Sample records for physiology plant

  1. Regulating plant physiology with organic electronics.

    PubMed

    Poxson, David J; Karady, Michal; Gabrielsson, Roger; Alkattan, Aziz Y; Gustavsson, Anna; Doyle, Siamsa M; Robert, Stéphanie; Ljung, Karin; Grebe, Markus; Simon, Daniel T; Berggren, Magnus

    2017-05-02

    The organic electronic ion pump (OEIP) provides flow-free and accurate delivery of small signaling compounds at high spatiotemporal resolution. To date, the application of OEIPs has been limited to delivery of nonaromatic molecules to mammalian systems, particularly for neuroscience applications. However, many long-standing questions in plant biology remain unanswered due to a lack of technology that precisely delivers plant hormones, based on cyclic alkanes or aromatic structures, to regulate plant physiology. Here, we report the employment of OEIPs for the delivery of the plant hormone auxin to induce differential concentration gradients and modulate plant physiology. We fabricated OEIP devices based on a synthesized dendritic polyelectrolyte that enables electrophoretic transport of aromatic substances. Delivery of auxin to transgenic Arabidopsis thaliana seedlings in vivo was monitored in real time via dynamic fluorescent auxin-response reporters and induced physiological responses in roots. Our results provide a starting point for technologies enabling direct, rapid, and dynamic electronic interaction with the biochemical regulation systems of plants.

  2. Regulating plant physiology with organic electronics

    PubMed Central

    Poxson, David J.; Karady, Michal; Alkattan, Aziz Y.; Gustavsson, Anna; Robert, Stéphanie; Grebe, Markus; Berggren, Magnus

    2017-01-01

    The organic electronic ion pump (OEIP) provides flow-free and accurate delivery of small signaling compounds at high spatiotemporal resolution. To date, the application of OEIPs has been limited to delivery of nonaromatic molecules to mammalian systems, particularly for neuroscience applications. However, many long-standing questions in plant biology remain unanswered due to a lack of technology that precisely delivers plant hormones, based on cyclic alkanes or aromatic structures, to regulate plant physiology. Here, we report the employment of OEIPs for the delivery of the plant hormone auxin to induce differential concentration gradients and modulate plant physiology. We fabricated OEIP devices based on a synthesized dendritic polyelectrolyte that enables electrophoretic transport of aromatic substances. Delivery of auxin to transgenic Arabidopsis thaliana seedlings in vivo was monitored in real time via dynamic fluorescent auxin-response reporters and induced physiological responses in roots. Our results provide a starting point for technologies enabling direct, rapid, and dynamic electronic interaction with the biochemical regulation systems of plants. PMID:28420793

  3. Evolutionary plant physiology: Charles Darwin's forgotten synthesis

    NASA Astrophysics Data System (ADS)

    Kutschera, Ulrich; Niklas, Karl J.

    2009-11-01

    Charles Darwin dedicated more than 20 years of his life to a variety of investigations on higher plants (angiosperms). It has been implicitly assumed that these studies in the fields of descriptive botany and experimental plant physiology were carried out to corroborate his principle of descent with modification. However, Darwin’s son Francis, who was a professional plant biologist, pointed out that the interests of his father were both of a physiological and an evolutionary nature. In this article, we describe Darwin’s work on the physiology of higher plants from a modern perspective, with reference to the following topics: circumnutations, tropisms and the endogenous oscillator model; the evolutionary patterns of auxin action; the root-brain hypothesis; phloem structure and photosynthesis research; endosymbioses and growth-promoting bacteria; photomorphogenesis and phenotypic plasticity; basal metabolic rate, the Pfeffer-Kleiber relationship and metabolic optimality theory with respect to adaptive evolution; and developmental constraints versus functional equivalence in relationship to directional natural selection. Based on a review of these various fields of inquiry, we deduce the existence of a Darwinian (evolutionary) approach to plant physiology and define this emerging scientific discipline as the experimental study and theoretical analysis of the functions of green, sessile organisms from a phylogenetic perspective.

  4. Some Recent Advances in Plant Physiology

    ERIC Educational Resources Information Center

    Stafford, G. A.

    1972-01-01

    A popular review of plant physiological research, emphasizing those apsects of plant metabolism where there has been a recent shift in emphasis that is not yet reflected in secondary school advanced texts. (AL)

  5. Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology?

    PubMed

    Savage, Jessica A; Clearwater, Michael J; Haines, Dustin F; Klein, Tamir; Mencuccini, Maurizio; Sevanto, Sanna; Turgeon, Robert; Zhang, Cankui

    2016-04-01

    Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment. © 2015 John Wiley & Sons Ltd.

