the rate of carbon export in these locations is limited by the rate of nutrient supply to the euphotic zone. However, in much of the high-latitude oceans, primary production does not deplete the euphotic zone of nutrients, a fact to which the atmospheric pCO{sub 2} is extraordinarily sensitive. Understanding the limits to phytoplankton growth in the high latitudes, and how these limits might change under different climatic regimes, is essential to prediction of future ocean uptake of fossil fuel CO{sub 2}.

  15. pRNAm-PC: Predicting N(6)-methyladenosine sites in RNA sequences via physical-chemical properties.

    PubMed

    Liu, Zi; Xiao, Xuan; Yu, Dong-Jun; Jia, Jianhua; Qiu, Wang-Ren; Chou, Kuo-Chen

    2016-03-15

    Just like PTM or PTLM (post-translational modification) in proteins, PTCM (post-transcriptional modification) in RNA plays very important roles in biological processes. Occurring at adenine (A) with the genetic code motif (GAC), N(6)-methyldenosine (m(6)A) is one of the most common and abundant PTCMs in RNA found in viruses and most eukaryotes. Given an uncharacterized RNA sequence containing many GAC motifs, which of them can be methylated, and which cannot? It is important for both basic research and drug development to address this problem. Particularly with the avalanche of RNA sequences generated in the postgenomic age, it is highly demanded to develop computational methods for timely identifying the N(6)-methyldenosine sites in RNA. Here we propose a new predictor called pRNAm-PC, in which RNA sequence samples are expressed by a novel mode of pseudo dinucleotide composition (PseDNC) whose components were derived from a physical-chemical matrix via a series of auto-covariance and cross covariance transformations. It was observed via a rigorous jackknife test that, in comparison with the existing predictor for the same purpose, pRNAm-PC achieved remarkably higher success rates in both overall accuracy and stability, indicating that the new predictor will become a useful high-throughput tool for identifying methylation sites in RNA, and that the novel approach can also be used to study many other RNA-related problems and conduct genome analysis. A user-friendly Web server for pRNAm-PC has been established at http://www.jci-bioinfo.cn/pRNAm-PC, by which users can easily get their desired results without needing to go through the mathematical details. PMID:26748145

  16. Variations and factors that influence the formation of polychlorinated naphthalenes in cement kilns co-processing solid waste.

    PubMed

    Jin, Rong; Zhan, Jiayu; Liu, Guorui; Zhao, Yuyang; Zheng, Minghui

    2016-09-01

    Pilot studies of unintentionally produced pollutants should be performed before waste being co-processed in cement kilns. Polychlorinated naphthalene (PCN) formation and emission from cement kilns co-processing sorted municipal solid waste, sewage sludge, and waste acid, however, have not previously been studied. Here, PCNs were analyzed in stack gas samples and solid samples from different stages of three cement production runs. PCN destruction efficiencies were higher when waste was co-processed (93.1% and 88.7% in two tests) than when waste was not co-processed (39.1%), so co-processing waste would not increase PCN outputs. The PCN concentrations were higher in particle samples from the C1 preheater and stages at back end of kiln than in particle samples from other stages, suggesting that cyclone preheater and back end of kiln should be focused for controlling PCN emissions. Besides that, based on the variation of PCN concentrations and corresponding operating conditions in different stages, the temperature, feeding materials, and chlorine content were suggested as the main factors influencing PCN formation. The PCN homologue and congener profiles suggested chlorination and dechlorination were the main PCN formation and decomposition pathways, and congeners CN-23, CN-46, and CN-59 appear to be appropriate indicators of PCNs emitted from coal-burning sources. PMID:27187059

  17. Comparison of the fixation effects of heavy metals by cement rotary kiln co-processing and cement based solidification/stabilization.

    PubMed

    Zhang, Junli; Liu, Jianguo; Li, Cheng; Jin, Yiying; Nie, Yongfeng; Li, Jinhui

    2009-06-15

    Cement rotary kiln co-processing of hazardous wastes and cement based solidification/stabilization could both immobilize heavy metals. The different retention mechanisms of the two technologies lead to different fixation effects of heavy metals. The same amount of heavy metal compounds were treated by the two types of fixation technologies. Long-term leaching test (160 days), the maximum availability leaching test (NEN 7341) and a modified three-step sequential extraction procedure, proposed by the Commission of the European Communities Bureau of Reference (BCR) were employed to compare the fixation effects of the two fixation technologies. The leaching concentrations in NEN 7341 and long-term leaching tests were compared with identification standard for hazardous wastes (GB5085.3-1996) and drinking water standard (GB5749-2005). The results indicate that the leaching concentrations of the long-term leaching test and NEN 7341 test were lower than the regulatory limits and the leached ratios were small. Both cement based solidification/stabilization and cement rotary kiln co-processing could effectively fix heavy metals. Calcination in a cement rotary kiln and the following hydration that follows during cement application could fix As, Cd, Pb and Zn more effectively and decrease the release to the environment. Cement solidification/stabilization technology has better effect in immobilizing Cr and Ni. Cr wastes are more fitful to be treated by cement solidification/stabilization. PMID:19091467

  18. Three-dimensional prediction of soil physical, chemical, and hydrological properties in a forested catchment of the Santa Catalina CZO

    NASA Astrophysics Data System (ADS)

    Shepard, C.; Holleran, M.; Lybrand, R. A.; Rasmussen, C.

    2014-12-01

    in each cluster calculated. Mass-preserving splines combined with stepwise regressions are an effective tool for predicting soil physical, chemical, and hydrological properties with depth, enhancing our understanding of the critical zone.

  19. Physical, chemical, and isotopic data for samples from the Anderson Springs area, Lake County, California, 1998-1999

    USGS Publications Warehouse

    Janik, C.J.; Goff, F.; Sorey, M.L.; Rytuba, J.J.; Counce, D.; Colvard, E.M.; Huebner, M.; White, L.D.; Foster, A.

    1999-01-01

    Anderson Springs is located about 90 miles (145 kilometers) north of San Francisco, California, in the southwestern part of Lake County. The area was first developed in the late 1800s as a health resort, which was active until the 1930s. In the rugged hills to the south of the resort were four small mercury mines of the eastern Mayacmas quicksilver district. About 1,260 flasks of mercury were produced from these mines between 1909 and 1943. In the 1970s, the high-elevation areas surrounding Anderson Springs became part of The Geysers geothermal field. Today, several electric powerplants are located on the ridges above Anderson Springs, utilizing steam produced from a 240°C vapor-dominated reservoir. The primary purpose of this report is to provide physical, chemical, and isotopic data on samples collected in the Anderson Springs area during 1998 and 1999, in response to a Freedom of Information Act request. In July 1998, drainage from the Schwartz adit of the abandoned Anderson mercury mine increased substantially over a 2-day period, transporting a slurry of water and precipitates down a tributary and into Anderson Creek. In August 1998, J.J. Rytuba and coworkers sampled the Schwartz adit drainage and water from the Anderson Springs Hot Spring for base metal and methylmercury analysis. They measured a maximum temperature (Tm) of 85°C in the Hot Spring. Published records show that the temperature of the Anderson Springs Hot Spring (main spring) was 63°C in 1889, 42–52°C from 1974 through 1991, and 77°C in March 1995. To investigate possible changes in thermal spring activity and to collect additional samples for geochemical analysis, C.J. Janik and coworkers returned to the area in September and December 1998. They determined that a cluster of springs adjacent to the main spring had Tm=98°C, and they observed that a new area of boiling vents and small fumaroles (Tm=99.3°C) had formed in an adjacent gully about 20 meters to the north of the main spring

  20. Diversity of Ammonia-Oxidizing Archaea and Bacteria Across Physical-Chemical Gradients in San Francisco Bay Estuary Sediments

    NASA Astrophysics Data System (ADS)

    Mosier, A. C.; Francis, C. A.

    2006-12-01

    A combination of recent metagenomic analyses and the cultivation of a novel, ammonia-oxidizing, marine crenarchaeota revealed the first evidence for nitrification within the Archaeal domain. Further genetic and metagenomic studies demonstrated the presence of ammonia-oxidizing crenarchaea in diverse marine and terrestrial environments. These discoveries challenge the currently accepted view of the global nitrogen cycle and validate the need for further research on microbial diversity and function. In particular, it is imperative to reexamine the microbial communities involved in ammonia oxidation in marine and estuarine sediments, where this process plays a pivotal role in the cycling and removal of nitrogen. Using phylogenetic analyses of ammonia monooxygenase subunit A (amoA) gene sequences, we examined the distribution and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in San Francisco Bay, the largest estuary on the West coast of the United States. The highly impacted bay, encompassing nearly 178,000 km2, effectively connects two estuaries with varying physical-chemical characteristics to the Pacific Ocean. We recovered archaeal and bacterial amoA genes from 11 sites distributed throughout the bay, spanning the northern and southern estuaries and the central region where they connect to the ocean. Richness estimates varied considerably across all sites examined, with archaeal amoA estimates being generally higher than bacterial amoA. Several of the bacterial amoA libraries were represented by fewer than 3 genotypes. Archaeal amoA sequences were phylogenetically diverse and grouped within previously described sediment and soil/sediment clusters. Several sequences were closely related to the only cultivated AOA, Nitrosopumilus maritimus. Both the archaeal and bacterial amoA sequences showed significant regional specificity. Distinct populations exist in the northern and southern estuaries and sequences from the northernmost and southernmost sites

  1. Co-processed chitin-mannitol as a new excipient for Oro-dispersible tablets.

    PubMed

    Daraghmeh, Nidal; Chowdhry, Babur Z; Leharne, Stephen A; Al Omari, Mahmoud M H; Badwan, Adnan A

    2015-04-01

    This study describes the preparation, characterization and performance of a novel excipient for use in oro-dispersible tablets (ODT). The excipient (Cop-CM) consists of chitin and mannitol. The excipient with optimal physicochemical properties was obtained at a chitin: mannitol ratio of 2:8 (w/w) and produced by roll compaction (RC). Differential scanning calorimetry (DSC), Fourier transform-Infrared (FT-IR), X-ray powder diffraction (XRPD) and scanning electron microscope (SEM) techniques were used to characterize Cop-CM, in addition to characterization of its powder and ODT dosage form. The effect of particle size distribution of Cop-CM was investigated and found to have no significant influence on the overall tablet physical properties. The compressibility parameter (a) for Cop-CM was calculated from a Kawakita plot and found to be higher (0.661) than that of mannitol (0.576) due to the presence of the highly compressible chitin (0.818). Montelukast sodium and domperidone ODTs produced, using Cop-CM, displayed excellent physicochemical properties. The exceptional binding, fast wetting and superdisintegration properties of Cop-CM, in comparison with commercially available co-processed ODT excipients, results in a unique multifunctional base which can successfully be used in the formulation of oro-dispersible and fast immediate release tablets. PMID:25830680

  2. Inhibition of retrogressive reactions in coal/petroleum co-processing

    SciTech Connect

    Schobert, H.; Tomic, J.; Moyer, D.; McConnie, J.

    1990-09-01

    The overall objective of this project is to develop a fundamental understanding of the reactions occurring at the onset of coke formation during the co-processing of coals with petroleum residua. Specific objectives include examination of chemical components, or groups of components, in coals and petroleum feedstocks to quantify and rank the effects of these components in retarding or enhancement of coke formation. The work involves bench scale reactions in microautoclaves, supplemented by studies of the carbonaceous residues by such techniques as diffuse reflectance Fourier transform infrared spectroscopy and {sup 13}C nuclear magnetic resonance spectrometry. This quarter microautoclave testing of mixtures of model compounds and coal was concluded. In addition mixtures of coals and petroleum feedstocks were reacted under the same reaction conditions as used for the model compounds experiments. The petroleum resids were also independently tested in absence of coal. For a set of coal/resid feedstock pairs tests were performed in both horizontal and vertical microautoclaves in order to compare the mixing properties of these two different designs. 7 refs., 25 figs.

  3. Co-Processed Chitin-Mannitol as a New Excipient for Oro-Dispersible Tablets

    PubMed Central

    Daraghmeh, Nidal; Chowdhry, Babur Z.; Leharne, Stephen A.; Al Omari, Mahmoud M. H.; Badwan, Adnan A.

    2015-01-01

    This study describes the preparation, characterization and performance of a novel excipient for use in oro-dispersible tablets (ODT). The excipient (Cop–CM) consists of chitin and mannitol. The excipient with optimal physicochemical properties was obtained at a chitin: mannitol ratio of 2:8 (w/w) and produced by roll compaction (RC). Differential scanning calorimetry (DSC), Fourier transform-Infrared (FT-IR), X-ray powder diffraction (XRPD) and scanning electron microscope (SEM) techniques were used to characterize Cop–CM, in addition to characterization of its powder and ODT dosage form. The effect of particle size distribution of Cop–CM was investigated and found to have no significant influence on the overall tablet physical properties. The compressibility parameter (a) for Cop–CM was calculated from a Kawakita plot and found to be higher (0.661) than that of mannitol (0.576) due to the presence of the highly compressible chitin (0.818). Montelukast sodium and domperidone ODTs produced, using Cop–CM, displayed excellent physicochemical properties. The exceptional binding, fast wetting and superdisintegration properties of Cop–CM, in comparison with commercially available co-processed ODT excipients, results in a unique multifunctional base which can successfully be used in the formulation of oro-dispersible and fast immediate release tablets. PMID:25830680

  4. [Release amount of heavy metals in cement product from co-processing waste in cement kiln].

    PubMed

    Yang, Yu-Fei; Huang, Qi-Fei; Zhang, Xia; Yang, Yu; Wang, Qi

    2009-05-15

    Clinker was produced by Simulating cement calcination test, and concrete samples were also prepared according to national standard GB/T 17671-1999. Long-term cumulative release amount of heavy metals in cement product from co-processing waste in cement kiln was researched through leaching test which refers to EA NEN 7371 and EA NEN 7375, and one-dimensional diffusion model which is on the base of Fick diffusion law. The results show that availabilities of heavy metals are lower than the total amounts in concrete. The diffusion coefficients of heavy metals are different (Cr > As > Ni > Cd). During 30 years service, the cumulative release amounts of Cr, As, Ni and Cd are 4.43 mg/kg, 0.46 mg/kg, 1.50 mg/kg and 0.02 mg/kg, respectively, and the ratios of release which is the division of cumulative release amount and availability are 27.0%, 18.0%, 3.0% and 0.2%, respectively. The most important influence factor of cumulative release amount of heavy metal is the diffusion coefficient, and it is correlative to cumulative release amount. The diffusion coefficient of Cr and As should be controlled exactly in the processing of input the cement-kiln. PMID:19558131

  5. Physical, chemical, and isotopic data from groundwater in the watershed of Mirror Lake, and in the vicinity of Hubbard Brook, near West Thornton, New Hampshire, 1983 to 1997

    USGS Publications Warehouse

    LaBaugh, James W.; Harte, Philip T.; Shapiro, Allen M.; Hsieh, Paul A.; Johnson, Carole D.; Goode, Daniel J.; Wood, Warren W.; Buso, Donald C.; Likens, Gene E.; Winter, Thomas C.

    2013-01-01

    Research on the hydrogeologic setting of Mirror Lake near West Thornton, New Hampshire (43° 56.5’ N, 71° 41.5’ W), includes the study of the physical, chemical, and isotopic characteristics of groundwater in the vicinity of the lake and nearby Hubbard Brook. Presented here are those physical, chemical, and isotopic data for the period 1983 to 1997. Data were collected from observation wells installed in glacial drift and bedrock, as well as from one domestic well in the general area of the lake and Hubbard Brook. Also presented are data for Mirror Lake for August 1, 1993, to place groundwater data in context with chemical and isotopic characteristics of the lake.

  6. Selected Physical, Chemical, and Biological Data Used to Study Urbanizing Streams in Nine Metropolitan Areas of the United States, 1999-2004

    USGS Publications Warehouse

    Giddings, Elise M.P.; Bell, Amanda H.; Beaulieu, Karen M.; Cuffney, Thomas F.; Coles, James F.; Brown, Larry R.; Fitzpatrick, Faith A.; Falcone, James A.; Sprague, Lori A.; Bryant, Wade L.; Peppler, Marie C.; Stephens, Cory; McMahon, Gerard

    2009-01-01

    This report documents and summarizes physical, chemical, and biological data collected during 1999-2004 in a study titled Effects of Urbanization on Stream Ecosystems, undertaken as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Data-collection methods and data processing are described in this report for streamflow; stream temperature; instream chemistry; instream aquatic habitat; and algal, macroinvertebrate, and fish communities. Data summaries prepared for analytical use are presented in downloadable data tables.

  7. Human life support during interplanetary travel and domicile. VI - Generic modular flow schematic for hybrid physical/chemical-biological life support systems

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani B.; Seshan, P. K.; Ferrall, Joseph; Rohatgi, Naresh

    1992-01-01

    An extension is proposed for the NASA Space Exploration Initiative's Generic Modular Flow Schematics for physical/chemical life support systems which involves the addition of biological processes. The new system architecture includes plant, microbial, and animal habitat, as well as the human habitat subsystem. Major Feedstock Production and Food Preparation and Packaging components have also been incorporated. Inedible plant, aquaculture, microbial, and animal solids are processed for recycling.

  8. Physical-chemical properties and evaluative fate modelling of 'emerging' and 'novel' brominated and organophosphorus flame retardants in the indoor and outdoor environment.

