Science.gov

Sample records for physiological role structure

  1. HUMAN PARAOXONASE-1 (PON1): GENE STRUCTURE AND EXPRESSION, PROMISCUOUS ACTIVITIES AND MULTIPLE PHYSIOLOGICAL ROLES

    PubMed Central

    Mackness, Mike; Mackness, Bharti

    2015-01-01

    Human PON1 is a HDL-associated lipolactonase capable of preventing LDL and cell membrane oxidation and is therefore considered to be atheroprotective. PON1 contributes to the antioxidative function of HDL and reductions in HDL-PON1 activity, prevalent in a wide variety of diseases with an inflammatory component, is believed to lead to dysfunctional HDL which can promote inflammation and atherosclerosis. However, PON1 is multifunctional and may contribute to other HDL functions such as in innate immunity, preventing infection by quorum sensing gram negative bacteria by destroying acyl lactone mediators of quorum sensing, and putative new roles in cancer development and the promotion of healthy ageing. In this review we explore the physiological roles of PON1 in disease development, as well as PON1 gene and protein structure, promiscuous activities and the roles of SNPs and ethnicity in determining PON1 activity. PMID:25965560

  2. The Growing Outer Epidermal Wall: Design and Physiological Role of a Composite Structure

    PubMed Central

    Kutschera, U.

    2008-01-01

    Background The cells of growing plant organs secrete an extracellular fibrous composite (the primary wall) that allows the turgid protoplasts to expand irreversibly via wall-yielding events, which are regulated by processes within the cytoplasm. The role of the epidermis in the control of stem elongation is described with special reference to the outer epidermal wall (OEW), which forms a ‘tensile skin’. Novel Facts The OEW is much thicker and less extensible than the walls of the inner tissues. Moreover, in the OEW the amount of cellulose per unit wall mass is considerably greater than in the inner tissues. Ultrastructural studies have shown that the expanding OEW is composed of a highly ordered internal and a diffuse outer half, with helicoidally organized cellulose microfibrils in the inner (load-bearing) region of this tension-stressed organ wall. The structural and mechanical backbone of the wall consists of helicoids, i.e. layers of parallel, inextensible cellulose microfibrils. These ‘plywood laminates’ contain crystalline ‘cables’ orientated in all directions with respect to the axis of elongation (isotropic material). Cessation of cell elongation is accompanied by a loss of order, i.e. the OEW is a dynamic structure. Helicoidally arranged extracellular polymers have also been found in certain bacteria, algae, fungi and animals. In the insect cuticle crystalline cutin nanofibrils form characteristic ‘OEW-like’ herringbone patterns. Conclusions Theoretical considerations, in vitro studies and computer simulations suggest that extracellular biological helicoids form by directed self-assembly of the crystalline biopolymers. This spontaneous generation of complex design ‘without an intelligent designer’ evolved independently in the protective ‘skin’ of plants, animals and many other organisms. PMID:18258808

  3. Crystal structure and potential physiological role of zebra fish thioesterase superfamily member 2 (fTHEM2)

    SciTech Connect

    Yu, Shanshan; Li, Han; Gao, Feng; Zhou, Ying

    2015-08-07

    Thioesterase superfamily member 2 (THEM2) is an essential protein for mammalian cell proliferation. It belongs to the hotdog-fold thioesterase superfamily and catalyzes hydrolysis of thioester bonds of acyl-CoA in vitro, while its in vivo function remains unrevealed. In this study, Zebra fish was selected as a model organism to facilitate the investigations on THEM2. First, we solved the crystal structure of recombinant fTHEM2 at the resolution of 1.80 Å, which displayed a similar scaffolding as hTHEM2. Second, functional studies demonstrated that fTHEM2 is capable of hydrolyzing palmitoyl-CoA in vitro. In addition, injection of morpholino against fTHEM2 at one-cell stage resulted in distorted early embryo development, including delayed cell division, retarded development and increased death rate. The above findings validated our hypothesis that fTHEM2 could serve as an ideal surrogate for studying the physiological functions of THEM2. - Highlights: • The crystal structure of recombinant fTHEM2 is presented. • fTHEM2 is capable of hydrolyzing palmitoyl-CoA. • The influence of fTHEM2 on early embryo development is demonstrated.

  4. Crystal structure and potential physiological role of zebra fish thioesterase superfamily member 2 (fTHEM2).

    PubMed

    Yu, Shanshan; Li, Han; Gao, Feng; Zhou, Ying

    2015-08-01

    Thioesterase superfamily member 2 (THEM2) is an essential protein for mammalian cell proliferation. It belongs to the hotdog-fold thioesterase superfamily and catalyzes hydrolysis of thioester bonds of acyl-CoA in vitro, while its in vivo function remains unrevealed. In this study, Zebra fish was selected as a model organism to facilitate the investigations on THEM2. First, we solved the crystal structure of recombinant fTHEM2 at the resolution of 1.80 Å, which displayed a similar scaffolding as hTHEM2. Second, functional studies demonstrated that fTHEM2 is capable of hydrolyzing palmitoyl-CoA in vitro. In addition, injection of morpholino against fTHEM2 at one-cell stage resulted in distorted early embryo development, including delayed cell division, retarded development and increased death rate. The above findings validated our hypothesis that fTHEM2 could serve as an ideal surrogate for studying the physiological functions of THEM2. PMID:26067557

  5. Advanced physiological roles of guanidinoacetic acid.

    PubMed

    Ostojic, Sergej M

    2015-12-01

    Dietary guanidinoacetic acid (GAA) seems to improve cellular bioenergetics by stimulating creatine biosynthesis. However, GAA could have other biological functions that might affect its possible use as a food ingredient in human nutrition. In this paper, we identified several alternative physiological roles of supplemental GAA, including the stimulation of hormonal release and neuromodulation, an alteration of metabolic utilization of arginine, and an adjustment of oxidant-antioxidant status. A better knowledge of how GAA affects human physiology may facilitate its use as an experimental nutritional intervention for novel purposes and conditions. PMID:26411433

  6. Metabolic methanol: molecular pathways and physiological roles.

    PubMed

    Dorokhov, Yuri L; Shindyapina, Anastasia V; Sheshukova, Ekaterina V; Komarova, Tatiana V

    2015-04-01

    Methanol has been historically considered an exogenous product that leads only to pathological changes in the human body when consumed. However, in normal, healthy individuals, methanol and its short-lived oxidized product, formaldehyde, are naturally occurring compounds whose functions and origins have received limited attention. There are several sources of human physiological methanol. Fruits, vegetables, and alcoholic beverages are likely the main sources of exogenous methanol in the healthy human body. Metabolic methanol may occur as a result of fermentation by gut bacteria and metabolic processes involving S-adenosyl methionine. Regardless of its source, low levels of methanol in the body are maintained by physiological and metabolic clearance mechanisms. Although human blood contains small amounts of methanol and formaldehyde, the content of these molecules increases sharply after receiving even methanol-free ethanol, indicating an endogenous source of the metabolic methanol present at low levels in the blood regulated by a cluster of genes. Recent studies of the pathogenesis of neurological disorders indicate metabolic formaldehyde as a putative causative agent. The detection of increased formaldehyde content in the blood of both neurological patients and the elderly indicates the important role of genetic and biochemical mechanisms of maintaining low levels of methanol and formaldehyde. PMID:25834233

  7. Prohibitin( PHB) roles in granulosa cell physiology.

    PubMed

    Chowdhury, Indrajit; Thomas, Kelwyn; Thompson, Winston E

    2016-01-01

    Ovarian granulosa cells (GC) play an important role in the growth and development of the follicle in the process known as folliculogenesis. In the present review, we focus on recent developments in prohibitin (PHB) research in relation to GC physiological functions. PHB is a member of a highly conserved eukaryotic protein family containing the repressor of estrogen activity (REA)/stomatin/PHB/flotillin/HflK/C (SPFH) domain (also known as the PHB domain) found in diverse species from prokaryotes to eukaryotes. PHB is ubiquitously expressed in a circulating free form or is present in multiple cellular compartments including mitochondria, nucleus and plasma membrane. In mitochondria, PHB is anchored to the mitochondrial inner membrane and forms complexes with the ATPases associated with proteases having diverse cellular activities. PHB continuously shuttles between the mitochondria, cytosol and nucleus. In the nucleus, PHB interacts with various transcription factors and modulates transcriptional activity directly or through interactions with chromatin remodeling proteins. Many functions have been attributed to the mitochondrial and nuclear PHB complexes such as cellular differentiation, anti-proliferation, morphogenesis and maintenance of the functional integrity of the mitochondria. However, to date, the regulation of PHB expression patterns and GC physiological functions are not completely understood. PMID:26496733

  8. Edaphic, structural and physiological contrasts across Amazon Basin forest-savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure and function

    NASA Astrophysics Data System (ADS)

    Lloyd, J.; Domingues, T. F.; Schrodt, F.; Ishida, F. Y.; Feldpausch, T. R.; Saiz, G.; Quesada, C. A.; Schwarz, M.; Torello-Raventos, M.; Gilpin, M.; Marimon, B. S.; Marimon-Junior, B. H.; Ratter, J. A.; Grace, J.; Nardoto, G. B.; Veenendaal, E.; Arroyo, L.; Villarroel, D.; Killeen, T. J.; Steininger, M.; Phillips, O. L.

    2015-11-01

    Sampling along a precipitation gradient in tropical South America extending from ca. 0.8 to 2.0 m a-1, savanna soils had consistently lower exchangeable cation concentrations and higher C / N ratios than nearby forest plots. These soil differences were also reflected in canopy averaged leaf traits with savanna trees typically having higher leaf mass per unit area but lower mass-based nitrogen (Nm) and potassium (Km). Both Nm and Km also increased with declining mean annual precipitation (PA), but most area-based leaf traits such as leaf photosynthetic capacity showed no systematic variation with PA or vegetation type. Despite this invariance, when taken in conjunction with other measures such as mean canopy height, area-based soil exchangeable potassium content, [K]sa , proved to be an excellent predictor of several photosynthetic properties (including 13C isotope discrimination). Moreover, when considered in a multivariate context with PA and soil plant available water storage capacity (θP) as covariates, [K]sa also proved to be an excellent predictor of stand-level canopy area, providing drastically improved fits as compared to models considering just PA and/or θP. Neither calcium, nor magnesium, nor soil pH could substitute for potassium when tested as alternative model predictors (ΔAIC > 10). Nor for any model could simple soil texture metrics such as sand or clay content substitute for either [K]sa or θP. Taken in conjunction with recent work in Africa and the forests of the Amazon Basin, this suggests - in combination with some newly conceptualised interacting effects of PA and θP also presented here - a critical role for potassium as a modulator of tropical vegetation structure and function.

  9. Selenoproteins: Molecular Pathways and Physiological Roles

    PubMed Central

    Labunskyy, Vyacheslav M.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2014-01-01

    Selenium is an essential micronutrient with important functions in human health and relevance to several pathophysiological conditions. The biological effects of selenium are largely mediated by selenium-containing proteins (selenoproteins) that are present in all three domains of life. Although selenoproteins represent diverse molecular pathways and biological functions, all these proteins contain at least one selenocysteine (Sec), a selenium-containing amino acid, and most serve oxidoreductase functions. Sec is cotranslationally inserted into nascent polypeptide chains in response to the UGA codon, whose normal function is to terminate translation. To decode UGA as Sec, organisms evolved the Sec insertion machinery that allows incorporation of this amino acid at specific UGA codons in a process requiring a cis-acting Sec insertion sequence (SECIS) element. Although the basic mechanisms of Sec synthesis and insertion into proteins in both prokaryotes and eukaryotes have been studied in great detail, the identity and functions of many selenoproteins remain largely unknown. In the last decade, there has been significant progress in characterizing selenoproteins and selenoproteomes and understanding their physiological functions. We discuss current knowledge about how these unique proteins perform their functions at the molecular level and highlight new insights into the roles that selenoproteins play in human health. PMID:24987004

  10. The role of paf in embryo physiology.

    PubMed

    O'Neill, Chris

    2005-01-01

    Embryo-derived paf (1-o-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is produced by de novo synthesis. This synthesis commences soon after fertilization and persists throughout the preimplantation phase. Paf is produced and released by the embryos of all mammalian species studied to date. Its release from the embryo involves binding to extracellular albumin in a manner that protects paf from enzymatic degradation. Released paf causes a range of alterations in maternal physiology, including platelet activation, changes in oviductal, endometrial and maternal immune function. Paf also acts in an autocrine fashion as a trophic/survival factor for the early embryo. In vitro, supplementation of culture media with paf improves embryo development. Embryo-derived paf's autocrine actions are transduced by 1-o-phosphatidylinositol-3-kinase, which induces characteristic calcium transients within the early embryo. The calcium transients require both the influx of external calcium and release of inositol trisphosphate-dependent internal calcium stores. Buffering these transients compromised embryo development in a manner that was reversed by exogenous paf. Assisted reproductive technologies compromise the production of paf by some embryos and retard the expression of the paf receptor. This deprivation of paf's action is one of the factors limiting the survivability of embryos produced by assisted reproductive technologies. Paf is one of several autocrine and paracrine trophic/survival factors that act on the early embryo. These factors probably act cooperatively and may, to some degree, be mutually redundant. As the earliest-released and the best-described embryotrophin, paf provides an important exemplar for understanding the role of ligand-mediated trophic support of the early embryo. PMID:15790601

  11. Protein disulfide isomerase a multifunctional protein with multiple physiological roles

    NASA Astrophysics Data System (ADS)

    Ali Khan, Hyder; Mutus, Bulent

    2014-08-01

    Protein disulfide isomerase (PDI), is a member of the thioredoxin superfamily of redox proteins. PDI has three catalytic activities including, thiol-disulfide oxireductase, disulfide isomerase and redox-dependent chaperone. Originally, PDI was identified in the lumen of the endoplasmic reticulum and subsequently detected at additional locations, such as cell surfaces and the cytosol. This review will provide an overview of the recent advances in relating the structural features of PDI to its multiple catalytic roles as well as its physiological and pathophysiological functions related to redox regulation and protein folding.

  12. Tuning of Peroxiredoxin Catalysis for Various Physiological Roles

    PubMed Central

    2015-01-01

    Peroxiredoxins (Prxs) make up an ancient family of enzymes that are the predominant peroxidases for nearly all organisms and play essential roles in reducing hydrogen peroxide, organic hydroperoxides, and peroxynitrite. Even between distantly related organisms, the core protein fold and key catalytic residues related to its cysteine-based catalytic mechanism have been retained. Given that these enzymes appeared early in biology, Prxs have experienced more than 1 billion years of optimization for specific ecological niches. Although their basic enzymatic function remains the same, Prxs have diversified and are involved in roles such as protecting DNA against mutation, defending pathogens against host immune responses, suppressing tumor formation, and—for eukaryotes—helping regulate peroxide signaling via hyperoxidation of their catalytic Cys residues. Here, we review the current understanding of the physiological roles of Prxs by analyzing knockout and knockdown studies from ∼25 different species. We also review what is known about the structural basis for the sensitivity of some eukaryotic Prxs to inactivation by hyperoxidation. In considering the physiological relevance of hyperoxidation, we explore the distribution across species of sulfiredoxin (Srx), the enzyme responsible for rescuing hyperoxidized Prxs. We unexpectedly find that among eukaryotes appearing to have a “sensitive” Prx isoform, some do not contain Srx. Also, as Prxs are suggested to be promising targets for drug design, we discuss the rationale behind recently proposed strategies for their selective inhibition. PMID:25403613

  13. Physiological roles of the pantothenate kinases

    PubMed Central

    Dansie, Lorraine E.; Reeves, Stacy; Miller, Karen; Zano, Stephen P.; Frank, Matthew; Pate, Caroline; Wang, Jina; Jackowski, Suzanne

    2016-01-01

    CoA (coenzyme A) is an essential cofactor that is involved in many metabolic processes. CoA is derived from pantothenate in five biosynthetic reactions. The CoA biosynthetic pathway is regulated by PanKs (pantothenate kinases) and four active isoforms are expressed in mammals. The critical physiological functions of the PanKs are revealed by systematic deletion of the Pank genes in mice. PMID:25109998

  14. Adaptive dynamics for physiologically structured population models.

    PubMed

    Durinx, Michel; Metz, J A J Hans; Meszéna, Géza

    2008-05-01

    We develop a systematic toolbox for analyzing the adaptive dynamics of multidimensional traits in physiologically structured population models with point equilibria (sensu Dieckmann et al. in Theor. Popul. Biol. 63:309-338, 2003). Firstly, we show how the canonical equation of adaptive dynamics (Dieckmann and Law in J. Math. Biol. 34:579-612, 1996), an approximation for the rate of evolutionary change in characters under directional selection, can be extended so as to apply to general physiologically structured population models with multiple birth states. Secondly, we show that the invasion fitness function (up to and including second order terms, in the distances of the trait vectors to the singularity) for a community of N coexisting types near an evolutionarily singular point has a rational form, which is model-independent in the following sense: the form depends on the strategies of the residents and the invader, and on the second order partial derivatives of the one-resident fitness function at the singular point. This normal form holds for Lotka-Volterra models as well as for physiologically structured population models with multiple birth states, in discrete as well as continuous time and can thus be considered universal for the evolutionary dynamics in the neighbourhood of singular points. Only in the case of one-dimensional trait spaces or when N = 1 can the normal form be reduced to a Taylor polynomial. Lastly we show, in the form of a stylized recipe, how these results can be combined into a systematic approach for the analysis of the (large) class of evolutionary models that satisfy the above restrictions. PMID:17943289

  15. Structural physiology based on electron crystallography

    PubMed Central

    Fujiyoshi, Yoshinori

    2011-01-01

    There are many questions in brain science, which are extremely interesting but very difficult to answer. For example, how do education and other experiences during human development influence the ability and personality of the adult? The molecular mechanisms underlying such phenomena are still totally unclear. However, technological and instrumental advancements of electron microscopy have facilitated comprehension of the structures of biological components, cells, and organelles. Electron crystallography is especially good for studying the structure and function of membrane proteins, which are key molecules of signal transduction in neural and other cells. Electron crystallography is now an established technique to analyze the structures of membrane proteins in lipid bilayers, which are close to their natural biological environment. By utilizing cryo-electron microscopes with helium cooled specimen stages, which were developed through a personal motivation to understand functions of neural systems from a structural point of view, structures of membrane proteins were analyzed at a resolution higher than 3 Å. This review has four objectives. First, it is intended to introduce the new research field of structural physiology. Second, it introduces some of the personal struggles, which were involved in developing the cryo-electron microscope. Third, it discusses some of the technology for the structural analysis of membrane proteins based on cryo-electron microscopy. Finally, it reviews structural and functional analyses of membrane proteins. PMID:21416541

  16. Development of the field of structural physiology

    PubMed Central

    FUJIYOSHI, Yoshinori

    2015-01-01

    Electron crystallography is especially useful for studying the structure and function of membrane proteins — key molecules with important functions in neural and other cells. Electron crystallography is now an established technique for analyzing the structures of membrane proteins in lipid bilayers that closely simulate their natural biological environment. Utilizing cryo-electron microscopes with helium-cooled specimen stages that were developed through a personal motivation to understand the functions of neural systems from a structural point of view, the structures of membrane proteins can be analyzed at a higher than 3 Å resolution. This review covers four objectives. First, I introduce the new research field of structural physiology. Second, I recount some of the struggles involved in developing cryo-electron microscopes. Third, I review the structural and functional analyses of membrane proteins mainly by electron crystallography using cryo-electron microscopes. Finally, I discuss multifunctional channels named “adhennels” based on structures analyzed using electron and X-ray crystallography. PMID:26560835

  17. Ryanodine receptor physiology and its role in disease.

    PubMed

    Lanner, Johanna T

    2012-01-01

    The ryanodine receptors (RyRs) is the major intracellular Ca(2+) release channel localized in the plasma membrane of the endoplasmatic/sarcoplasmatic reticulum. RyR-mediated Ca(2+) release is crucial for every heart beat and skeletal muscle contraction and also important in learning and memory. Given the important role RyR has in physiological functions it is not surprising that dysregulation and impaired RyR channel function contributes to severe pathologies e.g. cardiac arrhythmias and Alzheimer's disease. Mutations in the RyR channels are associated with a number of human disorders e.g. malignant hyperthermia (MH) and central core disease (CCD), catecholaminergic polymorphic ventricular tachycardia (CPVT), and arrhythmogenic right ventricular dysplasia (ARVD). RyRs are modulated directly and indirectly by various ions, small molecules and proteins and RyR structure and function are expected to be defined within this macromolecular set of interactions. This article discusses the physiological function of RyR and examines its role in disorders and diseases. PMID:22453944

  18. Physiological roles of acid-base sensors.

    PubMed

    Levin, Lonny R; Buck, Jochen

    2015-01-01

    Acid-base homeostasis is essential for life. The macromolecules upon which living organisms depend are sensitive to pH changes, and physiological systems use the equilibrium between carbon dioxide, bicarbonate, and protons to buffer their pH. Biological processes and environmental insults are constantly challenging an organism's pH; therefore, to maintain a consistent and proper pH, organisms need sensors that measure pH and that elicit appropriate responses. Mammals use multiple sensors for measuring both intracellular and extracellular pH, and although some mammalian pH sensors directly measure protons, it has recently become apparent that many pH-sensing systems measure pH via bicarbonate-sensing soluble adenylyl cyclase. PMID:25340964

  19. Bioactive Pigments from Marine Bacteria: Applications and Physiological Roles

    PubMed Central

    Soliev, Azamjon B.; Hosokawa, Kakushi; Enomoto, Keiichi

    2011-01-01

    Research into natural products from the marine environment, including microorganisms, has rapidly increased over the past two decades. Despite the enormous difficulty in isolating and harvesting marine bacteria, microbial metabolites are increasingly attractive to science because of their broad-ranging pharmacological activities, especially those with unique color pigments. This current review paper gives an overview of the pigmented natural compounds isolated from bacteria of marine origin, based on accumulated data in the literature. We review the biological activities of marine compounds, including recent advances in the study of pharmacological effects and other commercial applications, in addition to the biosynthesis and physiological roles of associated pigments. Chemical structures of the bioactive compounds discussed are also presented. PMID:21961023

  20. Insights into the physiological role of CNS regeneration inhibitors

    PubMed Central

    Baldwin, Katherine T.; Giger, Roman J.

    2015-01-01

    The growth inhibitory nature of injured adult mammalian central nervous system (CNS) tissue constitutes a major barrier to robust axonal outgrowth and functional recovery following trauma or disease. Prototypic CNS regeneration inhibitors are broadly expressed in the healthy and injured brain and spinal cord and include myelin-associated glycoprotein (MAG), the reticulon family member NogoA, oligodendrocyte myelin glycoprotein (OMgp), and chondroitin sulfate proteoglycans (CSPGs). These structurally diverse molecules strongly inhibit neurite outgrowth in vitro, and have been most extensively studied in the context of nervous system injury in vivo. The physiological role of CNS regeneration inhibitors in the naïve, or uninjured, CNS remains less well understood, but has received growing attention in recent years and is the focus of this review. CNS regeneration inhibitors regulate myelin development and axon stability, consolidate neuronal structure shaped by experience, and limit activity-dependent modification of synaptic strength. Altered function of CNS regeneration inhibitors is associated with neuropsychiatric disorders, suggesting crucial roles in brain development and health. PMID:26113809

  1. Physiological role of carnosine in contracting muscle.

    PubMed

    Begum, Gulshanara; Cunliffe, Adam; Leveritt, Michael

    2005-10-01

    High-intensity exercise leads to reductions in muscle substrates (ATP, PCr6, and glycogen) and a subsequent accumulation of metabolites (ADP, P, H(+), and Mg(+)) with a possible increase in free radical production. These factors independently and collectively have deleterious effects on muscle, with significant repercussions on high-intensity performance or training sessions. The effect of carnosine on overcoming muscle fatigue appears to be related to its ability to buffer the increased H(+) concentration following high-intensity work. Carnosine, however, has other roles such as an antioxidant, a metal chelator, a Ca(2+) and enzyme regulator, an inhibitor of protein glycosylation and protein-protein cross-linking. To date7comma; only 1 study has investigated the effects of carnosine supplementation (not in pure form) on exercise performance in human subjects and found no improvement in repetitive high-intensity work. Much data has come from in vitro work on animal skeletal muscle fibers or other components of muscle contractile mechanisms. Thus further research needs to be carried out on humans to provide additional understanding on the effects of carnosine in vivo. PMID:16327029

  2. [Cardiac potassium channels: molecular structure, physiology, pathophysiology and therapeutic implications].

    PubMed

    Mironov, N Iu; Golitsyn, S P

    2013-01-01

    Potassium channels and currents play essential roles in cardiac repolarization. Potassium channel blockade by class III antiarrhythmic drugs prolongs cardiac repolarization and results in termination and prevention of cardiac arrhythmias. Excessive inhomogeneous repolarization prolongation may lead to electrical instability and proarrhythmia (Torsade de Pointes tachycardia). This review focuses on molecular structure, physiology, pathophysiology and therapeutic potential of potassium channels of cardiac conduction system and myocardium providing information on recent findings in pathogenesis of cardiac arrhythmias, including inherited genetic abnormalities, and future perspectives. PMID:24654438

  3. Structure-based Functional Study Reveals Multiple Roles of Transmembrane Segment IX and Loop VIII–IX in NhaA Na+/H+ Antiporter of Escherichia coli at Physiological pH*

    PubMed Central

    Tzubery, Tzvi; Rimon, Abraham; Padan, Etana

    2008-01-01

    The three-dimensional crystal structure of Escherichia coli NhaA determined at pH 4 provided the first structural insights into the mechanism of antiport and pH regulation of a Na+/H+ antiporter. However, because NhaA is activated at physiological pH (pH 6.5–8.5), many questions pertaining to the active state of NhaA have remained open including the structural and physiological roles of helix IX and its loop VIII–IX. Here we studied this NhaA segment (Glu241–Phe267) by structure-based biochemical approaches at physiological pH. Cysteine-scanning mutagenesis identified new mutations affecting the pH dependence of NhaA, suggesting their contribution to the “pH sensor.” Furthermore mutation F267C reduced the H+/Na+ stoichiometry of the antiporter, and F267C/F344C inactivated the antiporter activity. Tests of accessibility to [2-(trimethylammonium)ethyl]methanethiosulfonate bromide, a membrane-impermeant positively charged SH reagent with a width similar to the diameter of hydrated Na+, suggested that at physiological pH the cytoplasmic cation funnel is more accessible than at acidic pH. Assaying intermolecular cross-linking in situ between single Cys replacement mutants uncovered the NhaA dimer interface at the cytoplasmic side of the membrane; between Leu255 and the cytoplasm, many Cys replacements cross-link with various cross-linkers spanning different distances (10–18Å) implying a flexible interface. L255C formed intermolecular S–S bonds, cross-linked only with a 5-Å cross-linker, and when chemically modified caused an alkaline shift of 1 pH unit in the pH dependence of NhaA and a 6-fold increase in the apparent Km for Na+ of the exchange activity suggesting a rigid point in the dimer interface critical for NhaA activity and pH regulation. PMID:18387952

  4. Structural investigation into physiological DNA phosphorothioate modification

    PubMed Central

    Lan, Wenxian; Hu, Zhongpei; Shen, Jie; Wang, Chunxi; Jiang, Feng; Liu, Huili; Long, Dewu; Liu, Maili; Cao, Chunyang

    2016-01-01

    DNA phosphorothioate (PT) modification, with sulfur replacing a nonbridging phosphate oxygen in a sequence and stereo specific manner, is a novel physiological variation in bacteria. But what effects on DNA properties PT modification has is still unclear. To address this, we prepared three double-stranded (ds) DNA decamers, d(CGPXGCCGCCGA) with its complementary strand d(TCGGCGPXGCCG) (where X = O or S, i.e., PT-free dsDNA, [Sp, Sp]-PT dsDNA or [Rp, Rp]-PT dsDNA) located in gene of Streptomyces lividans. Their melting temperature (Tm) measurement indicates that [Rp, Rp]-PT dsDNA is most unstable. Their electron transfer potential detection presents an order of anti-oxidation properties: Sp-PT DNA > Rp-PT DNA > PT-free DNA. Their NMR structures demonstrate that PT modification doesn’t change their B-form conformation. The sulfur in [Rp, Rp]-PT dsDNA locates in the major groove, with steric effects on protons in the sugar close to modification sites, resulting in its unstability, and facilitating its selectively interactions with ScoMcrA. We thought that PT modification was dialectical to the bacteria. It protects the hosting bacteria by working as antioxidant against H2O2, and acts as a marker, directing restriction enzyme observed in other hosts, like ScoMcrA, to correctly cleave the PT modified DNA, so that bacteria cannot spread and survive. PMID:27169778

  5. Structural investigation into physiological DNA phosphorothioate modification.

    PubMed

    Lan, Wenxian; Hu, Zhongpei; Shen, Jie; Wang, Chunxi; Jiang, Feng; Liu, Huili; Long, Dewu; Liu, Maili; Cao, Chunyang

    2016-01-01

    DNA phosphorothioate (PT) modification, with sulfur replacing a nonbridging phosphate oxygen in a sequence and stereo specific manner, is a novel physiological variation in bacteria. But what effects on DNA properties PT modification has is still unclear. To address this, we prepared three double-stranded (ds) DNA decamers, d(CG(PX)GCCGCCGA) with its complementary strand d(TCGGCG(PX)GCCG) (where X = O or S, i.e., PT-free dsDNA, [Sp, Sp]-PT dsDNA or [Rp, Rp]-PT dsDNA) located in gene of Streptomyces lividans. Their melting temperature (Tm) measurement indicates that [Rp, Rp]-PT dsDNA is most unstable. Their electron transfer potential detection presents an order of anti-oxidation properties: Sp-PT DNA > Rp-PT DNA > PT-free DNA. Their NMR structures demonstrate that PT modification doesn't change their B-form conformation. The sulfur in [Rp, Rp]-PT dsDNA locates in the major groove, with steric effects on protons in the sugar close to modification sites, resulting in its unstability, and facilitating its selectively interactions with ScoMcrA. We thought that PT modification was dialectical to the bacteria. It protects the hosting bacteria by working as antioxidant against H2O2, and acts as a marker, directing restriction enzyme observed in other hosts, like ScoMcrA, to correctly cleave the PT modified DNA, so that bacteria cannot spread and survive. PMID:27169778

  6. The role of cystatins in tick physiology and blood feeding

    PubMed Central

    Schwarz, Alexandra; Valdés, James J.; Kotsyfakis, Michalis

    2012-01-01

    Summary Ticks, as obligate hematophagous ectoparasites, impact greatly on animal and human health because they transmit various pathogens worldwide. Over the last decade, several cystatins from different hard and soft ticks were identified and biochemically analyzed for their role in the physiology and blood feeding lifestyle of ticks. All these cystatins are potent inhibitors of papain-like cysteine proteases, but not of legumain. Tick cystatins were either detected in the salivary glands and/or the midgut, key tick organs responsible for blood digestion and the expression of pharmacologically potent salivary proteins for blood feeding. For example, the transcription of two cystatins named HlSC-1 and Sialostatin L2 was highly upregulated in these tick tissues during feeding. Vaccinating hosts against Sialostatin L2 and Om-cystatin 2 as well as silencing of a cystatin gene from Amblyomma americanum significantly inhibited the feeding ability of ticks. Additionally, Om-cystatin 2 and Sialostatin L possessed strong host immunosuppressive properties by inhibiting dendritic cell maturation due to their interaction with cathepsin S. These two cystatins, together with Sialostatin L2 are the first tick cystatins with resolved three-dimensional structure. Sialostatin L, furthermore, showed preventive properties against autoimmune diseases. In the case of the cystatin Hlcyst-2, experimental evidence showed its role in tick innate immunity, since increased Hlcyst-2 transcript levels were detected in Babesia gibsoni-infected larval ticks and the protein inhibited Babesia growth. Other cystatins, such as Hlcyst-1 or Om-cystatin 2 are assumed to be involved in regulating blood digestion. Only for Bmcystatin was a role in tick embryogenesis suggested. Finally, all the biochemically analyzed tick cystatins are powerful protease inhibitors, and some may be novel antigens for developing anti-tick vaccines and drugs of medical importance due to their stringent target specificity

  7. Cyclo-oxygenase isoenzymes: physiological and pharmacological role.

    PubMed

    Kam, P C; See, A U

    2000-05-01

    Prostaglandins play important roles in inflammation and the maintenance of normal physiological function of several organ systems. Prostaglandin production requires the conversion of arachidonic acid to the intermediate prostaglandin H2 catalysed by the cyclo-oxygenase (COX) enzyme. There are two isoforms of the COX enzyme, COX-1 and COX-2. These isoforms vary in their distribution and expression but are similar in size, substrate specificity and kinetics. Normal physiological functions are mediated by 'constitutive' COX-1, while the inflammatory response is mediated by 'inducible' COX-2. Current nonsteroidal anti-inflammatory drugs inhibit both enzymes to varying degrees and can cause adverse effects in the gastrointestinal tract, kidney, respiratory system and platelets. Newer, selective COX-2 inhibitors offer real hope for safer anti-inflammatory drugs although their long-term safety and efficacy need to be studied as questions remain unanswered about possible physiological functions of COX-2. PMID:10792135

  8. Physiological role of SLC12 family members in the kidney.

    PubMed

    Bazúa-Valenti, Silvana; Castañeda-Bueno, María; Gamba, Gerardo

    2016-07-01

    The solute carrier family 12, as numbered according to Human Genome Organisation (HUGO) nomenclature, encodes the electroneutral cation-coupled chloride cotransporters that are expressed in many cells and tissues; they play key roles in important physiological events, such as cell volume regulation, modulation of the intracellular chloride concentration, and transepithelial ion transport. Most of these family members are expressed in specific regions of the nephron. The Na-K-2Cl cotransporter NKCC2, which is located in the thick ascending limb, and the Na-Cl cotransporter, which is located in the distal convoluted tubule, play important roles in salt reabsorption and serve as the receptors for loop and thiazide diuretics, respectively (Thiazide diuretics are among the most commonly prescribed drugs in the world.). The activity of these transporters correlates with blood pressure levels; thus, their regulation has been a subject of intense research for more than a decade. The K-Cl cotransporters KCC1, KCC3, and KCC4 are expressed in several nephron segments, and their role in renal physiology is less understood but nevertheless important. Evidence suggests that they are involved in modulating proximal tubule glucose reabsorption, thick ascending limb salt reabsorption and collecting duct proton secretion. In this work, we present an overview of the physiological roles of these transporters in the kidney, with particular emphasis on the knowledge gained in the past few years. PMID:27097893

  9. Marine Microbial Secondary Metabolites: Pathways, Evolution and Physiological Roles.

    PubMed

    Giordano, Daniela; Coppola, Daniela; Russo, Roberta; Denaro, Renata; Giuliano, Laura; Lauro, Federico M; di Prisco, Guido; Verde, Cinzia

    2015-01-01

    Microbes produce a huge array of secondary metabolites endowed with important ecological functions. These molecules, which can be catalogued as natural products, have long been exploited in medical fields as antibiotics, anticancer and anti-infective agents. Recent years have seen considerable advances in elucidating natural-product biosynthesis and many drugs used today are natural products or natural-product derivatives. The major contribution to recent knowledge came from application of genomics to secondary metabolism and was facilitated by all relevant genes being organised in a contiguous DNA segment known as gene cluster. Clustering of genes regulating biosynthesis in bacteria is virtually universal. Modular gene clusters can be mixed and matched during evolution to generate structural diversity in natural products. Biosynthesis of many natural products requires the participation of complex molecular machines known as polyketide synthases and non-ribosomal peptide synthetases. Discovery of new evolutionary links between the polyketide synthase and fatty acid synthase pathways may help to understand the selective advantages that led to evolution of secondary-metabolite biosynthesis within bacteria. Secondary metabolites confer selective advantages, either as antibiotics or by providing a chemical language that allows communication among species, with other organisms and their environment. Herewith, we discuss these aspects focusing on the most clinically relevant bioactive molecules, the thiotemplated modular systems that include polyketide synthases, non-ribosomal peptide synthetases and fatty acid synthases. We begin by describing the evolutionary and physiological role of marine natural products, their structural/functional features, mechanisms of action and biosynthesis, then turn to genomic and metagenomic approaches, highlighting how the growing body of information on microbial natural products can be used to address fundamental problems in

  10. Structure and physiological function of calpains.

    PubMed Central

    Sorimachi, H; Ishiura, S; Suzuki, K

    1997-01-01

    For a long time now, two ubiquitously expressed mammalian calpain isoenzymes have been used to explore the structure and function of calpain. Although these two calpains, mu- and m-calpains, still attract intensive interest because of their unique characteristics, various distinct homologues to the protease domain of mu- and m-calpains have been identified in a variety of organisms. Some of these 'novel' calpain homologues are involved in important biological functions. For example, p94 (also called calpain 3), a mammalian calpain homologue predominantly expressed in skeletal muscle, is genetically proved to be responsible for limb-girdle muscular dystrophy type 2A. Tra-3, a calpain homologue in nematodes, is involved in the sex determination cascade during early development. PalB, a key gene product involved in the alkaline adaptation of Aspergillus nidulans, is the first example of a calpain homologue present in fungi. These findings indicate various important functional roles for intracellular proteases belonging to the calpain superfamily. PMID:9396712

  11. Neurotransmitter Co-release: Mechanism and Physiological Role

    PubMed Central

    Hnasko, Thomas S.; Edwards, Robert H.