  6. Elements of plant physiology in theophrastus' botany.

    PubMed

    Pennazio, Sergio

    2014-01-01

    For thousands of years the plants were considered only as a source of food and medicine, and as ornamental objects. Only from the fifth century BC, some philosophers of Ancient Greece realized that the plants were living organisms but, unfortunately, their works have come to us as fragments that we often know from the biological works of Aristotle. This eminent philosopher and man of science, however, did not give us a complete work on the plants, which he often promised to write. From scattered fragments of his conspicuous biological work, it emerges a concept of nutritive soul that, in the presence of heat and moisture, allows plants to grow and reproduce. The task of writing a comprehensive botanical work was delegated to his first pupil, Theophrastus, who left us two treatises over time translated into the various languages up to the current versions (Enquiry into plants, On the causes of plants). The plant life is described and interpreted on the basis of highly accurate observations. The physiological part of his botany is essentially the nutrition: According to Theophrastus, plants get matter and moisture from the soil through root uptake and process the absorbed substances transforming them into food, thanks to the heat. The processing (pepsis, coction) of matter into the food represents an extraordinary physiological intuition because individual organs of a plant appear to perform its specific transformation. Despite that Theophrastus did not do scientific experiments or use special methods other than the sharpness of his observations, he can be considered the forerunner of a plant physiology that would take rebirth only after two millennia.

  7. Julius Sachs (1868): The father of plant physiology.

    PubMed

    Kutschera, Ulrich; Niklas, Karl J

    2018-05-17

    The year 2018 marks the 150th anniversary of the first publication of Julius von Sachs' (1832-1897) Lehrbuch der Botanik (Textbook of Botany), which provided a comprehensive summary of what was then known about the plant sciences. Three years earlier, in 1865, Sachs produced the equally impressive Handbuch der Experimental-Physiologie der Pflanzen (Handbook of Experimental Plant Physiology), which summarized the state of knowledge in all aspects of the discipline known today as plant physiology. Both of these books provided numerous insights based on Sachs' seminal experiments. By virtue of a reliance on detailed empirical observation and the rigorous application of chemical and physical principles, it is fair to say that the publication of these two monumental works marked the beginning of what can be called "modern-day" plant science. Moreover, Sachs' Lehrbuch der Botanik prefigured the ascendance of plant molecular biology and the systems biology of photoautotrophic organisms. Regrettably, many of the insights of this great scientist have been forgotten by the generations who followed. It is only fitting, therefore, that the anniversary of the publication of the Lehrbuch der Botanik and the career of "the father of plant physiology" should be honored and reviewed, particularly because Sachs established the physiology of green organisms as an integral branch of botany and incorporated a Darwinian perspective into plant biology. Here we highlight key insights, with particular emphasis on Sachs' detailed discussion of sexual reproduction at the cellular level and his endorsement of Darwinian evolution. © 2018 Botanical Society of America.

  8. Physiology of Plants, Science (Experimental): 5315.41.

    ERIC Educational Resources Information Center

    Gunn, William C.

    This unit of instruction deals with the physiological activities of plants. Attention is focused on the principles which underlie the activities of the typical green land plant. Emphasis is placed on biological processes such as photosynthesis, water transport, light responses, mineral nutrition, reproduction, and growth. The prerequisite for…

  9. Urban plant physiology: adaptation-mitigation strategies under permanent stress.

    PubMed

    Calfapietra, Carlo; Peñuelas, Josep; Niinemets, Ülo

    2015-02-01

    Urban environments that are stressful for plant function and growth will become increasingly widespread in future. In this opinion article, we define the concept of 'urban plant physiology', which focuses on plant responses and long term adaptations to urban conditions and on the capacity of urban vegetation to mitigate environmental hazards in urbanized settings such as air and soil pollution. Use of appropriate control treatments would allow for studies in urban environments to be comparable to expensive manipulative experiments. In this opinion article, we propose to couple two approaches, based either on environmental gradients or manipulated gradients, to develop the concept of urban plant physiology for assessing how single or multiple environmental factors affect the key environmental services provided by urban forests. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Root bacterial endophytes alter plant phenotype, but not physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.

    Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant phenotype. Here, we chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, netmore » photosynthesis, net photosynthesis at saturating light–A sat, and saturating CO 2–A max). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did not significantly increase plant carbon fixation and biomass, but their presence altered where and how carbon was being allocated in the plant host.« less

  11. Root bacterial endophytes alter plant phenotype, but not physiology

    DOE PAGES

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.; ...

