Science.gov

Sample records for physiologic oxygen tension

  1. Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture - A step closer to physiologically relevant in vitro organogenesis.

    PubMed

    Cigognini, Daniela; Gaspar, Diana; Kumar, Pramod; Satyam, Abhigyan; Alagesan, Senthilkumar; Sanz-Nogués, Clara; Griffin, Matthew; O'Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I

    2016-01-01

    Modular tissue engineering is based on the cells' innate ability to create bottom-up supramolecular assemblies with efficiency and efficacy still unmatched by man-made devices. Although the regenerative potential of such tissue substitutes has been documented in preclinical and clinical setting, the prolonged culture time required to develop an implantable device is associated with phenotypic drift and/or cell senescence. Herein, we demonstrate that macromolecular crowding significantly enhances extracellular matrix deposition in human bone marrow mesenchymal stem cell culture at both 20% and 2% oxygen tension. Although hypoxia inducible factor - 1α was activated at 2% oxygen tension, increased extracellular matrix synthesis was not observed. The expression of surface markers and transcription factors was not affected as a function of oxygen tension and macromolecular crowding. The multilineage potential was also maintained, albeit adipogenic differentiation was significantly reduced in low oxygen tension cultures, chondrogenic differentiation was significantly increased in macromolecularly crowded cultures and osteogenic differentiation was not affected as a function of oxygen tension and macromolecular crowding. Collectively, these data pave the way for the development of bottom-up tissue equivalents based on physiologically relevant developmental processes. PMID:27478033

  2. Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture - A step closer to physiologically relevant in vitro organogenesis

    NASA Astrophysics Data System (ADS)

    Cigognini, Daniela; Gaspar, Diana; Kumar, Pramod; Satyam, Abhigyan; Alagesan, Senthilkumar; Sanz-Nogués, Clara; Griffin, Matthew; O’Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-08-01

    Modular tissue engineering is based on the cells’ innate ability to create bottom-up supramolecular assemblies with efficiency and efficacy still unmatched by man-made devices. Although the regenerative potential of such tissue substitutes has been documented in preclinical and clinical setting, the prolonged culture time required to develop an implantable device is associated with phenotypic drift and/or cell senescence. Herein, we demonstrate that macromolecular crowding significantly enhances extracellular matrix deposition in human bone marrow mesenchymal stem cell culture at both 20% and 2% oxygen tension. Although hypoxia inducible factor - 1α was activated at 2% oxygen tension, increased extracellular matrix synthesis was not observed. The expression of surface markers and transcription factors was not affected as a function of oxygen tension and macromolecular crowding. The multilineage potential was also maintained, albeit adipogenic differentiation was significantly reduced in low oxygen tension cultures, chondrogenic differentiation was significantly increased in macromolecularly crowded cultures and osteogenic differentiation was not affected as a function of oxygen tension and macromolecular crowding. Collectively, these data pave the way for the development of bottom-up tissue equivalents based on physiologically relevant developmental processes.

  3. Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture - A step closer to physiologically relevant in vitro organogenesis

    PubMed Central

    Cigognini, Daniela; Gaspar, Diana; Kumar, Pramod; Satyam, Abhigyan; Alagesan, Senthilkumar; Sanz-Nogués, Clara; Griffin, Matthew; O’Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-01-01

    Modular tissue engineering is based on the cells’ innate ability to create bottom-up supramolecular assemblies with efficiency and efficacy still unmatched by man-made devices. Although the regenerative potential of such tissue substitutes has been documented in preclinical and clinical setting, the prolonged culture time required to develop an implantable device is associated with phenotypic drift and/or cell senescence. Herein, we demonstrate that macromolecular crowding significantly enhances extracellular matrix deposition in human bone marrow mesenchymal stem cell culture at both 20% and 2% oxygen tension. Although hypoxia inducible factor - 1α was activated at 2% oxygen tension, increased extracellular matrix synthesis was not observed. The expression of surface markers and transcription factors was not affected as a function of oxygen tension and macromolecular crowding. The multilineage potential was also maintained, albeit adipogenic differentiation was significantly reduced in low oxygen tension cultures, chondrogenic differentiation was significantly increased in macromolecularly crowded cultures and osteogenic differentiation was not affected as a function of oxygen tension and macromolecular crowding. Collectively, these data pave the way for the development of bottom-up tissue equivalents based on physiologically relevant developmental processes. PMID:27478033

  4. Physiological oxygen tensions modulate expression of the mdr1b multidrug-resistance gene in primary rat hepatocyte cultures.

    PubMed Central

    Hirsch-Ernst, K I; Kietzmann, T; Ziemann, C; Jungermann, K; Kahl, G F

    2000-01-01

    P-Glycoprotein transporters encoded by mdr1 (multidrug resistance) genes mediate extrusion of an array of lipophilic xenobiotics from the cell. In rat liver, mdr transcripts have been shown to be expressed mainly in hepatocytes of the periportal region. Since gradients in oxygen tension (pO(2)) may contribute towards zonated gene expression, the influence of arterial and venous pO(2) on mRNA expression of the mdr1b isoform was examined in primary rat hepatocytes cultured for up to 3 days. Maximal mdr1b mRNA levels (100%) were observed under arterial pO(2) after 72 h, whereas less than half-maximal mRNA levels (40%) were attained under venous pO(2). Accordingly, expression of mdr protein and extrusion of the mdr1 substrate rhodamine 123 were maximal under arterial pO(2) and reduced under venous pO(2). Oxygen-dependent modulation of mdr1b mRNA expression was prevented by actinomycin D, indicating transcriptional regulation. Inhibition of haem synthesis by 25 microM CoCl(2) blocked mdr1b mRNA expression under both oxygen tensions, whereas 80 microM desferrioxamine abolished modulation by O(2). Haem (10 microM) increased mdr1b mRNA levels under arterial and venous pO(2). In hepatocytes treated with 50 microM H(2)O(2), mdr1b mRNA expression was elevated by about 1.6-fold at venous pO(2) and 1.5-fold at arterial pO(2). These results support the conclusion that haem proteins are crucial for modulation of mdr1b mRNA expression by O(2) in hepatocyte cultures and that reactive oxygen species may participate in O(2)-dependent signal transduction. Furthermore, the present study suggests that oxygen might be a critical modulator for zonated secretion of mdr1 substrates into the bile. PMID:10947958

  5. Oxygen tension level and human viral infections

    SciTech Connect

    Morinet, Frédéric; Casetti, Luana; François, Jean-Hugues; Capron, Claude; Pillet, Sylvie

    2013-09-15

    The role of oxygen tension level is a well-known phenomenon that has been studied in oncology and radiotherapy since about 60 years. Oxygen tension may inhibit or stimulate propagation of viruses in vitro as well as in vivo. In turn modulating oxygen metabolism may constitute a novel approach to treat viral infections as an adjuvant therapy. The major transcription factor which regulates oxygen tension level is hypoxia-inducible factor-1 alpha (HIF-1α). Down-regulating the expression of HIF-1α is a possible method in the treatment of chronic viral infection such as human immunodeficiency virus infection, chronic hepatitis B and C viral infections and Kaposi sarcoma in addition to classic chemotherapy. The aim of this review is to supply an updating concerning the influence of oxygen tension level in human viral infections and to evoke possible new therapeutic strategies regarding this environmental condition. - Highlights: • Oxygen tension level regulates viral replication in vitro and possibly in vivo. • Hypoxia-inducible factor 1 (HIF-1α) is the principal factor involved in Oxygen tension level. • HIF-1α upregulates gene expression for example of HIV, JC and Kaposi sarcoma viruses. • In addition to classical chemotherapy inhibition of HIF-1α may constitute a new track to treat human viral infections.

  6. Oxygen tension affects lubricin expression in chondrocytes.

    PubMed

    Hatta, Taku; Kishimoto, Koshi N; Okuno, Hiroshi; Itoi, Eiji

    2014-10-01

    We assessed the effects of oxygen tension on lubricin expression in bovine chondrocytes and cartilage explants and a role for hypoxia-inducible transcription factor (HIF)-1α in regulating lubricin expression was investigated using a murine chondroprogenitor cell line, ATDC5, and bovine chondrocytes isolated from superficial and middle/deep zones of femoral cartilage. ATDC5 cells and bovine chondrocytes were cultured in micromass under different oxygen tensions (21%, 5%, and 1%). ATDC5 cells and middle/deep zone chondrocytes that initially had low lubricin expression levels were also cultured with or without transforming growth factor (TGF)-β1. Quantitative reverse transcription (RT)-PCR was used to determine lubricin and chondrogenic marker gene mRNA levels and immunohistochemistry was used to assess lubricin protein expression. Explant cartilage plugs cultured under different oxygen tensions were also subjected to immunohistological analysis for lubricin. HIF-1α gene silencing was achieved by electroporatic transfer into ATDC5 cells. A low oxygen tension reduced lubricin gene expression levels in bovine superficial chondrocytes, TGF-β1-treated middle/deep zone chondrocytes, and TGF-β1-treated ATDC5 cells. Lubricin expression in explant cartilage was also suppressed under hypoxia. HIF-1α gene silencing in ATDC5 cells attenuated the lubricin expression response to the oxygen tension. These results corroborate with previous studies that the oxygen tension regulates lubricin gene expression and suggest that HIF-1α plays an important role in this regulation. The normal distribution of lubricin in articular cartilage may be due to the hypoxic oxygen environment of cartilage as it is an avascular tissue. An oxygen tension gradient may be a key factor for engineering cartilage tissue with a layered morphology. PMID:24712343

  7. Oxygen tension limits nitric oxide synthesis by activated macrophages.

    PubMed Central

    McCormick, C C; Li, W P; Calero, M

    2000-01-01

    Previous studies have established that constitutive calcium-dependent ('low-output') nitric oxide synthase (NOS) is regulated by oxygen tension. We have investigated the role of oxygen tension in the synthesis of NO by the 'high-output' calcium-independent NOS in activated macrophages. Hypoxia increased macrophage NOS gene expression in the presence of one additional activator, such as lipopolysaccharide or interferon-gamma, but not in the presence of both. Hypoxia markedly reduced the synthesis of NO by activated macrophages (as measured by accumulation of nitrite and citrulline), such that, at 1% oxygen tension, NO accumulation was reduced by 80-90%. The apparent K(m) for oxygen calculated from cells exposed to a range of oxygen tensions was found to be 10.8%, or 137 microM, O(2) This value is considerably higher than the oxygen tension in tissues, and is virtually identical to that reported recently for purified recombinant macrophage NOS. The decrease in NO synthesis did not appear to be due to diminished arginine or cofactor availability, since arginine transport and NO synthesis during recovery in normoxia were normal. Analysis of NO synthesis during hypoxia as a function of extracellular arginine indicated that an altered V(max), but not K(m)(Arg), accounted for the observed decrease in NO synthesis. We conclude that oxygen tension regulates the synthesis of NO in macrophages by a mechanism similar to that described previously for the calcium-dependent low-output NOS. Our data suggest that oxygen tension may be an important physiological regulator of macrophage NO synthesis in vivo. PMID:10970783

  8. Cerebral Microcirculation and Oxygen Tension in the Human Secondary Cortex

    PubMed Central

    Linninger, A. A.; Gould, I. G.; Marinnan, T.; Hsu, C.-Y.; Chojecki, M.; Alaraj, A.

    2013-01-01

    The three-dimensional spatial arrangement of the cortical microcirculatory system is critical for understanding oxygen exchange between blood vessels and brain cells. A three-dimensional computer model of a 3 × 3 × 3 mm3 subsection of the human secondary cortex was constructed to quantify oxygen advection in the microcirculation, tissue oxygen perfusion, and consumption in the human cortex. This computer model accounts for all arterial, capillary and venous blood vessels of the cerebral microvascular bed as well as brain tissue occupying the extravascular space. Microvessels were assembled with optimization algorithms emulating angiogenic growth; a realistic capillary bed was built with space filling procedures. The extravascular tissue was modeled as a porous medium supplied with oxygen by advection–diffusion to match normal metabolic oxygen demand. The resulting synthetic computer generated network matches prior measured morphometrics and fractal patterns of the cortical microvasculature. This morphologically accurate, physiologically consistent, multi-scale computer network of the cerebral microcirculation predicts the oxygen exchange of cortical blood vessels with the surrounding gray matter. Oxygen tension subject to blood pressure and flow conditions were computed and validated for the blood as well as brain tissue. Oxygen gradients along arterioles, capillaries and veins agreed with in vivo trends observed recently in imaging studies within experimental tolerances and uncertainty. PMID:23842693

  9. Deoxygenation Reduces Sickle Cell Blood Flow at Arterial Oxygen Tension.

    PubMed

    Lu, Xinran; Wood, David K; Higgins, John M

    2016-06-21

    The majority of morbidity and mortality in sickle cell disease is caused by vaso-occlusion: circulatory obstruction leading to tissue ischemia and infarction. The consequences of vaso-occlusion are seen clinically throughout the vascular tree, from the relatively high-oxygen and high-velocity cerebral arteries to the relatively low-oxygen and low-velocity postcapillary venules. Prevailing models of vaso-occlusion propose mechanisms that are relevant only to regions of low oxygen and low velocity, leaving a wide gap in our understanding of the most important pathologic process in sickle cell disease. Progress toward understanding vaso-occlusion is further challenged by the complexity of the multiple processes thought to be involved, including, but not limited to 1) deoxygenation-dependent hemoglobin polymerization leading to impaired rheology, 2) endothelial and leukocyte activation, and 3) altered cellular adhesion. Here, we chose to focus exclusively on deoxygenation-dependent rheologic processes in an effort to quantify their contribution independent of the other processes that are likely involved in vivo. We take advantage of an experimental system that, to our knowledge, uniquely enables the study of pressure-driven blood flow in physiologic-sized tubes at physiologic hematocrit under controlled oxygenation conditions, while excluding the effects of endothelium, leukocyte activation, adhesion, inflammation, and coagulation. We find that deoxygenation-dependent rheologic processes are sufficient to increase apparent viscosity significantly, slowing blood flow velocity at arterial oxygen tension even without additional contributions from inflammation, adhesion, and endothelial and leukocyte activation. We quantify the changes in apparent viscosity and define a set of functional regimes of sickle cell blood flow personalized for each patient that may be important in further dissecting mechanisms of in vivo vaso-occlusion as well as in assessing risk of patient

  10. Quantitating intracellular oxygen tension in vivo by phosphorescence lifetime measurement

    PubMed Central

    Hirakawa, Yosuke; Yoshihara, Toshitada; Kamiya, Mako; Mimura, Imari; Fujikura, Daichi; Masuda, Tsuyoshi; Kikuchi, Ryohei; Takahashi, Ippei; Urano, Yasuteru; Tobita, Seiji; Nangaku, Masaomi

    2015-01-01

    Hypoxia appears to have an important role in pathological conditions in many organs such as kidney; however, a method to quantify intracellular oxygen tension in vivo has not been well established. In this study, we established an optical method to quantify oxygen tension in mice kidneys using a cationic lipophilic phosphorescence probe, BTPDM1, which has an intracellular oxygen concentration-sensitive phosphorescence lifetime. Since this probe is distributed inside the tubular cells of the mice kidney, we succeeded in detecting acute renal hypoxic conditions and chronic kidney disease. This technique enabled us to estimate intracellular partial pressures of oxygen in vivo by extrapolating the calibration curve generated from cultured tubular cells. Since intracellular oxygen tension is directly related to cellular hypoxic reactions, such as the activation of hypoxia-inducible factors, our method will shed new light on hypoxia research in vivo. PMID:26644023

  11. Pulmonary surfactant surface tension influences alveolar capillary shape and oxygenation.

    PubMed

    Ikegami, Machiko; Weaver, Timothy E; Grant, Shawn N; Whitsett, Jeffrey A

    2009-10-01

    Alveolar capillaries are located in close proximity to the alveolar epithelium and beneath the surfactant film. We hypothesized that the shape of alveolar capillaries and accompanying oxygenation are influenced by surfactant surface tension in the alveolus. To prove our hypothesis, surfactant surface tension was regulated by conditional expression of surfactant protein (SP)-B in Sftpb(-/-) mice, thereby inhibiting surface tension-lowering properties of surfactant in vivo within 24 hours after depletion of Sftpb. Minimum surface tension of isolated surfactant was increased and oxygen saturation was significantly reduced after 2 days of SP-B deficiency in association with deformation of alveolar capillaries. Intravascularly injected 3.2-mum-diameter microbeads through jugular vein were retained within narrowed pulmonary capillaries after reduction of SP-B. Ultrastructure studies demonstrated that the capillary protrusion typical of the normal alveolar-capillary unit was reduced in size, consistent with altered pulmonary blood flow. Pulmonary hypertension and intrapulmonary shunting are commonly associated with surfactant deficiency and dysfunction in neonates and adults with respiratory distress syndromes. Increased surfactant surface tension caused by reduction in SP-B induced narrowing of alveolar capillaries and oxygen desaturation, demonstrating an important role of surface tension-lowering properties of surfactant in the regulation of pulmonary vascular perfusion. PMID:19202005

  12. Oxygen in demand: How oxygen has shaped vertebrate physiology.

    PubMed

    Dzal, Yvonne A; Jenkin, Sarah E M; Lague, Sabine L; Reichert, Michelle N; York, Julia M; Pamenter, Matthew E

    2015-08-01

    In response to varying environmental and physiological challenges, vertebrates have evolved complex and often overlapping systems. These systems detect changes in environmental oxygen availability and respond by increasing oxygen supply to the tissues and/or by decreasing oxygen demand at the cellular level. This suite of responses is termed the oxygen transport cascade and is comprised of several components. These components include 1) chemosensory detectors that sense changes in oxygen, carbon dioxide, and pH in the blood, and initiate changes in 2) ventilation and 3) cardiac work, thereby altering the rate of oxygen delivery to, and carbon dioxide clearance from, the tissues. In addition, changes in 4) cellular and systemic metabolism alters tissue-level metabolic demand. Thus the need for oxygen can be managed locally when increasing oxygen supply is not sufficient or possible. Together, these mechanisms provide a spectrum of responses that facilitate the maintenance of systemic oxygen homeostasis in the face of environmental hypoxia or physiological oxygen depletion (i.e. due to exercise or disease). Bill Milsom has dedicated his career to the study of these responses across phylogenies, repeatedly demonstrating the power of applying the comparative approach to physiological questions. The focus of this review is to discuss the anatomy, signalling pathways, and mechanics of each step of the oxygen transport cascade from the perspective of a Milsomite. That is, by taking into account the developmental, physiological, and evolutionary components of questions related to oxygen transport. We also highlight examples of some of the remarkable species that have captured Bill's attention through their unique adaptations in multiple components of the oxygen transport cascade, which allow them to achieve astounding physiological feats. Bill's research examining the oxygen transport cascade has provided important insight and leadership to the study of the diverse suite

  13. Measuring tissue oxygen tension: a review.

    PubMed

    Sheffield, P J

    1998-01-01

    Because of technological advances in tissue oximetry, clinicians and scientists have a better understanding of the role of oxygen in wound healing. In wound care and hyperbaric medicine applications, an oximeter is principally used with vascular assessment to help determine amputation level and to estimate healing potential. With the current emphasis on cost savings in the managed care setting, transcutaneous oximetry (PtcO2) has gained importance as a tool for predicting potential candidates for hyperbaric oxygen (HBO2) therapy. It is used to identify the presence of hypoxia in wounded tissue, to predict the responders to hyperoxia and in some instances to determine when HBO2 treatment is complete. This literature review describes the principal current methods for measuring tissue O2 and the values obtained in normal and wounded tissue under both normobaric and hyperbaric conditions. The review includes the Jefferson C. Davis Wound Care and Hyperbaric Medicine Center protocol for PtcO2 assessment of potential HBO2 candidates and suggestions for obtaining reproducible PtcO2 data. PMID:9789339

  14. Reversible uncoupling of oxidative phosphorylation at low oxygen tension.

    PubMed Central

    Kramer, R S; Pearlstein, R D

    1983-01-01

    The stoichiometry of oxidative phosphorylation at low oxygen tension (less than 3 torr; O2 less than 5 microM) has been measured in rat liver mitochondria. In a steady-state model in which respiration rate was experimentally controlled by either oxygen or substrate (succinate) limitation, flux-dependent variation in the phosphorylation efficiency (P/O ratio) of stimulated mitochondrial respiration was evaluated. P/O ratio remained constant over a wide range of respiration rates in mitochondria limited only by substrate availability. In contrast, oxygen-limited mitochondria demonstrated a continuous decline in P/O ratio as respiration was increasingly restricted. Significant differences in the two test conditions were demonstrated throughout the range of analysis. The effect of oxygen limitation on phosphorylation efficiency was shown to be completely reversed by restoring zero-order kinetics associated with high oxygen tension. These findings are discussed in regard to a proposed uncoupling of mitochondrial coupling site II at low oxygen tension arising as a consequence of energy-dissipating electron flux through the ubiquinone-cytochrome b-c1 region of the respiratory chain (complex III). PMID:6577456

  15. The effect of varying oxygen tensions on hydroxyproline synthesis in mouse calvaria in vitro.

    PubMed

    Gray, D H; Katz, J M; Speak, K S

    1980-01-01

    Six-day-old mouse calvaria were grown in vitro on a grid culture system in Medium 199 containing titriated proline. Gas atmospheres containing various oxygen concentrations up to 25% were introduced to influence the rate of collagen formation as determined by the synthesis of labelled hydroxyproline in the explants. There was an increase in synthesis in response to 15% oxygen with a possible further small increase in 25% oxygen. Measurement of the release of unlabelled hydroxyproline into the medium as an estimate of collagen breakdown indicates an increase in resorption with increasing oxygen concentrations up to 20%. In this model, therefore, there is increased collagen turnover with increasing oxygen tension in the physiologic range. Although the observations reflect collagen formation and do not necessarily measure bone formation, the results are consistent with data derived from other sources suggesting that bone formation is increased by improved oxygenation. PMID:7371261

  16. Assessments for oxygen therapy in COPD: are we under correcting arterial oxygen tensions?

    PubMed

    Dheda, K; Lim, K; Ollivere, B; Leftley, J; Lampe, F C; Salisbury, A; Dilworth, J P; Rajakulasingam, R K; Rajakulasingum, R K

    2004-12-01

    There is little data about the use of different oxygen sources during assessment for long-term oxygen therapy (LTOT) and how this impacts upon blood oxygen tensions and prescribed flow rates. Patients with chronic obstructive pulmonary disease (COPD), n=30, had assessments for LTOT using both an oxygen-concentrator and piped hospital oxygen (wall-oxygen) as supply sources. In addition, a random survey of 64 hospitals was conducted to determine what source of oxygen supply was used during assessments. Wall-oxygen was used by 89% of hospitals to perform assessments. During assessments, the median oxygen flow required to achieve an arterial oxygen tension (Pa,O2) >8 kPa was significantly greater for an oxygen-concentrator than for wall-oxygen, with a median difference (range) in flow of 1 (0-3) L. This difference was most likely in those with an forced expiratory volume <30% of predicted. At an oxygen flow of 1 L.min(-1), the mean P(a,O2) using an oxygen-concentrator was significantly lower than that of the wall-oxygen value, with a difference of 1.32+/-1.19 kPa (mean+/-SD). The common practice of using wall-oxygen to perform assessments significantly underestimates the required oxygen-concentrator flow rate. This may have implications for the long-term effect of domiciliary oxygen therapy. PMID:15572538

  17. Low oxygen tension favored expansion and hematopoietic reconstitution of CD34(+) CD38(-) cells expanded from human cord blood-derived CD34(+) Cells.

    PubMed

    Wang, Ziyan; Du, Zheng; Cai, Haibo; Ye, Zhaoyang; Fan, Jinli; Tan, Wen-Song

    2016-07-01

    Oxygen tension is an important factor that regulates hematopoietic stem cells (HSCs) in both in vivo hematopoietic microenvironment and ex vivo culture system. Although the effect of oxygen tension on ex vivo expansion of HSCs was extensively studied, there were no clear descriptions on physiological function and gene expression analysis of HSCs under different oxygen tensions. In this study, the effects of oxygen tension on ex vivo expansion characteristics of human umbilical cord blood (UCB)-derived CD34(+) cells are evaluated. Moreover, the physiological function of expanded CD34(+) cells was assessed by secondary expansion ability ex vivo and hematopoietic reconstitution ability in vivo. Also, genetic profiling was applied to analyze the expression of genes related to cell function. It was found that low oxygen tension favored expansion of CD34(+) CD38(-) cells. Additionally, CD34(+) cells expanded under low oxygen tension showed better secondary expansion ability and reconstitution ability than those under atmospheric oxygen concentration. Finally, the genetic profiling of CD34(+) CD38(-) cells cultured under low oxygen tension was more akin to freshly isolated cells. These results collectively demonstrate that low oxygen tension was able to better maintain both self-renewal and hematopoietic reconstitution potential and may lay an experimental basis for clinical transplantation of HSCs. PMID:26997358

  18. A New Approach for On-Demand Generation of Various Oxygen Tensions for In Vitro Hypoxia Models

    PubMed Central

    Li, Chunyan; Chaung, Wayne; Mozayan, Cameron; Chabra, Ranjeev; Wang, Ping; Narayan, Raj K.

    2016-01-01

    The development of in vitro disease models closely mimicking the functions of human disease has captured increasing attention in recent years. Oxygen tensions and gradients play essential roles in modulating biological systems in both physiologic and pathologic events. Thus, controlling oxygen tension is critical for mimicking physiologically relevant in vivo environments for cell, tissue and organ research. We present a new approach for on-demand generation of various oxygen tensions for in vitro hypoxia models. Proof-of-concept prototypes have been developed for conventional cell culture microplate by immobilizing a novel oxygen-consuming biomaterial on the 3D-printed insert. For the first time, rapid (~3.8 minutes to reach 0.5% O2 from 20.9% O2) and precisely controlled oxygen tensions/gradients (2.68 mmHg per 50 μm distance) were generated by exposing the biocompatible biomaterial to the different depth of cell culture media. In addition, changing the position of 3D-printed inserts with immobilized biomaterials relative to the cultured cells resulted in controllable and rapid changes in oxygen tensions (<130 seconds). Compared to the current technologies, our approach allows enhanced spatiotemporal resolution and accuracy of the oxygen tensions. Additionally, it does not interfere with the testing environment while maintaining ease of use. The elegance of oxygen tension manipulation introduced by our new approach will drastically improve control and lower the technological barrier of entry for hypoxia studies. Since the biomaterials can be immobilized in any devices, including microfluidic devices and 3D-printed tissues or organs, it will serve as the basis for a new generation of experimental models previously impossible or very difficult to implement. PMID:27219067

  19. Bladder urine oxygen tension for assessing renal medullary oxygenation in rabbits: experimental and modeling studies.

    PubMed

    Sgouralis, Ioannis; Kett, Michelle M; Ow, Connie P C; Abdelkader, Amany; Layton, Anita T; Gardiner, Bruce S; Smith, David W; Lankadeva, Yugeesh R; Evans, Roger G

    2016-09-01

    Oxygen tension (Po2) of urine in the bladder could be used to monitor risk of acute kidney injury if it varies with medullary Po2 Therefore, we examined this relationship and characterized oxygen diffusion across walls of the ureter and bladder in anesthetized rabbits. A computational model was then developed to predict medullary Po2 from bladder urine Po2 Both intravenous infusion of [Phe(2),Ile(3),Orn(8)]-vasopressin and infusion of N(G)-nitro-l-arginine reduced urinary Po2 and medullary Po2 (8-17%), yet had opposite effects on renal blood flow and urine flow. Changes in bladder urine Po2 during these stimuli correlated strongly with changes in medullary Po2 (within-rabbit r(2) = 0.87-0.90). Differences in the Po2 of saline infused into the ureter close to the kidney could be detected in the bladder, although this was diminished at lesser ureteric flow. Diffusion of oxygen across the wall of the bladder was very slow, so it was not considered in the computational model. The model predicts Po2 in the pelvic ureter (presumed to reflect medullary Po2) from known values of bladder urine Po2, urine flow, and arterial Po2 Simulations suggest that, across a physiological range of urine flow in anesthetized rabbits (0.1-0.5 ml/min for a single kidney), a change in bladder urine Po2 explains 10-50% of the change in pelvic urine/medullary Po2 Thus, it is possible to infer changes in medullary Po2 from changes in urinary Po2, so urinary Po2 may have utility as a real-time biomarker of risk of acute kidney injury. PMID:27385734

  20. Inner retinal metabolic rate of oxygen by oxygen tension and blood flow imaging in rat

    PubMed Central

    Wanek, Justin; Teng, Pang-yu; Albers, John; Blair, Norman P.; Shahidi, Mahnaz

    2011-01-01

    Abstract The metabolic function of inner retinal cells relies on the availability of nutrients and oxygen that are supplied by the retinal circulation. Assessment of retinal tissue vitality and function requires knowledge of both the rate of oxygen delivery and consumption. The purpose of the current study is to report a novel technique for assessment of the inner retinal metabolic rate of oxygen (MO2) by combined measurements of retinal blood flow and vascular oxygen tension (PO2) in rat. The application of this technology has the potential to broaden knowledge of retinal oxygen dynamics and advance understanding of disease pathophysiology. PMID:21991548

  1. Low Oxygen Tension Enhances Expression of Myogenic Genes When Human Myoblasts Are Activated from G0 Arrest

    PubMed Central

    Sellathurai, Jeeva; Nielsen, Joachim; Hejbøl, Eva Kildall; Jørgensen, Louise Helskov; Dhawan, Jyotsna; Nielsen, Michael Friberg Bruun; Schrøder, Henrik Daa

    2016-01-01

    Objectives Most cell culture studies have been performed at atmospheric oxygen tension of 21%, however the physiological oxygen tension is much lower and is a factor that may affect skeletal muscle myoblasts. In this study we have compared activation of G0 arrested myoblasts in 21% O2 and in 1% O2 in order to see how oxygen tension affects activation and proliferation of human myoblasts. Materials and Methods Human myoblasts were isolated from skeletal muscle tissue and G0 arrested in vitro followed by reactivation at 21% O2 and 1% O2. The effect was assesses by Real-time RT-PCR, immunocytochemistry and western blot. Results and Conclusions We found an increase in proliferation rate of myoblasts when activated at a low oxygen tension (1% O2) compared to 21% O2. In addition, the gene expression studies showed up regulation of the myogenesis related genes PAX3, PAX7, MYOD, MYOG (myogenin), MET, NCAM, DES (desmin), MEF2A, MEF2C and CDH15 (M-cadherin), however, the fraction of DES and MYOD positive cells was not increased by low oxygen tension, indicating that 1% O2 may not have a functional effect on the myogenic response. Furthermore, the expression of genes involved in the TGFβ, Notch and Wnt signaling pathways were also up regulated in low oxygen tension. The differences in gene expression were most pronounced at day one after activation from G0-arrest, thus the initial activation of myoblasts seemed most sensitive to changes in oxygen tension. Protein expression of HES1 and β-catenin indicated that notch signaling may be induced in 21% O2, while the canonical Wnt signaling may be induced in 1% O2 during activation and proliferation of myoblasts. PMID:27442119

  2. Oxygen Tension Regulates Human Mesenchymal Stem Cell Paracrine Functions

    PubMed Central

    Deschepper, Mickael; Moya, Adrien; Logeart-Avramoglou, Delphine; Boisson-Vidal, Catherine; Petite, Hervé

    2015-01-01

    Mesenchymal stem cells (MSCs) have captured the attention and research endeavors of the scientific world because of their differentiation potential. However, there is accumulating evidence suggesting that the beneficial effects of MSCs are predominantly due to the multitude of bioactive mediators secreted by these cells. Because the paracrine potential of MSCs is closely related to their microenvironment, the present study investigated and characterized select aspects of the human MSC (hMSC) secretome and assessed its in vitro and in vivo bioactivity as a function of oxygen tension, specifically near anoxia (0.1% O2) and hypoxia (5% O2), conditions that reflect the environment to which MSCs are exposed during MSC-based therapies in vivo. In contrast to supernatant conditioned media (CM) obtained from hMSCs cultured at either 5% or 21% of O2, CM from hMSCs cultured under near anoxia exhibited significantly (p < .05) enhanced chemotactic and proangiogenic properties and a significant (p < .05) decrease in the inflammatory mediator content. An analysis of the hMSC secretome revealed a specific profile under near anoxia: hMSCs increase their paracrine expression of the angiogenic mediators vascular endothelial growth factor (VEGF)-A, VEGF-C, interleukin-8, RANTES, and monocyte chemoattractant protein 1 but significantly decrease expression of several inflammatory/immunomodulatory mediators. These findings provide new evidence that elucidates aspects of great importance for the use of MSCs in regenerative medicine and could contribute to improving the efficacy of such therapies. Significance The present study investigated and characterized select aspects of the human mesenchymal stem cell (hMSC) secretome and assessed its in vitro and in vivo biological bioactivity as a function of oxygen tension, specifically near anoxia (0.1% O2) and hypoxia (5% O2), conditions that reflect the environment to which MSCs are exposed during MSC-based therapies in vivo. The present study

  3. Evolution and physiology of neural oxygen sensing.

    PubMed

    Costa, Kauê M; Accorsi-Mendonça, Daniela; Moraes, Davi J A; Machado, Benedito H

    2014-01-01

    Major evolutionary trends in animal physiology have been heavily influenced by atmospheric O2 levels. Amongst other important factors, the increase in atmospheric O2 which occurred in the Pre-Cambrian and the development of aerobic respiration beckoned the evolution of animal organ systems that were dedicated to the absorption and transportation of O2, e.g., the respiratory and cardiovascular systems of vertebrates. Global variations of O2 levels in post-Cambrian periods have also been correlated with evolutionary changes in animal physiology, especially cardiorespiratory function. Oxygen transportation systems are, in our view, ultimately controlled by the brain related mechanisms, which senses changes in O2 availability and regulates autonomic and respiratory responses that ensure the survival of the organism in the face of hypoxic challenges. In vertebrates, the major sensorial system for oxygen sensing and responding to hypoxia is the peripheral chemoreflex neuronal pathways, which includes the oxygen chemosensitive glomus cells and several brainstem regions involved in the autonomic regulation of the cardiovascular system and respiratory control. In this review we discuss the concept that regulating O2 homeostasis was one of the primordial roles of the nervous system. We also review the physiology of the peripheral chemoreflex, focusing on the integrative repercussions of chemoreflex activation and the evolutionary importance of this system, which is essential for the survival of complex organisms such as vertebrates. The contribution of hypoxia and peripheral chemoreflex for the development of diseases associated to the cardiovascular and respiratory systems is also discussed in an evolutionary context. PMID:25161625

  4. Evolution and physiology of neural oxygen sensing

    PubMed Central

    Costa, Kauê M.; Accorsi-Mendonça, Daniela; Moraes, Davi J. A.; Machado, Benedito H.

    2014-01-01

    Major evolutionary trends in animal physiology have been heavily influenced by atmospheric O2 levels. Amongst other important factors, the increase in atmospheric O2 which occurred in the Pre-Cambrian and the development of aerobic respiration beckoned the evolution of animal organ systems that were dedicated to the absorption and transportation of O2, e.g., the respiratory and cardiovascular systems of vertebrates. Global variations of O2 levels in post-Cambrian periods have also been correlated with evolutionary changes in animal physiology, especially cardiorespiratory function. Oxygen transportation systems are, in our view, ultimately controlled by the brain related mechanisms, which senses changes in O2 availability and regulates autonomic and respiratory responses that ensure the survival of the organism in the face of hypoxic challenges. In vertebrates, the major sensorial system for oxygen sensing and responding to hypoxia is the peripheral chemoreflex neuronal pathways, which includes the oxygen chemosensitive glomus cells and several brainstem regions involved in the autonomic regulation of the cardiovascular system and respiratory control. In this review we discuss the concept that regulating O2 homeostasis was one of the primordial roles of the nervous system. We also review the physiology of the peripheral chemoreflex, focusing on the integrative repercussions of chemoreflex activation and the evolutionary importance of this system, which is essential for the survival of complex organisms such as vertebrates. The contribution of hypoxia and peripheral chemoreflex for the development of diseases associated to the cardiovascular and respiratory systems is also discussed in an evolutionary context. PMID:25161625

  5. Oxygen Tension in the Aqueous Humor of Human Eyes under Different Oxygenation Conditions

    PubMed Central

    Sharifipour, Farideh; Idani, Esmaeil; Zamani, Mitra; Helmi, Toktam; Cheraghian, Bahman

    2013-01-01

    Purpose To measure oxygen tension in the aqueous humor of human eyes under different oxygenation conditions. Methods This prospective comparative interventional case series consisted of two parts. In the first part, 120 consecutive patients scheduled for cataract surgery were randomized into group I (control group) in which surgery was performed under local anesthesia inhaling 21% oxygen; group II in whom general anesthesia using 50% oxygen was employed; and group III receiving general anesthesia with 100% oxygen. After aspirating 0.2 ml aqueous humor under sterile conditions, the aqueous sample and a simultaneously drawn arterial blood sample were immediately analyzed using a blood gas analyzer. In part II the same procedures were performed in 10 patients after fitting a contact lens and patching the eye for 20 minutes (group IV) and in 10 patients after transcorneal delivery of oxygen at a flow rate of 5 L/min (group V). Results Mean aqueous PO2 in groups I, II and III was 112.3±6.2, 141.1±20.4, and 170.1±27 mmHg, respectively (P values <0.001) and mean arterial PO2 was 85.7±7.9, 184.6±46, and379.1±75.9 mmHg, respectively (P values <0.001). Aqueous PO2 was 77.2±9.2 mmHg in group IV and 152.3±10.9 mmHg in group V (P values <0.001). There was a significant correlation between aqueous and blood PO2 (r=0.537, P<0.001). The contribution of atmospheric oxygen to aqueous PO2 was 23.7%. Conclusion Aqueous oxygen tension is mostly dependent on the systemic circulation and in part on the atmosphere. Increasing inspiratory oxygen and transcorneal oxygen delivery both increase aqueous PO2 levels. PMID:23943686

  6. Effects of Environmental Oxygen Content and Dissolved Oxygen on the Surface Tension and Viscosity of Liquid Nickel

    NASA Astrophysics Data System (ADS)

    SanSoucie, M. P.; Rogers, J. R.; Kumar, V.; Rodriguez, J.; Xiao, X.; Matson, D. M.

    2016-07-01

    The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has recently added an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled in the range from approximately 10^{-28} {to} 10^{-9} bar, while in a vacuum atmosphere. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, has a PID-based current loop and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects on surface tension and viscosity by oxygen partial pressure in the surrounding environment and the melt dissolved oxygen content will be evaluated, and the results will be presented. The surface tension and viscosity will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension and viscosity will be measured using the oscillating droplet method.

  7. Oxygen tension measurement using an automatic blood gas analyser1

    PubMed Central

    Becket, J; Chakrabarti, M K; Gillies, I D S; Orchard, C; Hall, G M; Bourdillon, P J

    1981-01-01

    Two different methods of assessing the reliability of the oxygen electrode of one model of an automatic blood gas analyser (BGA) have been studied. In the first, a single automatic BGA was assessed by using outdated bank blood which was pumped around a small extracorporeal circuit into which known gas mixtures were passed. Oxygen tension was varied between 2 and 16 kPa. In the second, fresh heparinized blood was tonometered with calibrated gases and submitted to the automatic BGA used in the first part of the study and also to three other identical machines. Each of the machines was between 3 and 4 years old. Eighteen different units of blood were used in the first part of the study. The correlation coefficient between the automatic BGA and the Po2 in the extracorporeal circuit varied between 0.29 and 0.99. 31% of the total of 209 measurements made by the automatic BGA were more than 1.2 kPa from the reference value, 25% of them being between 1.2 and 4.0 kPa from the reference value. In the second part of the study, the correlation coefficient between this automatic BGA and the tonometered blood was 0.96. The correlation coefficients for the 3 other identical BGAs were 0.84, 0.97 and 0.88, indicating that the BGA used in the first part of the study was no worse than any of the others. It is suggested that although clinicians are likely to ignore readings of an automatic BGA that are more than 4.0 kPa from the true value and are likely to repeat the investigation, readings between 1.2 and 4.0 kPa from the true value may adversely affect patient management. PMID:7288796

  8. Oxygen tension measurement using an automatic blood gas analyser.

    PubMed

    Becket, J; Orchard, C; Chakrabarti, M K; Hall, G M; Gillies, I D; Bourdillon, P J

    1981-08-01

    Two different methods of assessing the reliability of the oxygen electrode of one model of an automatic blood gas analyser (BGA) have been studied. In the first, a single automatic BGA was assessed by using outdated bank blood which was pumped around a small extracorporeal circuit into which known gas mixtures were passed. Oxygen tension was varied between 2 and 16 kPa. In the second, fresh heparinized blood was tonometered with calibrated gases and submitted to the automatic BGA used in the first part of the study and also to three other identical machines. Each of the machines was between 3 and 4 years old.Eighteen different units of blood were used in the first part of the study. The correlation coefficient between the automatic BGA and the Po(2) in the extracorporeal circuit varied between 0.29 and 0.99. 31% of the total of 209 measurements made by the automatic BGA were more than 1.2 kPa from the reference value, 25% of them being between 1.2 and 4.0 kPa from the reference value. In the second part of the study, the correlation coefficient between this automatic BGA and the tonometered blood was 0.96. The correlation coefficients for the 3 other identical BGAs were 0.84, 0.97 and 0.88, indicating that the BGA used in the first part of the study was no worse than any of the others.It is suggested that although clinicians are likely to ignore readings of an automatic BGA that are more than 4.0 kPa from the true value and are likely to repeat the investigation, readings between 1.2 and 4.0 kPa from the true value may adversely affect patient management. PMID:7288796

  9. Extrapulmonary factors influencing the ratio of arterial oxygen tension to inspired oxygen concentration in burn patients.