    2014-01-01

    Neurotransmitter identity is a defining feature of all neurons because it constrains the type of information they convey, but it has become clear that many neurons in fact release multiple transmitters. Although the physiological role for co-release has remained poorly understood, the vesicular uptake of one transmitter can regulate filling with the other by influencing expression of the H+ electrochemical driving force. In addition, the sorting of vesicular neurotransmitter transporters and other synaptic vesicle proteins into different vesicle pools suggests the potential for distinct modes of release. Co-release thus serves multiple roles in synaptic transmission. PMID:22054239

  12. Clarifying the Roles of Homeostasis and Allostasis in Physiological Regulation

    PubMed Central

    Ramsay, Douglas S.; Woods, Stephen C.

    2014-01-01

    Homeostasis, the dominant explanatory framework for physiological regulation, has undergone significant revision in recent years, with contemporary models differing significantly from the original formulation. Allostasis, an alternative view of physiological regulation, goes beyond its homeostatic roots, offering novel insights relevant to our understanding and treatment of several chronic health conditions. Despite growing enthusiasm for allostasis, the concept remains diffuse, due in part to ambiguity as to how the term is understood and used, impeding meaningful translational and clinical research on allostasis. Here we provide a more focused understanding of homeostasis and allostasis by explaining how both play a role in physiological regulation, and a critical analysis of regulation suggests how homeostasis and allostasis can be distinguished. Rather than focusing on changes in the value of a regulated variable (e.g., body temperature, body adiposity, or reward), research investigating the activity and relationship among the multiple regulatory loops that influence the value of these regulated variables may be the key to distinguishing homeostasis and allostasis. The mechanisms underlying physiological regulation and dysregulation are likely to have important implications for health and disease. PMID:24730599

  13. The role thermal physiology plays in species invasion

    PubMed Central

    Kelley, Amanda L.

    2014-01-01

    The characterization of physiological phenotypes that may play a part in the establishment of non-native species can broaden our understanding about the ecology of species invasion. Here, an assessment was carried out by comparing the responses of invasive and native species to thermal stress. The goal was to identify physiological patterns that facilitate invasion success and to investigate whether these traits are widespread among invasive ectotherms. Four hypotheses were generated and tested using a review of the literature to determine whether they could be supported across taxonomically diverse invasive organisms. The four hypotheses are as follows: (i) broad geographical temperature tolerances (thermal width) confer a higher upper thermal tolerance threshold for invasive rather than native species; (ii) the upper thermal extreme experienced in nature is more highly correlated with upper thermal tolerance threshold for invasive vs. native animals; (iii) protein chaperone expression—a cellular mechanism that underlies an organism's thermal tolerance threshold—is greater in invasive organisms than in native ones; and (iv) acclimation to higher temperatures can promote a greater range of thermal tolerance for invasive compared with native species. Each hypothesis was supported by a meta-analysis of the invasive/thermal physiology literature, providing further evidence that physiology plays a substantial role in the establishment of invasive ectotherms. PMID:27293666

  14. Structure and Physiological Actions of Ghrelin

    PubMed Central

    2013-01-01

    Ghrelin is a gastric peptide hormone, discovered as being the endogenous ligand of growth hormone secretagogue receptor. Ghrelin is a 28 amino acid peptide presenting a unique n-octanoylation modification on its serine in position 3, catalyzed by ghrelin O-acyl transferase. Ghrelin is mainly produced by a subset of stomach cells and also by the hypothalamus, the pituitary, and other tissues. Transcriptional, translational, and posttranslational processes generate ghrelin and ghrelin-related peptides. Homo- and heterodimers of growth hormone secretagogue receptor, and as yet unidentified receptors, are assumed to mediate the biological effects of acyl ghrelin and desacyl ghrelin, respectively. Ghrelin exerts wide physiological actions throughout the body, including growth hormone secretion, appetite and food intake, gastric secretion and gastrointestinal motility, glucose homeostasis, cardiovascular functions, anti-inflammatory functions, reproductive functions, and bone formation. This review focuses on presenting the current understanding of ghrelin and growth hormone secretagogue receptor biology, as well as the main physiological effects of ghrelin. PMID:24381790

  15. Physiological Roles of Adipokines, Hepatokines, and Myokines in Ruminants

    PubMed Central

    Roh, Sang-Gun; Suzuki, Yutaka; Gotoh, Takafumi; Tatsumi, Ryuichi; Katoh, Kazuo

    2016-01-01

    Since the discovery of leptin secreted from adipocytes, specialized tissues and cells have been found that secrete the several peptides (or cytokines) that are characterized to negatively and positively regulate the metabolic process. Different types of adipokines, hepatokines, and myokines, which act as cytokines, are secreted from adipose, liver, and muscle tissue, respectively, and have been identified and examined for their physiological roles in humans and disease in animal models. Recently, various studies of these cytokines have been conducted in ruminants, including dairy cattle, beef cattle, sheep, and goat. Interestingly, a few cytokines from these tissues in ruminants play an important role in the post-parturition, lactation, and fattening (marbling) periods. Thus, understanding these hormones is important for improving nutritional management in dairy cows and beef cattle. However, to our knowledge, there have been no reviews of the characteristics of these cytokines in beef and dairy products in ruminants. In particular, lipid and glucose metabolism in adipose tissue, liver tissue, and muscle tissue are very important for energy storage, production, and synthesis, which are regulated by these cytokines in ruminant production. In this review, we summarize the physiological roles of adipokines, hepatokines, and myokines in ruminants. This discussion provides a foundation for understanding the role of cytokines in animal production of ruminants. PMID:26732322

  16. Physiological Roles of Adipokines, Hepatokines, and Myokines in Ruminants.

    PubMed

    Roh, Sang-Gun; Suzuki, Yutaka; Gotoh, Takafumi; Tatsumi, Ryuichi; Katoh, Kazuo

    2016-01-01

    Since the discovery of leptin secreted from adipocytes, specialized tissues and cells have been found that secrete the several peptides (or cytokines) that are characterized to negatively and positively regulate the metabolic process. Different types of adipokines, hepatokines, and myokines, which act as cytokines, are secreted from adipose, liver, and muscle tissue, respectively, and have been identified and examined for their physiological roles in humans and disease in animal models. Recently, various studies of these cytokines have been conducted in ruminants, including dairy cattle, beef cattle, sheep, and goat. Interestingly, a few cytokines from these tissues in ruminants play an important role in the post-parturition, lactation, and fattening (marbling) periods. Thus, understanding these hormones is important for improving nutritional management in dairy cows and beef cattle. However, to our knowledge, there have been no reviews of the characteristics of these cytokines in beef and dairy products in ruminants. In particular, lipid and glucose metabolism in adipose tissue, liver tissue, and muscle tissue are very important for energy storage, production, and synthesis, which are regulated by these cytokines in ruminant production. In this review, we summarize the physiological roles of adipokines, hepatokines, and myokines in ruminants. This discussion provides a foundation for understanding the role of cytokines in animal production of ruminants. PMID:26732322

  17. Physiological roles of Rab27 effectors in regulated exocytosis.

    PubMed

    Izumi, Tetsuro

    2007-12-01

    Recent discoveries that Rab27a/b and their multiple effectors are involved in the regulated exocytosis of lysosome-related organelles and secretory granules have generated numerous related studies. However, not all of these studies have yielded physiologically relevant data because they were not all performed under physiological conditions. For example, "in vivo interactions" have been claimed without examination of the endogenous complex. In some studies, the only proof of interaction was between exogenously expressed proteins in cultured cells where these proteins are not normally expressed. Because regulated exocytic pathways contain highly differentiated secretory organelles, it is important to analyze the molecular interaction in cells harboring these organelles and the associated molecules. Furthermore, previous overexpression experiments to examine the effect on secretion often failed to compare the level of the exogenous protein with that of the endogenous one. Similarly, some knockdown experiments using small-interfering RNAs have only shown downregulation of the exogenously expressed protein, and not of the endogenous one. Many of the conflicting findings in previous studies may be attributable to these shortcomings. The present study summarizes our knowledge about the roles of Rab27 effectors in regulated exocytic pathways based on physiologically relevant data. PMID:17664848

  18. Physiological Implications of Myocardial Scar Structure.

    PubMed

    Richardson, William J; Clarke, Samantha A; Quinn, T Alexander; Holmes, Jeffrey W

    2015-10-01

    Once myocardium dies during a heart attack, it is replaced by scar tissue over the course of several weeks. The size, location, composition, structure, and mechanical properties of the healing scar are all critical determinants of the fate of patients who survive the initial infarction. While the central importance of scar structure in determining pump function and remodeling has long been recognized, it has proven remarkably difficult to design therapies that improve heart function or limit remodeling by modifying scar structure. Many exciting new therapies are under development, but predicting their long-term effects requires a detailed understanding of how infarct scar forms, how its properties impact left ventricular function and remodeling, and how changes in scar structure and properties feed back to affect not only heart mechanics but also electrical conduction, reflex hemodynamic compensations, and the ongoing process of scar formation itself. In this article, we outline the scar formation process following a myocardial infarction, discuss interpretation of standard measures of heart function in the setting of a healing infarct, then present implications of infarct scar geometry and structure for both mechanical and electrical function of the heart and summarize experiences to date with therapeutic interventions that aim to modify scar geometry and structure. One important conclusion that emerges from the studies reviewed here is that computational modeling is an essential tool for integrating the wealth of information required to understand this complex system and predict the impact of novel therapies on scar healing, heart function, and remodeling following myocardial infarction. PMID:26426470

  19. Multifaceted roles of extracellular DNA in bacterial physiology.

    PubMed

    Vorkapic, Dina; Pressler, Katharina; Schild, Stefan

    2016-02-01

    In textbooks, DNA is generally defined as the universal storage material for genetic information in all branches of life. Beyond this important intracellular role, DNA can also be present outside of living cells and is an abundant biopolymer in aquatic and terrestrial ecosystems. The origin of extracellular DNA in such ecological niches is diverse: it can be actively secreted or released by prokaryotic and eukaryotic cells by means of autolysis, apoptosis, necrosis, bacterial secretion systems or found in association with extracellular bacterial membrane vesicles. Especially for bacteria, extracellular DNA represents a significant and convenient element that can be enzymatically modulated and utilized for multiple purposes. Herein, we discuss briefly the main origins of extracellular DNA and the most relevant roles for the bacterial physiology, such as biofilm formation, nutrient source, antimicrobial means and horizontal gene transfer. PMID:26328805

  20. Pivotal role of AKAP121 in mitochondrial physiology.

    PubMed

    Czachor, Alexander; Failla, Athena; Lockey, Richard; Kolliputi, Narasaiah

    2016-04-15

    In this Perspective, we discuss some recent developments in the study of the mitochondrial scaffolding protein AKAP121 (also known as AKAP1, or AKAP149 as the human homolog), with an emphasis on its role in mitochondrial physiology. AKAP121 has been identified to function as a key regulatory molecule in several mitochondrial events including oxidative phosphorylation, the control of membrane potential, fission-induced apoptosis, maintenance of mitochondrial Ca(2+)homeostasis, and the phosphorylation of various mitochondrial respiratory chain substrate molecules. Furthermore, we discuss the role of hypoxia in prompting cellular stress and damage, which has been demonstrated to mediate the proteosomal degradation of AKAP121, leading to an increase in reactive oxgyen species production, mitochondrial dysfunction, and ultimately cell death. PMID:26825124

  1. Physiological Roles of Non-Neuronal NMDA Receptors.

    PubMed

    Hogan-Cann, Adam D; Anderson, Christopher M

    2016-09-01

    Glutamate serves as the dominant central nervous system (CNS) excitatory neurotransmitter, in part by activating N-methyl-D-aspartate receptors (NMDARs). While the structure, function, and distribution of neuronal NMDARs have been extensively elucidated, NMDARs are also expressed across a wide spectrum of non-neuronal cells, including central and peripheral glial cells, endothelium, kidney, bone, pancreas, and others. These receptors are poorly understood compared to neuronal receptors, but there is a developing consensus that they have distinct structural and functional properties when activated by glutamate, NMDAR co-agonists, and in some cases by metabolites of tryptophan and methionine. It is also clear that non-neuronal NMDARs may participate in an array of physiological and pathophysiological processes, including but not limited to bone deposition, wound healing, insulin secretion, blood-brain barrier integrity, and myelination. These developing lines of evidence are stimulating exploration of non-neuronal NMDARs as a therapeutic target in several disorders. PMID:27338838

  2. Microbial 2-Cys Peroxiredoxins: Insights into Their Complex Physiological Roles

    PubMed Central

    Toledano, Michel B.; Huang, Bo

    2016-01-01

    The peroxiredoxins (Prxs) constitute a very large and highly conserved family of thiol-based peroxidases that has been discovered only very recently. We consider here these enzymes through the angle of their discovery, and of some features of their molecular and physiological functions, focusing on complex phenotypes of the gene mutations of the 2-Cys Prxs subtype in yeast. As scavengers of the low levels of H2O2 and as H2O2 receptors and transducers, 2-Cys Prxs have been highly instrumental to understand the biological impact of H2O2, and in particular its signaling function. 2-Cys Prxs can also become potent chaperone holdases, and unveiling the in vivo relevance of this function, which is still not established, should further increase our knowledge of the biological impact and toxicity of H2O2. The diverse molecular functions of 2-Cys Prx explain the often-hard task of relating them to peroxiredoxin genes phenotypes, which underscores the pleiotropic physiological role of these enzymes and complex biologic impact of H2O2. PMID:26813659

  3. Physiology

    ERIC Educational Resources Information Center

    Kay, Ian

    2008-01-01

    Underlying recent developments in health care and new treatments for disease are advances in basic medical sciences. This edition of "Webwatch" focuses on sites dealing with basic medical sciences, with particular attention given to physiology. There is a vast amount of information on the web related to physiology. The sites that are included here…

  4. Has cervical smooth muscle any physiological role in the human?

    PubMed

    Bryman, I; Norström, A; Lindblom, B

    1985-01-01

    Strips of human cervical tissue were obtained by needle biopsy and contractile activity was registered isometrically in a tissue chamber perfused by Krebs-Ringer bicarbonate buffer. The most frequently encountered pattern of contractile activity was high frequency-short duration. Prostaglandin (PG)E2, PGI2 and 6-keto-PGF1 alpha had an inhibitory effect on the muscular activity. Cervical muscle from pregnant women was more sensitive to PGE2 than specimens from non-pregnant women. PGF2 alpha had no apparent effect on cervical contractility in non-pregnant and early pregnant patients. In late pregnancy, however, PGF2 alpha inhibited muscle contractions. The present results point to a physiological role of the cervical muscles for the control of cervical competence during pregnancy. The inhibitory effect of PGs on the muscle activity may promote cervical dilatation and retraction. PMID:3893038

  5. Biology 23. Unit One -- The Cell: Structure and Physiology.

    ERIC Educational Resources Information Center

    Nederland Independent School District, TX.

    GRADES OR AGES: Not given. SUBJECT MATTER: Biology, the structure and physiology of the cell. ORGANIZATION AND PHYSICAL APPEARANCE: There are four sections: a) objectives for the unit, b) bibliography, c) activities, and d) evaluation. The guide is directed to the student rather than the teacher. The guide is mimeographed and stapled, with no…

  6. Physiological and pathophysiological roles of NAMPT and NAD metabolism.

    PubMed

    Garten, Antje; Schuster, Susanne; Penke, Melanie; Gorski, Theresa; de Giorgis, Tommaso; Kiess, Wieland

    2015-09-01

    Nicotinamide phosphoribosyltransferase (NAMPT) is a regulator of the intracellular nicotinamide adenine dinucleotide (NAD) pool. NAD is an essential coenzyme involved in cellular redox reactions and is a substrate for NAD-dependent enzymes. In various metabolic disorders and during ageing, levels of NAD are decreased. Through its NAD-biosynthetic activity, NAMPT influences the activity of NAD-dependent enzymes, thereby regulating cellular metabolism. In addition to its enzymatic function, extracellular NAMPT (eNAMPT) has cytokine-like activity. Abnormal levels of eNAMPT are associated with various metabolic disorders. NAMPT is able to modulate processes involved in the pathogenesis of obesity and related disorders such as nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) by influencing the oxidative stress response, apoptosis, lipid and glucose metabolism, inflammation and insulin resistance. NAMPT also has a crucial role in cancer cell metabolism, is often overexpressed in tumour tissues and is an experimental target for antitumour therapies. In this Review, we discuss current understanding of the functions of NAMPT and highlight progress made in identifying the physiological role of NAMPT and its relevance in various human diseases and conditions, such as obesity, NAFLD, T2DM, cancer and ageing. PMID:26215259

  7. The role of heart rate variability in sports physiology

    PubMed Central

    DONG, JIN-GUO

    2016-01-01

    Heart rate variability (HRV) is a relevant marker reflecting cardiac modulation by sympathetic and vagal components of the autonomic nervous system (ANS). Although the clinical application of HRV is mainly associated with the prediction of sudden cardiac death and assessing cardiovascular and metabolic illness progression, recent observations have suggested its applicability to physical exercise training. HRV is becoming one of the most useful tools for tracking the time course of training adaptation/maladaptation of athletes and in setting the optimal training loads leading to improved performances. However, little is known regarding the role of HRV and the internal effects of physical exercise on an athlete, which may be useful in designing fitness programs ensuring sufficient training load that may correspond with the specific ability of the athlete. In this review, we offer a comprehensive assessment of investigations concerning the interrelation between HRV and ANS, and examine how the application of HRV to physical exercise may play a role in sports physiology. PMID:27168768

  8. The role of endogenous aryl hydrocarbon receptor signaling in cardiovascular physiology

    PubMed Central

    Zhang, Nan

    2011-01-01

    The aryl hydrocarbon receptor (AHR) is an orphan nuclear receptor with a primary function of mediating xenobiotic metabolism through transcriptional activation of Phase I and Phase II drug-metabolizing enzymes. Although no high-affinity physiological activators of AHR have been discovered, the endogenous signaling of the AHR pathway is believed to play an important role in the development and function of the cardiovascular system, based on the observations on ahr gene-deficient mice. The AHR knockout mice develop cardiac hypertrophy, abnormal vascular structure in multiple organs and altered blood pressure depending on their host environment. In this review, the endogenous role of AHR in cardiovascular physiology, including heart function, vascular development and blood pressure regulation has been summarized and discussed. PMID:21814412

  9. Porifera Lectins: Diversity, Physiological Roles and Biotechnological Potential

    PubMed Central

    Gardères, Johan; Bourguet-Kondracki, Marie-Lise; Hamer, Bojan; Batel, Renato; Schröder, Heinz C.; Müller, Werner E. G.

    2015-01-01

    An overview on the diversity of 39 lectins from the phylum Porifera is presented, including 38 lectins, which were identified from the class of demosponges, and one lectin from the class of hexactinellida. Their purification from crude extracts was mainly performed by using affinity chromatography and gel filtration techniques. Other protocols were also developed in order to collect and study sponge lectins, including screening of sponge genomes and expression in heterologous bacterial systems. The characterization of the lectins was performed by Edman degradation or mass spectrometry. Regarding their physiological roles, sponge lectins showed to be involved in morphogenesis and cell interaction, biomineralization and spiculogenesis, as well as host defense mechanisms and potentially in the association between the sponge and its microorganisms. In addition, these lectins exhibited a broad range of bioactivities, including modulation of inflammatory response, antimicrobial and cytotoxic activities, as well as anticancer and neuromodulatory activity. In view of their potential pharmacological applications, sponge lectins constitute promising molecules of biotechnological interest. PMID:26262628

  10. [Protein carbonylation and its role in physiological processes in plants].

    PubMed

    Debska, Karolina; Bogatek, Renata; Gniazdowska, Agnieszka

    2012-01-01

    Plant cells produce reactive oxygen species (ROS) continuously as a byproducts of oxygen metabolism and reaction to various environmental stresses. ROS are considered as chemicals inducing damage of cellular components (DNA, lipids and proteins), but also might act as signaling agents. Protein oxidation is one of covalent modification of protein induced by ROS or other products of oxidative stress. Carbonylation of particular amino acid residues (arginine, lysine, treonine or proline) is one of the most commonly occurring oxidative modification of proteins. This modification might lead to alteration in protein activity, its proteolytic breakdown or, in the opposite, aggregate formation. Carbonylated proteins have been identified in many plant species at different stage of growth and development. The analysis of subcellular localization of carbonylated proteins arised the hypothesis on their signaling function. We summarize the current knowledge on the detection of carbonylation protein in plants taking to the account the conditions which may influence their production or removal. We present also their putative role in plant physiology and discuss interaction between ROS and RNS in regulation of protein carbonylation. PMID:23214127

  11. Porifera Lectins: Diversity, Physiological Roles and Biotechnological Potential.

    PubMed

    Gardères, Johan; Bourguet-Kondracki, Marie-Lise; Hamer, Bojan; Batel, Renato; Schröder, Heinz C; Müller, Werner E G

    2015-08-01

    An overview on the diversity of 39 lectins from the phylum Porifera is presented, including 38 lectins, which were identified from the class of demosponges, and one lectin from the class of hexactinellida. Their purification from crude extracts was mainly performed by using affinity chromatography and gel filtration techniques. Other protocols were also developed in order to collect and study sponge lectins, including screening of sponge genomes and expression in heterologous bacterial systems. The characterization of the lectins was performed by Edman degradation or mass spectrometry. Regarding their physiological roles, sponge lectins showed to be involved in morphogenesis and cell interaction, biomineralization and spiculogenesis, as well as host defense mechanisms and potentially in the association between the sponge and its microorganisms. In addition, these lectins exhibited a broad range of bioactivities, including modulation of inflammatory response, antimicrobial and cytotoxic activities, as well as anticancer and neuromodulatory activity. In view of their potential pharmacological applications, sponge lectins constitute promising molecules of biotechnological interest. PMID:26262628

  12. Role of Computer Graphics in Simulations for Teaching Physiology.

    ERIC Educational Resources Information Center

    Modell, H. I.; And Others

    1983-01-01

    Discusses a revision of existing respiratory physiology simulations to promote active learning experiences for individual students. Computer graphics were added to aid student's conceptualization of the physiological system. Specific examples are provided, including those dealing with alveolar gas equations and effects of anatomic shunt flow on…

  13. Physiological and pathophysiological bone turnover - role of the immune system.

    PubMed

    Weitzmann, M Neale; Ofotokun, Ighovwerha

    2016-09-01

    Osteoporosis develops when the rate of osteoclastic bone breakdown (resorption) exceeds that of osteoblastic bone formation, which leads to loss of BMD and deterioration of bone structure and strength. Osteoporosis increases the risk of fragility fractures, a cause of substantial morbidity and mortality, especially in elderly patients. This imbalance between bone formation and bone resorption is brought about by natural ageing processes, but is frequently exacerbated by a number of pathological conditions. Of importance to the aetiology of osteoporosis are findings over the past two decades attesting to a deep integration of the skeletal system with the immune system (the immuno-skeletal interface (ISI)). Although protective of the skeleton under physiological conditions, the ISI might contribute to bone destruction in a growing number of pathophysiological states. Although numerous research groups have investigated how the immune system affects basal and pathological osteoclastic bone resorption, recent findings suggest that the reach of the adaptive immune response extends to the regulation of osteoblastic bone formation. This Review examines the evolution of the field of osteoimmunology and how advances in our understanding of the ISI might lead to novel approaches to prevent and treat bone loss, and avert fractures. PMID:27312863

  14. Physiological roles of taurine in heart and muscle.

    PubMed

    Schaffer, Stephen W; Jong, Chian Ju; Ramila, K C; Azuma, Junichi

    2010-01-01

    Taurine (aminoethane sulfonic acid) is an ubiquitous compound, found in very high concentrations in heart and muscle. Although taurine is classified as an amino acid, it does not participate in peptide bond formation. Nonetheless, the amino group of taurine is involved in a number of important conjugation reactions as well as in the scavenging of hypochlorous acid. Because taurine is a fairly inert compound, it is an ideal modulator of basic processes, such as osmotic pressure, cation homeostasis, enzyme activity, receptor regulation, cell development and cell signalling. The present review discusses several physiological functions of taurine. First, the observation that taurine depletion leads to the development of a cardiomyopathy indicates a role for taurine in the maintenance of normal contractile function. Evidence is provided that this function of taurine is mediated by changes in the activity of key Ca2+ transporters and the modulation Ca2+ sensitivity of the myofibrils. Second, in some species, taurine is an established osmoregulator, however, in mammalian heart the osmoregulatory function of taurine has recently been questioned. Third, taurine functions as an indirect regulator of oxidative stress. Although this action of taurine has been widely discussed, its mechanism of action is unclear. A potential mechanism for the antioxidant activity of taurine is discussed. Fourth, taurine stabilizes membranes through direct interactions with phospholipids. However, its inhibition of the enzyme, phospholipid N-methyltransferase, alters the phosphatidylcholine and phosphatidylethanolamine content of membranes, which in turn affects the function of key proteins within the membrane. Finally, taurine serves as a modulator of protein kinases and phosphatases within the cardiomyocyte. The mechanism of this action has not been studied. Taurine is a chemically simple compound, but it has profound effects on cells. This has led to the suggestion that taurine is an

  15. Polyamines in plants: biosynthesis from arginine, and metabolic, physiological, and stress-response roles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biogenic amines in all organisms including plants affect a myriad of growth and developmental processes. Therefore, there is continued interest in understanding their (here polyamines) biosynthesis and functional roles in regulating plant metabolism, physiology and development. The role of polyamine...

  16. Discovery of cytoglobin and its roles in physiology and pathology of hepatic stellate cells

    PubMed Central

    YOSHIZATO, Katsutoshi; THUY, Le Thi Thanh; SHIOTA, Goshi; KAWADA, Norifumi

    2016-01-01

    Cytoglobin (CYGB), a new member of the globin family, was discovered in 2001 as a protein associated with stellate cell activation (stellate cell activation-associated protein [STAP]). Knowledge of CYGB, including its crystal, gene, and protein structures as well as its physiological and pathological importance, has increased progressively. We investigated the roles of oxygen (O2)-binding CYGB as STAP in hepatic stellate cells (HSCs) to understand the part played by this protein in their pathophysiological activities. Studies involving CYGB-gene-deleted mice have led us to suppose that CYGB functions as a regulator of O2 homeostasis; when O2 homeostasis is disrupted, HSCs are activated and play a key role(s) in hepatic fibrogenesis. In this review, we discuss the rationale for this hypothesis. PMID:26972599

  17. Discovery of cytoglobin and its roles in physiology and pathology of hepatic stellate cells.

    PubMed

    Yoshizato, Katsutoshi; Thuy, Le Thi Thanh; Shiota, Goshi; Kawada, Norifumi

    2016-01-01

    Cytoglobin (CYGB), a new member of the globin family, was discovered in 2001 as a protein associated with stellate cell activation (stellate cell activation-associated protein [STAP]). Knowledge of CYGB, including its crystal, gene, and protein structures as well as its physiological and pathological importance, has increased progressively. We investigated the roles of oxygen (O2)-binding CYGB as STAP in hepatic stellate cells (HSCs) to understand the part played by this protein in their pathophysiological activities. Studies involving CYGB-gene-deleted mice have led us to suppose that CYGB functions as a regulator of O2 homeostasis; when O2 homeostasis is disrupted, HSCs are activated and play a key role(s) in hepatic fibrogenesis. In this review, we discuss the rationale for this hypothesis. PMID:26972599

  18. Role of proteomics in physiologic and pathologic conditions of dentistry: Overview.

    PubMed

    Yoithapprabhunath, Thukanayakanpalayam Ragunathan; Nirmal, Ramadas Madhavan; Santhadevy, Arumugam; Anusushanth, Abraham; Charanya, Duraisamy; Rojiluke; Sri Chinthu, K K; Yamunadevi, Andamuthu

    2015-08-01

    Proteomics is the study of structure and function of proteins in a large scale. For any living organism, preteins are considered to be the vital part because of its role in metabolic pathways of cells. These proteins not only play a role in physiological condition of the cell but also in altered manner during pathologic conditions. These altered proteins in diseased conditions are called as biomarkers. Several such biomarkers were identified in oral diseaes. This review is a brief note on proteins involved in odontogenesis and list of altered proteins proteins identified in various dental and oral diseases. The knowledge about the role of proteomics in dentistry and the importance of proteomic studies in early diagnosis and prognostic part of oral diseases helps in appliction of precised and sucessful treatment. PMID:26538875

  19. Role of proteomics in physiologic and pathologic conditions of dentistry: Overview

    PubMed Central

    Yoithapprabhunath, Thukanayakanpalayam Ragunathan; Nirmal, Ramadas Madhavan; Santhadevy, Arumugam; Anusushanth, Abraham; Charanya, Duraisamy; Rojiluke; Sri Chinthu, K. K.; Yamunadevi, Andamuthu

    2015-01-01

    Proteomics is the study of structure and function of proteins in a large scale. For any living organism, preteins are considered to be the vital part because of its role in metabolic pathways of cells. These proteins not only play a role in physiological condition of the cell but also in altered manner during pathologic conditions. These altered proteins in diseased conditions are called as biomarkers. Several such biomarkers were identified in oral diseaes. This review is a brief note on proteins involved in odontogenesis and list of altered proteins proteins identified in various dental and oral diseases. The knowledge about the role of proteomics in dentistry and the importance of proteomic studies in early diagnosis and prognostic part of oral diseases helps in appliction of precised and sucessful treatment. PMID:26538875

  20. The Evolving Role of Animal Laboratories in Physiology Instruction

    ERIC Educational Resources Information Center

    Ra'anan, Alice W.

    2005-01-01

    Laboratory exercises are intended to illustrate concepts and add an active learning component to courses. Since the 1980s, there has been a decline in animal laboratories offered in conjunction with medical physiology courses. The most important single reason for this is cost, but other contributing factors include the development of computer…

  1. Exosomes: Fundamental Biology and Roles in Cardiovascular Physiology.

    PubMed

    Ibrahim, Ahmed; Marbán, Eduardo

    2016-01-01

    Exosomes are nanosized membrane particles that are secreted by cells that transmit information from cell to cell. The information within exosomes prominently includes their protein and RNA payloads. Exosomal microRNAs in particular can potently and fundamentally alter the transcriptome of recipient cells. Here we summarize what is known about exosome biogenesis, content, and transmission, with a focus on cardiovascular physiology and pathophysiology. We also highlight some of the questions currently under active investigation regarding these extracellular membrane vesicles and their potential in diagnostic and therapeutic applications. PMID:26667071

  2. The Cajal school and the physiological role of astrocytes: a way of thinking

    PubMed Central

    Navarrete, Marta; Araque, Alfonso

    2014-01-01

    Cajal is widely recognized by the scientific community for his important contributions to our knowledge of the neuronal organization of the nervous system. His studies on neuroglial cells are less recognized, yet they are no less relevant to our current understanding of the cellular bases of brain structure. Two pioneering studies published a century ago –“Something about the physiological significance of neuroglia” (Ramón y Cajal, 1897) and “A contribution to the understanding of neuroglia in the human brain” (Ramón y Cajal, 1913)—focused on glial cells and their role in brain physiology. Novel findings obtained using state-of-the-art and sophisticated technologies largely confirm many of the groundbreaking hypotheses proposed by Cajal related to the structural-functional properties of neuroglia. Here we propose to the reader a journey guided by the ideas of Cajal through the recent findings on the functional significance of astrocytes, the most abundant neuroglial cell type in the nervous system. Astrocyte–neuron interaction, which represents an emerging field in current neuroscience with important implications for our understanding of the cellular processes underlying brain function, has its roots in many of the original concepts proposed by Cajal. PMID:24904302

  3. [The physiological determinants of the parallelism (unity) of histological structures].

    PubMed

    Natochin, Iu V

    1986-03-01

    The theory of structural parallelism put forward by A. A. Zavarzin (Senior) has been supported by the analysis of cytological specificity of effector organs involved in water-salt homeostasis, and of the excretory system of vertebrates and invertebrates. The similarity in morphofunctional organization of different excretory organs (i.e. the presence of ultrafiltration apparatus and cells which make it possible to absorb all vitally important substances) is likely to result from the fact that the excretory organ should excrete not only the final products of metabolism, but also any exogenic substances in addition to those which although important, are excessive for the organism. The brush border of asymmetrical epithelial cells of excretory organs is presumably a morphological expression of the structure which accounts for the inward transport of all physiologically important substances. Specificity of the membrane mechanism of water and sodium transport accounts for the identical principles in the structure of cells and areas of cell contacts of epithelia in different organs involved in the formation of hypotonic (saliva glands, renal tubules) or hypertonic fluids (salt glands, marine teleost gills). PMID:3715974

  4. Role of renal sensory nerves in physiological and pathophysiological conditions

    PubMed Central

    2014-01-01

    Whether activation of afferent renal nerves contributes to the regulation of arterial pressure and sodium balance has been long overlooked. In normotensive rats, activating renal mechanosensory nerves decrease efferent renal sympathetic nerve activity (ERSNA) and increase urinary sodium excretion, an inhibitory renorenal reflex. There is an interaction between efferent and afferent renal nerves, whereby increases in ERSNA increase afferent renal nerve activity (ARNA), leading to decreases in ERSNA by activation of the renorenal reflexes to maintain low ERSNA to minimize sodium retention. High-sodium diet enhances the responsiveness of the renal sensory nerves, while low dietary sodium reduces the responsiveness of the renal sensory nerves, thus producing physiologically appropriate responses to maintain sodium balance. Increased renal ANG II reduces the responsiveness of the renal sensory nerves in physiological and pathophysiological conditions, including hypertension, congestive heart failure, and ischemia-induced acute renal failure. Impairment of inhibitory renorenal reflexes in these pathological states would contribute to the hypertension and sodium retention. When the inhibitory renorenal reflexes are suppressed, excitatory reflexes may prevail. Renal denervation reduces arterial pressure in experimental hypertension and in treatment-resistant hypertensive patients. The fall in arterial pressure is associated with a fall in muscle sympathetic nerve activity, suggesting that increased ARNA contributes to increased arterial pressure in these patients. Although removal of both renal sympathetic and afferent renal sensory nerves most likely contributes to the arterial pressure reduction initially, additional mechanisms may be involved in long-term arterial pressure reduction since sympathetic and sensory nerves reinnervate renal tissue in a similar time-dependent fashion following renal denervation. PMID:25411364

  5. Physiological and pathological roles of Apaf1 and the apoptosome.

    PubMed

    Ferraro, E; Corvaro, M; Cecconi, F

    2003-01-01

    Different cellular pathways can lead to apoptosis. Apaf1 is the molecular core of the apoptosome, a multiproteic complex mediating the so-called mitochondrial pathway of cell death. The importance of this pathway during development has been clearly demonstrated by knocking out key genes. Also, the relevance of Apaf1 dosage during development has been recently underlined. Moreover, a growing body of evidences seems to point out a possible role of the mitochondria-dependent apoptosis in different pathologies. In particular, we discuss here some recent evidences regarding the putative role of the apoptosome in neurodegeneration and cancer. PMID:12767258

  6. Thyroid circadian timing: roles in physiology and thyroid malignancies.

    PubMed

    Philippe, Jacques; Dibner, Charna

    2015-04-01

    The circadian clock represents an anticipatory mechanism, well preserved in evolution. It has a critical impact on most aspects of the physiology of light-sensitive organisms. These rhythmic processes are governed by environmental cues (fluctuations in light intensity and temperature), an internal circadian timing system, and interactions between this timekeeping system and environmental signals. Endocrine body rhythms, including hypothalamic-pituitary-thyroid (HPT) axis rhythms, are tightly regulated by the circadian system. Although the circadian profiles of thyroid-releasing hormone (TRH), thyroid-stimulating hormone (TSH), thyroxine (T4), and triiodothyronine (T3) in blood have been well described, relatively few studies have analyzed molecular mechanisms governing the circadian regulation of HPT axis function. In this review, we will discuss the latest findings in the area of complex regulation of thyroid gland function by the circadian oscillator. We will also highlight the molecular makeup of the human thyroid oscillator as well as the potential link between thyroid malignant transformation and alterations in the clockwork. PMID:25411240

  7. Cytosolic phospholipase A2: physiological function and role in disease

    PubMed Central

    Leslie, Christina C.

    2015-01-01

    The group IV phospholipase A2 (PLA2) family is comprised of six intracellular enzymes (GIVA, -B, -C, -D, -E, and -F) commonly referred to as cytosolic PLA2 (cPLA2)α, -β, -γ, -δ, -ε, and -ζ. They contain a Ser-Asp catalytic dyad and all except cPLA2γ have a C2 domain, but differences in their catalytic activities and subcellular localization suggest unique regulation and function. With the exception of cPLA2α, the focus of this review, little is known about the in vivo function of group IV enzymes. cPLA2α catalyzes the hydrolysis of phospholipids to arachidonic acid and lysophospholipids that are precursors of numerous bioactive lipids. The regulation of cPLA2α is complex, involving transcriptional and posttranslational processes, particularly increases in calcium and phosphorylation. cPLA2α is a highly conserved widely expressed enzyme that promotes lipid mediator production in human and rodent cells from a variety of tissues. The diverse bioactive lipids produced as a result of cPLA2α activation regulate normal physiological processes and disease pathogenesis in many organ systems, as shown using cPLA2α KO mice. However, humans recently identified with cPLA2α deficiency exhibit more pronounced effects on health than observed in mice lacking cPLA2α, indicating that much remains to be learned about this interesting enzyme. PMID:25838312

  8. A physiological role for HgII during phototrophic growth

    NASA Astrophysics Data System (ADS)

    Grégoire, D. S.; Poulain, A. J.