    PubMed

    Liagkouridis, Ioannis; Cousins, Anna Palm; Cousins, Ian T

    2015-08-15

    Several groups of flame retardants (FRs) have entered the market in recent years as replacements for polybrominated diphenyl ethers (PBDEs), but little is known about their physical-chemical properties or their environmental transport and fate. Here we make best estimates of the physical-chemical properties and undertake evaluative modelling assessments (indoors and outdoors) for 35 so-called 'novel' and 'emerging' brominated flame retardants (BFRs) and 22 organophosphorus flame retardants (OPFRs). A QSPR (Quantitative Structure-Property Relationship) based technique is used to reduce uncertainty in physical-chemical properties and to aid property selection for modelling, but it is evident that more, high quality property data are required for improving future assessments. Evaluative modelling results show that many of the alternative FRs, mainly alternative BFRs and some of the halogenated OPFRs, behave similarly to the PBDEs both indoors and outdoors. These alternative FRs exhibit high overall persistence (Pov), long-range transport potential (LRTP) and POP-like behaviour and on that basis cannot be regarded as suitable replacements to PBDEs. A group of low molecular weight alternative BFRs and non-halogenated OPFRs show a potentially better environmental performance based on Pov and LRTP metrics. Results must be interpreted with caution though since there are significant uncertainties and limited data to allow for thorough model evaluation. Additional environmental parameters such as toxicity and bioaccumulative potential as well as functionality issues should be considered in an industrial substitution strategy. PMID:25933174

  9. Effects of co-processing sewage sludge in cement kiln on NOx, NH3 and PAHs emissions.

    PubMed

    Lv, Dong; Zhu, Tianle; Liu, Runwei; Lv, Qingzhi; Sun, Ye; Wang, Hongmei; Liu, Yu; Zhang, Fan

    2016-09-01

    The effects of co-processing sewage sludge in cement kiln on NOx, NH3 and PAHs emissions were systematically investigated in a cement production line in Beijing. The results show that co-processing the sewage sludge was helpful to reduce NOx emission, which primarily depends on the NH3 amount released from the sewage sludge. Meanwhile, NOx and NH3 concentrations in the flue gas have a negative correlation, and the contribution of feeding the sewage sludge to NOx removal decreased with the increase of injection amount of ammonia water in the SNCR system. Therefore, it is suggested that the injection amount of ammonia water in SNCR system may reduce to cut down the operating costs during co-processing the sewage sludge in cement kiln. In addition, the emission of total PAHs seems to increase with the increased amount of the sewage sludge feeding to the cement kiln. However, the distributions of PAHs were barely changed, and lower molecular weight PAHs were mainly distributed in gaseous phase, accounted for the major portion of PAHs when co-processing sewage sludge in cement kiln. PMID:27343866

  10. Distributions, profiles and formation mechanisms of polychlorinated naphthalenes in cement kilns co-processing municipal waste incinerator fly ash.

    PubMed

    Liu, Guorui; Zhan, Jiayu; Zhao, Yuyang; Li, Li; Jiang, Xiaoxu; Fu, Jianjie; Li, Chunping; Zheng, Minghui

    2016-07-01

    Co-processing municipal solid waste incinerator (MSWI) fly ash in cement kilns is challenging because the unintentional production of persistent organic pollutants (POPs) during the process is not well understood. The distributions, profiles and formation mechanisms of polychlorinated naphthalenes (PCNs) as new POPs covered under Stockholm Convention in two cement kilns co-processing MSWI fly ash were studied. The average concentrations of PCNs in stack gas samples were 710 ng m(-3). The PCN concentration in particle samples collected from different process stages in the cement kilns ranged from 1.1 to 84.7 ng g(-1). Three process sites including suspension pre-heater boiler, humidifier tower, and the kiln back-end bag filter were identified to be the major formation sites of PCNs in cement kilns co-processing MSWI fly ash. The PCN distribution patterns were similar to that of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs), which indicates the possibility for simultaneous control of PCNs and PCDD/Fs in cement kilns co-processing fly ash. Chlorination was suggested to be an important formation mechanism of PCNs, and chlorination pathways of PCN congeners are proposed based on the congener profiles. Thermodynamic calculations, including relative thermal energies (ΔE) and standard free energy of formation (ΔG), and the charge densities of the carbon atoms in PCN supported the proposed chlorination mechanisms for PCN formation. The results presented in this study might provide helpful information for developing techniques and strategies to control PCN emissions during cement kilns co-processing MSWI fly ash. PMID:27135696

  11. Development and Evaluation of Melt-in-Mouth Tablets of Metoclopramide Hydrochloride Using Novel Co-processed Superdisintegrants.

    PubMed

    Ladola, M K; Gangurde, A B

    2014-09-01

    In the present investigation, a novel multifunctional co-processed superdisintegrants consisting of crospovidone and Kyron T-314 were fabricated by solvent evaporation method to develop melt-in-mouth tablets of metoclopramide hydrochloride with a view to enhance patient compliance by direct compression method. The simple physical blends and co-processed mixture of superdisintegrants were characterized for angle of repose, bulk density, tapped density, Carr's index, Hausner's ratio and compatibility studies by FTIR spectroscopy. Melt-in-mouth tablets of metoclopramide hydrochloride were prepared using the physical blends and co-processed mixture of superdisinterants and were evaluated for hardness, friability, in vitro disintegration time, in vitro dispersion time, wetting time, water absorption ratio, drug content, in vitro drug release and accelerated stability study at 40±2° temperature and 75±5% relative humidity. Among the tablets evaluated, formulation F-X prepared by adding co-processed superdisintegrants in ratio of 1:1 showed minimum in vitro dispersion time of 9.71±0.021 s, in vitro disintegration time of 5.70±0.117 s and higher amount of drug release of 99.695±0.29% at the end of 1 min. Formulation F-X was emerged as the overall best formulation based on drug release characteristics in pH 6.8 phosphate buffer compared with the tablets obtained from conventional method of manufacture as well as with marketed preparation. Analysis of drug release data indicated that formulation F-X followed first order kinetics. This study revealed that the co-processed mixture of superdisintegrants have excellent flow properties, high compressibility, render low disintegration time to tablets and have better binding properties as compared to physical blends of superdisintegrants. These materials can be a good substitute for inert superdisintegrants, which are normally used in tablet manufacturing. PMID:25425756

  12. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry

    SciTech Connect

    Hasanbeigi, Ali; Lu, Hongyou; Williams, Christopher; Price, Lynn

    2012-07-01

    The purpose of this report is to describe international best practices for pre-processing and coprocessing of MSW and sewage sludge in cement plants, for the benefit of countries that wish to develop co-processing capacity. The report is divided into three main sections. Section 2 describes the fundamentals of co-processing, Section 3 describes exemplary international regulatory and institutional frameworks for co-processing, and Section 4 describes international best practices related to the technological aspects of co-processing.

  13. Development of potential novel cushioning agents for the compaction of coated multi-particulates by co-processing micronized lactose with polymers.

    PubMed

    Lin, Xiao; Chyi, Chin Wun; Ruan, Ke-feng; Feng, Yi; Heng, Paul Wan Sia

    2011-10-01

    This work aimed to explore the potential of lactose as novel cushioning agents with suitable physicomechanical properties by micronization and co-spray drying with polymers for protecting coated multi-particulates from rupture when they are compressed into tablets. Several commercially available lactose grades, micronized lactose (ML) produced by jet milling, spray-dried ML (SML), and polymer-co-processed SMLs, were evaluated for their material characteristics and tableting properties. Hydroxypropylcellulose (HPC), hydroxypropylmethylcellulose (HPMC), and polyvinylpyrrolidone (PVP) at three different levels were evaluated as co-processed polymers for spray drying. Sugar multi-particulates layered with chlorpheniramine maleate followed by an ethylcellulose coat were tableted using various lactose types as fillers. Drug release from compacted multi-particulate tablets was used to evaluate the cushioning effect of the fillers. The results showed that the cushioning effect of lactose principally depended on its particle size. Micronization can effectively enhance the protective action of lactose. Although spray drying led to a small reduction in the cushioning effect of ML, it significantly improved the physicomechanical properties of ML. Co-spray drying with suitable polymers improved both the cushioning effect and the physicomechanical properties of SML to a certain degree. Among the three polymers studied, HPC was the most effective in terms of enhancing the cushioning effect of SML. This was achieved by reducing yield pressure, and enhancing compressibility and compactibility. The combination of micronization and co-spray drying with polymers is a promising method with which new applications for lactose can be developed. PMID:21458566

  14. A prospective analysis of co-processed non-ionic surfactants in enhancing permeability of a model hydrophilic drug.

    PubMed

    Alvi, Mohammed M; Chatterjee, Parnali

    2014-04-01

    Paracellular route is a natural pathway for the transport of many hydrophilic drugs and macromolecules. The purpose of this study was to prospectively evaluate the ability of novel co-processed non-ionic surfactants to enhance the paracellular permeability of a model hydrophilic drug metformin using Caco-2 (human colonic adenocarcinoma) cell model. A three-tier screen was undertaken to evaluate the co-processed blends based on cytotoxicity, cellular integrity, and permeability coefficient. The relative contribution of the paracellular and the transcellular route in overall transport of metformin by co-processed blends was determined. Immunocytochemistry was conducted to determine the distribution of tight-junction protein claudin-1 after incubation with the co-processed blends. It was found that novel blends of Labrasol and Transcutol-P enhanced metformin permeability by approximately twofold with transient reduction in the transepithelia electrical resistance (TEER) and minimal cytotoxicity compared with the control, with the paracellular pathway as the major route of metformin transport. Maximum permeability of metformin (∼10-fold) was mediated by Tween-20 blends along with >75% reduction in the TEER which was irreversible over 24-h period. A shift in metformin transport from the paracellular to the transcellular route was observed with some Tween-20 blends. Immunocytochemical analysis revealed rearrangement of the cellular borders and fragmentation on treatment with Tween-20 blends. In conclusion, cytotoxicity, cellular integrity, and permeability of the hydrophilic drugs can be greatly influenced by the polyoxyethylene residues and medium chain fatty acids in the non-ionic surfactants at clinically relevant concentrations and therefore should be thoroughly investigated prior to their inclusion in formulations. PMID:24357111

  15. Effect of pectate lyase bioscouring on physical, chemical and low-stress mechanical properties of cotton fabrics.

    PubMed

    Kalantzi, Styliani; Mamma, Diomi; Christakopoulos, Paul; Kekos, Dimitris

    2008-11-01

    The main objective of the present study was to meticulously investigate an inclusive set of physicochemical and handle properties (determined through Kawabata evaluation system) of bioscoured cotton fabrics. The application of a commercial pectinase preparation, Bioprep 3000L, for a range of concentrations and treatment times, could create a pectin-free textile with low wax content. Multiple regression analysis was used to describe the effect of enzymatic process variables on pectin and waxes removal. Comparison of fabrics' properties such as wettability, whiteness, crystallinity index, and dyeing behaviour, confirmed that bioscouring could be as much effective as the conventional alkaline process. Uncovering the relationship between the composition of materials and their physicochemical properties was attempted. The application of higher enzyme concentrations generated fabrics with improved low-stress mechanical properties. Bending and shear rigidity, compressional resilience, as well as, extensibility of enzymatically treated cotton fabrics could be efficiently predicted by means of a single independent variable, the crystallinity index. PMID:18440224

  16. Effect on the nasal bioavailability of co-processing drug and bioadhesive carrier via spray-drying.

    PubMed

    Coucke, D; Vervaet, C; Foreman, P; Adriaensens, P; Carleer, R; Remon, J P

    2009-09-01

    A mucoadhesive combination of a maize starch (Amioca, mainly consisting of amylopectine) and a cross-linked acrylic acid-based polymer (Carbopol 974P) was spray-dried with metoprolol tartrate (used as model molecule) in order to develop a powder suitable for nasal drug delivery via a one-step manufacturing process. The bioavailability of metoprolol tartrate after nasal administration of this powder to rabbits was compared with powders manufactured via other procedures: (a) freeze-drying of a dispersion prepared using the co-spray-dried powder, (b) freeze-drying of a dispersion prepared using a physical mixture of drug and mucoadhesive polymers. After co-processing via spray-drying a low bioavailability (BA 10.8+/-2.3%) was obtained, whereas manufacturing procedures based on freeze-drying yielded a higher BA: 37.9+/-12.8% using the co-processed powder and 73.6+/-24.9% using the physical mixture. The higher bioavailability was due to the deprotonation of poly(acrylic acid) during neutralisation of the dispersion prior to freeze-drying. This induced repulsion of the ionised carboxyl groups and a lower interaction between poly(acrylic acid) and starch, creating a less compact matrix upon hydration of the polymer and allowing an easier escape of metoprolol tartrate from the matrix. This study showed that co-processing of a mucoadhesive Amioca/Carbopol 974P formulation with metoprolol tartrate via co-spray-drying did not provide any added value towards the bioavailability of the drug after nasal administration of the mucoadhesive powder. PMID:19539738

  17. Immunotoxicological impact of occupational and environmental nanoparticles exposure: The influence of physical, chemical, and combined characteristics of the particles.

    PubMed

    Pedata, Paola; Petrarca, Claudia; Garzillo, Elpidio Maria; Di Gioacchino, Mario

    2016-09-01

    While nanotechnology is growing exponentially, the knowledge of the impact of nanoparticles (NPs) on public health and the environment is limited so far. Current nanomaterial research is focused on the applications of nanotechnology, whereas there is little information on exposure assessment and risk characterization associated with NPs. Therefore, it is essential that the factors influencing NPs associated hazards be studied. This review seeks to survey and evaluate the current literature in order to better understand the impact of both airborne and engineered NPs exposure, the mechanisms at the cellular level, and the factors influencing their immunotoxicity. In fact, NPs do have immunotoxicological significance, as immune cells in the bloodstream and tissues do act to eliminate or interact with NPs.Proper characterization of the NPs as well as understanding the processes occurring on the NPs surface when in contact with biological systems is crucial to predict or exclude toxicological effects. PMID:26684639

  18. Stability and maturity of biowaste composts derived by small municipalities: Correlation among physical, chemical and biological indices.

    PubMed

    Oviedo-Ocaña, E R; Torres-Lozada, P; Marmolejo-Rebellon, L F; Hoyos, L V; Gonzales, S; Barrena, R; Komilis, D; Sanchez, A

    2015-10-01

    Stability and maturity are important criteria to guarantee the quality of a compost that is applied to agriculture or used as amendment in degraded soils. Although different techniques exist to evaluate stability and maturity, the application of laboratory tests in municipalities in developing countries can be limited due to cost and application complexities. In the composting facilities of such places, some classical low cost on-site tests to monitor the composting process are usually implemented; however, such tests do not necessarily clearly identify conditions of stability and maturity. In this article, we have applied and compared results of stability and maturity tests that can be easily employed on site (i.e. temperature, pH, moisture, electrical conductivity [EC], odor and color), and of tests that require more complex laboratory techniques (volatile solids, C/N ratio, self-heating, respirometric index, germination index [GI]). The evaluation of the above was performed in the field scale using 2 piles of biowaste applied compost. The monitoring period was from day 70 to day 190 of the process. Results showed that the low-cost tests traditionally employed to monitor the composting process on-site, such as temperature, color and moisture, do not provide consistent determinations with the more complex laboratory tests used to assess stability (e.g. respiration index, self-heating, volatile solids). In the case of maturity tests (GI, pH, EC), both the on-site tests (pH, EC) and the laboratory test (GI) provided consistent results. Although, stability was indicated for most of the samples, the maturity tests indicated that products were consistently immature. Thus, a stable product is not necessarily mature. Conclusively, the decision on the quality of the compost in the installations located in developing countries requires the simultaneous use of a combination of tests that are performed both in the laboratory and on-site. PMID:26216503

  19. High quality MgB2 thick films and large-area films fabricated by hybrid physical chemical vapor deposition with a pocket heater

    NASA Astrophysics Data System (ADS)

    Wang, S. F.; Chen, Ke; Lee, C.-H.; Soukiassian, A.; Lamborn, D. R.; DeFrain, R.; Redwing, J. M.; Li, Qi; Schlom, D. G.; Xi, X. X.

    2008-08-01

    A hybrid physical-chemical vapor deposition process using a pocket heater was developed for the growth of high quality epitaxial large-area MgB2 thin films and c-axis textured MgB2 thick films. This technique is able to independently control the substrate and Mg source temperatures and maintain sufficient Mg overpressure to ensure phase stability. The two-inch large-area MgB2 thin films showed uniform superconducting properties with the superconducting transition temperature Tc of about 40 K, residual resistivity ratio (RRR) of about 10, and critical current density Jc of about 107 A cm-2 (0 T, 5 K). The thick films (~10 µm) on sapphire substrates showed a maximum Tc of 40 K and RRR of 15, and a Jc of 1.6 × 106 A cm-2 at low applied magnetic fields even at 20 K. High quality thick films also have been obtained on metal substrates.

  20. Physical, chemical, and biological data for detailed study of irrigation drainage in the San Juan River area, New Mexico, 1993-94, with supplemental data, 1991-95

    USGS Publications Warehouse

    Thomas, C.L.; Lusk, J.D.; Bristol, R.S.; Wilson, R.M.; Shineman, A.R.

    1997-01-01

    In response to increasing concern about the quality of irrigation drainage and its potential effects on fish, wildlife, and human health, the U.S. Department of the Interior formed an interbureau task group to prepare a plan for investigating water- quality problems on irrigation projects sponsored by the Department of the Interior. The San Juan River area in northwestern New Mexico was one of the areas designated for study. Investigators collected water, bottom-sediment, soil, and biological samples at more than 50 sites in the San Juan River area during 1993-94. Sample sites included (1) sites located within Department of the Interior irrigation project service areas, or areas that receive drainage from irrigation projects; (2) reference sites for comparison with irrigation project sites; and (3) sites located within the reach of the San Juan River from Navajo Dam to 10 miles downstream from the dam. The types of habitat sampled included the main stem of the San Juan River, backwater areas adjacent to the San Juan River, tributaries to the San Juan River, ponds, seeps, irrigation-delivery canals, irrigation-drainage canals, a stock tank, and shallow ground water. The types of media sampled included water, bottom sediment, soil, aquatic plants, aquatic invertebrates, amphibians, and fish. Semipermeable-membrane devices were used as a surrogate medium to sample both air and water in some instances. Sample measurements included concentrations of major ions, trace elements, organochlorine pesticides, polychlorinated biphenyls, polycyclic-aromatic-hydrocarbon compounds, and stable isotopes of hydrogen and oxygen. This report presents tables of physical, chemical, and biological data collected for the U.S. Department of the Interior National Irrigation Water-Quality Program. Additionally, supplemental physical, chemical, and biological data collected in association with the Navajo Indian Irrigation Project are presented.