    PubMed

    Martyn, J A; Aikawa, N; Wilson, R S; Szyfelbein, S K; Burke, J F

    1979-11-01

    The ratio of arterial oxygen tension to inspired oxygen concentration (PaO2/FIO2) as an index of respiratory function was evaluated in 22 patients with body surface area burns of 15--80%. These results indicate that this ratio is limited in its applicability because extrapulmonary factors, such as cardiac output, oxygen consumption, and arterial oxygen content, can affect this index by alterations in the amount of venous desaturation. Useful estimates of intrapulmonary right to left shunt (Qs/Qt) from PaO2/FIO2 were obtained only when arteriovenous oxygen content differences (avDO2) were between 3--5 ml/dl. There were avDO2 values above and below 3--5 ml/dl in at least 35% of the observations. Under these circumstances, PaO2/FIO2 did not correctly reflect changes in Qs/Qt. Blood gases from central venous catheters did not mirror changes in true mixed venous blood and, thus, can lead to erroneous estimations of Qs/Qt. Rational therapy of reduced arterial oxygen saturation requires measurement of both extra- and intrapulmonary factors contributing to arterial desaturation. Measurement of PaO2/FIO2 alone will not estimate these factors. PMID:487845

  10. Response of the protistan community of a rice field soil to different oxygen tensions.

    PubMed

    Takenouchi, Yuriko; Iwasaki, Kazufumi; Murase, Jun

    2016-07-01

    Heterotrophic protists in soil are grazers that control the biomass and community structure of bacteria, thereby enhancing nutrient recycling. Oxygen regulates the microeukaryotic community, but little is known about its response to microoxic conditions. Here we studied the impact of oxygen tension on culturable heterotrophic protists in a rice field soil. The number of protists, dominated by amoeba and flagellates, under oxygen tensions ranging from atmospheric level (21%) to below the Pasteur point (0.08%) were similar (10(4) cells g(-1) dry soil); no protists were detected under anoxic conditions. DGGE fingerprinting of microeukaryotes demonstrated a shift in the community structure depending on the oxygen tension during growth. Both common and specific amoeba and flagellates were identified at different oxygen tensions. Amoeba isolates (Acanthamoeba sp. and Hartmannella sp.) grew to the same extent under the oxygen tensions tested; the Acanthamoeba sp. isolate migrated more slowly under the lowest tension (0.08%). Our results demonstrated that amoeba and flagellates in soil adapt to a wide range of oxygen tensions with a shift in community structure. This suggests an ability to search for food in soil environments such as the oxic-anoxic interface of flooded soil or inside soil aggregates that are inaccessible to ciliates. PMID:27183973

  11. Gloxy: an oxygen-sensitive coal for accurate measurement of low oxygen tensions in biological systems.

    PubMed

    James, P E; Grinberg, O Y; Goda, F; Panz, T; O'Hara, J A; Swartz, H M

    1997-07-01

    This paper describes the characteristics of a new oxygen sensitive, paramagnetic material that has some significant advantages for measurements of tissue pO2 by in vivo EPR. This paramagnetic component of Welsh coal, termed "gloxy" was found to have valuable EPR features that allow accurate measurement of low oxygen tensions in vivo; these include large oxygen-dependent changes in linewidth, a high number of paramagnetic spin centers (resulting in high signal amplitude), and stability in tissue allowing repeated pO2 measurements to be made in vivo with high precision. Renal pO2 was measured deep in the medulla region of isolated perfused kidneys and found to be lower than that in the cortex (1.7 +/- 0.05 and 7.1 +/- 0.3 mm Hg, respectively). The quality of the EPR signal obtained from the renal outer medulla and also from tumors in mice was such that the pO2 measurements were obtained with a precision of +/-3% of the measured pO2 (Kidney: 1.7 +/- 0.05 mmHg; Tumor: 1.37 +/- 0.04 mmHg). In vitro tests on the viability of cells and in vivo studies using Gloxy demonstrate the stability and inertness of this oxygen-sensitive material. PMID:9211379

  12. Effects of Oxygen Partial Pressure on the Surface Tension of Liquid Nickel

    NASA Technical Reports Server (NTRS)

    SanSoucie, Michael P.; Rogers, Jan R.; Gowda, Vijaya Kumar Malahalli Shankare; Rodriguez, Justin; Matson, Douglas M.

    2015-01-01

    The NASA Marshall Space Flight Center's electrostatic levitation (ESL) laboratory has been recently upgraded with an oxygen partial pressure controller. This system allows the oxygen partial pressure within the vacuum chamber to be measured and controlled, theoretically in the range from 10-36 to 100 bar. The oxygen control system installed in the ESL laboratory's main chamber consists of an oxygen sensor, oxygen pump, and a control unit. The sensor is a potentiometric device that determines the difference in oxygen activity in two gas compartments (inside the chamber and the air outside of the chamber) separated by an electrolyte, which is yttria-stabilized zirconia. The pump utilizes coulometric titration to either add or remove oxygen. The system is controlled by a desktop control unit, which can also be accessed via a computer. The controller performs temperature control for the sensor and pump, PID-based current loop, and a control algorithm. Oxygen partial pressure has been shown to play a significant role in the surface tension of liquid metals. Oxide films or dissolved oxygen may lead to significant changes in surface tension. The effects of oxygen partial pressure on the surface tension of undercooled liquid nickel will be analyzed, and the results will be presented. The surface tension will be measured at several different oxygen partial pressures while the sample is undercooled. Surface tension will be measured using the oscillating drop method. While undercooled, each sample will be oscillated several times consecutively to investigate how the surface tension behaves with time while at a particular oxygen partial pressure.

  13. Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope.

    PubMed Central

    Shonat, R D; Wachman, E S; Niu, W; Koretsky, A P; Farkas, D L

    1997-01-01

    A newly developed microscope using acousto-optic tunable filters (AOTFs) was used to generate in vivo hemoglobin saturation (SO2) and oxygen tension (PO2) maps in the cerebral cortex of mice. SO2 maps were generated from the spectral analysis of reflected absorbance images collected at different wavelengths, and PO2 maps were generated from the phosphorescence lifetimes of an injected palladium-porphyrin compound using a frequency-domain measurement. As the inspiratory O2 was stepped from hypoxia (10% O2), through normoxia (21% O2), to hyperoxia (60% O2), measured SO2 and PO2 levels rose accordingly and predictably throughout. A plot of SO2 versus PO2 in different arterial and venous regions of the pial vessels conformed to the sigmoidal shape of the oxygen-hemoglobin dissociation curve, providing further validation of the two mapping procedures. The study demonstrates the versatility of the AOTF microscope for in vivo physiologic investigation, allowing for the generation of nearly simultaneous SO2 and PO2 maps in the cerebral cortex, and the frequency-domain detection of phosphorescence lifetimes. This class of study opens up exciting new possibilities for investigating the dynamics of hemoglobin and O2 binding during functional activation of neuronal tissues. Images FIGURE 1 FIGURE 3 FIGURE 4 FIGURE 6 PMID:9284290

  14. MRI of brain tissue oxygen tension under hyperbaric conditions.

    PubMed

    Muir, Eric R; Cardenas, Damon P; Duong, Timothy Q

    2016-06-01

    The brain depends on a continuous supply of oxygen to maintain its structural and functional integrity. This study measured T1 from MRI under normobaric air, normobaric oxygen, hyperbaric air, and hyperbaric oxygen (HBO) conditions as a marker of tissue pO2 since dissolved molecular oxygen acts as an endogenous contrast agent. Brain tissue T1 decreased corresponding to increased pO2 with increasing inhaled oxygen concentrations, and tissue oxygenation was estimated from the T1 changes between different inhaled oxygen levels. Tissue pO2 difference maps between different oxygen conditions showed heterogeneous pO2 changes in the brain. MRI-derived tissue pO2 was markedly lower than the arterial pO2 but was slightly higher than venous pO2. Additionally, for comparison with published extracellular tissue pO2 data obtained using oxygen electrodes and other invasive techniques, a model was used to estimate extracellular and intracellular pO2 from the MRI-derived mean tissue pO2. This required multiple assumptions, and so the effects of the assumptions and parameters used in modeling brain pO2 were evaluated. MRI-derived pO2 values were strongly dependent on assumptions about the extra- and intracellular compartments but were relatively less sensitive to variations in the relaxivity constant of oxygen and contribution from oxygen in the cerebral blood compartment. This approach may prove useful in evaluating tissue oxygenation in disease states such as stroke. PMID:27033683

  15. Method measuring oxygen tension and transport within subcutaneous devices

    PubMed Central

    Weidling, John; Sameni, Sara; Lakey, Jonathan R. T.; Botvinick, Elliot

    2014-01-01

    Abstract. Cellular therapies hold promise to replace the implantation of whole organs in the treatment of disease. For most cell types, in vivo viability depends on oxygen delivery to avoid the toxic effects of hypoxia. A promising approach is the in situ vascularization of implantable devices which can mediate hypoxia and improve both the lifetime and utility of implanted cells and tissues. Although mathematical models and bulk measurements of oxygenation in surrounding tissue have been used to estimate oxygenation within devices, such estimates are insufficient in determining if supplied oxygen is sufficient for the entire thickness of the implanted cells and tissues. We have developed a technique in which oxygen-sensitive microparticles (OSMs) are incorporated into the volume of subcutaneously implantable devices. Oxygen partial pressure within these devices can be measured directly in vivo by an optical probe placed on the skin surface. As validation, OSMs have been incorporated into alginate beads, commonly used as immunoisolation devices to encapsulate pancreatic islet cells. Alginate beads were implanted into the subcutaneous space of Sprague–Dawley rats. Oxygen transport through beads was characterized from dynamic OSM signals in response to changes in inhaled oxygen. Changes in oxygen dynamics over days demonstrate the utility of our technology. PMID:25162910

  16. Tissue oxygen tension in the cerebral cortex of the rabbit.

    PubMed

    Fennema, M; Wessel, J N; Faithful, N S; Erdmann, W

    1989-01-01

    Polarographic techniques were employed to measure oxygen partial pressure using 10 micron glass-protected gold microelectrodes. When inserting the electrode into the cortex, a PO2-profile is produced. The average PO2 was about 9 mm Hg. Nearly all measurements were below 25 mm Hg and measurements above 50 mm Hg were rare. When the FiO2 was increased from 0.3 to 1.0, tissue PO2 increased, then gradually decreased. This is probably due to vasoconstriction of pre-capillary sphincters. Acute hypoxia showed the opposite effect, but the autoregulation does not seem to be so effective. When CO2 was added to the inspiratory gas mixture the PO2 increased and showed little tendency to return to normal values. This increase in PO2 is due to the direct effect of CO2 and H+ on the blood vessels, causing vasodilation, and therefore an increase in blood flow and tissue oxygenation. PMID:2506739

  17. Three-dimensional mapping of oxygen tension in cortical arterioles before and after occlusion

    PubMed Central

    Kazmi, S. M. Shams; Salvaggio, Anthony J.; Estrada, Arnold D.; Hemati, Michael A.; Shaydyuk, Nazariy K.; Roussakis, Emannuel; Jones, Theresa A.; Vinogradov, Sergei A.; Dunn, Andrew K.

    2013-01-01

    Occlusions in single cortical microvessels lead to a reduction in oxygen supply, but this decrement has not been able to be quantified in three dimensions at the level of individual vessels using a single instrument. We demonstrate a combined optical system using two-photon phosphorescence lifetime and fluorescence microscopy (2PLM) to characterize the partial pressure of oxygen (pO2) in single descending cortical arterioles in the mouse brain before and after generating a targeted photothrombotic occlusion. Integrated real-time Laser Speckle Contrast Imaging (LSCI) provides wide-field perfusion maps that are used to monitor and guide the occlusion process while 2PLM maps changes in intravascular oxygen tension. We present the technique’s utility in highlighting the effects of vascular networking on the residual intravascular oxygen tensions measured after occlusion in three dimensions. PMID:23847732

  18. Three-dimensional mapping of oxygen tension in cortical arterioles before and after occlusion.

    PubMed

    Kazmi, S M Shams; Salvaggio, Anthony J; Estrada, Arnold D; Hemati, Michael A; Shaydyuk, Nazariy K; Roussakis, Emannuel; Jones, Theresa A; Vinogradov, Sergei A; Dunn, Andrew K

    2013-07-01

    Occlusions in single cortical microvessels lead to a reduction in oxygen supply, but this decrement has not been able to be quantified in three dimensions at the level of individual vessels using a single instrument. We demonstrate a combined optical system using two-photon phosphorescence lifetime and fluorescence microscopy (2PLM) to characterize the partial pressure of oxygen (pO2) in single descending cortical arterioles in the mouse brain before and after generating a targeted photothrombotic occlusion. Integrated real-time Laser Speckle Contrast Imaging (LSCI) provides wide-field perfusion maps that are used to monitor and guide the occlusion process while 2PLM maps changes in intravascular oxygen tension. We present the technique's utility in highlighting the effects of vascular networking on the residual intravascular oxygen tensions measured after occlusion in three dimensions. PMID:23847732

  19. Clinical, Biomechanical, and Physiological Translational Interpretations of Human Resting Myofascial Tone or Tension

    PubMed Central

    Masi, Alfonse T.; Nair, Kalyani; Evans, Tyler; Ghandour, Yousef

    2010-01-01

    Background Myofascial tissues generate integrated webs and networks of passive and active tensional forces that provide stabilizing support and that control movement in the body. Passive [central nervous system (CNS)–independent] resting myofascial tension is present in the body and provides a low-level stabilizing component to help maintain balanced postures. This property was recently called “human resting myofascial tone” (HRMT). The HRMT model evolved from electromyography (EMG) research in the 1950s that showed lumbar muscles usually to be EMG-silent in relaxed gravity-neutral upright postures. Methods Biomechanical, clinical, and physiological studies were reviewed to interpret the passive stiffness properties of HRMT that help to stabilize various relaxed functions such as quiet balanced standing. Biomechanical analyses and experimental studies of the lumbar multifidus were reviewed to interpret its passive stiffness properties. The lumbar multifidus was illustrated as the major core stabilizing muscle of the spine, serving an important passive biomechanical role in the body. Results Research into muscle physiology suggests that passive resting tension (CNS-independent) is generated in sarcomeres by the molecular elasticity of low-level cycling cross-bridges between the actomyosin filaments. In turn, tension is complexly transmitted to intimately enveloping fascial matrix fibrils and other molecular elements in connective tissue, which, collectively, constitute the myofascial unit. Postural myofascial tonus varies with age and sex. Also, individuals in the population are proposed to vary in a polymorphism of postural HRMT. A few people are expected to have outlier degrees of innate postural hypotonicity or hypertonicity. Such biomechanical variations likely predispose to greater risk of related musculoskeletal disorders, a situation that deserves greater attention in clinical practice and research. Axial myofascial hypertonicity was hypothesized to

  20. Determination of oxygen tension in the subcutaneous tissue of cosmonauts during the Salyut-6 mission

    NASA Technical Reports Server (NTRS)

    Baranski, S.; Bloszczynski, R.; Hermaszewski, M.; Kubiczkowa, J.; Piorko, A.; Saganiak, R.; Sarol, Z.; Skibniewsky, F.; Stendera, J.; Walichnowski, W.

    1982-01-01

    A polarographic technique was used to measure the oxygen tension in subcutaneous tissue of the forearm of a cosmonaut prior to, after, and on the fourth day of a space mission performed by Salut-6. A drop in the oxygen exchange rate in the peripheral tissues during weightlessness was observed. The mechanisms of this change are studied, taking into consideration the blood distribution in the organism and microcirculation disorders reflected by a decreased blood flow rate in arterial-venous junctions.

  1. Adverse effects of reduced oxygen tension on the proliferative capacity of rat kidney and insulin-secreting cell lines involve DNA damage and stress responses

    SciTech Connect

    Chen Jianhua Jones, R. Huw; Tarry-Adkins, Jane; Smith, Noel H.; Ozanne, Susan E.

    2008-10-01

    Standard cell culture conditions do not reflect the physiological environment in terms of oxygen tension (20% vs 3%). The effects of lowering oxygen tension on cell proliferation in culture can be beneficial as well as detrimental depending on the cell line studied, but the molecular mechanism underlying such effects is not fully understood. We observed that the proliferative capacity of the rat cell lines NRK and INS-1 was inhibited when cultured under 3% oxygen as compared to 20% oxygen. Suppression of proliferation in NRK cells was accompanied by induction of DNA double strand breaks whereas in INS-1 cells it was accompanied by up-regulation of p53 and p27. Although Sirt1 was up-regulated in both cell lines by 3% oxygen the effects on antioxidant enzymes (MnSOD, CuZnSOD and catalase) were cell line specific. Marked up-regulation of heme oxygenase-1 (HO-1) was detected in both NRK and INS-1 cells when cultured in 3% oxygen. HO-1 expression can be readily induced by exposure to hydrogen peroxide in culture. These results suggest that reduced oxygen tension suppresses the proliferative capacity of these two cell lines through a stress response that is similar to an oxidative stress response but the molecular events that lead to the reduced cell proliferation are cell line specific.

  2. Adverse effects of reduced oxygen tension on the proliferative capacity of rat kidney and insulin-secreting cell lines involve DNA damage and stress responses

    PubMed Central

    Chen, Jian-Hua; Jones, R. Huw; Tarry-Adkins, Jane; Smith, Noel H.; Ozanne, Susan E.

    2008-01-01

    Standard cell culture conditions do not reflect the physiological environment in terms of oxygen tension (20% vs 3%). The effects of lowering oxygen tension on cell proliferation in culture can be beneficial as well as detrimental depending on the cell line studied, but the molecular mechanism underlying such effects is not fully understood. We observed that the proliferative capacity of the rat cell lines NRK and INS-1 was inhibited when cultured under 3% oxygen as compared to 20% oxygen. Suppression of proliferation in NRK cells was accompanied by induction of DNA double strand breaks whereas in INS-1 cells it was accompanied by up-regulation of p53 and p27. Although Sirt1 was up-regulated in both cell lines by 3% oxygen the effects on antioxidant enzymes (MnSOD, CuZnSOD and catalase) were cell line specific. Marked up-regulation of heme oxygenase-1 (HO-1) was detected in both NRK and INS-1 cells when cultured in 3% oxygen. HO-1 expression can be readily induced by exposure to hydrogen peroxide in culture. These results suggest that reduced oxygen tension suppresses the proliferative capacity of these two cell lines through a stress response that is similar to an oxidative stress response but the molecular events that lead to the reduced cell proliferation are cell line specific. PMID:18692496

  3. The effect of oxygen tension on human articular chondrocyte matrix synthesis: Integration of experimental and computational approaches

    PubMed Central

    Li, S; Oreffo, ROC; Sengers, BG; Tare, RS

    2014-01-01

    Significant oxygen gradients occur within tissue engineered cartilaginous constructs. Although oxygen tension is an important limiting parameter in the development of new cartilage matrix, its precise role in matrix formation by chondrocytes remains controversial, primarily due to discrepancies in the experimental setup applied in different studies. In this study, the specific effects of oxygen tension on the synthesis of cartilaginous matrix by human articular chondrocytes were studied using a combined experimental-computational approach in a “scaffold-free” 3D pellet culture model. Key parameters including cellular oxygen uptake rate were determined experimentally and used in conjunction with a mathematical model to estimate oxygen tension profiles in 21-day cartilaginous pellets. A threshold oxygen tension (pO2 ≈ 8% atmospheric pressure) for human articular chondrocytes was estimated from these inferred oxygen profiles and histological analysis of pellet sections. Human articular chondrocytes that experienced oxygen tension below this threshold demonstrated enhanced proteoglycan deposition. Conversely, oxygen tension higher than the threshold favored collagen synthesis. This study has demonstrated a close relationship between oxygen tension and matrix synthesis by human articular chondrocytes in a “scaffold-free” 3D pellet culture model, providing valuable insight into the understanding and optimization of cartilage bioengineering approaches. Biotechnol. Bioeng. 2014;111: 1876–1885. PMID:24668194

  4. Methyl sterol and cyclopropane fatty acid composition of Methylococcus capsulatus grown at low oxygen tensions.

    PubMed Central

    Jahnke, L L; Nichols, P D

    1986-01-01

    Methylococcus capsulatus contained extensive intracytoplasmic membranes when grown in fed-batch cultures over a wide range of oxygen tensions (0.1 to 10.6%, vol/vol) and at a constant methane level. Although the biomass decreased as oxygen levels were lowered, consistently high amounts of phospholipid and methyl sterol were synthesized. The greatest amounts of sterol and phospholipid were found in cells grown between 0.5 and 1.1% oxygen (7.2 and 203 mumol/g [dry weight], respectively). While sterol was still synthesized in significant amounts in cells grown at 0.1% oxygen, the major sterol product was the dimethyl form. Analysis by capillary gas chromatography-mass spectrophotometry showed that the phospholipid esterified fatty acids were predominantly 16:0 and 16:1 and that the hexadecenoates consisted of cis delta 9, delta 10, and delta 11 isomers. At low oxygen tensions, the presence of large amounts (25%) of cyclopropane fatty acids (cy 17:0) with the methylene groups at the delta 9, delta 10, and delta 11 positions was detected. Although the delta 9 monoenoic isomer was predominant, growth at low oxygen levels enhanced the synthesis of the delta 10 isomers of 16:1 and cy 17:0. As the oxygen level was increased, the amount of cyclopropanes decreased, such that only a trace of cy 17:0 could be detected in cells grown at 10.6% oxygen. Although M. capsulatus grew at very low oxygen tensions, this growth was accompanied by changes in the membrane lipids. PMID:3087955

  5. Methyl sterol and cyclopropane fatty acid composition of Methylococcus capsulatus grown at low oxygen tensions

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.; Nichols, P. D.

    1986-01-01

    The sterol and fatty acid concentrations for M. capsulatus grown in fed-batch cultures over a wide range of oxygen tensions (0.1-10.6 percent) and at a constant methane level are evaluated. The analyses reveal that the biomass decreases as oxygen levels are lowered; the sterol concentration increases when the oxygen range is between 0.5-1.1 percent and decreases when the oxygen range is below 0.5 percent; and the amount of monounsaturated C16 decreases and the concentration of cyclopropane fatty acids increases after oxygen is reduced. It is noted that growth and membrane synthesis occur at low oxygen concentrations and that the synthesis of membrane lipids responds to growth conditions.

  6. Adaptation of chondrocytes to low oxygen tension: relationship between hypoxia and cellular metabolism.

    PubMed

    Rajpurohit, R; Koch, C J; Tao, Z; Teixeira, C M; Shapiro, I M

    1996-08-01

    In endochondral bone, the growth cartilage is the site of rapid growth. Since the vascular supply to the cartilage is limited, it is widely assumed that cells of the cartilage are hypoxic and that limitations in the oxygen supply regulate the energetic state of the maturing cells. In this report, we evaluate the effects of oxygen tension on chondrocyte energy metabolism, thiol status, and expression of transcription elements, HIF and AP-1. Imposition of an hypoxic environment on cultured chondrocytes caused a proportional increase in glucose utilization and elevated levels of lactate synthesis. Although we observed a statistical increase in the activities of phosphofructokinase, pyruvate kinase, lactate dehydrogenase, and creatine kinase after exposure to lowered oxygen concentrations, the effect was small. The cultured cells exhibited a decreased utilization of glutamine, possibly due to down regulation of mitochondrial function and inhibition of oxidative deamination. With respect to total energy generation, we noted that these cells are quite capable of maintaining the energy charge of the cell at low oxygen tensions. Indeed, no changes in the absolute quantity of adenine nucleotides or the energy charge ratio was observed. Hypoxia caused a decrease in the glutathione content of cultured chondrocytes and a concomitant rise in cell and medium cysteine levels. It is likely that the fall in cell glutathione level is due to decreased synthesis of the tripeptide under reduced oxygen stress and the limited supply of glutamate. The observed rise in cellular and medium cysteine levels probably reflects an increase in the rate of degradation of glutathione and a decrease in synthesis of the peptide. To explore how cells transduce these metabolic effects, gel retardation assays were used to study chondrocyte HIF and AP-1 binding activities. Chondrocyte nuclear preparations bound an HIF-oligonucleotide; however, at low oxygen tensions, no increase in HIF binding was

  7. Effects of oxygen tension and dextran-shelled/2H,3H-decafluoropentane-cored oxygen-loaded nanodroplets on secretion of gelatinases and their inhibitors in term human placenta.

    PubMed

    Prato, Mauro; Khadjavi, Amina; Magnetto, Chiara; Gulino, Giulia Rossana; Rolfo, Alessandro; Todros, Tullia; Cavalli, Roberta; Guiot, Caterina

    2016-01-01

    Matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs) need to be finely modulated in physiological processes. However, oxygen tension influences MMP/TIMP balances, potentially leading to pathology. Intriguingly, new 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNDs) have proven effective in abrogating hypoxia-dependent dysregulation of MMP and TIMP secretion by single cell populations. This work explored the effects of different oxygen tensions and dextran-shelled OLNDs on MMP/TIMP production in an organized and multicellular tissue (term human placenta). Chorionic villous explants from normal third-trimester pregnancies were incubated with/without OLNDs in 3 or 20% O2. Explants cultured at higher oxygen tension released constitutive proMMP-2, proMMP-9, TIMP-1, and TIMP-2. Hypoxia significantly altered MMP-2/TIMP-2 and MMP-9/TIMP-1 ratios enhancing TIMP-2 and reducing proMMP-2, proMMP-9, and TIMP-1 levels. Intriguingly, OLNDs effectively counteracted the effects of low oxygen tension. Collectively, these data support OLND potential as innovative, nonconventional, and cost-effective tools to counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human tissues. PMID:26523859

  8. Application of perfluorocarbon emulsions as fluorine-19 nuclear magnetic resonance molecular probes of cardiac tissues oxygen tension

    SciTech Connect

    Shukla, H.P.

    1994-01-01

    The basic and universal need for oxygen in mammalian tissue has long been recognized. The quantitation of oxygen tension (pO[sub 2]) in cardiac tissue is available by many techniques, but these are generally invasive or superficial. In addition, the role of cardiac pO[sub 2] along the oxygen gradient has yet to be defined. To date, no single method fits the ideal, i.e. non-invasive, sensitive, accurate, rapid, three-dimensional, and economical. The use of perfluorocarbon emulsions as tissue oximeters by [sup 19]F NMR relaxometry has the potential to fulfill many of these requirements. Development of a novel method requires the assessment of validity, reproducibility, and practicality. To this end, I have characterized the linear relationship between pO[sub 2] and the [sup 19]F spin-lattice relaxation rate (R1) for several perfluorocarbon (PFC) emulsions at high magnetic fields. The physical basis of underlying [sup 19]F relaxation mechanisms were modeled with respect to the structure and thermal behavior of perfluorocarbon molecules. Utility of these molecules in vivo was tested by spectroscopy and imaging of perfluorocarbons sequestered in the perfused rat heart. Under a wide range of steady-state oxygenation, the global cardiac tissue pO[sub 2] of perfused rat hearts responded in a manner consistent with physiological processes. The cardiac pO[sub 2] was measured by MRS either with high reproducibility ([plus minus]20 torr) or temporal resolution (1 sec). Independent validation of this method was provided in the total absence of oxygen consumption by the heart. Localized pO[sub 2] measurements in tissue were accomplished by [sup 19]F MRI of PFCs in arrested, perfused rat hearts, and found to change significantly with ischemia. It was concluded that the measurement of pO[sub 2] by NMR can provide important information about the physiological condition of the heart.

  9. Growth studies on Mycobacterium BCG: establishment of growth curves and measurement of the oxygen tension of the growth medium.

    PubMed

    Moore, D F; James, A M

    1982-01-01

    Mycobacterium BCG grew exponentially in shallow, static volumes of culture medium for approximately 10 days; the oxygen tension of the medium at all stages of growth was 100% saturation. Higher yields were obtained from Dubos than from glycerol-free medium. In static cultures, the oxygen tension of the culture and consequently the growth rate of BCG was dependent on the depth of the medium; active growth ceased at an oxygen tension of less than 40% saturation. BCG grew actively in a cell sediment, while cells growing in suspension made a negligible contribution to the yield. PMID:6757673

  10. Oxygen tension regulates the osteogenic, chondrogenic and endochondral phenotype of bone marrow derived mesenchymal stem cells

    SciTech Connect

    Sheehy, Eamon J.; Buckley, Conor T.; Kelly, Daniel J.

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Expansion in low oxygen enhances MSC proliferation and osteogenesis. Black-Right-Pointing-Pointer Differentiation in low oxygen enhances chondrogenesis and suppresses hypertrophy. Black-Right-Pointing-Pointer Oxygen can regulate the MSC phenotype for use in tissue engineering applications. -- Abstract: The local oxygen tension is a key regulator of the fate of mesenchymal stem cells (MSCs). The objective of this study was to investigate the effect of a low oxygen tension during expansion and differentiation on the proliferation kinetics as well as the subsequent osteogenic and chondrogenic potential of MSCs. We first hypothesised that expansion in a low oxygen tension (5% pO{sub 2}) would improve both the subsequent osteogenic and chondrogenic potential of MSCs compared to expansion in a normoxic environment (20% pO{sub 2}). Furthermore, we hypothesised that chondrogenic differentiation in a low oxygen environment would suppress hypertrophy of MSCs cultured in both pellets and hydrogels used in tissue engineering strategies. MSCs expanded at 5% pO{sub 2} proliferated faster forming larger colonies, resulting in higher cell yields. Expansion at 5% pO{sub 2} also enhanced subsequent osteogenesis of MSCs, whereas differentiation at 5% pO{sub 2} was found to be a more potent promoter of chondrogenesis than expansion at 5% pO{sub 2}. Greater collagen accumulation, and more intense staining for collagen types I and X, was observed in pellets maintained at 20% pO{sub 2} compared to 5% pO{sub 2}. Both pellets and hydrogels stained more intensely for type II collagen when undergoing chondrogenesis in a low oxygen environment. Differentiation at 5% pO{sub 2} also appeared to inhibit hypertrophy in both pellets and hydrogels, as demonstrated by reduced collagen type X and Alizarin Red staining and alkaline phosphatase activity. This study demonstrates that the local oxygen environment can be manipulated in vitro to either stabilise a

  11. Modeling Variable Phanerozoic Oxygen Effects on Physiology and Evolution.

    PubMed

    Graham, Jeffrey B; Jew, Corey J; Wegner, Nicholas C

    2016-01-01

    Geochemical approximation of Earth's atmospheric O2 level over geologic time prompts hypotheses linking hyper- and hypoxic atmospheres to transformative events in the evolutionary history of the biosphere. Such correlations, however, remain problematic due to the relative imprecision of the timing and scope of oxygen change and the looseness of its overlay on the chronology of key biotic events such as radiations, evolutionary innovation, and extinctions. There are nevertheless general attributions of atmospheric oxygen concentration to key evolutionary changes among groups having a primary dependence upon oxygen diffusion for respiration. These include the occurrence of Devonian hypoxia and the accentuation of air-breathing dependence leading to the origin of vertebrate terrestriality, the occurrence of Carboniferous-Permian hyperoxia and the major radiation of early tetrapods and the origins of insect flight and gigantism, and the Mid-Late Permian oxygen decline accompanying the Permian extinction. However, because of variability between and error within different atmospheric models, there is little basis for postulating correlations outside the Late Paleozoic. Other problems arising in the correlation of paleo-oxygen with significant biological events include tendencies to ignore the role of blood pigment affinity modulation in maintaining homeostasis, the slow rates of O2 change that would have allowed for adaptation, and significant respiratory and circulatory modifications that can and do occur without changes in atmospheric oxygen. The purpose of this paper is thus to refocus thinking about basic questions central to the biological and physiological implications of O2 change over geological time. PMID:27343111

  12. Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells

    SciTech Connect

    Choi, Jane Ru; Pingguan-Murphy, Belinda; Wan Abas, Wan Abu Bakar; Noor Azmi, Mat Adenan; Omar, Siti Zawiah; Chua, Kien Hui; Wan Safwani, Wan Kamarul Zaman

    2014-05-30

    Highlights: • Hypoxia maintains the stemness of adipose-derived stem cells (ASCs). • ASCs show an increased proliferation rate under low oxygen tension. • Oxygen level as low as 2% enhances the chondrogenic differentiation potential of ASCs. • HIF-1α may regulate the proliferation and differentiation activities of ASCs under hypoxia. - Abstract: Adipose-derived stem cells (ASCs) have been found adapted to a specific niche with low oxygen tension (hypoxia) in the body. As an important component of this niche, oxygen tension has been known to play a critical role in the maintenance of stem cell characteristics. However, the effect of O{sub 2} tension on their functional properties has not been well determined. In this study, we investigated the effects of O{sub 2} tension on ASCs stemness, differentiation and proliferation ability. Human ASCs were cultured under normoxia (21% O{sub 2}) and hypoxia (2% O{sub 2}). We found that hypoxia increased ASC stemness marker expression and proliferation rate without altering their morphology and surface markers. Low oxygen tension further enhances the chondrogenic differentiation ability, but reduces both adipogenic and osteogenic differentiation potential. These results might be correlated with the increased expression of HIF-1α under hypoxia. Taken together, we suggest that growing ASCs under 2% O{sub 2} tension may be important in expanding ASCs effectively while maintaining their functional properties for clinical therapy, particularly for the treatment of cartilage defects.

  13. Mitochondrial physiology and reactive oxygen species production are altered by hypoxia acclimation in killifish (Fundulus heteroclitus).

    PubMed

    Du, Sherry N N; Mahalingam, Sajeni; Borowiec, Brittney G; Scott, Graham R

    2016-04-15

    Many fish encounter hypoxia in their native environment, but the role of mitochondrial physiology in hypoxia acclimation and hypoxia tolerance is poorly understood. We investigated the effects of hypoxia acclimation on mitochondrial respiration, O2kinetics, emission of reactive oxygen species (ROS), and antioxidant capacity in the estuarine killifish ( ITALIC! Fundulus heteroclitus). Killifish were acclimated to normoxia, constant hypoxia (5 kPa O2) or intermittent diel cycles of nocturnal hypoxia (12 h:12 h normoxia:hypoxia) for 28-33 days and mitochondria were isolated from liver. Neither pattern of hypoxia acclimation affected the respiratory capacities for oxidative phosphorylation or electron transport, leak respiration, coupling control or phosphorylation efficiency. Hypoxia acclimation also had no effect on mitochondrial O2kinetics, but ITALIC! P50(the O2tension at which hypoxia inhibits respiration by 50%) was lower in the leak state than during maximal respiration, and killifish mitochondria endured anoxia-reoxygenation without any impact on mitochondrial respiration. However, both patterns of hypoxia acclimation reduced the rate of ROS emission from mitochondria when compared at a common O2tension. Hypoxia acclimation also increased the levels of protein carbonyls and the activities of superoxide dismutase and catalase in liver tissue (the latter only occurred in constant hypoxia). Our results suggest that hypoxia acclimation is associated with changes in mitochondrial physiology that decrease ROS production and may help improve hypoxia tolerance. PMID:26896545

  14. Enhanced proliferation and dopaminergic differentiation of ventral mesencephalic precursor cells by synergistic effect of FGF2 and reduced oxygen tension

    SciTech Connect

    Jensen, Pia; Gramsbergen, Jan-Bert; Zimmer, Jens; Widmer, Hans R.; Meyer, Morten

    2011-07-15

    Effective numerical expansion of dopaminergic precursors might overcome the limited availability of transplantable cells in replacement strategies for Parkinson's disease. Here we investigated the effect of fibroblast growth factor-2 (FGF2) and FGF8 on expansion and dopaminergic differentiation of rat embryonic ventral mesencephalic neuroblasts cultured at high (20%) and low (3%) oxygen tension. More cells incorporated bromodeoxyuridine in cultures expanded at low as compared to high oxygen tension, and after 6 days of differentiation there were significantly more neuronal cells in low than in high oxygen cultures. Low oxygen during FGF2-mediated expansion resulted also in a significant increase in tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons as compared to high oxygen tension, but no corresponding effect was observed for dopamine release into the culture medium. However, switching FGF2-expanded cultures from low to high oxygen tension during the last two days of differentiation significantly enhanced dopamine release and intracellular dopamine levels as compared to all other treatment groups. In addition, the short-term exposure to high oxygen enhanced in situ assessed TH enzyme activity, which may explain the elevated dopamine levels. Our findings demonstrate that modulation of oxygen tension is a recognizable factor for in vitro expansion and dopaminergic differentiation of rat embryonic midbrain precursor cells.