    2016-11-01

    Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant phenotype. Here, we chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, netmore » photosynthesis, net photosynthesis at saturating light–A sat, and saturating CO 2–A max). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did not significantly increase plant carbon fixation and biomass, but their presence altered where and how carbon was being allocated in the plant host.« less

  12. Physiological Conjunction of Allelochemicals and Desert Plants

    PubMed Central

    Dudai, Nativ; Rachmilevitch, Shimon

    2013-01-01

    Plants exchange signals with other physical and biological entities in their habitat, a form of communication termed allelopathy. The underlying principles of allelopathy and secondary-metabolite production are still poorly understood, especially in desert plants. The coordination and role of secondary metabolites were examined as a cause of allelopathy in plants thriving under arid and semiarid soil conditions. Desert plant species, Origanum dayi, Artemisia sieberi and Artemisia judaica from two different sources (cultivar cuttings and wild seeds) were studied in their natural habitats. Growth rate, relative water content, osmotic potential, photochemical efficiency, volatile composition and vital factors of allelopathy were analyzed at regular intervals along four seasons with winter showing optimum soil water content and summer showing water deficit conditions. A comprehensive analysis of the volatile composition of the leaves, ambient air and soil in the biological niche of the plants under study was carried out to determine the effects of soil water conditions and sample plants on the surrounding flora. Significant morpho-physiological changes were observed across the seasons and along different soil water content. Metabolic analysis showed that water deficit was the key for driving selective metabolomic shifts. A. judaica showed the least metabolic shifts, while A. sieberi showed the highest shifts. All the species exhibited high allelopathic effects; A. judaica displayed relatively higher growth-inhibition effects, while O. dayi showed comparatively higher germination-inhibition effects in germination assays. The current study may help in understanding plant behavior, mechanisms underlying secondary-metabolite production in water deficit conditions and metabolite-physiological interrelationship with allelopathy in desert plants, and can help cull economic benefits from the produced volatiles. PMID:24339945

  13. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants

    PubMed Central

    Hasanuzzaman, Mirza; Nahar, Kamrun; Alam, Md. Mahabub; Roychowdhury, Rajib; Fujita, Masayuki

    2013-01-01

    High temperature (HT) stress is a major environmental stress that limits plant growth, metabolism, and productivity worldwide. Plant growth and development involve numerous biochemical reactions that are sensitive to temperature. Plant responses to HT vary with the degree and duration of HT and the plant type. HT is now a major concern for crop production and approaches for sustaining high yields of crop plants under HT stress are important agricultural goals. Plants possess a number of adaptive, avoidance, or acclimation mechanisms to cope with HT situations. In addition, major tolerance mechanisms that employ ion transporters, proteins, osmoprotectants, antioxidants, and other factors involved in signaling cascades and transcriptional control are activated to offset stress-induced biochemical and physiological alterations. Plant survival under HT stress depends on the ability to perceive the HT stimulus, generate and transmit the signal, and initiate appropriate physiological and biochemical changes. HT-induced gene expression and metabolite synthesis also substantially improve tolerance. The physiological and biochemical responses to heat stress are active research areas, and the molecular approaches are being adopted for developing HT tolerance in plants. This article reviews the recent findings on responses, adaptation, and tolerance to HT at the cellular, organellar, and whole plant levels and describes various approaches being taken to enhance thermotolerance in plants. PMID:23644891

  14. Causes of Low and High Citation Potentials in Science: Citation Analysis of Biochemistry and Plant Physiology Journals.

    ERIC Educational Resources Information Center

    Marton, Janos

    1983-01-01

    Citation data of 16 biochemistry and plant physiology journals show that reasons for lower citation potentials of plant physiology articles are: (1) readership is narrower for plant physiology journals; (2) plant physiologists can cite fewer thematically relevant new articles; and (3) plant physiology research fields are more isolated. References…

  15. Natural selection on plant physiological traits in an urban environment

    NASA Astrophysics Data System (ADS)

    Lambrecht, Susan C.; Mahieu, Stephanie; Cheptou, Pierre-Olivier

    2016-11-01

    Current rates of urbanization are creating new opportunities for studying urban plant ecology, but our knowledge of urban plant physiology lags behind that of other ecosystems. Moreover, higher temperatures, elevated CO2, and increased inorganic nitrogen deposition along with altered moisture regimes of urban as compared to rural areas creates a compelling analog for studying adaptations of plants to climate change. We grew plants under common conditions in a greenhouse to determine whether populations of Crepis sancta (Asteraceae) differed in phenological, morphological, and physiological traits. We also used a field experiment to test for natural selection on these traits in urban Montpellier, France. Urban plants flowered and senesced later than rural plants, and natural selection favored later phenology in the urban habitat. Natural selection also favored larger plants with more leaves, and increased photosynthesis and leaf nitrogen concentration. Ours is the first study to document selection on plant functional traits in an urban habitat and, as such, advances our understanding of urban plant ecology and possible adaptations to climate change.