  1. Ohio Clean Fuels, Inc. , prototype commercial coal/oil co-processing plant project

    SciTech Connect

    Not Available

    1989-11-01

    This report discusses the economics of coal as a source of domestic petroleum products and clean power production. The following topics are discussed: Economic incentives for the use of coal; applications of coal/oil coprocessing including (a) integration with a refinery; (b) cost reduction technique for alternate new supplies of oil; (c) power production meeting acid rain controls and comparative economics of copro powered facilities vs conventional power plant technology; costs of non-conventional supplies of crude and costs of coprocessing compared with offshore conventional oil. 10 refs., 1 fig., 20 tabs.

  2. Effect of sucrose and pectin addition on physical, chemical, thermal and rheological properties of frozen/thawed pineapple pulps

    NASA Astrophysics Data System (ADS)

    Conceição, Márcia Cavalcante; Fernandes, Tatiana Nunes; Prado, Mônica Elisabeth Torres; de Resende, Jaime Vilela

    2012-09-01

    Pectin (0-1.0 g/100 mL) and sucrose (0-20 g/100 mL) were added to pineapple pulp to improve their rheological properties, thermal properties and stability after freezing and thawing processes. The properties of the mixes were characterized before and after freezing and thawing. Samples were frozen at -20°C, and the freeze concentration was evaluated every 60 min. The thawing rate was evaluated at 19°C and quantified by photographic editing and image analysis software. The thawing rates and values for the freeze concentration were leveled out at pectin concentrations above 0.5 g/100 mL pectin, which indicated that pectin functions to maintain structural homogeneity during freezing. In the thawed samples, the plastic viscosity values were leveled out from pectin concentrations (0.25-0.75 g/100 mL) as the sucrose concentration increased when compared to unfrozen samples. The differences between the rheological parameters of the unfrozen and frozen/thawed pulps, the higher yield stress values after thawing were attributed to the size of suspended particles in the pulp. Applications can specify formulations of frozen products containing pectin, where these properties can be handled after thawing the product.

  3. Methodologies for the quantitative estimation of toxicant dose to cigarette smokers using physical, chemical and bioanalytical data

    PubMed Central

    McAughey, John; Shepperd, Christopher J.

    2013-01-01

    Methodologies have been developed, described and demonstrated that convert mouth exposure estimates of cigarette smoke constituents to dose by accounting for smoke spilled from the mouth prior to inhalation (mouth-spill (MS)) and the respiratory retention (RR) during the inhalation cycle. The methodologies are applicable to just about any chemical compound in cigarette smoke that can be measured analytically and can be used with ambulatory population studies. Conversion of exposure to dose improves the relevancy for risk assessment paradigms. Except for urinary nicotine plus metabolites, biomarkers generally do not provide quantitative exposure or dose estimates. In addition, many smoke constituents have no reliable biomarkers. We describe methods to estimate the RR of chemical compounds in smoke based on their vapor pressure (VP) and to estimate the MS for a given subject. Data from two clinical studies were used to demonstrate dose estimation for 13 compounds, of which only 3 have urinary biomarkers. Compounds with VP > 10−5 Pa generally have RRs of 88% or greater, which do not vary appreciably with inhalation volume (IV). Compounds with VP < 10−7 Pa generally have RRs dependent on IV and lung exposure time. For MS, mean subject values from both studies were slightly greater than 30%. For constituents with urinary biomarkers, correlations with the calculated dose were significantly improved over correlations with mouth exposure. Of toxicological importance is that the dose correlations provide an estimate of the metabolic conversion of a constituent to its respective biomarker. PMID:23742081

  4. Methodologies for the quantitative estimation of toxicant dose to cigarette smokers using physical, chemical and bioanalytical data.

    PubMed

    St Charles, Frank Kelley; McAughey, John; Shepperd, Christopher J

    2013-06-01

    Methodologies have been developed, described and demonstrated that convert mouth exposure estimates of cigarette smoke constituents to dose by accounting for smoke spilled from the mouth prior to inhalation (mouth-spill (MS)) and the respiratory retention (RR) during the inhalation cycle. The methodologies are applicable to just about any chemical compound in cigarette smoke that can be measured analytically and can be used with ambulatory population studies. Conversion of exposure to dose improves the relevancy for risk assessment paradigms. Except for urinary nicotine plus metabolites, biomarkers generally do not provide quantitative exposure or dose estimates. In addition, many smoke constituents have no reliable biomarkers. We describe methods to estimate the RR of chemical compounds in smoke based on their vapor pressure (VP) and to estimate the MS for a given subject. Data from two clinical studies were used to demonstrate dose estimation for 13 compounds, of which only 3 have urinary biomarkers. Compounds with VP > 10(-5) Pa generally have RRs of 88% or greater, which do not vary appreciably with inhalation volume (IV). Compounds with VP < 10(-7) Pa generally have RRs dependent on IV and lung exposure time. For MS, mean subject values from both studies were slightly greater than 30%. For constituents with urinary biomarkers, correlations with the calculated dose were significantly improved over correlations with mouth exposure. Of toxicological importance is that the dose correlations provide an estimate of the metabolic conversion of a constituent to its respective biomarker. PMID:23742081

  5. Process and analytical studies of enhanced low severity co-processing using selective coal pretreatment. Final technical report

    SciTech Connect

    Baldwin, R.M.; Miller, R.L.

    1991-12-01

    The findings in the first phase were as follows: 1. Both reductive (non-selective) alkylation and selective oxygen alkylation brought about an increase in liquefaction reactivity for both coals. 2. Selective oxygen alkylation is more effective in enhancing the reactivity of low rank coals. In the second phase of studies, the major findings were as follows: 1. Liquefaction reactivity increases with increasing level of alkylation for both hydroliquefaction and co-processing reaction conditions. 2. the increase in reactivity found for O-alkylated Wyodak subbituminous coal is caused by chemical changes at phenolic and carboxylic functional sites. 3. O-methylation of Wyodak subbituminous coal reduced the apparent activation energy for liquefaction of this coal.

  6. Applied group theory applications in the engineering (physical, chemical, and medical), biological, social, and behavioral sciences and in the fine arts

    NASA Technical Reports Server (NTRS)

    Borg, S. F.

    1976-01-01

    A generalized applied group theory is developed, and it is shown that phenomena from a number of diverse disciplines may be included under the umbrella of a single theoretical formulation based upon the concept of a group consistent with the usual definition of this term.

  7. Physical, chemical, and biological characteristics of the Boise River from Veterans Memorial Parkway, Boise to Star, Idaho, October 1987 to March 1988

    USGS Publications Warehouse

    Frenzel, S.A.

    1988-01-01

    Physical, chemical, and biological characteristics of the Boise River were examined from October 1987 to March 1988 to determine whether trace elements in effluents from two Boise wastewater treatment facilities were detrimental to aquatic communities. Cadmium, chromium, hexavalent chromium, cyanide, lead, nickel, and silver concentrations in the Boise River were less than or near analytical detection levels and were less than chronic toxicity criteria when detectable. Arsenic, copper, and zinc were detected in concentrations less than chronic toxicity criteria. Concentrations of trace elements in bottom material generally were small and could not be attributed to effluents from wastewater treatment facilities. From October to December 1987, mean density of benthic invertebrates colonizing artificial substrates was from 6,100 individuals/substrate downstream from the West Boise wastewater treatment facility to 14,000 individuals per substrate downstream from the Lander Street wastewater treatment facility. From January to March 1988 , mean density of benthic invertebrates colonizing artificial substrates was from 7,100 individuals per substrate downstream from the West Boise facility to 10,000 individuals per substrate near Star. Insect communities upstream and downstream from the wastewater treatment facilities were strongly associated, and coeffients of community loss indicated that effluents had benign enriching effects. Distribution of mayflies indicates that trace-element concentrations in effluents did not adversely affect intolerant organisms in the Boise River. Condition factor of whitefish was significantly increased downstream from the Lander Street wastewater treatment facility and was significantly decreased downstream from the West Boise wastewater treatment facility.

  8. Responses of physical, chemical, and biological indicators of water quality to a gradient of agricultural land use in the Yakima River Basin, Washington

    USGS Publications Warehouse

    Cuffney, T.F.; Meador, M.R.; Porter, S.D.; Gurtz, M.E.

    2000-01-01

    The condition of 25 stream sites in the Yakima River Basin, Washington, were assessed by the U.S. Geological Survey's National Water-Quality Assessment Program. Multimetric condition indices were developed and used to rank sites on the basis of physical, chemical, and biological characteristics. These indices showed that sites in the Cascades and Eastern Cascades ecoregions were largely unimpaired. In contrast, all but two sites in the Columbia Basin ecoregion were impaired, some severely. Agriculture (nutrients and pesticides) was the primary factor associated with impairment and all impaired sites were characterized by multiple indicators of impairment. All indices of biological condition (fish, invertebrates, and algae) declined as agricultural intensity increased. The response exhibited by invertebrates and algae suggested a threshold response with conditions declining precipitously at relatively low levels of agricultural intensity and little response at moderate to high levels of agricultural intensity. This pattern of response suggests that the success of mitigation will vary depending upon where on the response curve the mitigation is undertaken. Because the form of the community condition response is critical to effective water-quality management, the National Water-Quality Assessment Program is conducting studies to examine the response of biota to gradients of land-use intensity and the relevance of these responses to water-quality management. These land-use gradient pilot studies will be conducted in several urban areas starting in 1999.

  9. Modeling studies of an impinging jet reactor design for hybrid physical-chemical vapor deposition of superconducting MgB 2 films

    NASA Astrophysics Data System (ADS)

    Lamborn, Daniel R.; Wilke, Rudeger H. T.; Li, Qi; Xi, X. X.; Snyder, David W.; Redwing, Joan M.

    2009-03-01

    An impinging jet reactor was developed for the deposition of superconducting MgB 2 thin films by hybrid physical-chemical vapor deposition, a technique that combines Mg evaporation with the thermal decomposition of B 2H 6 gas. A transport and chemistry model for boron film deposition from B 2H 6 was initially used to investigate the effect of carrier gas, Mg crucible temperature and gas flow rates on boron film growth rate and uniformity. The modeling studies, which were validated experimentally, demonstrated a reduction in B 2H 6 gas-phase depletion and an increased boron film growth rate using an argon carrier gas compared to hydrogen. The results were used to identify a suitable set of process conditions for MgB 2 deposition in the impinging jet reactor. The deposition of polycrystalline MgB 2 thin films that exhibited a transition temperature of 39.5 K was demonstrated at growth rates up to ˜50 μm/h.

  10. Magnetotransport phenomena in Bi{sub 2}Se{sub 3} thin film topological insulators grown by hybrid physical chemical vapor deposition

    SciTech Connect

    Kumar, Raj; Hunte, Frank; Brom, Joseph E.; Redwing, Joan M.

    2015-02-14

    Intrinsic defects in Bi{sub 2}Se{sub 3} topological insulators tend to produce a high carrier concentration and current leakage through the bulk material. Bi{sub 2}Se{sub 3} thin films were grown by hybrid physical chemical vapor deposition on (0001) Al{sub 2}O{sub 3} substrates with high Se vapor pressure to reduce the occurrence of Se vacancies as the main type of defect. Consequently, the carrier concentration was reduced to ∼5.75 × 10{sup 18} cm{sup −3} comparable to reported carrier concentration in Bi{sub 2}Se{sub 3} thin films. Magnetotransport measurements were performed on the films and the data were analyzed for weak anti-localization using the Hikami-Larkin-Nagaoka model. The estimated α and l{sub ϕ} values showed good agreement with the symplectic case of 2-D transport of topological surface states in the quantum diffusion regime. The temperature and angular dependence of magnetoresistance indicate a large contribution of the 2-D surface carriers to overall transport properties of Bi{sub 2}Se{sub 3} thin film.

  11. Environmental parameters of the Tennessee River in Alabama. 2: Physical, chemical, and biological parameters. [biological and chemical effects of thermal pollution from nuclear power plants on water quality

    NASA Technical Reports Server (NTRS)

    Rosing, L. M.

    1976-01-01

    Physical, chemical and biological water quality data from five sites in the Tennessee River, two in Guntersville Reservoir and three in Wheeler Reservoir were correlated with climatological data for three annual cycles. Two of the annual cycles are for the years prior to the Browns Ferry Nuclear Power Plant operations and one is for the first 14 months of Plant operations. A comparison of the results of the annual cycles indicates that two distinct physical conditions in the reservoirs occur, one during the warm months when the reservoirs are at capacity and one during the colder winter months when the reservoirs have been drawn-down for water storage during the rainy months and for weed control. The wide variations of physical and chemical parameters to which the biological organisms are subjected on an annual basis control the biological organisms and their population levels. A comparison of the parameters of the site below the Power plant indicates that the heated effluent from the plant operating with two of the three reactors has not had any effect on the organisms at this site. Recommendations given include the development of prediction mathematical models (statistical analysis) for the physical and chemical parameters under specific climatological conditions which affect biological organisms. Tabulated data of chemical analysis of water and organism populations studied is given.

  12. Physical, chemical, and biological data for detailed study of irrigation drainage in the Klamath Basin, California and Oregon, 1990-92

    USGS Publications Warehouse

    MacCoy, D.E.

    1994-01-01

    Physical, chemical, and biological data were collected between 1990 and 1992 as part of a detailed study by the U.S. Department of Interior of the effects of irrigation drainage on aquatic resources in the Klamath Basin of California and Oregon. Most of the sites for data collection were in and around the upper and lower sump of Tule Lake, in the Tule Lake National Wildlife Refuge, and along major drains in Lower Klamath National Wildlife Refuge. The physical and chemical data consist of particle-size determinations and concentrations of carbon, mercury, arsenic, chlorophenoxy acid, and organochlorine, organophosphate, and carbamate pesticides in bottom sediment; and concentrations of organophosphate, carbamate, and pyrethroid pesticides, major and trace inorganic constituents, nitrogen, phosphorus, and organic carbon in water. Continuous dissolved oxygen, pH, specific conduc- tance, and temperature data from selected sites in 1991 and 1992 are presented in graphical form to summarize the diel water-quality conditions. The biological data consists of concentrations of inorganic constituents and organochlorine pesticides in tissue, invertebrate and fish population surveys, fish health surveys, frog call surveys, egg shell thickness of avian eggs, and in situ and static toxicity bioassay data collected in 1991 and 1992 using aquatic bacteria, plants, invertebrates, fish, and bird species as test organisms.

  13. Effects of rainfalls variability and physical-chemical parameters on enteroviruses in sewage and lagoon in Yopougon, Côte d'Ivoire

    NASA Astrophysics Data System (ADS)

    Momou, Kouassi Julien; Akoua-Koffi, Chantal; Traoré, Karim Sory; Akré, Djako Sosthène; Dosso, Mireille

    2016-02-01

    The aim of this study was to assess the variability of the content of nutrients, oxidizable organic and particulate matters in raw sewage and the lagoon on the effect of rainfall. Then evaluate the impact of these changes in the concentration of enteroviruses (EVs) in waters. The sewage samples were collected at nine sampling points along the channel, which flows, into a tropical lagoon in Yopougon. Physical-chemical parameters (5-day Biochemical Oxygen Demand, Chemical Oxygen Demand, Suspended Particulate Matter, Total Phosphorus, Orthophosphate, Total Kjeldahl Nitrogen and Nitrate) as well as the concentration of EV in these waters were determined. The average numbers of EV isolated from the outlet of the channel were 9.06 × 104 PFU 100 ml-1. Consequently, EV was present in 55.55 and 33.33 % of the samples in the 2 brackish lagoon collection sites. The effect of rainfall on viral load at the both sewage and brackish lagoon environments is significant correlate (two-way ANOVA, P < 0.05). Furthermore, in lagoon environment, nutrients (Orthophosphate, Total Phosphorus), 5-day Biochemical Oxygen Demand, Chemical Oxygen Demand and Suspended Particulate Matter were significant correlated with EVs loads (P < 0.05 by Pearson test). The overall results highlight the problem of sewage discharge into the lagoon and correlation between viral loads and water quality parameters in sewage and lagoon.

  14. Chapter B. Physical, Chemical, and Biological Responses of Streams to Increasing Watershed Urbanization in the Piedmont Ecoregion of Georgia and Alabama, 2003

    USGS Publications Warehouse

    Gregory, M. Brian; Calhoun, Daniel L.

    2007-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment Program?s effort to assess the physical, chemical, and biological responses of streams to urbanization, 30 wadable streams were sampled near Atlanta, Ga., during 2002?2003. Watersheds were selected to minimize natural factors such as geology, altitude, and climate while representing a range of urban development. A multimetric urban intensity index was calculated using watershed land use, land cover, infrastructure, and socioeconomic variables that are highly correlated with population density. The index was used to select sites along a gradient from low to high urban intensity. Response variables measured include stream hydrology and water temperature, instream habitat, field properties (pH, conductivity, dissolved oxygen, turbidity), nutrients, pesticides, suspended sediment, sulfate, chloride, Escherichia coli (E. coli) concentrations, and characterization of algal, invertebrate and fish communities. In addition, semipermeablemembrane devices (SPMDs)?passive samplers that concentrate hydrophobic organic contaminants such as polycyclicaromatic hydrocarbons (PAHs)?were used to evaluate water-quality conditions during the 4 weeks prior to biological sampling. Changes in physical, chemical, and biological conditions were evaluated using both nonparametric correlation analysis and nonmetric multidimensional scaling (MDS) ordinations and associated comparisons of dataset similarity matrices. Many of the commonly reported effects of watershed urbanization on streams were observed in this study, such as altered hydrology and increases in some chemical constituent levels. Analysis of water-chemistry data showed that specific conductance, chloride, sulfate, and pesticides increased as urbanization increased. Nutrient concentrations were not directly correlated to increases in development, but were inversely correlated to percent forest in the watershed. Analyses of SPMD-derived data showed that

  15. Step-changes in the physical, chemical and biological characteristics of the Gulf of Maine, as documented by the GNATS time series

    USGS Publications Warehouse

    Balch, William M.; Drapeau, D.T.; Bowler, B.C.; Huntington, Thomas G.