  15. Hyaluronic acid hydrogel stiffness and oxygen tension affect cancer cell fate and endothelial sprouting

    PubMed Central

    Shen, Yu-I; Abaci, Hasan E.; Krupsi, Yoni; Weng, Lien-Chun; Burdick, Jason A.; Gerecht, Sharon

    2014-01-01

    Three-dimensional (3D) tissue culture models may recapitulate aspects of the tumorigenic microenvironment in vivo, enabling the study of cancer progression in vitro. Both hypoxia and matrix stiffness are known to regulate tumor growth. Using a modular culture system employing an acrylated hyaluronic acid (AHA) hydrogel, three hydrogel matrices with distinctive degrees of viscoelasticity — soft (78±16 Pa), medium (309± 57 Pa), and stiff (596± 73 Pa) — were generated using the same concentration of adhesion ligands. Oxygen levels within the hydrogel in atmospheric (21 %), hypoxic (5 %), and severely hypoxic (1 %) conditions were assessed with a mathematical model. HT1080 fibrosarcoma cells, encapsulated within the AHA hydrogels in high densities, generated nonuniform oxygen distributions, while lower cell densities resulted in more uniform oxygen distributions in the atmospheric and hypoxic environments. When we examined how varying viscoelasticity in atmospheric and hypoxic environments affects cell cycles and the expression of BNIP3 and BNIP3L (autophagy and apoptosis genes), and GLUT-1 (a glucose transport gene), we observed that HT1080 cells in 3D hydrogel adapted better to hypoxic conditions than those in a Petri dish, with no obvious correlation to matrix viscoelasticity, by recovering rapidly from possible autophagy/apoptotic events and alternating metabolism mechanisms. Further, we examined how HT1080 cells cultured in varying viscoelasticity and oxygen tension conditions affected endothelial sprouting and invasion. We observed that increased matrix stiffness reduced endothelial sprouting and invasion in atmospheric conditions; however, we observed increased endothelial sprouting and invasion under hypoxia at all levels of matrix stiffness with the upregulation of vascular endothelial growth factor (VEGF) and angiopoeitin-1 (ANG-1). Overall, HT1080 cells encapsulated in the AHA hydrogels under hypoxic stress recovered better from apoptosis and

  16. Designer Hydrogels for Precision Control of Oxygen Tension and Mechanical Properties

    PubMed Central

    Blatchley, Michael; Park, Kyung Min; Gerecht, Sharon

    2015-01-01

    Oxygen levels and mechanical properties provide vital cues to regulate myriad cellular functions and stem cell fate decisions. Here, we present a hybrid hydrogel system in which we can control independently oxygen levels and mechanical properties. We designed, synthesized and analyzed a hybrid hydrogel system comprised of two polymer backbones, gelatin and dextran. Both polymers were crosslinked via a laccase-mediated, oxygen consuming reaction. By specifically controlling the concentration of phenolic molecules available to react in our hydrogel, we could precisely control the time in which the hydrogel remained hypoxic (TH). We were able to achieve a range of TH from the order of minutes to greater than 10 hours. Additionally, by incorporating a secondary crosslinker, transglutaminase, mechanical properties could be adjusted in a user-defined fashion, with dynamic elastic modulus (G′) values ranging from <20 Pa to >1 kPa. Importantly, oxygen levels and substrate mechanical properties could be individually tuned and decoupled in our hybrid hydrogels, while retaining the potential to study possible synergistic effects between the two parameters. By precisely controlling oxygen tension and mechanical properties, we expect that research utilizing the new hybrid hydrogels will enhance our understanding of the complex 3D cellular processes mediated by each parameter individually and may also hold clinical interest as acellular therapies. PMID:26693017

  17. Bordetella bronchiseptica responses to physiological reactive nitrogen and oxygen stresses

    PubMed Central

    Omsland, Anders; Miranda, Katrina M.; Friedman, Richard L.; Boitano, Scott

    2008-01-01

    Bordetella bronchiseptica can establish prolonged airway infection consistent with a highly developed ability to evade mammalian host immune responses. Upon initial interaction with the host upper respiratory tract mucosa, B. bronchiseptica are subjected to antimicrobial reactive nitrogen species (RNS) and reactive oxygen species (ROS), effector molecules of the innate immune system. However, the responses of B. bronchiseptica to redox species at physiologically relevant concentrations (nM-µM) have not been investigated. Using predicted physiological concentrations of nitric oxide (NO), superoxide (O2.−) and hydrogen peroxide (H2O2) on low numbers of colony forming units (CFU) of B. bronchiseptica, all redox active species displayed dose-dependent antimicrobial activity. Susceptibility to individual redox active species was significantly increased upon introduction of a second species at sub-antimicrobial concentrations. An increased bacteriostatic activity of NO was observed relative to H2O2. The understanding of Bordetella responses to physiologically relevant levels of exogenous RNS and ROS will aid in defining the role of endogenous production of these molecules in host innate immunity against Bordetella and other respiratory pathogens. PMID:18462394

  18. Physiologically Low Oxygen Enhances Biomolecule Production and Stemness of Mesenchymal Stem Cell Spheroids.

    PubMed

    Shearier, Emily; Xing, Qi; Qian, Zichen; Zhao, Feng

    2016-04-01

    Multicellular human mesenchymal stem cell (hMSC) spheroids have been demonstrated to be valuable in a variety of applications, including cartilage regeneration, wound healing, and neoangiogenesis. Physiological relevant low oxygen culture can significantly improve in vitro hMSC expansion by preventing cell differentiation. We hypothesize that hypoxia-cultured hMSC spheroids can better maintain the regenerative properties of hMSCs. In this study, hMSC spheroids were fabricated using hanging drop method and cultured under 2% O2 and 20% O2 for up to 96 h. Spheroid diameter and viability were examined, as well as extracellular matrix (ECM) components and growth factor levels between the two oxygen tensions at different time points. Stemness was measured among the spheroid culture conditions and compared to two-dimensional cell cultures. Spheroid viability and structural integrity were studied using different needle gauges to ensure no damage would occur when implemented in vivo. Spheroid attachment and integration within a tissue substitute were also demonstrated. The results showed that a three-dimensional hMSC spheroid cultured at low oxygen conditions can enhance the production of ECM proteins and growth factors, while maintaining the spheroids' stemness and ability to be injected, attached, and potentially be integrated within a tissue. PMID:26830500

  19. Effect of body position and oxygen tension on foramen ovale recruitment.

    PubMed

    Moses, Kayla L; Beshish, Arij G; Heinowski, Nicole; Baker, Kim R; Pegelow, David F; Eldridge, Marlowe W; Bates, Melissa L

    2015-01-01

    While there is an increased prevalence of stroke at altitude in individuals who are considered to be low risk for thrombotic events, it is uncertain how venous thrombi reach the brain. The patent foramen ovale (PFO) is a recruitable intracardiac shunt between the right and left atrium. We aimed to determine whether body position and oxygen tension affect blood flow through the PFO in healthy adults. We hypothesized that hypoxia and body positions that promote right atrial filling would independently recruit the PFO. Subjects with a PFO (n = 11) performed 11 trials, combining four different fractions of inhaled oxygen (FiO₂) (1.0, 0.21, 0.15, and 0.10) and three positions (upright, supine, and 45° head down), with the exception of FiO₂ = 0.10, while 45° head down. After 5 min in each position, breathing the prescribed oxygen tension, saline bubbles were injected into an antecubital vein and a four-chamber echocardiogram was obtained to evaluate PFO recruitment. We observed a high incidence of PFO recruitment in all conditions, with increased recruitment in response to severe hypoxia and some contribution of body position at moderate levels of hypoxia. We suspect that increased pulmonary vascular pressure, secondary to hypoxia-induced pulmonary vasoconstriction, increased right atrial pressure enough to recruit the PFO. Additionally, we hypothesize that the minor increase in breathing resistance that was added by the mouthpiece, used during experimental trials, affected intrathoracic pressure and venous return sufficiently to recruit the PFO. PMID:25394826

  20. Metabolic consequences of agonistic behaviour: crab fights in declining oxygen tensions.

    PubMed

    Sneddon; Taylor; Huntingford

    1999-02-01

    The energetic consequences of fighting, which may depend on environmental conditions, can be an important factor shaping contest strategy and duration. Energy expenditure may be costly to fitness because it depletes reserves that could otherwise have been allocated to reproduction, and metabolites are produced that may constrain subsequent activities. We examined the variation in the metabolic consequences of fighting in relation to hypoxia. Contests were staged between pairs of size-matched male shore crabs Carcinus maenas L., under a range of water oxygen tensions (between 10 and 100% oxygen saturation) which crabs experience in their natural habitat. Fighting under normoxic and hypoxic conditions resulted in significantly elevated concentrations of haemolymph metabolites (L-lactate and glucose) compared with crabs at rest. However, these concentrations were much lower than in crabs that had been walking on a treadmill. Glycogen concentrations differed only under hypoxic conditions: glycogen stores were reduced in crabs after fighting and this reduction was similar to that after exercise on a treadmill. Contests were shorter when they were staged below a water P o2of 6.7 kPa ( approximately 30% normoxia). As water oxygen tensions were reduced, fighting crabs had greater concentrations of L-lactate and glucose in their blood and tissues whilst glycogen stores were reduced. Fights became shorter when crabs were exposed to severe hypoxia (P o2=2 kPa) for increasing lengths of time, and blood L-lactate concentrations increased. The results suggest that as fights progressed, crabs experienced an increasing metabolic debt, in the form of accumulation of L-lactate and a reduction in energy stores, which was amplified by hypoxic conditions. Copyright 1999 The Association for the Study of Animal Behaviour. PMID:10049475

  1. Nitric oxide inhibits succinate dehydrogenase-driven oxygen consumption in potato tuber mitochondria in an oxygen tension-independent manner.

    PubMed

    Simonin, Vagner; Galina, Antonio

    2013-01-01

    NO (nitric oxide) is described as an inhibitor of plant and mammalian respiratory chains owing to its high affinity for COX (cytochrome c oxidase), which hinders the reduction of oxygen to water. In the present study we show that in plant mitochondria NO may interfere with other respiratory complexes as well. We analysed oxygen consumption supported by complex I and/or complex II and/or external NADH dehydrogenase in Percoll-isolated potato tuber (Solanum tuberosum) mitochondria. When mitochondrial respiration was stimulated by succinate, adding the NO donors SNAP (S-nitroso-N-acetyl-DL-penicillamine) or DETA-NONOate caused a 70% reduction in oxygen consumption rate in state 3 (stimulated with 1 mM of ADP). This inhibition was followed by a significant increase in the Km value of SDH (succinate dehydrogenase) for succinate (Km of 0.77±0.19 to 34.3±5.9 mM, in the presence of NO). When mitochondrial respiration was stimulated by external NADH dehydrogenase or complex I, NO had no effect on respiration. NO itself and DETA-NONOate had similar effects to SNAP. No significant inhibition of respiration was observed in the absence of ADP. More importantly, SNAP inhibited PTM (potato tuber mitochondria) respiration independently of oxygen tensions, indicating a different kinetic mechanism from that observed in mammalian mitochondria. We also observed, in an FAD reduction assay, that SNAP blocked the intrinsic SDH electron flow in much the same way as TTFA (thenoyltrifluoroacetone), a non-competitive SDH inhibitor. We suggest that NO inhibits SDH in its ubiquinone site or its Fe-S centres. These data indicate that SDH has an alternative site of NO action in plant mitochondria. PMID:23039043

  2. Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity

    PubMed Central

    Beckhauser, Thiago Fernando; Francis-Oliveira, José; De Pasquale, Roberto

    2016-01-01

    In the mammalian central nervous system, reactive oxygen species (ROS) generation is counterbalanced by antioxidant defenses. When large amounts of ROS accumulate, antioxidant mechanisms become overwhelmed and oxidative cellular stress may occur. Therefore, ROS are typically characterized as toxic molecules, oxidizing membrane lipids, changing the conformation of proteins, damaging nucleic acids, and causing deficits in synaptic plasticity. High ROS concentrations are associated with a decline in cognitive functions, as observed in some neurodegenerative disorders and age-dependent decay of neuroplasticity. Nevertheless, controlled ROS production provides the optimal redox state for the activation of transductional pathways involved in synaptic changes. Since ROS may regulate neuronal activity and elicit negative effects at the same time, the distinction between beneficial and deleterious consequences is unclear. In this regard, this review assesses current research and describes the main sources of ROS in neurons, specifying their involvement in synaptic plasticity and distinguishing between physiological and pathological processes implicated. PMID:27625575

  3. Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity.

    PubMed

    Beckhauser, Thiago Fernando; Francis-Oliveira, José; De Pasquale, Roberto

    2016-01-01

    In the mammalian central nervous system, reactive oxygen species (ROS) generation is counterbalanced by antioxidant defenses. When large amounts of ROS accumulate, antioxidant mechanisms become overwhelmed and oxidative cellular stress may occur. Therefore, ROS are typically characterized as toxic molecules, oxidizing membrane lipids, changing the conformation of proteins, damaging nucleic acids, and causing deficits in synaptic plasticity. High ROS concentrations are associated with a decline in cognitive functions, as observed in some neurodegenerative disorders and age-dependent decay of neuroplasticity. Nevertheless, controlled ROS production provides the optimal redox state for the activation of transductional pathways involved in synaptic changes. Since ROS may regulate neuronal activity and elicit negative effects at the same time, the distinction between beneficial and deleterious consequences is unclear. In this regard, this review assesses current research and describes the main sources of ROS in neurons, specifying their involvement in synaptic plasticity and distinguishing between physiological and pathological processes implicated. PMID:27625575

  4. Influence of Low Oxygen Tensions and Sorption to Sediment Black Carbon on Biodegradation of Pyrene ▿

    PubMed Central

    Ortega-Calvo, José-Julio; Gschwend, Philip M.

    2010-01-01

    Sorption to sediment black carbon (BC) may limit the aerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) in resuspension events and intact sediment beds. We examined this hypothesis experimentally under conditions that were realistic in terms of oxygen concentrations and BC content. A new method, based on synchronous fluorescence observations of 14C-pyrene, was developed for continuously measuring the uptake of dissolved pyrene by Mycobacterium gilvum VM552, a representative degrader of PAHs. The effect of oxygen and pyrene concentrations on pyrene uptake followed Michaelis-Menten kinetics, resulting in a dissolved oxygen half-saturation constant (Kom) of 14.1 μM and a dissolved pyrene half-saturation constant (Kpm) of 6 nM. The fluorescence of 14C-pyrene in air-saturated suspensions of sediments and induced cells followed time courses that reflected simultaneous desorption and biodegradation of pyrene, ultimately causing a quasi-steady-state concentration of dissolved pyrene balancing desorptive inputs and biodegradation removals. The increasing concentrations of 14CO2 in these suspensions, as determined with liquid scintillation, evidenced the strong impact of sorption to BC-rich sediments on the biodegradation rate. Using the best-fit parameter values, we integrated oxygen and sorption effects and showed that oxygen tensions far below saturation levels in water are sufficient to enable significant decreases in the steady-state concentrations of aqueous-phase pyrene. These findings may be relevant for bioaccumulation scenarios that consider the effect of sediment resuspension events on exposure to water column and sediment pore water, as well as the direct uptake of PAHs from sediments. PMID:20472733

  5. Antioxidant functionality in hepatocytes using the enhanced collagen extracellular matrix under different oxygen tensions.

    PubMed

    Lee, Sang-Ho; Coger, Robin N; Clemens, Mark G

    2006-10-01

    Improvement of O(2) supply in bioartificial liver devices remains a critical issue in maintaining hepatocyte viability and functions. Therefore, the current study investigates whether enhanced oxygen (O(2)) transport through collagen extracellular matrix (ECM) can produce a more stable antioxidant defense in different O(2) tensions during prolonged incubation times. Total glutathione concentration of cultured hepatocytes in enhanced ECM was significantly higher than in normal ECM under the lowest O(2) tension phase (2.60mm of thickness from O(2) source), and was also significantly increased in 0.52 mm transport distance of hypoxia as compared to normoxic conditions. Catalase and glutathione reductase activities for hepatocytes within enhanced ECM were also significantly preserved relative to their values for the normal collagen ECM. Specifically, the enhanced ECM produced higher activities at a further transport distance (1.56 mm) from the O(2) source at the 24 h time-point, and remained higher up to the 96 h incubation time. In contrast, the glutathione peroxidase activities in both collagen ECM systems were similar. Hepatocyte viability in the enhanced ECM system was also consistently greater than that for normal ECM. These results suggest that the O(2) enhanced collagen ECM preserves the antioxidant defense system as compared to normal collagen ECM, ostensibly via increased micropathways for O(2) transport to the hepatocytes. PMID:17518651

  6. Optimizing the calculation of DM,CO and VC via the single breath single oxygen tension DLCO/NO method.

    PubMed

    Coffman, Kirsten E; Taylor, Bryan J; Carlson, Alex R; Wentz, Robert J; Johnson, Bruce D

    2016-01-15

    Alveolar-capillary membrane conductance (D(M,CO)) and pulmonary-capillary blood volume (V(C)) are calculated via lung diffusing capacity for carbon monoxide (DL(CO)) and nitric oxide (DL(NO)) using the single breath, single oxygen tension (single-FiO2) method. However, two calculation parameters, the reaction rate of carbon monoxide with blood (θ(CO)) and the D(M,NO)/D(M,CO) ratio (α-ratio), are controversial. This study systematically determined optimal θ(CO) and α-ratio values to be used in the single-FiO2 method that yielded the most similar D(M,CO) and V(C) values compared to the 'gold-standard' multiple-FiO2 method. Eleven healthy subjects performed single breath DL(CO)/DL(NO) maneuvers at rest and during exercise. D(M,CO) and V(C) were calculated via the single-FiO2 and multiple-FiO2 methods by implementing seven θ(CO) equations and a range of previously reported α-ratios. The RP θ(CO) equation (Reeves, R.B., Park, H.K., 1992. Respiration Physiology 88 1-21) and an α-ratio of 4.0-4.4 yielded DM,CO and VC values that were most similar between methods. The RP θ(CO) equation and an experimental α-ratio should be used in future studies. PMID:26521031

  7. Effect of increased oxygen tension on flicker-induced vasodilatation in the human retina

    PubMed Central

    Palkovits, Stefan; Told, Reinhard; Boltz, Agnes; Schmidl, Doreen; Popa Cherecheanu, Alina; Schmetterer, Leopold; Garhöfer, Gerhard

    2014-01-01

    In the retina, blood flow and neural activity are tightly coupled. Stimulation of the retina with flickering light is accompanied by an increase in blood flow. The current study seeks to investigate whether an increase in oxygen tension modulates flicker (FL)-induced vasodilatation in the human retina. A total of 52 healthy volunteers were included. Via a breathing mask, 100% oxygen (O2) was administered in one, a mixture of 8% carbon dioxide and 92% oxygen (C/O) in a second cohort. Retinal vessel diameters were measured with a Vessel Analyzer and FL responses were assessed before and during the breathing periods. At baseline, FL stimulation increased retinal vessel diameters by +3.7±2.3% in arteries and by +5.1±3.7% in veins. Breathing of C/O led to a decrease in arterial (−9.0±6.9%) and venous (−11.3±5.9%) vessel calibers. Flicker response was increased to 5.7±2.5% in arteries and to 8.6±4.1% in veins. Breathing of pure O2 induced a vasoconstriction of vessel diameters by −14.0±5.3% in arteries and −18.4±7.0% in veins and increased FL responses in arteries (+6.2±2.8%) and veins (+7.2±3.1%). Systemic hyperoxia increases FL-induced retinal vasodilatation in the retina. The mechanism by which oxygen modulates the hyperemic response to FL stimulation remains to be elucidated. PMID:25248833

  8. Contrasted Reactivity to Oxygen Tensions in Frankia sp. Strain CcI3 throughout Nitrogen Fixation and Assimilation

    PubMed Central

    Ghodhbane-Gtari, Faten; Hezbri, Karima; Ktari, Amir; Sbissi, Imed; Beauchemin, Nicholas; Gtari, Maher; Tisa, Louis S.

    2014-01-01

    Reconciling the irreconcilable is a primary struggle in aerobic nitrogen-fixing bacteria. Although nitrogenase is oxygen and reactive oxygen species-labile, oxygen tension is required to sustain respiration. In the nitrogen-fixing Frankia, various strategies have been developed through evolution to control the respiration and nitrogen-fixation balance. Here, we assessed the effect of different oxygen tensions on Frankia sp. strain CcI3 growth, vesicle production, and gene expression under different oxygen tensions. Both biomass and vesicle production were correlated with elevated oxygen levels under both nitrogen-replete and nitrogen-deficient conditions. The mRNA levels for the nitrogenase structural genes (nifHDK) were high under hypoxic and hyperoxic conditions compared to oxic conditions. The mRNA level for the hopanoid biosynthesis genes (sqhC and hpnC) was also elevated under hyperoxic conditions suggesting an increase in the vesicle envelope. Under nitrogen-deficient conditions, the hup2 mRNA levels increased with hyperoxic environment, while hup1 mRNA levels remained relatively constant. Taken together, these results indicate that Frankia protects nitrogenase by the use of multiple mechanisms including the vesicle-hopanoid barrier and increased respiratory protection. PMID:24987692

  9. Contrasted reactivity to oxygen tensions in Frankia sp. strain CcI3 throughout nitrogen fixation and assimilation.

    PubMed

    Ghodhbane-Gtari, Faten; Hezbri, Karima; Ktari, Amir; Sbissi, Imed; Beauchemin, Nicholas; Gtari, Maher; Tisa, Louis S

    2014-01-01

    Reconciling the irreconcilable is a primary struggle in aerobic nitrogen-fixing bacteria. Although nitrogenase is oxygen and reactive oxygen species-labile, oxygen tension is required to sustain respiration. In the nitrogen-fixing Frankia, various strategies have been developed through evolution to control the respiration and nitrogen-fixation balance. Here, we assessed the effect of different oxygen tensions on Frankia sp. strain CcI3 growth, vesicle production, and gene expression under different oxygen tensions. Both biomass and vesicle production were correlated with elevated oxygen levels under both nitrogen-replete and nitrogen-deficient conditions. The mRNA levels for the nitrogenase structural genes (nifHDK) were high under hypoxic and hyperoxic conditions compared to oxic conditions. The mRNA level for the hopanoid biosynthesis genes (sqhC and hpnC) was also elevated under hyperoxic conditions suggesting an increase in the vesicle envelope. Under nitrogen-deficient conditions, the hup2 mRNA levels increased with hyperoxic environment, while hup1 mRNA levels remained relatively constant. Taken together, these results indicate that Frankia protects nitrogenase by the use of multiple mechanisms including the vesicle-hopanoid barrier and increased respiratory protection. PMID:24987692

  10. BIOELECTRIC POTENTIALS IN HALICYSTIS : VII. THE EFFECTS OF LOW OXYGEN TENSION.

    PubMed

    Blinks, L R; Darsie, M L; Skow, R K

    1938-11-20

    The potential difference across the protoplasm of impaled cells of Halicystis is not affected by increase of oxygen tension in equilibrium with the sea water, nor with decrease down to about 1/10 its tension in the air (2 per cent O(2) in N(2)). When bubbling of 2 per cent O(2) is stopped, the P.D. drifts downward, to be restored on stirring the sea water, or rebubbling the gas. Bubbling 0.2 per cent O(2) causes the P.D. to drop to 20 mv. or less; 1.1 per cent O(2) to about 50 mv. Restoration of 2 per cent or higher O(2) causes recovery to 70 or 80 mv. often with a preliminary cusp which decreases the P.D. before it rises. Perfusion of aerated sea water through the vacuole is just as effective in restoring the P.D. as external aeration, indicating that the direction of the oxygen gradient is not significant. Low O(2) tension also inhibits the reversed, negative P.D. produced by adding NH(4)Cl to sea water, 0.2 per cent O(2) bringing this P.D. back to the same low positive values found without ammonia. Restoration of 2 per cent O(2) or air, restores this latent negativity. At slightly below the threshold for ammonia reversal, low O(2) may induce a temporary negativity when first bubbled, and a negative cusp may occur on aeration before positive P.D. is regained. This may be due to a decreased consumption of ammonia, or to intermediate pH changes. The locus of the P.D. alteration was tested by applying increased KCl concentrations to the cell exterior; the large cusps produced in aerated solutions become greatly decreased when the P.D. has fallen in 0.2 per cent O(2). This indicates that the originally high relative mobility or concentration of K(+) ion has approached that of Na(+) in the external protoplasmic surface under reduced O(2) tension. Results obtained with sulfate sea water indicate that Na(+) mobility approaches that of SO(4) (-) in 0.2 per cent O(2). P.D. measurements alone cannot tell whether this is due to an increase of the slower ion or a decrease of

  11. Herbivore tooth oxygen isotope compositions: Effects of diet and physiology

    NASA Astrophysics Data System (ADS)

    Kohn, Matthew J.; Schoeninger, Margaret J.; Valley, John W.

    1996-10-01

    The applicability of rapid and precise laser probe analysis of tooth enamel for δ18O has been verified, and the method has been applied to different modern herbivores in East Africa. Sampling and pretreatment procedures involve initial bleaching and grinding of enamel to <75 μm, and elimination of adsorbed water and organic compounds with BrF 5. Typical analytical reproducibilities for 0.5-2 mg samples are ±0.08‰ (± 1σ). Chemical and spectroscopic characterization of pretreated but unanalyzed samples show no alteration compared to fresh enamel. Solid reaction products are nearly pure CaF 2 with little evidence for residual O 2. Because laser probe fluorination extracts oxygen from all sites in the apatite structure (phosphate, structural carbonate, and hydroxyl), only unaltered tooth enamel (>95% apatite) can be analyzed reliably. Different East African herbivores exhibit previously unsuspected compositional differences. Average enamel δ18O values (V-SMOW) are approximately: 25‰ (goat), 27‰ (oryx), 28‰ (dikdik and zebra), 29‰ (topi), 30‰ (gerenuk), and 32‰ (gazelle). These compositions differ from generalized theoretical models, but are broadly consistent with expected isotope effects associated with differences in how much each animal (a) drinks, (b) eats C3 vs. C4 plants, and (c) pants vs. sweats. Consideration of diet, water turnover, and animal physiology will allow the most accurate interpretation of ancient teeth and targeting of environmentally-sensitive animals in paleoclimate studies.

  12. Influence of oxygen tension on myocardial performance. Evaluation by tissue Doppler imaging

    PubMed Central

    Frøbert, Ole; Moesgaard, Jacob; Toft, Egon; Poulsen, Steen Hvitfeldt; Søgaard, Peter

    2004-01-01

    Background Low O2 tension dilates coronary arteries and high O2 tension is a coronary vasoconstrictor but reports on O2-dependent effects on ventricular performance diverge. Yet oxygen supplementation remains first line treatment in cardiovascular disease. We hypothesized that hypoxia improves and hyperoxia worsens myocardial performance. Methods Seven male volunteers (mean age 38 ± 3 years) were examined with echocardiography at respiratory equilibrium during: 1) normoxia (≈21% O2, 79% N2), 2) while inhaling a hypoxic gas mixture (≈11% O2, 89% N2), and 3) while inhaling 100% O2. Tissue Doppler recordings were acquired in the apical 4-chamber, 2-chamber, and long-axis views. Strain rate and tissue tracking displacement analyses were carried out in each segment of the 16-segment left ventricular model and in the basal, middle and apical portions of the right ventricle. Results Heart rate increased with hypoxia (68 ± 4 bpm at normoxia vs. 79 ± 5 bpm, P < 0.001) and decreased with hyperoxia (59 ± 5 bpm, P < 0.001 vs. normoxia). Hypoxia increased strain rate in four left ventricular segments and global systolic contraction amplitude was increased (normoxia: 9.76 ± 0.41 vs hypoxia: 10.87 ± 0.42, P < 0.001). Tissue tracking displacement was reduced in the right ventricular segments and tricuspid regurgitation increased with hypoxia (7.5 ± 1.9 mmHg vs. 33.5 ± 1.8 mmHg, P < 0.001). The TEI index and E/E' did not change with hypoxia. Hyperoxia reduced strain rate in 10 left ventricular segments, global systolic contraction amplitude was decreased (8.83 ± 0.38, P < 0.001 vs. normoxia) while right ventricular function was unchanged. The spectral and tissue Doppler TEI indexes were significantly increased but E/E' did not change with hyperoxia. Conclusion Hypoxia improves and hyperoxia worsens systolic myocardial performance in healthy male volunteers. Tissue Doppler measures of diastolic function are unaffected by hypoxia/hyperoxia which support that the changes

  13. Home monitoring of transcutaneous oxygen tension in the early detection of hypoxaemia in infants and young children.

    PubMed Central

    Poets, C F; Samuels, M P; Noyes, J P; Jones, K A; Southall, D P

    1991-01-01

    Twenty three patients (age range 0.5-40 months) with recurrent cyanotic episodes underwent physiological recordings, including transcutaneous oxygen tension (TcPO2) from a monitor modified for use at home (Kontron 821S). Of 69 episodes in which the arterial oxygen saturation (SaO2, Nellcor N200) was less than or equal to 80% for greater than or equal to 20 seconds and/or central cyanosis was present, the TcPO2 monitor alarmed (less than or equal to 20 mmHg or 2.67 kPa) in every episode. The pulse oximeter identified hypoxaemia in 62 out of 69 episodes, failing in seven episodes due to signal loss from movement artefact. In only seven of 69 episodes was there an accompanying apnoeic pause (greater than or equal to 20 seconds), and heart rate fell to less than or equal to 80 beats/minute in only five of 28 episodes in which an electrocardiogram was recorded. In 32 episodes in which SaO2 fell to less than or equal to 60%, the TcPO2 monitor alarmed after a median time interval of 16 seconds (maximum time interval 30 seconds). The TcPO2 monitor was then used in an uncontrolled trial at home in 350 patients at increased risk of sudden death and/or hypoxaemia. Indications for monitoring included apparent life threatening events or cyanotic episodes (n = 163), prematurity and prematurity related disorders (n = 86), and sudden unexpected death in one or more siblings (n = 122). The TcPO2 monitor detected cyanotic episodes at home in 81 patients, 52 of whom received vigorous stimulation and/or mouth to mouth resuscitation. Twenty one of these 52 patients had further hypoxaemic episodes documented in hospital with pulse oximetry. In 30 patients, the TcPo2 monitor also identified the gradual development of hypoxaemia, as confirmed by pulse oximetry. Twenty of these needed additional inspired oxygen and six subsequently needed ventilatory support in hospital. This TcPo2 monitor is a reliable detector of both sudden and gradual onset hypoxaemia and is able to be used by parents

  14. A Novel Teflon-membrane Gas Tension Device for Denitrification-studies in Oxygen Minimum Zones

    NASA Astrophysics Data System (ADS)

    Reed, A. C.; McNeil, C. L.; D'Asaro, E. A.; Altabet, M. A.; Johnson, B.; Bourbonnais, A.

    2014-12-01

    Oxygen Minimum Zones (OMZs) are global hotspots for the biogeochemical transformation of biologically-available forms of nitrogen to unusable nitrogen-gas. We present a new Teflon-membrane based Gas Tension Device (GTD) for measuring the excess N2 signal generated by denitrification and anammox in OMZs, with a hydrostatic pressure-independent response and a depth range from 0 - 550 m, a significant advancement from previous GTD models. The GTD consists of a 4/1000" thick by 2" diameter Teflon-membrane with a water-side plenum connected to SeaBird 5T pump. Dissolved gases in the water equilibrate across the membrane with a low-dead-volume housing connected to a high-precision quart pressure sensor. Laboratory data characterizing the GTD will be presented. The e-folding (response) time ranges from 14 min at continuous (100%) pumping to 28 min at pulse (10%) pumping. We also demonstrate the pressure dependence of the partial pressures from Henry's Law in the laboratory for pure nitrogen, pure oxygen, and standard atmospheric ratios of gases. GTD's were field tested on two floats deployed in the Eastern Tropical North Pacific (ETNP) OMZ for 15 days that targeted a productive mesoscale surface eddy originating from the Mexican coast. We anticipated that high organic carbon export should stimulate denitrification within the OMZ below. The floats profiled between the surface and 400 m depth and concurrently measured T, S, PAR, O2 (SBE 43 and Optode), and nitrate (SUNA). The N2-profiles from the GTDs are validated against independently measured N2/Ar ratio data collected during the deployment.

  15. Measuring oxygen tension modulation, induced by a new pre-radiotherapy therapeutic, in a mammary window chamber mouse model

    NASA Astrophysics Data System (ADS)

    Schafer, Rachel; Gmitro, Arthur F.

    2015-03-01

    Tumor regions under hypoxic or low oxygen conditions respond less effectively to many treatment strategies, including radiation therapy. A novel investigational therapeutic, NVX-108 (NuvOx Pharma), has been developed to increase delivery of oxygen through the use of a nano-emulsion of dodecofluoropentane. By raising pO2 levels prior to delivering radiation, treatment efficacy may be improved. To aid in evaluating the novel drug, oxygen tension was quantitatively measured, spatially and temporally, to record the effect of administrating NVX-108 in an orthotopic mammary window chamber mouse model of breast cancer. The oxygen tension was measured through the use of an oxygen-sensitive coating, comprised of phosphorescent platinum porphyrin dye embedded in a polystyrene matrix. The coating, applied to the surface of the coverslip of the window chamber through spin coating, is placed in contact with the mammary fat pad to record the oxygenation status of the surface tissue layer. Prior to implantation of the window chamber, a tumor is grown in the SCID mouse model by injection of MCF-7 cells into the mammary fat pad. Two-dimensional spatial distributions of the pO2 levels were obtained through conversion of measured maps of phosphorescent lifetime. The resulting information on the spatial and temporal variation of the induced oxygen modulation could provide valuable insight into the optimal timing between administration of NVX-108 and radiation treatment to provide the most effective treatment outcome.

  16. Effect of Oxygen Tension and Medium Components on Monomer Distribution of Alginate.

    PubMed

    Kıvılcımdan Moral, Çiğdem; Doğan, Özdemir; Sanin, Faika Dilek

    2015-06-01

    Alginate is a natural biopolymer composed of mannuronic and guluronic acid monomers. It is produced by algae and some species of Azotobacter and Pseudomonas. This study aims to investigate the effect of dissolved oxygen tension (DOT) and growth medium substrate and calcium concentrations on the monomeric composition of alginate produced by Azotobacter vinelandii ATCC® 9046 in a fermenter. Results showed that alginate production increased with increasing DOT from 1 to 5 %. The highest alginate production was obtained as 4.51 g/L under 20 g/L of sucrose and 50 mg/L of calcium at 5 % DOT. At these conditions, alginate was rich in mannuronic acid (up to 61 %) and it was particularly high at low calcium concentration. On the other hand, at extreme conditions such as high DOT level (10 % DOT) and low sucrose concentration (10 g/L), guluronic acid was dominant (ranging between 65 and 100 %). PMID:25877399

  17. Herbivore tooth oxygen isotope compositions: Effects of diet and physiology

    SciTech Connect

    Kohn, M.J.; Valley, J.W.; Schoeninger, M.J.

    1996-10-01

    The applicability of rapid and precise laser probe analysis of tooth enamel for {delta}{sup 18}O has been verified, and the method has been applied to different modern herbivores in East Africa. Sampling and pretreatment procedures involve initial bleaching and grinding of enamel to <75 {mu}m, and elimination of adsorbed water and organic compounds with BrF{sub 5}. Typical analytical reproducibilities for 0.5-2 mg samples are {+-}0.08{per_thousand} ({+-} 1{sigma}). Chemical and spectroscopic characterization of pretreated but unanalyzed samples show no alteration compared to fresh enamel. Solid reaction products are nearly pure CaF{sub 2} with little evidence for residual O{sub 2}. Because laser probe fluorination extracts oxygen from all sites in the apatite structure (phosphate, structural carbonate, and hydroxyl), only unaltered tooth enamel ( >95% apatite) can be analyzed reliably. Different East African herbivores exhibit previously unsuspected compositional differences. Average enamel {delta}{sup 18}O values (V-SMOW) are approximately: 25{per_thousand} (goat). 27{per_thousand} (oryx), 28{per_thousand} (dikdik and zebra), 29{per_thousand} (topi), 30{per_thousand} (gerenuk), and 32{per_thousand} (gazelle). These compositions differ from generalized theoretical models, but are broadly consistent with expected isotope effects associated with differences in how much each animal (a) drinks, (b) eats C3 vs. C4 plants, and (c) pants vs. sweats. Consideration of diet, water turnover. and animal physiology will allow the most accurate interpretation of ancient teeth and targeting of environmentally-sensitive animals in paleoclimate studies. 66 refs., 2 figs., 2 tabs.

  18. Localized increase of tissue oxygen tension by magnetic targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Liong, Celine; Ortiz, Daniel; Ao-ieong, Eilleen; Navati, Mahantesh S.; Friedman, Joel M.; Cabrales, Pedro

    2014-07-01

    Hypoxia is the major hindrance to successful radiation therapy of tumors. Attempts to increase the oxygen (O2) tension (PO2) of tissue by delivering more O2 have been clinically disappointing, largely due to the way O2 is transported and released by the hemoglobin (Hb) within the red blood cells (RBCs). Systemic manipulation of O2 transport increases vascular resistance due to metabolic autoregulation of blood flow to prevent over oxygenation. This study investigates a new technology to increase O2 delivery to a target tissue by decreasing the Hb-O2 affinity of the blood circulating within the targeted tissue. As the Hb-O2 affinity decreases, the tissue PO2 to satisfy tissue O2 metabolic needs increases without increasing O2 delivery or extraction. Paramagnetic nanoparticles (PMNPs), synthetized using gadolinium oxide, were coated with the cell permeable Hb allosteric effector L35 (3,5-trichlorophenylureido-phenoxy-methylpropionic acid). L35 decreases Hb affinity for O2 and favors the release of O2. The L35-coated PMNPs (L35-PMNPs) were intravenously infused (10 mg kg-1) to hamsters instrumented with the dorsal window chamber model. A magnetic field of 3 mT was applied to localize the effects of the L35-PMNPs to the window chamber. Systemic O2 transport characteristics and microvascular tissue oxygenation were measured after administration of L35-PMNPs with and without magnetic field. The tissue PO2 in untreated control animals was 25.2 mmHg. L35-PMNPs without magnetic field decreased tissue PO2 to 23.4 mmHg, increased blood pressure, and reduced blood flow, largely due to systemic modification of Hb-O2 affinity. L35-PMNPs with magnetic field increased tissue PO2 to 27.9 mmHg, without systemic or microhemodynamic changes. These results indicate that localized modification of Hb-O2 affinity can increase PO2 of target tissue without affecting systemic O2 delivery or triggering O2 autoregulation mechanisms. This technology can be used to treat local hypoxia and to

  19. Localized Increase of Tissue Oxygen Tension by Magnetic Targeted Drug Delivery

    PubMed Central

    Liong, Celine; Ortiz, Daniel; Ao-ieong, Eilleen; Navati, Mahantesh S.; Friedman, Joel M.; Cabrales, Pedro

    2014-01-01

    Hypoxia is the major hindrance to successful radiation therapy of tumors. Attempts to increase the oxygen (O2) tension (PO2) of tissue by delivering more O2 have been clinically disappointing, largely due to the way O2 is transported and released by the hemoglobin (Hb) within the red blood cells (RBCs). Systemic manipulation of O2 transport increases vascular resistance due to metabolic autoregulation of blood flow to prevent over oxygenation. This study investigates a new technology to increase O2 delivery to a target tissue by decreasing the Hb-O2 affinity of the blood circulating within the targeted tissue. As the Hb-O2 affinity decreases, the tissue PO2 to satisfy tissue O2 metabolic needs increases, without increasing O2 delivery or extraction. Paramagnetic nanoparticles (PMNPs) synthetized using gadolinium oxide, were coated with the cell permeable Hb allosteric effector, L35 (3,5-trichlorophenylureido-phenoxy-methylpropionic acid). L35 decreases Hb affinity for O2 and favors the release of O2. The L35-coaded PMNPs (L35-PMNPs) were intravenously infused (10 mg/kg) to hamster instrumented with the dorsal window chamber model. Magnetic field of 3 mT was applied to localize the effects of the L35-PMNPs to the window chamber. Systemic O2 transport characteristics and microvascular tissue oxygenation were measured after L35-PMNPs administration with and without magnetic field. The tissue PO2 untreated control animals was 25.2 mmHg. L35-PMNP without magnetic field decreased tissue PO2 to 23.4 mmHg, increased blood pressure and reduced blood flow, largely due to systemic modification of Hb-O2 affinity. L35-PMNP with magnetic field increased tissue PO2 to 27.9 mmHg, without systemic or microhemodynamics changes. These results indicate that localized modification of Hb-O2 affinity can increase PO2 of target tissue, without affecting systemic O2 delivery or triggering O2 autoregulation mechanisms. This technology can be used to treat local hypoxia and to increase O2 in

  20. Environmental changes in oxygen tension reveal ROS-dependent neurogenesis and regeneration in the adult newt brain.

    PubMed

    Hameed, L Shahul; Berg, Daniel A; Belnoue, Laure; Jensen, Lasse D; Cao, Yihai; Simon, András

    2015-01-01

    Organisms need to adapt to the ecological constraints in their habitat. How specific processes reflect such adaptations are difficult to model experimentally. We tested whether environmental shifts in oxygen tension lead to events in the adult newt brain that share features with processes occurring during neuronal regeneration under normoxia. By experimental simulation of varying oxygen concentrations, we show that hypoxia followed by re-oxygenation lead to neuronal death and hallmarks of an injury response, including activation of neural stem cells ultimately leading to neurogenesis. Neural stem cells accumulate reactive oxygen species (ROS) during re-oxygenation and inhibition of ROS biosynthesis counteracts their proliferation as well as neurogenesis. Importantly, regeneration of dopamine neurons under normoxia also depends on ROS-production. These data demonstrate a role for ROS-production in neurogenesis in newts and suggest that this role may have been recruited to the capacity to replace lost neurons in the brain of an adult vertebrate. PMID:26485032

  1. Microvascular and interstitial oxygen tension in the renal cortex and medulla studied in a 4-h rat model of LPS-induced endotoxemia.

    PubMed

    Dyson, Alex; Bezemer, Rick; Legrand, Matthieu; Balestra, Gianmarco; Singer, Mervyn; Ince, Can

    2011-07-01

    The pathophysiology of sepsis-induced acute kidney injury remains poorly understood. As changes in renal perfusion and oxygenation have been shown, we aimed to study the short-term effects of endotoxemia on microvascular and interstitial oxygenation in the cortex and medulla, in conjunction with global and renal hemodynamics. In a 4-h rat model of endotoxemia, we simultaneously assessed renal artery blood flow and microvascular and interstitial oxygen tensions in the renal cortex and medulla using ultrasonic flowmetry, dual wavelength phosphorimetry, and tissue oxygen tension monitoring, respectively. Whereas medullary microvascular and interstitial oxygen tensions decreased promptly in line with macrovascular blood flow, changes in cortical oxygenation were only seen later on. During the entire experimental protocol, the gradient between microvascular PO₂ and tissue oxygen tension remained unchanged in both cortex and outer medulla. At study end, urine output was significantly decreased despite a maintained oxygen consumption rate. In this 4-h rat model of endotoxemia, total renal oxygen consumption and the gradient between microvascular PO₂ and tissue oxygen tension remained unaltered, despite falls in renal perfusion and oxygen delivery and urine output. Taken in conjunction with the decrease in urine output, our results could represent either a functional renal impairment or an adaptive response. PMID:21368713

  2. Nitrite produced by Mycobacterium tuberculosis in human macrophages in physiologic oxygen impacts bacterial ATP consumption and gene expression

    PubMed Central

    Cunningham-Bussel, Amy; Zhang, Tuo; Nathan, Carl F.

    2013-01-01

    In high enough concentrations, such as produced by inducible nitric oxide synthase (iNOS), reactive nitrogen species (RNS) can kill Mycobacterium tuberculosis (Mtb). Lesional macrophages in macaques and humans with tuberculosis express iNOS, and mice need iNOS to avoid succumbing rapidly to tuberculosis. However, Mtb’s own ability to produce RNS is rarely considered, perhaps because nitrate reduction to nitrite is only prominent in axenic Mtb cultures at oxygen tensions ≤1%. Here we found that cultures of Mtb-infected human macrophages cultured at physiologic oxygen tensions produced copious nitrite. Surprisingly, the nitrite arose from the Mtb, not the macrophages. Mtb responded to nitrite by ceasing growth; elevating levels of ATP through reduced consumption; and altering the expression of 120 genes associated with adaptation to acid, hypoxia, nitric oxide, oxidative stress, and iron deprivation. The transcriptomic effect of endogenous nitrite was distinct from that of nitric oxide. Thus, whether or not Mtb is hypoxic, the host expresses iNOS, or hypoxia impairs the action of iNOS, Mtb in vivo is likely to encounter RNS by producing nitrite. Endogenous nitrite may slow Mtb’s growth and prepare it to resist host stresses while the pathogen waits for immunopathology to promote its transmission. PMID:24145454

  3. The role of reduced oxygen in the developmental physiology of growth and metamorphosis initiation in Drosophila

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rearing oxygen level is known to affect final body size in a variety of insects, but the physiological mechanisms by which oxygen affects size are incompletely understood. In Manduca and Drosophila, the larval size at which metamorphosis is initiated largely determines adult size, and metamorphosis ...