    2016-02-01

    The bioaccumulation of toxic monomethylmercury is influenced by the redox reactions that determine the amount of mercury (Hg) substrate--HgII or Hg0 (refs ,)--that is available for methylation. Phototrophic microorganisms can reduce HgII to Hg0 (ref. ). This reduction has been linked to a mixotrophic lifestyle, in which microbes gain energy photosynthetically but acquire diverse carbon compounds for biosynthesis from the environment. Photomixotrophs must maintain redox homeostasis to disperse excess reducing power due to the accumulation of reduced enzyme cofactors. Here we report laboratory experiments in which we exposed purple bacteria growing in a bioreactor to HgII and monitored Hg0 concentrations. We show that phototrophs use HgII as an electron sink to maintain redox homeostasis. Hg0 concentrations increased only when bacteria grew phototrophically, and when bacterial enzyme cofactor ratios indicated the presence of an intracellular redox imbalance. Under such conditions, bacterial growth rates increased with increasing HgII concentrations; when alternative electron sinks were added, Hg0 production decreased. We conclude that Hg can fulfil a physiological function in bacteria, and that photomixotrophs can modify the availability of Hg to methylation sites.

  9. Physiological roles revealed by ghrelin and ghrelin receptor deficient mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ghrelin is a hormone made in the stomach and known primarily for its growth hormone releasing and orexigenic properties. Nevertheless, ghrelin through its receptor, the GHS-R1a, has been shown to exert many roles including regulation of glucose homeostasis, memory & learning, food addiction and neur...

  10. The Role of Daily Activities in Youths’ Stress Physiology

    PubMed Central

    McHale, Susan M.; Blocklin, Michelle K.; Walter, Kimberly N.; Davis, Kelly D.; Almeida, David M.; Klein, Laura Cousino

    2012-01-01

    Purpose This study examined links between diurnal patterns of the stress hormone, cortisol, and adolescents’ time in nine common daily activities. Method During eight consecutive nightly telephone interviews, 28 youths (n = 12 girls), 10-18 years of age, reported their day’s activities. On four days, four saliva samples also were collected and assayed for cortisol. Multilevel models assessed within- and between-person associations between time in each activity and cortisol Area Under the Curve (AUC), cortisol awakening response (CAR), morning peak (30 minutes after wake up) and daily decline (morning peak to bedtime). Results Links with AUC were found for most activities; significant associations with cortisol rhythms suggested that most effects were due to anticipation of the day’s activities. Specifically, on days when youths spent more time than usual on videogames and TV they had lower AUCs, with lower morning peaks. Youths who spent more time reading (within-person) and in computer activities (between-person) had higher AUCs, with stronger CARs (within-person). Youths who slept more had lower AUCs, with lower morning peaks on both the between- and within-person levels. Amounts of time spent in clubs, and for older adolescents, sports, were also linked to lower AUCs. Finally, youths who spent more time in school/schoolwork had lower AUCs, but on days when youths spent more time than usual in school, they had higher AUCs, stronger CARs, and steeper daily declines. Conclusion Beyond their known implications for psychological adjustment, youths’ everyday activities are linked to stress physiology. PMID:23174474

  11. Activins and follistatins: Emerging roles in liver physiology and cancer

    PubMed Central

    Kreidl, Emanuel; Öztürk, Deniz; Metzner, Thomas; Berger, Walter; Grusch, Michael

    2009-01-01

    Activins are secreted proteins belonging to the TGF-β family of signaling molecules. Activin signals are crucial for differentiation and regulation of cell proliferation and apoptosis in multiple tissues. Signal transduction by activins relies mainly on the Smad pathway, although the importance of crosstalk with additional pathways is increasingly being recognized. Activin signals are kept in balance by antagonists at multiple levels of the signaling cascade. Among these, follistatin and FLRG, two members of the emerging family of follistatin-like proteins, can bind secreted activins with high affinity, thereby blocking their access to cell surface-anchored activin receptors. In the liver, activin A is a major negative regulator of hepatocyte proliferation and can induce apoptosis. The functions of other activins expressed by hepatocytes have yet to be more clearly defined. Deregulated expression of activins and follistatin has been implicated in hepatic diseases including inflammation, fibrosis, liver failure and primary cancer. In particular, increased follistatin levels have been found in the circulation and in the tumor tissue of patients suffering from hepatocellular carcinoma as well as in animal models of liver cancer. It has been argued that up-regulation of follistatin protects neoplastic hepatocytes from activin-mediated growth inhibition and apoptosis. The use of follistatin as biomarker for liver tumor development is impeded, however, due to the presence of elevated follistatin levels already during preceding stages of liver disease. The current article summarizes our evolving understanding of the multi-faceted activities of activins and follistatins in liver physiology and cancer. PMID:21160961

  12. Physiological roles of bacillithiol in intracellular metal processing.

    PubMed

    Rosario-Cruz, Zuelay; Boyd, Jeffrey M

    2016-02-01

    Glutathione (GSH) is an abundantly produced low-molecular-weight (LMW) thiol in many organisms. However, a number of Gram-positive bacteria do not produce GSH, but instead produce bacillithiol (BSH) as one of the major LMW thiols. Similar to GSH, studies have found that BSH has various roles in the cell, including protection against hydrogen peroxide, hypochlorite and disulfide stress. BSH also participates in the detoxification of thiol-reactive antibiotics and the electrophilic metabolite methylglyoxal. Recently, a number of studies have highlighted additional roles for BSH in the processing of intracellular metals. Herein, we examine the potential functions of BSH in the biogenesis of Fe-S clusters, cytosolic metal buffering and the prevention of metal intoxication. PMID:26259870

  13. Physiological roles and transport mechanisms of boron: perspectives from plants.

    PubMed

    Tanaka, Mayuki; Fujiwara, Toru

    2008-07-01

    Boron, an orphan of the periodic table of the elements, is unique not only in its chemical properties but also in its roles in biology. Its requirement in plants was described more than 80 years ago. Understandings of the molecular basis of the requirement and transport have been advanced greatly in the last decade. This article reviews recent findings of boron function and transport in plants and discusses possible implication to other organisms including humans. PMID:17965876

  14. Understanding Protein Synthesis: A Role-Play Approach in Large Undergraduate Human Anatomy and Physiology Classes

    ERIC Educational Resources Information Center

    Sturges, Diana; Maurer, Trent W.; Cole, Oladipo

    2009-01-01

    This study investigated the effectiveness of role play in a large undergraduate science class. The targeted population consisted of 298 students enrolled in 2 sections of an undergraduate Human Anatomy and Physiology course taught by the same instructor. The section engaged in the role-play activity served as the study group, whereas the section…

  15. The Role of Biotin in Bacterial Physiology and Virulence: a Novel Antibiotic Target for Mycobacterium tuberculosis.

    PubMed

    Salaemae, Wanisa; Booker, Grant W; Polyak, Steven W

    2016-04-01

    Biotin is an essential cofactor for enzymes present in key metabolic pathways such as fatty acid biosynthesis, replenishment of the tricarboxylic acid cycle, and amino acid metabolism. Biotin is synthesized de novo in microorganisms, plants, and fungi, but this metabolic activity is absent in mammals, making biotin biosynthesis an attractive target for antibiotic discovery. In particular, biotin biosynthesis plays important metabolic roles as the sole source of biotin in all stages of the Mycobacterium tuberculosis life cycle due to the lack of a transporter for scavenging exogenous biotin. Biotin is intimately associated with lipid synthesis where the products form key components of the mycobacterial cell membrane that are critical for bacterial survival and pathogenesis. In this review we discuss the central role of biotin in bacterial physiology and highlight studies that demonstrate the importance of its biosynthesis for virulence. The structural biology of the known biotin synthetic enzymes is described alongside studies using structure-guided design, phenotypic screening, and fragment-based approaches to drug discovery as routes to new antituberculosis agents. PMID:27227307

  16. Physiological and pathological roles of mitochondrial SLC25 carriers

    PubMed Central

    Gutiérrez-Aguilar, Manuel; Baines, Christopher P.

    2013-01-01

    The mitochondrion relies on compartmentalization of certain enzymes, ions and metabolites for the sake of efficient metabolism. In order to fulfil its activities, a myriad of carriers are properly expressed, targeted and folded in the inner mitochondrial membrane. Among these carriers, the six-transmembrane-helix mitochondrial SLC25 (solute carrier family 25) proteins facilitate transport of solutes with disparate chemical identities across the inner mitochondrial membrane. Although their proper function replenishes building blocks needed for metabolic reactions, dysfunctional SLC25 proteins are involved in pathological states. It is the purpose of the present review to cover the current knowledge on the role of SLC25 transporters in health and disease. PMID:23988125

  17. [Physiological role of mucins in the colonic barrier integrity].

    PubMed

    Gaudier, Estelle; Hoebler, Christine

    2006-01-01

    Colonic mucus is a key element of colonic barrier as it is located at the frontier between luminal microflora and colonic mucosa itself. Colonic mucus is mainly composed of high molecular weight glycoproteins called mucins that can be either secreted or membrane-linked. The expression of various colonic mucins is altered in colorectal cancers or inflammations. The aim of this review is to highlight the crucial role played by colonic mucins in the maintenance of colonic barrier integrity, both because they are part of the protective mucus layer, and because they individually exert specific functions involved in epithelial barrier, like cell growth and differentiation, immunomodulation, signal transduction or cell adhesion. PMID:17075443

  18. Sugar for the brain: the role of glucose in physiological and pathological brain function

    PubMed Central

    Mergenthaler, Philipp; Lindauer, Ute; Dienel, Gerald A.; Meisel, Andreas

    2013-01-01

    The mammalian brain depends upon glucose as its main source of energy, and tight regulation of glucose metabolism is critical for brain physiology. Consistent with its critical role for physiological brain function, disruption of normal glucose metabolism as well as its interdependence with cell death pathways forms the pathophysiological basis for many brain disorders. Here, we review recent advances in understanding how glucose metabolism sustains basic brain physiology. We aim at synthesizing these findings to form a comprehensive picture of the cooperation required between different systems and cell types, and the specific breakdowns in this cooperation which lead to disease. PMID:23968694

  19. Physiological and Pharmacological Roles of FGF21 in Cardiovascular Diseases

    PubMed Central

    Cheng, Peng; Zhang, Fangfang; Yu, Lechu; Lin, Xiufei; He, Luqing; Li, Xiaokun; Lu, Xuemian; Yan, Xiaoqing; Tan, Yi; Zhang, Chi

    2016-01-01

    Cardiovascular disease (CVD) is one of the most severe diseases in clinics. Fibroblast growth factor 21 (FGF21) is regarded as an important metabolic regulator playing a therapeutic role in diabetes and its complications. The heart is a key target as well as a source of FGF21 which is involved in heart development and also induces beneficial effects in CVDs. Our review is to clarify the roles of FGF21 in CVDs. Strong evidence showed that the development of CVDs including atherosclerosis, coronary heart disease, myocardial ischemia, cardiac hypertrophy, and diabetic cardiomyopathy is associated with serum FGF21 levels increase which was regarded as a compensatory response to induced cardiac protection. Furthermore, administration of FGF21 suppressed the above CVDs. Mechanistic studies revealed that FGF21 induced cardiac protection likely by preventing cardiac lipotoxicity and the associated oxidative stress, inflammation, and apoptosis. Normally, FGF21 induced therapeutic effects against CVDs via activation of the above kinases-mediated pathways by directly binding to the FGF receptors of the heart in the presence of β-klotho. However, recently, growing evidence showed that FGF21 induced beneficial effects on peripheral organs through an indirect way mediated by adiponectin. Therefore whether adiponectin is also involved in FGF21-induced cardiac protection still needs further investigation. PMID:27247947

  20. Physiological and Pharmacological Roles of FGF21 in Cardiovascular Diseases.

    PubMed

    Cheng, Peng; Zhang, Fangfang; Yu, Lechu; Lin, Xiufei; He, Luqing; Li, Xiaokun; Lu, Xuemian; Yan, Xiaoqing; Tan, Yi; Zhang, Chi

    2016-01-01

    Cardiovascular disease (CVD) is one of the most severe diseases in clinics. Fibroblast growth factor 21 (FGF21) is regarded as an important metabolic regulator playing a therapeutic role in diabetes and its complications. The heart is a key target as well as a source of FGF21 which is involved in heart development and also induces beneficial effects in CVDs. Our review is to clarify the roles of FGF21 in CVDs. Strong evidence showed that the development of CVDs including atherosclerosis, coronary heart disease, myocardial ischemia, cardiac hypertrophy, and diabetic cardiomyopathy is associated with serum FGF21 levels increase which was regarded as a compensatory response to induced cardiac protection. Furthermore, administration of FGF21 suppressed the above CVDs. Mechanistic studies revealed that FGF21 induced cardiac protection likely by preventing cardiac lipotoxicity and the associated oxidative stress, inflammation, and apoptosis. Normally, FGF21 induced therapeutic effects against CVDs via activation of the above kinases-mediated pathways by directly binding to the FGF receptors of the heart in the presence of β-klotho. However, recently, growing evidence showed that FGF21 induced beneficial effects on peripheral organs through an indirect way mediated by adiponectin. Therefore whether adiponectin is also involved in FGF21-induced cardiac protection still needs further investigation. PMID:27247947

  1. Structural alterations of pathologically or physiologically modified DNA.

    PubMed Central

    Ciomei, M; Spadari, S; Pedrali-Noy, G; Ciarrocchi, G

    1984-01-01

    We have studied the alterations of DNA conformation in in vitro depurinated or methylated topological isomers of the plasmid pAT 153. Depurination by heat/acid treatment or alkylation by methyl methanesulfonate (pathological modifications) result in DNA unwinding detected as a reduction in the degree of supercoiling of DNA topoisomers as measured by the alteration of electrophoretic mobility on agarose gel. On the contrary, in vitro enzymic methylation at the C-5 position of cytosine (physiological modification) does not measurably alter the tertiary structure of the circular substrates. From the average number of modified sites needed to remove one superhelical twist from each single topoisomer of a population of partially relaxed DNA molecules, we have calculated an unwinding angle smaller than -3.4 degree per methylated purine and of approximately -12.0 degree per apurinic site. These results, together with previously reported values of unwinding by pyrimidine dimers, suggest a possible mechanism of recognition of damaged sites by repair mechanisms that are not single-damage specific. Images PMID:6366741

  2. Physiology, structure, and regulation of the cloned organic anion transporters

    PubMed Central

    SRIMAROENG, C.; PERRY, J. L.; PRITCHARD, J. B.

    2009-01-01

    1. The transport of negatively charged drugs, xenobiotics, and metabolites by epithelial tissues, particularly the kidney, plays critical roles in controlling their distribution, concentration, and retention in the body. Thus, organic anion transporters (OATs) impact both their therapeutic efficacy and potential toxicity. 2. This review summarizes current knowledge of the properties and functional roles of the cloned OATs, the relationships between transporter structure and function, and those factors that determine the efficacy of transport. Such factors include plasma protein binding of substrates, genetic polymorphisms among the transporters, and regulation of transporter expression. 3. Clearly, much progress has been made in the decade since the first OAT was cloned. However, unresolved questions remain. Several of these issues — drug–drug interactions, functional characterization of newly cloned OATs, tissue differences in expression and function, and details of the nature and consequences of transporter regulation at genomic and intracellular sites — are discussed in the concluding Perspectives section. PMID:18668434

  3. A Role for Antibiotics in Mineral Dissolution and Biofilm Physiology

    NASA Astrophysics Data System (ADS)

    Newman, D. K.

    2002-12-01

    Respiration by bacteria is remarkable due to their ability to use a variety of compounds, including insoluble minerals, as terminal electron acceptors. How bacteria solve the problem of breathing something that is solid is poorly understood, but recent evidence points to the role of redox active natural products in shuttling electrons between microbes and minerals. Given the ubiquity of these substances in natural waters and soils, we must now revisit previous conclusions about whether direct contact between microbes and minerals is necessary to promote reductive mineral dissolution. To explore the degree to which extracellular electron transfer catalyzes important biogeochemical processes, we are studying the types of molecules that function as electron shuttles, including redox active antibiotics. I will discuss my laboratory's current understanding of how interspecies exchange of these molecules promotes mineral dissolution, as well as our emerging hypotheses regarding their function in biofilms.

  4. Role of renal TRP channels in physiology and pathology.

    PubMed

    Tomilin, Viktor; Mamenko, Mykola; Zaika, Oleg; Pochynyuk, Oleh

    2016-05-01

    Kidneys critically contribute to the maintenance of whole-body homeostasis by governing water and electrolyte balance, controlling extracellular fluid volume, plasma osmolality, and blood pressure. Renal function is regulated by numerous systemic endocrine and local mechanical stimuli. Kidneys possess a complex network of membrane receptors, transporters, and ion channels which allows responding to this wide array of signaling inputs in an integrative manner. Transient receptor potential (TRP) channel family members with diverse modes of activation, varied permeation properties, and capability to integrate multiple downstream signals are pivotal molecular determinants of renal function all along the nephron. This review summarizes experimental data on the role of TRP channels in a healthy mammalian kidney and discusses their involvement in renal pathologies. PMID:26385481

  5. The proton-coupled folate transporter: physiological and pharmacological roles.

    PubMed

    Zhao, Rongbao; Goldman, I David

    2013-12-01

    Recent studies have identified the proton-coupled folate transporter (PCFT) as the mechanism by which folates are absorbed across the apical brush-border membrane of the small intestine and across the basolateral membrane of the choroid plexus into the cerebrospinal fluid. Both processes are defective when there are loss-of-function mutations in this gene as occurs in the autosomal recessive disorder hereditary folate malabsorption. Because this transporter functions optimally at low pH, antifolates are being developed that are highly specific for PCFT in order to achieve selective delivery to malignant cells within the acidic environment of solid tumors. PCFT has a spectrum of affinities for folates and antifolates that narrows and increases at low pH. Residues have been identified that play a role in folate and proton binding, proton coupling, and oscillation of the carrier between its conformational states. PMID:24383099

  6. Physiological role of alternative oxidase (from yeasts to plants).

    PubMed

    Rogov, A G; Zvyagilskaya, R A

    2015-04-01

    Mitochondria of all so far studied organisms, with the exception of Archaea, mammals, some yeasts, and protists, contain, along with the classical phosphorylating cytochrome pathway, a so-called cyanide-insensitive alternative oxidase (AOX) localized on the matrix side of the mitochondrial inner membrane, and electron transport through which is not coupled with ATP synthesis and energy accumulation. Mechanisms underlying plentiful functions of AOX in organisms at various levels of organization ranging from yeasts to plants are considered. First and foremost, AOX provides a chance of cell survival after inhibiting the terminal components of the main respiratory chain or losing the ability to synthesize these components. The vitally important role of AOX is obvious in thermogenesis of thermogenic plant organs where it becomes the only terminal oxidase with a very high activity, and the energy of substrate oxidation by this respiratory pathway is converted into heat, thus promoting evaporation of volatile substances attracting pollinating insects. AOX plays a fundamentally significant role in alleviating or preventing oxidative stress, thus ensuring the defense against a wide range of stresses and adverse environmental conditions, such as changes in temperature and light intensities, osmotic stress, drought, and attack by incompatible strains of bacterial pathogens, phytopathogens, or their elicitors. Participation of AOX in pathogen survival during its existence inside the host, in antivirus defense, as well as in metabolic rearrangements in plants during embryogenesis and cell differentiation is described. Examples are given to demonstrate that AOX might be an important tool to overcome the adverse aftereffects of restricted activity of the main respiratory chain in cells and whole animals. PMID:25869356

  7. Flexibility in photosynthetic electron transport: the physiological role of plastoquinol terminal oxidase (PTOX).

    PubMed

    McDonald, Allison E; Ivanov, Alex G; Bode, Rainer; Maxwell, Denis P; Rodermel, Steven R; Hüner, Norman P A

    2011-08-01

    Oxygenic photosynthesis depends on a highly conserved electron transport system, which must be particularly dynamic in its response to environmental and physiological changes, in order to avoid an excess of excitation energy and subsequent oxidative damage. Apart from cyclic electron flow around PSII and around PSI, several alternative electron transport pathways exist including a plastoquinol terminal oxidase (PTOX) that mediates electron flow from plastoquinol to O(2). The existence of PTOX was first hypothesized in 1982 and this was verified years later based on the discovery of a non-heme, di-iron carboxylate protein localized to thylakoid membranes that displayed sequence similarity to the mitochondrial alternative oxidase. The absence of this protein renders higher plants susceptible to excitation pressure dependant variegation combined with impaired carotenoid synthesis. Chloroplasts, as well as other plastids (i.e. etioplasts, amyloplasts and chromoplasts), fail to assemble organized internal membrane structures correctly, when exposed to high excitation pressure early in development. While the role of PTOX in plastid development is established, its physiological role under stress conditions remains equivocal and we postulate that it serves as an alternative electron sink under conditions where the acceptor side of PSI is limited. The aim of this review is to provide an overview of the past achievements in this field and to offer directions for future investigative efforts. Plastoquinol terminal oxidase (PTOX) is involved in an alternative electron transport pathway that mediates electron flow from plastoquinol to O(2). This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts. PMID:21056542

  8. Crystal Structure of Human Senescence Marker Protein 30: Insights Linking Structural, Enzymatic, and Physiological Functions

    SciTech Connect

    Chakraborti, Subhendu; Bahnson, Brian J.

    2010-05-25

    Human senescence marker protein 30 (SMP30), which functions enzymatically as a lactonase, hydrolyzes various carbohydrate lactones. The penultimate step in vitamin-C biosynthesis is catalyzed by this enzyme in nonprimate mammals. It has also been implicated as an organophosphate hydrolase, with the ability to hydrolyze diisopropyl phosphofluoridate and other nerve agents. SMP30 was originally identified as an aging marker protein, whose expression decreased androgen independently in aging cells. SMP30 is also referred to as regucalcin and has been suggested to have functions in calcium homeostasis. The crystal structure of the human enzyme has been solved from X-ray diffraction data collected to a resolution of 1.4 {angstrom}. The protein has a 6-bladed {beta}-propeller fold, and it contains a single metal ion. Crystal structures have been solved with the metal site bound with either a Ca{sup 2+} or a Zn{sup 2+} atom. The catalytic role of the metal ion has been confirmed by mutagenesis of the metal coordinating residues. Kinetic studies using the substrate gluconolactone showed a k{sub cat} preference of divalent cations in the order Zn{sup 2+} > Mn{sup 2+} > Ca{sup 2+} > Mg{sup 2+}. Notably, the Ca{sup 2+} had a significantly higher value of K{sub d} compared to those of the other metal ions tested (566, 82, 7, and 0.6 {micro}m for Ca{sup 2+}, Mg{sup 2+}, Zn{sup 2+}, and Mn{sup 2+}, respectively), suggesting that the Ca{sup 2+}-bound form may be physiologically relevant for stressed cells with an elevated free calcium level.

  9. Photosystem II reaction centre quenching: mechanisms and physiological role.

    PubMed

    Ivanov, Alexander G; Sane, Prafullachandra V; Hurry, Vaughan; Oquist, Gunnar; Huner, Norman P A

    2008-01-01

    Dissipation of excess absorbed light energy in eukaryotic photoautotrophs through zeaxanthin- and DeltapH-dependent photosystem II antenna quenching is considered the major mechanism for non-photochemical quenching and photoprotection. However, there is mounting evidence of a zeaxanthin-independent pathway for dissipation of excess light energy based within the PSII reaction centre that may also play a significant role in photoprotection. We summarize recent reports which indicate that this enigma can be explained, in part, by the fact that PSII reaction centres can be reversibly interconverted from photochemical energy transducers that convert light into ATP and NADPH to efficient, non-photochemical energy quenchers that protect the photosynthetic apparatus from photodamage. In our opinion, reaction centre quenching complements photoprotection through antenna quenching, and dynamic regulation of photosystem II reaction centre represents a general response to any environmental condition that predisposes the accumulation of reduced Q(A) in the photosystem II reaction centres of prokaryotic and eukaryotic photoautotrophs. Since the evolution of reaction centres preceded the evolution of light harvesting systems, reaction centre quenching may represent the oldest photoprotective mechanism. PMID:18821028

  10. Physiological role of aquaporin 5 in salivary glands.

    PubMed

    Hosoi, Kazuo

    2016-04-01

    Regarding the 13 known mammalian aquaporins (AQPs), their functions in their expressing tissues, effects of their mutation/polymorphisms in humans, and effects of knockout of their genes are summarized in this review article. The roles of AQP5, an exocrine gland-type water channel, in the salivary gland under normal and pathophysiological conditions are reviewed in detail. First, the involvement of AQP5 in water secretion from acinar cells was demonstrated by measuring volume changes of acini/acinar cells, as well as activation energy (E a) in transepithelial water movement by NMR spectrometry, and a functional linkage between AQP5 and TRPV4 was suggested. Next, involvement of the parasympathetic nervous system on the AQP5 levels in the acinar cells of the submandibular and that of a β-adrenergic agonist on those in the parotid gland are described. That is, chorda tympani denervation induces autophagy of the submandibular gland, causing AQP5 degradation/metabolism, whereas isoproterenol, a β-adrenergic agonist, causes first an increase then decrease in AQP5 levels in the parotid gland, which action is coupled with the secretory-restoration cycle of amylase-containing secretory granules. The PG also responded to endotoxin, a lipopolysaccharide that activates NF-κB and MAPK pathways. Elevated NF-κB and AP-1 (c-Fos/c-Jun) form a complex that can bind to the NF-κB-responsive element on the AQP5 promoter and thus potentially downregulate AQP5 transcription. Salivary gland pathologies and conditions involving AQP5 and possible treatments are described as well. PMID:26537593

  11. Linking vegetation structure, function and physiology through spectroscopic remote sensing

    NASA Astrophysics Data System (ADS)

    Serbin, S.; Singh, A.; Couture, J. J.; Shiklomanov, A. N.; Rogers, A.; Desai, A. R.; Kruger, E. L.; Townsend, P. A.

    2015-12-01

    Terrestrial ecosystem process models require detailed information on ecosystem states and canopy properties to properly simulate the fluxes of carbon (C), water and energy from the land to the atmosphere and assess the vulnerability of ecosystems to perturbations. Current models fail to adequately capture the magnitude, spatial variation, and seasonality of terrestrial C uptake and storage, leading to significant uncertainties in the size and fate of the terrestrial C sink. By and large, these parameter and process uncertainties arise from inadequate spatial and temporal representation of plant traits, vegetation structure, and functioning. With increases in computational power and changes to model architecture and approaches, it is now possible for models to leverage detailed, data rich and spatially explicit descriptions of ecosystems to inform parameter distributions and trait tradeoffs. In this regard, spectroscopy and imaging spectroscopy data have been shown to be invaluable observational datasets to capture broad-scale spatial and, eventually, temporal dynamics in important vegetation properties. We illustrate the linkage of plant traits and spectral observations to supply key data constraints for model parameterization. These constraints can come either in the form of the raw spectroscopic data (reflectance, absorbtance) or physiological traits derived from spectroscopy. In this presentation we highlight our ongoing work to build ecological scaling relationships between critical vegetation characteristics and optical properties across diverse and complex canopies, including temperate broadleaf and conifer forests, Mediterranean vegetation, Arctic systems, and agriculture. We focus on work at the leaf, stand, and landscape scales, illustrating the importance of capturing the underlying variability in a range of parameters (including vertical variation within canopies) to enable more efficient scaling of traits related to functional diversity of ecosystems.

  12. The role of silicon in physiology of the medicinal plant (Lonicera japonica L.) under salt stress

    NASA Astrophysics Data System (ADS)

    Gengmao, Zhao; Shihui, Li; Xing, Sun; Yizhou, Wang; Zipan, Chang

    2015-08-01

    Silicon(Si) is the only element which can enhance the resistance to multiple stresses. However, the role of silicon in medicinal plants under salt stress is not yet understood. This experiment was conducted to study the effects of silicon addition on the growth, osmotic adjustments, photosynthetic characteristics, chloroplast ultrastructure and Chlorogenic acid (CGA) production of Honeysuckle plant (Lonicera japonica L.) under salt-stressed conditions. Salinity exerted an adverse effect on the plant fresh weight and dry weight, whilst 0.5 g L-1 K2SiO3·nH2O addition obviously improved the plant growth. Although Na+ concentration in plant organs was drastically increased with increasing salinity, higher levels of K+/Na+ ratio was obtained after K2SiO3·nH2O addition. Salinity stress induced the destruction of the chloroplast envelope; however, K2SiO3·nH2O addition counteracted the adverse effect by salinity on the structure of the photosynthetic apparatus. K2SiO3·nH2O addition also enhanced the activities of superoxide dismutase and catalase. To sum up, exogenous Si plays a key role in enhancing its resistance to salt stresses in physiological base, thereby improving the growth and CGA production of Honeysuckle plant.

  13. The role of silicon in physiology of the medicinal plant (Lonicera japonica L.) under salt stress.

    PubMed

    Gengmao, Zhao; Shihui, Li; Xing, Sun; Yizhou, Wang; Zipan, Chang

    2015-01-01

    Silicon(Si) is the only element which can enhance the resistance to multiple stresses. However, the role of silicon in medicinal plants under salt stress is not yet understood. This experiment was conducted to study the effects of silicon addition on the growth, osmotic adjustments, photosynthetic characteristics, chloroplast ultrastructure and Chlorogenic acid (CGA) production of Honeysuckle plant (Lonicera japonica L.) under salt-stressed conditions. Salinity exerted an adverse effect on the plant fresh weight and dry weight, whilst 0.5 g L(-1) K2SiO3 · nH2O addition obviously improved the plant growth. Although Na(+) concentration in plant organs was drastically increased with increasing salinity, higher levels of K(+)/Na(+) ratio was obtained after K2SiO3 · nH2O addition. Salinity stress induced the destruction of the chloroplast envelope; however, K2SiO3 · nH2O addition counteracted the adverse effect by salinity on the structure of the photosynthetic apparatus. K2SiO3 · nH2O addition also enhanced the activities of superoxide dismutase and catalase. To sum up, exogenous Si plays a key role in enhancing its resistance to salt stresses in physiological base, thereby improving the growth and CGA production of Honeysuckle plant. PMID:26235534

  14. The role of silicon in physiology of the medicinal plant (Lonicera japonica L.) under salt stress

    PubMed Central

    Gengmao, Zhao; Shihui, Li; Xing, Sun; Yizhou, Wang; Zipan, Chang

    2015-01-01

    Silicon(Si) is the only element which can enhance the resistance to multiple stresses. However, the role of silicon in medicinal plants under salt stress is not yet understood. This experiment was conducted to study the effects of silicon addition on the growth, osmotic adjustments, photosynthetic characteristics, chloroplast ultrastructure and Chlorogenic acid (CGA) production of Honeysuckle plant (Lonicera japonica L.) under salt-stressed conditions. Salinity exerted an adverse effect on the plant fresh weight and dry weight, whilst 0.5 g L−1 K2SiO3·nH2O addition obviously improved the plant growth. Although Na+ concentration in plant organs was drastically increased with increasing salinity, higher levels of K+/Na+ ratio was obtained after K2SiO3·nH2O addition. Salinity stress induced the destruction of the chloroplast envelope; however, K2SiO3·nH2O addition counteracted the adverse effect by salinity on the structure of the photosynthetic apparatus. K2SiO3·nH2O addition also enhanced the activities of superoxide dismutase and catalase. To sum up, exogenous Si plays a key role in enhancing its resistance to salt stresses in physiological base, thereby improving the growth and CGA production of Honeysuckle plant. PMID:26235534

  15. Reactive oxygen species: physiological roles in the regulation of vascular cells.

    PubMed

    Vara, D; Pula, G

    2014-01-01

    Reactive oxygen species (ROS) are now appreciated to play several important roles in a number of biological processes and regulate cell physiology and function. ROS are a heterogeneous chemical class that includes radicals, such as superoxide ion (O2(•-)), hydroxyl radical (OH(•)) and nitric oxide (NO(•)), and non-radicals, such as hydrogen peroxide (H2O2), singlet oxygen ((1)O2), hypochlorous acid (HOCl), and peroxynitrite (NO3 (-)). In the cardiovascular system, besides playing a critical role in the development and progression of vasculopathies and other important pathologies such as congestive heart failure, atherosclerosis and thrombosis, ROS also regulate physiological processes. Evidence from a wealth of cardiovascular research studies suggests that ROS act as second messengers and play an essential role in vascular homeostasis by influencing discrete signal transduction pathways in various systems and cell types. They are produced throughout the vascular system, regulate differentiation and contractility of vascular smooth muscle cells, control vascular endothelial cell proliferation and migration, mediate platelet activation and haemostasis, and significantly contribute to the immune response. Our understanding of ROS chemistry and cell biology has evolved to the point of realizing that different ROS have distinct and important roles in cardiovascular physiology. This review will outline sources, functions and molecular mechanisms of action of different ROS in the cardiovascular system and will describe their emerging role in healthy cardiovascular physiology and homeostasis. PMID:24894168

  16. Fibrosis: a structural modulator of sinoatrial node physiology and dysfunction.

    PubMed

    Csepe, Thomas A; Kalyanasundaram, Anuradha; Hansen, Brian J; Zhao, Jichao; Fedorov, Vadim V

    2015-01-01

    Heart rhythm is initialized and controlled by the Sinoatrial Node (SAN), the primary pacemaker of the heart. The SAN is a heterogeneous multi-compartment structure characterized by clusters of specialized cardiomyocytes enmeshed within strands of connective tissue or fibrosis. Intranodal fibrosis is emerging as an important modulator of structural and functional integrity of the SAN pacemaker complex. In adult human hearts, fatty tissue and fibrosis insulate the SAN from the hyperpolarizing effect of the surrounding atria while electrical communication between the SAN and right atrium is restricted to discrete SAN conduction pathways. The amount of fibrosis within the SAN is inversely correlated with heart rate, while age and heart size are positively correlated with fibrosis. Pathological upregulation of fibrosis within the SAN may lead to tachycardia-bradycardia arrhythmias and cardiac arrest, possibly due to SAN reentry and exit block, and is associated with atrial fibrillation, ventricular arrhythmias, heart failure and myocardial infarction. In this review, we will discuss current literature on the role of fibrosis in normal SAN structure and function, as well as the causes and consequences of SAN fibrosis upregulation in disease conditions. PMID:25729366

  17. Arginase-boronic acid complex highlights a physiological role in erectile function.

    PubMed

    Cox, J D; Kim, N N; Traish, A M; Christianson, D W

    1999-11-01

    The crystal structure of the complex between the binuclear manganese metalloenzyme arginase and the boronic acid analog of L-arginine, 2(S)-amino-6-boronohexanoic acid (ABH), has been determined at 1.7 A resolution from a crystal perfectly twinned by hemihedry. ABH binds as the tetrahedral boronate anion, with one hydroxyl oxygen symmetrically bridging the binuclear manganese cluster and a second hydroxyl oxygen coordinating to Mn2+A. This binding mode mimics the transition state of a metal-activated hydroxide mechanism. This transition state structure differs from that occurring in NO biosynthesis, thereby explaining why ABH does not inhibit NO synthase. We also show that arginase activity is present in the penis. Accordingly, the tight binding and specificity of ABH allows us to probe the physiological role of arginase in modulating the NO-dependent smooth muscle relaxation required for erection. Strikingly, ABH causes significant enhancement of nonadrenergic, noncholinergic nerve-mediated relaxation of penile corpus cavernosum smooth muscle, suggesting that arginase inhibition sustains L-arginine concentrations for NO synthase activity. Therefore, human penile arginase is a potential target for therapeutic intervention in the treatment of erectile dysfunction. PMID:10542097

  18. Molecular and functional diversity of yeast and fungal lipases: their role in biotechnology and cellular physiology.

    PubMed

    Gupta, Rani; Kumari, Arti; Syal, Poonam; Singh, Yogesh

    2015-01-01

    Lipase catalyzes hydrolysis of fats in lipid water interphase and perform variety of biotransformation reactions under micro aqueous conditions. The major sources include microbial lipases; among these yeast and fungal lipases are of special interest because they can carry out various stereoselective reactions. These lipases are highly diverse and are categorized into three classes on the basis of oxyanion hole: GX, GGGX and Y. The detailed phylogenetic analysis showed that GX family is more diverse than GGGX and Y family. Sequence and structural comparisons revealed that lipases are conserved only in the signature sequence region. Their characteristic structural determinants viz. lid, binding pocket and oxyanion hole are hotspots for mutagenesis. Few examples are cited in this review to highlight the multidisciplinary approaches for designing novel enzyme variants with improved thermo stability and substrate specificity. In addition, we present a brief account on biotechnological applications of lipases. Lipases have also gained attention as virulence factors, therefore, we surveyed the role of lipases in yeast physiology related to colonization, adhesion, biofilm formation and pathogenesis. The new genomic era has opened numerous possibilities to genetically manipulate lipases for food, fuel and pharmaceuticals. PMID:25573113

  19. Physiological roles of mycothiol in detoxification and tolerance to multiple poisonous chemicals in Corynebacterium glutamicum.