    2012-01-01

    We identify step-changes in the physical, chemical and biological characteristics of the Gulf of Maine (GoM) using the Gulf of Maine North Atlantic Time Series (GNATS), a series of oceanographic measurements obtained between September 1998 and December 2010 along a transect in the GoM running from Portland, ME, to Yarmouth, NS. GNATS sampled a period of extremes in precipitation and river discharge (4 of the 8 wettest years of the last century occurred between 2005 and 2010). Coincident with increased precipitation, we observed the following shifts: (1) decreased salinity and density within the surface waters of the western GoM; (2) both reduced temperature and vertical temperature gradients in the upper 50 m; (3) increased colored dissolved organic matter (CDOM) concentrations and particle scattering in the western GoM; (4) increased concentrations of nitrate and phosphate across all but the eastern GoM; (5) increased silicate, particularly in the western GoM, with a sharp increase in the ratio of silicate to dissolved inorganic nitrogen; (6) sharply decreased carbon fixation by phytoplankton; (7) moderately decreased chlorophyll, particulate organic carbon (POC) and particulate inorganic carbon (PIC) in the central GoM and (8) decreased POC- and PIC-specific growth rates. Gulf-wide anomaly analyses suggest that (1) the surface density changes were predominantly driven by temperature, (2) dissolved nutrients, as well as POC/PON, varied in Redfield ratios and (3) anomalies for salinity, density, CDOM, particle backscattering and silicate were significantly correlated with river discharge. Precipitation and river discharge appear to be playing a critical role in controlling the long-term productivity of the Gulf of Maine by supplying CDOM and detrital material, which ultimately competes with phytoplankton for light absorption.

  16. Physical, chemical, and biological data for detailed study of irrigation drainage in the Uncompahgre Project area and in the Grand Valley, west-central Colorado, 1991-92

    USGS Publications Warehouse

    Butler, D.L.; Wright, W.G.; Hahn, D.A.; Krueger, R.P.; Osmundson, B.C.

    1994-01-01

    Because of concerns about potential effects of irrigation drainage on fish and wildlife resources and on human health, the U.S. Department of the Interior initiated a program in 1985 to assess water-quality problems associated with Federal irrigation projects in the Western United States. Physical, chemical, and biological data were collected for a detailed study of irrigation drainage in the Uncompahgre Project area and in the Grand Valley, west-central Colorado, during 1991-92. This report lists onsite measurements and concen- trations of major constituents, trace elements, and stable isotopes for surface-water- and ground-water-sampling sites. Insecticide data collected in the Grand Valley are presented. Ranges of specific-conductance measurements and dissolved- oxygen concentrations for selected wells and a daily record of water-level altitude and specific conduc- tance for a well in the Grand Valley are presented. The report presents historical water-level and dissolved-solids data for two wells in the Grand Valley. Concentrations of trace elements, major constituents, total carbon, and organic carbon in bottom-sediment, bedrock, and in aquifer-sediment samples and semiquantitative data on clay and bulk mineralogy of samples of the Mancos Shale are presented. The report contains selenium-speciation data for selected water and bottom-sediment samples and selected aquifer-test results. Biological samples collected in the Uncompahgre Project area and in the Grand Valley included aquatic plants, aquatic invertebrates, fish, birds, and bird eggs. The report lists concentrations of trace elements in biological samples collected in 1991-92. A limited number of biological samples were analyzed for pesticides, PCB's, and polycyclic aromatic hydrocarbons.

  17. Effect of the closure type on the evolution of the physical-chemical and sensory characteristics of a Montepulciano d'Abruzzo Rosé wine.

    PubMed

    Guaita, Massimo; Petrozziello, Maurizio; Motta, Silvia; Bonello, Federica; Cravero, Maria Carla; Marulli, Concezio; Bosso, Antonella

    2013-02-01

    The present work studied the effect of the kind of closure (a screw cap, a natural cork, and 2 synthetic closures) on the evolution of the oxygen content and on the physical-chemical and sensory characteristics of a Montepulciano d'Abruzzo rosé wine during the 1st 12 mo of bottle aging. The chemical analyses concerned the parameters more involved in the oxidative reactions (SO(2) , acetaldehyde, phenols, wine color), as well as the main fermentative volatile compounds. The kind of closure influenced the oxygen content in wines, free and total SO(2) concentration, and wine color (color intensity and hue). During bottle aging, free and total SO(2) concentration was significantly and negatively correlated with absorbance at 420 nm (A420), whereas the correlations with A520 were weak. Probably, the limited extent of the variations in red color (A520), when varying SO(2) concentration, were due to the low pH of this rosé wine. No effect of the kind of closure on phenols and the main fermentative volatile compounds was observed. The wines bottled with cork closures (N trials), after 12 mo of storage, had higher color intensity and hue, measured by spectrophotometry, and were visually distinguished from the other trials for the more intense pink reflections. On the whole, under the conditions of this work, all the used closures guaranteed a good preservability to the rosè wines during the 1st year of bottle aging, and the changes in composition did not significantly affect wine sensory characteristics. Therefore, these synthetic closures can represent an alternative to the cork closures for a medium to long term bottle aging of these wines. PMID:23324077

  18. Integration of Biological, Physical/Chemical and Energy Efficient Systems in the CELSS Antarctic Analog: Performance of Prototype Systems and Issues for Life Support

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Flynn, Michael T.; Lamparter, Richard; Bates, Maynard; Kliss, Mark (Technical Monitor)

    1998-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP), and the National Aeronautics and Space Administration (NASA). The fundamental objective is to develop, deploy, and operate a testbed of advanced life support technologies at the Amundsen-Scott South Pole Station that enable the objectives of both the NSF and NASA. The functions of food production, water purification, and waste treatment, recycle, and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, enhance safety, and minimize environmental impacts associated with human presence on the polar plateau. Because of the analogous technical, scientific, and mission features with Planetary missions, such as a mission to Mars, CAAP provides NASA with a method for validating technologies and overall approaches to supporting humans. Prototype systems for waste treatment, water recycle, resource recovery and crop production are being evaluated in a testbed at Ames Research Center. The combined performance of these biological and physical/chemical systems as an integrated function in support of the human habitat will be discussed. Overall system performance will be emphasized. The effectiveness and efficiency of component technologies will be discussed in the context of energy and mass flow within the system and contribution to achieving a mass and energy conservative system. Critical to the discussion are interfaces with habitat functions outside of the closed-loop life support: the ability of the system to satisfy the life support requirements of the habitat and the ability to define input requirements. The significance of analog functions in relation to future Mars habitats will be discussed.

  19. Reducing mechanical activation-induced amorphisation of salbutamol sulphate by co-processing with selected carboxylic acids.

    PubMed

    Curtin, Vincent; Amharar, Youness; Gallagher, Kieran H; Corcoran, Sarah; Tajber, Lidia; Corrigan, Owen I; Healy, Anne Marie

    2013-11-18

    The unintentional generation of amorphous character in crystalline active pharmaceutical ingredients (APIs) is an adverse consequence of mechanical activation during dosage form manufacture. In this study, we assess and compare the ability of low glass transition temperature (Tg) dicarboxylic acids to mitigate amorphisation of a model API, salbutamol sulphate (SS), on both co-milling and co-mixing. SS processed alone, as well as co-milled and co-mixed composites of the API with glutaric acid (GA), adipic acid (AA) and pimelic acid (PA) were characterised by powder X-ray diffraction (pXRD), differential scanning calorimetry (DSC) and dynamic vapour sorption (DVS). Milling and dry mixing of SS both resulted in pXRD amorphous materials. No amorphous content of SS was detected by DVS on co-milling with 50% (w/w) GA, while amorphisation was more than halved, relative to the API milled alone, on co-milling with 50% (w/w) AA and PA, respectively. Co-mixing with each excipient also resulted in a decrease in API amorphicity, although the extent of reduction was considerably less compared to the co-milling experiments. The solubility (Solexcipient) of each excipient in amorphous SS was determined by thermal methods. No further reduction in API amorphisation was achieved on co-mixing with 50% (w/w) excipient, compared to concentrations corresponding to the solubility of each excipient in the amorphous API (SolGA=36%, SolAA=21%, SolPA=22%). PXRD confirmed gradual dissolution over time of GA in amorphous SS on co-mixing. In contrast to co-mixing, co-milling SS at excipient weight fractions above their respective solubilities in the amorphous drug resulted in further reductions in API amorphisation. This is thought to be due to the generation of a molecular dispersion of amorphous API, supersaturated with excipient, thereby leading to a more pronounced composite Tg lowering effect. The results indicate that co-processing with low Tg excipients is an effective strategy at

  20. Effect of soil type and soil management on soil physical, chemical and biological properties in commercial organic olive orchards in Southern Spain

    NASA Astrophysics Data System (ADS)

    Gomez, Jose Alfonso; Auxiliadora Soriano, Maria; Montes-Borrego, Miguel; Navas, Juan Antonio; Landa, Blanca B.

    2014-05-01

    One of the objectives of organic agriculture is to maintain and improve soil quality, while simultaneously producing an adequate yield. A key element in organic olive production is soil management, which properly implemented can optimize the use of rainfall water enhancing infiltration rates and controlling competition for soil water by weeds. There are different soil management strategies: eg. weed mowing (M), green manure with surface tillage in spring (T), or combination with animal grazing among the trees (G). That variability in soil management combined with the large variability in soil types on which organic olive trees are grown in Southern Spain, difficult the evaluation of the impact of different soil management on soil properties, and yield as well as its interpretation in terms of improvement of soil quality. This communications presents the results and analysis of soil physical, chemical and biological properties on 58 soils in Southern Spain during 2005 and 2006, and analyzed and evaluated in different studies since them. Those 58 soils were sampled in 46 certified commercial organic olive orchards with four soil types as well as 12 undisturbed areas with natural vegetation near the olive orchards. The four soil types considered were Eutric Regosol (RGeu, n= 16), Eutric Cambisol (CMeu, n=16), Calcaric Regosol (RGca, n=13 soils sampled) and Calcic Cambisol (CMcc), and the soil management systems (SMS) include were 10 light tillage (LT), 16 sheep grazing (G), 10 tillage (T), 10 mechanical mowing (M), and 12 undisturbed areas covered by natural vegetation (NV-C and NV-S). Our results indicate that soil management had a significant effect on olive yield as well as on key soil properties. Among these soil properties are physical ones, such as infiltration rate or bulk density, chemical ones, especially organic carbon concentration, and biological ones such as soil microbial respiration and bacterial community composition. Superimpose to that soil

  1. Influence of land use changes on soil physical, chemical and biological atributes in a family farming settlement in Eastern Amazon, Brazil

    NASA Astrophysics Data System (ADS)

    Cooper, Miguel; de Pierri Castilho, Selene Cristina; Camilo Bedano, José; Dominguez, Anahi; Fernanda Simões da Silva, Laura; Nascimento Delgado Oliveira, Mariana

    2014-05-01

    Soil knowledge and the changes in its attributes due to land use modifications in the Amazon region is important for decision making by family farmers. These farmers have to choose sustainable land use management practices for their survival in the region and, for soil and forest conservation. The study area is located in the Piranheira Praialta Agroextrativist Settlement Project in the county of Nova Ipixuna, Pará, Brazil. The objective of this research is to understand the relations between soil physical, chemical and biological attributes, and how these relations change with modifications in land use. This information is important for defining best management practices for family farming in the region. Two toposequences were chosen, one under native forest and the other under pasture. 40 cm pits were opened with five replicates in three landscape positions (upslope, midslope and downslope). Sampling periods were July/2012 (dry season); January/2013 (beginning of rainy season) and march/2013 (rainy season). Samples were taken for soil particle size analysis, bulk density, particle density, moisture, porosity, water retention, chemical, litter dry matter and macrofauna analysis. Statistical analysis techniques were performed uni and multivariate. No significant differences were observed in the particle size distribution of the studied soils. The soils presented sandy surface horizons with an increase of clay in depth in both land use systems. Soil bulk density values were higher in the surface horizons and, in general, in the pasture toposequence. Differences were also observed in the soil moisture content and litter dry matter which were higher under the native forest, and in the pH and organic matter values which were higher in the pasture. Higher water retention capacity was observed in the surface horizons of the forest when compared to the pasture, corroborating the higher values of macroporosity observed in the forest soils. Due to higher moisture content

  2. Physical, chemical and mineralogical evolution of the Tolhuaca geothermal system, southern Andes, Chile: Insights into the interplay between hydrothermal alteration and brittle deformation

    NASA Astrophysics Data System (ADS)

    Sanchez-Alfaro, Pablo; Reich, Martin; Arancibia, Gloria; Pérez-Flores, Pamela; Cembrano, José; Driesner, Thomas; Lizama, Martin; Rowland, Julie; Morata, Diego; Heinrich, Christoph A.; Tardani, Daniele; Campos, Eduardo

    2016-09-01

    In this study, we unravel the physical, chemical and mineralogical evolution of the active Tolhuaca geothermal system in the Andes of southern Chile. We used temperature measurements in the deep wells and geochemical analyses of borehole fluid samples to constrain present-day fluid conditions. In addition, we reconstructed the paleo-fluid temperatures and chemistry from microthermometry and LA-ICP-MS analysis of fluid inclusions taken from well-constrained parageneses in vein samples retrieved from a ~ 1000 m borehole core. Based on core logging, mineralogical observations and fluid inclusions data we identify four stages (S1-S4) of progressive hydrothermal alteration. An early heating event (S1) was followed by the formation of a clay-rich cap in the upper zone (< 670 m) and the development of a propylitic alteration assemblage at greater depth (S2). Boiling, flashing and brecciation occurred later (S3), followed by a final phase of fluid mixing and boiling (S4). The evolution of hydrothermal alteration at Tolhuaca has produced a mineralogical, hydrological and structural vertical segmentation of the system through the development of a low-permeability, low-cohesion clay-rich cap at shallow depth. The quantitative chemical analyses of fluid inclusions and borehole fluids reveal a significant change in chemical conditions during the evolution of Tolhuaca. Whereas borehole (present-day) fluids are rich in Au, B and As, but Cu-poor (B/Na ~ 100.5, As/Na ~ 10- 1.1, Cu/Na ~ 10- 4.2), the paleofluids trapped in fluid inclusions are Cu-rich but poor in B and As (B/Na ~ 10- 1, As/Na ~ 10- 2.5, Cu/Na ~ 10- 2.5 in average). We interpret the fluctuations in fluid chemistry at Tolhuaca as the result of transient supply of metal-rich, magmatically derived fluids where As, Au and Cu are geochemically decoupled. Since these fluctuating physical and chemical conditions at the reservoir produced a mineralogical vertical segmentation of the system that affects the mechanical and

  3. Hydrothermal liquefaction of freshwater and marine algal biomass: A novel approach to produce distillate fuel fractions through blending and co-processing of biocrude with petrocrude.

    PubMed

    Lavanya, Melcureraj; Meenakshisundaram, Arunachalam; Renganathan, Sahadevan; Chinnasamy, Senthil; Lewis, David Milton; Nallasivam, Jaganathan; Bhaskar, Sailendra

    2016-03-01

    Biocrude was produced from Tetraselmis sp. - a marine alga and Arthrospira platensis - a fresh water alga using hydrothermal liquefaction (HTL) process. Considering the constraints in cultivating algae for replacing 100% petrocrude, this study evaluated the option of blending and co-processing algal biocrude with petrocrude. Biocrudes obtained from algal strains cultivated in fresh water and sea water were blended with petrocrude at 10% concentration and the characteristics were studied using FT-IR and CNS SIMDIST. True Boiling Point (TBP) distillation was carried out to assess yields and properties of distillates of blended biocrudes. Biocrudes obtained from both algae were light crudes and the blended crudes recorded distillate yields of 76-77 wt%. The yield of light naphtha fraction of biocrude blends was 29-30%; whereas the yield of diesel fraction was about 18%. This study proposes blending and co-processing of algal biocrude with petrocrude to produce drop-in biofuels. PMID:26735877

  4. Recent evolution of the physical-chemical characteristics of a Site of National Interest-the Mar Piccolo of Taranto (Ionian Sea)-and changes over the last 20 years.

    PubMed

    Kralj, Martina; De Vittor, Cinzia; Comici, Cinzia; Relitti, Federica; Auriemma, Rocco; Alabiso, Giorgio; Del Negro, Paola

    2016-07-01

    The Mar Piccolo of Taranto, classified as a 'Site of National Interest' (SIN), is a semi-enclosed basin divided into two inlets with lagoon features and sea influences, seriously affected by anthropic activities. In the framework of the RITMARE project, a study has been carried out to evaluate the functionality of this ecosystem. As part of this work, measurements of the water abiotic parameters were performed in order to assess the physical-chemical features of this area after the activation, in the last decade, of treatment plants for various urban and industrial dumping. Seawater intrusions and continental inputs, as well as several submarine freshwater springs, clearly affect physical-chemical characteristics of the water column in the two inlets. This finding suggests that small-scale patterns in water circulation have the potential to influence the chemical properties of the seawater. The comparison with a 20-year dataset reveals a drastic decrease in nutrient concentrations after the year 2000, validating the functionality of the treatment plants. The reduction of nutrient inputs into the basin (up to -90 % in the first inlet characterized by lower hydraulic residence time) has changed the biogeochemical characteristics of the Mar Piccolo from being relatively eutrophic to moderately oligotrophic. PMID:26308918

  5. The use of principal component analysis in studying physical, chemical and biological soil properties in southern caspian forests (North of Iran).