  4. Culture of bovine embryos in polyester mesh sections: the effect of pore size and oxygen tension on in vitro development.

    PubMed

    Somfai, T; Inaba, Y; Aikawa, Y; Ohtake, M; Kobayashi, S; Akai, T; Hattori, H; Konishi, K; Imai, K

    2010-12-01

    The purpose of this study was to assess the feasibility of polyester mesh culture for the in vitro production of bovine embryos, as polyester mesh is an alternative way for tracking individual embryos throughout culture using time-lapse cinematography (TLC). Bovine embryos were isolated during in vitro culture using sections of three different polyethylene terephthalate (PET) mesh products. In vitro matured and fertilized bovine oocytes were cultured in the 217 × 217, 230 × 230 or 238 × 238-μm openings of PET mesh sections or in simple micro-drops (control) for 7 days under either 20% or 5% O(2) tensions. No difference in embryo developmental rates was found between the culture groups in terms of cleavage, blastocyst formation and blastocyst expansion irrespective of O(2) tension. In contrast, under 20% O(2) tension, blastocysts that developed in PET mesh with 217 × 217-μm opening had significantly higher numbers of total and trophectoderm (TE) cells than control embryos; however, the numbers and proportions of inner cell mass (ICM) cells did not differ. Under 5% O(2) tension, no difference was found among the culture groups in the numbers of total, ICM and TE cells in embryos. All three PET mesh products investigated in this study were proven to be effective to prevent embryo movement. The results demonstrate that bovine embryos can be cultured in PET mesh sections without negative side-effects and suggest that embryo distance determined by the mesh affects embryo quality at atmospheric oxygen tension. Polyethylene terephthalate mesh with 217 × 217-μm openings was found to be the most suitable for further application in TLC. PMID:19845884

  5. The Metabolomic Profile of Spent Culture Media from Day-3 Human Embryos Cultured under Low Oxygen Tension

    PubMed Central

    de los Santos, Maria José; Gámiz, Pilar; de los Santos, José María; Romero, Josep Lluís; Prados, Nicolás; Alonso, Cristina; Remohí, José; Dominguez, Francisco

    2015-01-01

    Despite efforts made to improve the in vitro embryo culture conditions used during assisted reproduction procedures, human embryos must adapt to different in vitro oxygen concentrations and the new metabolic milieu provided by the diverse culture media used for such protocols. It has been shown that the embryo culture environment can affect not only cellular metabolism, but also gene expression in different species of mammalian embryos. Therefore we wanted to compare the metabolic footprint left by human cleavage-stage embryos under two types of oxygen atmospheric culture conditions (6% and 20% O2). The spent culture media from 39 transferred and implanted embryos from a total of 22 patients undergoing egg donation treatment was analyzed; 23 embryos came from 13 patients in the 6% oxygen concentration group, and 16 embryos from 9 patients were used in the 20% oxygen concentration group. The multivariate statistics we used in our analysis showed that human cleavage-stage embryos grown under both types of oxygen concentration left a similar metabolic fingerprint. We failed to observe any change in the net depletion or release of relevant analytes, such as glucose and especially fatty acids, by human cleavage-stage embryos under either type of culture condition. Therefore it seems that low oxygen tension during embryo culture does not alter the global metabolism of human cleavage-stage embryos. PMID:26562014

  6. An in vitro characterization of a silicone tonometer system for synchronous measurement of tissue oxygen- and carbon dioxide tension.

    PubMed

    Larsen, P N; Pedersen, I; Moesgaard, F

    1993-07-01

    A new tonometry system for continuous and synchronous measurement of tissue oxygen- and carbon dioxide tension is described and characterized in vitro. The tonometer system consists of an O2 and CO2 permeable silicone tube continuously flushed with isotonic saline by an injection pump. When the saline passes through the tonometer tube it equilibrates with O2 and CO2 outside the tube. The oxygen- and carbon dioxide tension of the flushing solution after passage of the tonometer tube are measured by a transcutaneous combined oxygen/carbon dioxide electrode (E5280 Radiometer A/S, Copenhagen, Denmark), connected to the tonometer tube via an airtight polycarbonate chamber. In order to characterize the tonometer system in vitro the tonometer tube was submerged in a test chamber containing isotonic saline, 33 degrees C to 41 degrees C, with varying partial pressures of O2 and CO2. For various lengths of the tonometer and flushing rates through the tonometer the partial pressures of oxygen and carbon dioxide in the flushing solution (pO2eq and pCO2eq), after passage through the tonometer were recorded and compared to the known partial pressures of oxygen and carbon dioxide in the test chamber solution (pO2 test and pCO2test). PO2eq and pCO2eq approached pO2test and pCO2test, when the length of the tonometer was increased, and the flushing rate through the tonometer was decreased. The relative differences (D) between pO2eq and pCO2eq at the one hand and pO2test and pCO2test at the other hand were calculated, and equilibration curves were constructed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8378734

  7. Butler-Sugimoto monomolecular bilayer interface model: the effect of oxygen on the surface tension of a liquid metal and its wetting of a ceramic.

    PubMed

    Yen, Pei-Shan; Datta, Ravindra

    2014-07-15

    The influence of oxygen on liquid-gas surface tension of molten metals has been well-investigated experimentally and modeled theoretically via the Szyszkowski equation, derivable from the Butler molecular monolayer interface model. However, there is no corresponding model describing the experimentally observed profound effect of oxygen partial pressure on solid-liquid surface tension as well as on contact angle of molten metals on ceramic substrates. Here, we utilize the Butler-Sugimoto thermodynamic approach based on a monomolecular bilayer interface model to investigate the effect of oxygen partial pressure on liquid-gas as well as solid-liquid surface tension of molten Cu/Al2O3 and molten Ag/Al2O3 systems. It is shown that both liquid-gas and solid-liquid surface tension are a strong function of oxygen activity in the melt, which, in turn, depends on gas-phase oxygen partial pressure, in conformity with experiments. The change in solid-liquid surface tension and wetting is also greatly affected by the change in liquid-gas surface tension. This improved understanding is of practical significance in many applications. PMID:24863799

  8. Environmental changes in oxygen tension reveal ROS-dependent neurogenesis and regeneration in the adult newt brain

    PubMed Central

    Hameed, L Shahul; Berg, Daniel A; Belnoue, Laure; Jensen, Lasse D; Cao, Yihai; Simon, András

    2015-01-01

    Organisms need to adapt to the ecological constraints in their habitat. How specific processes reflect such adaptations are difficult to model experimentally. We tested whether environmental shifts in oxygen tension lead to events in the adult newt brain that share features with processes occurring during neuronal regeneration under normoxia. By experimental simulation of varying oxygen concentrations, we show that hypoxia followed by re-oxygenation lead to neuronal death and hallmarks of an injury response, including activation of neural stem cells ultimately leading to neurogenesis. Neural stem cells accumulate reactive oxygen species (ROS) during re-oxygenation and inhibition of ROS biosynthesis counteracts their proliferation as well as neurogenesis. Importantly, regeneration of dopamine neurons under normoxia also depends on ROS-production. These data demonstrate a role for ROS-production in neurogenesis in newts and suggest that this role may have been recruited to the capacity to replace lost neurons in the brain of an adult vertebrate. DOI: http://dx.doi.org/10.7554/eLife.08422.001 PMID:26485032

  9. A physiological model for extracorporeal oxygenation controller design.

    PubMed

    Walter, Marian; Weyer, Soren; Stollenwerk, Andre; Kopp, Rudger; Arens, Jutta; Leonhardt, Steffen

    2010-01-01

    Long term extracorporeal membrane oxygenation can be used in cases of severe lung failure to maintain sufficient gas exchange without the need to apply higher ventilation pressures which damage the lung additionally. The use of cardiopulmonary bypass devices is well established inside the operating room. The usage of such devices as long-term support in the intensive care unit is still experimental and limited to few cases. This is because neither machine architecture nor staff situation provides for the long term application scenario. In the joint research Project "smart ECLA" we target an advanced ECMO device featuring an automation system capable of maintaining gas concentrations automatically. One key requirement for systematic controller design is the availability of a process model, which will be presented in this article. PMID:21096765

  10. Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation

    PubMed Central

    Yaseen, Mohammad A; Srinivasan, Vivek J; Sakadžić, Sava; Radhakrishnan, Harsha; Gorczynska, Iwona; Wu, Weicheng; Fujimoto, James G; Boas, David A

    2011-01-01

    Measuring cerebral oxygen delivery and metabolism microscopically is important for interpreting macroscopic functional magnetic resonance imaging (fMRI) data and identifying pathological changes associated with stroke, Alzheimer's disease, and brain injury. Here, we present simultaneous, microscopic measurements of cerebral blood flow (CBF) and oxygen partial pressure (pO2) in cortical microvessels of anesthetized rats under baseline conditions and during somatosensory stimulation. Using a custom-built imaging system, we measured CBF with Fourier-domain optical coherence tomography (OCT), and vascular pO2 with confocal phosphorescence lifetime microscopy. Cerebral blood flow and pO2 measurements displayed heterogeneity over distances irresolvable with fMRI and positron emission tomography. Baseline measurements indicate O2 extraction from pial arterioles and homogeneity of ascending venule pO2 despite large variation in microvessel flows. Oxygen extraction is linearly related to flow in ascending venules, suggesting that flow in ascending venules closely matches oxygen demand of the drained territory. Oxygen partial pressure and relative CBF transients during somatosensory stimulation further indicate arteriolar O2 extraction and suggest that arterioles contribute to the fMRI blood oxygen level dependent response. Understanding O2 supply on a microscopic level will yield better insight into brain function and the underlying mechanisms of various neuropathologies. PMID:21179069

  11. Diffusion capacity and CT measures of emphysema and airway wall thickness – relation to arterial oxygen tension in COPD patients

    PubMed Central

    Saure, Eirunn Waatevik; Bakke, Per Sigvald; Eagan, Tomas Mikal Lind; Aanerud, Marianne; Jensen, Robert Leroy; Grydeland, Thomas Blix; Johannessen, Ane; Nilsen, Roy Miodini; Thorsen, Einar; Hardie, Jon Andrew

    2016-01-01

    Background Decreased diffusing capacity of the lung for carbon monoxide (DLCO) is associated with emphysema. DLCO is also related to decreased arterial oxygen tension (PaO2), but there are limited data on associations between PaO2 and computed tomography (CT) derived measures of emphysema and airway wall thickness. Objective To examine whether CT measures of emphysema and airway wall thickness are associated with level of arterial oxygen tension beyond that provided by measurements of diffusion capacity and spirometry. Methods The study sample consisted of 271 smoking or ex-smoking COPD patients from the Bergen COPD Cohort Study examined in 2007–2008. Emphysema was assessed as percent of low-attenuation areas<−950 Hounsfield units (%LAA), and airway wall thickness as standardised measure at an internal perimeter of 10 mm (AWT-Pi10). Multiple linear regression models were fitted with PaO2 as the outcome variable, and %LAA, AWT-Pi10, DLCO and carbon monoxide transfer coefficient (KCO) as main explanatory variables. The models were adjusted for sex, age, smoking status, and haemoglobin concentration, as well as forced expiratory volume in one second (FEV1). Results Sixty two per cent of the subjects were men, mean (SD) age was 64 (7) years, mean (SD) FEV1 in percent predicted was 50 (15)%, and mean PaO2 (SD) was 9.3 (1.1) kPa. The adjusted regression coefficient (CI) for PaO2 was –0.32 (−0.04–(−0.019)) per 10% increase in %LAA (p<0.01). When diffusion capacity and FEV1 were added to the model, respectively, the association lost its statistical significance. No relationship between airway wall thickness and PaO2 was found. Conclusion CT assessment of airway wall thickness is not associated with arterial oxygen tension in COPD patients. Emphysema score measured by chest CT, is related to decreased PaO2, but cannot replace measurements of diffusion capacity in the clinical evaluation of hypoxaemia. PMID:27178139

  12. Community-level physiological profiling performed with an oxygen-sensitive fluorophore in a microtiter plate

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.; Roberts, Michael S.; Levine, Lanfang H.; Mills, Aaron L.

    2003-01-01

    Community-level physiological profiling based upon fluorometric detection of oxygen consumption was performed on hydroponic rhizosphere and salt marsh litter samples by using substrate levels as low as 50 ppm with incubation times between 5 and 24 h. The rate and extent of response were increased in samples acclimated to specific substrates and were reduced by limiting nitrogen availability in the wells.

  13. POLYCYCLIC AROMATIC HYDROCARBON BIODEGRADATION AS A FUNCTION OF OXYGEN TENSION IN CONTAMINATED SOIL

    EPA Science Inventory

    Laboratory tests were conducted to determine the effect of soil gas oxygen concentration on the degradation and mineralization of spiked 14C-pyrene and nonspiked 16 priority pollutant polycyclic aromatic hydrocarbons (PAH) present in the soil. The soil used for the evaluation was...

  14. Diabetes-Induced Decrease in Renal Oxygen Tension: Effects of an Altered Metabolism

    NASA Astrophysics Data System (ADS)

    Palm, Fredrik; Carlsson, Per-Ola; Fasching, Angelica; Hansell, Peter; Liss, Per

    During conditions with experimental diabetes mellitus, it is evident that several alterations in renal oxygen metabolism occur, including increased mitochondrial respiration and increased lactate accumulation in the renal tissue. Consequently, these alterations will contribute to decrease the interstitial pO2, preferentially in the renal medulla of animals with sustained long-term hyperglycemia.

  15. [Changes in the oxygen tension level in different brain structures of rats in the waking-sleep cycle].

    PubMed

    Sarkisova, K Iu; Kolomeĭtseva, I A

    1990-01-01

    Changes of oxygen tension level (pO2) in the visual cortex, dorsal hippocampus, lateral hypothalamus and central grey substance were studied during wake-sleep cycle in rats. The dependence was established of pO2 level changes on the character of behavioural reactions and on the accompanying hippocampal EEG activity: during orienting-investigatory and active defensive behaviour and also during paradoxical sleep, accompanied by hippocampal theta rhythm, pO2 level increased; during passive-defensive behaviour "freezing" reaction accompanied by desynchronization of the hippocampal rhythmic, the level of pO2 decreased. The obtained data confirm Routtenberg hypothesis about two relatively independent systems of ascending activation with different types of hippocampal EEG activity and supplement it with a thesis that the activity of these systems is accompanied by different shifts of brain oxidative metabolism. PMID:2169159

  16. [The importance of transcutaneous oxygen tension monitoring in diabetic patient with complications].

    PubMed

    Baláž, David; Komorníková, Andrea; Sabaka, Peter; Gašpar, Ľudovít; Dukát, Andrej

    2015-02-01

    Monitoring of transcutaneous perfusion pressure of tissue oxygen (tcpO₂) is a simple, non-invasive method performed in diagnostic process of chronic diabetic complications. Primary, tcpO₂is used as an indicator of microcirculatory function. Properly placed and fixed Clark electrode is able to detect with high accuracy partial oxygen pressure on the skin surface by polarographic system of dissolved oxygen from capillary bed through tissues to upper layers of the skin. The microcirculation function is influenced by macrocirculation, thus, tcpO₂is a suitable parameter in diagnosis of peripheral arterial obliterative disease or other vascular pathologies. Combination of tcpO₂monitoring and skin perfusion pressure by laser Doppler technique gives us information not only about nutritive capillary flow, but also about vessels which precede capillary bed. The article discusses current guidelines for measurement of tcpO₂and evaluation of the results. Also reviews the results of recent studies which are interested in the use of tcpO₂in diabetic patients. PMID:25813252

  17. Development of sensors for monitoring oxygen and free radicals in plant physiology

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Prachee

    Oxygen plays a critical role in the physiology of photosynthetic organisms, including bioenergetics, metabolism, development, and stress response. Oxygen levels affect photosynthesis, respiration, and alternative oxidase pathways. Likewise, the metabolic rate of spatially distinct plant cells (and therefore oxygen flux) is known to be affected by biotic stress (e.g., herbivory) and environmental stress (e.g., salt/nutrient stress). During aerobic metabolism, cells produce reactive oxygen species (ROS) as a by product. Plants also produce ROS during adaptation to stress (e.g., abscisic acid (ABA) mediated stress responses). If stress conditions are prolonged, ROS levels surpass the capacity of detoxifying mechanisms within the cell, resulting in oxidative damage. While stress response pathways such as ABA-mediated mechanisms have been well characterized (e.g., water stress, inhibited shoot growth, synthesis of storage proteins in seeds), the connection between ROS production, oxygen metabolism and stress response remains unknown. In part, this is because details of oxygen transport at the interface of cell(s) and the surrounding microenvironment remains nebulous. The overall goal of this research was to develop oxygen and Free radical sensors for studying stress signaling in plants. Recent developments in nanomaterials and data acquisition systems were integrated to develop real-time, non-invasive oxygen and Free radical sensors. The availability of these sensors for plant physiologists is an exciting opportunity to probe the functional realm of cells and tissues in ways that were not previously possible.

  18. Physiological characterization of xylose metabolism in Aspergillus niger under oxygen-limited conditions.

    PubMed

    Meijer, S; Panagiotou, G; Olsson, L; Nielsen, J

    2007-10-01

    The physiology of Aspergillus niger was studied under different aeration conditions. Five different aeration rates were investigated in batch cultivations of A. niger grown on xylose. Biomass, intra- and extra-cellular metabolites profiles were determined and ten different enzyme activities in the central carbon metabolism were assessed. The focus was on organic acid production with a special interest in succinate production. The fermentations revealed that oxygen limitation significantly changes the physiology of the micro-organism. Changes in extra cellular metabolite profiles were observed, that is, there was a drastic increase in polyol production (erythritol, xylitol, glycerol, arabitol, and mannitol) and to a lesser extent in the production of reduced acids (malate and succinate). The intracellular metabolite profiles indicated changes in fluxes, since several primary metabolites, like the intermediates of the TCA cycle accumulated during oxygen limitation (on average three fold increase). Also the enzyme activities showed changes between the exponential growth phase and the oxygen limitation phase. In general, the oxygen availability has a significant impact on the physiology of this fungus causing dramatic alterations in the central carbon metabolism that should be taken into account in the design of A. niger as a succinate cell factory. PMID:17335061

  19. Conjugatable water-soluble Pt(II) and Pd(II) porphyrin complexes: novel nano- and molecular probes for optical oxygen tension measurement in tissue engineering.

    PubMed

    Giuntini, F; Chauhan, V M; Aylott, J W; Rosser, G A; Athanasiadis, A; Beeby, A; MacRobert, A J; Brown, R A; Boyle, R W

    2014-07-01

    Measurement of oxygen tension in compressed collagen sheets was performed using matrix-embedded optical oxygen sensors based on platinum(II) and palladium(II) porphyrins supported on polyacrylamide nanoparticles. Bespoke, fully water-soluble, mono-functionalised Pt(II) and Pd(II) porphyrin complexes designed for conjugation under mild conditions were obtained using microwave-assisted metallation. The new sensors display a linear response (1/τ vs. O2) to varying oxygen tension over a biologically relevant range (7.0 × 10(-4) to 2.7 × 10(-1) mM) in aqueous solutions; a behaviour that is maintained following conjugation to polyacrylamide nanoparticles, and following embedding of the nanosensors in compressed collagen sheets, paving the way to innovative approaches for real-time resolution of oxygen gradients throughout 3D matrices useful for tissue regeneration. PMID:24818569

  20. Low oxygen tension induces Krüppel-Like Factor 6 expression in trophoblast cells.

    PubMed

    Racca, A C; Ridano, M E; Bandeira, C L; Bevilacqua, E; Avvad Portari, E; Genti-Raimondi, S; Graham, C H; Panzetta-Dutari, G M

    2016-09-01

    The transcription factor Krüppel-Like Factor 6 (KLF6) has important roles in cell differentiation, angiogenesis, apoptosis, and proliferation. Furthermore, there is evidence that KLF6 is required for proper placental development. While oxygen is a critical mediator of trophoblast differentiation and function, the involvement of oxygen in the regulation of KLF6 expression remains unexplored. In the present study we examined the expression of KLF6 in placental tissue from uncomplicated and preeclamptic pregnancies, the latter often characterized by an inadequately perfused placenta. We also determined the effect of hypoxia and the involvement of Hypoxia-Inducible Factor 1α (HIF-1α) on the expression of KLF6 in cultured trophoblast cells and placental tissues. Results revealed that villous, interstitial and endovascular extravillous cytotrophoblasts from placentas from normal and preeclamptic pregnancies express KLF6. In addition, KLF6 immunoreactivity was higher in the placental bed of preeclamptic pregnancies than in those of uncomplicated pregnancies. We demonstrated that hypoxia induced an early and transient increase in KLF6 protein levels in HTR8/SVneo extravillous cytotrophoblast cells and in placental explants. Reoxygenation returned KLF6 protein to basal levels. Moreover, hypoxia-induced up-regulation of KLF6 expression was dependent on HIF-1α as revealed by siRNA knockdown in HTR8/SVneo cells. These results indicate that KLF6 may mediate some of the effects of hypoxia in placental development. The regulation of KLF6 protein levels by oxygen has significant implications for understanding its putative role in diseases affected by tissue hypoxia. PMID:27577710

  1. Synoviocyte Derived-Extracellular Matrix Enhances Human Articular Chondrocyte Proliferation and Maintains Re-Differentiation Capacity at Both Low and Atmospheric Oxygen Tensions

    PubMed Central

    Kean, Thomas J.; Dennis, James E.

    2015-01-01

    Background Current tissue engineering methods are insufficient for total joint resurfacing, and chondrocytes undergo de-differentiation when expanded on tissue culture plastic. De-differentiated chondrocytes show poor re-differentiation in culture, giving reduced glycosaminoglycan (GAG) and collagen matrix accumulation. To address this, porcine synoviocyte-derived extracellular matrix and low (5%) oxygen tension were assessed for their ability to enhance human articular chondrocyte expansion and maintain re-differentiation potential. Methods Porcine synoviocyte matrices were devitalized using 3 non-detergent methods. These devitalized synoviocyte matrices were compared against tissue culture plastic for their ability to support human chondrocyte expansion. Expansion was further compared at both low (5%), and atmospheric (20%) oxygen tension on all surfaces. Expanded cells then underwent chondrogenic re-differentiation in aggregate culture at both low and atmospheric oxygen tension. Aggregates were assessed for their GAG and collagen content both biochemically and histologically. Results Human chondrocytes expanded twice as fast on devitalized synoviocyte matrix vs. tissue culture plastic, and cells retained their re-differentiation capacity for twice the number of population doublings. There was no significant difference in growth rate between low and atmospheric oxygen tension. There was significantly less collagen type I, collagen type II, aggrecan and more MMP13 expression in cells expanded on synoviocyte matrix vs. tissue culture plastic. There were also significant effects due to oxygen tension on gene expression, wherein there was greater collagen type I, collagen type II, SOX9 and less MMP13 expression on tissue culture plastic compared to synoviocyte matrix. There was a significant increase in GAG, but not collagen, accumulation in chondrocyte aggregates re-differentiated at low oxygen tension over that achieved in atmospheric oxygen conditions. Conclusions

  2. Exercise capacity in the Bidirectional Glenn Physiology: coupling cardiac index, ventricular function and oxygen extraction ratio

    PubMed Central

    Vallecilla, Carolina; Khiabani, Reza H.; Trusty, Phillip; Sandoval, Néstor; Fogel, Mark; Briceño, Juan Carlos; Yoganathan, Ajit P.

    2015-01-01

    In Bi-directional Glenn (BDG) physiology, the superior systemic circulation and pulmonary circulation are in series. Consequently, only blood from the superior vena cava is oxygenated in the lungs. Oxygenated blood then travels to the ventricle where it is mixed with blood returning from the lower body. Therefore, incremental changes in oxygen extraction ratio (OER) could compromise exercise tolerance. In this study, the effect of exercise on the hemodynamic and ventricular performance of BDG physiology was investigated using clinical patient data as inputs for a lumped parameter model coupled with oxygenation equations. Changes in cardiac index, Qp/Qs, systemic pressure, oxygen extraction ratio and ventricular/vascular coupling ratio were calculated for three different exercise levels. The patient cohort (n=29) was sub-grouped by age and pulmonary vascular resistance (PVR) at rest. It was observed that the changes in exercise tolerance are significant in both comparisons, but most significant when sub-grouped by PVR at rest. Results showed that patients over 2 years old with high PVR are above or close to the upper tolerable limit of OER (0.32) at baseline. Patients with high PVR at rest had very poor exercise tolerance while patients with low PVR at rest could tolerate low exercise conditions. In general, ventricular function of SV patients is too poor to increase CI and fulfill exercise requirements. The presented mathematical model provides a framework to estimate the hemodynamic performance of BDG patients at different exercise levels according to patient specific data. PMID:25913242

  3. Matrix forming characteristics of inner and outer human meniscus cells on 3D collagen scaffolds under normal and low oxygen tensions

    PubMed Central

    2013-01-01

    Background Limited intrinsic healing potential of the meniscus and a strong correlation between meniscal injury and osteoarthritis have prompted investigation of surgical repair options, including the implantation of functional bioengineered constructs. Cell-based constructs appear promising, however the generation of meniscal constructs is complicated by the presence of diverse cell populations within this heterogeneous tissue and gaps in the information concerning their response to manipulation of oxygen tension during cell culture. Methods Four human lateral menisci were harvested from patients undergoing total knee replacement. Inner and outer meniscal fibrochondrocytes (MFCs) were expanded to passage 3 in growth medium supplemented with basic fibroblast growth factor (FGF-2), then embedded in porous collagen type I scaffolds and chondrogenically stimulated with transforming growth factor β3 (TGF-β3) under 21% (normal or normoxic) or 3% (hypoxic) oxygen tension for 21 days. Following scaffold culture, constructs were analyzed biochemically for glycosaminoglycan production, histologically for deposition of extracellular matrix (ECM), as well as at the molecular level for expression of characteristic mRNA transcripts. Results Constructs cultured under normal oxygen tension expressed higher levels of collagen type II (p = 0.05), aggrecan (p < 0.05) and cartilage oligomeric matrix protein, (COMP) (p < 0.05) compared to hypoxic expanded and cultured constructs. Accumulation of ECM rich in collagen type II and sulfated proteoglycan was evident in normoxic cultured scaffolds compared to those under low oxygen tension. There was no significant difference in expression of these genes between scaffolds seeded with MFCs isolated from inner or outer regions of the tissue following 21 days chondrogenic stimulation (p > 0.05). Conclusions Cells isolated from inner and outer regions of the human meniscus demonstrated equivalent differentiation potential

  4. Reactive oxygen species: physiological roles in the regulation of vascular cells.

    PubMed

    Vara, D; Pula, G

    2014-01-01

    Reactive oxygen species (ROS) are now appreciated to play several important roles in a number of biological processes and regulate cell physiology and function. ROS are a heterogeneous chemical class that includes radicals, such as superoxide ion (O2(•-)), hydroxyl radical (OH(•)) and nitric oxide (NO(•)), and non-radicals, such as hydrogen peroxide (H2O2), singlet oxygen ((1)O2), hypochlorous acid (HOCl), and peroxynitrite (NO3 (-)). In the cardiovascular system, besides playing a critical role in the development and progression of vasculopathies and other important pathologies such as congestive heart failure, atherosclerosis and thrombosis, ROS also regulate physiological processes. Evidence from a wealth of cardiovascular research studies suggests that ROS act as second messengers and play an essential role in vascular homeostasis by influencing discrete signal transduction pathways in various systems and cell types. They are produced throughout the vascular system, regulate differentiation and contractility of vascular smooth muscle cells, control vascular endothelial cell proliferation and migration, mediate platelet activation and haemostasis, and significantly contribute to the immune response. Our understanding of ROS chemistry and cell biology has evolved to the point of realizing that different ROS have distinct and important roles in cardiovascular physiology. This review will outline sources, functions and molecular mechanisms of action of different ROS in the cardiovascular system and will describe their emerging role in healthy cardiovascular physiology and homeostasis. PMID:24894168

  5. Preflight studies on tolerance of pocket mice to oxygen and heat. I - Physiological studies

    NASA Technical Reports Server (NTRS)

    Leon, H. A.; Suri, K.; Mctigue, M.; Smith, J.; Cooper, W.; Miquel, J.; Ashley, W. W.; Behnke, A. R., Jr.; Saunders, J. F.

    1975-01-01

    Tests were carried out on pocket mice to ascertain their tolerance to elevated oxygen pressures alone and to a combination of hyperoxia and heat in excess of that expected during the flight of the mice on Apollo XVII. The mice withstood oxygen partial pressures up to 12 psi at normal room temperature (24 C, 75 F) over a period of 7 days. A few mice previously exposed to increased PO2 died in the course of exposure to an oxygen pressure of 10 psi or 12 psi (517 mm or 620 mm Hg) for 13 d in ambient heat of 32 C (90 F). Supplemental vitamin E and physiological saline loading given prior to exposure had no apparent protective effect. The overall conclusion was that the pocket mice which were to go on Apollo XVII could readily survive the ambient atmosphere to which they would be exposed.

  6. Sanguinate's effect on pial arterioles in healthy rats and cerebral oxygen tension after controlled cortical impact.

    PubMed

    Mullah, Saad H; Abutarboush, Rania; Moon-Massat, Paula F; Saha, Biswajit K; Haque, Ashraful; Walker, Peter B; Auker, Charles R; Arnaud, Francoise G; McCarron, Richard M; Scultetus, Anke H

    2016-09-01

    Sanguinate, a polyethylene glycol-conjugated carboxyhemoglobin, was investigated for cerebral vasoactivity in healthy male Sprague-Dawley rats (Study 1) and for its ability to increase brain tissue oxygen pressure (PbtO2) after controlled cortical impact (CCI) - traumatic brain injury (TBI) (Study 2). In both studies ketamine-acepromazine anesthetized rats were ventilated with 40% O2. In Study 1, a cranial window was used to measure the diameters of medium - (50-100μm) and small-sized (<50μm) pial arterioles before and after four serial infusions of Sanguinate (8mL/kg/h, cumulative 16mL/kg IV), volume-matched Hextend, or normal saline. In Study 2, PbtO2 was measured using a phosphorescence quenching method before TBI, 15min after TBI (T15) and then every 10min thereafter for 155min. At T15, rats received either 8mL/kg IV Sanguinate (40mL/kg/h) or no treatment (saline, 4mL/kg/h). Results showed: 1) in healthy rats, percentage changes in pial arteriole diameter were the same among the groups, 2) in TBI rats, PbtO2 decreased from 36.5±3.9mmHg to 19.8±3.0mmHg at T15 in both groups after TBI and did not recover in either group for the rest of the study, and 3) MAP increased 16±4mmHg and 36±5mmHg after Sanguinate in healthy and TBI rats, respectively, while MAP was unchanged in control groups. In conclusion, Sanguinate did not cause vasoconstriction in the cerebral pial arterioles of healthy rats but it also did not acutely increase PbtO2 when administered after TBI. Sanguinate was associated with an increase in MAP in both studies. PMID:27287870

  7. A Variability Study of Regional Alveolar Oxygen Tension Measurement in Humans Using Hyperpolarized 3He MRI

    PubMed Central

    Hamedani, Hooman; Kadlecek, Stephen J.; Ishii, Masaru; Emami, Kiarash; Kuzma, Nicholas N.; Xin, Yi; Rossman, Milton; Rizi, Rahim R.

    2013-01-01

    To presents the first systematic reproducibility measurement of alveolar partial pressure of oxygen (pAO2) in the human lung, regional variability is defined in terms of an intraclass correlation coefficient (ICC) between co-localized, same-subject measurements separated by one-week or couple of minutes (short-term). In addition, the repeatability of the average lung pAO2 is compared to that of the standard pulmonary function tests (PFT). PFT and pAO2 imaging were performed on eight subjects: 4 nonsmokers (1 man, 3 women; 56 ± 1.7 years), 4 smokers (1 woman, 3 men; 52 ± 7.5 years) in three visits during two weeks. Regional variability was assessed based on a mixed-effects model and an ICC. The coefficient of variation (CV) of mean and standard deviation of pAO2 in three days was also compared to CV of PFT results. Short-term regional reproducibility based on ICC was 0.71 and 0.63 for nonsmokers and smokers; respectively. The one-week variability was lower (ICC=0.59 and 0.47; respectively). The CV of whole-lung average pAO2 was significantly higher than that of FVC(forced vital capacity; P=0.02) but not from DLCO (diffusing capacity). The smoker group shows more variability in pAO2 measurements both between experiments and in each individual pAO2 maps. pAO2 had a similar repeatability to DLCO. PMID:23382040

  8. The acute effects of nicotine, tobacco smoke and carbon monoxide on myocardial oxygen tension in the anaesthetized cat

    PubMed Central

    Rink, Richard D.

    1978-01-01

    1 The acute effects of nicotine, tobacco smoke, and carbon monoxide on myocardial oxygen tension (MPo2) were estimated amperometrically in 33 anaesthetized open-chest cats with a glass-insulated 25 μm platinum cathode within a 22-gauge needle implanted in the left ventricular wall. 2 MPo2 was 1.6-60 mmHg (mean 23.5 mmHg) when arterial Po2 was >80 mmHg. Sequential intravenous infusions of nicotine (2-3 μg/kg every 45 s) or intracheal puffs (3-5 ml) of tobacco smoke commonly produced transitory increases (25-35 mmHg) of arterial pressure and 4-6 mmHg increments of MPo2. Intratracheal puffs (5 ml) of 5% carbon monoxide sufficient to increase carboxyhaemoglobin from 0.8 to 1.5% to 4-7% had no effect on arterial Po2 or blood pressure but typically decreased MPo2 by approximately 1-4 mmHg. Augmentation of MPo2 often succeeded carbon monoxide administration. 3 Arterial hypoxia (arterial Po2 < 60 mmHg) reduced mean MPo2 to 14.4 mmHg but anoxic levels were not observed. Pressor responses to nicotine and tobacco smoke were accompanied by small increases (usually 1-3 mmHg) of MPo2. Puffs of 5% carbon monoxide had less effect than during normoxia. Locations of low MPo2 (<10 mmHg) were unaffected as carboxyhaemoglobin was raised to 7-11% during hypoxaemia. 4 It is concluded that nicotine and tobacco smoke cause augmentation of myocardial oxygen supply, even during moderate hypoxaemia. By contrast, smoking dosages of carbon monoxide have the potential of producing a small reduction of MPo2 during normoxia, but the effect is negligible during moderate hypoxaemia. PMID:656704

  9. The Oxygen Dissociation Curve of Hemoglobin: Bridging the Gap between Biochemistry and Physiology

    NASA Astrophysics Data System (ADS)

    Gómez-Cambronero, Julian

    2001-06-01

    Cooperativity is a very difficult concept for biochemistry students in the health sciences. An analogy between breaking salt bonds and tearing apart a block of four stamps has been proposed for hemoglobin (Hb). However, since tearing is equated to binding of molecules, two intrinsically contradictory terms, students still have difficulty. I apply the pictorial analogy to the releasing of oxygen instead of the binding, thus bridging biochemistry (cooperativity) with physiology (oxygen dissociation). I embark on an imaginary journey from the lungs (saturation at 100 mmHg) to the oxygen-starved tissues. The stamps represent fully loaded Hb. By making two cuts the first "oxygen" is released. For the second, only one cut is needed. With one final cut, the last two stamps are separated. This means that less energy is needed to unload oxygen: just small drops in partial pressure do the trick in the right place (tissues) but not in the wrong one (lungs). In doing this, I use the three main models of learning: association, discovery and mentoring. Additionally, by guiding students to discover the truth by themselves, I can use hemoglobin as a wonderful excuse to apply the "Socratic method" in the classroom.

  10. Comparative In Vivo Effects of Hemoglobin-Based Oxygen Carriers (HBOC) with Varying Prooxidant and Physiological Reactivity

    PubMed Central

    Roman, Ioana; Sevastre, Bogdan; Hathazi, Denisa; Scurtu, Florina; Damian, Grigore; Silaghi-Dumitrescu, Radu

    2016-01-01

    A series of hemoglobin-based oxygen carrier candidates (HBOC), previously noted for their differences in prooxidative and physiological reactivity, were compared in terms of the negative effects displayed upon injection in Wistar rats. At the concentrations tested, antioxidant strategies based on albumin as well as based on rubrerythrin appear to offer observable physiological advantages. PMID:27097326

  11. Comparative In Vivo Effects of Hemoglobin-Based Oxygen Carriers (HBOC) with Varying Prooxidant and Physiological Reactivity.

    PubMed

    Toma, Vlad Al; Farcaș, Anca D; Roman, Ioana; Sevastre, Bogdan; Hathazi, Denisa; Scurtu, Florina; Damian, Grigore; Silaghi-Dumitrescu, Radu

    2016-01-01

    A series of hemoglobin-based oxygen carrier candidates (HBOC), previously noted for their differences in prooxidative and physiological reactivity, were compared in terms of the negative effects displayed upon injection in Wistar rats. At the concentrations tested, antioxidant strategies based on albumin as well as based on rubrerythrin appear to offer observable physiological advantages. PMID:27097326

  12. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration

    SciTech Connect

    Sheard, Michael A.; Ghent, Matthew V.; Cabral, Daniel J.; Lee, Joanne C.; Khankaldyyan, Vazgen; Ji, Lingyun; Wu, Samuel Q.; Kang, Min H.; and others

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent.

  13. Assessing the effects of a short-term green tea intervention in skin microvascular function and oxygen tension in older and younger adults.

    PubMed

    Wasilewski, Rebecca; Ubara, Emmanuel O; Klonizakis, Markos

    2016-09-01

    Green tea consumption has been associated with a reduction in cardiovascular disease risk factors. However, there is little evidence examining its potential differing effect between younger and older populations, whilst little is known on its effect on the circulatory system when oxygen demand is higher. Therefore the aim of this study was to evaluate the short-term effects of green tea consumption on microvascular functioning in both an older and younger population. Fifteen young [24 (4.0)] and fifteen older [61 (4.0)] participants, consumed two cups of green tea daily for 14days. We used Laser Doppler Flowmetry (LDF) to assess cutaneous microvascular function and Transcutaneous Oxygen monitoring (TcPO2) to assess skin oxygen tension. Systolic and diastolic blood pressure were also assessed on both visits. We observed significant improvements in axon-mediated microvascular vasodilation for the younger group [1.6 (0.59) vs 2.05 (0.72), p<0.05] and the older group [1.25 (0.58) vs 1.65 (0.5) p<0.05]. Improvements in skin oxygen tension were also noted for both groups in both noted TcPO2 measures (i.e. 1.25 (0.58) vs 1.65 (0.5) (p<0.05), for ΔTcPO2max for the older group, between visits) respectively. Improvements were also observed for systolic blood pressure in both the younger [120 (10) vs 112 (10), p<0.05] and older group [129 (12) v 124 (11), p<0.001]. In conclusion, we observed statistically-significant improvements in microvascular function and skin oxygen tension. Our results suggest that green tea may prove beneficial as a dietary element in lifestyle interventions aiming to lower cardiovascular disease risk, in both older and younger populations. PMID:27165772

  14. Physiological responses of the ghost shrimp Neotrypaea uncinata (Milne Edwards 1837) (Decapoda: Thalassinidea) to oxygen availability and recovery after severe environmental hypoxia.

    PubMed

    Leiva, Félix P; Urbina, Mauricio A; Cumillaf, Juan Pablo; Gebauer, Paulina; Paschke, Kurt

    2015-11-01

    Hypoxia is a common and widespread phenomenon in aquatic ecosystems, imposing a significant challenge for the animals that inhabit such waters. In different habitats, however, the characteristics of these hypoxic events may differ, therefore imposing different challenges. We investigated the tolerance of adult ghost shrimp Neotrypaea uncinata (an intertidal mudflat dweller) to different partial pressures of oxygen (pO2), severe hypoxia (2 kPa) and recovery from hypoxia after different exposure times, mimicking the natural tidal cycle (6 h and 12 h). We calculated critical oxygen tension and categorize the adult ghost shrimps as oxyregulators (R value=75.27%). All physiological measurements (metabolic rate, oxyhemocyanin, hemolymph protein and lactate concentrations) were affected by exposure to low partial pressures of oxygen, but most of them recovered (with exception of metabolic rate) control values (21 kPa) after 6h under normoxic conditions. Low metabolic rate, high release of hemolymphatic proteins and anaerobic metabolism are suggested as response mechanisms to overcome hypoxic events during low tide. PMID:26212148

  15. Box-modeling of bone and tooth phosphate oxygen isotope compositions as a function of environmental and physiological parameters.