    PubMed

    Liu, Ying-Bao; Long, Ming-Xiu; Yin, Ya-Jie; Si, Mei-Ru; Zhang, Lei; Lu, Zhi-Qiang; Wang, Yao; Shen, Xi-Hui

    2013-06-01

    Mycothiol (MSH) plays important roles in maintaining cytosolic redox homeostasis and in adapting to reactive oxygen species in the high-(G + C)-content Gram-positive Actinobacteria. However, its physiological roles are ill defined compared to glutathione, the functional analog of MSH in Gram-negative bacteria and most eukaryotes. In this research, we explored the impact of intracellular MSH on cellular physiology by using MSH-deficient mutants in the model organism Corynebacterium glutamicum. We found that intracellular MSH contributes significantly to resistance to alkylating agents, glyphosate, ethanol, antibiotics, heavy metals and aromatic compounds. In addition, intracellular MSH is beneficial for withstanding oxidative stress induced by various oxidants in C. glutamicum. This study greatly expanded our current knowledge on the physiological functions of mycothiol in C. glutamicum and could be applied to improve the robustness of this scientifically and commercially important species in the future. PMID:23615850

  20. Novel and potential physiological roles of vacuolar-type H+-ATPase in marine organisms.

    PubMed

    Tresguerres, Martin

    2016-07-15

    The vacuolar-type H(+)-ATPase (VHA) is a multi-subunit enzyme that uses the energy from ATP hydrolysis to transport H(+) across biological membranes. VHA plays a universal role in essential cellular functions, such as the acidification of lysosomes and endosomes. In addition, the VHA-generated H(+)-motive force can drive the transport of diverse molecules across cell membranes and epithelia for specialized physiological functions. Here, I discuss diverse physiological functions of VHA in marine animals, focusing on recent discoveries about base secretion in shark gills, potential bone dissolution by Osedax bone-eating worms and its participation in a carbon-concentrating mechanism that promotes coral photosynthesis. Because VHA is evolutionarily conserved among eukaryotes, it is likely to play many other essential physiological roles in diverse marine organisms. Elucidating and characterizing basic VHA-dependent mechanisms could help to determine species responses to environmental stress, including (but not limited to) that resulting from climate change. PMID:27445397

  1. The role of lipoprotein receptors on the physiological function of APP.

    PubMed

    Wagner, Timo; Pietrzik, Claus U

    2012-04-01

    In this review, we will primarily focus on the role of members of the low-density lipoprotein receptor (LDL-R) family that are involved in trafficking and processing of the amyloid precursor protein (APP). We will discuss the role of the LDL-receptor family members, low-density lipoprotein receptor-related protein 1 (LRP1), LRP1b, apolipoprotein E receptor 2, sortilin-related receptor (SorLA/LR11) and megalin/LRP2 on the physiological function of APP and its cellular localization. Additionally, we will focus on adaptor proteins that have been shown to influence the physiological function of LDL-R family members in combination with APP processing. The results in this review emphasize that the physiological function of APP cannot be explained by the focus on the APP protein alone but rather in combination with various direct or indirect interaction partners within the cellular environment. PMID:21947084

  2. Physiological Regulation of Stress in Referred Adolescents: The Role of the Parent-Adolescent Relationship

    ERIC Educational Resources Information Center

    Willemen, Agnes M.; Schuengel, Carlo; Koot, Hans M.

    2009-01-01

    Background: Psychopathology in youth appears to be linked to deficits in regulating affective responses to stressful situations. In children, high-quality parental support facilitates affect regulation. However, in adolescence, the role of parent-child interaction in the regulation of affect is unclear. This study examined physiological reactivity…

  3. Early Childcare, Executive Functioning, and the Moderating Role of Early Stress Physiology

    ERIC Educational Resources Information Center

    Berry, Daniel; Willoughby, Michael T.; Blair, Clancy; Ursache, Alexandra; Granger, Douglas A.

    2014-01-01

    Intervention studies indicate that children's childcare experiences can be leveraged to support the development of executive functioning (EF). The role of more normative childcare experiences is less clear. Increasingly, theory and empirical work suggest that individual differences in children's physiological stress systems may be…

  4. From Tusko to Titin: the role for comparative physiology in an era of molecular discovery.

    PubMed

    Lindstedt, S L; Nishikawa, K C

    2015-06-15

    As we approach the centenary of the term "comparative physiology," we reexamine its role in modern biology. Finding inspiration in Krogh's classic 1929 paper, we first look back to some timeless contributions to the field. The obvious and fascinating variation among animals is much more evident than is their shared physiological unity, which transcends both body size and specific adaptations. The "unity in diversity" reveals general patterns and principles of physiology that are invisible when examining only one species. Next, we examine selected contemporary contributions to comparative physiology, which provides the context in which reductionist experiments are best interpreted. We discuss the sometimes surprising insights provided by two comparative "athletes" (pronghorn and rattlesnakes), which demonstrate 1) animals are not isolated molecular mechanisms but highly integrated physiological machines, a single "rate-limiting" step may be exceptional; and 2) extremes in nature are rarely the result of novel mechanisms, but rather employ existing solutions in novel ways. Furthermore, rattlesnake tailshaker muscle effectively abolished the conventional view of incompatibility of simultaneous sustained anaerobic glycolysis and oxidative ATP production. We end this review by looking forward, much as Krogh did, to suggest that a comparative approach may best lend insights in unraveling how skeletal muscle stores and recovers mechanical energy when operating cyclically. We discuss and speculate on the role of the largest known protein, titin (the third muscle filament), as a dynamic spring capable of storing and recovering elastic recoil potential energy in skeletal muscle. PMID:25855309

  5. Role of RIP1 in physiological enterocyte turnover in mouse small intestine via nonapoptotic death.

    PubMed

    Matsuoka, Yosuke; Tsujimoto, Yoshihide

    2015-01-01

    Enterocyte shedding in the small intestine is often referred as an example of programmed cell death. However, little is known about the underlying mechanisms, although both apoptotic and nonapoptotic cell death have been suggested to play an important role. Here, we show by electron microscope that the majority of cells dying in the mouse small intestine do not display apoptotic characteristics. Chemical biological approach in vivo and in an organ culture showed that necrostatin-1 (Nec-1), an inhibitor of receptor-interacting protein 1 (RIP1, also called RIPK1), inhibited the shedding/nonapoptotic death of enterocyte, resulting in suppression of physiological enterocyte turnover. Moreover, RIP1 knockdown in vivo and RIP1 haploinsufficiency significantly suppressed physiological enterocyte turnover. Unlike Nec-1-sensitive (RIP1-dependent) cell death, so called necroptosis, which is also dependent on RIP3, physiological enterocyte turnover in RIP3-deficient mice was executed normally and still inhibited by Nec-1. As inhibition of the shedding/nonapoptotic death of enterocyte by Nec-1 resulted in suppression of crypt cell proliferation, the shedding process plays a dominant role over cell proliferation in maintaining homeostasis of enterocyte turnover. These results indicate that RIP1 plays a major role in physiological enterocyte turnover through a RIP3-independent nonapoptotic death mechanism in the mouse small intestine. PMID:25348793

  6. Physiological and pathological roles of tissue plasminogen activator and its inhibitor neuroserpin in the nervous system

    PubMed Central

    Lee, Tet Woo; Tsang, Vicky W. K.; Birch, Nigel P.

    2015-01-01

    Although its roles in the vascular space are most well-known, tissue plasminogen activator (tPA) is widely expressed in the developing and adult nervous system, where its activity is believed to be regulated by neuroserpin, a predominantly brain-specific member of the serpin family of protease inhibitors. In the normal physiological state, tPA has been shown to play roles in the development and plasticity of the nervous system. Ischemic damage, however, may lead to excess tPA activity in the brain and this is believed to contribute to neurodegeneration. In this article, we briefly review the physiological and pathological roles of tPA in the nervous system, which includes neuronal migration, axonal growth, synaptic plasticity, neuroprotection and neurodegeneration, as well as a contribution to neurological disease. We summarize tPA's multiple mechanisms of action and also highlight the contributions of the inhibitor neuroserpin to these processes. PMID:26528129

  7. A potential role for tissue kallikrein-related peptidases in human cervico-vaginal physiology.

    PubMed

    Shaw, Julie L V; Diamandis, Eleftherios P

    2008-06-01

    Human tissue kallikrein-related peptidases (KLK) are a family of 15 genes located on chromosome 19q13.4 that encode secreted serine proteases with trypsin- and/or chymotrypsin-like activity. Relatively large levels of many KLKs are present in human cervico-vaginal fluid (CVF) and in the supernatant of cultured human vaginal epithelial cells. Many KLKs are also hormonally regulated in vaginal epithelial cells, particularly by glucocorticoids and estrogens. The physiological role of KLK in the vagina is currently unknown; however, analysis of the CVF proteome has revealed clues for potential KLK functions in this environment. Here, we detail potential roles for KLKs in cervico-vaginal physiology. First, we suggest that KLKs play a role in the vagina similar to their role in skin physiology: (1) in the desquamation of vaginal epithelial cells, similar to their activity in the desquamation of skin corneocytes; and (2) in their ability to activate antimicrobial proteins in CVF as they do in sweat. Consequently, we hypothesize that dysregulated KLK expression in the vagina could lead to the development of pathological conditions such as desquamative inflammatory vaginitis. Second, we propose that KLKs may play a role in premature rupture of membranes and pre-term birth through their cleavage of fetal membrane extracellular matrix proteins. PMID:18627298

  8. Probing Temporal Structures in the Nonstationarity of Physiological Signals

    NASA Astrophysics Data System (ADS)

    Ivanov, Plamen Ch.; Bernaola-Galvan, Pedro; Amaral, Luis A. N.; Goldberger, Ary L.; Stanley, H. Eugene

    2000-03-01

    We ask if there is an element of complexity to the nonstationarity in physiological signals. We hypothesise that appearence of segments with different mean values in the signal is related to different physiologic responses to external stimuli. We focus on the statistical properties and temporal organization of segments in the signal with well defined mean, significantly different from the mean of the adjacent segments. For that we subdivide heartbeat time series in such a way as to maximize the difference in the mean values between adjacent segments. To identify different segments we develop a new technique based on the Student's statistics. We observe that the distribution of the lenghts of segments follows a power law for the data during wake activity from both healthy subjects and patients with congestive heart failure. Data from both groups during sleep showes a breakdown in this power-law behavior with a crossover at lenght at ≈ 300 beats.

  9. A dual physiological character for sexual function: the role of serotonergic receptors.

    PubMed

    Motofei, Ion G

    2008-03-01

    Anatomically, sexual reflexes are mixed (somatic-autonomic) circuits, represented by emission (sympathetic centre and somatic afferents), expulsion (parasympathetic centre and somatic efferents) and erection (parasympathetic centre and somatic afferents). Physiologically, ejaculation has a dual autonomic mediation, consisting of two distinct and opposite autonomic centres (emission and expulsion), both with a positive contribution to the respective function. Experimentally, serotonin (5HT) has two distinct, opposite and positive effects on sexual function, with 5HT-(1A) agonists decreasing intravaginal ejaculatory latency and erection, and 5HT-(2C) agonists increasing both erection and ejaculatory latency. In this review I assume that 5HT modulates sexual reflexes, establishing a functional connection between the involved somatic and autonomic structures. The 5HT-(1A) receptors are assumed to make the connection between somatic pathways and sympathetic centres while the 5HT-(2C) receptors could establish the connection between somatic pathways and parasympathetic centres. Further studies will develop the cerebral sexual duality, explaining the implication of psychological factors in sexual function and the role of sexuality in psychosocial behaviour. PMID:17922864

  10. Rapid Sensitization of Physiological, Neuronal, and Locomotor Effects of Nicotine: Critical Role of Peripheral Drug Actions

    PubMed Central

    Lenoir, Magalie; Tang, Jeremy S.; Woods, Amina S.

    2013-01-01

    Repeated exposure to nicotine and other psychostimulant drugs produces persistent increases in their psychomotor and physiological effects (sensitization), a phenomenon related to the drugs' reinforcing properties and abuse potential. Here we examined the role of peripheral actions of nicotine in nicotine-induced sensitization of centrally mediated physiological parameters (brain, muscle, and skin temperatures), cortical and VTA EEG, neck EMG activity, and locomotion in freely moving rats. Repeated injections of intravenous nicotine (30 μg/kg) induced sensitization of the drug's effects on all these measures. In contrast, repeated injections of the peripherally acting analog of nicotine, nicotine pyrrolidine methiodide (nicotinePM, 30 μg/kg, i.v.) resulted in habituation (tolerance) of the same physiological, neuronal, and behavioral measures. However, after repeated nicotine exposure, acute nicotinePM injections induced nicotine-like physiological responses: powerful cortical and VTA EEG desynchronization, EMG activation, a large brain temperature increase, but weaker hyperlocomotion. Additionally, both the acute locomotor response to nicotine and nicotine-induced locomotor sensitization were attenuated by blockade of peripheral nicotinic receptors by hexamethonium (3 mg/kg, i.v.). These data suggest that the peripheral actions of nicotine, which precede its direct central actions, serve as a conditioned interoceptive cue capable of eliciting nicotine-like physiological and neural responses after repeated nicotine exposure. Thus, by providing a neural signal to the CNS that is repeatedly paired with the direct central effects of nicotine, the drug's peripheral actions play a critical role in the development of nicotine-induced physiological, neural, and behavioral sensitization. PMID:23761889

  11. The role of vascular biomarkers for primary and secondary prevention. A position paper from the European Society of Cardiology Working Group on peripheral circulation: Endorsed by the Association for Research into Arterial Structure and Physiology (ARTERY) Society.

    PubMed

    Vlachopoulos, Charalambos; Xaplanteris, Panagiotis; Aboyans, Victor; Brodmann, Marianne; Cífková, Renata; Cosentino, Francesco; De Carlo, Marco; Gallino, Augusto; Landmesser, Ulf; Laurent, Stéphane; Lekakis, John; Mikhailidis, Dimitri P; Naka, Katerina K; Protogerou, Athanasios D; Rizzoni, Damiano; Schmidt-Trucksäss, Arno; Van Bortel, Luc; Weber, Thomas; Yamashina, Akira; Zimlichman, Reuven; Boutouyrie, Pierre; Cockcroft, John; O'Rourke, Michael; Park, Jeong Bae; Schillaci, Giuseppe; Sillesen, Henrik; Townsend, Raymond R

    2015-08-01

    While risk scores are invaluable tools for adapted preventive strategies, a significant gap exists between predicted and actual event rates. Additional tools to further stratify the risk of patients at an individual level are biomarkers. A surrogate endpoint is a biomarker that is intended as a substitute for a clinical endpoint. In order to be considered as a surrogate endpoint of cardiovascular events, a biomarker should satisfy several criteria, such as proof of concept, prospective validation, incremental value, clinical utility, clinical outcomes, cost-effectiveness, ease of use, methodological consensus, and reference values. We scrutinized the role of peripheral (i.e. not related to coronary circulation) noninvasive vascular biomarkers for primary and secondary cardiovascular disease prevention. Most of the biomarkers examined fit within the concept of early vascular aging. Biomarkers that fulfill most of the criteria and, therefore, are close to being considered a clinical surrogate endpoint are carotid ultrasonography, ankle-brachial index and carotid-femoral pulse wave velocity; biomarkers that fulfill some, but not all of the criteria are brachial ankle pulse wave velocity, central haemodynamics/wave reflections and C-reactive protein; biomarkers that do no not at present fulfill essential criteria are flow-mediated dilation, endothelial peripheral arterial tonometry, oxidized LDL and dysfunctional HDL. Nevertheless, it is still unclear whether a specific vascular biomarker is overly superior. A prospective study in which all vascular biomarkers are measured is still lacking. In selected cases, the combined assessment of more than one biomarker may be required. PMID:26117398

  12. Structural remodeling during amyloidogenesis of physiological Nα-acetylated α-synuclein.

    PubMed

    Gallea, J Ignacio; Sarroukh, Rabia; Yunes-Quartino, Pablo; Ruysschaert, Jean-Marie; Raussens, Vincent; Celej, M Soledad

    2016-05-01

    The misfolding and aggregation of the presynaptic protein α-synuclein (AS) into amyloid fibrils is pathognomonic of Parkinson's disease, though the mechanism by which this structural conversion occurs is largely unknown. Soluble oligomeric species that accumulate as intermediates in the process of fibril formation are thought to be highly cytotoxic. Recent studies indicate that oligomer-to-fibril AS transition plays a key role in cell toxicity and progression of neurodegeneration. We previously demonstrated that a subgroup of oligomeric AS species are ordered assemblies possessing a well-defined pattern of intermolecular contacts which are arranged into a distinctive antiparallel β-sheet structure, as opposed to the parallel fibrillar fold. Recently, it was demonstrated that the physiological form of AS is N-terminally acetylated (Ac-AS). Here, we first showed that well-characterized conformational ensembles of Ac-AS, namely monomers, oligomers and fibrils, recapitulate many biophysical features of the nonacetylated protein, such as hydrodynamic, tinctorial, structural and membrane-leakage properties. Then, we relied on ATR-FTIR spectroscopy to explore the structural reorganization during Ac-AS fibrillogenesis. We found that antiparallel β-sheet transient intermediates are built-up at early stages of aggregation, which then evolve to parallel β-sheet fibrils through helix-rich/disordered species. The results are discussed in terms of regions of the protein that might participate in this structural rearrangement. Our work provides new insights into the complex conformational reorganization occurring during Ac-AS amyloid formation. PMID:26845568

  13. Physiological roles of peroxido-vanadium complexes: Leitmotif as their signal transduction pathway.

    PubMed

    Matsugo, Seiichi; Kanamori, Kan; Sugiyama, Hironori; Misu, Hirofumi; Takamura, Toshinari

    2015-06-01

    Evidence exists that supports the various physiological roles of vanadium compounds, although the amount of vanadium in our body is limited. This limited concentration in our body does not attract much attention of the biological chemists, although the fact is present; even in the 19th century, vanadium derivatives were used for the therapeutic reagents. In the middle of the 20th century, the main focus of vanadium chemistry is mainly on the chemical and material fields. After the first discovery of vanadium compounds expressing ATPase activity, oxidovanadium(IV) sulfate was reported to have insulin mimic activity. Additionally, because some vanadium compounds possess cellular toxicity, trials were also carried out to examine the possible use of vanadium compounds as cancer therapeutics. The application of vanadium complexes was extended in recent years especially in the 21st century. In this review, we briefly explain the historical background of vanadium chemistry and also summarize the physiological role of vanadium complexes mainly focusing on the synthesis and physiological role of peroxidovanadium compounds and their interactions with insulin signal transduction pathways. PMID:25912243

  14. Causal Structure of Brain Physiology after Brain Injury from Subarachnoid Hemorrhage

    PubMed Central

    Claassen, Jan; Rahman, Shah Atiqur; Huang, Yuxiao; Frey, Hans-Peter; Schmidt, J. Michael; Albers, David; Falo, Cristina Maria; Park, Soojin; Agarwal, Sachin; Connolly, E. Sander; Kleinberg, Samantha

    2016-01-01

    High frequency physiologic data are routinely generated for intensive care patients. While massive amounts of data make it difficult for clinicians to extract meaningful signals, these data could provide insight into the state of critically ill patients and guide interventions. We develop uniquely customized computational methods to uncover the causal structure within systemic and brain physiologic measures recorded in a neurological intensive care unit after subarachnoid hemorrhage. While the data have many missing values, poor signal-to-noise ratio, and are composed from a heterogeneous patient population, our advanced imputation and causal inference techniques enable physiologic models to be learned for individuals. Our analyses confirm that complex physiologic relationships including demand and supply of oxygen underlie brain oxygen measurements and that mechanisms for brain swelling early after injury may differ from those that develop in a delayed fashion. These inference methods will enable wider use of ICU data to understand patient physiology. PMID:27123582

  15. Causal Structure of Brain Physiology after Brain Injury from Subarachnoid Hemorrhage.

    PubMed

    Claassen, Jan; Rahman, Shah Atiqur; Huang, Yuxiao; Frey, Hans-Peter; Schmidt, J Michael; Albers, David; Falo, Cristina Maria; Park, Soojin; Agarwal, Sachin; Connolly, E Sander; Kleinberg, Samantha

    2016-01-01

    High frequency physiologic data are routinely generated for intensive care patients. While massive amounts of data make it difficult for clinicians to extract meaningful signals, these data could provide insight into the state of critically ill patients and guide interventions. We develop uniquely customized computational methods to uncover the causal structure within systemic and brain physiologic measures recorded in a neurological intensive care unit after subarachnoid hemorrhage. While the data have many missing values, poor signal-to-noise ratio, and are composed from a heterogeneous patient population, our advanced imputation and causal inference techniques enable physiologic models to be learned for individuals. Our analyses confirm that complex physiologic relationships including demand and supply of oxygen underlie brain oxygen measurements and that mechanisms for brain swelling early after injury may differ from those that develop in a delayed fashion. These inference methods will enable wider use of ICU data to understand patient physiology. PMID:27123582

  16. The Integrative Role of the Sigh in Psychology, Physiology, Pathology, and Neurobiology

    PubMed Central

    Ramirez, Jan-Marino

    2015-01-01

    “Sighs, tears, grief, distress” expresses Johann Sebastian Bach in a musical example for the relationship between sighs and deep emotions. This review explores the neurobiological basis of the sigh and its relationship with psychology, physiology, and pathology. Sighs monitor changes in brain states, induce arousal, and reset breathing variability. These behavioral roles homeostatically regulate breathing stability under physiological and pathological conditions. Sighs evoked in hypoxia evoke arousal and thereby become critical for survival. Hypoarousal and failure to sigh have been associated with sudden infant death syndrome. Increased breathing irregularity may provoke excessive sighing and hyperarousal, a behavioral sequence that may play a role in panic disorders. Essential for generating sighs and breathing is the pre-Bötzinger complex. Modulatory and synaptic interactions within this local network and between networks located in the brainstem, cerebellum, cortex, hypothalamus, amygdala, and the periaqueductal gray may govern the relationships between physiology, psychology, and pathology. Unraveling these circuits will lead to a better understanding of how we balance emotions and how emotions become pathological. PMID:24746045

  17. The integrative role of the sigh in psychology, physiology, pathology, and neurobiology.

    PubMed

    Ramirez, Jan-Marino

    2014-01-01

    "Sighs, tears, grief, distress" expresses Johann Sebastian Bach in a musical example for the relationship between sighs and deep emotions. This review explores the neurobiological basis of the sigh and its relationship with psychology, physiology, and pathology. Sighs monitor changes in brain states, induce arousal, and reset breathing variability. These behavioral roles homeostatically regulate breathing stability under physiological and pathological conditions. Sighs evoked in hypoxia evoke arousal and thereby become critical for survival. Hypoarousal and failure to sigh have been associated with sudden infant death syndrome. Increased breathing irregularity may provoke excessive sighing and hyperarousal, a behavioral sequence that may play a role in panic disorders. Essential for generating sighs and breathing is the pre-Bötzinger complex. Modulatory and synaptic interactions within this local network and between networks located in the brainstem, cerebellum, cortex, hypothalamus, amygdala, and the periaqueductal gray may govern the relationships between physiology, psychology, and pathology. Unraveling these circuits will lead to a better understanding of how we balance emotions and how emotions become pathological. PMID:24746045

  18. The Physiological Role of Arcuate Kisspeptin Neurons in the Control of Reproductive Function in Female Rats

    PubMed Central

    Beale, K.E.; Kinsey-Jones, J.S.; Gardiner, J.V.; Harrison, E.K.; Thompson, E.L.; Hu, M.H.; Sleeth, M.L.; Sam, A.H.; Greenwood, H.C.; McGavigan, A.K.; Dhillo, W.S.; Mora, J.M.; Li, X.F.; Franks, S.; Bloom, S.R.; O'Byrne, K.T.

    2014-01-01

    Kisspeptin plays a pivotal role in pubertal onset and reproductive function. In rodents, kisspeptin perikarya are located in 2 major populations: the anteroventral periventricular nucleus and the hypothalamic arcuate nucleus (ARC). These nuclei are believed to play functionally distinct roles in the control of reproduction. The anteroventral periventricular nucleus population is thought to be critical in the generation of the LH surge. However, the physiological role played by the ARC kisspeptin neurons remains to be fully elucidated. We used bilateral stereotactic injection of recombinant adeno-associated virus encoding kisspeptin antisense into the ARC of adult female rats to investigate the physiological role of kisspeptin neurons in this nucleus. Female rats with kisspeptin knockdown in the ARC displayed a significantly reduced number of both regular and complete oestrous cycles and significantly longer cycles over the 100-day period of the study. Further, kisspeptin knockdown in the ARC resulted in a decrease in LH pulse frequency. These data suggest that maintenance of ARC-kisspeptin levels is essential for normal pulsatile LH release and oestrous cyclicity. PMID:24424033

  19. Role of Regulators of G Protein Signaling Proteins in Bone Physiology and Pathophysiology

    PubMed Central

    Jules, Joel; Yang, Shuying; Chen, Wei; Li, Yi-Ping

    2016-01-01

    Regulators of G protein signaling (RGS) proteins enhance the intrinsic GTPase activity of α subunits of the heterotrimeric G protein complex of G protein-coupled receptors (GPCRs) and thereby inactivate signal transduction initiated by GPCRs. The RGS family consists of nearly 37 members with a conserved RGS homology domain which is critical for their GTPase accelerating activity. RGS proteins are expressed in most tissues, including heart, lung, brain, kidney, and bone and play essential roles in many physiological and pathological processes. In skeletal development and bone homeostasis as well as in many bone disorders, RGS proteins control the functions of various GPCRs, including the parathyroid hormone receptor type 1 and calcium-sensing receptor and also regulate various critical signaling pathways, such as Wnt and calcium oscillations. This chapter will discuss the current findings on the roles of RGS proteins in regulating signaling of key GPCRs in skeletal development and bone homeostasis. We also will examine the current updates of RGS proteins’ regulation of calcium oscillations in bone physiology and highlight the roles of RGS proteins in selected bone pathological disorders. Despite the recent advances in bone and mineral research, RGS proteins remain understudied in the skeletal system. Further understanding of the roles of RGS proteins in bone should not only provide great insights into the molecular basis of various bone diseases but also generate great therapeutic drug targets for many bone diseases. PMID:26123302

  20. The role of plant physiology in hydrology: looking backwards and forwards

    NASA Astrophysics Data System (ADS)

    Roberts, J.

    2007-01-01

    conservative? An important contribution both to the similar and low transpiration is the likely reduction of stomatal conductance of the foliage associated with increasing air humidity deficit. A greater response is usually found when initial conductances are highest. Also contributing to similarities in transpiration from forest stands would be a compensatory role of understories and that deficits in soil moisture may not come into play until severe soil water deficits occur. Physiological studies have been conducted in many locations overseas. The modest transpiration of tropical rainforest is intriguing - Why is tropical rainforest transpiration so low? In common with temperate trees the reduction of stomatal conductance of tropical trees in association with increasing air humidity deficit will limit transpiration. In addition the high leaf area index of tropical rainforest creates conditions in the lower canopy layers that mean transpiration from those layers is much reduced from what might be possible. As well as being used to quantify and understand transpiration, physiological techniques might be used to assess when plants require water. What is the first signal that plants need water? Studies on sugar cane in Mauritius indicated that leaf growth was the most sensitive measure. A look forward to the future suggests that there will be a continued need for physiological measurements particularly where other techniques more suited to extensive vegetation are not appropriate. There are many unresolved issues about water use from fragmented, heterogeneous vegetation and physiological approaches are best suited to these. The measurement of sap flow in individual stems will be an important methodology in the future but there are still methodological issues to resolve.

  1. The 2-Hydroxycarboxylate Transporter Family: Physiology, Structure, and Mechanism

    PubMed Central

    Sobczak, Iwona; Lolkema, Juke S.

    2005-01-01

    The 2-hydroxycarboxylate transporter family is a family of secondary transporters found exclusively in the bacterial kingdom. They function in the metabolism of the di- and tricarboxylates malate and citrate, mostly in fermentative pathways involving decarboxylation of malate or oxaloacetate. These pathways are found in the class Bacillales of the low-CG gram-positive bacteria and in the gamma subdivision of the Proteobacteria. The pathways have evolved into a remarkable diversity in terms of the combinations of enzymes and transporters that built the pathways and of energy conservation mechanisms. The transporter family includes H+ and Na+ symporters and precursor/product exchangers. The proteins consist of a bundle of 11 transmembrane helices formed from two homologous domains containing five transmembrane segments each, plus one additional segment at the N terminus. The two domains have opposite orientations in the membrane and contain a pore-loop or reentrant loop structure between the fourth and fifth transmembrane segments. The two pore-loops enter the membrane from opposite sides and are believed to be part of the translocation site. The binding site is located asymmetrically in the membrane, close to the interface of membrane and cytoplasm. The binding site in the translocation pore is believed to be alternatively exposed to the internal and external media. The proposed structure of the 2HCT transporters is different from any known structure of a membrane protein and represents a new structural class of secondary transporters. PMID:16339740

  2. Bridging Between Proline Structure, Functions, Metabolism, and Involvement in Organism Physiology.

    PubMed

    Saibi, Walid; Feki, Kaouthar; Yacoubi, Ines; Brini, Faiçal

    2015-08-01

    Much is now known about proline multifunctionality and metabolism; some aspects of its biological functions are still unclear. Here, we discuss some cases in the proline, structure, definition, metabolism, compartmentalization, accumulation, plausible functions and also its implication in homeostasis and organism physiology. Indeed, we report the role of proline in cellular homeostasis, including redox balance and energy status and their implication as biocatalyst for aldolase activity. Proline can act as a signaling molecule to modulate mitochondrial functions, influence cell proliferation or cell death, and trigger specific gene expression, which can be essential for plant recovery from stresses. Although, the regulation and the function of proline accumulation, during abiotic stresses, are not yet completely understood. The engineering of proline metabolism could lead to new opportunities to improve plant tolerance against environmental stresses. This atypical amino acid has a potential role in the toxicity during growth of some microorganism, vegetal, and mammalian species. Furthermore, we note that the purpose through the work is to provide a rich, concise, and mostly cohesive source on proline, considered as a platform and an anchor between several disciplines and biological functions. PMID:26100388

  3. A differential role for nitric oxide in two forms of physiological angiogenesis in mouse

    PubMed Central

    Williams, James L; Cartland, David; Hussain, Arif; Egginton, Stuart

    2006-01-01

    NO plays a role in a variety of in vitro models of angiogenesis, although confounding effects of NO on non-endothelial tissues make its role during in vivo angiogenesis unclear. We therefore examined the effects of NO on two physiological models of angiogenesis in mouse skeletal muscle: (1) administration of prazosin (50 mg l−1) thereby increasing blood flow; and (2) muscle overload from surgical ablation of a functional synergist. These models induce angiogenesis via longitudinal splitting and capillary sprouting, respectively. Administration of NG-nitro-l-arginine (l-NNA) abolished the increase in capillary to fibre ratio (C:F) in response to prazosin administration, along with the increases in luminal filopodia and large endothelial vacuoles. l-NNA prevented luminal filopodia and vacuolisation in response to extirpation, but had no effect on abluminal sprouting, and little effect on C:F. Comparison of mice lacking endothelial (eNOS−/−) and neuronal NO synthase (nNOS−/−) showed that longitudinal splitting is eNOS-dependent, and Western blotting demonstrated an increase in eNOS but not inducible NOS (iNOS) expression. These data show that there are two pathways of physiological angiogenesis in skeletal muscle characterised by longitudinal splitting and capillary sprouting, respectively. NO generated by eNOS plays an essential role in splitting but not in sprouting angiogenesis, which has important implications for angiogenic therapies that target NO. PMID:16293647

  4. Central role of soluble adenylyl cyclase and cAMP in sperm physiology

    PubMed Central

    Buffone, Mariano G.; Wertheimer, Eva V.; Visconti, Pablo E.; Krapf, Dario

    2014-01-01

    Cyclic adenosine 3′,5′-monophosphate (cAMP), the first second messenger to be described, plays a central role in cell signaling in a wide variety of cell types. Over the last decades, a wide body of literature addressed the different roles of cAMP in cell physiology, mainly in response to neurotransmitters and hormones. cAMP is synthesized by a wide variety of adenylyl cylases that can generally be grouped in two types: transmembrane adenylyl cyclase and soluble adenylyl cyclases. In particular, several aspects of sperm physiology are regulated by cAMP produced by a single atypical adenylyl cyclase (Adcy10, aka sAC, SACY). The signature that identifies sAC among other ACs, is their direct stimulation by bicarbonate. The essential nature of cAMP in sperm function has been demonstrated using gain of function as well as loss of function approaches. This review unifies state of the art knowledge of the role of cAMP and those enzymes involved in cAMP signaling pathways required for the acquisition of fertilizing capacity of mammalian sperm. PMID:25066614

  5. tRNA-targeting ribonucleases: molecular mechanisms and insights into their physiological roles.

    PubMed

    Ogawa, Tetsuhiro

    2016-06-01

    Most bacteria produce antibacterial proteins known as bacteriocins, which aid bacterial defence systems to provide a physiological advantage. To date, many kinds of bacteriocins have been characterized. Colicin has long been known as a plasmidborne bacteriocin that kills other Escherichia coli cells lacking the same plasmid. To defeat other cells, colicins exert specific activities such as ion-channel, DNase, and RNase activity. Colicin E5 and colicin D impair protein synthesis in sensitive E. coli cells; however, their physiological targets have not long been identified. This review describes our finding that colicins E5 and D are novel RNases targeting specific E. coli tRNAs and elucidates their enzymatic properties based on biochemical analyses and X-ray crystal structures. Moreover, tRNA cleavage mediates bacteriostasis, which depends on trans-translation. Based on these results and others, cell growth regulation depending on tRNA cleavage is also discussed. PMID:26967967

  6. The Role of Psychological and Physiological Factors in Decision Making under Risk and in a Dilemma.

    PubMed

    Fooken, Jonas; Schaffner, Markus

    2016-01-01

    Different methods to elicit risk attitudes of individuals often provide differing results despite a common theory. Reasons for such inconsistencies may be the different influence of underlying factors in risk-taking decisions. In order to evaluate this conjecture, a better understanding of underlying factors across methods and decision contexts is desirable. In this paper we study the difference in result of two different risk elicitation methods by linking estimates of risk attitudes to gender, age, and personality traits, which have been shown to be related. We also investigate the role of these factors during decision-making in a dilemma situation. For these two decision contexts we also investigate the decision-maker's physiological state during the decision, measured by heart rate variability (HRV), which we use as an indicator of emotional involvement. We found that the two elicitation methods provide different individual risk attitude measures which is partly reflected in a different gender effect between the methods. Personality traits explain only relatively little in terms of driving risk attitudes and the difference between methods. We also found that risk taking and the physiological state are related for one of the methods, suggesting that more emotionally involved individuals are more risk averse in the experiment. Finally, we found evidence that personality traits are connected to whether individuals made a decision in the dilemma situation, but risk attitudes and the physiological state were not indicative for the ability to decide in this decision context. PMID:26834591

  7. The role of nature in coping with psycho-physiological stress: a literature review on restorativeness.

    PubMed

    Berto, Rita

    2014-01-01

    Physical settings can play a role in coping with stress; in particular experimental research has found strong evidence between exposure to natural environments and recovery from physiological stress and mental fatigue, giving support to both Stress Recovery Theory and Attention Restoration Theory. In fact, exposure to natural environments protects people against the impact of environmental stressors and offer physiological, emotional and attention restoration more so than urban environments. Natural places that allow the renewal of personal adaptive resources to meet the demands of everyday life are called restorative environments. Natural environments elicit greater calming responses than urban environments, and in relation to their vision there is a general reduction of physiological symptoms of stress. Exposure to natural scenes mediates the negative effects of stress reducing the negative mood state and above all enhancing positive emotions. Moreover, one can recover the decrease of cognitive performance associated with stress, especially reflected in attention tasks, through the salutary effect of viewing nature. Giving the many benefits of contact with nature, plans for urban environments should attend to restorativeness. PMID:25431444

  8. The Role of Psychological and Physiological Factors in Decision Making under Risk and in a Dilemma

    PubMed Central

    Fooken, Jonas; Schaffner, Markus

    2016-01-01

    Different methods to elicit risk attitudes of individuals often provide differing results despite a common theory. Reasons for such inconsistencies may be the different influence of underlying factors in risk-taking decisions. In order to evaluate this conjecture, a better understanding of underlying factors across methods and decision contexts is desirable. In this paper we study the difference in result of two different risk elicitation methods by linking estimates of risk attitudes to gender, age, and personality traits, which have been shown to be related. We also investigate the role of these factors during decision-making in a dilemma situation. For these two decision contexts we also investigate the decision-maker's physiological state during the decision, measured by heart rate variability (HRV), which we use as an indicator of emotional involvement. We found that the two elicitation methods provide different individual risk attitude measures which is partly reflected in a different gender effect between the methods. Personality traits explain only relatively little in terms of driving risk attitudes and the difference between methods. We also found that risk taking and the physiological state are related for one of the methods, suggesting that more emotionally involved individuals are more risk averse in the experiment. Finally, we found evidence that personality traits are connected to whether individuals made a decision in the dilemma situation, but risk attitudes and the physiological state were not indicative for the ability to decide in this decision context. PMID:26834591

  9. The Role of Nature in Coping with Psycho-Physiological Stress: A Literature Review on Restorativeness

    PubMed Central

    Berto, Rita

    2014-01-01

    Physical settings can play a role in coping with stress; in particular experimental research has found strong evidence between exposure to natural environments and recovery from physiological stress and mental fatigue, giving support to both Stress Recovery Theory and Attention Restoration Theory. In fact, exposure to natural environments protects people against the impact of environmental stressors and offer physiological, emotional and attention restoration more so than urban environments. Natural places that allow the renewal of personal adaptive resources to meet the demands of everyday life are called restorative environments. Natural environments elicit greater calming responses than urban environments, and in relation to their vision there is a general reduction of physiological symptoms of stress. Exposure to natural scenes mediates the negative effects of stress reducing the negative mood state and above all enhancing positive emotions. Moreover, one can recover the decrease of cognitive performance associated with stress, especially reflected in attention tasks, through the salutary effect of viewing nature. Giving the many benefits of contact with nature, plans for urban environments should attend to restorativeness. PMID:25431444

  10. Senescence Marker Protein 30: Functional and Structural Insights to its Unknown Physiological Function

    PubMed Central

    Scott, Stephanie H.; Bahnson, Brian J.