    PubMed

    Kooch, Yahya; Jalilvand, Hamid; Bahmanyar, Mohammad Ali; Pormajidian, Mohammad Reza

    2008-02-01

    This research was conducted in Khanikan forests located in lowland of Mazandaran province (North of Iran). Eighteen profiles were dug and several chemical, physical and biological soil properties were investigated. The soil properties evaluated were soil pH, bulk density, saturation moisture content, electrical conductivity, organic carbon, total nitrogen, cation exchangeable capacity, available phosphorous, soil texture, calcium carbonate content, number and biomass of earthworms, litter carbon and litter nitrogen. Principal Component Analysis (PCA) was used to identify the variation of soil properties. PCA, a technique which reduces the dimensionality of multivariate data by removing Interco relations among variables, has a number of useful applications in forest researches. The results showed significant relationships between some soil factors with PC1 and PC2 axes, also, among different soil factors, the distribution of forest types was most strongly controlled with some soil characteristics such as acidity, bulk density, texture, phosphorous, organic carbon, total nitrogen and cation exchangeable capacity. PMID:18817157

  6. Inhibition of retrogressive reactions in coal/petroleum co-processing. Quarterly technical progress report, October 1, 1991--December 30, 1991

    SciTech Connect

    Schobert, H.H.; Tomic, J.

    1992-01-01

    The overall objective of this project is to develop a fundamental understanding of the reactions occurring at the onset of coke formation during the co-processing of coals with petroleum residua. The specific objectives include examination of chemical components, or groups of components, in coals and petroleum feedstocks to quantify and rank the effects of these components in retarding or enhancement of coke formation. The work involves bench scale reactions in microautoclaves, supplemented by studies of the carbonaceous residues by such techniques as diffuse reflectance Fourier transform infrared spectroscopy and {sup 13}C nuclear magnetic resonance spectrometry. During this reporting period work focused on identification of mechanisms of coke formation. The objective of this task is to identify those compounds or components which are specifically responsible for initiating coke formation.

  7. MgCO3·3H2O and MgO complex nanostructures: controllable biomimetic fabrication and physical chemical properties.

    PubMed

    Wu, Xiaoming; Cao, Huaqiang; Yin, Gui; Yin, Jiefu; Lu, Yuexiang; Li, Baojun

    2011-03-21

    In this paper, we report a method of biomimetic synthesis of MgCO(3)·3H(2)O and MgO Viburnum opulus-like complex nanostructures with superhydrophobicity and adsorption properties. The MgCO(3)·3H(2)O complex nanostructures can be obtained by changing experimental parameters, including concentrations of reactants (dextran and MgCl(2)), molar ratios of reactants, and reaction time. The phase structure of as-synthesized samples was characterized by X-ray diffraction (XRD). The morphology and structure are studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR) spectroscopy. The MgCO(3)·3H(2)O complex nanostructures exhibited superhydrophobicity, due to their unique superstructures, and was proved by the contact angle (CA) measurement. We also show that a simple calcination of these unusually shaped MgCO(3)·3H(2)O results in spontaneous formation of MgO complex nanostructures while the unique shape can be maintained, and the as-synthesized MgO nanostructures show excellent adsorption property. These unique structures and properties will open up a wide range of potential applications in material and environmental protection. PMID:21170433

  8. Field pilot study on emissions, formations and distributions of PCDD/Fs from cement kiln co-processing fly ash from municipal solid waste incinerations.

    PubMed

    Liu, Guorui; Zhan, Jiayu; Zheng, Minghui; Li, Li; Li, Chunping; Jiang, Xiaoxu; Wang, Mei; Zhao, Yuyang; Jin, Rong

    2015-12-15

    A pilot study was performed to evaluate formation, distribution and emission of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from cement kilns that co-process fly ash from municipal solid waste incineration (MSWI). Stack gas and particulate samples from multiple stages in the process were collected and analyzed for PCDD/Fs. Stack emissions of PCDD/Fs were below the European Union limit for cement kilns (0.1 ng TEQ m(-3)). PCDD/F concentrations in particulates from the cyclone preheater outlet, suspension preheater boiler, humidifier tower, and back-end bag filter were much higher than in other samples, which suggests that these areas are the major sites of PCDD/F formation. Comparison of PCDD/F homolog and congener profiles from different stages suggested that tetra- and penta-chlorinated furans were mainly formed during cement kiln co-processing of MSWI fly ash. Three lower chlorinated furan congeners, including 2,3,7,8-tetrachlorodibenzofuran, 1,2,3,7,8-pentachlorodibenzo-p-dioxin and 2,3,4,7,8-pentachlorodibenzofuran, were identified as dominant contributors to the toxic equivalents (TEQ) of the PCDD/Fs. The concentration of PCDD/Fs in particulates was correlated with chloride content, which is consistent with its positive effect on PCDD/F formation. This could be mitigated by pretreating the feedstock to remove chloride and metals. Mass balance indicated that cement kilns eliminated about 94% of the PCDD/F TEQ input from the feedstock. PMID:26241773

  9. Seismic Absorption and Modulus Measurements in Porous Rocks in Lab and Field: Physical, Chemical, and Biological Effects of Fluids (Detecting a Biosurfactant Additive in a Field Irrigation Experiment)

    SciTech Connect

    Spetzler, Hartmut

    2006-05-01

    We have been exploring a new technology that is based on using low-frequency seismic attenuation data to monitor changes in fluid saturation conditions in two-fluid phase porous materials. The seismic attenuation mechanism is related to the loss of energy due to the hysteresis of resistance to meniscus movement (changes in surface tension, wettability) when a pore containing two fluids is stressed at very low frequencies (< 10 Hz). This technology has potential applications to monitoring changes in (1) leakage at buried waste sites, (2) contaminant remediation, and (3) flooding during enhanced petroleum recovery. We have concluded a three year field study at the Maricopa Agricultural Center site of the University of Arizona. Three sets of instruments were installed along an East-West line perpendicular to the 50m by 50m inigation site. Each set of instruments consisted of one three component seismometer and one tiltmeter. Microseisms and solid Earth-tides served as strain sources. The former have a power peak at a period of about 6 seconds and the tides have about two cycles per day. Installation of instruments commenced in late summer of 2002. The instruments operated nearly continuously until April 2005. During the fall of 2003 the site was irrigated with water and one year later with water containing 150 ppm of a biosurfactant additive. This biodegradable additive served to mimic a class of contaminants that change the surface tension of the inigation fluid. Tilt data clearly show tidal tilts superimposed on local tilts due to agricultural irrigation and field work. When the observed signals were correlated with site specific theoretical tilt signals we saw no anomalies for the water irrigation in 2003, but large anomalies on two stations for the surfactant irrigation in 2004. Occasional failures of seismometers as well as data acquisition systems contributed to less than continuous coverage. These data are noisier than the tilt data, but do also show possible

  10. Physical-chemical studies of transuranium elements

    SciTech Connect

    Peterson, J.R.

    1991-01-01

    Major advances in our continuing program to determine, interpret, and correlate the basic chemical and physical properties of the transuranium elements are summarized. Research topics include: Molar enthalpies of formation of BaCmO{sub 3} and BaCfO{sub 3}; luminescence of europium oxychloride at various pressures; and anti-stokes luminescence of selected actinide (III) compounds. 42 refs., 4 figs., 2 tabs.

  11. Physical-chemical conditions of ore deposition

    USGS Publications Warehouse

    Barton, P.B., Jr.

    1981-01-01

    Ore deposits form under a wide range of physical and chemical conditions, but those precipitating from hot, aqueous fluids-i.e. the hydrothermal deposits-form generally below 700??C and at pressures of only 1 or 2 kbar or less. Natural aqueous fluids in rocks may extract metal and sulfur from a variety of rock types or may acquire them as a residual heritage from a crystallizing silicate magma. Ore-forming hydrothermal fluids never appear as hot springs (except in deep, submarine situations) because they boil, mix with surface waters, and cool, thereby losing their ore-bearing ability before reaching the surface. Mineral systems function as chemical buffers and indicators just as buffers and indicators function in a chemical laboratory. By reading the record written in the buffer/indicator assemblages of minerals one can reconstruct many aspects of the former chemical environment. By studying the record of changing conditions one may deduce information regarding the processes functioning to create the succession of chemical environments and the ore deposits they represent. The example of the OH vein at Creede, Colorado, shows a pH buffered by the K-feldspar + muscovite + quartz assemblage and the covariation of S2 and O2 buffered by the assemblage chlorite + pyrite + quartz. Boiling of the ore fluid led to its oxidation to hematite-bearing assemblages and simultaneously produced an intensely altered, sericitic capping over the vein in response to the condensation of vapors bearing acidic components. The solubility of metals as calculated from experimental and theoretical studies of mineral solubility appears too low by at least one or two powers of ten to explain the mineralization at Creede. In contrast to Creede where the mineral stabilities all point to a relatively consistent chemistry, the Mississippi Valley type deposits present a puzzle of conflicting chemical clues that are impossible to reconcile with any single equilibrium situation. Thus we must seriously consider metastable equilibria; those most likely involve redox disequilibrium among the sulfur species in solution and perhaps also involve organic compounds. ?? 1981.

  12. Desertomycin: purification and physical-chemical properties.

    PubMed

    Dolak, L A; Reusser, F; Baczynskyj, L; Mizsak, S A; Hannon, B R; Castle, T M

    1983-01-01

    Desertomycin was isolated from Streptomyces macronensis Dietz sp. nov. UC 8271. Extensive spectroscopic work led us to place desertomycin in the macrocyclic lactone family which contains monazomycin, scopafungin, primycin, azalomycin F4a and niphithricins A and B. The apparent molecular formula was determined by fast atom bombardment mass spectroscopy to be C57H109NO24 (MW = 1,191). Mild acid hydrolysis yielded mannose but contrary to published reports, glutamic acid is not a constituent of desertomycin. PMID:6678910

  13. Physical, chemical, and biological data for detailed study of the Sun River Irrigation Project, Freezout Lake Wildlife Management Area, and Benton Lake National Wildlife Refuge, west-central Montana, 1990-92, with selected data for 1987-89

    USGS Publications Warehouse

    Lambing, J.H.; Nimick, D.A.; Knapton, J.R.; Palawski, D.U.

    1994-01-01

    Physical chemical, and biological data were collected in the lower Sun River area of west-central Montana during 1990-92 as part of a U.S. Department of the Interior detailed study of the extent, magnitude, sources, and potential biological impacts of contaminants associated with irrigation drainage. Physical and chemical data were collected from areas within and near the Sun River Irrigation Project and from wetland areas receiving irrigation drainage. Biological data were collected from areas in and near Freezout Lake Wildlife Management Area and Benton Lake National Wildlife Refuge. Additional biological data were collected previously during 1987-89 as part of a U.S. Fish and Wildlife Service program. This report presents data for selenium and other potentially toxic constituents in solid-phase, water, and biological media. Data consist of concentrations of major and trace elements in soil and drill cores; concen- trations of major ions, nutrients, and trace elements in ground water and surface water; and trace-element concentrations in bottom sediment and biological tissue. Hydrogeologic data for domestic and test wells and daily streamflow data for selected sites also are included.

  14. [Correlations between standing trees trunk decay degree and soil physical-chemical properties in Korean pine-broadleaved mixed forest in Xiao Xing'an Mountains of Northeast China].

    PubMed

    Sun, Tian-Yong; Wang, Li-Hai; Sun, Mo-Long

    2013-07-01

    Standing trees decay often causes vast loss of timber resources. To investigate the correlations between the standing trees decay and the site conditions is of importance to scientifically and reasonably manage forests and to decrease wood resources loss. By using Resistograph and meter ruler, a measurement was made on the decay degree of the trunk near root and the diameter at breast height (DBH) of 15 mature Korean pine standing trees in a Korean pine-broadleaved mixed forest in Xiao Xing' an Mountains in May, 2011. In the meantime, soil samples were collected from the root zones of standing trees and the upslope and downslope 5 meters away from the trunks, respectively. Five physical-chemical properties including moisture content, bulk density, total porosity, pH value, and organic matter content of the soil samples were tested. The regression equations concerning the trunk decay degree of the standing trees, their DBH, and the 5 soil properties were established. The results showed that the trunk decay degree of the mature Korean pine standing trees had higher correlations with the bulk density, total porosity, pH value, and organic matter content (R = 0.687), and significant positive correlation with the moisture content (R = 0.507) of the soils at the root zones of standing trees, but less correlation with the 5 properties of the soils at both upslope and downslope 5 meters away from the trunks. The trunk decay degree was decreased when the soil moisture content was below 18.4%. No significant correlation was observed between the trunk decay degree of mature Korean pine standing trees and the tree age. PMID:24175511

  15. Biomedical Applications of Biodegradable Polymers

    PubMed Central

    Ulery, Bret D.; Nair, Lakshmi S.; Laurencin, Cato T.

    2011-01-01

    Utilization of polymers as biomaterials has greatly impacted the advancement of modern medicine. Specifically, polymeric biomaterials that are biodegradable provide the significant advantage of being able to be broken down and removed after they have served their function. Applications are wide ranging with degradable polymers being used clinically as surgical sutures and implants. In order to fit functional demand, materials with desired physical, chemical, biological, biomechanical and degradation properties must be selected. Fortunately, a wide range of natural and synthetic degradable polymers has been investigated for biomedical applications with novel materials constantly being developed to meet new challenges. This review summarizes the most recent advances in the field over the past 4 years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications. PMID:21769165

  16. Nanocomposite hydrogels for biomedical applications

    PubMed Central

    Gaharwar, Akhilesh K.

    2014-01-01

    Hydrogels mimic native tissue microenvironment due to their porous and hydrated molecular structure. An emerging approach to reinforce polymeric hydrogels and to include multiple functionalities focuses on incorporating nanoparticles within the hydrogel network. A wide range of nanoparticles, such as carbon-based, polymeric, ceramic, and metallic nanomaterials can be integrated within the hydrogel networks to obtain nanocomposites with superior properties and tailored functionality. Nanocomposite hydrogels can be engineered to possess superior physical, chemical, electrical, and biological properties. This review focuses on the most recent developments in the field of nanocomposite hydrogels with emphasis on biomedical and pharmaceutical applications. In particular, we discuss synthesis and fabrication of nanocomposite hydrogels, examine their current limitations and conclude with future directions in designing more advanced nanocomposite hydrogels for biomedical and biotechnological applications. PMID:24264728

  17. Chitin and Chitosan as Direct Compression Excipients in Pharmaceutical Applications

    PubMed Central

    Badwan, Adnan A.; Rashid, Iyad; Al Omari, Mahmoud M.H.; Darras, Fouad H.

    2015-01-01

    Despite the numerous uses of chitin and chitosan as new functional materials of high potential in various fields, they are still behind several directly compressible excipients already dominating pharmaceutical applications. There are, however, new attempts to exploit chitin and chitosan in co-processing techniques that provide a product with potential to act as a direct compression (DC) excipient. This review outlines the compression properties of chitin and chitosan in the context of DC pharmaceutical applications. PMID:25810109

  18. Development and Application of Refractory Materials for Molten Aluminum Applications

    SciTech Connect

    Hemrick, James Gordon; Headrick, William; Peters, Klaus-Markus

    2008-01-01

    Two new refractory materials have been developed for use in molten aluminum contact applications which exhibit improved corrosion and wear resistance, along with improved thermal management through reduced heat losses. The development of these materials was based on understanding of the corrosion and wear mechanisms associated with currently used aluminum contact refractories through physical, chemical, and mechanical characterization and analysis performed by Oak Ridge National Laboratory (ORNL) and the University of Missouri, Rolla (UMR) along with their industrial partners, under the ITP Materials project "Multifunctional Metallic and Refractory Materials for Energy Efficient Handling of Molten Metals". Spent castable refractories obtained from a natural gas fired reverberatory aluminum alloy melting furnace were analyzed leading to identification of several refractory degradation mechanisms and strategies to produce improved materials. The newly developed materials have been validated through both R&D industrial trials and independent commercial trials by the refractory manufacturers.