    PubMed

    Langlois, C; Simon, L; Lécuyer, Ch

    2003-12-01

    A time-dependent box model is developed to calculate oxygen isotope compositions of bone phosphate as a function of environmental and physiological parameters. Input and output oxygen fluxes related to body water and bone reservoirs are scaled to the body mass. The oxygen fluxes are evaluated by stoichiometric scaling to the calcium accretion and resorption rates, assuming a pure hydroxylapatite composition for the bone and tooth mineral. The model shows how the diet composition, body mass, ambient relative humidity and temperature may control the oxygen isotope composition of bone phosphate. The model also computes how bones and teeth record short-term variations in relative humidity, air temperature and delta18O of drinking water, depending on body mass. The documented diversity of oxygen isotope fractionation equations for vertebrates is accounted for by our model when for each specimen the physiological and diet parameters are adjusted in the living range of environmental conditions. PMID:14711171

  16. Physiology

    ERIC Educational Resources Information Center

    Kay, Ian

    2008-01-01

    Underlying recent developments in health care and new treatments for disease are advances in basic medical sciences. This edition of "Webwatch" focuses on sites dealing with basic medical sciences, with particular attention given to physiology. There is a vast amount of information on the web related to physiology. The sites that are included here…

  17. Oxygen uptake in Pacific salmon Oncorhynchus spp.: when ecology and physiology meet.

    PubMed

    Eliason, E J; Farrell, A P

    2016-01-01

    Over the past several decades, a substantial amount of research has examined how cardiorespiratory physiology supports the diverse activities performed throughout the life cycle of Pacific salmon, genus Oncorhynchus. Pioneering experiments emphasized the importance of aerobic scope in setting the functional thermal tolerance for activity in fishes. Variation in routine metabolism can have important performance and fitness consequences as it is related to dominance, aggression, boldness, territoriality, growth rate, postprandial oxygen consumption, life history, season, time of day, availability of shelter and social interactions. Wild fishes must perform many activities simultaneously (e.g. swim, obtain prey, avoid predators, compete, digest and reproduce) and oxygen delivery is allocated among competing organ systems according to the capacity of the heart to deliver blood. For example, salmonids that are simultaneously swimming and digesting trade-off maximum swimming performance in order to support the oxygen demands of digestion. As adult Pacific salmonids cease feeding in the ocean prior to their home migration, endogenous energy reserves and cardiac capacity are primarily partitioned among the demands for swimming upriver, sexual maturation and spawning behaviours. Furthermore, the upriver spawning migration is under strong selection pressure, given that Pacific salmonids are semelparous (single opportunity to spawn). Consequently, these fishes optimize energy expenditures in a number of ways: strong homing, precise migration timing, choosing forward-assist current paths and exploiting the boundary layer to avoid the strong currents in the middle of the river, using energetically efficient swimming speeds, and recovering rapidly from anaerobic swimming. Upon arrival at the spawning ground, remaining energy can be strategically allocated to the various spawning behaviours. Strong fidelity to natal streams has resulted in reproductively isolated populations that

  18. Genomic and physiological analysis of oxygen sensitivity and hypoxia tolerance in PC12 cells.

    PubMed

    Seta, Karen; Kim, Hie-Won; Ferguson, Tsuneo; Kim, Richard; Pathrose, Peterson; Yuan, Yong; Lu, Gang; Spicer, Zachary; Millhorn, David E

    2002-10-01

    The mechanisms by which cells adapt and respond to changes in oxygen tension remain largely unknown. Our laboratory has used the PC12 cell line to study both biophysical and molecular responses to hypoxia. This chapter summarizes our findings. We found that membrane depolarization that occurred when PC12 cells were exposed to reduced O(2) was mediated by a specific potassium channel, the Kv1.2 channel. The membrane depolarization leads to increased Ca(2+) conductance through a voltage-sensitive channel, which in turn mediates the release of the neurotransmitters dopamine, adenosine, glutamate, and GABA. In addition, increased intracellular Ca(2+) and other signaling systems regulate hypoxia-induced gene expression, which contributes to the adaptive response to reduced O(2+). We identified several critical signaling pathways that regulate a complex gene expression profile in PC12 cells during hypoxia. These include the cAMP-protein kinase A, Ca(2+)-calmodulin, p42/44 mitogen-activated protein kinase (MAPK), stress-activated protein kinase (SAPK; p38 kinase), and the phosphatidylinositol 3-kinase-AKT as regulators of gene expression. Several of these pathways regulate hypoxia-specific transcription factors that are members of the hypoxia-inducible factor (HIF) family. Recently, we have successfully used subtractive cDNA libraries and microarray analysis to identify the genomic profile that mediates the cellular response to hypoxia. PMID:12438156

  19. Monitoring preantral follicle survival and growth in bovine ovarian biopsies by repeated use of neutral red and cultured in vitro under low and high oxygen tension.

    PubMed

    Jorssen, Ellen P A; Langbeen, An; Fransen, Erik; Martinez, Emilia L; Leroy, Jo L M R; Bols, Peter E J

    2014-08-01

    The development and optimization of preantral follicle culture methods are crucial in fertility preservation strategies. As preantral follicle dynamics are usually assessed by various invasive techniques, the need for alternative noninvasive evaluation tools exists. Recently, neutral red (NR) was put forward to visualize preantral follicles in situ within ovarian cortical fragments. However, intense light exposure of NR-stained tissues can lead to cell death because of increased reactive oxygen species production, which is also associated with elevated oxygen tension. Therefore, we hypothesize that after repeated NR staining, follicle viability and dynamics can be altered by changes in oxygen tension. In the present study, we aim (1) to determine whether NR can be used to repeatedly assess follicular growth, activation, and viability and (2) to assess the effect of a low (5% O2) or high (20% O2) oxygen tension on the viability, growth, and stage transition of preantral follicles cultured in vitro by means of repeated NR staining. Cortical slices (n = 132; six replicates) from bovine ovaries were incubated for 3 hours at 37 °C in a Leibovitz medium with 50 μg/mL NR. NR-stained follicles were evaluated in situ for follicle diameter and morphology. Next, cortical fragments were individually cultured in McCoy's 5A medium for 6 days at 37 °C, 5% CO2, and 5% or 20% O2. On Days 4 and 6, the fragments were restained by adding NR to the McCoy's medium and follicles were reassessed. In both low and high oxygen tension treatment groups, approximately 70% of the initial follicles survived a 6-day in vitro culture, but no significant difference in follicle survival on Day 4 or 6 could be observed compared with Day 0 (P > 0.05). A significant decrease in the number of primordial and increase in primary and secondary follicles was observed within 4 days of culture (P < 0.001). In addition, a significant increase of the mean follicle diameter in NR-stained follicles was

  20. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration.

    PubMed

    Sheard, Michael A; Ghent, Matthew V; Cabral, Daniel J; Lee, Joanne C; Khankaldyyan, Vazgen; Ji, Lingyun; Wu, Samuel Q; Kang, Min H; Sposto, Richard; Asgharzadeh, Shahab; Reynolds, C Patrick

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. PMID:25845499

  1. Nitroxyl (HNO) reacts with molecular oxygen and forms peroxynitrite at physiological pH. Biological Implications.

    PubMed

    Smulik, Renata; Dębski, Dawid; Zielonka, Jacek; Michałowski, Bartosz; Adamus, Jan; Marcinek, Andrzej; Kalyanaraman, Balaraman; Sikora, Adam

    2014-12-19

    Nitroxyl (HNO), the protonated one-electron reduction product of NO, remains an enigmatic reactive nitrogen species. Its chemical reactivity and biological activity are still not completely understood. HNO donors show biological effects different from NO donors. Although HNO reactivity with molecular oxygen is described in the literature, the product of this reaction has not yet been unambiguously identified. Here we report that the decomposition of HNO donors under aerobic conditions in aqueous solutions at physiological pH leads to the formation of peroxynitrite (ONOO(-)) as a major intermediate. We have specifically detected and quantified ONOO(-) with the aid of boronate probes, e.g. coumarin-7-boronic acid or 4-boronobenzyl derivative of fluorescein methyl ester. In addition to the major phenolic products, peroxynitrite-specific minor products of oxidation of boronate probes were detected under these conditions. Using the competition kinetics method and a set of HNO scavengers, the value of the second order rate constant of the HNO reaction with oxygen (k = 1.8 × 10(4) m(-1) s(-1)) was determined. The rate constant (k = 2 × 10(4) m(-1) s(-1)) was also determined using kinetic simulations. The kinetic parameters of the reactions of HNO with selected thiols, including cysteine, dithiothreitol, N-acetylcysteine, captopril, bovine and human serum albumins, and hydrogen sulfide, are reported. Biological and cardiovascular implications of nitroxyl reactions are discussed. PMID:25378389

  2. Nitroxyl (HNO) Reacts with Molecular Oxygen and Forms Peroxynitrite at Physiological pH

    PubMed Central

    Smulik, Renata; Dębski, Dawid; Zielonka, Jacek; Michałowski, Bartosz; Adamus, Jan; Marcinek, Andrzej; Kalyanaraman, Balaraman; Sikora, Adam

    2014-01-01

    Nitroxyl (HNO), the protonated one-electron reduction product of NO, remains an enigmatic reactive nitrogen species. Its chemical reactivity and biological activity are still not completely understood. HNO donors show biological effects different from NO donors. Although HNO reactivity with molecular oxygen is described in the literature, the product of this reaction has not yet been unambiguously identified. Here we report that the decomposition of HNO donors under aerobic conditions in aqueous solutions at physiological pH leads to the formation of peroxynitrite (ONOO−) as a major intermediate. We have specifically detected and quantified ONOO− with the aid of boronate probes, e.g. coumarin-7-boronic acid or 4-boronobenzyl derivative of fluorescein methyl ester. In addition to the major phenolic products, peroxynitrite-specific minor products of oxidation of boronate probes were detected under these conditions. Using the competition kinetics method and a set of HNO scavengers, the value of the second order rate constant of the HNO reaction with oxygen (k = 1.8 × 104 m−1 s−1) was determined. The rate constant (k = 2 × 104 m−1 s−1) was also determined using kinetic simulations. The kinetic parameters of the reactions of HNO with selected thiols, including cysteine, dithiothreitol, N-acetylcysteine, captopril, bovine and human serum albumins, and hydrogen sulfide, are reported. Biological and cardiovascular implications of nitroxyl reactions are discussed. PMID:25378389

  3. Oxygen and carbon isotope disequilibria in Galapagos corals: isotopic thermometry and calcification physiology

    SciTech Connect

    McConnaughey, T.A.

    1986-01-01

    Biological carbonate skeletons are built largely from carbon dioxide, which reacts to form carbonate ion within thin extracellular solutions. The light isotopes of carbon and oxygen react faster than the heavy isotopes, depleting the resulting carbonate ions in /sup 13/C and /sup 18/O. Calcium carbonate precipitation occurs sufficiently fast that the skeleton remains out of isotopic equilibrium with surrounding fluids. This explanation for isotopic disequilibrium in biological carbonates was partially simulated in vitro, producing results similar to those seen in non-photosynthetic corals. Photosynthetic corals have higher /sup 13/C//sup 12/C ratios due to the preferential removal of /sup 12/C (as organic carbon) from the reservoir of dissolved inorganic carbon. The oxygen isotopic variations in corals can be used to reconstruct past sea surface temperatures to an accuracy of about 0.5/sup 0/C. The carbon isotopic content of photosynthetic corals provides an indication of cloudiness. Using isotopic data from Galapagos corals, it was possible to construct proxy histories of the El Nino phenomenon. The physiology of skeletogenesis appears to be surprisingly similar in calcium carbonate, calcium phosphate, and silica precipitating systems.

  4. Hourly oxygen and total gas tension measurements at the Southern Ocean Time Series site reveal winter ventilation and spring net community production

    NASA Astrophysics Data System (ADS)

    Weeding, Ben; Trull, Thomas W.

    2014-01-01

    Using a moored instrument package at 35 m depth at the Southern Ocean Time Series (SOTS) site near 46°56'S 142°15'E from September 2010 to April 2011 (219 days), we obtained the first Southern Ocean Time Series of dissolved oxygen (from an optode sensor) and nitrogen (from a total gas tension sensor). Nitrogen was consistently supersaturated (100.8%-102.9%), while oxygen was highly subsaturated in early spring (as low as 93.5%) and reached supersaturation (maximum 104.9%) during only 37 days in early summer. The low oxygen levels in spring illustrate the importance of deep mixing in the Subantarctic Zone in ventilating the upper limb of the global overturning circulation. Using nitrogen as a proxy for physical processes, we isolated biological contributions to the oxygen time series to obtain net community production (NCP). Almost all NCP occurred in spring in the presence of deep mixed layers, with only small additional contributions in summer after water column stratification. The temperature and salinity time series also revealed distinct parcels of water. Rapid changes at their interfaces generated unrealistic NCP events in the standard calculation model, which were removed, while still retaining NCP contributions from each parcel. NCP totaled 2.2 ± 1.2 mol O2 m-2 over the deployment, within the range of previous estimates from low temporal resolution techniques. Examination of errors revealed particular sensitivity to entrainment, suggesting more rigorous understanding of this process is required, e.g., via profiling instruments.

  5. Quantifying the magnitude of the oxygen artefact inherent in culturing airway cells under atmospheric oxygen versus physiological levels.

    PubMed

    Kumar, Abhinav; Dailey, Lea Ann; Swedrowska, Magda; Siow, Richard; Mann, Giovanni E; Vizcay-Barrena, Gema; Arno, Matthew; Mudway, Ian S; Forbes, Ben

    2016-01-01

    To date, in vitro studies assessing the pulmonary toxicity of inhaled particles have provided poor correlation with in vivo results. We explored whether this discrepancy reflected cellular adaptations in pulmonary cells cultured under atmospheric oxygen concentrations (21%) compared with in vivo alveolar concentrations (100 mm Hg, ~ 13%) and whether this blunted cellular responses to nanoparticle challenge. At 21% oxygen, A549 cells had augmented intracellular glutathione concentrations, with evidence of increased tolerance to CuO nanoparticles, with reduced reactive oxygen species production, blunted transcriptional responses and delayed cell death, compared to cells cultured at 13% oxygen. These data support the contention that standard cell culture conditions pre-adapt cells to oxidative insults and emphasize the necessity of ensuring normoxic conditions in model systems to improve their predictive value. PMID:26823171

  6. Oxygen flux as an indicator of physiological stress in aquatic organisms: a real-time biomonitoring system of water quality

    NASA Astrophysics Data System (ADS)

    Sanchez, Brian C.; Yale, Gowri; Chatni, Rameez; Ochoa-Acuña, Hugo G.; Porterfield, D. Marshall; Mclamore, Eric S.; Sepúlveda, María S.

    2009-05-01

    The detection of harmful chemicals and biological agents in real time is a critical need for protecting water quality. We studied the real-time effects of five environmental contaminants with differing modes of action (atrazine, pentachlorophenol, cadmium chloride, malathion, and potassium cyanide) on respiratory oxygen consumption in 2-day post-fertilization fathead minnow (Pimephales promelas) eggs. Our objective was to assess the sensitivity of fathead minnow eggs using the self-referencing micro-optrode technique to detect instantaneous changes in oxygen consumption after brief exposures to low concentrations of contaminants. Oxygen consumption data indicated that the technique is indeed sensitive enough to reliably detect physiological alterations induced by all contaminants. After 2 h of exposure, we identified significant increases in oxygen consumption upon exposure to pentachlorophenol (100 and 1000 μg/L), cadmium chloride (0.0002 and 0.002 μg/L), and atrazine (150 μg/L). In contrast, we observed a significant decrease in oxygen flux after exposures to potassium cyanide (5.2, 22, and 44 μg/L) and atrazine (1500 μg/L). No effects were detected after exposures to malathion (200 and 340 μg/L). We have also tested the sensitivity of Daphnia magna embryos as another animal model for real-time environmental biomonitoring. Our results are so far encouraging and support further development of this technology as a physiologically coupled biomonitoring tool for the detection of environmental toxicants.

  7. NOTE: A haemodynamic model for the physiological interpretation of in vivo measurements of the concentration and oxygen saturation of haemoglobin

    NASA Astrophysics Data System (ADS)

    Fantini, Sergio

    2002-09-01

    We present a model that describes the effect of physiological parameters such as the speed of blood flow, local oxygen consumption, capillary recruitment, and vascular dilation/constriction on the concentration and oxygen saturation of haemoglobin in tissue. This model can be used to guide the physiological interpretation of haemodynamic and oximetric data collected in vivo with techniques such as optical imaging, near-infrared spectroscopy and functional magnetic resonance imaging. In addition to providing a formal description of well-established results (exercise-induced hyperemia, reperfusion hyperoxia, decrease in the concentration of deoxyhaemoglobin induced by brain activity, measurement of arterial saturation by pulse oximetry, etc.), this model suggests that the superposition of asynchronous contributions from the arterial, capillary and venous haemoglobin compartments may be at the origin of observed out-of-phase oscillations of the oxyhaemoglobin and deoxyhaemoglobin concentrations in tissue.

  8. Direct measurement of myocardial oxygen tension and high energy phosphate content under varying ventilatory conditions in rabbits.

    PubMed

    Vogt, Sebastian; Troitzsch, Dirk; Spath, Silvia; Portig, Irene; Moosdorf, Rainer

    2009-08-01

    Effective myocardial oxygen supply should not be compromised during cardiac surgery as it is essential to avoid circulatory and cardiac dysfunction. Local measurement of myocardial oxygen partial pressure (pO2) was therefore introduced into the operative monitoring of myocardial ischemia. The aim of the present study was to assess whether myocardial oxygen partial pressure correlates with the content of high energy phosphates (HEPs). Seven male rabbits were examined in parallel with measurement of myocardial pO2 by an implanted Clark electrode and 31phosphorus-NMR spectroscopy. The ventilatory management established hyperoxygenation followed by systemic hypoxia with hypercapnia for 20 min. Additionally, analysis of end-expiratory gas composition in combination with blood gas analysis was performed simultaneously, and hemodynamic parameter was recorded. Under hypoxic conditions the cardiovascular system was severely compromised, whereas the myocardial pO2 was only moderately impaired (pO2M 45.0+/-16.0 mm Hg). Immediately before cardiac arrest, low values of arterial and venous pO2 were found (17.6+/-6.0 and 12.9+/-6.1 mm Hg). In contrast to near normal myocardial pO2, HEP content in the myocardium was considerably reduced and inorganic phosphorus was increased. Artificial ventilation leading to systemic hypoxia and eventually circulatory arrest resulted in almost normal myocardial pO2 but severely compromised HEP content. This somewhat unexpected finding requires further clarification, but is in accordance with findings reported previously where regulatory mechanisms have been shown to play a role in the pathophysiology of severe hypoxic conditions such as those for cellular oxygen delivery and demand, P/O coupling and finally control of HEP production facilitating the interaction between respiratory chain and myoglobin oxygen transport. PMID:19807283

  9. Surface Tension

    NASA Technical Reports Server (NTRS)

    Theissen, David B.; Man, Kin F.

    1996-01-01

    The effect of surface tension is observed inmany everyday situations. For example, a slowly leaking faucet drips because the force surface tension allows the water to cling to it until a sufficient mass of water is accumulated to break free.

  10. Changes of blood flow, oxygen tension, action potential and vascular permeability induced by arterial ischemia or venous congestion on the spinal cord in canine model.

    PubMed

    Kobayashi, Shigeru; Yoshizawa, Hidezo; Shimada, Seiichiro; Guerrero, Alexander Rodríguez; Miyachi, Masaya

    2013-01-01

    It is generally considered that the genesis of myelopathy associated with the degenerative conditions of the spine may result from both mechanical compression and circulatory disturbance. Many references about spinal cord tissue ischemic damage can be found in the literature, but not detailed studies about spinal cord microvasculature damage related to congestion or blood permeability. This study investigates the effect of ischemia and congestion on the spinal cord using an in vivo model. The aorta was clamped as an ischemia model of the spinal cord and the inferior vena cava was clamped as a congestion model at the 6th costal level for 30 min using forceps transpleurally. Measurements of blood flow, partial oxygen pressure, and conduction velocity in the spinal cord were repeated over a period of 1 h after release of clamping. Finally, we examined the status of blood-spinal cord barrier under fluorescence and transmission electron microscope. Immediately after clamping of the inferior vena cava, the central venous pressure increased by about four times. Blood flow, oxygen tension and action potential were more severely affected by the aorta clamping; but this ischemic model did not show any changes of blood permeability in the spinal cord. The intramedullar edema was more easily produced by venous congestion than by arterial ischemia. In conclusions, venous congestion may be a preceding and essential factor of circulatory disturbance in the compressed spinal cord inducing myelopathy. PMID:22912247

  11. Gene Expression and Physiological Changes of Different Populations of the Long-Lived Bivalve Arctica islandica under Low Oxygen Conditions

    PubMed Central

    Philipp, Eva E. R.; Wessels, Wiebke; Gruber, Heike; Strahl, Julia; Wagner, Anika E.; Ernst, Insa M. A.; Rimbach, Gerald; Kraemer, Lars; Schreiber, Stefan; Abele, Doris; Rosenstiel, Philip

    2012-01-01

    The bivalve Arctica islandica is extremely long lived (>400 years) and can tolerate long periods of hypoxia and anoxia. European populations differ in maximum life spans (MLSP) from 40 years in the Baltic to >400 years around Iceland. Characteristic behavior of A. islandica involves phases of metabolic rate depression (MRD) during which the animals burry into the sediment for several days. During these phases the shell water oxygen concentrations reaches hypoxic to anoxic levels, which possibly support the long life span of some populations. We investigated gene regulation in A. islandica from a long-lived (MLSP 150 years) German Bight population and the short-lived Baltic Sea population, experimentally exposed to different oxygen levels. A new A. islandica transcriptome enabled the identification of genes important during hypoxia/anoxia events and, more generally, gene mining for putative stress response and (anti-) aging genes. Expression changes of a) antioxidant defense: Catalase, Glutathione peroxidase, manganese and copper-zinc Superoxide dismutase; b) oxygen sensing and general stress response: Hypoxia inducible factor alpha, Prolyl hydroxylase and Heat-shock protein 70; and c) anaerobic capacity: Malate dehydrogenase and Octopine dehydrogenase, related transcripts were investigated. Exposed to low oxygen, German Bight individuals suppressed transcription of all investigated genes, whereas Baltic Sea bivalves enhanced gene transcription under anoxic incubation (0 kPa) and, further, decreased these transcription levels again during 6 h of re-oxygenation. Hypoxic and anoxic exposure and subsequent re-oxygenation in Baltic Sea animals did not lead to increased protein oxidation or induction of apoptosis, emphasizing considerable hypoxia/re-oxygenation tolerance in this species. The data suggest that the energy saving effect of MRD may not be an attribute of Baltic Sea A. islandica chronically exposed to high environmental variability (oxygenation, temperature

  12. The influences of hyperbaric oxygen therapy with a lower pressure and oxygen concentration than previous methods on physiological mechanisms in dogs.

    PubMed

    Ishibashi, Maki; Hayashi, Akiyoshi; Akiyoshi, Hideo; Ohashi, Fumihito

    2015-03-01

    Recently, hyperbaric oxygen therapy with a lower pressure and oxygen concentration (L-HBOT) than previous methods has been used for dogs in Japan; however, the influences of L-HBOT on dogs have not been clarified. To verify the influences of L-HBOT on physiological mechanism in dogs, we investigated blood gas parameters, glutathione peroxidase (GPx) activity, heart rate variability, stress-related hormones and skin conductance (SC) in 4 clinically normal beagle dogs with catheters in their carotid arteries and jugular veins when they were quiet, after running, after receiving L-HBOT (30% oxygen concentration, 1.3 atmospheres absolute, 30 min) or after not receiving L-HBOT. The results showed there were no changes in blood gas parameters, heart rate variability and catecholamine levels after L-HBOT. GPx activity was significantly higher, and the SC and cortisol level were lower in dogs that received L-HBOT than those when they were quiet. These results suggested that L-HBOT may have a small influence on oxygenation dynamics, activate antioxidant enzymes such as GPx, restrain autonomic nervous activity and control the balance between oxidation and antioxidation inside the body. PMID:25482821

  13. The influences of hyperbaric oxygen therapy with a lower pressure and oxygen concentration than previous methods on physiological mechanisms in dogs

    PubMed Central

    ISHIBASHI, Maki; HAYASHI, Akiyoshi; AKIYOSHI, Hideo; OHASHI, Fumihito

    2014-01-01

    Recently, hyperbaric oxygen therapy with a lower pressure and oxygen concentration (L-HBOT) than previous methods has been used for dogs in Japan; however, the influences of L-HBOT on dogs have not been clarified. To verify the influences of L-HBOT on physiological mechanism in dogs, we investigated blood gas parameters, glutathione peroxidase (GPx) activity, heart rate variability, stress-related hormones and skin conductance (SC) in 4 clinically normal beagle dogs with catheters in their carotid arteries and jugular veins when they were quiet, after running, after receiving L-HBOT (30% oxygen concentration, 1.3 atmospheres absolute, 30 min) or after not receiving L-HBOT. The results showed there were no changes in blood gas parameters, heart rate variability and catecholamine levels after L-HBOT. GPx activity was significantly higher, and the SC and cortisol level were lower in dogs that received L-HBOT than those when they were quiet. These results suggested that L-HBOT may have a small influence on oxygenation dynamics, activate antioxidant enzymes such as GPx, restrain autonomic nervous activity and control the balance between oxidation and antioxidation inside the body. PMID:25482821

  14. The Tension Literature.

    ERIC Educational Resources Information Center

    Frederick, A. B.

    This is a bibliography of literature on the subject of tension. Books, films, and periodicals with a bearing on stress, relaxation, anxiety, and/or methods of controlling stress are listed from the fields of physiology, psychology, and philosophy. New methods such as transcendental meditation and biofeedback are analyzed briefly and criteria are…

  15. Transcutaneous oxygen tension measurements following peripheral transluminal angioplasty procedure has more specificity and sensitivity than ankle brachial index

    PubMed Central

    Pardo, M; Bernal, F L; Felices, J M; Achel, G D; Canteras, M

    2015-01-01

    Objective: To evaluate the superiority of transcutaneous oxygen pressure (TcPO2) before, during and after peripheral transluminal angioplasty (PTA) in comparison with ankle brachial index (ABI) in patients with diabetes. Methods: 40 consecutive patients with diabetes treated by PTA where included. This study shows results before, during and after PTA and their progression for 8 weeks. Results: The TcPO2 increased from 28.11 ± 8.1 to 48.03 ± 8.4 mmHg, 8 weeks after PTA (p < 0.001). The ABI increased from 0.48 ± 0.38 to 0.77 ± 0.39 after PTA (p < 0.001). After PTA, the stenosis of the vessel decreased from 58.33 ± 20.07% to 21.87 ± 13.57% (p < 0.001). TcPO2 was determined in all the patients, but ABI could not be determined in all patients. Furthermore, we determined patients with “false negatives” with an improvement in ABI and “false positives” in 12.5% of patients. Additionally, in this study, we monitored TcPO2 while performing PTA, revealing variations in each phase of the radiological procedure. Conclusion: The increase in TcPO2 measurements following PTA procedure has more specificity and sensitivity than does ABI. The use of TcPO2 may represent a more accurate alternative than traditional methods (ABI) used in assessing PTA results. The TcPO2 also allows the radiologist to assess changes in tissue oxygenation during PTA, allowing changes to the procedure and subsequent treatment. Advances in knowledge: This is the first time that a graph is shown with TcPO2 results during PTA performance in many patients. PMID:25431933

  16. Dynamic and selective HERV RNA expression in neuroblastoma cells subjected to variation in oxygen tension and demethylation.

    PubMed

    Hu, Lijuan; Uzhameckis, Dmitrijs; Hedborg, Fredrik; Blomberg, Jonas

    2016-01-01

    We studied HERV expression in cell lines after hypoxia, mitogenic stimulation, and demethylation, to better understand if hypoxia may play a role in ERV activation also within the nervous system, as represented by neuroblastoma cell lines. The level of RNA of four human ERV groups (HERVs) (HERVE, I/T, H, and W), and three housekeeping genes, of different cell lines including A549, COS-1, Namalwa, RD-L and Vero-E6, as well as human neuroblastoma cell lines SH-SY5Y, SK-N-DZ, and SK-N-AS were studied using reverse transcription and real-time quantitative PCR (QPCR). During the course of recovery from hypoxia a pronounced and selective activation of RNA expression of HERVW-like sequences, but not of HERVE, I/T, H, and three housekeeping genes, was found in the neuroblastoma cell lines, most pronounced in SK-N-DZ. In the SK-N-DZ cell line, we also tested the expression of HERVs after chemical treatments. HERVW-like sequences were selectively upregulated by 5-azacytidine, a demethylating agent. Some HERVW loci seem especially responsive to hypoxia and demethylation. HERV expression in neuroblastoma cells is selectively and profoundly influenced by some physiological and chemical stimuli. PMID:26818268

  17. The effects of graded changes in oxygen and carbon dioxide tension on coronary blood velocity independent of myocardial energy demand.

    PubMed

    Boulet, Lindsey M; Stembridge, Mike; Tymko, Michael M; Tremblay, Joshua C; Foster, Glen E

    2016-08-01

    In humans, coronary blood flow is tightly regulated by microvessels within the myocardium to match myocardial energy demand. However, evidence regarding inherent sensitivity of the microvessels to changes in arterial partial pressure of carbon dioxide and oxygen is conflicting because of the accompanied changes in myocardial energy requirements. This study aimed to investigate the changes in coronary blood velocity while manipulating partial pressures of end-tidal CO2 (Petco2) and O2 (Peto2). It was hypothesized that an increase in Petco2 (hypercapnia) or decrease in Peto2 (hypoxia) would result in a significant increase in mean blood velocity in the left anterior descending artery (LADVmean) due to an increase in both blood gases and energy demand associated with the concomitant cardiovascular response. Cardiac energy demand was assessed through noninvasive measurement of the total left ventricular mechanical energy. Healthy subjects (n = 13) underwent a euoxic CO2 test (Petco2 = -8, -4, 0, +4, and +8 mmHg from baseline) and an isocapnic hypoxia test (Peto2 = 64, 52, and 45 mmHg). LADVmean was assessed using transthoracic Doppler echocardiography. Hypercapnia evoked a 34.6 ± 8.5% (mean ± SE; P < 0.01) increase in mean LADVmean, whereas hypoxia increased LADVmean by 51.4 ± 8.8% (P < 0.05). Multiple stepwise regressions revealed that both mechanical energy and changes in arterial blood gases are important contributors to the observed changes in LADVmean (P < 0.01). In summary, regulation of the coronary vasculature in humans is mediated by metabolic changes within the heart and an inherent sensitivity to arterial blood gases. PMID:27233761

  18. Normoxia vs. Hyperoxia: Impact of Oxygen Tension Strategies on Outcomes for Patients Receiving Cardiopulmonary Bypass for Routine Cardiac Surgical Repair

    PubMed Central

    Brown, D. Mark; Holt, David W.; Edwards, Jeff T.; Burnett, Robert J.

    2006-01-01

    Abstract: Oxygen pressure field theory (OPFT) was originally described in the early 1900s by Danish physiologist, Dr. August Krogh. This revolutionary theory described microcirculation of blood gases at the capillary level using a theoretical cylindrical tissue model commonly referred to as the Krogh cylinder. In recent years, the principles and benefits of OPFT in long-term extracorporeal circulatory support (ECMO) have been realized. Cardiac clinicians have successfully mastered OPFT fundamentals and incorporated them into their clinical practice. These clinicians have experienced significantly improved survival rates as a result of OPFT strategies. The objective of this study was to determine if a hyperoxic strategy can lead to equally beneficial outcomes for short-term support as measured by total ventilator time and total length of stay in intensive care unit (ICU) in the cardiopulmonary bypass (CPB) patient at a private institution. Patients receiving traditional blood gas management while on CPB (group B, n = 17) were retrospectively compared with hyperoxic patients (group A, n = 19). Hyperoxic/OPFT management was defined as paO2 values of 300–350 mmHg and average VSAT > 75%. Traditional blood gas management was defined as paO2 values of 150–250 mmHg and average VSAT < 75%. No significant differences between treatment groups were found for patient weight, CPB/AXC times, BSA, pre/post Hgb, pre/post-platelet (PLT) counts, pre/post-creatinine levels, pre/post-BUN, UF volumes, or CPB urine output. Additionally, no significant statistical differences were found between treatment groups for total time in ICU (T-ICU) or total time on ventilator (TOV). Hyperoxic management strategies provided no conclusive evidence of outcome improvement for patients receiving CPB for routine cardiac surgical repair. Additional studies into the impact of hyperoxia in short-term extracorporeal circulatory support are needed. PMID:17089511

  19. Effects of reduced dissolved oxygen concentrations on physiology and fluorescence of hermatypic corals and benthic algae

    PubMed Central

    Smith, Jennifer E.; Thompson, Melissa

    2014-01-01

    While shifts from coral to seaweed dominance have become increasingly common on coral reefs and factors triggering these shifts successively identified, the primary mechanisms involved in coral-algae interactions remain unclear. Amongst various potential mechanisms, algal exudates can mediate increases in microbial activity, leading to localized hypoxic conditions which may cause coral mortality in the direct vicinity. Most of the processes likely causing such algal exudate induced coral mortality have been quantified (e.g., labile organic matter release, increased microbial metabolism, decreased dissolved oxygen availability), yet little is known about how reduced dissolved oxygen concentrations affect competitive dynamics between seaweeds and corals. The goals of this study were to investigate the effects of different levels of oxygen including hypoxic conditions on a common hermatypic coral Acropora yongei and the common green alga Bryopsis pennata. Specifically, we examined how photosynthetic oxygen production, dark and daylight adapted quantum yield, intensity and anatomical distribution of the coral innate fluorescence, and visual estimates of health varied with differing background oxygen conditions. Our results showed that the algae were significantly more tolerant to extremely low oxygen concentrations (2–4 mg L−1) than corals. Furthermore corals could tolerate reduced oxygen concentrations, but only until a given threshold determined by a combination of exposure time and concentration. Exceeding this threshold led to rapid loss of coral tissue and mortality. This study concludes that hypoxia may indeed play a significant role, or in some cases may even be the main cause, for coral tissue loss during coral-algae interaction processes. PMID:24482757

  20. High-Flow Nasal Cannula Oxygen Therapy in Adults: Physiological Benefits, Indication, Clinical Benefits, and Adverse Effects.

    PubMed

    Nishimura, Masaji

    2016-04-01

    High-flow nasal cannula (HFNC) oxygen therapy is carried out using an air/oxygen blender, active humidifier, single heated tube, and nasal cannula. Able to deliver adequately heated and humidified medical gas at flows up to 60 L/min, it is considered to have a number of physiological advantages compared with other standard oxygen therapies, including reduced anatomical dead space, PEEP, constant FIO2 , and good humidification. Although few large randomized clinical trials have been performed, HFNC has been gaining attention as an alternative respiratory support for critically ill patients. Published data are mostly available for neonates. For critically ill adults, however, evidence is uneven because the reports cover various subjects with diverse underlying conditions, such as hypoxemic respiratory failure, exacerbation of COPD, postextubation, preintubation oxygenation, sleep apnea, acute heart failure, and conditions entailing do-not-intubate orders. Even so, across the diversity, many published reports suggest that HFNC decreases breathing frequency and work of breathing and reduces the need for respiratory support escalation. Some important issues remain to be resolved, such as definitive indications for HFNC and criteria for timing the starting and stopping of HFNC and for escalating treatment. Despite these issues, HFNC has emerged as an innovative and effective modality for early treatment of adults with respiratory failure with diverse underlying diseases. PMID:27016353

  1. Effects of In Vitro Low Oxygen Tension Preconditioning of Adipose Stromal Cells on Their In Vivo Chondrogenic Potential: Application in Cartilage Tissue Repair

    PubMed Central

    Gauthier, Olivier; Lesoeur, Julie; Sourice, Sophie; Masson, Martial; Fellah, Borhane Hakim; Geffroy, Olivier; Lallemand, Elodie; Weiss, Pierre

    2013-01-01

    Purpose Multipotent stromal cell (MSC)-based regenerative strategy has shown promise for the repair of cartilage, an avascular tissue in which cells experience hypoxia. Hypoxia is known to promote the early chondrogenic differentiation of MSC. The aim of our study was therefore to determine whether low oxygen tension could be used to enhance the regenerative potential of MSC for cartilage repair. Methods MSC from rabbit or human adipose stromal cells (ASC) were preconditioned in vitro in control or chondrogenic (ITS and TGF-β) medium and in 21 or 5% O2. Chondrogenic commitment was monitored by measuring COL2A1 and ACAN expression (real-time PCR). Preconditioned rabbit and human ASC were then incorporated into an Si-HPMC hydrogel and injected (i) into rabbit articular cartilage defects for 18 weeks or (ii) subcutaneously into nude mice for five weeks. The newly formed tissue was qualitatively and quantitatively evaluated by cartilage-specific immunohistological staining and scoring. The phenotype of ASC cultured in a monolayer or within Si-HPMC in control or chondrogenic medium and in 21 or 5% O2 was finally evaluated using real-time PCR. Results/Conclusions 5% O2 increased the in vitro expression of chondrogenic markers in ASC cultured in induction medium. Cells implanted within Si-HPMC hydrogel and preconditioned in chondrogenic medium formed a cartilaginous tissue, regardless of the level of oxygen. In addition, the 3D in vitro culture of ASC within Si-HPMC hydrogel was found to reinforce the pro-chondrogenic effects of the induction medium and 5% O2. These data together indicate that although 5% O2 enhances the in vitro chondrogenic differentiation of ASC, it does not enhance their in vivo chondrogenesis. These results also highlight the in vivo chondrogenic potential of ASC and their potential value in cartilage repair. PMID:23638053

  2. Optimization of an oxygen-based approach for community-level physiological profiling of soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current approaches for rapid assessment of carbon source utilization by whole soil communities (i.e., community-level physiological profiling or CLPP) provides a limited, biased view of microbial communities with little connection to in situ activities. We developed an alternative CLPP approach bas...

  3. Influence of oxygen availability on physiology, verocytotoxin expression and adherence of Escherichia coli O157.

    PubMed

    James, B W; Keevil, C W

    1999-01-01

    A strain of Escherichia coli serotype O157 was grown in steady state chemostat culture under aerobic, oxygen-limited and anaerobic conditions. The growth and metabolic efficiency of oxygen-limited and anaerobic cultures was impaired, with biomass yield and the molar growth yield for glucose, Yglucose, reduced markedly in comparison with aerobic cultures. Steady state cells were typically short rods 2-3 microns long, and were encapsulated by a layer of extracellular material. The majority of cells were non-flagellated and fimbriae were not observed. Chemostat-grown cells were significantly more adhesive for HEp-2 monolayers than cells grown in aerobic batch culture. Furthermore, oxygen-limited and anaerobic cultures were significantly more adhesive for Hep-2 cells when compared with cells grown in aerobic chemostat culture, possibly reflecting increased pathogenicity associated with the induction of novel adhesins. Type 1 pili were not responsible for increased adherence. Verocytotoxins, VT1 and VT2, were expressed constitutively and were not influenced by oxygen availability. This study demonstrates that E. coli O157 is a versatile micro-organism, which responds to environmental conditions likely to be encountered during infection by inducing a phenotype which is more adhesive for human epithelial cells. PMID:10030015

  4. Perioperative cerebral hemodynamics and oxygen metabolism in neonates with single-ventricle physiology

    PubMed Central

    Dehaes, Mathieu; Cheng, Henry H.; Buckley, Erin M.; Lin, Pei-Yi; Ferradal, Silvina; Williams, Kathryn; Vyas, Rutvi; Hagan, Katherine; Wigmore, Daniel; McDavitt, Erica; Soul, Janet S.; Franceschini, Maria Angela; Newburger, Jane W.; Ellen Grant, P.

    2015-01-01

    Congenital heart disease (CHD) patients are at risk for neurodevelopmental delay. The etiology of these delays is unclear, but abnormal prenatal cerebral maturation and postoperative hemodynamic instability likely play a role. A better understanding of these factors is needed to improve neurodevelopmental outcome. In this study, we used bedside frequency-domain near infrared spectroscopy (FDNIRS) and diffuse correlation spectroscopy (DCS) to assess cerebral hemodynamics and oxygen metabolism in neonates with single-ventricle (SV) CHD undergoing surgery and compared them to controls. Our goals were 1) to compare cerebral hemodynamics between unanesthetized SV and healthy neonates, and 2) to determine if FDNIRS-DCS could detect alterations in cerebral hemodynamics beyond cerebral hemoglobin oxygen saturation (SO2). Eleven SV neonates were recruited and compared to 13 controls. Preoperatively, SV patients showed decreased cerebral blood flow (CBFi), cerebral oxygen metabolism (CMRO2i) and SO2; and increased oxygen extraction fraction (OEF) compared to controls. Compared to preoperative values, unstable postoperative SV patients had decreased CMRO2i and CBFi, which returned to baseline when stable. However, SO2 showed no difference between unstable and stable states. Preoperative SV neonates are flow-limited and show signs of impaired cerebral development compared to controls. FDNIRS-DCS shows potential to improve assessment of cerebral development and postoperative hemodynamics compared to SO2 alone. PMID:26713191

  5. Recapitulating physiological and pathological shear stress and oxygen to model vasculature in health and disease

    NASA Astrophysics Data System (ADS)

    Abaci, Hasan Erbil; Shen, Yu-I.; Tan, Scott; Gerecht, Sharon

    2014-05-01

    Studying human vascular disease in conventional cell cultures and in animal models does not effectively mimic the complex vascular microenvironment and may not accurately predict vascular responses in humans. We utilized a microfluidic device to recapitulate both shear stress and O2 levels in health and disease, establishing a microfluidic vascular model (μVM). Maintaining human endothelial cells (ECs) in healthy-mimicking conditions resulted in conversion to a physiological phenotype namely cell elongation, reduced proliferation, lowered angiogenic gene expression and formation of actin cortical rim and continuous barrier. We next examined the responses of the healthy μVM to a vasotoxic cancer drug, 5-Fluorouracil (5-FU), in comparison with an in vivo mouse model. We found that 5-FU does not induce apoptosis rather vascular hyperpermeability, which can be alleviated by Resveratrol treatment. This effect was confirmed by in vivo findings identifying a vasoprotecting strategy by the adjunct therapy of 5-FU with Resveratrol. The μVM of ischemic disease demonstrated the transition of ECs from a quiescent to an activated state, with higher proliferation rate, upregulation of angiogenic genes, and impaired barrier integrity. The μVM offers opportunities to study and predict human ECs with physiologically relevant phenotypes in healthy, pathological and drug-treated environments.