  16. [Isolation and physiological characteristics of endophytic actinobacteria from medicinal plants].

    PubMed

    Du, Huijing; Su, Jing; Yu, Liyan; Zhang, Yuqin

    2013-01-04

    To isolate, incubate and characterize cultivable endophytic antinobacteria from medicinal plants, and analyze the diversity of the endophytic antinobacteria, then explore the novel microbial resources. Ten media were used to isolate endophytic antinobacteria from 37 fresh medicinal plant tissue samples. The optimal cultivation conditions for endophytic antinobacteria were determined by comparison. Based on the morphology of the colonies and cells of the new isolates, we chose 174 isolates to analyze their 16S rRNA gene sequences and the diversity of the medicinal plant endophytic antinobacteria. The physiological characteristics of 27 representative strains were studied using Biolog GEN III MicroPlates, API 50CH and API ZYM kits. In total 940 endophytics affiliated to 47 genera of 30 families were isolated, among which more than 600 actinobacteria belonged to 34 genera and 7 unknown taxa. Good growth of the endophytic antinobacteria on PYG (peptone-yeast-glycerol) medium with pH 7.2 at 28-32 degrees C was observed. Physiological characteristics differences of these isolates related to their phylogenetic relationships. Greater differences were shown among the strains from the same host plants than those from differ,ent plants grown in the same area. There are great diverse endophytic actinobacteria inside the medicinal plants. No direct relationship of the endophytic actinobacteria from medicinal plants with the host plants in the sole carbon source utilization, fermentation of carbon sources to produce acid and the enzyme activities was found, while it seemed that the physiological characteristics of the isolates related to the geographical distribution of their host.

  17. Methods for determining the physiological state of a plant

    DOEpatents

    Kramer, David M.; Sacksteder, Colette

    2003-09-23

    The present invention provides methods for measuring a photosynthetic parameter. The methods of the invention include the steps of: (a) illuminating a plant leaf until steady-state photosynthesis is achieved; (b) subjecting the illuminated plant leaf to a period of darkness; (c) using a kinetic spectrophotometer or kinetic spectrophotometer/fluorimeter to collect spectral data from the plant leaf treated in accordance with steps (a) and (b); and (d) determining a photosynthetic parameter from the spectral data. In another aspect, the invention provides methods for determining the physiological state of a plant.

  18. Evolutionary History Underlies Plant Physiological Responses to Global Change Since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Becklin, K. M.; Medeiros, J. S.; Sale, K. R.; Ward, J. K.

    2014-12-01

    Assessing family and species-level variation in physiological responses to global change across geologic time is critical for understanding factors that underlie changes in species distributions and community composition. Ancient plant specimens preserved within packrat middens are invaluable in this context since they allow for comparisons between co-occurring plant lineages. Here we used modern and ancient plant specimens preserved within packrat middens from the Snake Range, NV to investigate the physiological responses of a mixed montane conifer community to global change since the last glacial maximum. We used a conceptual model to infer relative changes in stomatal conductance and maximum photosynthetic capacity from measures of leaf carbon isotopes, stomatal characteristics, and leaf nitrogen content. Our results indicate that most of the sampled taxa decreased stomatal conductance and/or photosynthetic capacity from glacial to modern times. However, plant families differed in the timing and magnitude of these physiological responses. Additionally, leaf-level responses were more similar within plant families than within co-occurring species assemblages. This suggests that adaptation at the level of leaf physiology may not be the main determinant of shifts in community composition, and that plant evolutionary history may drive physiological adaptation to global change over recent geologic time.

  19. Design of Plant Eco-physiology Monitoring System Based on Embedded Technology

    NASA Astrophysics Data System (ADS)

    Li, Yunbing; Wang, Cheng; Qiao, Xiaojun; Liu, Yanfei; Zhang, Xinlu

    A real time system has been developed to collect plant's growth information comprehensively. Plant eco-physiological signals can be collected and analyzed effectively. The system adopted embedded technology: wireless sensors network collect the eco-physiological information. Touch screen and ARM microprocessor make the system work independently without PC. The system is versatile and all parameters can be set by the touch screen. Sensors' intelligent compensation can be realized in this system. Information can be displayed by either graphically or in table mode. The ARM microprocessor provides the interface to connect with the internet, so the system support remote monitoring and controlling. The system has advantages of friendly interface, flexible construction and extension. It's a good tool for plant's management.