    2011-01-01

    Senescence marker protein 30 (SMP30) is a multifunctional protein involved in cellular Ca2+ homeostasis and the biosynthesis of ascorbate in non-primate mammals. The primary structure of the protein is highly conserved among vertebrates, suggesting the existence of a significant physiological function common to all mammals, including primates. Enzymatic activities of SMP30 include aldonolactone and organophosphate hydrolysis. Protective effects against apoptosis and oxidative stress have been reported. X-ray crystallography revealed that SMP30 is a six-bladed β-propeller with structural similarity to paraoxonase 1, another protein with lactonase and organophosphate hydrolase activities. SMP30 has recently been tied to several physiological conditions including osteoporosis, liver fibrosis, diabetes, and cancer. This review aims to describe the recent advances made toward understanding the connection between molecular structure, enzymatic activity and physiological function of this highly conserved, multifaceted protein. PMID:22844387

  11. Influence of phosphorus availability on the community structure and physiology of cultured biofilms.

    PubMed

    Li, Shuangshuang; Wang, Chun; Qin, Hongjie; Li, Yinxia; Zheng, Jiaoli; Peng, Chengrong; Li, Dunhai

    2016-04-01

    Biofilms have important effects on nutrient cycling in aquatic ecosystems. However, publications about the community structure and functions under laboratory conditions are rare. This study focused on the developmental and physiological properties of cultured biofilms under various phosphorus concentrations performed in a closely controlled continuous flow incubator. The results showed that the biomass (Chl a) and photosynthesis of algae were inhibited under P-limitation conditions, while the phosphatase activity and P assimilation rate were promoted. The algal community structure of biofilms was more likely related to the colonization stage than with the phosphorus availability. Cyanobacteria were more competitive than other algae in biofilms, particularly when cultured under low P levels. A dominance shift occurred from non-filamentous algae in the early stage to filamentous algae in the mid and late stages under P concentrations of 0.01, 0.1 and 0.6 mg/L. However, the total N content, dry weight biomass and bacterial community structure of biofilms were unaffected by phosphorus availability. This may be attributed to the low respiration rate, high accumulation of extracellular polymeric substances and high alkaline phosphatase activity in biofilms when phosphorus availability was low. The bacterial community structure differed over time, while there was little difference between the four treatments, which indicated that it was mainly affected by the colonization stage of the biofilms rather than the phosphorus availability. Altogether, these results suggested that the development of biofilms was influenced by the phosphorus availability and/or the colonization stage and hence determined the role that biofilms play in the overlying water. PMID:27090691

  12. Estradiol protective role in atherogenesis through LDL structure modification

    NASA Astrophysics Data System (ADS)

    Papi, Massimiliano; Brunelli, Roberto; Ciasca, Gabriele; Maiorana, Alessandro; Maulucci, Giuseppe; Palmieri, Valentina; Parasassi, Tiziana; De Spirito, Marco

    2016-07-01

    Relevant physiological functions are exerted by circulating low density lipoprotein (LDL) as well as eventual pathological processes triggering atherogenesis. Modulation of these functions can well be founded on modifications of LDL structure. Given its large dimension, multicomponent organization and strong interactions between the protein apoB-100 and lipids, determining LDL 3D structure remains a challenge. We propose a novel quantitative physical approach to this complex biological problem. We introduce a three-component model, fitted to small angle x-ray scattering data on LDL maintained in physiological conditions, able to achieve a consistent 3D structure. Unexpected features include three distinct protein domains protruding out of a sphere, quite rough in its surface, where several core lipid areas are exposed. All LDL components are affected by 17-β-estradiol (E2) binding to apoB-100. Mostly one of the three protruding protein domains, dramatically reducing its presence on the surface and with a consequent increase of core lipids’ exposure. This result suggests a structural basis for some E2 protecting roles and LDL physiological modifications.

  13. Physiological roles for the subfornical organ: a dynamic transcriptome shaped by autonomic state.

    PubMed

    Hindmarch, Charles Colin Thomas; Ferguson, Alastair V

    2016-03-15

    The subfornical organ (SFO) is a circumventricular organ recognized for its ability to sense and integrate hydromineral and hormonal circulating fluid balance signals, information which is transmitted to central autonomic nuclei to which SFO neurons project. While the role of SFO was once synonymous with physiological responses to osmotic, volumetric and cardiovascular challenge, recent data suggest that SFO neurons also sense and integrate information from circulating signals of metabolic status. Using microarrays, we have confirmed the expression of receptors already described in the SFO, and identified many novel transcripts expressed in this circumventricular organ including receptors for many of the critical circulating energy balance signals such as adiponectin, apelin, endocannabinoids, leptin, insulin and peptide YY. This transcriptome analysis also identified SFO transcripts, the expressions of which are significantly changed by either 72 h dehydration, or 48 h starvation, compared to fed and euhydrated controls. Expression and potential roles for many of these targets are yet to be confirmed and elucidated. Subsequent validation of data for adiponectin and leptin receptors confirmed that receptors for both are expressed in the SFO, that discrete populations of neurons in this tissue are functionally responsive to these adipokines, and that such responsiveness is regulated by physiological state. Thus, transcriptomic analysis offers great promise for understanding the integrative complexity of these physiological systems, especially with development of technologies allowing description of the entire transcriptome of single, carefully phenotyped, SFO neurons. These data will ultimately elucidate mechanisms through which these uniquely positioned neurons respond to and integrate complex circulating signals. PMID:26227400

  14. Mechanisms and Physiological Roles of the CBL-CIPK Networking System in Arabidopsis thaliana.

    PubMed

    Mao, Jingjing; Manik, S M Nuruzzaman; Shi, Sujuan; Chao, Jiangtao; Jin, Yirong; Wang, Qian; Liu, Haobao

    2016-01-01

    Calcineurin B-like protein (CBL)-CBL-interacting protein kinase (CIPK) network is one of the vital regulatory mechanisms which decode calcium signals triggered by environmental stresses. Although the complicated regulation mechanisms and some novel functions of CBL-CIPK signaling network in plants need to be further elucidated, numerous advances have been made in its roles involved in the abiotic stresses. This review chiefly introduces the progresses about protein interaction, classification and expression pattern of different CBLs and CIPKs in Arabidopsis thaliana, summarizes the physiological roles of CBL-CIPK pathway while pointing out some new research ideas in the future, and finally presents some unique perspectives for the further study. The review might provide new insights into the functional characterization of CBL-CIPK pathway in Arabidopsis, and contribute to a deeper understanding of CBL-CIPK network in other plants or stresses. PMID:27618104

  15. G protein-coupled receptor signalling in the cardiac nuclear membrane: evidence and possible roles in physiological and pathophysiological function

    PubMed Central

    Tadevosyan, Artavazd; Vaniotis, George; Allen, Bruce G; Hébert, Terence E; Nattel, Stanley

    2012-01-01

    G protein-coupled receptors (GPCRs) play key physiological roles in numerous tissues, including the heart, and their dysfunction influences a wide range of cardiovascular diseases. Recently, the notion of nuclear localization and action of GPCRs has become more widely accepted. Nuclear-localized receptors may regulate distinct signalling pathways, suggesting that the biological responses mediated by GPCRs are not solely initiated at the cell surface but may result from the integration of extracellular and intracellular signalling pathways. Many of the observed nuclear effects are not prevented by classical inhibitors that exclusively target cell surface receptors, presumably because of their structures, lipophilic properties, or affinity for nuclear receptors. In this topical review, we discuss specifically how angiotensin-II, endothelin, β-adrenergic and opioid receptors located on the nuclear envelope activate signalling pathways, which convert intracrine stimuli into acute responses such as generation of second messengers and direct genomic effects, and thereby participate in the development of cardiovascular disorders. PMID:22183719

  16. Physiological roles of the transient outward current Ito in normal and diseased hearts.

    PubMed

    Cordeiro, Jonathan M; Calloe, Kirstine; Aschar-Sobbi, Roozbeh; Kim, Kyoung-Han; Korogyi, Adam; Occhipinti, Dona; Backx, Peter H; Panama, Brian K

    2016-01-01

    The Ca(2+)-independent transient outward K(+) current (I(to)) plays a critical role in underlying phase 1 of repolarization of the cardiac action potential and, as a result, is central to modulating excitation-contraction coupling and propensity for arrhythmia. Additionally, I(to) and its molecular constituents are consistently reduced in cardiac hypertrophy and heart failure. In this review, we discuss the physiological role of I(to) as well as the molecular basis of this current in human and canine hearts, in which I(to) has been thoroughly studied. In particular, we discuss the role of Ito; in the action potential and the mechanisms by which I(to) modulates excitation-contraction coupling. We also describe the effects of mutations in the subunits constituting the Ito channel as well as the role of I(to) in the failing myocardium. Finally, we review pharmacological modulation of I(to) and discuss the evidence supporting the hypothesis that restoration of I(to) in the setting of heart failure may be therapeutically beneficial by enhancing excitation-contraction coupling and cardiac function. PMID:26709904

  17. The physiological and ecological roles of volatile halogen production by marine diatoms

    NASA Astrophysics Data System (ADS)

    Hughes, Claire; Sun, Shuo

    2015-04-01

    Sea-to-air halogen flux is known to have a major impact on catalytic ozone cycling and aerosol formation in the troposphere. The biological production of volatile organic (e.g. bromoform, diiodomethane) and reactive inorganic halogens (e.g. molecular iodine) is believed to play an important role in mediating halogen emissions from the marine environment. Marine diatoms in particular are known to produce the organic and inorganic volatile halogens at high rates in pelagic waters and sea-ice systems. The climate-induced changes in diatom communities that have already been observed and are expected to occur throughout the world's oceans as warming progresses are likely to alter sea-to-air halogen flux. However, we currently have insufficient understanding of the physiological and ecological functions of volatile halogen production to develop modelling tools that can predict the nature and magnitude of the impact. The results of a series of laboratory studies aimed at establishing the physiological and ecological role of volatile halogen production in two marine polar diatoms (Thalassiosira antarctica and Porosira glacialis) will be described in this presentation. We will focus on our work investigating how the activity of the haloperoxidases, a group of enzymes known to be involved in halogenation reactions in marine organisms, is altered by environmental conditions. This will involve exploring the antioxidative defence role proposed for marine haloperoxidases by showing specifically how halogenating activity varies with photosynthetic rate and changes in the ambient light conditions in the two model marine diatoms. We will also present results from our experiments designed to investigate how volatile halogen production is impacted by and influences diatom-bacterial interactions. We will discuss how improved mechanistic understanding like this could pave the way for future volatile halogen-ecosystem model development.

  18. A Trial of the Objective Structured Practical Examination in Physiology at Melaka Manipal Medical College, India

    ERIC Educational Resources Information Center

    Abraham, Reem Rachel; Raghavendra, Rao; Surekha, Kamath; Asha, Kamath

    2009-01-01

    A single examination does not fulfill all the functions of assessment. The present study was undertaken to determine the reliability and student satisfaction regarding the objective structured practical examination (OSPE) as a method of assessment of laboratory exercises in physiology before implementing it in the forthcoming university…

  19. Fabrication of Dendrimer-Based Polyion Complex Submicrometer-Scaled Structures with Enhanced Stability under Physiological Conditions.

    PubMed

    Naoyama, Kenshiro; Mori, Takeshi; Katayama, Yoshiki; Kishimura, Akihiro

    2016-07-01

    Submicrometer-scaled (subμ-) self-assembled materials have been developed based on polyion complex (PIC) formation, in particular for biomedical-applications. However, sufficient stability under physiological conditions is required for their practical use. In this study, PIC formation behavior is examined using a block aniomer, poly(ethylene glycol)-b-poly(aspartic acid), and homocatiomers, poly(l-lysine) (LPK) and dendritic poly(l-lysine) (DPK) with different generations, to elucidate the contribution of the dendritic architecture to stability enhancement. LPK-based PIC shows a subμ-vesicular structure only at 25 °C in the absence of NaCl; in contrast, DPK-based PIC forms a subμ-structure under physiological salt concentration and temperature conditions, even when the number of charges of a single molecule is much smaller than that of LPK. Moreover, the formation of subμ-vesicular and -spherical micellar structures is dependent on DPK generation. Thus, the molecular backbone architecture of the PIC component plays an important role not only in expanding the preparation conditions and enhancing stability, but also in controlling the self-assembled structures, mainly due to the spatially restricted structures of dendrimers. PMID:27191793

  20. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles

    PubMed Central

    Iraci, Nunzio; Leonardi, Tommaso; Gessler, Florian; Vega, Beatriz; Pluchino, Stefano

    2016-01-01

    Extracellular vesicles (EVs) are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in) EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain. PMID:26861302

  1. Interpreting the Possible Ecological Role(s) of Cyanotoxins: Compounds for Competitive Advantage and/or Physiological Aide?

    PubMed Central

    Holland, Aleicia; Kinnear, Susan

    2013-01-01

    To date, most research on freshwater cyanotoxin(s) has focused on understanding the dynamics of toxin production and decomposition, as well as evaluating the environmental conditions that trigger toxin production, all with the objective of informing management strategies and options for risk reduction. Comparatively few research studies have considered how this information can be used to understand the broader ecological role of cyanotoxin(s), and the possible applications of this knowledge to the management of toxic blooms. This paper explores the ecological, toxicological, and genetic evidence for cyanotoxin production in natural environments. The possible evolutionary advantages of toxin production are grouped into two main themes: That of “competitive advantage” or “physiological aide”. The first grouping illustrates how compounds produced by cyanobacteria may have originated from the need for a cellular defence mechanism, in response to grazing pressure and/or resource competition. The second grouping considers the contribution that secondary metabolites make to improved cellular physiology, through benefits to homeostasis, photosynthetic efficiencies, and accelerated growth rates. The discussion also includes other factors in the debate about possible evolutionary roles for toxins, such as different modes of exposures and effects on non-target (i.e., non-competitive) species. The paper demonstrates that complex and multiple factors are at play in driving evolutionary processes in aquatic environments. This information may provide a fresh perspective on managing toxic blooms, including the need to use a “systems approach” to understand how physico-chemical conditions, as well biological stressors, interact to trigger toxin production. PMID:23807545

  2. The volume-regulated anion channel is formed by LRRC8 heteromers – molecular identification and roles in membrane transport and physiology.

    PubMed

    Stauber, Tobias

    2015-09-01

    Cellular volume regulation is fundamental for numerous physiological processes. The volume-regulated anion channel, VRAC, plays a crucial role in regulatory volume decrease. This channel, which is ubiquitously expressed in vertebrates, has been vastly characterized by electrophysiological means. It opens upon cell swelling and conducts chloride and arguably organic osmolytes. VRAC has been proposed to be critically involved in various cellular and organismal functions, including cell proliferation and migration, apoptosis, transepithelial transport, swelling-induced exocytosis and intercellular communication. It may also play a role in pathological states like cancer and ischemia. Despite many efforts, the molecular identity of VRAC had remained elusive for decades, until the recent discovery of heteromers of LRRC8A with other LRRC8 family members as an essential VRAC component. This identification marks a starting point for studies on the structure-function relation, for molecular biological investigations of its cell biology and for re-evaluating the physiological roles of VRAC. This review recapitulates the identification of LRRC8 heteromers as VRAC components, depicts the similarities between LRRC8 proteins and pannexins, and discussed whether VRAC conducts larger osmolytes. Furthermore, proposed physiological functions of VRAC and the present knowledge about the physiological significance of LRRC8 proteins are summarized and collated. PMID:25868000

  3. Prokaryotic toxin-antitoxin systems--the role in bacterial physiology and application in molecular biology.

    PubMed

    Bukowski, Michal; Rojowska, Anna; Wladyka, Benedykt

    2011-01-01

    Bacteria have developed multiple complex mechanisms ensuring an adequate response to environmental changes. In this context, bacterial cell division and growth are subject to strict control to ensure metabolic balance and cell survival. A plethora of studies cast light on toxin-antitoxin (TA) systems as metabolism regulators acting in response to environmental stress conditions. Many of those studies suggest direct relations between the TA systems and the pathogenic potential or antibiotic resistance of relevant bacteria. Other studies point out that TA systems play a significant role in ensuring stability of mobile genetic material. The evolutionary origin and relations between various TA systems are still a subject of a debate. The impact of toxin-antitoxin systems on bacteria physiology prompted their application in molecular biology as tools allowing cloning of some hard-to-maintain genes, plasmid maintenance and production of recombinant proteins. PMID:21394325

  4. Mycobacterial Ser/Thr protein kinases and phosphatases: physiological roles and therapeutic potential.

    PubMed

    Wehenkel, Annemarie; Bellinzoni, Marco; Graña, Martin; Duran, Rosario; Villarino, Andrea; Fernandez, Pablo; Andre-Leroux, Gwénaëlle; England, Patrick; Takiff, Howard; Cerveñansky, Carlos; Cole, Stewart T; Alzari, Pedro M

    2008-01-01

    Reversible protein phosphorylation is a major regulation mechanism of fundamental biological processes, not only in eukaryotes but also in bacteria. A growing body of evidence suggests that Ser/Thr phosphorylation play important roles in the physiology and virulence of Mycobacterium tuberculosis, the etiological agent of tuberculosis. This pathogen uses 'eukaryotic-like' Ser/Thr protein kinases and phosphatases not only to regulate many intracellular metabolic processes, but also to interfere with signaling pathways of the infected host cell. Disrupting such processes by means of selective inhibitors may thus provide new pharmaceutical weapons to combat the disease. Here we review the current knowledge on Ser/Thr protein kinases and phosphatases in M. tuberculosis, their regulation mechanisms and putative substrates, and we explore their therapeutic potential as possible targets for the development of new anti-mycobacterial compounds. PMID:17869195

  5. Phospholipases of Mineralization Competent Cells and Matrix Vesicles: Roles in Physiological and Pathological Mineralizations

    PubMed Central

    Mebarek, Saida; Abousalham, Abdelkarim; Magne, David; Do, Le Duy; Bandorowicz-Pikula, Joanna; Pikula, Slawomir; Buchet, René

    2013-01-01

    The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in

  6. Regulation and physiological roles of the calpain system in muscular disorders

    PubMed Central

    Sorimachi, Hiroyuki; Ono, Yasuko

    2012-01-01

    Calpains, a family of Ca2+-dependent cytosolic cysteine proteases, can modulate their substrates' structure and function through limited proteolytic activity. In the human genome, there are 15 calpain genes. The most-studied calpains, referred to as conventional calpains, are ubiquitous. While genetic studies in mice have improved our understanding about the conventional calpains' physiological functions, especially those essential for mammalian life as in embryogenesis, many reports have pointed to overactivated conventional calpains as an exacerbating factor in pathophysiological conditions such as cardiovascular diseases and muscular dystrophies. For treatment of these diseases, calpain inhibitors have always been considered as drug targets. Recent studies have introduced another aspect of calpains that calpain activity is required to protect the heart and skeletal muscle against stress. This review summarizes the functions and regulation of calpains, focusing on the relevance of calpains to cardiovascular disease. PMID:22542715

  7. The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms.

    PubMed

    Roh, Jason; Rhee, James; Chaudhari, Vinita; Rosenzweig, Anthony

    2016-01-22

    Aging induces structural and functional changes in the heart that are associated with increased risk of cardiovascular disease and impaired functional capacity in the elderly. Exercise is a diagnostic and therapeutic tool, with the potential to provide insights into clinical diagnosis and prognosis, as well as the molecular mechanisms by which aging influences cardiac physiology and function. In this review, we first provide an overview of how aging impacts the cardiac response to exercise, and the implications this has for functional capacity in older adults. We then review the underlying molecular mechanisms by which cardiac aging contributes to exercise intolerance, and conversely how exercise training can potentially modulate aging phenotypes in the heart. Finally, we highlight the potential use of these exercise models to complement models of disease in efforts to uncover new therapeutic targets to prevent or treat heart disease in the aging population. PMID:26838314

  8. The role of shear stress in Blood-Brain Barrier endothelial physiology

    PubMed Central

    2011-01-01

    of tight junction proteins. In addition, regulatory enzymes of the Krebb's cycle (aerobic glucose metabolism) were also upregulated. Furthermore, the expression pattern of key protein regulators of the cell cycle and parallel gene array data supported a cell proliferation inhibitory role for SS. Conclusions Genomic and proteomic analyses are currently used to examine BBB function in healthy and diseased brain and characterize this dynamic interface. In this study we showed that SS plays a key role in promoting the differentiation of vascular endothelial cells into a truly BBB phenotype. SS affected multiple aspect of the endothelial physiology spanning from tight junctions formation to cell division as well as the expression of multidrug resistance transporters. BBB dysfunction has been observed in many neurological diseases, but the causes are generally unknown. Our study provides essential insights to understand the role played by SS in the BBB formation and maintenance. PMID:21569296

  9. The Pharmacological and Physiological Role of Multidrug-Resistant Protein 4.

    PubMed

    Wen, Jiagen; Luo, Jianquan; Huang, Weihua; Tang, Jie; Zhou, Honghao; Zhang, Wei

    2015-09-01

    Multidrug-resistant protein 4 (MRP4), a member of the C subfamily of ATP-binding cassette transporters, is distributed in a variety of tissues and a number of cancers. As a drug transporter, MRP4 is responsible for the pharmacokinetics and pharmacodynamics of numerous drugs, especially antiviral drugs, antitumor drugs, and diuretics. In this regard, the functional role of MRP4 is affected by a number of factors, such as genetic mutations; tissue-specific transcriptional regulations; post-transcriptional regulations, including miRNAs and membrane internalization; and substrate competition. Unlike other C family members, MRP4 is in a pivotal position to transport cellular signaling molecules, through which it is tightly connected to the living activity and physiologic processes of cells and bodies. In the context of several cancers in which MRP4 is overexpressed, MRP4 inhibition shows striking effects against cancer progression and drug resistance. In this review, we describe the role of MRP4 more specifically in both healthy conditions and disease states, with an emphasis on its potential as a drug target. PMID:26148856

  10. Characteristics and physiological role of surfactant-like particles secreted by entrocytes.

    PubMed

    Turan, Aasma; Gupta, Shiffalli; Mahmood, Akhtar

    2006-07-01

    Intestinal epithelium secretes novel unilamellar membranes having characteristics similar to lung surfactants and thus has been named Surfactant-like particles (SLP). The chemical analysis of the membranes revealed cholesterol/phospholipid molar ratio of 0.68-0.78, which is much distinct from that of the underlying microvillus membranes (1.34-1.49). The membrane contains 4-6 proteins with a molar weight of 30-120 kDa and is enriched with alkaline phosphatase, contains low amounts of disaccharidases but no Na+, K(+)-ATPase activity. The secretion of SLP is stimulated by fat feeding. Chronic ethanol ingestion also induces the formation of SLP in rat intestine. A number of physiological functions have been attributed to SLP, which include: (i) as a protective lubricant in intestinal lumen, (ii) a role in triacylglycerol transport, (iii) as a vehicle for the transport of luminal proteins into blood, (iv) as a stratum for the adhesion of microorganisms in intestinal lumen, and (v) a role in trans-signalling mechanism across the basolateral surface of enterocytes. PMID:16872040

  11. Physiologic Reelin does not play a strong role in protection against acute stroke.

    PubMed

    Lane-Donovan, Courtney; Desai, Charisma; Pohlkamp, Theresa; Plautz, Erik J; Herz, Joachim; Stowe, Ann M

    2016-07-01

    Stroke and Alzheimer's disease, two diseases that disproportionately affect the aging population, share a subset of pathological findings and risk factors. The primary genetic risk factor after age for late-onset Alzheimer's disease, ApoE4, has also been shown to increase stroke risk and the incidence of post-stroke dementia. One mechanism by which ApoE4 contributes to disease is by inducing in neurons a resistance to Reelin, a neuromodulator that enhances synaptic function. Previous studies in Reelin knockout mice suggest a role for Reelin in protection against stroke; however, these studies were limited by the developmental requirement for Reelin in neuronal migration. To address the question of the effect of Reelin loss on stroke susceptibility in an architecturally normal brain, we utilized a novel mouse with induced genetic reduction of Reelin. We found that after transient middle cerebral artery occlusion, mice with complete adult loss of Reelin exhibited a similar level of functional deficit and extent of infarct as control mice. Together, these results suggest that physiological Reelin does not play a strong role in protection against stroke pathology. PMID:27146512

  12. Gli-Similar (Glis) Proteins: Their Mechanisms of Action, Physiological Functions, and Roles in Disease

    PubMed Central

    Lichti-Kaiser, Kristin; ZeRuth, Gary; Kang, Hong Soon; Vasanth, Shivakumar; Jetten, Anton M.

    2013-01-01

    Gli-similar (Glis) 1–3 proteins constitute a sub-family of Krüppel-like zinc finger proteins that are closely related to members of the Gli family. Glis proteins have been implicated in several pathologies, including cystic kidney disease, diabetes, hypothyroidism, fibrosis, osteoporosis, psoriasis, and cancer. In humans, a mutation in the Glis2 gene has been linked to the development of nephronophthisis (NPHP), a recessive cystic kidney disease, while mutations in Glis3 lead to an extended multi-system phenotype that includes the development of neonatal diabetes, polycystic kidneys, congenital hypothyroidism, and facial dysmorphism. Glis3 has also been identified as a risk locus for type-1 and type-2 diabetes and additional studies have revealed a role for Glis3 in pancreatic endocrine development, β-cell maintenance, and insulin regulation. Similar to Gli1-3, Glis2 and 3 have been reported to localize to the primary cilium. These studies appear to suggest that Glis proteins are part of a primary cilium-associated signaling pathway(s). It has been hypothesized that Glis proteins are activated through post-translational modifications and subsequently translocate to the nucleus where they regulate transcription by interacting with Glis binding sites in the promoter regions of target genes. This chapter will summarize the current state of knowledge regarding mechanisms of action of the Glis family of proteins, their physiological functions, as well as their roles in disease. PMID:22391303

  13. Tomato Plant Proteins Actively Responding to Fungal Applications and Their Role in Cell Physiology

    PubMed Central

    Bashir, Zoobia; Shafique, Sobiya; Ahmad, Aqeel; Shafique, Shazia; Yasin, Nasim A.; Ashraf, Yaseen; Ibrahim, Asma; Akram, Waheed; Noreen, Sibgha

    2016-01-01

    The pattern of protein induction in tomato plants has been investigated after the applications of pathogenic and non-pathogenic fungal species. Moreover, particular roles of the most active protein against biological applications were also determined using chromatographic techniques. Alternaria alternata and Penicillium oxalicum were applied as a pathogenic and non-pathogenic fungal species, respectively. Protein profile analysis revealed that a five protein species (i.e., protein 1, 6, 10, 12, and 13) possessed completely coupled interaction with non-pathogenic inducer application (P. oxalicum). However, three protein species (i.e., 10, 12, and 14) recorded a strong positive interaction with both fungal species. Protein 14 exhibited the maximum interaction with fungal applications, and its role in plant metabolism was studied after its identification as protein Q9M1W6. It was determined that protein Q1M1W6 was involved in guaiacyl lignin biosynthesis, and its inhibition increased the coumarin contents in tomato plants. Moreover, it was also observed that the protein Q9M1W6 takes significant part in the biosynthesis of jasmonic acid and Indole acetic acid contents, which are defense and growth factors of tomato plants. The study will help investigators to design fundamental rules of plant proteins affecting cell physiology under the influence of external fungal applications. PMID:27445848

  14. The Rapidly Evolving Role of Titin in Cardiac Physiology and Cardiomyopathy.

    PubMed

    Gerull, Brenda

    2015-11-01

    The giant muscle filament protein titin is encoded by a single gene consisting of 364 exons. In the past, because of its enormous size and complexity, only few titin mutations were discovered causing different cardiac and skeletal muscle conditions; however, the overall role for heritable diseases, in particular dilated cardiomyopathy (DCM), has been significantly underestimated. Recently performed systematic studies using next-generation sequencing (NGS) recognized TTN as the major human disease gene for DCM, but at the same time those data sets revealed that unique genetic variations are also more common in the general population than previously expected. Truncating variants in TTN have been reported in about 25% of patients with DCM and in 2%-3% of controls; however, most of the disease-associated truncation variants were found in constitutively expressed exons across the gene and in A-band titin, which is abundant in both major cardiac isoforms N2B and N2BA. Titin isoform composition and switch is an important factor for determination and modulation of titin-based stiffness in health and heart disease. Moreover, other factors, including post-translational modification resulting from phosphorylation and oxidative modifications of titin spring elements contribute at the cellular level to titin's stiffness. A better understanding of titin's role in cardiac (patho)physiology will achieve further insights into the molecular mechanisms leading to heart failure and arrhythmias in patients with DCM caused by titin truncation mutations and may provide potential targets for future therapeutic interventions. PMID:26518445

  15. Physiology of intracellular potassium channels: A unifying role as mediators of counterion fluxes?

    PubMed

    Checchetto, Vanessa; Teardo, Enrico; Carraretto, Luca; Leanza, Luigi; Szabo, Ildiko

    2016-08-01

    Plasma membrane potassium channels importantly contribute to maintain ion homeostasis across the cell membrane. The view is emerging that also those residing in intracellular membranes play pivotal roles for the coordination of correct cell function. In this review we critically discuss our current understanding of the nature and physiological tasks of potassium channels in organelle membranes in both animal and plant cells, with a special emphasis on their function in the regulation of photosynthesis and mitochondrial respiration. In addition, the emerging role of potassium channels in the nuclear membranes in regulating transcription will be discussed. The possible functions of endoplasmic reticulum-, lysosome- and plant vacuolar membrane-located channels are also referred to. Altogether, experimental evidence obtained with distinct channels in different membrane systems points to a possible unifying function of most intracellular potassium channels in counterbalancing the movement of other ions including protons and calcium and modulating membrane potential, thereby fine-tuning crucial cellular processes. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-7, 2016', edited by Prof. Paolo Bernardi. PMID:26970213

  16. Role of coronary physiology in the contemporary management of coronary artery disease.

    PubMed

    Ruparelia, Neil; Kharbanda, Rajesh K

    2015-02-16

    Coronary artery disease (CAD) remains the leading cause of death worldwide with approximately 1 in 30 patients with stable CAD experiencing death or acute myocardial infarction each year. The presence and extent of resultant myocardial ischaemia has been shown to confer an increased risk of adverse outcomes. Whilst, optimal medical therapy (OMT) forms the cornerstone of the management of patients with stable CAD, a significant number of patients present with ischaemia refractory to OMT. Historically coronary angiography alone has been used to determine coronary lesion severity in both stable and acute settings. It is increasingly clear that this approach fails to accurately identify the haemodynamic significance of lesions; especially those that are visually "intermediate" in severity. Revascularisation based upon angiographic appearances alone may not reduce coronary events above OMT. Technological advances have enabled the measurement of physiological indices including the fractional flow reserve, the index of microcirculatory resistance and the coronary flow reserve. The integration of these parameters into the routine management of patients presenting to the cardiac catheterization laboratory with CAD represents a critical adjunctive tool in the optimal management of these patients by identifying patients that would most benefit from revascularisation and importantly also highlighting patients that would not gain benefit and therefore reducing the likelihood of adverse outcomes associated with coronary revascularisation. Furthermore, these techniques are applicable to a broad range of patients including those with left main stem disease, proximal coronary disease, diabetes mellitus, previous percutaneous coronary intervention and with previous coronary artery bypass grafting. This review will discuss current concepts relevant to coronary physiology assessment, its role in the management of both stable and acute patients and future applications. PMID:25685761

  17. Role of coronary physiology in the contemporary management of coronary artery disease

    PubMed Central

    Ruparelia, Neil; Kharbanda, Rajesh K

    2015-01-01

    Coronary artery disease (CAD) remains the leading cause of death worldwide with approximately 1 in 30 patients with stable CAD experiencing death or acute myocardial infarction each year. The presence and extent of resultant myocardial ischaemia has been shown to confer an increased risk of adverse outcomes. Whilst, optimal medical therapy (OMT) forms the cornerstone of the management of patients with stable CAD, a significant number of patients present with ischaemia refractory to OMT. Historically coronary angiography alone has been used to determine coronary lesion severity in both stable and acute settings. It is increasingly clear that this approach fails to accurately identify the haemodynamic significance of lesions; especially those that are visually “intermediate” in severity. Revascularisation based upon angiographic appearances alone may not reduce coronary events above OMT. Technological advances have enabled the measurement of physiological indices including the fractional flow reserve, the index of microcirculatory resistance and the coronary flow reserve. The integration of these parameters into the routine management of patients presenting to the cardiac catheterization laboratory with CAD represents a critical adjunctive tool in the optimal management of these patients by identifying patients that would most benefit from revascularisation and importantly also highlighting patients that would not gain benefit and therefore reducing the likelihood of adverse outcomes associated with coronary revascularisation. Furthermore, these techniques are applicable to a broad range of patients including those with left main stem disease, proximal coronary disease, diabetes mellitus, previous percutaneous coronary intervention and with previous coronary artery bypass grafting. This review will discuss current concepts relevant to coronary physiology assessment, its role in the management of both stable and acute patients and future applications. PMID

  18. Central role of the BK channel in urinary bladder smooth muscle physiology and pathophysiology

    PubMed Central

    2014-01-01

    The physiological functions of the urinary bladder are to store and periodically expel urine. These tasks are facilitated by the contraction and relaxation of the urinary bladder smooth muscle (UBSM), also known as detrusor smooth muscle, which comprises the bladder wall. The large-conductance voltage- and Ca2+-activated K+ (BK, BKCa, MaxiK, Slo1, or KCa1.1) channel is highly expressed in UBSM and is arguably the most important physiologically relevant K+ channel that regulates UBSM function. Its significance arises from the fact that the BK channel is the only K+ channel that is activated by increases in both voltage and intracellular Ca2+. The BK channels control UBSM excitability and contractility by maintaining the resting membrane potential and shaping the repolarization phase of the spontaneous action potentials that determine UBSM spontaneous rhythmic contractility. In UBSM, these channels have complex regulatory mechanisms involving integrated intracellular Ca2+ signals, protein kinases, phosphodiesterases, and close functional interactions with muscarinic and β-adrenergic receptors. BK channel dysfunction is implicated in some forms of bladder pathologies, such as detrusor overactivity, and related overactive bladder. This review article summarizes the current state of knowledge of the functional role of UBSM BK channels under normal and pathophysiological conditions and provides new insight toward the BK channels as targets for pharmacological or genetic control of UBSM function. Modulation of UBSM BK channels can occur by directly or indirectly targeting their regulatory mechanisms, which has the potential to provide novel therapeutic approaches for bladder dysfunction, such as overactive bladder and detrusor underactivity. PMID:24990859

  19. Questions and controversies in innate immune research: what is the physiological role of NLRP3?

    PubMed

    Coll, R C; O'Neill, Laj; Schroder, K

    2016-01-01

    The NLRP3 inflammasome is a key component of the innate immune system that induces pro-inflammatory cytokine production and cell death. Although NLRP3 is activated by many pathogens, it only appears to be critical for host defense for a limited number of specific infections. NLRP3 is however strongly associated with the initiation and pathology of many inflammatory diseases. If NLRP3 function is largely redundant for host defense, but drives a number of inflammatory diseases, this raises the important question of why evolution has elected to maintain NLRP3 function. We propose that the primary physiological functions of NLRP3 in health are to engage pathways to clear noxious substances (e.g. protein aggregates and crystals), and to regulate metabolism. We discuss the newly identified functions for NLRP3 in metabolic homeostasis, and how NLRP3 beneficial functions in homeostasis may become detrimental during the onset of inflammatory and metabolic diseases. A common feature of most NLRP3-driven diseases is that they are associated with ageing or metabolic excess, and indeed, Nlrp3 deficiency promotes 'healthspan' in ageing mice. This suggests that beneficial functions of NLRP3 in youth may become increasingly countered by NLRP3-dependent pathology as an individual ages, and we propose a general model by which ageing or nutrient excess may provide a tipping point to switch NLRP3 function from beneficial to pathological. The physiological role of NLRP3 in healthy individuals remains incompletely understood and future research will need to address this if NLRP3 is to become a successful therapeutic target for the clinical management of inflammatory diseases. PMID:27551512

  20. Questions and controversies in innate immune research: what is the physiological role of NLRP3?

    PubMed Central

    Coll, RC; O’Neill, LAJ; Schroder, K

    2016-01-01

    The NLRP3 inflammasome is a key component of the innate immune system that induces pro-inflammatory cytokine production and cell death. Although NLRP3 is activated by many pathogens, it only appears to be critical for host defense for a limited number of specific infections. NLRP3 is however strongly associated with the initiation and pathology of many inflammatory diseases. If NLRP3 function is largely redundant for host defense, but drives a number of inflammatory diseases, this raises the important question of why evolution has elected to maintain NLRP3 function. We propose that the primary physiological functions of NLRP3 in health are to engage pathways to clear noxious substances (e.g. protein aggregates and crystals), and to regulate metabolism. We discuss the newly identified functions for NLRP3 in metabolic homeostasis, and how NLRP3 beneficial functions in homeostasis may become detrimental during the onset of inflammatory and metabolic diseases. A common feature of most NLRP3-driven diseases is that they are associated with ageing or metabolic excess, and indeed, Nlrp3 deficiency promotes ‘healthspan’ in ageing mice. This suggests that beneficial functions of NLRP3 in youth may become increasingly countered by NLRP3-dependent pathology as an individual ages, and we propose a general model by which ageing or nutrient excess may provide a tipping point to switch NLRP3 function from beneficial to pathological. The physiological role of NLRP3 in healthy individuals remains incompletely understood and future research will need to address this if NLRP3 is to become a successful therapeutic target for the clinical management of inflammatory diseases. PMID:27551512

  1. VIP and PACAP. Recent insights into their functions/roles in physiology and disease from molecular and genetic studies

    PubMed Central

    Moody, Terry W.; Ito, Tetsuhide; Osefo, Nuramy; Jensen, Robert T.