  6. Superiority of Transcutaneous Oxygen Tension Measurements in Predicting Limb Salvage After Below-the-Knee Angioplasty: A Prospective Trial in Diabetic Patients With Critical Limb Ischemia

    SciTech Connect

    Redlich, Ulf; Xiong, Yan Y.; Pech, Maciej; Tautenhahn, Joerg; Halloul, Zuhir; Lobmann, Ralf; Adolf, Daniela; Ricke, Jens; Dudeck, Oliver

    2011-04-15

    Purpose: To assess postprocedural angiograms, the ankle-brachial index (ABI), and transcutaneous oxygen tension (TcPO{sub 2}) to predict outcome after infrageniculate angioplasty (PTA) in diabetic patients with critical limb ischemia (CLI) scheduled for amputation. Materials and Methods: PTA was performed in 28 diabetic patients with CLI confined to infrapopliteal vessels. We recorded patency of crural vessels, including the vascular supply of the foot as well as the ABI and TcPO{sub 2} of the foot. Results: Technical success rate was 92.9% (n = 26), and limb-salvage rate at 12 months was 60.7% (n = 17). The number of patent straight vessels above and below the level of the malleoli increased significantly in patients avoiding amputation. Amputation was unnecessary in 88.2% (n = 15) patients when patency of at least one tibial artery was achieved. In 72.7% (n = 8) of patients, patency of the peroneal artery alone was not sufficient for limb salvage. ABI was of no predictive value for limb salvage. TcPO{sub 2} values increased significantly only in patients not requiring amputation (P = 0.015). In patients with only one tibial artery supplying the foot or only a patent peroneal artery in postprocedural angiograms, TcPO{sub 2} was capable of reliably predicting the outcome. Conclusion: Below-the-knee PTA as an isolated part of therapy was effective to prevent major amputation in more than a half of diabetic patients with CLI. TcPO{sub 2} was a valid predictor for limb salvage, even when angiographic outcome criteria failed.

  7. End-Tidal CO2 Tension Is Predictive of Effective Nocturnal Oxygen Therapy in Patients with Chronic Heart Failure and Central Sleep Apnea.

    PubMed

    Sugimura, Koichiro; Shinozaki, Tsuyoshi; Fukui, Shigefumi; Ogawa, Hiromasa; Shimokawa, Hiroaki

    2016-01-01

    Central sleep apnea (CSA) is characterized by recurring cycles of crescendo-decrescendo ventilation during sleep, and enhances sympathetic nerve activity. Thus CSA has a prognostic impact in patients with chronic heart failure (CHF). Although nocturnal oxygen (O2) therapy decreases frequency of CSA and improves functional exercise capacity, it is also known that some non-responders to the therapy exist. We thus aimed to identify predictors of responders to nocturnal O2 therapy in CHF patients with CSA. In 12 CHF patients with CSA hospitalized at our department, sleep study was performed at 2 consecutive nights. Patients nasally inhaled O2 at either the first or second night in a randomized manner. To predict the percentage reduction in apnea-hypopnea index (%ΔAHI) in response to the nocturnal O2 therapy, we performed multiple regression analysis with a stepwise method with variables including age, brain-natriuretic peptide, circulation time, baseline AHI, hypercapnic ventilatory response and end-tidal carbon dioxide tension (PETCO2). Nocturnal O2 therapy significantly decreased AHI (from 32 ± 13 /h to 12 ± 10 /h, P < 0.0001). Among the possible predictors, PETCO2 was the only variable that is predictive of % changes in AHI. Receiver operating characteristics analysis determined 4.25% as the optimal cutoff PETCO2 level to identify responder to nocturnal O2 therapy (> 50% reduction of AHI), with 88.9% of sensitivity and 66.7% of specificity. In conclusion, PETCO2 is useful to predict the efficacy of O2 therapy in CHF patients with CSA, providing important information to the current nocturnal O2 therapy. PMID:27169493

  8. Differentiation of human adipocytes at physiological oxygen levels results in increased adiponectin secretion and isoproterenol-stimulated lipolysis

    PubMed Central

    Famulla, Susanne; Schlich, Raphaela; Sell, Henrike; Eckel, Jürgen

    2012-01-01

    Adipose tissue (AT) hypoxia occurs in obese humans and mice. Acute hypoxia in adipocytes causes dysregulation of adipokine secretion with an increase in inflammatory factors and diminished adiponectin release. O2 levels in humans range between 3 and 11% revealing that conventional in vitro culturing at ambient air and acute hypoxia treatment (1% O2) are performed under non-physiological conditions. In this study, we mimicked physiological conditions by differentiating human primary adipocytes under 10% or 5% O2 in comparison to 21% O2. Induction of differentiation markers was comparable between all three conditions. Adipokine release by adipocytes differentiated at lower oxygen levels was altered, with a marked upregulation of adiponectin, IL-6 and DPP4 secretion, and reduced leptin levels compared with adipocytes differentiated at 21% O2. Isoproterenol-induced lipolysis was significantly elevated in adipocytes differentiated at 10% and 5% compared with 21% O2. This effect was accompanied by increased protein expression of β-1 and -2 adrenergic receptor, HSL and perilipin. Conditioned medium (CM) of adipocytes differentiated at the three different conditions was generated for stimulation of human skeletal muscle cells (SkMC) or smooth muscle cells (SMC). CM-induced insulin resistance in SkMC was comparable for the different CMs. However, the SMC proliferative effect of CM from adipocytes differentiated at 10% O2 was significantly reduced compared with 21% O2. This study demonstrates that oxygen levels during adipogenesis are important factors altering adipocyte functionality such as adipokine release, in particular adiponectin secretion, as well as the hormone-induced lipolytic pathway. PMID:23700522

  9. Physiological and pathophysiological reactive oxygen species as probed by EPR spectroscopy: the underutilized research window on muscle ageing.

    PubMed

    A Abdel-Rahman, Engy; Mahmoud, Ali M; Khalifa, Abdulrahman M; Ali, Sameh S

    2016-08-15

    Reactive oxygen and nitrogen species (ROS and RNS) play crucial roles in triggering, mediating and regulating physiological and pathophysiological signal transduction pathways within the cell. Within the cell, ROS efflux is firmly controlled both spatially and temporally, making the study of ROS dynamics a challenging task. Different approaches have been developed for ROS assessment; however, many of these assays are not capable of direct identification or determination of subcellular localization of different ROS. Here we highlight electron paramagnetic resonance (EPR) spectroscopy as a powerful technique that is uniquely capable of addressing questions on ROS dynamics in different biological specimens and cellular compartments. Due to their critical importance in muscle functions and dysfunction, we discuss in some detail spin trapping of various ROS and focus on EPR detection of nitric oxide before highlighting how EPR can be utilized to probe biophysical characteristics of the environment surrounding a given stable radical. Despite the demonstrated ability of EPR spectroscopy to provide unique information on the identity, quantity, dynamics and environment of radical species, its applications in the field of muscle physiology, fatiguing and ageing are disproportionately infrequent. While reviewing the limited examples of successful EPR applications in muscle biology we conclude that the field would greatly benefit from more studies exploring ROS sources and kinetics by spin trapping, protein dynamics by site-directed spin labelling, and membrane dynamics and global redox changes by spin probing EPR approaches. PMID:26801204

  10. Metabolic physiology of the Humboldt squid, Dosidicus gigas: Implications for vertical migration in a pronounced oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Rosa, Rui; Seibel, Brad A.

    2010-07-01

    The Humboldt (or jumbo) squid, Dosidicus gigas, is an active predator endemic to the Eastern Pacific that undergoes diel vertical migrations into a pronounced oxygen minimum layer (OML). Here, we investigate the physiological mechanisms that facilitate these migrations and assess the associated costs and benefits. Exposure to hypoxic conditions equivalent to those found in the OML (∼10 μM O 2 at 10 °C) led to a significant reduction in the squid’s routine metabolic rate (RMR), from 8.9 to 1.6 μmol O 2 g -1 h -1 ( p < 0.05), and a concomitant increase in mantle muscle octopine levels (from 0.50 to 5.24 μmol g -1 tissue, p < 0.05). Enhanced glycolitic ATP production accounted for only 7.0% and 2.8% at 10 °C and 20 °C, respectively, of the energy deficit that resulted from the decline in aerobic respiration. The observed metabolic suppression presumably extends survival time in the OML by conserving the finite stores of fermentable substrate and avoiding the accumulation of the deleterious anaerobic end products in the tissues. RMR increased significantly with temperature ( p < 0.05), from 8.9 (at 10 °C) to 49.85 μmol O 2 g -1 h -1 (at 25 °C) which yielded a Q10 of 2.0 between 10 and 20 °C and 7.9 between 20 and 25 °C ( p < 0.05). These results suggest that 25 °C, although within the normal surface temperature range in the Gulf of California, is outside this species’ normal temperature range. By following the scattering layer into oxygen-enriched shallow water at night, D. gigas may repay any oxygen debt accumulated during the daytime. The dive to deeper water may minimize exposure to stressful surface temperatures when most prey have migrated to depth during the daytime. The physiological and ecological strategies demonstrated here may have facilitated the recent range expansion of this species into northern waters where expanding hypoxic zones prohibit competing top predators.

  11. Preventing and Treating Hypoxia: Using a Physiology Simulator to Demonstrate the Value of Pre-Oxygenation and the Futility of Hyperventilation

    PubMed Central

    Lerant, Anna A.; Hester, Robert L.; Coleman, Thomas G.; Phillips, William J.; Orledge, Jeffrey D.; Murray, W. Bosseau

    2015-01-01

    Introduction: Insufficient pre-oxygenation before emergency intubation, and hyperventilation after intubation are mistakes that are frequently observed in and outside the operating room, in clinical practice and in simulation exercises. Physiological parameters, as appearing on standard patient monitors, do not alert to the deleterious effects of low oxygen saturation on coronary perfusion, or that of low carbon dioxide concentrations on cerebral perfusion. We suggest the use of HumMod, a computer-based human physiology simulator, to demonstrate beneficial physiological responses to pre-oxygenation and the futility of excessive minute ventilation after intubation. Methods: We programmed HumMod, to A.) compare varying times (0-7 minutes) of pre-oxygenation on oxygen saturation (SpO2) during subsequent apnoea; B.) simulate hyperventilation after apnoea. We compared the effect of different minute ventilation rates on SpO2, acid-base status, cerebral perfusion and other haemodynamic parameters. Results: A.) With no pre-oxygenation, starting SpO2 dropped from 98% to 90% in 52 seconds with apnoea. At the other extreme, following full pre-oxygenation with 100% O2 for 3 minutes or more, the SpO2 remained 100% for 7.75 minutes during apnoea, and dropped to 90% after another 75 seconds. B.) Hyperventilation, did not result in more rapid normalization of SpO2, irrespective of the level of minute ventilation. However, hyperventilation did cause significant decreases in cerebral blood flow (CBF). Conclusions: HumMod accurately simulates the physiological responses compared to published human studies of pre-oxygenation and varying post intubation minute ventilations, and it can be used over wider ranges of parameters than available in human studies and therefore available in the literature. PMID:26283881

  12. Near-infrared spectroscopy assessed cerebral oxygenation during open abdominal aortic aneurysm repair: relation to end-tidal CO2 tension.

    PubMed

    Sørensen, H; Nielsen, H B; Secher, N H

    2016-08-01

    During open abdominal aortic aneurism (AAA) repair cerebral blood flow is challenged. Clamping of the aorta may lead to unintended hyperventilation as metabolism is reduced by perfusion of a smaller part of the body and reperfusion of the aorta releases vasodilatory substances including CO2. We intend to adjust ventilation according end-tidal CO2 tension (EtCO2) and here evaluated to what extent that strategy maintains frontal lobe oxygenation (ScO2) as determined by near infrared spectroscopy. For 44 patients [5 women, aged 70 (48-83) years] ScO2, mean arterial pressure (MAP), EtCO2, and ventilation were obtained retrospectively from the anesthetic charts. By clamping the aorta, ScO2 and EtCO2 were kept stable by reducing ventilation (median, -0.8 l min(-1); interquartile range, -1.1 to -0.4; P < 0.001). During reperfusion of the aorta a reduction in MAP by 8 mmHg (-15 to -1; P < 0.001) did not prevent an increase in ScO2 by 2 % (-1 to 4; P < 0.001) as EtCO2 increased 0.5 kPa (0.1-1.0; P < 0.001) despite an increase in ventilation by 1.8 l min(-1) (0.9-2.7; P < 0.001). Changes in ScO2 related to those in EtCO2 (r = 0.41; P = 0.0001) and cerebral deoxygenation (-15 %) was noted in three patients while cerebral hyperoxygenation (+15 %) manifests in one patient. Thus changes in ScO2 were kept within acceptable limits (±15 %) in 91 % of the patients. For the majority of the patients undergoing AAA repair ScO2 was kept within reasonable limits by reducing ventilation by approximately 1 l min(-1) upon clamping of the aorta and increasing ventilation by approximately 2 l min(-1) when the lower body is reperfused. PMID:26141676

  13. Surface Tension

    SciTech Connect

    2011-01-01

    Surface tension in the kitchen sink. At Berkeley Lab's Molecular Foundry, scientists study surface tension to understand how molecules "self-assemble." The coin trick in the video uses the re-arrangement of water molecules to seemingly create order out of disorder. The same principle can be used to create order in otherwise hard-to-handle nano materials. Scientists can then transfer these ordered materials onto surfaces by dipping them through the air-water interface, or (as we've recently shown) squeeze them so that they collapse into the water as two-molecule-thick nano sheets. http://newscenter.lbl.gov/feature-stories/2011/10/17/shaken-not-stirred/

  14. Functional Oxygen Sensitivity of Astrocytes

    PubMed Central

    Angelova, Plamena R.; Kasymov, Vitaliy; Christie, Isabel; Sheikhbahaei, Shahriar; Turovsky, Egor; Marina, Nephtali; Korsak, Alla; Zwicker, Jennifer; Teschemacher, Anja G.; Ackland, Gareth L.; Funk, Gregory D.; Kasparov, Sergey; Abramov, Andrey Y.

    2015-01-01

    In terrestrial mammals, the oxygen storage capacity of the CNS is limited, and neuronal function is rapidly impaired if oxygen supply is interrupted even for a short period of time. However, oxygen tension monitored by the peripheral (arterial) chemoreceptors is not sensitive to regional CNS differences in partial pressure of oxygen (PO2) that reflect variable levels of neuronal activity or local tissue hypoxia, pointing to the necessity of a functional brain oxygen sensor. This experimental animal (rats and mice) study shows that astrocytes, the most numerous brain glial cells, are sensitive to physiological changes in PO2. Astrocytes respond to decreases in PO2 a few millimeters of mercury below normal brain oxygenation with elevations in intracellular calcium ([Ca2+]i). The hypoxia sensor of astrocytes resides in the mitochondria in which oxygen is consumed. Physiological decrease in PO2 inhibits astroglial mitochondrial respiration, leading to mitochondrial depolarization, production of free radicals, lipid peroxidation, activation of phospholipase C, IP3 receptors, and release of Ca2+ from the intracellular stores. Hypoxia-induced [Ca2+]i increases in astrocytes trigger fusion of vesicular compartments containing ATP. Blockade of astrocytic signaling by overexpression of ATP-degrading enzymes or targeted astrocyte-specific expression of tetanus toxin light chain (to interfere with vesicular release mechanisms) within the brainstem respiratory rhythm-generating circuits reveals the fundamental physiological role of astroglial oxygen sensitivity; in low-oxygen conditions (environmental hypoxia), this mechanism increases breathing activity even in the absence of peripheral chemoreceptor oxygen sensing. These results demonstrate that astrocytes are functionally specialized CNS oxygen sensors tuned for rapid detection of physiological changes in brain oxygenation. SIGNIFICANCE STATEMENT Most, if not all, animal cells possess mechanisms that allow them to detect

  15. Functional Oxygen Sensitivity of Astrocytes.

    PubMed

    Angelova, Plamena R; Kasymov, Vitaliy; Christie, Isabel; Sheikhbahaei, Shahriar; Turovsky, Egor; Marina, Nephtali; Korsak, Alla; Zwicker, Jennifer; Teschemacher, Anja G; Ackland, Gareth L; Funk, Gregory D; Kasparov, Sergey; Abramov, Andrey Y; Gourine, Alexander V

    2015-07-22

    In terrestrial mammals, the oxygen storage capacity of the CNS is limited, and neuronal function is rapidly impaired if oxygen supply is interrupted even for a short period of time. However, oxygen tension monitored by the peripheral (arterial) chemoreceptors is not sensitive to regional CNS differences in partial pressure of oxygen (PO2 ) that reflect variable levels of neuronal activity or local tissue hypoxia, pointing to the necessity of a functional brain oxygen sensor. This experimental animal (rats and mice) study shows that astrocytes, the most numerous brain glial cells, are sensitive to physiological changes in PO2 . Astrocytes respond to decreases in PO2 a few millimeters of mercury below normal brain oxygenation with elevations in intracellular calcium ([Ca(2+)]i). The hypoxia sensor of astrocytes resides in the mitochondria in which oxygen is consumed. Physiological decrease in PO2 inhibits astroglial mitochondrial respiration, leading to mitochondrial depolarization, production of free radicals, lipid peroxidation, activation of phospholipase C, IP3 receptors, and release of Ca(2+) from the intracellular stores. Hypoxia-induced [Ca(2+)]i increases in astrocytes trigger fusion of vesicular compartments containing ATP. Blockade of astrocytic signaling by overexpression of ATP-degrading enzymes or targeted astrocyte-specific expression of tetanus toxin light chain (to interfere with vesicular release mechanisms) within the brainstem respiratory rhythm-generating circuits reveals the fundamental physiological role of astroglial oxygen sensitivity; in low-oxygen conditions (environmental hypoxia), this mechanism increases breathing activity even in the absence of peripheral chemoreceptor oxygen sensing. These results demonstrate that astrocytes are functionally specialized CNS oxygen sensors tuned for rapid detection of physiological changes in brain oxygenation. Significance statement: Most, if not all, animal cells possess mechanisms that allow them to

  16. Physiological energetics of the fourth instar of Chinese horseshoe crabs (Tachypleus tridentatus) in response to hypoxic stress and re-oxygenation.

    PubMed

    Shin, Paul K S; Chan, Cathy S K; Cheung, S G

    2014-08-30

    Hypoxia associated with eutrophication is a potential threat to the Chinese horseshoe crab Tachypleus tridentatus which inhabits intertidal sand flats in Asia. This study investigated the effect of dissolved oxygen level (DO) (6, 4 and 2 mg O2 l(-1)) on the physiological energetics in the juvenile T. tridentatus. They were exposed to various oxygen levels for three days and then transferred to normoxia for three days to examine the recovery from low oxygen stress. Feeding rate, respiration rate and scope for growth were reduced at lower DO levels while absorption efficiency and excretion rate were independent of DO levels. Although full recovery of the physiological responses and scope for growth from hypoxis stress was observed when normoxia resumed, their long term survival in suboptimal habitats with frequent occurrence of hypoxia deserves a close monitoring as hypoxia may be even more common in future in a warming world. PMID:24215995

  17. Physiological and clinical aspects of apnea diving.

    PubMed

    Muth, Claus-Martin; Ehrmann, Ulrich; Radermacher, Peter

    2005-09-01

    Apnea diving is a fascinating example of applied physiology. The record for apnea diving as an extreme sport is 171 meters, 8:58 minutes. The short time beneath the surface induces profound cardiovascular and respiratory effects. Variations of blood-gas tensions result from the interaction of metabolism and the rapid sequence of compression and decompression. Decompression sickness is possible. Apnea divers can reach depths beyond the theoretic physiologic limit by using the lung-packing maneuver. Apnea divers exhibit a fall in heart rate, which can be trained and is an oxygen-conserving effect, but increases the incidence of ventricular arrhythmia. PMID:16140133

  18. The Reactivity of Polymersome Encapsulated Hemoglobin with Physiologically Important Gaseous Ligands: Oxygen, Carbon Monoxide and Nitric Oxide.

    PubMed

    Rameez, Shahid; Banerjee, Uddyalok; Fontes, Jorge; Roth, Alexander; Palmer, Andre F

    2012-03-13

    Two distinct preparations of amphiphilic diblock copolymer vesicles (i.e. polymersomes), composed of (poly(ethylene oxide)-poly(butadiene)) (PEO-PBD), with molecular weights of 1.8 kDa and 10.4 kDa, offering different hydrophobic membrane thicknesses, were used to encapsulate the oxygen (O(2)) storage and transport protein hemoglobin (Hb) for possible application as a red blood cell (RBC) substitute. Key biophysical properties as well as the kinetics of polymersome encapsulated Hb (PEH) interaction with physiologically important gaseous ligands (O(2), carbon monoxide and nitric oxide) were measured as a function of the hydrophobic membrane thickness of the PEH particle. Taken together, the results of this work show that PEHs exhibit biophysical properties and retarded ligand binding/release kinetics (compared to cell-free Hb), which are similar to the behavior of RBCs. Therefore, PEHs have the potential to serve as safe and efficacious RBC substitutes for use in transfusion medicine. PMID:22865934

  19. Effect of dissolved oxygen on swimming ability and physiological response to swimming fatigue of whiteleg shrimp (Litopenaeus vannamei)

    NASA Astrophysics Data System (ADS)

    Duan, Yan; Zhang, Xiumei; Liu, Xuxu; Thakur, Dhanrajsingh N.

    2013-11-01

    The swimming endurance of whiteleg shrimp (Litopenaeus vannamei, 87.66 mm ± 0.25 mm, 7.73 g ± 0.06 g) was examined at various concentrations of dissolved oxygen (DO, 1.9, 3.8, 6.8 and 13.6 mg L-1) in a swimming channel against one of the five flow velocities (v 1, v 2, v 3, v 4 and v 5). Metabolite contents in the plasma, hepatopancreas and pleopods muscle of the shrimp were quantified before and after swimming fatigue. The results revealed that the swimming speed and DO concentration were significant factors that affected the swimming endurance of L. vannamei. The relationship between swimming endurance and swimming speed at various DO concentrations can be described by the power model (ν·t b = a). The relationship between DO concentration (mg L-1) and the swimming ability index (SAI), defined as SAI = Σ{0/9000} vdt(cm), can be described as SAI = 27.947 DO0.137 (R 2 = 0.9312). The level of DO concentration directly affected the physiology of shrimp, and exposure to low concentrations of DO led to the increases in lactate and energetic substrate content in the shrimp. In responding to the low DO concentration at 1.9 mg L-1 and the swimming stress, L. vannamei exhibited a mix of aerobic and anaerobic metabolism to satisfy the energetic demand, mainly characterized by the utilization of total protein and glycogen and the production of lactate and glucose. Fatigue from swimming led to severe loss of plasma triglyceride at v 1, v 2, and v 3 with 1.9 mg L-1 DO, and at v 1 with 3.8, 6.8 and 13.6 mg L-1 DO, whereas the plasma glucose content increased significantly at v 3, v 4 and v 5 with 3.8 and 6.8 mg L-1 DO, and at v 5 with 13.6 mg L-1 DO. The plasma total protein and hepatopancreas glycogen were highly depleted in shrimp by swimming fatigue at various DO concentrations, whereas the plasma lactate accumulated at high levels after swimming fatigue at different velocities. These results were of particular value to understanding the locomotory ability of whiteleg

  20. Tension Structure

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The fabric structure pictured is the Campus Center of La Verne College, La Verne, California. Unlike the facilities shown on the preceding pages, it is not air-supported. It is a "tension structure," its multi-coned fabric membrane supported by a network of cables attached to steel columns which function like circus tent poles. The spider-web in the accompanying photo is a computer graph of the tension pattern. The designers, Geiger-Berger Associates PC, of New York City, conducted lengthy computer analysis to determine the the best placement of columns and cables. The firm also served as structural engineering consultant on the Pontiac Silverdome and a number of other large fabric structures. Built by Birdair Structures, Inc., Buffalo, New York, the La Verne Campus Center was the first permanent facility in the United States enclosed by the space-spinoff fabric made of Owens-Corning Beta fiber glass coated with Du Pont Teflon TFE. The flexible design permits rearrangement of the interior to accommodate athletic events, student activities, theatrical productions and other recreational programs. Use of fabric covering reduced building cost 30 percent below conventional construction.

  1. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots.

    PubMed

    Xu, Jia; Duan, Xiaoguang; Yang, Jun; Beeching, John R; Zhang, Peng

    2013-03-01

    Postharvest physiological deterioration (PPD) of cassava (Manihot esculenta) storage roots is the result of a rapid oxidative burst, which leads to discoloration of the vascular tissues due to the oxidation of phenolic compounds. In this study, coexpression of the reactive oxygen species (ROS)-scavenging enzymes copper/zinc superoxide dismutase (MeCu/ZnSOD) and catalase (MeCAT1) in transgenic cassava was used to explore the intrinsic relationship between ROS scavenging and PPD occurrence. Transgenic cassava plants integrated with the expression cassette p54::MeCu/ZnSOD-35S::MeCAT1 were confirmed by Southern-blot analysis. The expression of MeCu/ZnSOD and MeCAT1 was verified by quantitative reverse transcription-polymerase chain reaction and enzymatic activity analysis both in the leaves and storage roots. Under exposure to the ROS-generating reagent methyl viologen or to hydrogen peroxide (H2O2), the transgenic plants showed higher enzymatic activities of SOD and CAT than the wild-type plants. Levels of malondialdehyde, chlorophyll degradation, lipid peroxidation, and H2O2 accumulation were dramatically reduced in the transgenic lines compared with the wild type. After harvest, the storage roots of transgenic cassava lines show a delay in their PPD response of at least 10 d, accompanied by less mitochondrial oxidation and H2O2 accumulation, compared with those of the wild type. We hypothesize that this is due to the combined ectopic expression of Cu/ZnSOD and CAT leading to an improved synergistic ROS-scavenging capacity of the roots. Our study not only sheds light on the mechanism of the PPD process but also develops an effective approach for delaying the occurrence of PPD in cassava. PMID:23344905

  2. The effects of cosmic Particle radiation on pocket mice aboard Apollo XVII: V. Preflight studies on tolerance of pocket mice to oxygen and heat. Part I. physiological studies.

    PubMed

    Leon, H A; Suri, K; McTigue, M; Smith, J; Cooper, W; Miquel, J; Ashley, W W; Behnke, A R; Saunders, J F

    1975-04-01

    Tests were carried out on pocket mice to ascertain their tolerance to elevated oxygen pressures alone and to a combination of hyperoxta and heat in excess of that expected during the flight of the mice on Apollo XVII. the mice withstood oxygen partial pressures up to 12 pst at normal room temperature (24 degrees C, 75 degrees F) over a period of 7 days. A few mice previously exposed to increased PO2 died in the course of exposure to an oxygen pressure of 10 pst or 12 psi (517 mm or 620 mm Hg) for 13 d in ambient heat of 32 degrees C (90 degrees F). Supplemental vitamin E and physiological saline loading given prior to exposure had no apparent protective effect. The overall conclusion was that the pocket mice which were to go on Apollo XVII could readily survive the ambient atmosphere to which they would be exposed. PMID:1156267

  3. Physiological roles of the light, oxygen, or voltage domains of phototropin 1 and phototropin 2 in Arabidopsis.

    PubMed

    Cho, Hae-Young; Tseng, Tong-Seung; Kaiserli, Eirini; Sullivan, Stuart; Christie, John M; Briggs, Winslow R

    2007-01-01

    Phototropins (phot1 and phot2) are plant blue-light receptors that mediate phototropism, chloroplast movement, stomatal opening, rapid inhibition of growth of etiolated seedlings, and leaf expansion in Arabidopsis (Arabidopsis thaliana). Their N-terminal region contains two light, oxygen, or voltage (LOV) domains, which bind flavin mononucleotide and form a covalent adduct between a conserved cysteine and the flavin mononucleotide chromophore upon photoexcitation. The C-terminal region contains a serine/threonine kinase domain that catalyzes blue-light-activated autophosphorylation. Here, we have transformed the phot1 phot2 (phot1-5 phot2-1) double mutant with PHOT expression constructs driven by the cauliflower mosaic virus 35S promoter. These constructs encode either wild-type phototropin or phototropin with one or both LOV-domain cysteines mutated to block their photochemistry. We selected multiple lines in each of the eight resulting categories of transformants for further physiological analyses. Specifically, we investigated whether LOV1 and LOV2 serve the same or different functions for phototropism and leaf expansion. Our results show that the LOV2 domain of phot1 plays a major role in phototropism and leaf expansion, as does the LOV2 domain of phot2. No complementation of phototropism or leaf expansion was observed for the LOV1 domain of phot1. However, phot2 LOV1 was unexpectedly found to complement phototropism to a considerable level. Similarly, transformants carrying a PHOT transgene with both LOV domains inactivated developed strong curvatures toward high fluence rate blue light. However, we found that the phot2-1 mutant is leaky and produces a small level of full-length phot2 protein. In vitro experiments indicate that cross phosphorylation can occur between functional phot2 and inactivated phot1 molecules. Such a mechanism may occur in vivo and therefore account for the functional activities observed in the PHOT transgenics with both lov domains

  4. Continuous measurement of oxygen tensions in the air-breathing organ of Pacific tarpon (Megalops cyprinoides) in relation to aquatic hypoxia and exercise.

    PubMed

    Seymour, Roger S; Farrell, Anthony P; Christian, Keith; Clark, Timothy D; Bennett, Michael B; Wells, Rufus M G; Baldwin, John

    2007-07-01

    The Pacific tarpon is an elopomorph teleost fish with an air-breathing organ (ABO) derived from a physostomous gas bladder. Oxygen partial pressure (PO(2)) in the ABO was measured on juveniles (238 g) with fiber-optic sensors during exposure to selected aquatic PO(2) and swimming speeds. At slow speed (0.65 BL s(-1)), progressive aquatic hypoxia triggered the first breath at a mean PO(2) of 8.3 kPa. Below this, opercular movements declined sharply and visibly ceased in most fish below 6 kPa. At aquatic PO(2) of 6.1 kPa and swimming slowly, mean air-breathing frequency was 0.73 min(-1), ABO PO(2) was 10.9 kPa, breath volume was 23.8 ml kg(-1), rate of oxygen uptake from the ABO was 1.19 ml kg(-1) min(-1), and oxygen uptake per breath was 2.32 ml kg(-1). At the fastest experimental speed (2.4 BL s(-1)) at 6.1 kPa, ABO oxygen uptake increased to about 1.90 ml kg(-1) min(-1), through a variable combination of breathing frequency and oxygen uptake per breath. In normoxic water, tarpon rarely breathed air and apparently closed down ABO perfusion, indicated by a drop in ABO oxygen uptake rate to about 1% of that in hypoxic water. This occurred at a wide range of ABO PO(2) (1.7-26.4 kPa), suggesting that oxygen level in the ABO was not regulated by intrinsic receptors. PMID:17387483

  5. Limiting factors to oxygen transport on Mount Everest 30 years after: a critique of Paolo Cerretelli's contribution to the study of altitude physiology.

    PubMed

    Ferretti, Guido

    2003-10-01

    In 1976, Paolo Cerretelli published an article entitled "Limiting factors to oxygen transport on Mount Everest" in the Journal of Applied Physiology. The paper demonstrated the role of cardiovascular oxygen transport in limiting maximal oxygen consumption (VO2max). In agreement with the predominant view of VO2max limitation at that time, however, its results were taken to mean that cardiovascular oxygen transport does not limit VO2max at altitude. So it was argued that the limiting factor could be in the periphery, and muscle blood flow was proposed as a possible candidate. Despite this suggestion, the conclusion generated a series of papers on muscle structural characteristics. These experiments demonstrated a loss of muscle oxidative capacity in chronic hypoxia, and thus provided an unambiguous refutation of the then widespread hypothesis that an increased muscle oxidative capacity is needed at altitude to compensate for the lack of oxygen. This analysis is followed by a short account of Cerretelli's more recent work, with a special attention to the subject of the so-called "lactate paradox". PMID:14530980

  6. Low-oxygen tensions found in Salmonella-infected gut tissue boost Salmonella replication in macrophages by impairing antimicrobial activity and augmenting Salmonella virulence.

    PubMed

    Jennewein, Jonas; Matuszak, Jasmin; Walter, Steffi; Felmy, Boas; Gendera, Kathrin; Schatz, Valentin; Nowottny, Monika; Liebsch, Gregor; Hensel, Michael; Hardt, Wolf-Dietrich; Gerlach, Roman G; Jantsch, Jonathan

    2015-12-01

    In Salmonella infection, the Salmonella pathogenicity island-2 (SPI-2)-encoded type three secretion system (T3SS2) is of key importance for systemic disease and survival in host cells. For instance, in the streptomycin-pretreated mouse model SPI-2-dependent Salmonella replication in lamina propria CD11c(-)CXCR1(-) monocytic phagocytes/macrophages (MΦ) is required for the development of colitis. In addition, containment of intracellular Salmonella in the gut critically depends on the antimicrobial effects of the phagocyte NADPH oxidase (PHOX), and possibly type 2 nitric oxide synthase (NOS2). For both antimicrobial enzyme complexes, oxygen is an essential substrate. However, the amount of available oxygen upon enteroinvasive Salmonella infection in the gut tissue and its impact on Salmonella-MΦ interactions was unknown. Therefore, we measured the gut tissue oxygen levels in a model of Salmonella enterocolitis using luminescence two-dimensional in vivo oxygen imaging. We found that gut tissue oxygen levels dropped from ∼78 Torr (∼11% O2) to values of ∼16 Torr (∼2% O2) during infection. Because in vivo virulence of Salmonella depends on the Salmonella survival in MΦ, Salmonella-MΦ interaction was analysed under such low oxygen values. These experiments revealed an increased intracellular replication and survival of wild-type and t3ss2 non-expressing Salmonella. These findings were paralleled by blunted nitric oxide and reactive oxygen species (ROS) production and reduced Salmonella ROS perception. In addition, hypoxia enhanced SPI-2 transcription and translocation of SPI-2-encoded virulence protein. Neither pharmacological blockade of PHOX and NOS2 nor impairment of T3SS2 virulence function alone mimicked the effect of hypoxia on Salmonella replication under normoxic conditions. However, if t3ss2 non-expressing Salmonella were used, hypoxia did not further enhance Salmonella recovery in a PHOX and NOS2-deficient situation. Hence, these data suggest that

  7. Growth and physiological responses of neotropical mangrove seedlings to root zone hypoxia.

    PubMed

    McKee, Karen L.

    1996-01-01

    Seedlings of Rhizophora mangle L., Avicennia germinans (L.) Stearn., and Laguncularia racemosa (L.) Gaertn. f. were cultured in aerated or N(2)-purged solution for 12 weeks to assess their relative responses to low oxygen tensions. All three species responded to low oxygen treatment by modifying physiological and morphological patterns to decrease carbon loss by root respiration. However, the extent to which seedling physiology and morphology were altered by low oxygen treatment differed among species. Maintenance of root oxygen concentrations, root respiration rates and root extension rates by R. mangle demonstrated an ability to avoid low oxygen stress with minimal changes in root morphology and physiology. In contrast, oxygen concentrations in A. germinans and L. racemosa roots declined from 16 to 5% or lower within 6 h of treatment. Root hypoxia led to significant decreases in respiration rates of intact root systems (31 and 53% below controls) and root extension rates (38 and 76% below controls) by A. germinans and L. racemosa, respectively, indicating a greater vulnerability of these species to low oxygen tensions in the root zone compared with R. mangle. I conclude that the relative performance of mangrove seedlings growing in anaerobic soils is influenced by interspecific differences in root aeration and concomitant effects on root morphology and physiology. PMID:14871780

  8. Physiologic effects of transfusing red blood cells with high or low affinity for oxygen to passively hyperventilated, anemic baboons: systemic and cerebral oxygen extraction.

    PubMed Central

    Valeri, C R; Rorth, M; Zaroulis, C G; Jakubowski, M S; Vescera, S V

    1975-01-01

    Anemic, passively hyperventilated baboons were given preserved red blood cells either with increased or with slightly reduced affinity for oxygen to restore the red cell volume. In the high affinity group there was a 50% increase in cerebral blood flow immediately after the transfusion, but there was no significant change in the low affinity group. The cardiac output decreased slightly in the low affinity group, and increased slightly but insignificantly in the high affinity group. Two hours after transfusion the cerebral blood flow had returned to normal in the high affinity group. In both groups there was a decrease in arterial blood pH and an increase in Po2 in blood from the pulmonary artery and the jugular vein after transfusion. A 40% restoration of the 2,3 DPG level occurred within 4 hours of the transfusion of red cells with high affinity for oxygen, and this rapid increase was associated with increases in blood pH and inorganic phosphorus levels. Preserved red cells with high affinity for oxygen and low 2, 3 DPG levels significantly increased the cerebral circulation during the 2-hour posttransfusion period. These findings lend support to the recommendation that preserved red cells with normal or elevated 2,3 DPG levels be administered to patients in hemorrhagic or septic shock, and to patients subjected to extracorporeal circulation during cardiac surgery in order to lessen the demand for increased blood flow and to ensure adequate tissue oxygenation during the postoperative period. PMID:1119857

  9. Micro-scale morphology and texture of biogenic iron oxide mats provide a physical record of microbial physiology and oxygen conditions

    NASA Astrophysics Data System (ADS)

    Krepski, S. T.; Hredzak-showalter, T.; Luther, G. W.; Chan, C. S.

    2011-12-01

    The ability of certain bacteria to deposit Fe oxide minerals has long been recognized. However, we are only beginning to gain greater insights into the physiology and mechanisms of microbial Fe(II) oxidation and biomineralization, due to a small but growing number of isolates and studies on Fe(II)-oxidizing bacteria (FeOB). We recently isolated a novel microaerophilic FeOB, Betaproteobacterium Gallionellales strain R-1 (Genbank accession number JN377592) from a freshwater Fe seep in Newark, Delaware, USA. Much like Gallionella ferruginea (93.6% 16S gene sequence similarity), this organism is a bean-shaped cell that forms mineralized extracellular Fe twisted stalks. Strain R-1 shows remarkable physiologic and morphological similarity to the marine Zetaproteobacterium FeOB Mariprofundus ferrooxydans, despite being distantly related. We use M. ferrooxydans and strain R-1 as model organisms to study microbial Fe biomineralization and link the formation of microbial Fe oxide mats to environmental conditions and FeOB physiology. To accomplish this, we construct flat glass microslide growth chambers, used in conjunction with solid-state voltammetric microelectrodes to measure the chemistry of FeOB microenvironments in situ while studying undisturbed microbial growth, motility, and mineral formation. The development of microbial Fe oxide bands (analogs of mats) begins when cells attach to a surface and deposit minerals. In low-oxygen zones of redox gradients, formed in part by microbial respiration, the bacteria converge into a narrow, mineralized growth band. Filaments orient directionally, as quantified with ArcGIS, towards increasing oxygen, and display uniquely biological characteristics such as branching and a narrow range of widths. Thus, the mineralized structures provide a physical record of FeOB physiology. Observations of putative filamentous Fe microfossils in thin section show that these characteristics can be preserved in the geologic record, even if some

  10. The effect of oxygen at physiological levels on the detection of free radical intermediates by electron paramagnetic resonance.

    PubMed

    Krishna, M C; Samuni, A

    1993-01-01

    It is well known that oxygen enhances the relaxation of free radical EPR probes through spin lattice and Heisenberg spin-spin interactions with consequent effect on the line height and width. The two relaxation processes have opposing effects on the signal heights and depend on the concentration of oxygen, the incident microwave power, and the presence of other paramagnetic species. During EPR studies of chemical, biochemical, and cellular processes involving free radicals, molecular oxygen has significant magnetic influence on the EPR signal intensity of the free radical species under investigation in addition to affecting the rates of production of the primary species and the stability of the spin adduct nitroxides. These effects are often overlooked and can cause artifacts and lead to erroneous interpretation. In the present study, the effects of oxygen and ferricyanide on the EPR signal height of stable and persistent spin adduct nitroxides at commonly employed microwave powers were examined. The results show that under commonly adopted EPR spectrometer instrumental conditions, artifactual changes in the EPR signal of spin adducts occur and the best way to avoid them is by keeping the oxygen level constant using a gas-permeable cell. PMID:8396553

  11. Oxygen Modulates Human Decidual Natural Killer Cell Surface Receptor Expression and Interactions with Trophoblasts1

    PubMed Central

    Wallace, Alison E.; Goulwara, Sonu S.; Whitley, Guy S.; Cartwright, Judith E.