  19. Medicinal applications of fullerenes

    PubMed Central

    Bakry, Rania; Vallant, Rainer M; Najam-ul-Haq, Muhammad; Rainer, Matthias; Szabo, Zoltan; Huck, Christian W; Bonn, Günther K

    2007-01-01

    Fullerenes have attracted considerable attention in different fields of science since their discovery in 1985. Investigations of physical, chemical and biological properties of fullerenes have yielded promising information. It is inferred that size, hydrophobicity, three-dimensionality and electronic configurations make them an appealing subject in medicinal chemistry. Their unique carbon cage structure coupled with immense scope for derivatization make them a potential therapeutic agent. The study of biological applications has attracted increasing attention despite the low solubility of carbon spheres in physiological media. The fullerene family, and especially C60, has appealing photo, electrochemical and physical properties, which can be exploited in various medical fields. Fullerene is able to fit inside the hydrophobic cavity of HIV proteases, inhibiting the access of substrates to the catalytic site of enzyme. It can be used as radical scavenger and antioxidant. At the same time, if exposed to light, fullerene can produce singlet oxygen in high quantum yields. This action, together with direct electron transfer from excited state of fullerene and DNA bases, can be used to cleave DNA. In addition, fullerenes have been used as a carrier for gene and drug delivery systems. Also they are used for serum protein profiling as MELDI material for biomarker discovery. In this review we report the aspects of medicinal applications of fullerenes. PMID:18203430

  20. Tunable resistive pulse sensing: potential applications in nanomedicine.

    PubMed

    Sivakumaran, Muttuswamy; Platt, Mark

    2016-08-01

    An accurate characterization of nanomaterials used in clinical diagnosis and therapeutics is of paramount importance to realize the full potential of nanotechnology in medicine and to avoid unexpected and potentially harmful toxic effects due to these materials. A number of technical modalities are currently in use to study the physical, chemical and biological properties of nanomaterials but they all have advantages and disadvantages. In this review, we discuss the potential of a relative newcomer, tunable resistive pulse sensing, for the characterization of nanomaterials and its applications in nanodiagnostics. PMID:27480794

  1. Group behaviour in physical, chemical and biological systems.

    PubMed

    Saçlioğlu, Cihan; Pekcan, Önder; Nanjundiah, Vidyanand

    2014-04-01

    Groups exhibit properties that either are not perceived to exist, or perhaps cannot exist, at the individual level. Such 'emergent' properties depend on how individuals interact, both among themselves and with their surroundings. The world of everyday objects consists of material entities. These are, ultimately, groups of elementary particles that organize themselves into atoms and molecules, occupy space, and so on. It turns out that an explanation of even the most commonplace features of this world requires relativistic quantum field theory and the fact that Planck's constant is discrete, not zero. Groups of molecules in solution, in particular polymers ('sols'), can form viscous clusters that behave like elastic solids ('gels'). Sol-gel transitions are examples of cooperative phenomena. Their occurrence is explained by modelling the statistics of inter-unit interactions: the likelihood of either state varies sharply as a critical parameter crosses a threshold value. Group behaviour among cells or organisms is often heritable and therefore can evolve. This permits an additional, typically biological, explanation for it in terms of reproductive advantage, whether of the individual or of the group. There is no general agreement on the appropriate explanatory framework for understanding group-level phenomena in biology. PMID:24736152

  2. Physical-chemical analyses of irradiated papayas ( Carica papaya L.)

    NASA Astrophysics Data System (ADS)

    Camargo, R. J.; Tadini, C. C.; Sabato, S. F.

    2007-11-01

    Papaya is cultivated in Espírito Santo State/Brazil and as it stands up to irradiation, it is important to validate this technology, since it is already being applied in some countries. Penetration energy, ratio (relation between soluble solids and titrable acidity) and skin color were evaluated to verify the influence of four different doses of irradiation (0.0, 0.5, 0.75 and 1.00 kGy) on papayas, during 21 days. As a result for the skin color and the penetration energy, it was found that in the first days after irradiation, these variables increased with increase in radiation dose; however, after a time lapse, the tendency inverted and the irradiated fruits had a slower ripening process. For the ratio, a very important variable that it is responsible for the fruit taste, no difference was found between irradiated and the control fruit. Color and texture measurements are dependent on the storage temperature.

  3. Physical, chemical and kinetic factors affecting prion infectivity

    PubMed Central

    Properzi, Francesca; Badhan, Anjna; Klier, Steffi; Schmidt, Christian; Klöhn, Peter C.; Wadsworth, Jonathan D. F.; Clarke, Anthony R.; Jackson, Graham S.; Collinge, John

    2016-01-01

    ABSTRACT The mouse-adapted scrapie prion strain RML is one of the most widely used in prion research. The introduction of a cell culture-based assay of RML prions, the scrapie cell assay (SCA) allows more rapid and precise prion titration. A semi-automated version of this assay (ASCA) was applied to explore a range of conditions that might influence the infectivity and properties of RML prions. These include resistance to freeze-thaw procedures; stability to endogenous proteases in brain homogenate despite prolonged exposure to varying temperatures; distribution of infective material between pellet and supernatant after centrifugation, the effect of reducing agents and the influence of detergent additives on the efficiency of infection. Apparent infectivity is increased significantly by interaction with cationic detergents. Importantly, we have also elucidated the relationship between the duration of exposure of cells to RML prions and the transmission of infection. We established that the infection process following contact of cells with RML prions is rapid and followed an exponential time course, implying a single rate-limiting process. PMID:27282252

  4. Physical-chemical properties of chlorinated dibenzo-p-dioxins

    SciTech Connect

    Shiu, W.Y.; Doucette, W.; Gobas, F.A.P.C.; Andren, A.; Mackay, D.

    1988-06-01

    Reported and newly determined experimental data for aqueous solubility, octanol-water partition coefficient, vapor pressure, and Henry's law constants of the poly-chlorinated dibenzo-p-dioxins are presented and reviewed. Correlation equations are derived for these properties as a function of chlorine number and molar volume, which enable the solubility and octanol-water partition coefficients of most congeners to be estimated with an accuracy within a factor of 2 and vapor pressure and Henry's law constant within a factor of 5. It is suggested that properties of homologous series are best correlated by a two-stage process. In the first stage, treated here, simple correlations are developed to establish approximate values as a function of molar volume and chlorine number. This should be followed by a more rigorous second stage treating isomer differences and using more refined molecular descriptors. The data presented here should be sufficiently accurate for many environmental assessment purposes.

  5. Physical, chemical and kinetic factors affecting prion infectivity.

    PubMed

    Properzi, Francesca; Badhan, Anjna; Klier, Steffi; Schmidt, Christian; Klöhn, Peter C; Wadsworth, Jonathan D F; Clarke, Anthony R; Jackson, Graham S; Collinge, John

    2016-05-01

    The mouse-adapted scrapie prion strain RML is one of the most widely used in prion research. The introduction of a cell culture-based assay of RML prions, the scrapie cell assay (SCA) allows more rapid and precise prion titration. A semi-automated version of this assay (ASCA) was applied to explore a range of conditions that might influence the infectivity and properties of RML prions. These include resistance to freeze-thaw procedures; stability to endogenous proteases in brain homogenate despite prolonged exposure to varying temperatures; distribution of infective material between pellet and supernatant after centrifugation, the effect of reducing agents and the influence of detergent additives on the efficiency of infection. Apparent infectivity is increased significantly by interaction with cationic detergents. Importantly, we have also elucidated the relationship between the duration of exposure of cells to RML prions and the transmission of infection. We established that the infection process following contact of cells with RML prions is rapid and followed an exponential time course, implying a single rate-limiting process. PMID:27282252

  6. The physical, chemical and combustion characteristics of EFB fuel briquettes

    NASA Astrophysics Data System (ADS)

    Rahman, Aizuddin Abdul; Sulaiman, Fauziah; Abdullah, Nurhayati

    2015-04-01

    The abundance of empty fruit bunches (EFB) from oil palm mill made them an economically attractive and viable source of energy nowadays. Converting pyrolyzed EFB into densified solid fuel (briquette) could overcome the troublesome of using raw material which has low energy density and lack of uniform properties for domestic and industrial energy utilization. In this work, EFB is pyrolyzed at 400°C under heating rate of 10°C/min for at least 2 hours to obtain char and pyrolysis liquid needed. Char is prepared as a main source for the briquette mixture, meanwhile the pyrolysis liquid acts as the binder. Both char and pyrolysis liquid were mixed at various percentage of concentrations; 90:10, 80:20, 70:30 and 60:40, and then manually compressed at 10MPa for at least 10 minutes. The results of the properties found that the proportion of 60:40 mixtures has the highest density value of approximately around 0.95 g/cm3, with largest weight loss of production up to 4.83%. The increased pyrolysis liquid added into the mixture has seemly lowered the energy value of the briquette from 23.13 to 21.23 MJ/kg. In the burning test determination, briquettes mixture of 70:30 was found to generate the highest temperature up to 483°C compared to others, and could retain a temperature of 100°C for at least 10 minutes after the flame was gradually put out by itself.

  7. The storage lipids in Tangier disease. A physical chemical study.

    PubMed

    Katz, S S; Small, D M; Brook, J G; Lees, R S

    1977-06-01

    The physical states and phase behavior of the lipids of the spleen, liver, and splenic artery from a 38-yr-old man with Tangier disease were studied. Many intracellular lipid droplets in the smectic liquid crystalline state were identified by polarizing microscopy in macrophages in both the spleen and liver, but not in the splenic artery. The droplets within individual cells melted sharply over a narrow temperature range, indicating a uniform lipid composition of the droplets of each cell. However different cells melted over a wide range, 20-53 degrees C indicating heterogeneity of lipid droplet composition between cells. Furthermore, most of the cells (81%) had droplets in the liquid crystalline state at 37 degrees C. X-ray diffraction studies of splenic tissue at 37 degrees C revealed a diffraction pattern typical of cholesterol esters in the smectic liquid crystalline state. Differential scanning calorimetry of spleen showed a broad reversible transition from 29-52 degrees C, with a maximum mean transition temperature at 42 degrees C, correlating closely with the polarizing microscopy observations. The enthalpy of the transition, 0.86+/-0.07 cal/g of cholesterol ester, was quantitatively similar to that of the liquid crystalline to liquid transition of pure cholesterol esters indicating that nearly all of the cholesterol esters in the tissue were free to undergo the smectic-isotropic phase transition. Lipid compositions of spleen and liver were determined, and when plotted on the cholesterol-phospholipid-cholesterol ester phase diagram, fell within the two phase zone. The two phases, cholesterol ester droplets and phospholipid bilayers were isolated by ultracentrifugation of tissue homogenates. Lipid compositions of the separated phases approximated those predicted by the phase diagram. Extracted lipids from the spleen, when dispersed in water and ultracentrifuged, underwent phase separation in a similar way. Thus (a) most of the storage lipids in the liver and spleen of this patient were in the liquid crystalline state at body temperature, (b) the phase behavior of the storage lipids conformed to that predicted by lipid model systems indicating lipid-lipid interactions predominate in affected cells, (c) lipid droplets within individual cells have similar compositions, whereas droplet composition varies from cell to cell, and (d) cholesterol ester does not accumulate in the splenic artery. Since Tangier patients lack high density lipoprotein, we conclude that high density lipoprotein-mediated cholesterol removal from cells is essential only for those cells which have an obligate intake of cholesterol (macrophages). PMID:193870

  8. The Physical, Chemical and Physiological Limits of Life.

    PubMed

    Schulze-Makuch, Dirk; Schulze-Makuch, Alexander; Houtkooper, Joop M

    2015-01-01

    Life on Earth displays an incredible diversity in form and function, which allows it to survive not only physical extremes, but also periods of time when it is exposed to non-habitable conditions. Extreme physiological adaptations to bridge non-habitable conditions include various dormant states, such as spores or tuns. Here, we advance the hypothesis that if the environmental conditions are different on some other planetary body, a deviating biochemistry would evolve with types of adaptations that would manifest themselves with different physical and chemical limits of life. In this paper, we discuss two specific examples: putative life on a Mars-type planet with a hydrogen peroxide-water solvent and putative life on a Titan-type planetary body with liquid hydrocarbons as a solvent. Both examples would have the result of extending the habitable envelope of life in the universe. PMID:26193325

  9. Nonlocal reactive transport with physical, chemical, and biological heterogeneity

    NASA Astrophysics Data System (ADS)

    Hu, Bill X.; Cushman, John H.; Deng, Fei-Wen

    When a natural porous medium is viewed from an eulerian perspective, incomplete characterization of the hydraulic conductivity, chemical reactivity, and biological activity leads to nonlocal constitutive theories, irrespective of whether the medium has evolving heterogeneity with fluctuations over all scales. Within this framework a constitutive theory involving nonlocal dispersive and convective fluxes and nonlocal sources/sinks is developed for chemicals undergoing random linear nonequilibrium reactions and random equilibrium first-order decay in a random conductivity field. The resulting transport equations are solved exactly in Fourier-Laplace space and then numerically inverted to real space. Mean concentration contours and various spatial moments are presented graphically for several covariance structures. 1997 Published by Elsevier Science Ltd. All rights reserved

  10. The Physical, Chemical and Physiological Limits of Life

    PubMed Central

    Schulze-Makuch, Dirk; Schulze-Makuch, Alexander; Houtkooper, Joop M.

    2015-01-01

    Life on Earth displays an incredible diversity in form and function, which allows it to survive not only physical extremes, but also periods of time when it is exposed to non-habitable conditions. Extreme physiological adaptations to bridge non-habitable conditions include various dormant states, such as spores or tuns. Here, we advance the hypothesis that if the environmental conditions are different on some other planetary body, a deviating biochemistry would evolve with types of adaptations that would manifest themselves with different physical and chemical limits of life. In this paper, we discuss two specific examples: putative life on a Mars-type planet with a hydrogen peroxide-water solvent and putative life on a Titan-type planetary body with liquid hydrocarbons as a solvent. Both examples would have the result of extending the habitable envelope of life in the universe. PMID:26193325

  11. Nature: A Box of Physical, Chemical, and Biological Tricks

    NASA Astrophysics Data System (ADS)

    Heinhorst, Sabine; Cannon, Gordon C.

    2008-03-01

    This article summarizes scientific breakthroughs, originally reported in the journal Nature, in the development of wet-dry adhesives, pain-selective anesthetics, enantioselective cyclizations and mechanical stress-induced chemical reactions.

  12. Applications of Artificial Neural Networks (ANNs) in Food Science

    SciTech Connect

    HUang, Yiqun; Kangas, Lars J.; Rasco, Barbara A.

    2007-02-01

    Abstract Artificial neural networks (ANNs) have been applied in almost every aspect of food science over the past two decade, although most applications are in the development stage. ANNs are useful tools for food safety and quality analyses, which include modeling of microbial growth and from this predicting food safety, interpreting spectroscopic data, and predicting physical, chemical, functional and sensory properties of various food products during processing and distribution. ANNs have a great deal of promise for modeling complex tasks in process control and simulation, and in applications of machine perception including machine vision and the electronic nose for food safety and quality control. This review discusses the basic theory of the ANN technology and its applications in food science, providing food scientists and the research community an overview of the current research and future trend of the applications of ANN technology in this field.

  13. Nanosilver particles in medical applications: synthesis, performance, and toxicity

    PubMed Central

    Ge, Liangpeng; Li, Qingtao; Wang, Meng; Ouyang, Jun; Li, Xiaojian; Xing, Malcolm MQ

    2014-01-01

    Nanosilver particles (NSPs), are among the most attractive nanomaterials, and have been widely used in a range of biomedical applications, including diagnosis, treatment, drug delivery, medical device coating, and for personal health care. With the increasing application of NSPs in medical contexts, it is becoming necessary for a better understanding of the mechanisms of NSPs’ biological interactions and their potential toxicity. In this review, we first introduce the synthesis routes of NSPs, including physical, chemical, and biological or green synthesis. Then the unique physiochemical properties of NSPs, such as antibacterial, antifungal, antiviral, and anti-inflammatory activity, are discussed in detail. Further, some recent applications of NSPs in prevention, diagnosis, and treatment in medical fields are described. Finally, potential toxicology considerations of NSPs, both in vitro and in vivo, are also addressed. PMID:24876773

  14. Biological applications of graphene oxide

    NASA Astrophysics Data System (ADS)

    Gürel, Hikmet Hakan; Salmankurt, Bahadır

    2016-03-01

    Graphene as a 2D material has unique chemical and electronic properties. Because of its unique physical, chemical, and electronic properties, its interesting shape and size make it a promising nanomaterial in many biological applications. However, the lower water-solubility and the irreversible aggregation due to the strong π-π stacking hinder the wide application of graphene nanosheets in biomedical field. Thus, graphene oxide (GO), one derivative of graphene, has been used more frequently in the biological system owing to its relatively higher water solubility and biocompatibility. Recently, it has been demonstrated that nanomaterials with different functional groups on the surface can be used to bind the drug molecules with high affinity. GO has different functional groups such as H, OH and O on its surface; it can be a potential candidate as a drug carrier. The interactions of biomolecules and graphene like structures are long-ranged and very weak. Development of new techniques is very desirable for design of bioelectronics sensors and devices. In this work, we present first-principles spin polarized calculations within density functional theory to calculate effects of charging on DNA/RNA nucleobases on graphene oxide. It is shown that how modify structural and electronic properties of nucleobases on graphene oxide by applied charging.

  15. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISK IN OIL-IMPACTED SOILS

    SciTech Connect

    J.R. Paterek; W.W. Bogan; L.M. Lahner; A. May

    2000-04-01

    The overall program objective is to develop and evaluate integrated biological/physical/chemical co-treatment strategies for the remediation of wastes associated with the exploration and production of fossil energy. The specific objectives of this project are: chemical accelerated biotreatment (CAB) technology development for enhanced site remediation, application of the risk based analyses to define and support the rationale for environmental acceptable endpoints (EAE) for exploration and production wastes, and evaluate both the technological technologies in conjugation for effective remediation of hydrocarbon contaminated soils from E&P sites in the USA.

  16. APPLICATION OF CHEMICALLY ACCELERATED BIOTREATMENT TO REDUCE RISK IN OIL-IMPACTED SOILS

    SciTech Connect

    J.R. Paterek; W.W. Bogan; L.M. Lahner; V. Trbovic; E. Korach

    2001-05-01

    The overall program objective is to develop and evaluate integrated biological/physical/chemical co-treatment strategies for the remediation of wastes associated with the exploration and production of fossil energy. The specific objectives of this project are: chemical accelerated biotreatment (CAB) technology development for enhanced site remediation, application of the risk based analyses to define and support the rationale for environmental acceptable endpoints (EAE) for exploration and production wastes, and evaluate both the technological technologies in conjugation for effective remediation of hydrocarbon contaminated soils from E&P sites in the USA.