    2010-01-01

    Purpose of review VIP and PACAP as well as the three classes of G-protein-coupled receptors mediating their effects, are widely distributed in the CNS and peripheral tissues. These peptides are reported to have many effects in different tissues, which are physiological or pharmacological, and which receptor mediates which effect, has been difficult to determine, primarily due to lack of potent, stable, selective agonists/antagonists. Recently the use of animals with targeted knockout (KO) of the peptide or a specific receptor has provided important insights into the role of their role in normal physiology and disease states. Recent findings During the review period, considerable progress and insights has occurred in the understanding of the role of VIP/PACAP as well as their receptors in a number of different disorders/areas. Particularly, insights into their roles in energy metabolism, glucose regulation, various gastrointestinal processes including GI inflammatory conditions and motility and their role in the CNS as well as CNS diseases has greatly expanded. Summary PACAP/VIP as well as there three classes of receptors are important in many physiological/pathophysiological processes, some of which are identified in these studies using knockout animals. These studies may lead to new novel treatment approaches. Particularly important are their roles in glucose metabolism and on islets leading to possible novel approaches in diabetes; their novel anti-inflammatory, cytoprotective effects, their CNS neuroprotective effects, and their possible roles in diseases such as schizophrenia and chronic depression. PMID:21157320

  2. The multiple roles of sucrase-isomaltase in the intestinal physiology.

    PubMed

    Gericke, Birthe; Amiri, Mahdi; Naim, Hassan Y

    2016-12-01

    Osmotic diarrhea and abdominal pain in humans are oftentimes associated with carbohydrate malabsorption in the small intestine due to loss of function of microvillar disaccharidases. Disaccharidases are crucial for the digestion and the subsequent absorption of carbohydrates. This review focuses on sucrase-isomaltase as the most abundant intestinal disaccharidase and the primary or induced pathological conditions that affect its physiological function. Congenital defects are primary factors which directly influence the transport and function of sucrase-isomaltase in a healthy epithelium. Based on the mutation type and the pattern of inheritance, a mutation in the sucrase-isomaltase gene may exert a variety of symptoms ranging from mild to severe. However, structure and function of wild type sucrase-isomaltase can be also affected by secondary factors which influence its structure and function either specifically via certain inhibitors and therapeutic agents or generally as a part of intestinal pathogenesis, for example in the inflammatory responses. Diagnosis of sucrase-isomaltase deficiency and discriminating it from other gastrointestinal intolerances can be latent in the patients because of common symptoms observed in all of these cases.Here, we summarize the disorders that implicate the digestive function of sucrase-isomaltase as well as the diagnostic and therapeutic strategies utilized to restore normal intestinal function. PMID:26812950

  3. Molecular structure and pathophysiological roles of the Mitochondrial Calcium Uniporter.

    PubMed

    Mammucari, Cristina; Raffaello, Anna; Vecellio Reane, Denis; Rizzuto, Rosario

    2016-10-01

    Mitochondrial Ca(2+) uptake regulates a wide array of cell functions, from stimulation of aerobic metabolism and ATP production in physiological settings, to induction of cell death in pathological conditions. The molecular identity of the Mitochondrial Calcium Uniporter (MCU), the highly selective channel responsible for Ca(2+) entry through the IMM, has been described less than five years ago. Since then, research has been conducted to clarify the modulation of its activity, which relies on the dynamic interaction with regulatory proteins, and its contribution to the pathophysiology of organs and tissues. Particular attention has been placed on characterizing the role of MCU in cardiac and skeletal muscles. In this review we summarize the molecular structure and regulation of the MCU complex in addition to its pathophysiological role, with particular attention to striated muscle tissues. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou. PMID:26968367

  4. ROLE OF ANTHROPOGENIC AND ENVIRONMENTAL VARIABLE ON THE PHYSIOLOGICAL AND ECOLOGICAL RESPONSES OF OYSTERS IN SOUTHWEST FLORIDA ESTUARIES

    EPA Science Inventory

    The role of freshwater alterations and seasonal changes on the ecological and physiological responses of oysters were investigated in the Caloosahatchee River, Estero Bay and Faka-Union estuaries in SW Florida. Condition index, oyster density, and disease incidence of Perkinsus m...

  5. Role of protein phosphatase-1 inhibitor-1 in cardiac physiology and pathophysiology

    PubMed Central

    Nicolaou, Persoulla; Hajjar, Roger J.; Kranias, Evangelia G.

    2009-01-01

    The type 1 protein phosphatase (PP1) is a critical negative regulator of Ca2+ cycling and contractility in the cardiomyocyte. In particular, it mediates restoration of cardiac function to basal levels, after β-adrenergic stimulation, by dephosphorylating key phospho-proteins. PP1 is a holoenzyme comprised of its catalytic and auxiliary subunits. These regulatory proteins dictate PP1's subcellular localization, substrate specificity and activity. Amongst them, inhibitor-1 is of particular importance since it has been implicated as an integrator of multiple neurohormonal pathways, which finely regulate PP1 activity, at the level of the sarcoplasmic reticulum (SR). In fact, perturbations in the regulation of PP1 by inhibitor-1 have been implicated in the pathogenesis of heart failure, suggesting that inhibitor-1-based therapeutic interventions may ameliorate cardiac dysfunction and remodeling in the failing heart. This review will discuss the current views on the role of inhibitor-1 in cardiac physiology, its possible contribution to cardiac disease and its potential as a novel therapeutic strategy. PMID:19481088

  6. Dominance of Saccharomyces cerevisiae in alcoholic fermentation processes: role of physiological fitness and microbial interactions.

    PubMed

    Albergaria, Helena; Arneborg, Nils

    2016-03-01

    Winemaking, brewing and baking are some of the oldest biotechnological processes. In all of them, alcoholic fermentation is the main biotransformation and Saccharomyces cerevisiae the primary microorganism. Although a wide variety of microbial species may participate in alcoholic fermentation and contribute to the sensory properties of end-products, the yeast S. cerevisiae invariably dominates the final stages of fermentation. The ability of S. cerevisiae to outcompete other microbial species during alcoholic fermentation processes, such as winemaking, has traditionally been ascribed to its high fermentative power and capacity to withstand the harsh environmental conditions, i.e. high levels of ethanol and organic acids, low pH values, scarce oxygen availability and depletion of certain nutrients. However, in recent years, several studies have raised evidence that S. cerevisiae, beyond its remarkable fitness for alcoholic fermentation, also uses defensive strategies mediated by different mechanisms, such as cell-to-cell contact and secretion of antimicrobial peptides, to combat other microorganisms. In this paper, we review the main physiological features underlying the special aptitude of S. cerevisiae for alcoholic fermentation and discuss the role of microbial interactions in its dominance during alcoholic fermentation, as well as its relevance for winemaking. PMID:26728020

  7. Data supporting the role of enzymes and polysaccharides during cassava postharvest physiological deterioration

    PubMed Central

    Uarrota, Virgílio Gavicho; Moresco, Rodolfo; Schmidt, Eder Carlos; Bouzon, Zenilda Laurita; da Costa Nunes, Eduardo; de Oliveira Neubert, Enilto; Peruch, Luiz Augusto Martins; Rocha, Miguel; Maraschin, Marcelo

    2016-01-01

    This data article is referred to the research article entitled The role of ascorbate peroxidase, guaiacol peroxidase, and polysaccharides in cassava (Manihot esculenta Crantz) roots under postharvest physiological deterioration by Uarrota et al. (2015). Food Chemistry 197, Part A, 737–746. The stress duo to PPD of cassava roots leads to the formation of ROS which are extremely harmful and accelerates cassava spoiling. To prevent or alleviate injuries from ROS, plants have evolved antioxidant systems that include non-enzymatic and enzymatic defence systems such as ascorbate peroxidase, guaiacol peroxidase and polysaccharides. In this data article can be found a dataset called “newdata”, in RData format, with 60 observations and 06 variables. The first 02 variables (Samples and Cultivars) and the last 04, spectrophotometric data of ascorbate peroxidase, guaiacol peroxidase, tocopherol, total proteins and arcsined data of cassava PPD scoring. For further interpretation and analysis in R software, a report is also provided. Means of all variables and standard deviations are also provided in the Supplementary tables (“data.long3.RData, data.long4.RData and meansEnzymes.RData”), raw data of PPD scoring without transformation (PPDmeans.RData) and days of storage (days.RData) are also provided for data analysis reproducibility in R software. PMID:26900596

  8. Data supporting the role of enzymes and polysaccharides during cassava postharvest physiological deterioration.

    PubMed

    Uarrota, Virgílio Gavicho; Moresco, Rodolfo; Schmidt, Eder Carlos; Bouzon, Zenilda Laurita; da Costa Nunes, Eduardo; de Oliveira Neubert, Enilto; Peruch, Luiz Augusto Martins; Rocha, Miguel; Maraschin, Marcelo

    2016-03-01

    This data article is referred to the research article entitled The role of ascorbate peroxidase, guaiacol peroxidase, and polysaccharides in cassava (Manihot esculenta Crantz) roots under postharvest physiological deterioration by Uarrota et al. (2015). Food Chemistry 197, Part A, 737-746. The stress duo to PPD of cassava roots leads to the formation of ROS which are extremely harmful and accelerates cassava spoiling. To prevent or alleviate injuries from ROS, plants have evolved antioxidant systems that include non-enzymatic and enzymatic defence systems such as ascorbate peroxidase, guaiacol peroxidase and polysaccharides. In this data article can be found a dataset called "newdata", in RData format, with 60 observations and 06 variables. The first 02 variables (Samples and Cultivars) and the last 04, spectrophotometric data of ascorbate peroxidase, guaiacol peroxidase, tocopherol, total proteins and arcsined data of cassava PPD scoring. For further interpretation and analysis in R software, a report is also provided. Means of all variables and standard deviations are also provided in the Supplementary tables ("data.long3.RData, data.long4.RData and meansEnzymes.RData"), raw data of PPD scoring without transformation (PPDmeans.RData) and days of storage (days.RData) are also provided for data analysis reproducibility in R software. PMID:26900596

  9. Role of Circadian Neuroendocrine Rhythms in the Control of Behavior and Physiology

    PubMed Central

    Urbanski, Henryk F.

    2011-01-01

    Hormones play a major role in regulating behavior and physiology, and their efficacy is often dependent on the temporal pattern in which they are secreted. Significant insights into the mechanisms underlying rhythmic hormone secretion have been gained from transgenic rodent models, suggesting that many of the body's rhythmic functions are regulated by a coordinated network of central and peripheral circadian pacemakers. Some neuroendocrine rhythms are driven by transcriptional-posttranslational feedback circuits comprising ‘core clock genes’, while others represent a cyclic cascade of neuroendocrine events. This review focuses on recent data from the rhesus macaque, a non-human primate model with high clinical translation potential. With primary emphasis on adrenal and gonadal steroids, it illustrates the rhythmic nature of hormone secretion, and discusses the impact that fluctuating hormone levels have on the accuracy of clinical diagnoses and on the design of effective hormone replacement therapies in the elderly. In addition, this minireview raises awareness of the rhythmic expression patterns shown by many genes, and discusses how this could impact interpretation of data obtained from gene profiling studies, especially from nocturnal rodents. PMID:21508622

  10. Does cadmium play a physiological role in the hyperaccumulator Thlaspi caerulescens?

    PubMed

    Liu, Mei-Qing; Yanai, Junta; Jiang, Rong-Feng; Zhang, Fusuo; McGrath, Steve P; Zhao, Fang-Jie

    2008-04-01

    The southern French (Ganges) ecotype of Thlaspi caerulescens J & C Presl is able to hyperaccumulate several thousand mg Cd kg(-1) shoot dry weight without suffering from phytotoxicity. We investigated the effect of Cd on growth and the activity of carbonic anhydrase (CA), a typical Zn-requiring enzyme, of T. caerulescens in soil and hydroponic experiments. In one of the hydroponic experiments, T. caerulescens was compared to the non-accumulator Thlaspi ferganense N. Busch. In the soil experiment, additions of Cd at 5-500 mg kg(-1) soil increased the growth of T. caerulescens significantly. In the hydroponic experiments, exposure to Cd at 1-50 microM for three weeks had no significant effect on the growth of T. caerulescens, but decreased the growth of T. ferganense markedly even at the lowest concentration of Cd (1muM). Cadmium exposure significantly increased the CA activity in T. caerulescens, but decreased it in T. ferganense. The CA activity in T. caerulescens correlated positively with the Cd concentration in the shoots up to 6000 mg kg(-1), even though shoot Zn concentration was decreased by the Cd treatments. For comparison, Cd treatments had no consistent effect on the activity of superoxide dismutase in T. caerulescens. The results suggest that Cd may play a physiological role in the Cd-hyperaccumulating ecotype of T. caerulescens by enhancing the activities of some enzymes such as CA. Further research is needed to establish whether a Cd-requiring CA exists in T. caerulescens. PMID:18262587

  11. Biological underpinnings of breastfeeding challenges: the role of genetics, diet, and environment on lactation physiology.

    PubMed

    Lee, Sooyeon; Kelleher, Shannon L

    2016-08-01

    Lactation is a dynamic process that has evolved to produce a complex biological fluid that provides nutritive and nonnutritive factors to the nursing offspring. It has long been assumed that once lactation is successfully initiated, the primary factor regulating milk production is infant demand. Thus, most interventions have focused on improving breastfeeding education and early lactation support. However, in addition to infant demand, increasing evidence from studies conducted in experimental animal models, production animals, and breastfeeding women suggests that a diverse array of maternal factors may also affect milk production and composition. In this review, we provide an overview of our current understanding of the role of maternal genetics and modifiable factors, such as diet and environmental exposures, on reproductive endocrinology, lactation physiology, and the ability to successfully produce milk. To identify factors that may affect lactation in women, we highlight some information gleaned from studies in experimental animal models and production animals. Finally, we highlight the gaps in current knowledge and provide commentary on future research opportunities aimed at improving lactation outcomes in breastfeeding women to improve the health of mothers and their infants. PMID:27354238

  12. Physiological role of FGF signaling in growth and remodeling of developing cardiovascular system.

    PubMed

    Krejci, E; Pesevski, Z; Nanka, O; Sedmera, D

    2016-07-18

    Fibroblast growth factor (FGF) signaling plays an important role during embryonic induction and patterning, as well as in modulating proliferative and hypertrophic growth in fetal and adult organs. Hemodynamically induced stretching is a powerful physiological stimulus for embryonic myocyte proliferation. The aim of this study was to assess the effect of FGF2 signaling on growth and vascularization of chick embryonic ventricular wall and its involvement in transmission of mechanical stretch-induced signaling to myocyte growth in vivo. Myocyte proliferation was significantly higher at the 48 h sampling interval in pressure-overloaded hearts. Neither Western blotting, nor immunohistochemistry performed on serial paraffin sections revealed any changes in the amount of myocardial FGF2 at that time point. ELISA showed a significant increase of FGF2 in the serum. Increased amount of FGF2 mRNA in the heart was confirmed by real time PCR. Blocking of FGF signaling by SU5402 led to decreased myocyte proliferation, hemorrhages in the areas of developing vasculature in epicardium and digit tips. FGF2 synthesis is increased in embryonic ventricular cardiomyocytes in response to increased stretch due to pressure overload. Inhibition of FGF signaling impacts also vasculogenesis, pointing to partial functional redundancy in paracrine control of cell proliferation in the developing heart. PMID:27070743

  13. Genetic and pharmacological analysis identifies a physiological role for the AHR in epidermal differentiation

    PubMed Central

    van den Bogaard, Ellen; Podolsky, Michael; Smits, Jos; Cui, Xiao; John, Christian; Gowda, Krishne; Desai, Dhimant; Amin, Shantu; Schalkwijk, Joost; Perdew, Gary H.

    2015-01-01

    Stimulation of the aryl hydrocarbon receptor (AHR) by xenobiotics is known to affect epidermal differentiation and skin barrier formation. The physiological role of endogenous AHR signaling in keratinocyte differentiation is not known. We used murine and human skin models to address the hypothesis that AHR activation is required for normal keratinocyte differentiation. Using transcriptome analysis of Ahr-/- and Ahr+/+ murine keratinocytes, we found significant enrichment of differentially expressed genes linked to epidermal differentiation. Primary Ahr-/- keratinocytes showed a significant reduction in terminal differentiation gene and protein expression, similar to Ahr+/+ keratinocytes treated with AHR antagonists GNF351 and CH223191, or the selective AHR modulator (SAhRM), SGA360. In vitro keratinocyte differentiation led to increased AHR levels and subsequent nuclear translocation, followed by induced CYP1A1 gene expression. Monolayer cultured primary human keratinocytes treated with AHR antagonists also showed an impaired terminal differentiation program. Inactivation of AHR activity during human skin equivalent development severely impaired epidermal stratification, terminal differentiation protein expression and stratum corneum formation. As disturbed epidermal differentiation is a main feature of many skin diseases, pharmacological agents targeting AHR signaling or future identification of endogenous keratinocyte-derived AHR ligands should be considered as potential new drugs in dermatology. PMID:25602157

  14. Acylcarnitines--old actors auditioning for new roles in metabolic physiology.

    PubMed

    McCoin, Colin S; Knotts, Trina A; Adams, Sean H

    2015-10-01

    Perturbations in metabolic pathways can cause substantial increases in plasma and tissue concentrations of long-chain acylcarnitines (LCACs). For example, the levels of LCACs and other acylcarnitines rise in the blood and muscle during exercise, as changes in tissue pools of acyl-coenzyme A reflect accelerated fuel flux that is incompletely coupled to mitochondrial energy demand and capacity of the tricarboxylic acid cycle. This natural ebb and flow of acylcarnitine generation and accumulation contrasts with that of inherited fatty acid oxidation disorders (FAODs), cardiac ischaemia or type 2 diabetes mellitus. These conditions are characterized by very high (FAODs, ischaemia) or modestly increased (type 2 diabetes mellitus) tissue and blood levels of LCACs. Although specific plasma concentrations of LCACs and chain-lengths are widely used as diagnostic markers of FAODs, research into the potential effects of excessive LCAC accumulation or the roles of acylcarnitines as physiological modulators of cell metabolism is lacking. Nevertheless, a growing body of evidence has highlighted possible effects of LCACs on disparate aspects of pathophysiology, such as cardiac ischaemia outcomes, insulin sensitivity and inflammation. This Review, therefore, aims to provide a theoretical framework for the potential consequences of tissue build-up of LCACs among individuals with metabolic disorders. PMID:26303601

  15. The physiological roles of vesicular GABA transporter during embryonic development: a study using knockout mice

    PubMed Central

    2010-01-01

    Background The vesicular GABA transporter (VGAT) loads GABA and glycine from the neuronal cytoplasm into synaptic vesicles. To address functional importance of VGAT during embryonic development, we generated global VGAT knockout mice and analyzed them. Results VGAT knockouts at embryonic day (E) 18.5 exhibited substantial increases in overall GABA and glycine, but not glutamate, contents in the forebrain. Electrophysiological recordings from E17.5-18.5 spinal cord motoneurons demonstrated that VGAT knockouts presented no spontaneous inhibitory postsynaptic currents mediated by GABA and glycine. Histological examination of E18.5 knockout fetuses revealed reductions in the trapezius muscle, hepatic congestion and little alveolar spaces in the lung, indicating that the development of skeletal muscle, liver and lung in these mice was severely affected. Conclusion VGAT is fundamental for the GABA- and/or glycine-mediated transmission that supports embryonic development. VGAT knockout mice will be useful for further investigating the roles of VGAT in normal physiology and pathophysiologic processes. PMID:21190592

  16. Structure and functional roles of Epac2 (Rapgef4).

    PubMed

    Sugawara, Kenji; Shibasaki, Tadao; Takahashi, Harumi; Seino, Susumu

    2016-01-10

    Epac (exchange protein activated by cyclic-AMP) 2 is a direct target of 3'-5'-cyclic adenosine monophosphate (cAMP) and is involved in cAMP-mediated signal transduction through activation of the Ras-like small GTPase Rap. Crystallographic analyses revealed that activation of Epac2 by cAMP is accompanied by dynamic structural changes. Epac2 is expressed mainly in brain, neuroendocrine and endocrine tissues, and is involved in diverse cellular functions in the tissues. In this review, we summarize the structure and function of Epac2. We also discuss the physiological and pathophysiological roles of Epac2, and the possibility of Epac2 as a therapeutic target. PMID:26390815

  17. Population structure, physiology and ecohydrological impacts of dioecious riparian tree species of western North America.

    PubMed

    Hultine, K R; Bush, S E; West, A G; Ehleringer, J R

    2007-11-01

    The global water cycle is intimately linked to vegetation structure and function. Nowhere is this more apparent than in the arid west where riparian forests serve as ribbons of productivity in otherwise mostly unproductive landscapes. Dioecy is common among tree species that make up western North American riparian forests. There are intrinsic physiological differences between male and female dioecious riparian trees that may influence population structure (i.e., the ratio of male to female trees) and impact ecohydrology at large scales. In this paper, we review the current literature on sex ratio patterns and physiology of dioecious riparian tree species. Then develop a conceptual framework of the mechanisms that underlie population structure of dominant riparian tree species. Finally, we identify linkages between population structure and ecohydrological processes such as evapotranspiration and streamflow. A more thorough understanding of the mechanisms that underlie population structure of dominant riparian tree species will enable us to better predict global change impacts on vegetation and water cycling at multiple scales. PMID:17665219

  18. Drug Sensitivity in Older Adults: The Role of Physiologic and Pharmacokinetic Factors.

    ERIC Educational Resources Information Center

    Cherry, Katie E.; Morton, Mark R.

    1989-01-01

    Notes that age-related changes in physiology and pharmacokinetics (how drugs are used in the body) lead to increased drug sensitivity and potentially harmful drug effects. Addresses heightened sensitivity to drug effects seen in older adults. Presents three examples of physiologic decline and discusses some broad considerations for geriatric…

  19. The role of VEGF pathways in human physiologic and pathologic angiogenesis.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In pre-clinical models VEGF is a potent stimulant of both physiologic and pathologic angiogenesis. Conversely, anti-VEGF regimens have successfully inhibited angiogenesis both in vitro and in vivo. We hypothesized that VEGF would stimulate both physiologic and pathologic angiogenesis in a human-ba...

  20. Use of Wikiversity and Role Play to Increase Student Engagement during Student-Led Physiology Seminars

    ERIC Educational Resources Information Center

    Singh, Satendra

    2013-01-01

    The Undergraduate Medical Program (Bachelor of Medicine and Bachelor of Surgery) at University College of Medical Sciences (Delhi, India) is a 4.5-yr, intense academic program where physiology is taught in the first year. To make the learning experience enriching, the Department of Physiology organizes four student seminars (two seminars/semester)…

  1. A reduced order model for fluid-structure interaction of thin shell structures conveying fluid for physiological applications

    NASA Astrophysics Data System (ADS)

    Chang, Gary Han; Modarres-Sadeghi, Yahya

    2015-11-01

    In this work, a reduced-order model (ROM) is constructed to study fluid-structure interaction of thin shell structures conveying fluid. The method of snapshot Proper Orthogonal Decomposition (POD) is used to construct the reduced-order bases based on a series of CFD results, which then are improved using a QR-factorization technique to satisfy the various boundary conditions in physiological flow problems. In the process, two sets of POD modes are extracted: those due to the shell wall's motion and those due to the pulsatile flow. The Modal Assurance Criterion (MAC) technique is used for selecting the final POD modes used in the reduced-order model. The structure model is solved by Galerkin's method and the FSI coupling is done by adapting a coupled momentum method. The results show that the dynamic behavior of thin shells conveying fluid is closely related to the distribution of the shell's Gaussian curvature, the existence of imperfections and the physiological flow conditions. This method can effectively construct a computationally efficient FSI model, which allows us to examine a wide range of parameters which exist in real-life physiological problems.

  2. Physiological roles and diseases of tmem16/anoctamin proteins: are they all chloride channels?

    PubMed Central

    Duran, Charity; Hartzell, H Criss

    2011-01-01

    The Tmem16 gene family was first identified by bioinformatic analysis in 2004. In 2008, it was shown independently by 3 laboratories that the first two members (Tmem16A and Tmem16B) of this 10-gene family are Ca2+-activated Cl− channels. Because these proteins are thought to have 8 transmembrane domains and be anion-selective channels, the alternative name, Anoctamin (anion and octa=8), has been proposed. However, it remains unclear whether all members of this family are, in fact, anion channels or have the same 8-transmembrane domain topology. Since 2008, there have been nearly 100 papers published on this gene family. The excitement about Tmem16 proteins has been enhanced by the finding that Ano1 has been linked to cancer, mutations in Ano5 are linked to several forms of muscular dystrophy (LGMDL2 and MMD-3), mutations in Ano10 are linked to autosomal recessive spinocerebellar ataxia, and mutations in Ano6 are linked to Scott syndrome, a rare bleeding disorder. Here we review some of the recent developments in understanding the physiology and structure-function of the Tmem16 gene family. PMID:21642943

  3. Characterization of a flatworm inositol (1,4,5) trisphosphate receptor (IP3R) reveals a role in reproductive physiology

    PubMed Central

    Zhang, Dan; Liu, Xiaolong; Chan, John D.; Marchant, Jonathan S.

    2013-01-01

    Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+channels that elevate cytoplasmic Ca2+ in response to the second messenger IP3. Here, we describe the identification and in vivo functional characterization of the planarian IP3R, the first intracellular Ca2+ channel to be defined in flatworms. A single IP3R gene in Dugesia japonica encoded a 2666 amino acid protein (Dj.IP3R) that shared well conserved structural features with vertebrate IP3R counterparts. Expression of an NH2-terminal Dj.IP3R region (amino acid residues 223–585) recovered high affinity 3H-IP3 binding (0.9 ± 0.1 nM) which was abolished by a single point mutation of an arginine residue (R495L) important for IP3 coordination. In situ hybridization revealed that Dj.IP3R mRNA was most strongly expressed in the pharynx and optical nerve system as well as the reproductive system in sexualized planarians. Consistent with this observed tissue distribution, in vivo RNAi of Dj.IP3R resulted in a decreased egg-laying behavior suggesting Dj.IP3R plays an upstream role in planarian reproductive physiology. PMID:23481272

  4. Discrimination, Sex Roles, and Changing Family Structures.

    ERIC Educational Resources Information Center

    Giele, Janet Zollinger

    The problem of discrimination against families within the context of changing sex roles and the growing diversity of family structure is discussed in this paper. It begins with an analysis of underlying social trends, then focuses on sex discrimination and discrimination against different family types and concludes with an interpretation of…

  5. Gene expression and physiological role of Pseudomonas aeruginosa methionine sulfoxide reductases during oxidative stress.

    PubMed

    Romsang, Adisak; Atichartpongkul, Sopapan; Trinachartvanit, Wachareeporn; Vattanaviboon, Paiboon; Mongkolsuk, Skorn

    2013-08-01

    Pseudomonas aeruginosa PAO1 has two differentially expressed methionine sulfoxide reductase genes: msrA (PA5018) and msrB (PA2827). The msrA gene is expressed constitutively at a high level throughout all growth phases, whereas msrB expression is highly induced by oxidative stress, such as sodium hypochlorite (NaOCl) treatment. Inactivation of either msrA or msrB or both genes (msrA msrB mutant) rendered the mutants less resistant than the parental PAO1 strain to oxidants such as NaOCl and H2O2. Unexpectedly, msr mutants have disparate resistance patterns when exposed to paraquat, a superoxide generator. The msrA mutant had a higher paraquat resistance level than the msrB mutant, which had a lower paraquat resistance level than the PAO1 strain. The expression levels of msrA showed an inverse correlation with the paraquat resistance level, and this atypical paraquat resistance pattern was not observed with msrB. Virulence testing using a Drosophila melanogaster model revealed that the msrA, msrB, and, to a greater extent, msrA msrB double mutants had an attenuated virulence phenotype. The data indicate that msrA and msrB are essential genes for oxidative stress protection and bacterial virulence. The pattern of expression and mutant phenotypes of P. aeruginosa msrA and msrB differ from previously characterized msr genes from other bacteria. Thus, as highly conserved genes, the msrA and msrB have diverse expression patterns and physiological roles that depend on the environmental niche where the bacteria thrive. PMID:23687271

  6. Physiological role of hydrogen sulfide and polysulfide in the central nervous system.

    PubMed

    Kimura, Hideo

    2013-11-01

    Hydrogen sulfide (H2S) is a well-known toxic gas that has the smell of rotten eggs. This pungent gas was considered as a physiological mediator, after the identification of endogenous sulfides in the mammalian brain. H2S is produced from L-cysteine by enzymes such as cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3MST) along with cysteine aminotransferase (CAT). We recently identified a fourth pathway, where H2S is produced from D-cysteine by the enzyme D-amino acid oxidase (DAO) along with 3MST. We demonstrated that H2S is a neuromodulator that facilitates hippocampal long-term potentiation (LTP) by enhancing the activity of N-methyl-D-aspartate (NMDA) receptors. It also induces Ca(2+) influx in the astrocytes by activating the transient receptor potential ankyrin-1 (TRPA1) channels. In addition to being a signaling molecule, it also functions as a neuroprotective agent by enhancing the production of glutathione, a major intracellular antioxidant that scavenges the reactive oxygen species (ROS) in the mitochondria. H2S regulates the activity of the enzymes by incorporating the bound sulfane sulfur to cysteine residues. This modification is known as sulfhydration or sulfuration. The neuroprotective ubiquitin E3 ligase, parkin, enhances its neuroprotective activity by this modification. This review is focused on the functional role of H2S as a signaling molecule and as a cytoprotectant in the nervous system. In addition, this review shows the recent findings that indicate that the H2S-derived polysulfides found in the brain activate TRPA1 channels more potently than parental H2S. PMID:24036365

  7. Physiological enzymology: The next frontier in understanding protein structure and function at the cellular level.

    PubMed

    Lee, Irene; Berdis, Anthony J

    2016-01-01

    Historically, the study of proteins has relied heavily on characterizing the activity of a single purified protein isolated from other cellular components. This classic approach allowed scientists to unambiguously define the intrinsic kinetic and chemical properties of that protein. The ultimate hope was to extrapolate this information toward understanding how the enzyme or receptor behaves within its native cellular context. These types of detailed in vitro analyses were necessary to reduce the innate complexities of measuring the singular activity and biochemical properties of a specific enzyme without interference from other enzymes and potential competing substrates. However, recent developments in fields encompassing cell biology, molecular imaging, and chemical biology now provide the unique chemical tools and instrumentation to study protein structure, function, and regulation in their native cellular environment. These advancements provide the foundation for a new field, coined physiological enzymology, which quantifies the function and regulation of enzymes and proteins at the cellular level. In this Special Edition, we explore the area of Physiological Enzymology and Protein Function through a series of review articles that focus on the tools and techniques used to measure the cellular activity of proteins inside living cells. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. PMID:26277093

  8. Climate Model Tests Of Anthropogenic Influence On Greenhouse-Induced Climate Change: The Role Of Plant Physiology Feedbacks

    NASA Astrophysics Data System (ADS)

    Philippon, G.; Vavrus, S.; Kutzbach, J. E.; Ruddiman, W. F.

    2008-12-01

    We use the NCAR's Community Climate System Model (CCSM3) forced by greenhouse gas concentrations that are lower than nominal pre-industrial (~1750 AD) levels and instead based on natural levels that were reached in similar stages of previous interglaciations. The aim is to test the plant physiology feedback from the vegetation model with the coupled atmosphere-slab ocean configuration at a moderate resolution (T42). According to previous modeling work allowing interactive vegetation but no physiology feedback, the response of this model to lowered greenhouse gases is a global cooling of about 3 K and an expansion of arctic snow area, resulting from an arctic desert expansion and a decrease mainly of boreal trees and also tundra. We focus on the comparison of two experiments with both the vegetation feedbacks (interactive vegetation) but one with no plant physiology feedback (NOANTHRO_VEG) and the other with plant physiology feedback (PHYSIO). The physiology feedback produces an even cooler northern hemisphere high latitude climate, about -0.5 K on average. But the land winter temperature difference can reach 2 K near the northern pole. Furthermore, the physiology feedback amplifies the decrease of boreal tree cover in high latitudes and the tundra area in many places except on the southern limit (South-west and south-east Russia and south-east Canada), where the tundra is increasing. Viewed from the perspective of explaining the unusual late-Holocene increases of CO2 that occurred prior to the Industrial Revolution, these simulated changes in the vegetation support the hypothesis that early agriculture played a role in initiating anomalous warming that thwarted incipient glaciation beginning several thousand years ago. In this work, we will show the impact of the vegetation feedback and the physiology effect on the climate.

  9. A Physiologically Based, Multi-Scale Model of Skeletal Muscle Structure and Function

    PubMed Central

    Röhrle, O.; Davidson, J. B.; Pullan, A. J.

    2012-01-01

    Models of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscle’s response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modeling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscle’s response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modeling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibers and their grouping. Together with a well-established model of motor-unit recruitment, the electro-physiological behavior of single muscle fibers within motor units is computed and linked to a continuum-mechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenization. The effect of homogenization has been investigated by varying the number of embedded skeletal muscle fibers and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the tibialis anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modeling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behavior ranging from motor-unit recruitment to force generation and fatigue. PMID:22993509

  10. Differential role of Hedgehog signaling in human pancreatic (patho-) physiology: An up to date review.

    PubMed

    Klieser, Eckhard; Swierczynski, Stefan; Mayr, Christian; Jäger, Tarkan; Schmidt, Johanna; Neureiter, Daniel; Kiesslich, Tobias; Illig, Romana

    2016-05-15

    Since the discovery of the Hedgehog (Hh) pathway in drosophila melanogaster, our knowledge of the role of Hh in embryonic development, inflammation, and cancerogenesis in humans has dramatically increased over the last decades. This is the case especially concerning the pancreas, however, real therapeutic breakthroughs are missing until now. In general, Hh signaling is essential for pancreatic organogenesis, development, and tissue maturation. In the case of acute pancreatitis, Hh has a protective role, whereas in chronic pancreatitis, Hh interacts with pancreatic stellate cells, leading to destructive parenchym fibrosis and atrophy, as well as to irregular tissue remodeling with potency of initiating cancerogenesis. In vitro and in situ analysis of Hh in pancreatic cancer revealed that the Hh pathway participates in the development of pancreatic precursor lesions and ductal adenocarcinoma including critical interactions with the tumor microenvironment. The application of specific inhibitors of components of the Hh pathway is currently subject of ongoing clinical trials (phases 1 and 2). Furthermore, a combination of Hh pathway inhibitors and established chemotherapeutic drugs could also represent a promising therapeutic approach. In this review, we give a structured survey of the role of the Hh pathway in pancreatic development, pancreatitis, pancreatic carcinogenesis and pancreatic cancer as well as an overview of current clinical trials concerning Hh pathway inhibitors and pancreas cancer. PMID:27190692

  11. Differential role of Hedgehog signaling in human pancreatic (patho-) physiology: An up to date review

    PubMed Central

    Klieser, Eckhard; Swierczynski, Stefan; Mayr, Christian; Jäger, Tarkan; Schmidt, Johanna; Neureiter, Daniel; Kiesslich, Tobias; Illig, Romana

    2016-01-01

    Since the discovery of the Hedgehog (Hh) pathway in drosophila melanogaster, our knowledge of the role of Hh in embryonic development, inflammation, and cancerogenesis in humans has dramatically increased over the last decades. This is the case especially concerning the pancreas, however, real therapeutic breakthroughs are missing until now. In general, Hh signaling is essential for pancreatic organogenesis, development, and tissue maturation. In the case of acute pancreatitis, Hh has a protective role, whereas in chronic pancreatitis, Hh interacts with pancreatic stellate cells, leading to destructive parenchym fibrosis and atrophy, as well as to irregular tissue remodeling with potency of initiating cancerogenesis. In vitro and in situ analysis of Hh in pancreatic cancer revealed that the Hh pathway participates in the development of pancreatic precursor lesions and ductal adenocarcinoma including critical interactions with the tumor microenvironment. The application of specific inhibitors of components of the Hh pathway is currently subject of ongoing clinical trials (phases 1 and 2). Furthermore, a combination of Hh pathway inhibitors and established chemotherapeutic drugs could also represent a promising therapeutic approach. In this review, we give a structured survey of the role of the Hh pathway in pancreatic development, pancreatitis, pancreatic carcinogenesis and pancreatic cancer as well as an overview of current clinical trials concerning Hh pathway inhibitors and pancreas cancer. PMID:27190692

  12. Impact of physiology, structure and BRDF in hyperspectral time series of a Citrus orchard

    NASA Astrophysics Data System (ADS)

    Stuckens, J.; Dzikiti, S.; Verstraeten, W. W.; Verreynne, J. S.; Swinnen, R.; Coppin, P.