    2014-01-01

    Decidual natural killer (dNK) cells have been shown to both promote and inhibit trophoblast behavior important for decidual remodeling in pregnancy and have a distinct phenotype compared to peripheral blood NK cells. We investigated whether different levels of oxygen tension, mimicking the physiological conditions of the decidua in early pregnancy, altered cell surface receptor expression and activity of dNK cells and their interactions with trophoblast. dNK cells were isolated from terminated first-trimester pregnancies and cultured in oxygen tensions of 3%, 10%, and 21% for 24 h. Cell surface receptor expression was examined by flow cytometry, and the effects of secreted factors in conditioned medium (CM) on the trophoblast cell line SGHPL-4 were assessed in vitro. SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 10% were significantly more invasive (P < 0.05) and formed endothelial-like networks to a greater extent (P < 0.05) than SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 3% or 21%. After 24 h, a lower percentage of dNK cells expressed CD56 at 21% oxygen (P < 0.05), and an increased percentage of dNK cells expressed NKG2D at 10% oxygen (P < 0.05) compared to other oxygen tensions, with large patient variation. This study demonstrates dNK cell phenotype and secreted factors are modulated by oxygen tension, which induces changes in trophoblast invasion and endovascular-like differentiation. Alterations in dNK cell surface receptor expression and secreted factors at different oxygen tensions may represent regulation of function within the decidua during the first trimester of pregnancy. PMID:25232021

  12. The influence of different space-related physiological variations on exercise capacity determined by oxygen uptake kinetics

    NASA Astrophysics Data System (ADS)

    Stegemann, J.

    Oxygen uptake kinetics, following defined variations of work load changes allow to estimate the contribution of aerob and anaerob energy supply which is the base for determining work capacity. Under the aspect of long duration missions with application of adequate dosed countermeasures, a reliable estimate of the astronaut's work capacity is important to adjust the necessary inflight training. Since the kinetics of oxygen uptake originate in the working muscle group itself, while measurements are performed at the mouth, various influences within the oxygen transport system might disturb the determinations. There are not only detraining effects but also well-known other influences, such as blood- and fluid shifts induced by weightlessness. They might have an impact on the circulatory system. Some of these factors have been simulated by immersion, blood donation, and changing of the body position.

  13. A physiological pattern of oxygenation using perfluorocarbon-based culture devices maximizes pancreatic islet viability and enhances β-cell function.

    PubMed

    Fraker, Chris A; Cechin, Sirlene; Álvarez-Cubela, Silvia; Echeverri, Felipe; Bernal, Andrés; Poo, Ramón; Ricordi, Camillo; Inverardi, Luca; Domínguez-Bendala, Juan

    2013-01-01

    Conventional culture vessels are not designed for physiological oxygen (O2) delivery. Both hyperoxia and hypoxia-commonly observed when culturing cells in regular plasticware-have been linked to reduced cellular function and death. Pancreatic islets, used for the clinical treatment of diabetes, are especially sensitive to sub- and supraphysiological O2 concentrations. A result of current culture standards is that a high percentage of islet preparations are never transplanted because of cell death and loss of function in the 24-48 h postisolation. Here, we describe a new culture system designed to provide quasiphysiological oxygenation to islets in culture. The use of dishes where islets rest atop a perfluorocarbon (PFC)-based membrane, coupled with a careful adjustment of environmental O2 concentration to target the islet physiological pO2 range, resulted in dramatic gains in viability and function. These observations underline the importance of approximating culture conditions as closely as possible to those of the native microenvironment, and fill a widely acknowledged gap in our ability to preserve islet functionality in vitro. As stem cell-derived insulin-producing cells are likely to suffer from the same limitations as those observed in real islets, our findings are especially timely in the context of current efforts to define renewable sources for transplantation. PMID:23068091

  14. Development to the blastocyst stage, the oxidative state, and the quality of early developmental stage of porcine embryos cultured in alteration of glucose concentrations in vitro under different oxygen tensions

    PubMed Central

    Karja, Ni Wayan Kurniani; Kikuchi, Kazuhiro; Fahrudin, Mokhamad; Ozawa, Manabu; Somfai, Tamás; Ohnuma, Katsuhiko; Noguchi, Junko; Kaneko, Hiroyuki; Nagai, Takashi

    2006-01-01

    Background Recent work has shown that glucose may induce cell injury through the action of free radicals generated by autooxidation or through hypoxanthine phosphoribosyltransferase inhibition. The effect of glucose during early in vitro culture (IVC) period of porcine embryos on their developmental competence, contents of reactive oxygen species (ROS) and glutathione (GSH), and the quality of the blastocysts yielded was examined. Methods In vitro matured and fertilized porcine oocytes were cultured for the first 2 days (Day 0 = day of fertilization) of IVC in NCSU-37 added with 1.5 to 20 mM glucose (Gluc-1.5 to -20 groups) or pyruvate and lactate (Pyr-Lac group). The embryos in all groups were cultured subsequently until Day 6 in NCSU-37 with 5.5 mM added glucose. The ROS and GSH level were measured at Day 1 and 2. DNA-fragmented nuclei and the total cell numbers in blastocyst were evaluated by TUNEL-staining at Day 6. Results Under 5% oxygen the blastocyst rates and total cell numbers in the blastocysts in all glucose groups were significantly lower than that in the Pyr-Lac group. Similar result in blastocyst rate was found under 20% oxygen (excluding the Gluc-10 group), but total cell numbers in the blastocysts was similar among the groups. At both oxygen tensions, the H2O2 levels of Day 1 embryos in all glucose groups were significantly higher than that in the Pyr-Lac group, while only the Gluc-1.5 group of Day 2 embryos showed a significantly higher H2O2 level than that in the Pyr-Lac group. The GSH contents of either Day 1 or Day 2 embryos developed under 5% oxygen were similar among the groups. Only the content of Day 2 embryos in 1.5 mM group was significantly lower than the embryos in the Pyr-Lac group under 20% oxygen. Total cell numbers in the blastocysts (except in the Gluc-20 group) were significantly lower in the embryos cultured under 20% oxygen than 5% oxygen. Only the Gluc-20 blastocysts developed under 5% oxygen showed significantly higher DNA

  15. Intra-Operative Tissue Oxygen Tension Is Increased by Local Insufflation of Humidified-Warm CO2 during Open Abdominal Surgery in a Rat Model

    PubMed Central

    Marshall, Jean K.; Lindner, Pernilla; Tait, Noel; Maddocks, Tracy; Riepsamen, Angelique; van der Linden, Jan

    2015-01-01

    Introduction Maintenance of high tissue oxygenation (PtO2) is recommended during surgery because PtO2 is highly predictive of surgical site infection and colonic anastomotic leakage. However, surgical site perfusion is often sub-optimal, creating an obstructive hurdle for traditional, systemically applied therapies to maintain or increase surgical site PtO2. This research tested the hypothesis that insufflation of humidified-warm CO2 into the abdominal cavity would increase sub-peritoneal PtO2 during open abdominal surgery. Materials and Methods 15 Wistar rats underwent laparotomy under general anesthesia. Three sets of randomized cross-over experiments were conducted in which the abdominal cavity was subjected to alternating exposure to 1) humidified-warm CO2 & ambient air; 2) humidified-warm CO2 & dry-cold CO2; and 3) dry-cold CO2 & ambient air. Sub-peritoneal PtO2 and tissue temperature were measured with a polarographic oxygen probe. Results Upon insufflation of humidified-warm CO2, PtO2 increased by 29.8 mmHg (SD 13.3; p<0.001), or 96.6% (SD 51.9), and tissue temperature by 3.0°C (SD 1.7 p<0.001), in comparison with exposure to ambient air. Smaller, but significant, increases in PtO2 were seen in experiments 2 and 3. Tissue temperature decreased upon exposure to dry-cold CO2 compared with ambient air (-1.4°C, SD 0.5, p = 0.001). Conclusions In a rat model, insufflation of humidified-warm CO2 into the abdominal cavity during open abdominal surgery causes an immediate and potentially clinically significant increase in PtO2. The effect is an additive result of the delivery of CO2 and avoidance of evaporative cooling via the delivery of the CO2 gas humidified at body temperature. PMID:25835954

  16. Alterations of oxygen uptake and the redox state of ubiquinone in rabbit sperm exposed to a variety of physiologic treatments.

    PubMed

    Killian, G J; Gelerinter, E; Chapman, D A

    1985-11-01

    The rate of TEMPONE reduction by electrons originating from ubiquinone in intact rabbit spermatozoa was observed for control, high ionic strength (HIS) medium-treated, and HIS-seminal plasma-treated (HIS-SP) samples. The presence of TEMPONE in the incubation medium had no effect on oxygen consumption, demonstrating the utility of TEMPONE as a nonperturbing probe of the ubiquinol redox state. The rate of TEMPONE reduction was significantly increased over control levels for sperm incubated in hypertonic medium and was correlated to a decrease in oxygen consumption and a relative increase in ATP in the total adenine nucleotide pool. This increase in TEMPONE reduction in HIS sperm was reversed by treatment of sperm with seminal plasma, but seminal plasma had no effect on oxygen consumption or relative amounts of ATP in the adenine nucleotide pool. These observations are consistent with state 3 respiration in control sperm and state 4 respiration in HIS- and HIS-SP-treated sperm. Arrhenius data were obtained for ejaculated and epididymal sperm subjected to a variety of treatments. Lines fitted to plots of Arrhenius data revealed that each treatment affected the activation energy and intercept relative to controls. Evidence is presented for a phase transition occurring at 13 degrees C based on changes in the rate of TEMPONE reduction by ubiquinol. It was noted that, above the phase transition, rate constants for the reaction were dependent upon both treatment and temperature, but below the transition the differential effects of treatment were no longer apparent. The present study has demonstrated that events taking place in the respiratory chain can be closely monitored by measuring oxygen uptake and TEMPONE reduction, and that these events are affected by alterations in the sperm environment. PMID:4084632

  17. Skin tension related to tension reduction sutures.

    PubMed

    Hwang, Kun; Kim, Han Joon; Kim, Kyung Yong; Han, Seung Ho; Hwang, Se Jin

    2015-01-01

    The aim of this study was to compare the skin tension of several fascial/subcutaneous tensile reduction sutures. Six upper limbs and 8 lower limbs of 4 fresh cadavers were used. At the deltoid area (10 cm below the palpable acromion) and lateral thigh (midpoint from the palpable greater trochanter to the lateral border of the patella), and within a 3 × 6-cm fusiform area of skin, subcutaneous tissue defects were created. At the midpoint of the defect, a no. 5 silk suture was passed through the dermis at a 5-mm margin of the defect, and the defect was approximated. The initial tension to approximate the margins was measured using a tensiometer.The tension needed to approximate skin without any tension reduction suture (S) was 6.5 ± 4.6 N (Newton). The tensions needed to approximate superficial fascia (SF) and deep fascia (DF) were 7.8 ± 3.4 N and 10.3 ± 5.1 N, respectively. The tension needed to approximate the skin after approximating the SF was 4.1 ± 3.4 N. The tension needed to approximate the skin after approximating the DF was 4.9 ± 4.0 N. The tension reduction effect of approximating the SF was 38.8 ± 16.4% (2.4 ± 1.5 N, P = 0.000 [ANOVA, Scheffé]). The tension reduction effect of approximating the DF was 25.2% ± 21.9% (1.5 ± 1.4 N, P = 0.001 [ANOVA, Scheffé]). The reason for this is thought to be that the SF is located closely to the skin unlike the DF. The results of this study might be a basis for tension reduction sutures. PMID:25569413

  18. Demonstration of Surface Tension.

    ERIC Educational Resources Information Center

    Rosenthal, Andrew J.

    2001-01-01

    Surface tension is a fundamental obstacle in the spontaneous formation of bubbles, droplets, and crystal nuclei in liquids. Describes a simple overhead projector demonstration that illustrates the power of surface tension that can prevent so many industrial processes. (ASK)

  19. Microfluidic Array with Integrated Oxygenation Control for Real-Time Live-Cell Imaging: Effect of Hypoxia on Physiology of Microencapsulated Pancreatic Islets

    PubMed Central

    Nourmohammadzadeh, Mohammad; Lo, Joe F.; Bochenek, Matt; Mendoza-Elias, Joshua E.; Wang, Qian; Li, Ze; Zeng, Liyi; Qi, Merigeng; Eddington, David T.; Oberholzer, José; Wang, Yong

    2014-01-01

    In this report, we present a novel microfluidic islet array based on a hydrodynamic trapping principle. The lab-on-a-chip studies with live-cell multiparametric imaging allow understanding of physiological and pathophysiological changes of microencapsulated islets under hypoxic conditions. Using this microfluidic array and imaging analysis techniques, we demonstrate that hypoxia impairs the function of microencapsulated islets at single islet level, showing a heterogeneous pattern reflected in intracellular calcium signaling, mitochondrial energetic, and redox activity. Our approach demonstrates an improvement over conventional hypoxia chambers that is able to rapidly equilibrate to true hypoxia levels through the integration of dynamic oxygenation. This work demonstrates the feasibility of array-based cellular analysis and opens up new modality to conduct informative analysis and cell-based screening for microencapsulated pancreatic islets. PMID:24083835

  20. Microfluidic Platform Generates Oxygen Landscapes for Localized Hypoxic Activation

    PubMed Central

    Rexius, Megan L.; Mauleon, Gerardo; Malik, Asrar B.; Rehman, Jalees; Eddington, David T.

    2014-01-01

    An open-well microfluidic platform generates an oxygen landscape using gas-perfused networks which diffuse across a membrane. The device enables real-time analysis of cellular and tissue responses to oxygen tension to define how cells adapt to heterogeneous oxygen conditions found in the physiological setting. We demonstrate that localized hypoxic activation of cells elicited specific metabolic and gene responses in human microvascular endothelial cells and bone marrow-derived mesenchymal stem cells. A robust demonstration of the compatibility of the device with standard laboratory techniques demonstrates the wide utility of the method. This platform is ideally suited to study real-time cell responses and cell-cell interactions within physiologically relevant oxygen landscapes. PMID:25315003

  1. TLP marine riser tensioner

    SciTech Connect

    Peppel, G.W.

    1988-03-08

    A riser tensioner for use in maintaining a tension on a marine riser from a tension leg platform, the tension leg platform moving relative to the marine riser and the marine riser having a center line is described comprising: (a) an elastomeric assembly, adjustably deformable in pad shear, for maintaining the riser in tension during vertical movement of the platform relative to the riser, the elastomeric assembly having upper and lower ends; (b) a gimbal assembly for pivotally connecting the upper end of the elastomeric assembly to the tension leg platform to accommodate misalignment between the riser and the tension leg platform; (c) a base ring to which the lower end of the elastomeric assembly is secured; and (d) a collar, securely mounted on the riser, for resting within the base ring to connect the lower end of the elastomeric assembly to the riser.

  2. Managing tension headaches at home

    MedlinePlus

    Tension-type headache - self-care; Muscle contraction headache - self-care; Headache - benign - self-care; Headache - tension- self-care; Chronic headaches - tension - self-care; Rebound headaches - tension - self- ...

  3. Physiological significance of the slope of the regression equation between oxygen consumption and heart rate in exercise testing.

    PubMed

    Sunagawa, H; Honda, S; Mizoguchi, Y; Yoshii, K; Iwao, H

    1984-12-01

    The relationship between oxygen consumption (VO2) and heart rate (HR) was studied in 62 male children. Based on clinical evaluation and history, they were divided into three groups, i.e., athlete, ordinary and failed. There was a high linear correlation between HR and VO2 in each individual. The averaged values of the slope and standard deviations were 2.09 +/- 0.189 in the athlete group (n = 17), 2.60 +/- 0.140 in the ordinary group (n = 16) and 3.17 +/- 0.591 in the failed group (n = 29). The statistical differences were confirmed among the groups (p less than 0.005). The results suggested that the slope of the HR vs. VO2 relation was related to an inotropic state of cardiac function. We concluded that the slope was a more suitable and more direct evaluation of cardiac function during exercise. Moreover, the method was non-invasive and safe because it required no potentially hazardous maximum work load for the patients. PMID:6512949

  4. A quantitative method to monitor reactive oxygen species production by electron paramagnetic resonance in physiological and pathological conditions.

    PubMed

    Mrakic-Sposta, Simona; Gussoni, Maristella; Montorsi, Michela; Porcelli, Simone; Vezzoli, Alessandra

    2014-01-01

    The growing interest in the role of Reactive Oxygen Species (ROS) and in the assessment of oxidative stress in health and disease clashes with the lack of consensus on reliable quantitative noninvasive methods applicable. The study aimed at demonstrating that a recently developed Electron Paramagnetic Resonance microinvasive method provides direct evidence of the "instantaneous" presence of ROS returning absolute concentration levels that correlate with "a posteriori" assays of ROS-induced damage by means of biomarkers. The reliability of the choice to measure ROS production rate in human capillary blood rather than in plasma was tested (step I). A significant (P < 0.01) linear relationship between EPR data collected on capillary blood versus venous blood (R (2) = 0.95), plasma (R (2) = 0.82), and erythrocytes (R (2) = 0.73) was found. Then (step II) ROS production changes of various subjects' categories, young versus old and healthy versus pathological at rest condition, were found significantly different (range 0.0001-0.05 P level). The comparison of the results with antioxidant capacity and oxidative damage biomarkers concentrations showed that all changes indicating increased oxidative stress are directly related to ROS production increase. Therefore, the adopted method may be an automated technique for a lot of routine in clinical trials. PMID:25374651

  5. A Quantitative Method to Monitor Reactive Oxygen Species Production by Electron Paramagnetic Resonance in Physiological and Pathological Conditions

    PubMed Central

    Mrakic-Sposta, Simona; Gussoni, Maristella; Montorsi, Michela; Porcelli, Simone; Vezzoli, Alessandra

    2014-01-01

    The growing interest in the role of Reactive Oxygen Species (ROS) and in the assessment of oxidative stress in health and disease clashes with the lack of consensus on reliable quantitative noninvasive methods applicable. The study aimed at demonstrating that a recently developed Electron Paramagnetic Resonance microinvasive method provides direct evidence of the “instantaneous” presence of ROS returning absolute concentration levels that correlate with “a posteriori” assays of ROS-induced damage by means of biomarkers. The reliability of the choice to measure ROS production rate in human capillary blood rather than in plasma was tested (step I). A significant (P < 0.01) linear relationship between EPR data collected on capillary blood versus venous blood (R2 = 0.95), plasma (R2 = 0.82), and erythrocytes (R2 = 0.73) was found. Then (step II) ROS production changes of various subjects' categories, young versus old and healthy versus pathological at rest condition, were found significantly different (range 0.0001–0.05 P level). The comparison of the results with antioxidant capacity and oxidative damage biomarkers concentrations showed that all changes indicating increased oxidative stress are directly related to ROS production increase. Therefore, the adopted method may be an automated technique for a lot of routine in clinical trials. PMID:25374651

  6. Dietary and physiological controls on the hydrogen and oxygen isotope ratios of hair from mid-20th century indigenous populations.

    PubMed

    Bowen, Gabriel J; Ehleringer, James R; Chesson, Lesley A; Thompson, Alexandra H; Podlesak, David W; Cerling, Thure E

    2009-08-01

    A semimechanistic model has recently been proposed to explain observed correlations between the H and O isotopic composition of hair from modern residents of the USA and the isotopic composition of drinking water, but the applicability of this model to hair from non-USA and preglobalization populations is unknown. Here we test the model against data from hair samples collected during the 1930s-1950s from populations of five continents. Although C and N isotopes confirm that the samples represent a much larger range of dietary "space" than the modern USA residents, the model is able to reproduce the observed delta(2)H and delta(18)O values given reasonable adjustments to 2 model parameters: the fraction of dietary intake derived from locally produced foods and the fraction of keratin H fixed during the in vivo synthesis of amino acids. The model is most sensitive to the local dietary intake, which appears to constitute between 60% and 80% of diet among the groups sampled. The isotopic data are consistent with a trophic-level effect on protein H isotopes, which we suggest primarily reflects mixing of (2)H-enriched water and (2)H-depleted food H in the body rather than fractionation during biosynthesis. Samples from Inuit groups suggest that humans with marine-dominated diets can be identified on the basis of coupled delta(2)H and delta(18)O values of hair. These results indicate a dual role for H and O isotopic measurements of keratin, including both biological (diet, physiology) and environmental (geographic movement, paleoclimate) reconstruction. PMID:19235792

  7. Estimating venous admixture using a physiological simulator.

    PubMed

    Hardman, J G; Bedforth, N M

    1999-03-01

    Estimation of venous admixture in patients with impaired gas exchange allows monitoring of disease progression, efficacy of interventions and assessment of the optimal inspired oxygen fraction. A pulmonary artery catheter allows accurate measurement, although the associated risks preclude its use solely for estimation of venous admixture. Non-invasive methods require assumed values for physiological variables. Many of the required data (e.g. haemoglobin concentration (Hb), base excess, inspired oxygen fraction, arterial oxygen (PaO2) and carbon dioxide (PaCO2) tensions, temperature) are available routinely in the intensive therapy unit. We have compared a typical iso-shunt-style estimation of venous admixture (assuming Hb, base excess, PaCO2 and temperature), and estimation using the Nottingham physiology simulator (NPS), with measured data. When the arteriovenous oxygen content difference (CaO2-CvO2) was assumed to be 50 ml litre-1, the 95% limits of agreement (LA95%) for venous admixture using the NPS were -3.9 +/- 8.5% and using an iso-shunt-style calculation, -6.4 +/- 10.6%. CaO2-CvO2 was 41.1 ml litre-1 in the patients studied, consistent with previous studies in the critically ill. When CaO2-CvO2 was assumed to be 40 ml litre-1, LA95% values were 0.5 +/- 8.2% and -2.1 +/- 10.1%, respectively. PMID:10434813

  8. Photoinduced tension of polymers

    SciTech Connect

    Maerov, S.B.; Avakian, P.; Matheson, R.R. Jr.

    1984-09-01

    Photoirradiation of polymer films at constant length induced a fast tension reduction (time scale; seconds) followed by slow tension buildup (time scale: minutes). Immediately after irradiation, fast tension buildup was followed by slow tension decay. Cycles were repeatable without significant hysteresis loss. The amplitude of both phenomena are intensity-dependent in the ultraviolet-visible spectral regions; both phenomena are thermal rather than photochemical effects. Light-absorbing chromophores in the polymer structure, or in additives such as dyes, lead to absorption of light and internal conversion into heat. The classical, rapid thermal expansion (or contraction) on heating (or cooling) leads to the fast relaxation (or buildup) of tension. The elastic, entropic response of the sample with its longer relaxation time leads to slow buildup (or decay) of tension. Fast and slow responses are observed sequentially with film of extensively crosslinked Riston photopolymer resist or with Kapton polyimide film, whereas, in experiments with latex rubber, the rubbery behavior dominates.

  9. Bolt-Tension Sensor

    NASA Technical Reports Server (NTRS)

    Goldie, James H.; Bushko, Dariusz A.; Gerver, Michael J.

    1995-01-01

    In technique for measuring tensile force of bolt, specially fabricated magnetostrictive washer used as force transducer. Compact, portable inductive electronic sensor placed against washer to measure tension force. New system provides accurate, economical, and convenient way to measure bolt tension in field. Measurements on test assembly shows that tension can be measured to accuracy of about plus or minus 1 percent of load capacity of typical bolt.

  10. Physiology in Medicine: A physiologic approach to prevention and treatment of acute high-altitude illnesses.

    PubMed

    Luks, Andrew M

    2015-03-01

    With the growing interest in adventure travel and the increasing ease and affordability of air, rail, and road-based transportation, increasing numbers of individuals are traveling to high altitude. The decline in barometric pressure and ambient oxygen tensions in this environment trigger a series of physiologic responses across organ systems and over a varying time frame that help the individual acclimatize to the low oxygen conditions but occasionally lead to maladaptive responses and one or several forms of acute altitude illness. The goal of this Physiology in Medicine article is to provide information that providers can use when counseling patients who present to primary care or travel medicine clinics seeking advice about how to prevent these problems. After discussing the primary physiologic responses to acute hypoxia from the organ to the molecular level in normal individuals, the review describes the main forms of acute altitude illness--acute mountain sickness, high-altitude cerebral edema, and high-altitude pulmonary edema--and the basic approaches to their prevention and treatment of these problems, with an emphasis throughout on the physiologic basis for the development of these illnesses and their management. PMID:25539941

  11. Leadership Tensions and Dilemmas

    ERIC Educational Resources Information Center

    Edmunds, Bill; Mulford, Bill; Kendall, Diana; Kendall, Lawrie

    2008-01-01

    Results from the Tasmanian Successful School Principal Project (SSPP) survey concur with the four major leadership tensions and dilemmas identified in a background literature review. These tensions and dilemmas relate to internal/external control, ethic of care/responsibility, and an emphasis on professional/personal as well as…

  12. Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation.

    PubMed

    Wei, Helen Shinru; Kang, Hongyi; Rasheed, Izad-Yar Daniel; Zhou, Sitong; Lou, Nanhong; Gershteyn, Anna; McConnell, Evan Daniel; Wang, Yixuan; Richardson, Kristopher Emil; Palmer, Andre Francis; Xu, Chris; Wan, Jiandi; Nedergaard, Maiken

    2016-08-17

    Energy production in the brain depends almost exclusively on oxidative metabolism. Neurons have small energy reserves and require a continuous supply of oxygen (O2). It is therefore not surprising that one of the hallmarks of normal brain function is the tight coupling between cerebral blood flow and neuronal activity. Since capillaries are embedded in the O2-consuming neuropil, we have here examined whether activity-dependent dips in O2 tension drive capillary hyperemia. In vivo analyses showed that transient dips in tissue O2 tension elicit capillary hyperemia. Ex vivo experiments revealed that red blood cells (RBCs) themselves act as O2 sensors that autonomously regulate their own deformability and thereby flow velocity through capillaries in response to physiological decreases in O2 tension. This observation has broad implications for understanding how local changes in blood flow are coupled to synaptic transmission. PMID:27499087

  13. STEEL TRUSS TENSION RING SUPPORTING DOME ROOF. TENSION RING COVERED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STEEL TRUSS TENSION RING SUPPORTING DOME ROOF. TENSION RING COVERED BY ARCHITECTURAL FINISH. TENSION RING ROLLER SUPPORT AT COLUMN OBSCURED BY COLUMN COVERINGS. - Houston Astrodome, 8400 Kirby Drive, Houston, Harris County, TX

  14. Surface Tensions and Their Variations with Temperature and Impurities

    NASA Technical Reports Server (NTRS)

    Hardy, S. C.; Fine, J.

    1985-01-01

    The surface tensions in this work were determined using the sessile drop technique. This method is based on a comparison of the profile of a liquid drop with the profile calculated by solving the Young-Laplace equation. The comparison can be made in several ways; the traditional Bashforth-Adams procedure was used in conjunction with recently calculated drop shape tables which virtually eliminate interpolation errors. Although previous study has found little difference in measurements with pure and oxygen doped silicon, there is other evidence suggesting that oxygen in dilute concentrations severely depresses the surface tension of silicon. The surface tension of liquid silicon in purified argon atmospheres was measured. A temperature coefficient near -0.28 mJ/square meters K was found. The experiments show a high sensitivity of the surface tension to what is believed are low concentrations of oxygen. Thus one cannot rule out some effect of low levels of oxygen in the results. However, the highest surface tension values obtained in conditions which minimized the residual oxygen pressure are in good agreement with a previous measurement in pure hydrogen. Therefore, depression of the surface tension by oxygen is insignificant in these measurements.

  15. Managing tension headaches at home

    MedlinePlus

    Tension-type headache - self-care; Muscle contraction headache - self-care; Headache - benign - self-care; Headache - tension- self-care; Chronic headaches - tension - self-care; Rebound headaches - ...

  16. Echinococcal tension pneumothorax

    PubMed Central

    Bakir, Farhan; Al-Omeri, Muayyad M.

    1969-01-01

    Hydatid cyst is rarely mentioned among the causes of pneumothorax in text-books or monographs, especially those written in English. Five examples of tension pneumothorax secondary to ruptured hydatid cyst of the lung are reported: the mechanism of this tension effect and helpful diagnostic points are discussed. We think that surgical correction is the only satisfactory treatment of tension pneumothorax due to ruptured hydatid cyst: surgery is advocated in any suspected cyst as soon as it is discovered so as to avoid any such serious complication. Images PMID:5348321

  17. Managing the right tension.

    PubMed

    Dodd, Dominic; Favaro, Ken

    2006-12-01

    Of all the competing objectives every company faces, three pairs stand out: profitability versus growth, the short term versus the long term, and the whole organization versus the units. In each case, progress on one front usually comes at the expense of progress on the other. The authors researched the performance of more than 1000 companies worldwide over the past two decades and found that most struggle to succeed across the three tensions. From 1983 to 2003, for example, only 32% of these companies more often than not achieved positive profitability and revenue growth at the same time. The problem, the authors discovered, is not so much that managers don't recognize the tensions--those are all too familiar to anyone who has ever run a business. Rather, it is that managers frequently don't focus on the tension that matters most to their company. Even when they do identify the right tension, they usually make the mistake of prioritizing a "lead" objective within it-for example, profitability over growth. As a result, companies often end up moving first in this direction, then in that, and then back again, never quite resolving the tension. The companies that performed best adopted a very different approach. Instead of setting a lead objective, they looked at how best to strengthen what the two sides of each tension have in common: For profitability and growth,the common bond is customer benefit; for the short term and the long, it is sustainable earnings; and for the whole and its parts, it is particular organizational resources and capabilities. The authors describe how companies can select the right tension, what traps they may fall into when they focus on one side over the other, and how to escape these traps by managing to the bonds between objectives. PMID:17183794

  18. Mitochondrial oxidative phosphorylation: tissue oxygen sensor for regulation of coronary flow.

    PubMed

    Nuutinen, E M; Wilson, D F; Erecińska, M

    1984-01-01

    The observation that mitochondrial oxidative phosphorylation in vivo is dependent on oxygen tension throughout the physiological range (Wilson et al., 1979a , 1979b ) has made this metabolic pathway the most probable candidate for the tissue oxygen sensor in the regulation of local blood flow. We have utilized the oxygen dependent regulatory system for coronary blood flow to examine this possibility. Alterations in coronary flow were induced by: 1. Varied work load; 2. Infusion of Amytal (an inhibitor of mitochondrial respiration); 3. Infusion of DNP; 4. Hypoxia. Increased work load caused increased coronary flow with no decrease in effluent oxygen tension while Amytal infusion and hypoxia caused vasodilation with increased and decreased O2 tension respectively. This indicates that oxygen tension per se cannot be responsible for the observed vasodilation. Tissue energy metabolism was evaluated by measuring metabolite levels in hearts which were freeze-clamped in each state of perfusion. In all four methods of vasodilation, a decrease in cellular energy state ratio ([ATP]f/[ADP]f[Pi]) expressed as the calculated ratio of free adenine nucleotides, was observed for conditions which increased flow. Systematic variation of work load, Amytal or DNP concentration resulted in quantitatively the same correlation between tissue [ATP]f/[ADP]f[Pi] and coronary flow. It is concluded that mitochondrial oxidative phosphorylation is the oxygen sensor for the regulation of coronary blood flow by tissue oxygen tension. Infusion of adenosine, a known coronary vasodilator, induced vasodilation which was completely blocked by theophylline.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6731096

  19. Normal-tension glaucoma (Low-tension glaucoma)

    PubMed Central

    Anderson, Douglas R

    2011-01-01

    Glaucoma is now considered an abnormal physiology in the optic nerve head that interacts with the level of intraocular pressure (IOP), with the degree and rate of damage depending on the IOP and presumably the degree of abnormal physiology. Diagnosis of normal-tension glaucoma (NTG), defined as glaucoma without a clearly abnormal IOP, depends on recognizing symptoms and signs associated with optic nerve vulnerability, in addition to absence of other explanations for disc abnormality and visual field loss. Among the findings are a halo or crescent of absence of retinal pigment epithelium around the disc, bilateral pre-chiasmal visual field defects, splinter hemorrhages at the disc margin, vascular dysregulation (low blood pressure, cold hands and feet, migraine headache with aura, and the like), or a family history of glaucoma. Possibly relevant, is a history of hemodynamic crisis, arterial obstructive disease, or sleep apnea. Neurological evaluation with imaging is needed only for atypical cases or ones that progress unexpectedly. Management follows the same principle of other chronic glaucomas, to lower the IOP by a substantial amount, enough to prevent disabling visual loss. However, many NTG cases are non-progressive. Therefore, it may often be wisein mild cases to determine whether the case is progressive and the rate of progression before deciding on how aggressivene to be with therapy. Efforts at neuroprotection and improvement in blood flow have not yet been shown effective. PMID:21150042

  20. Blood Vessel Tension Tester

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In the photo, a medical researcher is using a specially designed laboratory apparatus for measuring blood vessel tension. It was designed by Langley Research Center as a service to researchers of Norfolk General Hospital and Eastern Virginia Medical School, Norfolk, Virginia. The investigators are studying how vascular smooth muscle-muscle in the walls of blood vessels-reacts to various stimulants, such as coffee, tea, alcohol or drugs. They sought help from Langley Research Center in devising a method of measuring the tension in blood vessel segments subjected to various stimuli. The task was complicated by the extremely small size of the specimens to be tested, blood vessel "loops" resembling small rubber bands, some only half a millimeter in diameter. Langley's Instrumentation Development Section responded with a miniaturized system whose key components are a "micropositioner" for stretching a length of blood vessel and a strain gage for measuring the smooth muscle tension developed. The micropositioner is a two-pronged holder. The loop of Mood vessel is hooked over the prongs and it is stretched by increasing the distance between the prongs in minute increments, fractions of a millimeter. At each increase, the tension developed is carefully measured. In some experiments, the holder and specimen are lowered into the test tubes shown, which contain a saline solution simulating body fluid; the effect of the compound on developed tension is then measured. The device has functioned well and the investigators say it has saved several months research time.

  1. Tension pneumothorax during flexible bronchoscopy in a nonintubated infant.

    PubMed

    Chan, Ian A; Gamble, Jonathan J

    2016-04-01

    We describe the case of a tension pneumothorax occurring during flexible bronchoscopy in a nonintubated infant. The pneumothorax likely occurred secondary to wall source oxygen insufflation via the bronchoscope without sufficient gas egress. The use of wall source oxygen via the bronchoscope working channel is inherently dangerous and should be avoided. PMID:26740408

  2. Cognitive Imagery and Physiological Feedback Relaxation Protocols Applied to Clinically Tense Young Adults: A Comparison of State, Trait, and Physiological Effects.

    ERIC Educational Resources Information Center

    Schandler, Steven L.; Dana, Edward R.

    1983-01-01

    Examined changes in tension behaviors and reductions in physiological tension associated with cognitive imagery and electromyographic biofeedback relaxation procedures in 45 college students. Results showed: imagery significantly reduced state anxiety. Self-rest was less effective; biofeedback greatly reduced physiological tension, but not state…

  3. Nonequilibrium surface tension

    NASA Astrophysics Data System (ADS)

    Lamorgese, A.; Mauri, R.

    2015-12-01

    A weakly nonlocal phase-field model is used to define surface tension in liquid binary mixtures in terms of the composition gradient in the interfacial region so that, at equilibrium, it depends linearly on the characteristic length that defines the interfacial width. In nonequilibrium conditions, surface tension changes with time: during mixing, it decreases as the inverse square root of time, while during phase separation, when nuclei coagulate, it increases exponentially to its equilibrium value. In addition, since temperature gradients modify the steepness of the concentration profile in the interfacial region, they induce gradients in the nonequilibrium surface tension, leading to the Marangoni thermocapillary migration of an isolated drop. Similarly, Marangoni stresses are induced in a composition gradient, leading to diffusiophoresis.

  4. Tension Pneumopericardium after Pericardiocentesis

    PubMed Central

    2016-01-01

    Pneumopericardium is defined as the presence of air inside the pericardial space. Usually, it is reported as a complication of blunt or penetrating chest trauma, but rare iatrogenic and spontaneous cases have been reported. Pneumopericardium is relatively stable if it does not generate a tension effect on the heart. However, it may progress to tension pneumopericardium, which requires immediate pericardial aspiration. We report a case of iatrogenic pneumopericardium occurred in a 70-year-old man who presented dyspnea at emergency department. The patient underwent pericardiocentesis for cardiac tamponade due to large pericardial effusion, and iatrogenic tension pneumopericardium occurred due to misuse of the drainage device. After evacuating the pericardial air through the previously implanted catheter, the patient became stable. We report this case to increase the awareness of this fatal condition and to help increase the use of precautions against the development of this condition during emergency procedures. PMID:26952636

  5. [Treatment of tension headache].

    PubMed

    Schoenen, J

    2000-01-01

    The scientific basis of tension- type headache suffers from the lack of precise pathophysiological knowledge and the heterogenecity of this disorder. Treatment of acute tension-type headache episodes is more effective with an NSAIDs (ibuprofen 400-800mg, naproxen 550-825mg, ketoprofen 50-75mg) than with aspirin or paracetamol. Caffein containing preparations of NSAIDs are slightly superior, but should not be taken frequently to avoid headache chronification. For chronic tension-type headache, relaxation therapies with EMG biofeedback and tricyclics have about the same efficacy rate of 40-50p.100. Physical therapy and acupuncture are in general less effective. There is thus clearly a need for better strategies, e.g. combination of available therapies and novel approaches. PMID:11139755

  6. Tension in active shapes.

    PubMed

    Papari, Giuseppe

    2014-01-01

    The concept of tension is introduced in the framework of active contours with prior shape information, and it is used to improve image segmentation. In particular, two properties of this new quantity are shown: 1) high values of the tension correspond to undesired equilibrium points of the cost function under minimization and 2) tension decreases if a curve is split into two or more parts. Based on these ideas, a tree is generated whose nodes are different local minima of the cost function. Deeper nodes in the tree are expected to correspond to lower values of the cost function. In this way, the search for the global optimum is reduced to visiting and pruning a binary tree. The proposed method has been applied to the problem of fish segmentation from low quality underwater images. Qualitative and quantitative comparison with existing algorithms based on the Euler–Lagrange diffusion equations shows the superiority of the proposed approach in avoiding undesired local minima. PMID:24235305

  7. Role of erythrocyte-released ATP in the regulation of microvascular oxygen supply in skeletal muscle.

    PubMed

    Ellsworth, M L; Ellis, C G; Sprague, R S

    2016-03-01

    In a 1914 book entitled The Respiratory Function of the Blood, Joseph Barcroft stated that 'the cell takes what it needs and leaves the rest'. He postulated that there must be both a 'call for oxygen' and a 'mechanism by which the call elicits a response...' In the past century, intensive investigation has provided significant insights into the haemodynamic and biophysical mechanisms involved in supplying oxygen to skeletal muscle. However, the identification of the mechanism by which tissue oxygen needs are sensed and the affector responsible for altering the upstream vasculature to enable the need to be appropriately met has been a challenge. In 1995, Ellsworth et al. proposed that the oxygen-carrying erythrocyte, by virtue of its capacity to release the vasoactive mediator ATP in response to a decrease in oxygen saturation, could serve both roles. Several in vitro and in situ studies have established that exposure of erythrocytes to reduced oxygen tension induces the release of ATP which does result in a conducted arteriolar vasodilation with a sufficiently rapid time course to make the mechanism physiologically relevant. The components of the signalling pathway for the controlled release of ATP from erythrocytes in response to exposure to low oxygen tension have been determined. In addition, the implications of defective ATP release on human pathological conditions have been explored. This review provides a perspective on oxygen supply and the role that such a mechanism plays in meeting the oxygen needs of skeletal muscle. PMID:26336065

  8. Sensing the Tension

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Spanning over 4 decades, NASA's bolt tension monitoring technology has benefited automakers, airplane builders, and other major manufacturers that rely on the devices to evaluate the performance of computerized torque wrenches and other assembly line mechanisms. In recent years, the advancement of ultrasonic sensors has drastically eased this process for users, ensuring that proper tension and torque are being applied to bolts and fasteners, with less time needed for data analysis. Langley Research Center s Nondestructive Evaluation Branch is one of the latest NASA programs to incorporate ultrasonic sensors within a bolt tension measurement instrument. As a multi-disciplined research group focused on spacecraft and aerospace transportation safety, one of the branch s many commitments includes transferring problem solutions to industry. In 1998, the branch carried out this obligation in a licensing agreement with Micro Control, Inc., of West Bloomfield, Michigan. Micro Control, an automotive inspection company, obtained the licenses to two Langley patents to provide an improved-but-inexpensive means of ultrasonic tension measurement.

  9. Surface tension of spherical drops from surface of tension

    NASA Astrophysics Data System (ADS)

    Homman, A.-A.; Bourasseau, E.; Stoltz, G.; Malfreyt, P.; Strafella, L.; Ghoufi, A.