  17. Method for extraction of quantitative information using remote sensing data of underground coal fire areas and its application

    NASA Astrophysics Data System (ADS)

    Dang, Fu-xing; Li, Zhi-zhong; Xiong, Sheng-qing; Fang, Hong-bin; Yang, Ri-hong

    2008-11-01

    Underground coal-bed spontaneous combustion is a dynamic process with complex physical, chemical and environmental interaction. The anomalous information on remote sensing spatial, spectral and thermal indexes is very meaningful for detecting underground coal fires and assessing its effects on environment. This paper, based on a series of advanced technical datum in Wu Da coalfield areas located in Inner-Mongolia, such as ground spectral testing, thermal infrared multispectral indexes, and high-spatial resolution images, analyzes the correlation between the underground coal-bed burning conditions and the remote sensing information. Besides, it provides a further discussion on the application potential for quantitative feature extraction of underground coal fire.

  18. Hancornia speciosa latex for biomedical applications: physical and chemical properties, biocompatibility assessment and angiogenic activity.

    PubMed

    Almeida, Luciane Madureira; Floriano, Juliana Ferreira; Ribeiro, Thuanne Pires; Magno, Lais Nogueira; da Mota, Lígia Souza Lima Silveira; Peixoto, Nei; Mrué, Fátima; Melo-Reis, Paulo; Lino Junior, Ruy de Souza; Graeff, Carlos Frederico de Oliveira; Gonçalves, Pablo José

    2014-09-01

    The latex obtained from Hancornia speciosa is used in folk medicine for treatment of several diseases, such as acne, warts, diabetes, gastritis and inflammation. In this work, we describe the biocompatibility assessment and angiogenic properties of H. speciosa latex and its potential application in medicine. The physical-chemical characterization was carried out following different methodologies (CHN elemental analyses; thermogravimetric analyses and Fourier transform infrared spectroscopy). The biocompatibility was evaluated through cytotoxicity and genotoxicity tests in fibroblast mouse cells and the angiogenic properties were evaluated using the chick chorioallantoic membrane (CAM) assay model. The physical-chemical results showed that the structure of Hancornia speciosa latex biomembrane is very similar to that of Hevea brasiliensis (commercially available product). Moreover, the cytotoxicity and genotoxicity assays showed that H. speciosa latex is biocompatible with life systems and can be a good biomaterial for medical applications. The CAM test showed the efficient ability of H. speciosa latex in neovascularization of tissues. The histological analysis was in accordance with the results obtained in the CAM assay. Our data indicate that the latex obtained from H. speciosa and eluted in water showed significant angiogenic activity without any cytotoxic or genotoxic effects on life systems. The same did not occur with H. speciosa latex stabilized with ammonia. Addition of ammonia does not have significant effects on the structure of biomembranes, but showed a smaller cell survival and a significant genotoxicity effect. This study contributes to the understanding of the potentialities of H. speciosa latex as a source of new phytomedicines. PMID:24973907

  19. DNA-incorporating nanomaterials in biotechnological applications

    SciTech Connect

    Stadler, A.; van der Lelie, D.; Chi, C.; Gang, O.

    2010-02-01

    The recently developed ability to controllably connect biological and inorganic objects on a molecular scale opens a new page in biomimetic methods with potential applications in biodetection, tissue engineering, targeted therapeutics and drug/gene delivery. Particularly in the biodetection arena, a rapid development of new platforms has largely been stimulated by a spectrum of novel nanomaterials with physical properties that offer efficient, sensitive and inexpensive molecular sensing. Recently, DNA-functionalized nano-objects have emerged as a new class of nanomaterials that can be controllably assembled in predesigned structures. Such DNA-based nanoscale structures might provide a new detection paradigm due to their regulated optical, electrical and magnetic responses, chemical heterogeneity and high local biomolecular concentration. The specific biorecognition DNA and its physical-chemical characteristics allows for an exploitation of DNA-functionalized nanomaterials for sensing of nucleic acids, while a broad tunability of DNA interactions permits extending their use for detection of proteins, small molecules and ions. We discuss the progress that was achieved in the last decade in the exploration of new detection methods based on DNA-incorporating nanomaterials as well as their applications to gene delivery. The comparison between various detection platforms, their sensitivity and selectivity, and specific applications are reviewed.

  20. [Application of THz technology to nondestructive detection of agricultural product quality].

    PubMed

    Jiang, Yu-ying; Ge, Hong-yi; Lian, Fei-yu; Zhang, Yuan; Xia, Shan-hong

    2014-08-01

    With recent development of THz sources and detector, applications of THz radiation to nondestructive testing and quality control have expanded in many fields, such as agriculture, safety inspection and quality control, medicine, biochemistry, communication etc. Compared with other detection technique, being a new kind of technique, THz radiation has low energy, good perspectivity, and high signal-to-noise ratio, and thus can obtain physical, chemical and biological information. This paper first introduces the basic concept of THz radiation and the major properties, then gives an extensive review of recent research progress in detection of the quality of agricultural products via THz technique, analyzes the existing shortcomings of THz detection and discusses the outlook of potential application, finally proposes the new application of THz technique to detection of quality of stored grain. PMID:25474932

  1. [Application of THz technology to nondestructive detection of agricultural product quality].

    PubMed

    Jiang, Yu-ying; Ge, Hong-yi; Lian, Fei-yu; Zhang, Yuan; Xia, Shan-hong

    2014-08-01

    With recent development of THz sources and detector, applications of THz radiation to nondestructive testing and quality control have expanded in many fields, such as agriculture, safety inspection and quality control, medicine, biochemistry, communication etc. Compared with other detection technique, being a new kind of technique, THz radiation has low energy, good perspectivity, and high signal-to-noise ratio, and thus can obtain physical, chemical and biological information. This paper first introduces the basic concept of THz radiation and the major properties, then gives an extensive review of recent research progress in detection of the quality of agricultural products via THz technique, analyzes the existing shortcomings of THz detection and discusses the outlook of potential application, finally proposes the new application of THz technique to detection of quality of stored grain. PMID:25508711

  2. Feasibility for application of soil bioengineering techniques to natural wastewater treatment systems. Master's thesis

    SciTech Connect

    Cox, A.J.

    1992-12-01

    This report examines the general feasibility for application of Soil Bioengineering techniques in construction, operation, and management of natural wastewater treatment systems. Soil Bioengineering is an applied science that combines structural, biological, and ecological concepts to construct living structures for erosion, sediment, and flood control (Sotir and Gray, 1989). Using live plant parts as major structural components to reinforce the soil mantle, Soil Bioengineering offers natural and effective solutions to land instability problems along streams and rivers, transportation and utilities transmission corridors, and in forest and wetlands sites. Natural treatment systems are wastewater treatment processes which use the soil-water-plant matrix as a 'natural reactor' for physically, chemically, and biologically stabilizing applied wastes. Recognized natural treatment systems currently include constructed and natural wetlands, aquatic plant systems(aquaculture), wastewater stabilization ponds, and land application of wastes, termed 'land treatment'.

  3. Co-processing of carbonaceous solids and petroleum oil

    SciTech Connect

    Gupta, A.; Greene, M.I.

    1992-06-09

    This patent describes a process for liquefying a carbonaceous solid in a thermal liquefaction heater in a first stage thermal liquefaction in the presence of a liquefaction solvent, followed by a second stage catalytic hydrogenation wherein liquefaction solvent is recovered from the second stage for use in the first stage. This patent describes improvement in introducing a liquefaction solvent to the first stage liquefaction heater.

  4. Co-processing of agriculture and biomass waste with coal

    SciTech Connect

    Stiller, A.H.; Dadyburjor, D.B.; Wann, J.P.

    1995-12-01

    Biomass and bio-processed waste are potential candidates for co-liquefaction with coal. Specific materials used here include sawdust and poultry manure. Liquefaction experiments were run on each of these materials, separately and with coal, using tetralin as solvent at 350{degrees}C and 1000 psi(cold) hydrogen pressure for 1h. Total conversion was monitored, as well as conversion to asphaltenes, oils and gases. All the biomass samples are converted to oils and gases under the reaction conditions. Poultry manure seems to convert coal more completely, and to produce more oils and gases, than conventional liquefaction.

  5. Co-processing of agricultural and biomass waste with coal

    SciTech Connect

    Stiller, A.H.; Dadyburjor, D.B.; Wann, Ji-Perng

    1995-12-31

    A major thrust of our research program is the use of waste materials as co-liquefaction agents for the first-stage conversion of coal to liquid fuels. By fulfilling one or more of the roles of an expensive solvent in the direct coal liquefaction (DCL) process, the waste material is disposed off ex-landfill, and may improve the overall economics of DCL. Work in our group has concentrated on co-liquefaction with waste rubber tires, some results from which are presented elsewhere in these Preprints. In this paper, we report on preliminary results with agricultural and biomass-type waste as co-liquefaction agents.

  6. Polymer-Enriched 3D Graphene Foams for Biomedical Applications.

    PubMed

    Wang, Jun Kit; Xiong, Gordon Minru; Zhu, Minmin; Özyilmaz, Barbaros; Castro Neto, Antonio Helio; Tan, Nguan Soon; Choong, Cleo

    2015-04-22

    Graphene foams (GFs) are versatile nanoplatforms for biomedical applications because of their excellent physical, chemical, and mechanical properties. However, the brittleness and inflexibility of pristine GF (pGF) are some of the important factors restricting their widespread application. Here, a chemical-vapor-deposition-assisted method was used to synthesize 3D GFs, which were subsequently spin-coated with polymer to produce polymer-enriched 3D GFs with high conductivity and flexibility. Compared to pGF, both poly(vinylidene fluoride)-enriched GF (PVDF/GF) and polycaprolactone-enriched GF (PCL/GF) scaffolds showed improved flexibility and handleability. Despite the presence of the polymers, the polymer-enriched 3D GF scaffolds retained high levels of electrical conductivity because of the presence of microcracks that allowed for the flow of electrons through the material. In addition, polymer enrichment of GF led to an enhancement in the formation of calcium phosphate (Ca-P) compounds when the scaffolds were exposed to simulated body fluid. Between the two polymers tested, PCL enrichment of GF resulted in a higher in vitro mineralization nucleation rate because the oxygen-containing functional group of PCL had a higher affinity for Ca-P deposition and formation compared to the polar carbon-fluorine (C-F) bond in PVDF. Taken together, our current findings are a stepping stone toward future applications of polymer-enriched 3D GFs in the treatment of bone defects as well as other biomedical applications. PMID:25822669

  7. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles.

    PubMed

    Ali, Attarad; Zafar, Hira; Zia, Muhammad; Ul Haq, Ihsan; Phull, Abdul Rehman; Ali, Joham Sarfraz; Hussain, Altaf

    2016-01-01

    Recently, iron oxide nanoparticles (NPs) have attracted much consideration due to their unique properties, such as superparamagnetism, surface-to-volume ratio, greater surface area, and easy separation methodology. Various physical, chemical, and biological methods have been adopted to synthesize magnetic NPs with suitable surface chemistry. This review summarizes the methods for the preparation of iron oxide NPs, size and morphology control, and magnetic properties with recent bioengineering, commercial, and industrial applications. Iron oxides exhibit great potential in the fields of life sciences such as biomedicine, agriculture, and environment. Nontoxic conduct and biocompatible applications of magnetic NPs can be enriched further by special surface coating with organic or inorganic molecules, including surfactants, drugs, proteins, starches, enzymes, antibodies, nucleotides, nonionic detergents, and polyelectrolytes. Magnetic NPs can also be directed to an organ, tissue, or tumor using an external magnetic field for hyperthermic treatment of patients. Keeping in mind the current interest in iron NPs, this review is designed to report recent information from synthesis to characterization, and applications of iron NPs. PMID:27578966

  8. Computer program for distance learning of pesticide application technology.

    PubMed

    Maia, Bruno; Cunha, Joao P A R

    2011-12-01

    Distance learning presents great potential for mitigating field problems on pesticide application technology. Thus, due to the lack of teaching material about pesticide spraying technology in the Portuguese language and the increasing availability of distance learning, this study developed and evaluated a computer program for distance learning about the theory of pesticide spraying technology using the tools of information technology. The modules comprising the course, named Pulverizar, were: (1) Basic concepts, (2) Factors that affect application, (3) Equipments, (4) Spraying nozzles, (5) Sprayer calibration, (6) Aerial application, (7) Chemigation, (8) Physical-chemical properties, (9) Formulations, (10) Adjuvants, (11) Water quality, and (12) Adequate use of pesticides. The program was made available to the public on July 1(st), 2008, hosted at the web site www.pulverizar.iciag.ufu.br, and was simple, robust and practical on the complementation of traditional teaching for the education of professionals in Agricultural Sciences. Mastering pesticide spraying technology by people involved in agricultural production can be facilitated by the program Pulverizar, which was well accepted in its initial evaluation. PMID:22159349

  9. Applications of nanotechnology in wastewater treatment--a review.

    PubMed

    Bora, Tanujjal; Dutta, Joydeep

    2014-01-01

    Water on Earth is a precious and finite resource, which is endlessly recycled in the water cycle. Water, whose physical, chemical, or biological properties have been altered due to the addition of contaminants such as organic/inorganic materials, pathogens, heavy metals or other toxins making it unsafe for the ecosystem, can be termed as wastewater. Various schemes have been adopted by industries across the world to treat wastewater prior to its release to the ecosystem, and several new concepts and technologies are fast replacing the traditional methods. This article briefly reviews the recent advances and application of nanotechnology for wastewater treatment. Nanomaterials typically have high reactivity and a high degree of functionalization, large specific surface area, size-dependent properties etc., which makes them suitable for applications in wastewater treatment and for water purification. In this article, the application of various nanomaterials such as metal nanoparticles, metal oxides, carbon compounds, zeolite, filtration membranes, etc., in the field of wastewater treatment is discussed. PMID:24730286

  10. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles

    PubMed Central

    Ali, Attarad; Zafar, Hira; Zia, Muhammad; ul Haq, Ihsan; Phull, Abdul Rehman; Ali, Joham Sarfraz; Hussain, Altaf

    2016-01-01

    Recently, iron oxide nanoparticles (NPs) have attracted much consideration due to their unique properties, such as superparamagnetism, surface-to-volume ratio, greater surface area, and easy separation methodology. Various physical, chemical, and biological methods have been adopted to synthesize magnetic NPs with suitable surface chemistry. This review summarizes the methods for the preparation of iron oxide NPs, size and morphology control, and magnetic properties with recent bioengineering, commercial, and industrial applications. Iron oxides exhibit great potential in the fields of life sciences such as biomedicine, agriculture, and environment. Nontoxic conduct and biocompatible applications of magnetic NPs can be enriched further by special surface coating with organic or inorganic molecules, including surfactants, drugs, proteins, starches, enzymes, antibodies, nucleotides, nonionic detergents, and polyelectrolytes. Magnetic NPs can also be directed to an organ, tissue, or tumor using an external magnetic field for hyperthermic treatment of patients. Keeping in mind the current interest in iron NPs, this review is designed to report recent information from synthesis to characterization, and applications of iron NPs. PMID:27578966

  11. Fe/Au Core-Shell Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Sra, Amandeep; Leslie-Pelecky, Diandra

    2009-10-01

    The physical properties of nanoparticles, including size, composition and surface chemistry, greatly influence biological and pharmacological properties and, ultimately, their clinical applications. Superparamagnetic iron oxide nanoparticles are widely used for applications such as MRI contrast agents, drug delivery via magnetic targeting and hyperthermia due to their chemical stability and biocompatibility; however, enhancing the saturation magnetization (Ms) of nanoparticles would produce greater sensitivity. Our design strategy involves a bottom-up wet chemistry approach to the synthesis of Fe nanoparticles. Specific advantages of Fe are the high value of Ms (210 emu/g in bulk) coupled with low toxicity; however, Fe nanoparticles must be protected from oxidation, which causes a dramatic reduction in Ms. To circumvent oxidation, Fe nanoparticles are coated with a Au shell that prevents the oxidation of the magnetic core and also provides the nanoparticles with plasmonic properties for optical stimulation. Ligands of various functionalities can be introduced through the well established Au-thiol surface chemistry for different biomedical applications while maintaining the magnetic functionality of the Fe core. In this presentation, we will discuss the physical, chemical and magnetic properties of our Fe/Au nanoparticles and their resistance to oxidation.

  12. [Preparatory courses for applicants for medical studies].