    2010-05-01

    Monitoring of plant production systems using remote sensing requires an understanding of the mechanisms in which physiological and structural changes as well as the quality and direction of incident light alter the measured canopy reflectance. Due to the evergreen nature of Citrus, the benefits of year-round monitoring of spectral changes are counterweighted by more subtle changes and seasonal trends than in other perennials. This study presents the results of a 14 months field measurement campaign in a commercial Citrus sinensis ‘Midknight Valencia' orchard in Wellington, Western Cape Province, South-Africa. Hyperspectral data were collected of canopy and leaf reflectance (350 - 2500 nm) of 16 representative trees at monthly intervals and supplemented with local climatology, orchard management records, sap stream, water potential and leaf and soil nutrient analysis. The aim of this research is to translate spectral changes and trends at the leaf and at canopy levels into physiological processes such as plant nutrient and carbohydrate balances and stress responses. Specific research questions include the spectral detection of flowering (date of anthesis, flowering intensity), fruit drop, fruit number and coloration, vegetative flushes, leaf senescence and drop and pruning. Attention is paid to the detection and the impact of sunburn (photo-damage). In order to separate physiological and structural changes from changes caused by seasonal changes in solar elevation during measurement time (bidirectional reflectance) a normalization function is constructed using simulated and measured data. Additional research is done to up-scale measurements from tree level to orchard level, which includes the tree variability, the influence of soil and weeds and different amounts of shading.

  13. Anatomy & Physiology

    MedlinePlus

    ... Central Nervous System Peripheral Nervous System Review Quiz Endocrine System Characteristics of Hormones Endocrine Glands & Their Hormones Pituitary & ... Thyroid & Parathyroid Glands Adrenal Gland Pancreas Gonads Other Endocrine Glands ... Cardiovascular System Heart Structure of the Heart Physiology of the ...

  14. Unsaturated phosphatidylcholines lining on the surface of cartilage and its possible physiological roles

    PubMed Central

    Chen, Yi; Crawford, Ross W; Oloyede, Adekunle

    2007-01-01

    Background Evidence has strongly indicated that surface-active phospholipid (SAPL), or surfactant, lines the surface of cartilage and serves as a lubricating agent. Previous clinical study showed that a saturated phosphatidylcholine (SPC), dipalmitoyl-phosphatidylcholine (DPPC), was effective in the treatment of osteoarthritis, however recent studies suggested that the dominant SAPL species at some sites outside the lung are not SPC, rather, are unsaturated phosphatidylcholine (USPC). Some of these USPC have been proven to be good boundary lubricants by our previous study, implicating their possible important physiological roles in joint if their existence can be confirmed. So far, no study has been conducted to identify the whole molecule species of different phosphatidylcholine (PC) classes on the surface of cartilage. In this study we identified the dominant PC molecule species on the surface of cartilage. We also confirmed that some of these PC species possess a property of semipermeability. Methods HPLC was used to analyse the PC profile of bovine cartilage samples and comparisons of DPPC and USPC were carried out through semipermeability tests. Results It was confirmed that USPC are the dominant SAPL species on the surface of cartilage. In particular, they are Dilinoleoyl-phosphatidylcholine (DLPC), Palmitoyl-linoleoyl-phosphatidylcholine, (PLPC), Palmitoyl-oleoyl-phosphatidylcholine (POPC) and Stearoyl-linoleoyl-phosphatidylcholine (SLPC). The relative content of DPPC (a SPC) was only 8%. Two USPC, PLPC and POPC, were capable of generating osmotic pressure that is equivalent to that by DPPC. Conclusion The results from the current study confirm vigorously that USPC is the endogenous species inside the joint as against DPPC thereby confirming once again that USPC, and not SPC, characterizes the PC species distribution at non-lung sites of the body. USPC not only has better anti-friction and lubrication properties than DPPC, they also possess a level of

  15. Mitotic Checkpoint Kinase Mps1 Has a Role in Normal Physiology which Impacts Clinical Utility

    PubMed Central

    Martinez, Ricardo; Blasina, Alessandra; Hallin, Jill F.; Hu, Wenyue; Rymer, Isha; Fan, Jeffery; Hoffman, Robert L.; Murphy, Sean; Marx, Matthew; Yanochko, Gina; Trajkovic, Dusko; Dinh, Dac; Timofeevski, Sergei; Zhu, Zhou; Sun, Peiquing; Lappin, Patrick B.; Murray, Brion W.

    2015-01-01

    Cell cycle checkpoint intervention is an effective therapeutic strategy for cancer when applied to patients predisposed to respond and the treatment is well-tolerated. A critical cell cycle process that could be targeted is the mitotic checkpoint (spindle assembly checkpoint) which governs the metaphase-to-anaphase transition and insures proper chromosomal segregation. The mitotic checkpoint kinase Mps1 was selected to explore whether enhancement in genomic instability is a viable therapeutic strategy. The basal-a subset of triple-negative breast cancer was chosen as a model system because it has a higher incidence of chromosomal instability and Mps1 expression is up-regulated. Depletion of Mps1 reduces tumor cell viability relative to normal cells. Highly selective, extremely potent Mps1 kinase inhibitors were created to investigate the roles of Mps1 catalytic activity in tumor cells and normal physiology (PF-7006, PF-3837; Ki<0.5 nM; cellular IC50 2–6 nM). Treatment of tumor cells in vitro with PF-7006 modulates expected Mps1-dependent biology as demonstrated by molecular and phenotypic measures (reduced pHH3-Ser10 levels, shorter duration of mitosis, micro-nucleation, and apoptosis). Tumor-bearing mice treated with PF-7006 exhibit tumor growth inhibition concomitant with pharmacodynamic modulation of a downstream biomarker (pHH3-Ser10). Unfortunately, efficacy only occurs at drug exposures that cause dose-limiting body weight loss, gastrointestinal toxicities, and neutropenia. Mps1 inhibitor toxicities may be mitigated by inducing G1 cell cycle arrest in Rb1-competent cells with the cyclin-dependent kinase-4/6 inhibitor palbociclib. Using an isogenic cellular model system, PF-7006 is shown to be selectively cytotoxic to Rb1-deficient cells relative to Rb1-competent cells (also a measure of kinase selectivity). Human bone marrow cells pretreated with palbociclib have decreased PF-7006-dependent apoptosis relative to cells without palbociclib pretreatment

  16. Recent functional insights into the role of (p)ppGpp in bacterial physiology

    PubMed Central

    Hauryliuk, Vasili; Atkinson, Gemma C.; Murakami, Katsuhiko S.; Tenson, Tanel; Gerdes, Kenn

    2015-01-01

    The alarmone (p)ppGpp is involved in regulating growth and several different stress responses in bacteria. In recent years, substantial progress has been made in our understanding of the molecular mechanisms of (p)ppGpp metabolism and (p)ppGpp-mediated regulation. In this Review, we summarize these recent insights, with a focus on the molecular mechanisms governing the activity of the RelA/SpoT Homologue (RSH) proteins, which are key players that regulate the cellular leves of (p)ppGpp, the structural basis of transcriptional regulation by (p)ppGpp and the role of (p)ppGpp in GTP metabolism and in the emergence of bacterial persisters. PMID:25853779

  17. Modelling targets for anticancer drug control optimization in physiologically structured cell population models

    NASA Astrophysics Data System (ADS)

    Billy, Frédérique; Clairambault, Jean; Fercoq, Olivier; Lorenzi, Tommaso; Lorz, Alexander; Perthame, Benoît

    2012-09-01

    The main two pitfalls of therapeutics in clinical oncology, that limit increasing drug doses, are unwanted toxic side effects on healthy cell populations and occurrence of resistance to drugs in cancer cell populations. Depending on the constraint considered in the control problem at stake, toxicity or drug resistance, we present two different ways to model the evolution of proliferating cell populations, healthy and cancer, under the control of anti-cancer drugs. In the first case, we use a McKendrick age-structured model of the cell cycle, whereas in the second case, we use a model of evolutionary dynamics, physiologically structured according to a continuous phenotype standing for drug resistance. In both cases, we mention how drug targets may be chosen so as to accurately represent the effects of cytotoxic and of cytostatic drugs, separately, and how one may consider the problem of optimisation of combined therapies.

  18. Interaction of enterocyte FABPs with phospholipid membranes: clues for specific physiological roles.

    PubMed

    Falomir-Lockhart, Lisandro J; Franchini, Gisela R; Guerbi, María Ximena; Storch, Judith; Córsico, Betina

    2011-01-01

    Intestinal and liver fatty acid binding proteins (IFABP and LFABP, respectively) are cytosolic soluble proteins with the capacity to bind and transport hydrophobic ligands between different sub-cellular compartments. Their functions are still not clear but they are supposed to be involved in lipid trafficking and metabolism, cell growth, and regulation of several other processes, like cell differentiation. Here we investigated the interaction of these proteins with different models of phospholipid membrane vesicles in order to achieve further insight into their specificity within the enterocyte. A combination of biophysical and biochemical techniques allowed us to determine affinities of these proteins to membranes, the way phospholipid composition and vesicle size and curvature modulate such interaction, as well as the effect of protein binding on the integrity of the membrane structure. We demonstrate here that, besides their apparently opposite ligand transfer mechanisms, both LFABP and IFABP are able to interact with phospholipid membranes, but the factors that modulate such interactions are different for each protein, further implying different roles for IFABP and LFABP in the intracellular context. These results contribute to the proposed central role of intestinal FABPs in the lipid traffic within enterocytes as well as in the regulation of more complex cellular processes. PMID:21539932

  19. The Role of Odor-Evoked Memory in Psychological and Physiological Health.

    PubMed

    Herz, Rachel S

    2016-01-01

    This article discusses the special features of odor-evoked memory and the current state-of-the-art in odor-evoked memory research to show how these unique experiences may be able to influence and benefit psychological and physiological health. A review of the literature leads to the conclusion that odors that evoke positive autobiographical memories have the potential to increase positive emotions, decrease negative mood states, disrupt cravings, and reduce physiological indices of stress, including systemic markers of inflammation. Olfactory perception factors and individual difference characteristics that would need to be considered in therapeutic applications of odor-evoked-memory are also discussed. This article illustrates how through the experimentally validated mechanisms of odor-associative learning and the privileged neuroanatomical relationship that exists between olfaction and the neural substrates of emotion, odors can be harnessed to induce emotional and physiological responses that can improve human health and wellbeing. PMID:27447673

  20. The UV-B Photoreceptor UVR8: From Structure to Physiology

    PubMed Central

    Jenkins, Gareth I.

    2014-01-01

    Low doses of UV-B light (280 to 315 nm) elicit photomorphogenic responses in plants that modify biochemical composition, photosynthetic competence, morphogenesis, and defense. UV RESISTANCE LOCUS8 (UVR8) mediates photomorphogenic responses to UV-B by regulating transcription of a set of target genes. UVR8 differs from other known photoreceptors in that it uses specific Trp amino acids instead of a prosthetic chromophore for light absorption during UV-B photoreception. Absorption of UV-B dissociates the UVR8 dimer into monomers, initiating signal transduction through interaction with CONSTITUTIVELY PHOTOMORPHOGENIC1. However, much remains to be learned about the physiological role of UVR8 and its interaction with other signaling pathways, the molecular mechanism of UVR8 photoreception, how the UVR8 protein initiates signaling, how it is regulated, and how UVR8 regulates transcription of its target genes. PMID:24481075

  1. The role of reduced oxygen in the developmental physiology of growth and metamorphosis initiation in Drosophila

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rearing oxygen level is known to affect final body size in a variety of insects, but the physiological mechanisms by which oxygen affects size are incompletely understood. In Manduca and Drosophila, the larval size at which metamorphosis is initiated largely determines adult size, and metamorphosis ...

  2. The Role of Emotional Responses and Physiological Reactivity in the Marital Conflict-Child Functioning Link

    ERIC Educational Resources Information Center

    El-Sheikh, Mona

    2005-01-01

    Background: Children's emotional responses and physiological reactivity to conflict were examined as mediators and moderators in the associations between exposure to parental marital conflict and child adjustment and cognitive problems. Method: One hundred and eighty elementary school children participated. In response to a simulated argument,…

  3. The Role of Physiological Arousal in Time Perception: Psychophysiological Evidence from an Emotion Regulation Paradigm

    ERIC Educational Resources Information Center

    Mella, N.; Conty, L.; Pouthas, V.

    2011-01-01

    Time perception, crucial for adaptive behavior, has been shown to be altered by emotion. An arousal-dependent mechanism is proposed to account for such an effect. Yet, physiological measure of arousal related with emotional timing is still lacking. We addressed this question using skin conductance response (SCR) in an emotion regulation paradigm.…

  4. BORON IN THE TYPICAL DIET: A PHYSIOLOGICAL ROLE FOR BONE HEALTH, REPRODUCTION AND INSULIN METABOLISM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Boron has long been recognized as essential for all higher plants and is essential for at least some species in all phylogenetic kingdoms. Therefore, it is not surprising that diets very low in boron perturb physiological processes in humans as well as animal models of human nutrition including, fr...

  5. Functional role, structure, and evolution of the melanocortin-4 receptor.

    PubMed

    Schiöth, Helgi B; Lagerström, Malin C; Watanobe, Hajime; Jonsson, Logi; Vergoni, Anna Valeria; Ringholm, Aneta; Skarphedinsson, Jon O; Skuladottir, Gudrun V; Klovins, Janis; Fredriksson, Robert

    2003-06-01

    The melanocortin (MC)-4 receptor participates in regulating body weight homeostasis. We demonstrated early that acute blockage of the MC-4 receptor increases food intake and relieves anorexic conditions in rats. Our recent studies show that 4-week chronic blockage of the MC-4 receptor leads to robust increases in food intake and development of obesity, whereas stimulation of the receptor leads to anorexia. Interestingly, the food conversion ratio was clearly increased by MC-4 receptor blockage, whereas it was decreased in agonist-treated rats in a transient manner. Chronic infusion of an agonist caused a transient increase in oxygen consumption. Our studies also show that the MC-4 receptor plays a role in luteinizing hormone and prolactin surges in female rats. The MC-4 receptor has a role in mediating the effects of leptin on these surges. The phylogenetic relation of the MC-4 receptor to other GPCRs in the human genome was determined. The three-dimensional structure of the protein was studied by construction of a high-affinity zinc binding site between the helices, using two histidine residues facing each other. We also cloned the MC-4 receptor from evolutionary important species and showed by chromosomal mapping a conserved synteny between humans and zebrafish. The MC-4 receptor has been remarkably conserved in structure and pharmacology for more than 400 million years, implying that the receptor participated in vital physiological functions early in vertebrate evolution. PMID:12851300

  6. Quantification of quaternary structure stability in aggregation-prone proteins under physiological conditions: the transthyretin case.

    PubMed

    Robinson, Lei Z; Reixach, Natàlia

    2014-10-21

    The quaternary structure stability of proteins is typically studied under conditions that accelerate their aggregation/unfolding processes on convenient laboratory time scales. Such conditions include high temperature or pressure, chaotrope-mediated unfolding, or low or high pH. These approaches have the limitation of being nonphysiological and that the concentration of the protein in solution is changing as the reactions proceed. We describe a methodology to define the quaternary structure stability of the amyloidogenic homotetrameric protein transthyretin (TTR) under physiological conditions. This methodology expands from a described approach based on the measurement of the rate of subunit exchange of TTR with a tandem flag-tagged (FT₂) TTR counterpart. We demonstrate that subunit exchange of TTR with FT₂·TTR can be analyzed and quantified using a semi-native polyacrylamide gel electrophoresis technique. In addition, we biophysically characterized two FT₂·TTR variants derived from wild-type and the amyloidogenic variant Val122Ile TTR, both of which are associated with cardiac amyloid deposition late in life. The FT₂·TTR variants have similar amyloidogenic potential and similar thermodynamic and kinetic stabilities compared to those of their nontagged counterparts. We utilized the methodology to study the potential of the small molecule SOM0226, a repurposed drug under clinical development for the prevention and treatment of the TTR amyloidoses, to stabilize TTR. The results enabled us to characterize the binding energetics of SOM0226 to TTR. The described technique is well-suited to study the quaternary structure of other human aggregation-prone proteins under physiological conditions. PMID:25245430

  7. Quantification of Quaternary Structure Stability in Aggregation-Prone Proteins under Physiological Conditions: The Transthyretin Case

    PubMed Central

    2015-01-01

    The quaternary structure stability of proteins is typically studied under conditions that accelerate their aggregation/unfolding processes on convenient laboratory time scales. Such conditions include high temperature or pressure, chaotrope-mediated unfolding, or low or high pH. These approaches have the limitation of being nonphysiological and that the concentration of the protein in solution is changing as the reactions proceed. We describe a methodology to define the quaternary structure stability of the amyloidogenic homotetrameric protein transthyretin (TTR) under physiological conditions. This methodology expands from a described approach based on the measurement of the rate of subunit exchange of TTR with a tandem flag-tagged (FT2) TTR counterpart. We demonstrate that subunit exchange of TTR with FT2·TTR can be analyzed and quantified using a semi-native polyacrylamide gel electrophoresis technique. In addition, we biophysically characterized two FT2·TTR variants derived from wild-type and the amyloidogenic variant Val122Ile TTR, both of which are associated with cardiac amyloid deposition late in life. The FT2·TTR variants have similar amyloidogenic potential and similar thermodynamic and kinetic stabilities compared to those of their nontagged counterparts. We utilized the methodology to study the potential of the small molecule SOM0226, a repurposed drug under clinical development for the prevention and treatment of the TTR amyloidoses, to stabilize TTR. The results enabled us to characterize the binding energetics of SOM0226 to TTR. The described technique is well-suited to study the quaternary structure of other human aggregation-prone proteins under physiological conditions. PMID:25245430

  8. Pleiotropic role of the Sco1/SenC family copper chaperone in the physiology of Streptomyces

    PubMed Central

    Fujimoto, Masahiro; Yamada, Akio; Kurosawa, Junpei; Kawata, Akihiro; Beppu, Teruhiko; Takano, Hideaki; Ueda, Kenji

    2012-01-01

    Summary Antibiotic production and cell differentiation in Streptomyces is stimulated by micromolar levels of Cu2+. Here, we knocked out the Sco1/SenC family copper chaperone (ScoC) encoded in the conserved gene cluster ‘sco’ (the S treptomycescopper utilization) in Streptomyces coelicolor A3(2) and S. griseus. It is known that the Sco1/SenC family incorporates Cu2+ into the active centre of cytochrome oxidase (cox). The knockout caused a marked delay in antibiotic production and aerial mycelium formation on solid medium, temporal pH decline in glucose‐containing liquid medium, and significant reduction of cox activity in S. coelicolor. The scoC mutant produced two‐ to threefold higher cellular mass of the wild type exhibiting a marked cox activity in liquid medium supplied with 10 µM CuSO4, suggesting that ScoC is involved in not only the construction but also the deactivation of cox. The scoC mutant was defective in the monoamine oxidase activity responsible for cell aggregation and sedimentation. These features were similarly observed with regard to the scoC mutant of S. griseus. The scoC mutant of S. griseus was also defective in the extracellular activity oxidizing N,N′‐dimethyl‐p‐phenylenediamine sulfate. Addition of 10 µM CuSO4 repressed the activity of the conserved promoter preceding scoA and caused phenylalanine auxotrophy in some Streptomyces spp. probably because of the repression of pheA; pheA encodes prephenate dehydratase, which is located at the 3′ terminus of the putative operon structure. Overall, the evidence indicates that Sco is crucial for the utilization of copper under a low‐copper condition and for the activation of the multiple Cu2+‐containing oxidases that play divergent roles in the complex physiology of Streptomyces. PMID:22117562

  9. Invariance in current dipole moment density across brain structures and species: Physiological constraint for neuroimaging

    PubMed Central

    Murakami, Shingo; Okada, Yoshio

    2015-01-01

    Although anatomical constraints have been shown to be effective for MEG and EEG inverse solutions, there are still no effective physiological constraints. Strength of the current generator is normally described by the moment of an equivalent current dipole Q. This value is quite variable since it depends on size of active tissue. In contrast, the current dipole moment density q, defined as Q per surface area of active cortex, is independent of size of active tissue. Here we studied whether the value of q has a maximum in physiological conditions across brain structures and species. We determined the value due to the primary neuronal current (qprimary) alone, correcting for distortions due to measurement conditions and secondary current sources at boundaries separating regions of differing electrical conductivity. The values were in the same range for turtle cerebellum (0.56–1.48 nAm/mm2), guinea pig hippocampus (0.30–1.34 nAm/mm2), and swine neocortex (0.18–1.63 nAm/mm2), rat neocortex (~2.2 nAm/mm2), monkey neocortex (~0.40 nAm/mm2) and human neocortex (0.16–0.77 nAm/mm2). Thus, there appears to be a maximum value across the brain structures and species (1–2 nAm/mm2). The empirical values closely matched the theoretical values obtained with our independently validated neural network model (1.6–2.8 nAm/mm2 for initial spike and 0.7–3.1 nAm/mm2 for burst), indicating that the apparent invariance is not coincidental. Our model study shows that a single maximum value may exist across a wide range of brain structures and species, varying in neuron density, due to fundamental electrical properties of neurons. The maximum value of qprimary may serve as an effective physiological constraint for MEG/EEG inverse solutions. PMID:25680520

  10. The role of relaxin in mare reproductive physiology: A comparative review with other species.

    PubMed

    Klein, Claudia

    2016-07-01

    Relaxin is a peptide hormone best known for its action during the latter half of pregnancy, in particular for its softening effect on pelvic ligaments that aids in preparation of the birth canal for the impending delivery of the fetus. The source of relaxin during early pregnancy varies across species, with the CL being the main source in a number of species. The main source of relaxin during late equine pregnancy is the placenta. In mares with impaired placental function, circulating relaxin levels decline before abortion. During early pregnancy, relaxin promotes endometrial angiogenesis through upregulating endometrial expression of vascular endothelial growth factor. The horse is unique in that the equine conceptus expresses relaxin messenger RNA as early as 8 days after ovulation, with levels increasing as conceptus development proceeds. Although secretion of functional relaxin has not been verified, it is likely, given that the embryo also expresses transcripts coding for enzymes processing the prohormone to yield the mature hormone. Furin, an enzyme which belongs to the subtilisin-like proprotein convertase family known to process preprorelaxin, appears to be the foremost convertase expressed by equine conceptuses. Conceptus-derived relaxin could drive endometrial angiogenesis and also act in an autocrine fashion to promote the embryo's own development. Relaxin is also expressed by ovarian structures during the nonpregnant estrous cycle. In the mare, follicular expression of relaxin is comparable among follicles of varying size and has been localized to granulosa and theca cells. In women and pigs, relaxin appears to promote follicular development. In the rat, multiple lines of evidence indicate that relaxin is involved in the ovulatory process. In the mare, relaxin might play a similar role in the ovulatory process, as in equine ovarian stromal cells relaxin promotes the secretion of gelatinases and tissue inhibitors of metalloproteinases; local proteolysis

  11. Mapping physiological G protein-coupled receptor signaling pathways reveals a role for receptor phosphorylation in airway contraction

    PubMed Central

    Bradley, Sophie J.; Iglesias, Max Maza; Kong, Kok Choi; Butcher, Adrian J.; Plouffe, Bianca; Goupil, Eugénie; Bourgognon, Julie-Myrtille; Macedo-Hatch, Timothy; LeGouill, Christian; Russell, Kirsty; Laporte, Stéphane A.; König, Gabriele M.; Kostenis, Evi; Bouvier, Michel; Chung, Kian Fan; Amrani, Yassine; Tobin, Andrew B.

    2016-01-01

    G protein-coupled receptors (GPCRs) are known to initiate a plethora of signaling pathways in vitro. However, it is unclear which of these pathways are engaged to mediate physiological responses. Here, we examine the distinct roles of Gq/11-dependent signaling and receptor phosphorylation-dependent signaling in bronchial airway contraction and lung function regulated through the M3-muscarinic acetylcholine receptor (M3-mAChR). By using a genetically engineered mouse expressing a G protein-biased M3-mAChR mutant, we reveal the first evidence, to our knowledge, of a role for M3-mAChR phosphorylation in bronchial smooth muscle contraction in health and in a disease state with relevance to human asthma. Furthermore, this mouse model can be used to distinguish the physiological responses that are regulated by M3-mAChR phosphorylation (which include control of lung function) from those responses that are downstream of G protein signaling. In this way, we present an approach by which to predict the physiological/therapeutic outcome of M3-mAChR–biased ligands with important implications for drug discovery. PMID:27071102

  12. [Effect of mechanical grinding of Sphagnum on the structure and physiological state of bacterial communities].

    PubMed

    Dobrovol'skaya, T G; Golovchenko, A V; Yakushev, A V; Manucharova, N A; Yurchenko, E N

    2014-01-01

    The microcosm method was used to demonstrate an increase in bacterial numbers and drastic changes in the taxonomic structure of saprotrophic bacteria as a result of mechanical grinding of Sphagnum moss. Ekkrisotrophic agrobacteria predominant in untreated moss were replaced by hydrolytic bacteria. Molecular biological approaches revealed such specific hydrolytic bacteria as Janthinobacterium agaricum and Streptomyces purpurascens among the dominant taxa. The application of kinetic technique for determination of the physiological state of bacteria in situ revealed higher functional diversity of hydrolytic bacteria in ground moss than in untreated samples. A considerable decrease of the C/N ratio in ground samples of living Sphagnum incubated using the microcosm technique indicated decomposition of this substrate. PMID:25941721

  13. PEDF and its roles in physiological and pathological conditions: implication in diabetic and hypoxia-induced angiogenic diseases

    PubMed Central

    He, Xuemin; Cheng, Rui; Benyajati, Siribhinya

    2015-01-01

    Pigment epithelium-derived factor (PEDF) is a broadly expressed multifunctional member of the serine proteinase inhibitor (serpin) family. This widely studied protein plays critical roles in many physiological and pathophysiological processes, including neuroprotection, angiogenesis, fibrogenesis and inflammation. The present review summarizes the temporal and spatial distribution patterns of PEDF in a variety of developing and adult organs, and discusses its functions in maintaining physiological homoeostasis. The major focus of the present review is to discuss the implication of PEDF in diabetic and hypoxia-induced angiogenesis, and the pathways mediating PEDF's effects under these conditions. Furthermore, the regulatory mechanisms of PEDF expression, function and degradation are also reviewed. Finally, the therapeutic potential of PEDF as an anti-angiogenic drug is briefly summarized. PMID:25881671

  14. Bacterial Community Structure and Physiological State within an Industrial Phenol Bioremediation System

    PubMed Central

    Whiteley, Andrew S.; Bailey, Mark J.

    2000-01-01

    The structure of bacterial populations in specific compartments of an operational industrial phenol remediation system was assessed to examine bacterial community diversity, distribution, and physiological state with respect to the remediation of phenolic polluted wastewater. Rapid community fingerprinting by PCR-based denaturing gradient gel electrophoresis (DGGE) of 16S rDNA indicated highly structured bacterial communities residing in all nine compartments of the treatment plant and not exclusively within the Vitox biological reactor. Whole-cell targeting by fluorescent in situ hybridization with specific oligonucleotides (directed to the α, β and γ subclasses of the class Proteobacteria [α-, β-, and γ-Proteobacteria, respectively], the Cytophaga-Flavobacterium group, and the Pseudomonas group) tended to mirror gross changes in bacterial community composition when compared with DGGE community fingerprinting. At the whole-cell level, the treatment compartments were numerically dominated by cells assigned to the Cytophaga-Flavobacterium group and to the γ-Proteobacteria. The α subclass Proteobacteria were of low relative abundance throughout the treatment system whilst the β subclass of the Proteobacteria exhibited local dominance in several of the processing compartments. Quantitative image analyses of cellular fluorescence was used as an indicator of physiological state within the populations probed with rDNA. For cells hybridized with EUB338, the mean fluorescence per cell decreased with increasing phenolic concentration, indicating the strong influence of the primary pollutant upon cellular rRNA content. The γ subclass of the Proteobacteria had a ribosome content which correlated positively with total phenolics and thiocyanate. While members of the Cytophaga-Flavobacterium group were numerically dominant in the processing system, their abundance and ribosome content data for individual populations did not correlate with any of the measured chemical

  15. The role of thermal physiology in recent declines of birds in a biodiversity hotspot

    PubMed Central

    Milne, Robyn; Cunningham, Susan J.; Lee, Alan T. K.; Smit, Ben

    2015-01-01

    We investigated whether observed avian range contractions and population declines in the Fynbos biome of South Africa were mechanistically linked to recent climate warming. We aimed to determine whether there were correlations between preferred temperature envelope, or changes in temperature within species' ranges, and recent changes in range and population size, for 12 Fynbos-resident bird species, including six that are endemic to the biome. We then measured the physiological responses of each species at air temperatures ranging from 24 to 42°C to determine whether physiological thermal thresholds could provide a mechanistic explanation for observed population trends. Our data show that Fynbos-endemic species occupying the coolest regions experienced the greatest recent reductions in range and population size (>30% range reduction between 1991 and the present). In addition, species experiencing the largest increases in air temperature within their ranges showed the greatest declines. However, evidence for a physiological mechanistic link between warming and population declines was equivocal, with only the larger species showing low thermal thresholds for their body mass, compared with other birds globally. In addition, some species appear more vulnerable than others to air temperatures in their ranges above physiological thermal thresholds. Of these, the high-altitude specialist Cape rockjumper (Chaetops frenatus) seems most at risk from climate warming. This species showed: (i) the lowest threshold for increasing evaporative water loss at high temperatures; and (ii) population declines specifically in those regions of its range recording significant warming trends. Our findings suggest that caution must be taken when attributing causality explicitly to thermal stress, even when population trends are clearly correlated with rates of warming. Studies explicitly investigating the mechanisms underlying such correlations will be key to appropriate conservation

  16. The causes of physiological suppression among female meerkats: a role for subordinate restraint due to the threat of infanticide?

    PubMed

    Young, Andrew J; Monfort, Steven L; Clutton-Brock, Tim H

    2008-01-01

    In many animal societies, subordinates exhibit down-regulated reproductive endocrine axes relative to those of dominants, but whether this 'physiological suppression' arises from active interference by dominants or subordinate self-restraint is a matter of debate. Here we investigate the roles that these processes play in precipitating physiological suppression among subordinate female meerkats, Suricata suricatta. We show that, while subordinate females are known to suffer stress-related physiological suppression during periodic temporary evictions by the dominant female, their low estrogen levels while within their groups cannot be readily attributed to chronic stress, as their fecal glucocorticoid metabolite levels during this time are comparable to those of dominants. The low estrogen levels of subordinate females also cannot be explained simply by self-restraint due to factors that could reduce their payoff from maintaining their fertility regardless of the presence of the dominant female (young age, a lack of unrelated mates, poor body condition and limited breeding experience), as substantial rank-related differences in fecal total-estrogen metabolite levels remain when such factors are controlled. We suggest that this residual difference in estrogen levels may reflect a degree of subordinate restraint due in part to the dominant female's ability to kill their young. Accordingly, subordinate female estrogen levels vary in association with temporal variation in the likelihood of infanticide by the dominant. Attempts to identify the causes of physiological suppression should be cautious if rejecting any role for dominant interference in favor of subordinate restraint, as the dominant's capacity to interfere may often be the reason why subordinates exercise restraint. PMID:17976602

  17. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation

    PubMed Central

    Huey, Raymond B.; Kearney, Michael R.; Krockenberger, Andrew; Holtum, Joseph A. M.; Jess, Mellissa; Williams, Stephen E.

    2012-01-01

    A recently developed integrative framework proposes that the vulnerability of a species to environmental change depends on the species' exposure and sensitivity to environmental change, its resilience to perturbations and its potential to adapt to change. These vulnerability criteria require behavioural, physiological and genetic data. With this information in hand, biologists can predict organisms most at risk from environmental change. Biologists and managers can then target organisms and habitats most at risk. Unfortunately, the required data (e.g. optimal physiological temperatures) are rarely available. Here, we evaluate the reliability of potential proxies (e.g. critical temperatures) that are often available for some groups. Several proxies for ectotherms are promising, but analogous ones for endotherms are lacking. We also develop a simple graphical model of how behavioural thermoregulation, acclimation and adaptation may interact to influence vulnerability over time. After considering this model together with the proxies available for physiological sensitivity to climate change, we conclude that ectotherms sharing vulnerability traits seem concentrated in lowland tropical forests. Their vulnerability may be exacerbated by negative biotic interactions. Whether tropical forest (or other) species can adapt to warming environments is unclear, as genetic and selective data are scant. Nevertheless, the prospects for tropical forest ectotherms appear grim. PMID:22566674

  18. The role of glutamate in the morphological and physiological development of dendritic spines.

    PubMed

    Mattison, Hayley A; Popovkina, Dina; Kao, Joseph P Y; Thompson, Scott M

    2014-06-01

    Dendritic spines form the postsynaptic half of the synapse but how they form during CNS development remains uncertain, as are the factors that promote their morphological and physiological maturation. One hypothesis posits that filopodia, long motile dendritic processes that are present prior to spine formation, are the precursors to spines. Another hypothesis posits that they form directly from the dendritic shaft. We used microphotolysis of caged glutamate to stimulate individual dendritic processes in young hippocampal slice cultures while recording their morphological and physiological responses. We observed that brief trains of stimuli delivered to immature processes triggered morphological changes within minutes that resulted, in about half of experiments, in a more mature, spine-like appearance such as decreased spine neck length and increased spine head width. We also observed that glutamate-induced inward currents elicited from immature processes were mostly or entirely mediated by NMDARs, whereas responses in those processes with a more mature morphology, regardless of actual developmental age, were mediated by both AMPARs and NMDARs. Consistent with this observation, glutamate-induced morphological changes were largely, but not entirely, prevented by blocking NMDARs. Our observations thus favor a model in which filopodia in the developing nervous system sense and respond to release of glutamate from developing axons, resulting in physiological and morphological maturation. PMID:24661419

  19. MBBS Student Perceptions about Physiology Subject Teaching and Objective Structured Practical Examination Based Formative Assessment for Improving Competencies

    ERIC Educational Resources Information Center

    Lakshmipathy, K.

    2015-01-01

    The objectives of the present study were to 1) assess student attitudes to physiology, 2) evaluate student opinions about the influence of an objective structured practical examination (OSPE) on competence, and 3) assess the validity and reliability of an indigenously designed feedback questionnaire. A structured questionnaire containing 16 item…

  20. The effect of physiological conditions on the surface structure of proteins: Setting the scene for human digestion of emulsions

    NASA Astrophysics Data System (ADS)

    Maldonado-Valderrama, J.; Gunning, A. P.; Ridout, M. J.; Wilde, P. J.; Morris, V. J.

    2009-10-01

    Understanding and manipulating the interfacial mechanisms that control human digestion of food emulsions is a crucial step towards improved control of dietary intake. This article reports initial studies on the effects of the physiological conditions within the stomach on the properties of the film formed by the milk protein ( β -lactoglobulin) at the air-water interface. Atomic force microscopy (AFM), surface tension and surface rheology techniques were used to visualize and examine the effect of gastric conditions on the network structure. The effects of changes in temperature, pH and ionic strength on a pre-formed interfacial structure were characterized in order to simulate the actual digestion process. Changes in ionic strength had little effect on the surface properties. In isolation, acidification reduced both the dilatational and the surface shear modulus, mainly due to strong repulsive electrostatic interactions within the surface layer and raising the temperature to body temperature accelerated the rearrangements within the surface layer, resulting in a decrease of the dilatational response and an increase of surface pressure. Together pH and temperature display an unexpected synergism, independent of the ionic strength. Thus, exposure of a pre-formed interfacial β -lactoglobulin film to simulated gastric conditions reduced the surface dilatational modulus and surface shear moduli. This is attributed to a weakening of the surface network in which the surface rearrangements of the protein prior to exposure to gastric conditions might play a crucial role.

  1. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types.

    PubMed

    Niinemets, Ülo; Keenan, Trevor F; Hallik, Lea

    2015-02-01

    Extensive within-canopy light gradients importantly affect the photosynthetic productivity of leaves in different canopy positions and lead to light-dependent increases in foliage photosynthetic capacity per area (AA). However, the controls on AA variations by changes in underlying traits are poorly known. We constructed an unprecedented worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types, and analyzed within-canopy variations in 12 key foliage structural, chemical and physiological traits by quantitative separation of the contributions of different traits to photosynthetic acclimation. Although the light-dependent increase in AA is surprisingly similar in different plant functional types, they differ fundamentally in the share of the controls on AA by constituent traits. Species with high rates of canopy development and leaf turnover, exhibiting highly dynamic light environments, actively change AA by nitrogen reallocation among and partitioning within leaves. By contrast, species with slow leaf turnover exhibit a passive AA acclimation response, primarily determined by the acclimation of leaf structure to growth light. This review emphasizes that different combinations of traits are responsible for within-canopy photosynthetic acclimation in different plant functional types, and solves an old enigma of the role of mass- vs area-based traits in vegetation acclimation. PMID:25318596

  2. Physiological roles of pyruvate ferredoxin oxidoreductase and pyruvate formate-lyase in Thermoanaerobacterium saccharolyticum JW/SL-YS485

    SciTech Connect

    Zhou, Jilai; Olson, Daniel G.; Lanahan, Anthony A.; Tian, Liang; Murphy, Sean Jean-Loup; Lo, Jonathan; Lynd, Lee R.