    2014-01-01

    The determination of surface tension of curved interfaces is a topic that raised many controversies during the last century. Explicit liquid-vapor interface modelling (ELVI) was unable up to now to reproduce interfacial behaviors in drops due to ambiguities in the mechanical definition of the surface tension. In this work, we propose a thermodynamic approach based on the location of surface of tension and its use in the Laplace equation to extract the surface tension of spherical interfaces from ELVI modelling.

  10. Surface tension of spherical drops from surface of tension

    SciTech Connect

    Homman, A.-A.; Bourasseau, E.; Malfreyt, P.; Strafella, L.; Ghoufi, A.

    2014-01-21

    The determination of surface tension of curved interfaces is a topic that raised many controversies during the last century. Explicit liquid-vapor interface modelling (ELVI) was unable up to now to reproduce interfacial behaviors in drops due to ambiguities in the mechanical definition of the surface tension. In this work, we propose a thermodynamic approach based on the location of surface of tension and its use in the Laplace equation to extract the surface tension of spherical interfaces from ELVI modelling.

  11. Surface Tension and Capillary Rise

    ERIC Educational Resources Information Center

    Walton, Alan J.

    1972-01-01

    Discussion of the shortcomings of textbook explanations of surface tension, distinguishing between concepts of tension and capillary rise. The arguments require only a clear understanding of Newtonian mechanics, notably potential energy. (DF)

  12. Surface tension driven convection

    NASA Technical Reports Server (NTRS)

    Ostrach, S.

    1979-01-01

    In a normal gravitational environment, the free surface of a liquid in a container plays a passive role in the transport processes. However, at microgravity, the free surface can become the dominant factor. A simple but meaningful spaceflight experiment is proposed to investigate the nature and extent of flows induced by surface-tension gradients along the free surface. The influences of container geometry, wetability, contamination, and imposed heating modes will be investigated.

  13. FRET-based Molecular Tension Microscopy.

    PubMed

    Gayrard, Charlène; Borghi, Nicolas

    2016-02-01

    Cells generate and experience mechanical forces that may shape tissues and regulate signaling pathways in a variety of physiological or pathological situations. How forces propagate and transduce signals at the molecular level is poorly understood. The advent of FRET-based Molecular Tension Microscopy now allows to achieve mechanical force measurements at a molecular scale with molecular specificity in situ, and thereby better understand the mechanical architecture of cells and tissues, and mechanotransduction pathways. In this review, we will first expose the basic principles of FRET-based MTM and its various incarnations. We will describe different ways of measuring FRET, their advantages and drawbacks. Then, throughout the range of proteins of interest, cells and organisms to which it has been applied, we will review the tests developed to validate the approach, how molecular tension was related to cell functions, and conclude with possible developments and offshoots. PMID:26210398

  14. Simultaneous sampling of tissue oxygenation and oxygen consumption in skeletal muscle.

    PubMed

    Nugent, William H; Song, Bjorn K; Pittman, Roland N; Golub, Aleksander S

    2016-05-01

    Under physiologic conditions, microvascular oxygen delivery appears to be well matched to oxygen consumption in respiring tissues. We present a technique to measure interstitial oxygen tension (PISFO2) and oxygen consumption (VO2) under steady-state conditions, as well as during the transitions from rest to activity and back. Phosphorescence Quenching Microscopy (PQM) was employed with pneumatic compression cycling to achieve 1 to 10Hz sampling rates of interstitial PO2 and simultaneous recurrent sampling of VO2 (3/min) in the exteriorized rat spinotrapezius muscle. The compression pressure was optimized to 120-130mmHg without adverse effect on the tissue preparation. A cycle of 5s compression followed by 15s recovery yielded a resting VO2 of 0.98±0.03ml O2/100cm(3)min while preserving microvascular oxygen delivery. The measurement system was then used to assess VO2 dependence on PISFO2 at rest and further tested under conditions of isometric muscle contraction to demonstrate a robust ability to monitor the on-kinetics of tissue respiration and the compensatory changes in PISFO2 during contraction and recovery. The temporal and spatial resolution of this approach is well suited to studies seeking to characterize microvascular oxygen supply and demand in thin tissues. PMID:26683232

  15. Hyperbaric oxygen therapy in chronic vascular wound management.

    PubMed

    Wattel, F; Mathieu, D; Coget, J M; Billard, V

    1990-01-01

    Many nonhealing tissues are hypoxic, with oxygen tensions frequently ranging from 5 to 15 mmHg. In such an environment, the normal wound healing sequence is disrupted or halted and phagocytic killing activity depressed. So the adjunctive use of hyperbaric oxygen (HBO), based on physiologic data and clinical observations, can provide the substrate necessary to initiate and sustain the healing process. During a twelve-month period, 20 patients with a nonhealing wound were referred to the hyperbaric center: chronic arterial insufficiency ulcers in 9 cases, diabetic wounds (foot lesions) in 11 cases. Adjunctive HBO therapy, initiated twice a day, consisted of pure oxygen, 2.5 ATA, 90 min. The average length of sessions was 46 (15-108). Complete healing was observed in 15 of 20 cases. The wound management can be helped with the transcutaneous oxygen measurements under hyperbaric oxygen. The distal TCPO2 at 2.5 ATA pure oxygen is a reliable test to predict final outcome (healing or no change), when these values were not different in normal air and in normobaric oxygen: (table; see text) In hyperbaric oxygen therapy, when the distal TCPO2 value was inferior to 100 mmHg, all patients showed either no improvement or aggravation, and when the value was higher than 100 mmHg, wound healing was achieved with all patients. PMID:2306000

  16. Membrane tension and membrane fusion.

    PubMed

    Kozlov, Michael M; Chernomordik, Leonid V

    2015-08-01

    Diverse cell biological processes that involve shaping and remodeling of cell membranes are regulated by membrane lateral tension. Here we focus on the role of tension in driving membrane fusion. We discuss the physics of membrane tension, forces that can generate the tension in plasma membrane of a cell, and the hypothesis that tension powers expansion of membrane fusion pores in late stages of cell-to-cell and exocytotic fusion. We propose that fusion pore expansion can require unusually large membrane tensions or, alternatively, low line tensions of the pore resulting from accumulation in the pore rim of membrane-bending proteins. Increase of the inter-membrane distance facilitates the reaction. PMID:26282924

  17. Cable tensioned membrane solar collector module with variable tension control

    DOEpatents

    Murphy, Lawrence M.

    1985-01-01

    Disclosed is a solar collector comprising a membrane for concentrating sunlight, a plurality of elongated structural members for suspending the membrane member thereon, and a plurality of control members for adjustably tensioning the membrane member, as well as for controlling a focus produced by the membrane members. Each control member is disposed at a different corresponding one of the plurality of structural members. The collector also comprises an elongated flexible tensioning member, which serves to stretch the membrane member and to thereafter hold it in tension, and a plurality of sleeve members, which serve to provide the membrane member with a desired surface contour during tensioning of the membrane member. The tensioning member is coupled to the structural members such that the tensioning member is adjustably tensioned through the structural members. The tensioning member is also coupled to the membrane member through the sleeve members such that the sleeve members uniformly and symmetrically stretch the membrane member upon applying tension to the tensioning member with the control members.

  18. Cable tensioned membrane solar collector module with variable tension control

    DOEpatents

    Murphy, L.M.

    1984-01-09

    Disclosed is a solar collector comprising a membrane member for concentrating sunlight, a plurality of elongated structural members for suspending the membrane member thereon, and a plurality of control members for adjustably tensioning the membrane member, as well as for controlling a focus produced by the membrane members. Each control member is disposed at a different corresponding one of the plurality of structural members. The collector also comprises an elongated flexible tensioning member, which serves to stretch the membrane member and to thereafter hold it in tension, and a plurality of sleeve members which serve to provide the membrane member with a desired surface contour during tensioning of the membrane member. The tensioning member is coupled to the structural members such that the tensioning member is adjustably tensioned through the structural members. The tensioning member is also coupled to the membrane member through the sleeve members such that the sleeve members uniformly and symmetrically stretch the membrane member upon applying tension to the tensioning member with the control members.

  19. Rainbow surface tension analysis.

    PubMed

    Adler, Charles L; Smith, Valen A; Haddad, Natalie M

    2008-03-31

    In this paper we outline a new all-optical non-contact technique for measurement of the surface tension of a Newtonian fluid. It is based on the accurate measurement of the spacing of the supernumerary fringes produced by the diffraction pattern of a laser beam transmitted through or reflected by a thin vertically-draining film of the liquid. We discuss the basic theory and application of this technique, and several issues which must be addressed before it can be used commercially. PMID:18542611

  20. Tension leg platform system

    SciTech Connect

    Burns, R.B.

    1983-12-20

    A tension leg platform system for use in drilling wellbores into the floor of an offshore body of water. Includes in the system is a buoyancy control vessel having a plurality of pull down cables attached thereto which extend to the ocean floor. A plurality of spaced apart anchors disposed at the ocean floor are positioned to receive the lower ends of the respective pull down cables. A submergible hull slidably engages the respective hold down cables such that the hull can be controllably lowered to the ocean floor whereby a canopy carried on the hull will cover an uncontrollably flowing well to conduct the effluent to the water's surface.

  1. Evolution de la caracteristique courant-tension des varistances a base d'oxyde de zinc avec la pression partielle d'oxygene de l'atmosphere de frittage

    NASA Astrophysics Data System (ADS)

    Salmon, Roger; Bonnet, Jean-Pierre; Graciet, Michel; Onillon, Marc; Hagenmuller, Paul

    1980-05-01

    In order to decrease the resistivity of zinc oxide grains which is responsible for the intensity limitation observed at high current densities, the dependence of current-voltage characteristics of zinc oxide based varistors on oxygen partial pressure has been investigated. From these studies it appears that the conductivity increases with decreasing oxygen partial pressure, this phenomenon being more significant at low voltages than at higher ones. These results can be related to a slight increase of the donor density, while the superficial trap density decreases strongly, involving a collapse of the barrier height and of the non-linearity exponent.

  2. Tension bulla: a cause of reversible pulmonary hypertension.

    PubMed

    Waxman, Michael J; Waxman, Jacob D; Forman, John M

    2015-01-01

    A tension pneumothorax represents a medical emergency warranting urgent diagnosis and treatment. A rapidly expanding bulla may resemble the same clinical presentation but requires an entirely different treatment. A 53-year-old woman presented with increasing shortness of breath and her physical examination and chest x-ray were interpreted as showing a tension pneumothorax. A chest tube was placed which did not resolve the process. Placement of a second chest tube was likewise unsuccessful. A chest CT was then performed and was interpreted as showing an unresolved tension pneumothorax, despite seemingly adequate placement of the 2 chest tubes. Further review of the CT showed the border of a giant bulla and a tentative diagnosis was made of a rapidly expanding bulla with tension physiology. Echocardiogram revealed significant pulmonary hypertension. The bulla was surgically excised, the patient had marked improvement in her clinical symptoms and signs, and echocardiographic follow-up showed complete resolution of the pulmonary hypertension. PMID:25590488

  3. Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway?

    PubMed Central

    Kumar, Hemant; Choi, Dong-Kug

    2015-01-01

    Oxygen homeostasis reflects the constant body requirement to generate energy. Hypoxia (0.1–1% O2), physioxia or physoxia (∼1–13%), and normoxia (∼20%) are terms used to define oxygen concentration in the cellular environment. A decrease in oxygen (hypoxia) or excess oxygen (hyperoxia) could be deleterious for cellular adaptation and survival. Hypoxia can occur under both physiological (e.g., exercise, embryonic development, underwater diving, or high altitude) and pathological conditions (e.g., inflammation, solid tumor formation, lung disease, or myocardial infarction). Hypoxia plays a key role in the pathophysiology of heart disease, cancers, stroke, and other causes of mortality. Hypoxia inducible factor(s) (HIFs) are key oxygen sensors that mediate the ability of the cell to cope with decreased oxygen tension. These transcription factors regulate cellular adaptation to hypoxia and protect cells by responding acutely and inducing production of endogenous metabolites and proteins to promptly regulate metabolic pathways. Here, we review the role of the HIF pathway as a metabolic adaptation pathway and how this pathway plays a role in cell survival. We emphasize the roles of the HIF pathway in physiological adaptation, cell death, pH regulation, and adaptation during exercise. PMID:26491231

  4. Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway?

    PubMed

    Kumar, Hemant; Choi, Dong-Kug

    2015-01-01

    Oxygen homeostasis reflects the constant body requirement to generate energy. Hypoxia (0.1-1% O2), physioxia or physoxia (∼1-13%), and normoxia (∼20%) are terms used to define oxygen concentration in the cellular environment. A decrease in oxygen (hypoxia) or excess oxygen (hyperoxia) could be deleterious for cellular adaptation and survival. Hypoxia can occur under both physiological (e.g., exercise, embryonic development, underwater diving, or high altitude) and pathological conditions (e.g., inflammation, solid tumor formation, lung disease, or myocardial infarction). Hypoxia plays a key role in the pathophysiology of heart disease, cancers, stroke, and other causes of mortality. Hypoxia inducible factor(s) (HIFs) are key oxygen sensors that mediate the ability of the cell to cope with decreased oxygen tension. These transcription factors regulate cellular adaptation to hypoxia and protect cells by responding acutely and inducing production of endogenous metabolites and proteins to promptly regulate metabolic pathways. Here, we review the role of the HIF pathway as a metabolic adaptation pathway and how this pathway plays a role in cell survival. We emphasize the roles of the HIF pathway in physiological adaptation, cell death, pH regulation, and adaptation during exercise. PMID:26491231

  5. Coulomb string tension, asymptotic string tension, and the gluon chain

    SciTech Connect

    Greensite, Jeff; Szczepaniak, Adam P.

    2015-02-01

    We compute, via numerical simulations, the non-perturbative Coulomb potential and position-space ghost propagator in pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.

  6. Tension in Highly Branched Polymers

    NASA Astrophysics Data System (ADS)

    Rubinstein, Michael

    2012-02-01

    We propose a systematic method of designing branched macromolecules capable of building up high tension in their covalent bonds, which can be controlled by changing solvent quality. This tension is achieved exclusively due to intramolecular interactions by focusing lower tensions from its numerous branches to a particular section of the designed molecule. The simplest molecular architecture, which allows this tension amplification, is a so-called pom-pom macromolecule consisting of a relatively short linear spacer and two z-arm stars at its ends. Tension developed in the stars due to crowding of their branches is amplified by a factor of z and focused to the spacer. There are other highly branched macromolecules, such as molecular brushes - comb polymers with high density of side branches, that have similar focusing and amplification properties. In addition molecular brushes transmit tension along their backbone. Adsorption or grafting of these branched molecules on a substrate results in further increase in tension as compared to molecules in solution. Molecular architectures similar to pom-pom and molecular brushes with a high tension amplification parts can be used in numerous sensor applications. Unique conformations of molecular brushes in a pre-wetting layer allow direct visualization by atomic force microscope. Detailed images of individual molecules spreading along the surface enable critical evaluation of theories of chain dynamics in polymer monolayer. Strong spreading of densely branched macromolecules on a planar substrate can lead to high tension in the molecular backbone sufficient to break covalent bonds.

  7. Nitinol Fatigue Investigation on Stent-Finish Specimens Using Tension-Tension Method

    NASA Astrophysics Data System (ADS)

    Lin, Z.; Pike, K.; Zipse, A.; Schlun, M.

    2011-07-01

    Nitinol fatigue strain limit versus both strain amplitude (range 0.25-1.25%) and mean strain (1.0, 2.0, and 4.0%) was investigated using a tension-tension method. In order to apply the fatigue testing results to a nitinol stent and evaluate stent fatigue performance, the dog-bone style specimens were processed from the same raw material common to implantable stent manufacturing, i.e., similar nitinol tubing, surface quality, and electropolished surface. To simulate a physiological environment, the tension-tension fatigue tests were conducted in water at 37 °C. This strain-controlled fatigue test was conducted with a run-out set at 106 cycles. The fatigue strain limit at 106 cycles as well as the mean strain effect and the effects of inclusions are discussed. Fatigue results appeared in a bi-modal pattern when the strain amplitude was at a level between too high, which made all specimens to fail, and too low, which allowed all specimens to survive.

  8. Flickering Analysis of Erythrocyte Mechanical Properties: Dependence on Oxygenation Level, Cell Shape, and Hydration Level

    PubMed Central

    Yoon, Young-Zoon; Hong, Ha; Brown, Aidan; Kim, Dong Chung; Kang, Dae Joon; Lew, Virgilio L.; Cicuta, Pietro

    2009-01-01

    Erythrocytes (red blood cells) play an essential role in the respiratory functions of vertebrates, carrying oxygen from lungs to tissues and CO2 from tissues to lungs. They are mechanically very soft, enabling circulation through small capillaries. The small thermally induced displacements of the membrane provide an important tool in the investigation of the mechanics of the cell membrane. However, despite numerous studies, uncertainties in the interpretation of the data, and in the values derived for the main parameters of cell mechanics, have rendered past conclusions from the fluctuation approach somewhat controversial. Here we revisit the experimental method and theoretical analysis of fluctuations, to adapt them to the case of cell contour fluctuations, which are readily observable experimentally. This enables direct measurements of membrane tension, of bending modulus, and of the viscosity of the cell cytoplasm. Of the various factors that influence the mechanical properties of the cell, we focus here on: 1), the level of oxygenation, as monitored by Raman spectrometry; 2), cell shape; and 3), the concentration of hemoglobin. The results show that, contrary to previous reports, there is no significant difference in cell tension and bending modulus between oxygenated and deoxygenated states, in line with the softness requirement for optimal circulatory flow in both states. On the other hand, tension and bending moduli of discocyte- and spherocyte-shaped cells differ markedly, in both the oxygenated and deoxygenated states. The tension in spherocytes is much higher, consistent with recent theoretical models that describe the transitions between red blood cell shapes as a function of membrane tension. Cell cytoplasmic viscosity is strongly influenced by the hydration state. The implications of these results to circulatory flow dynamics in physiological and pathological conditions are discussed. PMID:19751665

  9. Holding the Tension.

    PubMed

    Feudtner, Chris

    2016-05-01

    My colleagues and I had been asked by a member of a clinical team to help sort through the ethics of stopping a life-sustaining intervention for a very ill child. We had already talked with the parents, the physicians, and the folks from nursing, social work, and chaplaincy. Terms like "suffering," "cruel," "compassion," and "moral distress" had been uttered, as had terms like "inappropriate," "unethical," "neglectful," and "risk-management." The group had now stuffed all of these polarizing thoughts and feelings into this cramped room with only one door. And everyone was looking at me. What skill, competency, or inner capacity must one possess to hold and manage such tension? PMID:27150423

  10. Mass spectrometry for the measurement of intramyocardial gas tensions: methodology and application to the study of myocardial ischemia.

    PubMed

    Khuri, S F; O'Riordan, J; Flaherty, J T; Brawley, R K; Donahoo, J S; Gott, V L

    1975-01-01

    The methodology for use of the mass spectrometer for the measurement of intramyocardial gas tensions in the canine preparation is described. Baseling studies were carried out initially in 36 animals, and control levels for myocardial oxygen tension and myocardial carbon dioxide tension were 19 mm Hg (S.D. 6 mm Hg) and 43 mm Hg (S.D. 10 mm Hg), respectively. Myocardial oxygen tension was not altered significantly by varying the arterial oxygen tension between 65 and 300 mm Hg. However, myocardial carbon dioxide tension increased linearly with increased arterial carbon dioxide tension. In 15 dogs placed on total cardiopulmonary bypass, a perfusion pressure 40-60 mm lower than the control mean arterial pressure resulted in myocardial ischemia with a decrease in myocardial oxygen tension and an increase in myocardial carbon dioxide tension. A subsequent increase in perfusion pressure to control levels resulted in resolution of ischemia and return of myocardial oxygen and carbon dioxide tensions to their control level. In another series of open-chest dogs on cardiopulmonary bypass, a proximal constriction applied to the left coronary circumflex artery resulted in a marked decrease in myocardial oxygen tensions and a marked increase in myocardial carbon dioxide tensions in the region supplied by the constricted vessel. In yet another series of open-chest dogs, it was found that incremental decreases in coronary flow established by constriction of the circumflex artery resulted in an exponential increase in both myocardial carbon dioxide tensions and ST-segment elevation as determined by a 25-gauge multi-contact plunge electrode placed in the posterior left ventricular wall. It appears that mass spectrometry techniques for evaluating myocardial ischemia have several advantages over myocardial biopsy techniques for assay of ATP and lactate, and also over the technique of coronary sinus lactate determination. PMID:1209001

  11. Confronting Racial and Religious Tensions

    ERIC Educational Resources Information Center

    Wessler, Stephen

    2011-01-01

    When a community's demographics change quickly in terms of racial, religious, or ethnic makeup, Wessler notes, tension surfaces. Schools are the likeliest place for these kinds of tensions to openly come to a head. Schools can't always avoid conflicts among students who feel mutual prejudice and suspicion. But schools can address simmering…

  12. Fabrication of molecular tension probes

    PubMed Central

    Kim, Sung Bae; Fujii, Rika

    2016-01-01

    A unique bioluminescent imaging probe is introduced for illuminating molecular tension appended by protein–protein interactions (PPIs) of interest. A full-length luciferase is sandwiched between two proteins of interest via minimal flexible linkers. The ligand-activated PPIs append intramolecular tension to the sandwiched luciferase, boosting or dropping the enzymatic activity in a quantitative manner. This method guides construction of a new lineage of bioassays for determining molecular tension appended by ligand-activated PPIs. The summary of the method is: • Molecular tension appended by protein–protein interactions (PPI) is visualized with a luciferase. • Estrogen activities are quantitatively illuminated with the molecular tension probes. • Full-length Renilla luciferase enhances the optical intensities after bending by PPI. PMID:27222821

  13. Fabrication of molecular tension probes.

    PubMed

    Kim, Sung Bae; Fujii, Rika

    2016-01-01

    A unique bioluminescent imaging probe is introduced for illuminating molecular tension appended by protein-protein interactions (PPIs) of interest. A full-length luciferase is sandwiched between two proteins of interest via minimal flexible linkers. The ligand-activated PPIs append intramolecular tension to the sandwiched luciferase, boosting or dropping the enzymatic activity in a quantitative manner. This method guides construction of a new lineage of bioassays for determining molecular tension appended by ligand-activated PPIs. The summary of the method is: •Molecular tension appended by protein-protein interactions (PPI) is visualized with a luciferase.•Estrogen activities are quantitatively illuminated with the molecular tension probes.•Full-length Renilla luciferase enhances the optical intensities after bending by PPI. PMID:27222821

  14. The story of oxygen.

    PubMed

    Heffner, John E

    2013-01-01

    The history of oxygen from discovery to clinical application for patients with chronic lung disease represents a long and storied journey. Within a relatively short period, early investigators not only discovered oxygen but also recognized its importance to life and its role in respiration. The application of oxygen to chronic lung disease, however, took several centuries. In the modern era, physiologists pursued the chemical nature of oxygen and its physiologic interaction with cellular metabolism and gas transport. It took brazen clinicians, however, to pursue oxygen as a therapeutic resource for patients with chronic lung disease because of the concern in the 20th century of the risks of oxygen toxicity. Application of ambulatory oxygen devices allowed landmark investigations of the long-term effects of continuous oxygen that established its safety and efficacy. Although now well established for hypoxic patients, many questions remain regarding the benefits of oxygen for varying severity and types of chronic lung disease. PMID:23271817

  15. Cadmium-Induced Upregulation of Lipid Peroxidation and Reactive Oxygen Species Caused Physiological, Biochemical, and Ultrastructural Changes in Upland Cotton Seedlings

    PubMed Central

    Mei, Lei; Chen, Yue; Cheng, Xin; Zhu, S. J.

    2013-01-01

    Cadmium (Cd) toxicity was investigated in cotton cultivar (ZMS-49) using physiological, ultrastructural, and biochemical parameters. Biomass-based tolerance index decreased, and water contents increased at 500 μM Cd. Photosynthetic efficiency determined by chlorophyll fluorescence and photosynthetic pigments declined under Cd stress. Cd contents were more in roots than shoots. A significant decrease in nutrient levels was found in roots and stem. A significant decrease in nutrient levels was found in roots and stems. In response to Cd stress, more MDA and ROS contents were produced in leaves than in other parts of the seedlings. Total soluble proteins were reduced in all parts except in roots at 500 μM Cd. Oxidative metabolism was higher in leaves than aerial parts of the plant. There were insignificant alterations in roots and leaves ultrastructures such as a little increase in nucleoli, vacuoles, starch granules, and plastoglobuli in Cd-imposed stressful conditions. Scanning micrographs at 500 μM Cd showed a reduced number of stomata as well as near absence of closed stomata. Cd depositions were located in cell wall, vacuoles, and intracellular spaces using TEM-EDX technology. Upregulation of oxidative metabolism, less ultrastructural modification, and Cd deposition in dead parts of cells show that ZMS-49 has genetic potential to resist Cd stress, which need to be explored. PMID:24459668

  16. Tensional Homeostasis in Single Fibroblasts

    PubMed Central

    Webster, Kevin D.; Ng, Win Pin; Fletcher, Daniel A.

    2014-01-01

    Adherent cells generate forces through acto-myosin contraction to move, change shape, and sense the mechanical properties of their environment. They are thought to maintain defined levels of tension with their surroundings despite mechanical perturbations that could change tension, a concept known as tensional homeostasis. Misregulation of tensional homeostasis has been proposed to drive disorganization of tissues and promote progression of diseases such as cancer. However, whether tensional homeostasis operates at the single cell level is unclear. Here, we directly test the ability of single fibroblast cells to regulate tension when subjected to mechanical displacements in the absence of changes to spread area or substrate elasticity. We use a feedback-controlled atomic force microscope to measure and modulate forces and displacements of individual contracting cells as they spread on a fibronectin-patterned atomic-force microscope cantilever and coverslip. We find that the cells reach a steady-state contraction force and height that is insensitive to stiffness changes as they fill the micropatterned areas. Rather than maintaining a constant tension, the fibroblasts altered their contraction force in response to mechanical displacement in a strain-rate-dependent manner, leading to a new and stable steady-state force and height. This response is influenced by overexpression of the actin crosslinker α-actinin, and rheology measurements reveal that changes in cell elasticity are also strain- rate-dependent. Our finding of tensional buffering, rather than homeostasis, allows cells to transition between different tensional states depending on how they are displaced, permitting distinct responses to slow deformations during tissue growth and rapid deformations associated with injury. PMID:24988349

  17. BIOFEEDBACK TRAINING AND TENSION-TYPE HEADACHE.

    PubMed

    Šecić, Ana; Cvjeticanin, Timon; Kes, Vanja Bašić

    2016-03-01

    Biofeedback is a training method, which connects physiological and psychological processes in a person for the purposes of improving his/her physical, emotional, mental and spiritual health. In biofeedback treatment, an active role of the patient is stressed for him/her to be able to actively control the physiological and emotional processes. The aim of biofeedback is to improve the conscious control of the individual's involuntary physiological activity. Research has shown that biofeedback, either applied alone or in combination with other behavioral therapies (techniques), is an effective treatment for various medical and psychological disorders, from headache and hypertension to temporomandibular and attention deficit disorders. More than 90% of adults experience headache once a year, which makes headache one of the most common symptoms and diagnoses in medicine. Tension-type headaches occur in at least 40% of the population and their impact on the health insurance costs and diminished productivity is significant. Studies have shown that clinical biofeedback training is effective in treating headaches. Moreover, the authors stress the need for additional research and further development of methodology for this kind of research. PMID:27333731

  18. Tension-related activity in the orbitofrontal cortex and amygdala: an fMRI study with music.

    PubMed

    Lehne, Moritz; Rohrmeier, Martin; Koelsch, Stefan

    2014-10-01

    Tonal music is characterized by a continuous flow of tension and resolution. This flow of tension and resolution is closely related to processes of expectancy and prediction and is a key mediator of music-evoked emotions. However, the neural correlates of subjectively experienced tension and resolution have not yet been investigated. We acquired continuous ratings of musical tension for four piano pieces. In a subsequent functional magnetic resonance imaging experiment, we identified blood oxygen level-dependent signal increases related to musical tension in the left lateral orbitofrontal cortex (pars orbitalis of the inferior frontal gyrus). In addition, a region of interest analysis in bilateral amygdala showed activation in the right superficial amygdala during periods of increasing tension (compared with decreasing tension). This is the first neuroimaging study investigating the time-varying changes of the emotional experience of musical tension, revealing brain activity in key areas of affective processing. PMID:23974947

  19. Tension-related activity in the orbitofrontal cortex and amygdala: an fMRI study with music

    PubMed Central

    Lehne, Moritz; Rohrmeier, Martin

    2014-01-01

    Tonal music is characterized by a continuous flow of tension and resolution. This flow of tension and resolution is closely related to processes of expectancy and prediction and is a key mediator of music-evoked emotions. However, the neural correlates of subjectively experienced tension and resolution have not yet been investigated. We acquired continuous ratings of musical tension for four piano pieces. In a subsequent functional magnetic resonance imaging experiment, we identified blood oxygen level-dependent signal increases related to musical tension in the left lateral orbitofrontal cortex (pars orbitalis of the inferior frontal gyrus). In addition, a region of interest analysis in bilateral amygdala showed activation in the right superficial amygdala during periods of increasing tension (compared with decreasing tension). This is the first neuroimaging study investigating the time-varying changes of the emotional experience of musical tension, revealing brain activity in key areas of affective processing. PMID:23974947

  20. Physiological Waterfalls

    ERIC Educational Resources Information Center

    Leith, David E.

    1976-01-01

    Provides background information, defining areas within organ systems where physiological waterfalls exist. Describes pressure-flow relationships of elastic tubes (blood vessels, airways, renal tubules, various ducts). (CS)

  1. More About Measuring Interfacial Tension Between Liquids

    NASA Technical Reports Server (NTRS)

    Rashidnia, Nasser; Balasubramaniam, R.; Del Signore, David M.

    1995-01-01

    Report presents additional discussion of technique for measuring interfacial tension between two immiscible liquids. Technique described in "Measuring Interfacial Tension Between Immiscible Liquids" (LEW-15855).

  2. Application of Oxygen-Enriched Aeration in the Production of Bacitracin by Bacillus licheniformis

    PubMed Central

    Flickinger, M. C.; Perlman, D.

    1979-01-01

    The physiological effects of controlling the dissolved oxygen tension at 0.01, 0.02, and 0.05 atm by the use of oxygen-enriched aeration were investigated during growth and bacitracin production by Bacillus licheniformis ATCC 10716. Up to a 2.35-fold increase in the final antibiotic yield and a 4-fold increase in the rate of bacitracin synthesis were observed in response to O2-enriched aeration. The increase in antibiotic production was accompanied by increased respiratory activity and an increase in the specific productivity of the culture from 1.3 to 3.6 g of antibiotic per g of cell mass produced. Oxygen enrichment of the aeration decreased medium carbohydrate uptake and the maximum specific growth rate of B. licheniformis from 0.6 h−1 to as low as 0.15 h−1, depending upon the level of enrichment and the conditions of oxygen transfer rate (impeller speed). The response of this culture to O2 enrichment suggests that this method of controlling the dissolved oxygen tension for antibiotic-producing cultures may simulate conditions that would occur if the carbon source were fed slowly, as is often employed to optimize antibiotic production. Analysis of the biologically active bacitracins produced by B. licheniformis ATCC 10716 suggested that the ratio of biologically active peptides was not changed by O2 enrichment, nor were any new biologically active compounds formed. Images PMID:34361

  3. Metabolic Physiology in Pregnancy.

    PubMed

    Meo, Sultan Ayoub; Hassain, Asim

    2016-09-01

    The metabolic physiology during pregnancy is unique in the life of women. This change is a normal physiological adaptation to better accommodate the foetal growth and provides adequate blood, nutrition and oxygen. The metabolic changes prepare the mother\\'s body for pregnancy, childbirth and lactation. Early gestational period is considered as an anabolic phase, in which female body stores nutrients, enhance insulin sensitivity to encounter the maternal and feto-placental demands of late gestation and lactation. However, late gestational period is better named as a catabolic phase with reduced insulin sensitivity. The placenta plays a role as a sensor between mother and foetus physiology and acclimatizes the needs of the foetus to adequate growth and development. During pregnancy the female body changes its physiological and homeostatic mechanisms to meet the physiological needs of the foetus. However, if the maternal metabolic physiology during pregnancy is disturbed, it can cause hormonal imbalance, fat accumulation, decreased insulin sensitivity, increased insulin resistance and even gestational diabetes mellitus. PMID:27582161

  4. Do Optimal Prognostic Thresholds in Continuous Physiological Variables Really Exist? Analysis of Origin of Apparent Thresholds, with Systematic Review for Peak Oxygen Consumption, Ejection Fraction and BNP

    PubMed Central

    Leong, Tora; Rehman, Michaela B.; Pastormerlo, Luigi Emilio; Harrell, Frank E.; Coats, Andrew J. S.; Francis, Darrel P.

    2014-01-01

    Background Clinicians are sometimes advised to make decisions using thresholds in measured variables, derived from prognostic studies. Objectives We studied why there are conflicting apparently-optimal prognostic thresholds, for example in exercise peak oxygen uptake (pVO2), ejection fraction (EF), and Brain Natriuretic Peptide (BNP) in heart failure (HF). Data Sources and Eligibility Criteria Studies testing pVO2, EF or BNP prognostic thresholds in heart failure, published between 1990 and 2010, listed on Pubmed. Methods First, we examined studies testing pVO2, EF or BNP prognostic thresholds. Second, we created repeated simulations of 1500 patients to identify whether an apparently-optimal prognostic threshold indicates step change in risk. Results 33 studies (8946 patients) tested a pVO2 threshold. 18 found it prognostically significant: the actual reported threshold ranged widely (10–18 ml/kg/min) but was overwhelmingly controlled by the individual study population's mean pVO2 (r = 0.86, p<0.00001). In contrast, the 15 negative publications were testing thresholds 199% further from their means (p = 0.0001). Likewise, of 35 EF studies (10220 patients), the thresholds in the 22 positive reports were strongly determined by study means (r = 0.90, p<0.0001). Similarly, in the 19 positives of 20 BNP studies (9725 patients): r = 0.86 (p<0.0001). Second, survival simulations always discovered a “most significant” threshold, even when there was definitely no step change in mortality. With linear increase in risk, the apparently-optimal threshold was always near the sample mean (r = 0.99, p<0.001). Limitations This study cannot report the best threshold for any of these variables; instead it explains how common clinical research procedures routinely produce false thresholds. Key Findings First, shifting (and/or disappearance) of an apparently-optimal prognostic threshold is strongly determined by studies' average pVO2, EF or BNP. Second

  5. Monitoring oxygenation.

    PubMed

    Severinghaus, John W

    2011-06-01

    Cyanosis was used for a century after dentists began pulling teeth under 100% N(2)O in 1844 because brief (2 min) severe hypoxia is harmless. Deaths came with curare and potent anesthetic respiratory arrest. Leland Clark's invention of a polarographic blood oxygen tension electrode (1954) was introduced for transcutaneous PO2 monitoring to adjust PEEP and CPAP PO2 to prevent premature infant blindness from excess O2 (1972). Oximetry for warning military aviators was tried after WW II but not used for routine monitoring until Takuo Aoyagi (1973) discovered an equation to measure SaO2 by the ratio of ratios of red and IR light transmitted through tissue as it changed with arterial pulses. Pulse oximetry (1982) depended on simultaneous technology improvements of light emitting red and IR diodes, tiny cheap solid state sensors and micro-chip computers. Continuous monitoring of airway anesthetic concentration and oxygen also became very common after 1980. Death from anesthesia fell 10 fold between 1985 and 2000 as pulse oximetry became universally used, but no proof of a causative relationship to pulse oximetry exists. It is now assumed that all anesthesiologist became much more aware of the dangers of prolonged hypoxia, perhaps by using the pulse oximeters. PMID:21717228

  6. Rowing Physiology.

    ERIC Educational Resources Information Center

    Spinks, W. L.

    This review of the literature discusses and examines the methods used in physiological assessment of rowers, results of such assessments, and future directions emanating from research in the physiology of rowing. The first section discusses the energy demands of rowing, including the contribution of the energy system, anaerobic metabolism, and the…

  7. Adaptation to Oxygen

    PubMed Central

    Hassani, Bahia Khalfaoui; Steunou, Anne-Soisig; Liotenberg, Sylviane; Reiss-Husson, Françoise; Astier, Chantal; Ouchane, Soufian

    2010-01-01

    The appearance of oxygen in the Earth's atmosphere via oxygenic photosynthesis required strict anaerobes and obligate phototrophs to cope with the presence of this toxic molecule. Here we show that in the anoxygenic phototroph Rubrivivax gelatinosus, the terminal oxidases (cbb3, bd, and caa3) expand the range of ambient oxygen tensions under which the organism can initiate photosynthesis. Unlike the wild type, the cbb3−/bd− double mutant can start photosynthesis only in deoxygenated medium or when oxygen is removed, either by sparging cultures with nitrogen or by co-inoculation with strict aerobes bacteria. In oxygenated environments, this mutant survives nonphotosynthetically until the O2 tension is reduced. The cbb3 and bd oxidases are therefore required not only for respiration but also for reduction of the environmental O2 pressure prior to anaerobic photosynthesis. Suppressor mutations that restore respiration simultaneously restore photosynthesis in nondeoxygenated medium. Furthermore, induction of photosystem in the cbb3− mutant led to a highly unstable strain. These results demonstrate that photosynthetic metabolism in environments exposed to oxygen is critically dependent on the O2-detoxifying action of terminal oxidases. PMID:20335164

  8. Atomistic simulation of lipid and DiI dynamics in membrane bilayers under tension.

    PubMed

    Muddana, Hari S; Gullapalli, Ramachandra R; Manias, Evangelos; Butler, Peter J

    2011-01-28

    Membrane tension modulates cellular processes by initiating changes in the dynamics of its molecular constituents. To quantify the precise relationship between tension, structural properties of the membrane, and the dynamics of lipids and a lipophilic reporter dye, we performed atomistic molecular dynamics (MD) simulations of DiI-labeled dipalmitoylphosphatidylcholine (DPPC) lipid bilayers under physiological lateral tensions ranging from -2.6 mN m(-1) to 15.9 mN m(-1). Simulations showed that the bilayer thickness decreased linearly with tension consistent with volume-incompressibility, and this thinning was facilitated by a significant increase in acyl chain interdigitation at the bilayer midplane and spreading of the acyl chains. Tension caused a significant drop in the bilayer's peak electrostatic potential, which correlated with the strong reordering of water and lipid dipoles. For the low tension regime, the DPPC lateral diffusion coefficient increased with increasing tension in accordance with free-area theory. For larger tensions, free area theory broke down due to tension-induced changes in molecular shape and friction. Simulated DiI rotational and lateral diffusion coefficients were lower than those of DPPC but increased with tension in a manner similar to DPPC. Direct correlation of membrane order and viscosity near the DiI chromophore, which was just under the DPPC headgroup, indicated that measured DiI fluorescence lifetime, which is reported to decrease with decreasing lipid order, is likely to be a good reporter of tension-induced decreases in lipid headgroup viscosity. Together, these results offer new molecular-level insights into membrane tension-related mechanotransduction and into the utility of DiI in characterizing tension-induced changes in lipid packing. PMID:21152516

  9. The history of tissue tension.

    PubMed

    Peters, W S; Tomos, A D

    1996-06-01

    In recent years the phenomenon of tissue tension and its functional connection to elongation growth has regained much interest. In the present study we reconstruct older models of mechanical inhomogenities in growing plant organs, in order to establish an accurate historical background for the current discussion. We focus on the iatromechanic model developed in Stephen Hales' Vegetable Staticks, Wilhelm Hofmeister's mechanical model of negative geotropism, Julius Sachs' explanation of the development of tissue tension, and the differential-auxin-response-hypothesis by Kenneth Thimann and Charles Schneider. Each of these models is considered in the context of its respective historic and theoretical environment. In particular, the dependency of the biomechanical hypotheses on the cell theory and the hormone concept is discussed. We arrive at the conclusion that the historical development until the middle of our century is adequately described as a development towards more detailed explanations of how differential tensions are established during elongation growth in plant organs. Then we compare with the older models the structure of more recent criticism of hormonal theories of tropic curvature, and particularly the epidermal-growth-control hypothesis of Ulrich Kutschera. In contrast to the more elaborate of the older hypotheses, the recent models do not attempt an explanation of differential tensions, but instead focus on mechanical processes in organs, in which tissue tension already exists. Some conceptual implications of this discrepancy, which apparently were overlooked in the recent discussion, are briefly evaluated. PMID:11541099

  10. Anatomy & Physiology

    MedlinePlus

    ... Central Nervous System Peripheral Nervous System Review Quiz Endocrine System Characteristics of Hormones Endocrine Glands & Their Hormones Pituitary & ... Thyroid & Parathyroid Glands Adrenal Gland Pancreas Gonads Other Endocrine Glands ... Cardiovascular System Heart Structure of the Heart Physiology of the ...