    PubMed

    Foltýnová, V; Zitko, M; Pich, J

    1997-01-01

    From 1991, the First Medical Faculty of the Charles University arranges for applicants for the medical study two-semester preparatory courses paid by the applicants. Their purpose is to improve knowledge of high-school physics, chemistry and biology with orientation to model questions published by the faculty [1, 2, 3]. Variants of 100-questions sets for the examination are generated by a computer and they are altered every year [4]. Two types of preparatory courses are available. Type A--every Monday and Tuesday between 17.00 and 18.45, physics and chemistry in odd weeks, biology and Latin in even weeks. Latin is not a discipline considered during the admission examination, however, managing of its basic knowledge facilitates not only understanding problems considered in the other disciplines, but it is particularly useful for learning the special terminology in the first year of the study of medicine. Course of type B is held once a month, on Saturdays between 8.30 and 14.00 and it is particularly designed for applicants residing beyond the capital city of Prague. In the course of 10 semesters implemented, 980 and 1,410 students passed through courses of type A and B, respectively [5, 6]. The purpose of our analysis was to evaluate the difference between results of admission procedure of applicants who participated and of those who did not participate in the preparatory course. Basic data were yielded by the Department of Students of the Deans Office. We considered the number of applicants, their results in the course of their four years of study at high schools and the number of points acquired in physical, chemical and biological tests. We furthermore obtained applications for preparatory courses in school years 1993/94 and 1994/95. The results were processed with the help of data base programs Access and Excel (Microsoft). In each of the years of interest, the applicants were divided into four groups depending on the type of the study: 1--medicine (L) and 2

  13. High molecular weight bioemulsifiers, main properties and potential environmental and biomedical applications.

    PubMed

    Mnif, Inès; Ghribi, Dhouha

    2015-05-01

    High molecular weight bioemulsifiers are amphipathic polysaccharides, proteins, lipopolysaccharides, lipoproteins, or complex mixtures of these biopolymers, produced by a wide variety of microorganisms. They are characterized by highly structural diversity and have the ability to decrease the surface and interfacial tension at the surface and interface respectively and/or emulsify hydrophobic compounds. Emulsan, fatty acids, phospholipids, neutral lipids, exopolysaccharides, vesicles and fimbriae are among the most popular high molecular weight bioemulsifiers. They have great physic-chemical properties like tolerance to extreme conditions of pH, temperature and salinity, low toxicity and biodegradability. Owing their emulsion forming and breaking capacities, solubilization, mobilization and dispersion activities and their viscosity reduction activity; they possess great environmental application as enhancer of hydrocarbon biodegradation and for microbial enhanced oil recovery. Besides, they are applied in biomedical fields for their antimicrobial and anti-adhesive activities and involvement in immune responses. PMID:25739564

  14. Soil washing: A preliminary assessment of its applicability to Hanford

    SciTech Connect

    Gerber, M A; Freeman, H D; Baker, E G; Riemath, W F

    1991-09-01

    Soil washing is being considered for treating soils at the US Department of Energy's (DOE) Hanford Site. As a result of over 50 years of operations to produce plutonium for the US Department of Defense and research for DOE, soils in areas within the Site are contaminated with hazardous wastes and radionuclides. In the soil washing process, contaminated soil is mixed with a liquid and then physically and/or chemically treated to dissolve the contaminants into solution and/or concentrate them in a small fraction of the soil. The purpose of this procedure is to separate the contaminants from the bulk of the soil. The key to successful application is to match the types of contaminants and soil characteristics with physical-chemical methods that perform well under the existing conditions. The applicability of soil washing to Hanford Site contaminated soils must take into account both the characteristics of the oil and the type of contamination. Hanford soils typically contain up to 90% sand, gravel, and cobbles, which generally are favorable characteristics for soil washing. For example, in soil samples from the north pond in the 300 Area, 80% to 90% of the soil particles were larger than 250 {mu}m. The principal contaminants in the soil are radionuclides, heavy metals, and nitrate and sulfate salts. For most of the sites, organic contaminants are either not present or are found in very low concentration. 28 refs., 5 figs., 10 tabs.

  15. Ion conduction in crystalline superionic solids and its applications

    NASA Astrophysics Data System (ADS)

    Chandra, Angesh

    2014-06-01

    Superionic solids an area of multidisciplinary research activity, incorporates to study the physical, chemical and technological aspects of rapid ion movements within the bulk of the special class of ionic materials. It is an emerging area of materials science, as these solids show tremendous technological scopes to develop wide variety of solid state electrochemical devices such as batteries, fuel cells, supercapacitors, sensors, electrochromic displays (ECDs), memories, etc. These devices have wide range of applicabilities viz. power sources for IC microchips to transport vehicles, novel sensors for controlling atmospheric pollution, new kind of memories for computers, smart windows/display panels, etc. The field grew with a rapid pace since then, especially with regards to designing new materials as well as to explore their device potentialities. Amongst the known superionic solids, fast Ag+ ion conducting crystalline solid electrolytes are attracted special attention due to their relatively higher room temperature conductivity as well as ease of materials handling/synthesis. Ion conduction in these electrolytes is very much interesting part of today. In the present review article, the ion conducting phenomenon and some device applications of crystalline/polycrystalline superionic solid electrolytes have been reviewed in brief. Synthesis and characterization tools have also been discussed in the present review article.

  16. Marine extremophiles: a source of hydrolases for biotechnological applications.

    PubMed

    Dalmaso, Gabriel Zamith Leal; Ferreira, Davis; Vermelho, Alane Beatriz

    2015-04-01

    The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons. Extremozymes are adapted to work in harsh physical-chemical conditions and their use in various industrial applications such as the biofuel, pharmaceutical, fine chemicals and food industries has increased. The understanding of the specific factors that confer the ability to withstand extreme habitats on such enzymes has become a priority for their biotechnological use. The most studied marine extremophiles are prokaryotes and in this review, we present the most studied archaea and bacteria extremophiles and their hydrolases, and discuss their use for industrial applications. PMID:25854643

  17. Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications

    PubMed Central

    Dalmaso, Gabriel Zamith Leal; Ferreira, Davis; Vermelho, Alane Beatriz

    2015-01-01

    The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons. Extremozymes are adapted to work in harsh physical-chemical conditions and their use in various industrial applications such as the biofuel, pharmaceutical, fine chemicals and food industries has increased. The understanding of the specific factors that confer the ability to withstand extreme habitats on such enzymes has become a priority for their biotechnological use. The most studied marine extremophiles are prokaryotes and in this review, we present the most studied archaea and bacteria extremophiles and their hydrolases, and discuss their use for industrial applications. PMID:25854643

  18. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives

    NASA Astrophysics Data System (ADS)

    Navya, P. N.; Daima, Hemant Kumar

    2016-02-01

    Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.

  19. Proposed Applications for the Gateway and Data Node in the IPSL Prodiguer Portal Project.

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Ashish; Denvil, Sébastien; Morgan, Mark

    2010-05-01

    The Pierre Simon Laplace Institut (IPSL), like many other modeling groups, is involved in the development of a comprehensive Earth System Model (ESM) to study the interactions between physical, chemical and biological processes. This work entails the coupling of the different components (land, ocean, atmosphere, chemistry etc.) that demands an execution environment and platform that can tackle the entire range of interdependent model configurations. Furthermore, the ever-increasing number of simulations, executed against model configurations within scientific computing centres, is generating a huge volume of data and meta-data that must be made available to researchers, scientists, modelers, students and general users. To achieve these objectives, we have decided to integrate the efforts made by International and European projects like Earth System Grid, METAFOR and IS-ENES within our execution environment. Prodiguer Project is an initiative of IPSL, France for the availability of climate models simulations data and metadata generated at the scientific computing centres to the French and International community. The presentation will focus on the applications (web based and desktop application) to be developed for the gateway and data node at IPSL which includes: 1. Simulation Monitor (Gateway Web Application) 2. Data Node Metadata Query API (Data Node Application) NOTE: A collaboration scenario is likely to emerge among IPSL-Paris, BADC-UK and DKRZ-Hamburg regarding development and/or testing of the API. 3. Administrative Control Panel for the ESG Data Node and Metadata Database (Data Node Application)

  20. Applications analysis report: Silicate Technology Corporation's solidification/stabilization technology for organic and inorganic contaminants in soils

    NASA Astrophysics Data System (ADS)

    Bates, E.

    1992-12-01

    The STC demonstration was conducted under EPA's Superfund Innovative Technology Evaluation (SITE) Program in November, 1990, at the Selma Pressure Treating (SPT) wood preserving site in Selma, California. The SPT site was contaminated with both organics, predominantly pentachlorophenol (PCP), inorganics, mainly arsenic, chromium, and copper. Extensive sampling and analyses were performed on the waste both before and after treatment to compare physical, chemical, and leaching characteristics of raw and treated wastes. STC's contaminated soil treatment process was evaluated based on contaminant mobility measured by numerous leaching tests, structural integrity of the solidified material, measured by physical and engineering tests and morphological examinations; and economic analysis, using cost information supplied by STC and the results of the SITE demonstration, the vendor's design and test data, and other laboratory and field applications of the technology. It discusses the advantages, disadvantages, and limitations, as well as estimated costs of the technology.

  1. From goat colostrum to milk: physical, chemical, and immune evolution from partum to 90 days postpartum.

    PubMed

    Sánchez-Macías, D; Moreno-Indias, I; Castro, N; Morales-Delanuez, A; Argüello, A

    2014-01-01

    This study focused on the study of the changes originated in the milk from partum until d 90 of lactation. Ten multiparous Majorera goats, bred carefully under animal health standards, with a litter size of 2 kids (the average in this breed is 1.83 prolificacy) and similar gestation length (149 ± 1 d) were used. Goat kids were removed from their dams to avoid interferences with the study. Compositional content (fat, protein, and lactose) were measured, as well as some other properties, including pH, density, titratable acidity, ethanol stability, rennet clotting time, and somatic cell count. Moreover, immunity molecules (IgG, IgA, and IgM concentrations and chitotriosidase activity) received great attention. Fat and protein content were higher in the first days postpartum, whereas lactose content was lower. Density, titratable acidity, rennet clotting time, and somatic cell count decreased throughout the lactation period, whereas pH and ethanol stability increased. Relative to the immunological parameters, each measured parameter obtained its maximum level at d 0, showing the first milking as the choice to provide immunity to the newborn kids. On the other hand, this study might be used to establish what the best use is: processing or kid feeding. PMID:24183682

  2. Laboratory measurements of physical, chemical, and optical characteristics of Lake Chicot sediment waters

    NASA Technical Reports Server (NTRS)

    Witte, W. G.; Whitlock, C. H.; Usry, J. W.; Morris, W. D.; Gurganus, E. A.

    1981-01-01

    Reflectance, chromaticity, diffuse attenuation, beam attenuation, and several other physical and chemical properties were measured for various water mixtures of lake bottom sediment. Mixture concentrations range from 5 ppm to 700 ppm by weight of total suspended solids in filtered deionized tap water. Upwelled reflectance is a nonlinear function of remote sensing wave lengths. Near-infrared wavelengths are useful for monitoring highly turbid waters with sediment concentrations above 100 ppm. It is found that both visible and near infrared wavelengths, beam attenuation correlates well with total suspended solids ranging over two orders of magnitude.

  3. Soil physical, chemical and gas-flux characterization from Picea mariana stands near Erickson Creek, Alaska

    USGS Publications Warehouse

    O'Donnell, Jonathan A.; Harden, Jennifer W.; Manies, Kristen L.

    2011-01-01

    Fire is a particularly important control on the carbon (C) balance of the boreal forest, and fire-return intervals and fire severity appear to have increased since the late 1900s in North America. In addition to the immediate release of stored C to the atmosphere through organic-matter combustion, fire also modifies soil conditions, possibly affecting C exchange between terrestrial and atmospheric pools for decades after the burn. The effects of fire on ecosystem C dynamics vary across the landscape, with topographic position and soil drainage functioning as important controls. The data reported here contributed to a larger U.S. Geological Survey (USGS) study, published in the journal Ecosystems by O'Donnell and others (2009). To evaluate the effects of fire and drainage on ecosystem C dynamics, we selected sample sites within the 2003 Erickson Creek fire scar to measure CO2 fluxes and soil C inventories in burned and unburned (control) sites in both upland and lowland black spruce (Picea mariana) forests. The results of this study suggested that although fire can create soil climate conditions which are more conducive to rapid decomposition, rates of C release from soils may be constrained after fire by changes in moisture and (or) substrate quality that impede rates of decomposition. Here, we report detailed site information, methodology, and data (in spreadsheet files) from that study.

  4. Impact of Physical-Chemical Properties on Ammonia Emissions of Dairy Manure

    NASA Astrophysics Data System (ADS)

    Koirala, K.

    2015-12-01

    Ammonia emission is a major concern due to its adverse effects on animal and human health. Ionic strength and suspended solids play key roles in the ammonia volatilization process. These two parameters, however, are usually lumped together in form of totalsolids. The objective of this study was to separate the contribution of suspended solids (SS) from that of ionic strength (IS) on ammonia volatilization in liquid dairy manure. A two-way factorial experiment was conducted to simultaneously test the effects of IS and SS on ammonium dissociation: a key element of the ammonia volatilization process. The fraction of ammonia (β) in total ammoniacal nitrogen (TAN) was experimentally determined in a convective emission chamber, for each level of SS and IS, at a constant wind speed of 1.5 m s-1, and air and liquid temperature of 25°C. The two way analysis of variance showed a significant effect of SS concentration (p = 0.04) on fraction of ammonia in the liquid dairy manure, while the effect of ionic strength was marginal (p = 0.05). The highest dissociation of ammonium was observed in manure with the lowest SS concentration (0%) and the lowest ionic strength (0.10 mol L-1). Significant increases in suspended solids concentration and ionic strength were necessary to influence the ammonium dissociation in dairy manure. Results revealed that substantially high content of suspended solids (> 3.0%) or relatively high dilution of manure with water (30%) were necessary for these two parameters to play significant rolesin the ammonia volatilization mechanism in liquid dairy manure. Results also showed that the β was more sensitive to the changes in suspended solids concentration than in the changes in ionic strength within the ranges of SS and IS examined in this study.Overall, the SS and IS effects on ammonium dissociation (and by extension on ammonia volatilization process) were thus found negligible within the normal ranges of liquid dairy manure characteristics.

  5. Physical, chemical and biological properties of simulated beef cattle bedded manure packs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manure including bedding material can be a valuable fertilizer, yet numerous, poorly characterized, environmental factors control its quality. The objective was to determine whether moisture content (MC), nutrient value (ammonium nitrogen (NH4-N), total nitrogen (TN), total phosphorus (TP), total po...

  6. Physical, chemical, and catalytic properties of borided cobalt Fischer-Tropsch catalysts

    SciTech Connect

    Wang, J.

    1987-01-01

    Unsupported and alumina-supported borided cobalt catalysts were prepared by chemical reduction of anhydrous cobalt acetate at 25/sup 0/C using B/sub 2/H/sub 6//THF or NaBH/sub 4//diglyme solution as the reducing agent. These catalysts were further activated in H/sub 2/ at 250/sup 0/C prior to use. The physical and chemical properties of these catalysts were characterized by chemical analysis, BET surface area measurements, H/sub 2/ and CO adsorption measurements, X-ray Diffraction, and Temperature Programmed Desorption of CO. The catalytic properties of these catalysts for hydrogenation of CO to hydrocarbons were investigated at 160 - 300/sup 0/C, 1 and 10 atm, and H/sub 2//CO ratio of 2 in a differential conversion range of less than 8%. The data show that unsupported, Na-free, borided cobalt is much more active than Na-containing borided cobalt and pure cobalt on a site basis. Similarly, CoB/Al/sub 2/O/sub 3/ is more than an order of magnitude more active than Co/Al/sub 2/O/sub 3/ is more than an order of magnitude more active than Co/Al/sub 2/O/sub 3/ but has similar selectivity; its selectivity for C/sub 5//sup +/ hydrocarbons, however, is very high (> 75 wt%) at low reaction temperatures (e.g. 170/sup 0/C) or at low H/sub 2//CO ratios (e.g. less than or equal to 1). The observed changes in catalytic and adsorption behavior are consistent with an electron-donor model in which boron atoms donate electrons to cobalt. Na was found to lower catalytic activity of cobalt while increasing selectivity for light hydrocarbons, olefins, and CO/sub 2/ products.

  7. Physical, chemical and biological characterization of six biochars produced for the remediation of contaminated sites.

    PubMed

    Denyes, Mackenzie J; Parisien, Michèle A; Rutter, Allison; Zeeb, Barbara A

    2014-01-01

    The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality improvements or remediation. PMID:25489663

  8. PHYSICAL/CHEMICAL TREATMENT OF TEXTILE FINISHING WASTEWATER FOR PROCESS REUSE

    EPA Science Inventory

    The report describes a demonstration of multimedia filtration as an effective tertiary treatment for biologically treated textile wastewaters from two adjacent plants involved in dyeing and finishing fabrics of man-made fibers. Adding alum, polyelectrolytes, and powdered activate...

  9. Physical-Chemical Solid Waste Processing for Space Missions at Ames Research Center

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Pisharody, Suresh; Moran, Mark; Wignarajah, K.; Tleimat, Maher; Pace, Greg

    2001-01-01

    As space missions become longer in duration and reach out to more distant locations such as Mars, solids waste processing progresses from storage technologies to reclamation technologies. Current low Earth orbit technologies consist of store-and dispose to space or return to Earth. Fully regenerative technologies recycle wastes. The materials reclaimed from waste can be used to provide the basic materials to support plant growth for food including carbon dioxide, water, and nutrients. Other products can also be reclaimed from waste such as hydrocarbons and activated carbon. This poster describes development at Ames Research Center of a process to make activated carbon from space mission wastes and to make an incineration system that produces clean flue gas. Inedible biomass and feces contain hydrocarbons in a form that can be pyrolyzed and converted to activated carbon. The activated carbon can then be used to clean up contaminants from various other life support systems; in particular, the activated carbon can be used regeneratively to remove NOx from incinerator flue gas. Incinerator flue gas can also be cleaned up by the use of reductive and oxidative catalysts. A catalytic incinerator flue gas cleanup system has been developed at ARC that produces flue gas clean enough (with the exception of carbon dioxide) to meet the Space Minimum Allowable Concentration limits for human exposure.

  10. A physical chemical approach to understanding cellular dysfunction in type II diabetes

    NASA Astrophysics Data System (ADS)

    Miranker, Andrew

    2013-03-01

    The conversion of soluble protein into b-sheet rich amyloid fibers is the hallmark of a number of serious diseases. Precursors for many of these systems (e.g. Ab from Alzheimer's disease) reside in close association with a biological membranes. Membrane bilayers are reported to accelerate the rate of amyloid assembly. Furthermore, membrane permeabilization by amyloidogenic peptides can lead to toxicity. Given the b-sheet rich nature of mature amyloid, it is seemingly paradoxical that many precursors are either intrinsically b-helical, or transiently adopt an a-helical state upon association with membrane. We have investigated these phenomena in islet amyloid polypeptide (IAPP). IAPP is a 37-residue peptide hormone which forms amyloid fibers in individuals with type II diabetes. We report here the discovery of an oligomeric species that arises through stochastic nucleation on membranes, and results in disruption of the lipid bilayer. These species are stable, result in all-or-none leakage, and represent a definable protein/lipid phase that equilibrates over time. To characterize the reaction pathway of assembly, we apply an experimental design that includes ensemble and single particle evaluations in vitro and correlate these with quantitative measures of cellular toxicity.