    2015-09-15

    We report that Thermoanaerobacter saccharolyticum is a thermophilic microorganism that has been engineered to produce ethanol at high titer (30–70 g/L) and greater than 90 % theoretical yield. However, few genes involved in pyruvate to ethanol production pathway have been unambiguously identified. In T. saccharolyticum, the products of six putative pfor gene clusters and one pfl gene may be responsible for the conversion of pyruvate to acetyl-CoA. To gain insights into the physiological roles of PFOR and PFL, we studied the effect of deletions of several genes thought to encode these activities. We found that that pyruvate ferredoxin oxidoreductase enzyme (PFOR) is encoded by the pforA gene and plays a key role in pyruvate dissimilation. We further demonstrated that pyruvate formate-lyase activity (PFL) is encoded by the pfl gene. Although the pfl gene is normally expressed at low levels, it is crucial for biosynthesis in T. saccharolyticum. In pforA deletion strains, pfl expression increased and was able to partially compensate for the loss of PFOR activity. Deletion of both pforA and pfl resulted in a strain that required acetate and formate for growth and produced lactate as the primary fermentation product, achieving 88 % theoretical lactate yield. PFOR encoded by Tsac_0046 and PFL encoded by Tsac_0628 are only two routes for converting pyruvate to acetyl-CoA in T. saccharolyticum. The physiological role of PFOR is pyruvate dissimilation, whereas that of PFL is supplying C1 units for biosynthesis.

  3. The Role of Efflux and Physiological Adaptation in Biofilm Tolerance and Resistance.

    PubMed

    Van Acker, Heleen; Coenye, Tom

    2016-06-10

    Microbial biofilms demonstrate a decreased susceptibility to antimicrobial agents. Various mechanisms have been proposed to be involved in this recalcitrance. We focus on two of these factors. Firstly, the ability of sessile cells to actively mediate efflux of antimicrobial compounds has a profound impact on resistance and tolerance, and several studies point to the existence of biofilm-specific efflux systems. Secondly, biofilm-specific stress responses have a marked influence on cellular physiology, and contribute to the occurrence of persister cells. We provide an overview of the data that demonstrate that both processes are important for survival following exposure to antimicrobial agents. PMID:27129224

  4. Giant right coronary artery aneurysm with unusual physiology: role of intraoperative transesophageal echocardiography.

    PubMed

    Orozco, David M; Abello, Mauricio; Osorio, Javier; Melgarejo, Ivan

    2012-01-01

    A 65-year-old woman presented with a history of dyspnea and atypical chest pain. She was diagnosed with a non-ST-segment elevation myocardial infarction due to a giant right coronary artery aneurysm. After a failed percutaneous embolization, she was scheduled for right coronary artery aneurysm resection, posterior descending artery revascularization and mitral valve repair. During the induction of anesthesia and institution of mechanical ventilation, the patient suffered cardiovascular collapse. The transesophageal echocardiographic examination revealed tamponade physiology owing to compression of the cardiac chambers by the unruptured aneurysm, which resolved with the sternotomy. The surgery was carried out uneventfully. PMID:22772520

  5. Studying Multisensory Processing and Its Role in the Representation of Space through Pathological and Physiological Crossmodal Extinction

    PubMed Central

    Jacobs, Stéphane; Brozzoli, Claudio; Hadj-Bouziane, Fadila; Meunier, Martine; Farnè, Alessandro

    2011-01-01

    The study of crossmodal extinction has brought a considerable contribution to our understanding of how the integration of stimuli perceived in multiple sensory modalities is used by the nervous system to build coherent representations of the space that directly surrounds us. Indeed, by revealing interferences between stimuli in a disturbed system, extinction provides an invaluable opportunity to investigate the interactions that normally exist between those stimuli in an intact system. Here, we first review studies on pathological crossmodal extinction, from the original demonstration of its existence, to its role in the exploration of the multisensory neural representation of space and the current theoretical accounts proposed to explain the mechanisms involved in extinction and multisensory competition. Then, in the second part of this paper, we report recent findings showing that physiological multisensory competition phenomena resembling clinical crossmodal extinction exist in the healthy brain. We propose that the development of a physiological model of sensory competition is fundamental to deepen our understanding of the cerebral mechanisms of multisensory perception and integration. In addition, a similar approach to develop a model of physiological sensory competition in non-human primates should allow combining functional neuroimaging with more invasive techniques, such as transient focal lesions, in order to bridge the gap between works done in the two species and at different levels of analysis. PMID:21687458

  6. Molecular Aspects of Structure, Gating, and Physiology of pH-Sensitive Background K2P and Kir K+-Transport Channels

    PubMed Central

    Sepúlveda, Francisco V.; Pablo Cid, L.; Teulon, Jacques; Niemeyer, María Isabel

    2015-01-01

    K+ channels fulfill roles spanning from the control of excitability to the regulation of transepithelial transport. Here we review two groups of K+ channels, pH-regulated K2P channels and the transport group of Kir channels. After considering advances in the molecular aspects of their gating based on structural and functional studies, we examine their participation in certain chosen physiological and pathophysiological scenarios. Crystal structures of K2P and Kir channels reveal rather unique features with important consequences for the gating mechanisms. Important tasks of these channels are discussed in kidney physiology and disease, K+ homeostasis in the brain by Kir channel-equipped glia, and central functions in the hearing mechanism in the inner ear and in acid secretion by parietal cells in the stomach. K2P channels fulfill a crucial part in central chemoreception probably by virtue of their pH sensitivity and are central to adrenal secretion of aldosterone. Finally, some unorthodox behaviors of the selectivity filters of K2P channels might explain their normal and pathological functions. Although a great deal has been learned about structure, molecular details of gating, and physiological functions of K2P and Kir K+-transport channels, this has been only scratching at the surface. More molecular and animal studies are clearly needed to deepen our knowledge. PMID:25540142

  7. Molecular aspects of structure, gating, and physiology of pH-sensitive background K2P and Kir K+-transport channels.

    PubMed

    Sepúlveda, Francisco V; Pablo Cid, L; Teulon, Jacques; Niemeyer, María Isabel

    2015-01-01

    K(+) channels fulfill roles spanning from the control of excitability to the regulation of transepithelial transport. Here we review two groups of K(+) channels, pH-regulated K2P channels and the transport group of Kir channels. After considering advances in the molecular aspects of their gating based on structural and functional studies, we examine their participation in certain chosen physiological and pathophysiological scenarios. Crystal structures of K2P and Kir channels reveal rather unique features with important consequences for the gating mechanisms. Important tasks of these channels are discussed in kidney physiology and disease, K(+) homeostasis in the brain by Kir channel-equipped glia, and central functions in the hearing mechanism in the inner ear and in acid secretion by parietal cells in the stomach. K2P channels fulfill a crucial part in central chemoreception probably by virtue of their pH sensitivity and are central to adrenal secretion of aldosterone. Finally, some unorthodox behaviors of the selectivity filters of K2P channels might explain their normal and pathological functions. Although a great deal has been learned about structure, molecular details of gating, and physiological functions of K2P and Kir K(+)-transport channels, this has been only scratching at the surface. More molecular and animal studies are clearly needed to deepen our knowledge. PMID:25540142

  8. Phylogenomic Analysis and Predicted Physiological Role of the Proton-Translocating NADH:Quinone Oxidoreductase (Complex I) Across Bacteria

    PubMed Central

    Spero, Melanie A.; Aylward, Frank O.; Currie, Cameron R.

    2015-01-01

    ABSTRACT The proton-translocating NADH:quinone oxidoreductase (complex I) is a multisubunit integral membrane enzyme found in the respiratory chains of both bacteria and eukaryotic organelles. Although much research has focused on the enzyme’s central role in the mitochondrial respiratory chain, comparatively little is known about its role in the diverse energetic lifestyles of different bacteria. Here, we used a phylogenomic approach to better understand the distribution of complex I across bacteria, the evolution of this enzyme, and its potential roles in shaping the physiology of different bacterial groups. By surveying 970 representative bacterial genomes, we predict complex I to be present in ~50% of bacteria. While this includes bacteria with a wide range of energetic schemes, the presence of complex I is associated with specific lifestyles, including aerobic respiration and specific types of phototrophy (bacteria with only a type II reaction center). A phylogeny of bacterial complex I revealed five main clades of enzymes whose evolution is largely congruent with the evolution of the bacterial groups that encode complex I. A notable exception includes the gammaproteobacteria, whose members encode one of two distantly related complex I enzymes predicted to participate in different types of respiratory chains (aerobic versus anaerobic). Comparative genomic analyses suggest a broad role for complex I in reoxidizing NADH produced from various catabolic reactions, including the tricarboxylic acid (TCA) cycle and fatty acid beta-oxidation. Together, these findings suggest diverse roles for complex I across bacteria and highlight the importance of this enzyme in shaping diverse physiologies across the bacterial domain. PMID:25873378

  9. Physiological, pharmacological and toxicological considerations of drug-induced structural cardiac injury

    PubMed Central

    Cross, M J; Berridge, B R; Clements, P J M; Cove-Smith, L; Force, T L; Hoffmann, P; Holbrook, M; Lyon, A R; Mellor, H R; Norris, A A; Pirmohamed, M; Tugwood, J D; Sidaway, J E; Park, B K

    2015-01-01

    The incidence of drug-induced structural cardiotoxicity, which may lead to heart failure, has been recognized in association with the use of anthracycline anti-cancer drugs for many years, but has also been shown to occur following treatment with the new generation of targeted anti-cancer agents that inhibit one or more receptor or non-receptor tyrosine kinases, serine/threonine kinases as well as several classes of non-oncology agents. A workshop organized by the Medical Research Council Centre for Drug Safety Science (University of Liverpool) on 5 September 2013 and attended by industry, academia and regulatory representatives, was designed to gain a better understanding of the gaps in the field of structural cardiotoxicity that can be addressed through collaborative efforts. Specific recommendations from the workshop for future collaborative activities included: greater efforts to identify predictive (i) preclinical; and (ii) clinical biomarkers of early cardiovascular injury; (iii) improved understanding of comparative physiology/pathophysiology and the clinical predictivity of current preclinical in vivo models; (iv) the identification and use of a set of cardiotoxic reference compounds for comparative profiling in improved animal and human cellular models; (v) more sharing of data (through publication/consortia arrangements) on target-related toxicities; (vi) strategies to develop cardio-protective agents; and (vii) closer interactions between preclinical scientists and clinicians to help ensure best translational efforts. PMID:25302413

  10. The Physiology and Biochemistry of Receptors.

    ERIC Educational Resources Information Center

    Spitzer, Judy A., Ed.

    1983-01-01

    The syllabus for a refresher course on the physiology and biochemistry of receptors (presented at the 1983 American Physiological Society meeting) is provided. Topics considered include receptor regulation, structural/functional aspects of receptors for insulin and insulin-like growth factors, calcium channel inhibitors, and role of lipoprotein…

  11. The myths and physiology surrounding intrapartum decelerations: the critical role of the peripheral chemoreflex.

    PubMed

    Lear, Christopher A; Galinsky, Robert; Wassink, Guido; Yamaguchi, Kyohei; Davidson, Joanne O; Westgate, Jenny A; Bennet, Laura; Gunn, Alistair J

    2016-09-01

    A distinctive pattern of recurrent rapid falls in fetal heart rate, called decelerations, are commonly associated with uterine contractions during labour. These brief decelerations are mediated by vagal activation. The reflex triggering this vagal response has been variably attributed to a mechanoreceptor response to fetal head compression, to baroreflex activation following increased blood pressure during umbilical cord compression, and/or a Bezold-Jarisch reflex response to reduced venous return from the placenta. Although these complex explanations are still widespread today, there is no consistent evidence that they are common during labour. Instead, the only mechanism that has been systematically investigated, proven to be reliably active during labour and, crucially, capable of producing rapid decelerations is the peripheral chemoreflex. The peripheral chemoreflex is triggered by transient periods of asphyxia that are a normal phenomenon associated with all uterine contractions. This should not cause concern as the healthy fetus has a remarkable ability to adapt to these repeated but short periods of asphyxia. This means that the healthy fetus is typically not at risk of hypotension and injury during uncomplicated labour even during repeated brief decelerations. The physiologically incorrect theories surrounding decelerations that ignore the natural occurrence of repeated asphyxia probably gained widespread support to help explain why many babies are born healthy despite repeated decelerations during labour. We propose that a unified and physiological understanding of intrapartum decelerations that accepts the true nature of labour is critical to improve interpretation of intrapartum fetal heart rate patterns. PMID:27328617

  12. Predictability of physiological testing and the role of maturation in talent identification for adolescent team sports.

    PubMed

    Pearson, D T; Naughton, G A; Torode, M

    2006-08-01

    Entrepreneurial marketing of sport increases demands on sport development officers to identify talented individuals for specialist development at the youngest possible age. Talent identification results in the streamlining of resources to produce optimal returns from a sports investment. However, the process of talent identification for team sports is complex and success prediction is imperfect. The aim of this review is to describe existing practices in physiological tests used for talent identification in team sports and discuss the impact of maturity-related differences on the long term outcomes particularly for male participants. Maturation is a major confounding variable in talent identification during adolescence. A myriad of hormonal changes during puberty results in physical and physiological characteristics important for sporting performance. Significant changes during puberty make the prediction of adult performance difficult from adolescent data. Furthermore, for talent identification programs to succeed, valid and reliable testing procedures must be accepted and implemented in a range of performance-related categories. Limited success in scientifically based talent identification is evident in a range of team sports. Genetic advances challenge the ethics of talent identification in adolescent sport. However, the environment remains a significant component of success prediction in sport. Considerations for supporting talented young male athletes are discussed. PMID:16844415

  13. Insights into the role and structure of plant ureases.

    PubMed

    Follmer, Cristian

    2008-01-01

    The broad distribution of ureases in leguminous seeds, as well as the accumulation pattern of the protein during seed maturation, are suggestive of an important physiological role for this enzyme. Since the isolation and characterization of jack bean urease by Sumner in 1926, many investigations have been dedicated to the structural and biological features of this enzyme; nevertheless, many questions still remain. It has been reported that ureases from plants (jack bean and soybean seeds) display biological properties unrelated to their ureolytic activity, notably a high insecticidal activity against Coleoptera (beetles) and Hemiptera (bugs), suggesting that ureases might be involved in plant defense. Besides the insecticidal activity, canatoxin, a jack bean urease isoform, causes convulsions and death in mice and rats, induces indirect hemagglutination (hemilectin activity) and promotes exocytosis in several cell types. Not only plant ureases but also some microbial ureases (found in Bacillus pasteurii and Helicobacter pylori) are able to induce activation of platelets in a process mediated by lipoxygenase-derived metabolites. This review summarizes the biological and structural properties of plant ureases, compares them with those displayed by bacterial ureases, and discusses the significance of these findings. PMID:17706733

  14. Establishment of procedures for studying mPR-interacting agents and physiological roles of mPR.

    PubMed

    Tokumoto, Toshinobu; Hossain, Md Babul; Wang, Jun

    2016-07-01

    More than 10years have passed since the discovery of membrane progestin receptors (mPRs). Although the identification of mPR genes in various organisms and mPR expression patterns have been described since then, the precise physiological roles of mPRs are still unclear, except their function as a receptor for maturation-inducing steroid in fish. The wide distribution of mPRs suggests variable actions for progestins through mPRs in the tissues. Information about the physiological roles of mPRs, such as roles in the progression of breast cancer and T-cell proliferation, has gradually accumulated recently. These results suggest that mPRs are possible targets for new pharmaceuticals. We established a cell line that was transformed with cDNAs for mPRα and a recombinant luciferase gene named GloSensor. The cells can be used for monitoring the effects of ligands on mPRα based on intracellular cyclic adenosine monophosphate (cAMP) levels. Studies using these cell lines indicated that the cAMP concentration is decreased by ligands for mPRα. The results provide support for previous results suggesting that mPRα is coupled to inhibitory G protein (Gi). We also established screening methods that make it possible to screen ligands for mPR. Recently, we succeeded in expressing and purifying recombinant mPR protein in the yeast Pichia pastoris. Relatively large amounts of mPR protein with hormonal binding activity can be purified by our method. The recombinant protein will be applicable to establishing a molecular probe to detect mPR-interacting agents. To obtain decisive evidence for the roles of mPRs, we are establishing strains of medaka fish that are deficient in mPRs. In medaka, four subtypes of mPR genes (α, β, γ, and α2) have been identified. By reverse genetic screening, we have selected three to four strains in which a point mutation has been induced in the coding sequence of the mPR subtypes. However, homozygous mutants of each mPR gene showed no phenotype. The

  15. Identification and Characterization of the Corazonin Receptor and Possible Physiological Roles of the Corazonin-Signaling Pathway in Rhodnius prolixus

    PubMed Central

    Hamoudi, Zina; Lange, Angela B.; Orchard, Ian

    2016-01-01

    Neuropeptides control many physiological and endocrinological processes in animals, acting as neuroactive chemicals within the central and peripheral nervous systems. Corazonin (CRZ) is one such neuropeptide that has a variety of physiological roles associated with control of heartbeat, ecdysis behavior initiation, and cuticle coloration. These physiological effects are mediated by the CRZ receptor (CRZR). In order to understand the role of the CRZ-signaling pathway in Rhodnius prolixus, the cDNA sequence encoding the Rhopr-CRZR was isolated and cloned revealing two splice variants (Rhopr-CRZR-α and β). Sequence analysis revealed characteristics of rhodopsin-like GPCRs. Rhopr-CRZR-α and β were dose-dependently activated by Rhopr-CRZ with EC50 values of 2.7 and 1 nM, respectively, when tested in a functional receptor assay using CHOKI-aeq cells. Neither receptors were activated by the evolutionarily-related peptides, Rhopr-AKH, or Rhopr-ACP. For 5th instars, qPCR revealed expression of Rhopr-CRZR transcript in the CNS, the dorsal vessel, abdominal dorsal epidermis, and prothoracic glands with associated fat body. Interestingly, transcript expression was also found in the female and male reproductive tissues. Rhopr-CRZR transcript was reduced after injection of dsCRZR into adult R. prolixus. In these insects, the basal heartbeat rate was reduced in vivo, and the increase in heartbeat frequency normally produced by CRZ on dorsal vessel in vitro was much reduced. No effect of dsCRZR injection was seen on ecdysis or coloration of the cuticle. PMID:27536213

  16. Identification and Characterization of the Corazonin Receptor and Possible Physiological Roles of the Corazonin-Signaling Pathway in Rhodnius prolixus.

    PubMed

    Hamoudi, Zina; Lange, Angela B; Orchard, Ian

    2016-01-01

    Neuropeptides control many physiological and endocrinological processes in animals, acting as neuroactive chemicals within the central and peripheral nervous systems. Corazonin (CRZ) is one such neuropeptide that has a variety of physiological roles associated with control of heartbeat, ecdysis behavior initiation, and cuticle coloration. These physiological effects are mediated by the CRZ receptor (CRZR). In order to understand the role of the CRZ-signaling pathway in Rhodnius prolixus, the cDNA sequence encoding the Rhopr-CRZR was isolated and cloned revealing two splice variants (Rhopr-CRZR-α and β). Sequence analysis revealed characteristics of rhodopsin-like GPCRs. Rhopr-CRZR-α and β were dose-dependently activated by Rhopr-CRZ with EC50 values of 2.7 and 1 nM, respectively, when tested in a functional receptor assay using CHOKI-aeq cells. Neither receptors were activated by the evolutionarily-related peptides, Rhopr-AKH, or Rhopr-ACP. For 5th instars, qPCR revealed expression of Rhopr-CRZR transcript in the CNS, the dorsal vessel, abdominal dorsal epidermis, and prothoracic glands with associated fat body. Interestingly, transcript expression was also found in the female and male reproductive tissues. Rhopr-CRZR transcript was reduced after injection of dsCRZR into adult R. prolixus. In these insects, the basal heartbeat rate was reduced in vivo, and the increase in heartbeat frequency normally produced by CRZ on dorsal vessel in vitro was much reduced. No effect of dsCRZR injection was seen on ecdysis or coloration of the cuticle. PMID:27536213

  17. The role of ascorbate peroxidase, guaiacol peroxidase, and polysaccharides in cassava (Manihot esculenta Crantz) roots under postharvest physiological deterioration.

    PubMed

    Uarrota, Virgílio Gavicho; Moresco, Rodolfo; Schmidt, Eder Carlos; Bouzon, Zenilda Laurita; Nunes, Eduardo da Costa; Neubert, Enilto de Oliveira; Peruch, Luiz Augusto Martins; Rocha, Miguel; Maraschin, Marcelo

    2016-04-15

    This study aimed to investigate the role of ascorbate peroxidase (APX), guaiacol peroxidase (GPX), polysaccharides, and protein contents associated with the early events of postharvest physiological deterioration (PPD) in cassava roots. Increases in APX and GPX activity, as well as total protein contents occurred from 3 to 5 days of storage and were correlated with the delay of PPD. Cassava samples stained with Periodic Acid-Schiff (PAS) highlighted the presence of starch and cellulose. Degradation of starch granules during PPD was also detected. Slight metachromatic reaction with toluidine blue is indicative of increasing of acidic polysaccharides and may play an important role in PPD delay. Principal component analysis (PCA) classified samples according to their levels of enzymatic activity based on the decision tree model which showed GPX and total protein amounts to be correlated with PPD. The Oriental (ORI) cultivar was more susceptible to PPD. PMID:26617011

  18. Beyond skin color: emerging roles of melanin-concentrating hormone in energy homeostasis and other physiological functions.

    PubMed

    Shi, Yuguang

    2004-10-01

    Melanin-concentrating hormone (MCH) is a cyclic peptide that mediates its effects by the activation of two G-protein-coupled seven transmembrane receptors (MCHR1 and MCHR2) in humans. In contrast to its primary role in regulating skin color in fish, MCH has evolved in mammals to regulate dynamic physiological functions, from food intake and energy expenditure to behavior and emotion. Chronic infusion or transgenic expression of MCH stimulates feeding and increases adipocity, whereas targeted deletion of MCH or its receptor (MCHR1) leads to resistance to diet-induced obesity with increased energy expenditure and thermogenesis. The involvement of MCH in energy homeostasis and in brain activity has also been validated in mice treated with non-peptide antagonists, suggesting that blockade of MCHR1 could provide a viable approach for treatment of obesity and certain neurological disorders. This review focuses on emerging roles of MCH in regulating central and peripheral mechanisms. PMID:15476927

  19. The Role of Gap Junction Channels During Physiologic and Pathologic Conditions of the Human Central Nervous System

    PubMed Central

    Basilio, Daniel; Sáez, Juan C.; Orellana, Juan A.; Raine, Cedric S.; Bukauskas, Feliksas; Bennett, Michael V. L.; Berman, Joan W.

    2013-01-01

    Gap junctions (GJs) are expressed in most cell types of the nervous system, including neuronal stem cells, neurons, astrocytes, oligodendrocytes, cells of the blood brain barrier (endothelial cells and astrocytes) and under inflammatory conditions in microglia/macrophages. GJs connect cells by the docking of two hemichannels, one from each cell with each hemichannel being formed by 6 proteins named connexins (Cx). Unapposed hemichannels (uHC) also can be open on the surface of the cells allowing the release of different intracellular factors to the extracellular space. GJs provide a mechanism of cell-to-cell communication between adjacent cells that enables the direct exchange of intracellular messengers, such as calcium, nucleotides, IP3, and diverse metabolites, as well as electrical signals that ultimately coordinate tissue homeostasis, proliferation, differentiation, metabolism, cell survival and death. Despite their essential functions in physiological conditions, relatively little is known about the role of GJs and uHC in human diseases, especially within the nervous system. The focus of this review is to summarize recent findings related to the role of GJs and uHC in physiologic and pathologic conditions of the central nervous system. PMID:22438035

  20. The dual origins of affect in nightmares: the roles of physiological homeostasis and memory.

    PubMed

    Schulze, Georg

    2006-01-01

    Strong negative affect is a key and distressing ingredient of nightmares. Affect in nightmares arises either from the new generation of affective states due to physiological imbalances that occur during sleep or from the reactivation of affect-laden memories. The disruption of physiological balance produces a negative hedonic state, restoration of this balance produces a positive hedonic state, and when balance is attained, a neutral hedonic state results. As a result, hedonic states provoke behaviors in defense of homeostasis, then guide and terminate them. When, due to inadvertent behavior, a pronounced disruption of homeostasis occurs after sleep onset, the resultant strong negative hedonic state is likely to precipitate a nightmare and may lead to awakening. During normal wakefulness, associations of the interplay between stimuli and behaviors that disrupt homeostasis, those that restore homeostasis, and the affective states generated in the process, are committed to memory as affecto-cognitive ensembles. Sleep serves to build or rebuild neural architecture to effect development or to compensate for use- or disease-related wear (e.g. repair oxidative damage). Dreaming serves to synchronize or resynchronize such modified neural circuits with each other and those not modified. Hence, during dreaming, affecto-cognitive ensembles may get reactivated as part of the synchronization process. Where such an ensemble contains strong negative affect (i.e., due to strong affect generated during the original experience), a nightmare may be precipitated. Although both can occur throughout life, the latter type of nightmare is more likely in adults and the former in young children. For the latter memory-based behavioral therapy and for the former education and care are expected to be useful. For both types of nightmare, because strong negative affect is deemed dependent on noradrenergic outflow from the locus coeruleus, the administration of alpha-adrenergic antagonists will

  1. Role of central vagal 5-HT3 receptors in gastrointestinal physiology and pathophysiology

    PubMed Central

    Browning, Kirsteen N.

    2015-01-01

    Vagal neurocircuits are vitally important in the co-ordination and modulation of GI reflexes and homeostatic functions. 5-hydroxytryptamine (5-HT; serotonin) is critically important in the regulation of several of these autonomic gastrointestinal (GI) functions including motility, secretion and visceral sensitivity. While several 5-HT receptors are involved in these physiological responses, the ligand-gated 5-HT3 receptor appears intimately involved in gut-brain signaling, particularly via the afferent (sensory) vagus nerve. 5-HT is released from enterochromaffin cells in response to mechanical or chemical stimulation of the GI tract which leads to activation of 5-HT3 receptors on the terminals of vagal afferents. 5-HT3 receptors are also present on the soma of vagal afferent neurons, including GI vagal afferent neurons, where they can be activated by circulating 5-HT. The central terminals of vagal afferents also exhibit 5-HT3 receptors that function to increase glutamatergic synaptic transmission to second order neurons of the nucleus tractus solitarius within the brainstem. While activation of central brainstem 5-HT3 receptors modulates visceral functions, it is still unclear whether central vagal neurons, i.e., nucleus of the tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV) neurons themselves also display functional 5-HT3 receptors. Thus, activation of 5-HT3 receptors may modulate the excitability and activity of gastrointestinal vagal afferents at multiple sites and may be involved in several physiological and pathophysiological conditions, including distention- and chemical-evoked vagal reflexes, nausea, and vomiting, as well as visceral hypersensitivity. PMID:26578870

  2. Effects of simulated microgravity on Streptococcus mutans physiology and biofilm structure.

    PubMed

    Cheng, Xingqun; Xu, Xin; Chen, Jing; Zhou, Xuedong; Cheng, Lei; Li, Mingyun; Li, Jiyao; Wang, Renke; Jia, Wenxiang; Li, Yu-Qing

    2014-10-01

    Long-term spaceflights will eventually become an inevitable occurrence. Previous studies have indicated that oral infectious diseases, including dental caries, were more prevalent in astronauts due to the effect of microgravity. However, the impact of the space environment, especially the microgravity environment, on the virulence factors of Streptococcus mutans, a major caries-associated bacterium, is yet to be explored. In the present study, we investigated the impact of simulated microgravity on the physiology and biofilm structure of S. mutans. We also explored the dual-species interaction between S. mutans and Streptococcus sanguinis under a simulated microgravity condition. Results indicated that the simulated microgravity condition can enhance the acid tolerance ability, modify the biofilm architecture and extracellular polysaccharide distribution of S. mutans, and increase the proportion of S. mutans within a dual-species biofilm, probably through the regulation of various gene expressions. We hypothesize that the enhanced competitiveness of S. mutans under simulated microgravity may cause a multispecies micro-ecological imbalance, which would result in the initiation of dental caries. Our current findings are consistent with previous studies, which revealed a higher astronaut-associated incidence of caries. Further research is required to explore the detailed mechanisms. PMID:25109245

  3. Numerical Bifurcation Analysis of Physiologically Structured Populations: Consumer-Resource, Cannibalistic and Trophic Models.

    PubMed

    Sánchez Sanz, Julia; Getto, Philipp

    2016-07-01

    With the aim of applying numerical methods, we develop a formalism for physiologically structured population models in a new generality that includes consumer-resource, cannibalism and trophic models. The dynamics at the population level are formulated as a system of Volterra functional equations coupled to ODE. For this general class, we develop numerical methods to continue equilibria with respect to a parameter, detect transcritical and saddle-node bifurcations and compute curves in parameter planes along which these bifurcations occur. The methods combine curve continuation, ODE solvers and test functions. Finally, we apply the methods to the above models using existing data for Daphnia magna consuming Algae and for Perca fluviatilis feeding on Daphnia magna. In particular, we validate the methods by deriving expressions for equilibria and bifurcations with respect to which we compute errors, and by comparing the obtained curves with curves that were computed earlier with other methods. We also present new curves to show how the methods can easily be applied to derive new biological insight. Schemes of algorithms are included. PMID:27484496

  4. Fitting C2 Continuous Parametric Surfaces to Frontiers Delimiting Physiologic Structures

    PubMed Central

    Bayer, Jason D.

    2014-01-01

    We present a technique to fit C2 continuous parametric surfaces to scattered geometric data points forming frontiers delimiting physiologic structures in segmented images. Such mathematical representation is interesting because it facilitates a large number of operations in modeling. While the fitting of C2 continuous parametric curves to scattered geometric data points is quite trivial, the fitting of C2 continuous parametric surfaces is not. The difficulty comes from the fact that each scattered data point should be assigned a unique parametric coordinate, and the fit is quite sensitive to their distribution on the parametric plane. We present a new approach where a polygonal (quadrilateral or triangular) surface is extracted from the segmented image. This surface is subsequently projected onto a parametric plane in a manner to ensure a one-to-one mapping. The resulting polygonal mesh is then regularized for area and edge length. Finally, from this point, surface fitting is relatively trivial. The novelty of our approach lies in the regularization of the polygonal mesh. Process performance is assessed with the reconstruction of a geometric model of mouse heart ventricles from a computerized tomography scan. Our results show an excellent reproduction of the geometric data with surfaces that are C2 continuous. PMID:24782911

  5. Investigations of Protein Structure and Function Using the Scientific Literature: An Assignment for an Undergraduate Cell Physiology Course

    ERIC Educational Resources Information Center

    Mulnix, Amy B.

    2003-01-01

    Undergraduate biology curricula are being modified to model and teach the activities of scientists better. The assignment described here, one that investigates protein structure and function, was designed for use in a sophomore-level cell physiology course at Earlham College. Students work in small groups to read and present in poster format on…

  6. Role of PP1 in the regulation of Ca cycling in cardiac physiology and pathophysiology

    PubMed Central

    Nicolaou, Persoulla; Kranias, Evangelia G.

    2009-01-01

    Type 1 protein phosphatase (PP1) is a critical regulator of several cellular processes. In the heart, it mediates restoration of contractility to basal levels by dephosphorylating key phospho-proteins, after beta-adrenergic stimulation. PP1 is a holoenzyme consisting of its catalytic and regulatory subunits. The regulatory proteins anchor the catalytic subunit to desired subcellular locations, define substrate specificity and modulate catalytic activity. At the level of the cardiac sarcoplasmic reticulum (SR), PP1 is regulated by two endogenous inhibitors, Inhibitor-1 (I-1) and Inhibitor-2 (I-2), which modulate its activity according to cellular conditions. In addition, the striated muscle-specific glycogen-targeting subunit, GM/RGL, targets PP1 to the SR vicinity. Regulation of PP1 activity is highly important in maintaining proper cardiac function under physiological conditions. In fact, aberrant Ca handling and depressed contractility, observed in human and experimental heart failure, have been at least partly attributed to increases in the catalytic activity of PP1, mediated by impaired regulation via its endogenous inhibitors. Importantly, increases in the level and activity of I-1 and I-2 in animal models have been successful in ameliorating the cardiac dysfunction and remodeling in heart failure, suggesting that PP1 inhibition may be a plausible therapeutic strategy to alleviate the detrimental manifestations of heart failure. PMID:19273294

  7. Negative peer status and relational victimization in children and adolescents: the role of stress physiology.

    PubMed

    Lafko, Nicole; Murray-Close, Dianna; Shoulberg, Erin K

    2015-01-01

    The purpose of the current investigation was to determine the unique associations between two subtypes of low peer status, peer rejection and unpopularity, and changes in relational victimization over time. This study also investigated if these associations were moderated by sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) reactivity to peer stress. Sixty-one girls attending (M(age) = 11.91 years, SD = 1.62; predominantly Caucasian) a residential summer camp were followed across 1 calendar year. Participants' skin conductance and respiratory sinus arrhythmia were assessed during a laboratory stress protocol. Peer rejection and unpopularity were measured using peer nomination techniques and counselors reported on relational victimization. Both unpopularity and rejection were associated with increased relational victimization over time among girls who exhibited reciprocal SNS activation (i.e., high SNS reactivity coupled with PNS withdrawal). Rejection was also associated with subsequent victimization among girls exhibiting reciprocal PNS activation (i.e., low SNS reactivity, PNS activation). Findings underscore the biosocial interactions between low peer status and physiological reactivity in the prediction of peer maltreatment over time. PMID:24246017

  8. The physiological role and pharmacological potential of nitric oxide in neutrophil activation.

    PubMed

    Armstrong, R

    2001-08-01

    There is contention over whether human neutrophils produce physiologically significant levels of nitric oxide (NO) during inflammatory reactions. Nevertheless, regardless of its cell source, NO does exert regulatory effects on neutrophil function. Depending on experimental conditions, NO can either inhibit or enhance neutrophil activation, in both cases probably acting through cyclic GMP. The explanation for these apparently contradictory findings may be that the effect depends upon the concentration of NO: low concentrations of NO being stimulatory and high concentrations inhibitory. Nitrite, produced at high concentrations from NO during inflammation, can react with neutrophil myeloperoxidase-derived hypochlorous acid (HOCl) to form the active oxidant nitryl chloride, a species capable of nitrating tyrosine and tyrosyl residues on proteins. Whether nitryl chloride acts to limit or amplify the oxidant effects of myeloperoxidase is not yet clear, although formation of nitrotyrosine has been linked with nitration of phagocytosed bacteria. Clearly, a better understanding of the inflammatory effects of NO on neutrophils is needed before the therapeutic potential of NO donors or inhibitors in inflammation can be realised. PMID:11515815

  9. Deciphering physiological role of the mechanosensitive TRPV4 channel in the distal nephron

    PubMed Central

    Mamenko, M.; Zaika, O.; Boukelmoune, N.; O'Neil, R. G.

    2014-01-01

    Long-standing experimental evidence suggests that epithelial cells in the renal tubule are able to sense osmotic and pressure gradients caused by alterations in ultrafiltrate flow by elevating intracellular Ca2+ concentration. These responses are viewed as critical regulators of a variety of processes ranging from transport of water and solutes to cellular growth and differentiation. A loss in the ability to sense mechanical stimuli has been implicated in numerous pathologies associated with systemic imbalance of electrolytes and to the development of polycystic kidney disease. The molecular mechanisms conferring mechanosensitive properties to epithelial tubular cells involve activation of transient receptor potential (TRP) channels, such as TRPV4, allowing direct Ca2+ influx to increase intracellular Ca2+ concentration. In this review, we critically analyze the current evidence about signaling determinants of TRPV4 activation by luminal flow in the distal nephron and discuss how dysfunction of this mechanism contributes to the progression of polycystic kidney disease. We also review the physiological relevance of TRPV4-based mechanosensitivity in controlling flow-dependent K+ secretion in the distal renal tubule. PMID:25503733

  10. GI stem cells – new insights into roles in physiology and pathophysiology

    PubMed Central

    von Furstenberg, Richard J.

    2016-01-01

    Abstract This overview gives a brief historical summary of key discoveries regarding stem cells of the small intestine. The current concept is that there are two pools of intestinal stem cells (ISCs): an actively cycling pool that is marked by Lgr5, is relatively homogeneous and is responsible for daily turnover of the epithelium; and a slowly cycling or quiescent pool that functions as reserve ISCs. The latter pool appears to be quite heterogeneous and may include partially differentiated epithelial lineages that can reacquire stem cell characteristics following injury to the intestine. Markers and methods of isolation for active and quiescent ISC populations are described as well as the numerous important advances that have been made in approaches to the in vitro culture of ISCs and crypts. Factors regulating ISC biology are briefly summarized and both known and unknown aspects of the ISC niche are discussed. Although most of our current knowledge regarding ISC physiology and pathophysiology has come from studies with mice, recent work with human tissue highlights the potential translational applications arising from this field of research. Many of these topics are further elaborated in the following articles. PMID:27107928