  20. What Has Natural Variation Taught Us about Plant Development, Physiology, and Adaptation?

    PubMed Central

    Alonso-Blanco, Carlos; Aarts, Mark G.M.; Bentsink, Leonie; Keurentjes, Joost J.B.; Reymond, Matthieu; Vreugdenhil, Dick; Koornneef, Maarten

    2009-01-01

    Nearly 100 genes and functional polymorphisms underlying natural variation in plant development and physiology have been identified. In crop plants, these include genes involved in domestication traits, such as those related to plant architecture, fruit and seed structure and morphology, as well as yield and quality traits improved by subsequent crop breeding. In wild plants, comparable traits have been dissected mainly in Arabidopsis thaliana. In this review, we discuss the major contributions of the analysis of natural variation to our understanding of plant development and physiology, focusing in particular on the timing of germination and flowering, plant growth and morphology, primary metabolism, and mineral accumulation. Overall, functional polymorphisms appear in all types of genes and gene regions, and they may have multiple mutational causes. However, understanding this diversity in relation to adaptation and environmental variation is a challenge for which tools are now available. PMID:19574434

  1. Molecular and physiological strategies to increase aluminum resistance in plants.

    PubMed

    Inostroza-Blancheteau, Claudio; Rengel, Zed; Alberdi, Miren; de la Luz Mora, María; Aquea, Felipe; Arce-Johnson, Patricio; Reyes-Díaz, Marjorie

    2012-03-01

    Aluminum (Al) toxicity is a primary limitation to plant growth on acid soils. Root meristems are the first site for toxic Al accumulation, and therefore inhibition of root elongation is the most evident physiological manifestation of Al toxicity. Plants may resist Al toxicity by avoidance (Al exclusion) and/or tolerance mechanisms (detoxification of Al inside the cells). The Al exclusion involves the exudation of organic acid anions from the root apices, whereas tolerance mechanisms comprise internal Al detoxification by organic acid anions and enhanced scavenging of free oxygen radicals. One of the most important advances in understanding the molecular events associated with the Al exclusion mechanism was the identification of the ALMT1 gene (Al-activated malate transporter) in Triticum aestivum root cells, which codes for a plasma membrane anion channel that allows efflux of organic acid anions, such as malate, citrate or oxalate. On the other hand, the scavenging of free radicals is dependent on the expression of genes involved in antioxidant defenses, such as peroxidases (e.g. in Arabidopsis thaliana and Nicotiana tabacum), catalases (e.g. in Capsicum annuum), and the gene WMnSOD1 from T. aestivum. However, other recent findings show that reactive oxygen species (ROS) induced stress may be due to acidic (low pH) conditions rather than to Al stress. In this review, we summarize recent findings regarding molecular and physiological mechanisms of Al toxicity and resistance in higher plants. Advances have been made in understanding some of the underlying strategies that plants use to cope with Al toxicity. Furthermore, we discuss the physiological and molecular responses to Al toxicity, including genes involved in Al resistance that have been identified and characterized in several plant species. The better understanding of these strategies and mechanisms is essential for improving plant performance in acidic, Al-toxic soils.

  2. PLANT CULTURAL SYSTEM FOR MONITORING EVAPOTRANSPIRATION AND PHYSIOLOGICAL RESPONSES UNDER FIELD CONDITIONS

    EPA Science Inventory

    A plant culture system incorporating the water-table root-screen method for controlling plant water status was adapted for use in open-top field exposure chambers for studying the effects of drought stress on physiological responses. The daily transpiration rates of the plants we...

  3. Correlation between plant physiology and CO2 removable

    NASA Astrophysics Data System (ADS)

    Leman, A. M.; Shamsuri, Mohd Mahathir Suhaimi; Hariri, Azian; Kadir, Aeslina Abdul; Idris, Ahmad Fu'ad; Afandi, Azizi

    2017-09-01

    Certain plants that are able to live in the building are known as indoor plants. Plants have tolerance with indoor environment in order to survive. Usually these plants are able to improve indoor air quality (IAQ). Absorption of carbon dioxide (CO2) by plants is one of the indicators that plants are still alive during photosynthesis process. The possibility of plants structure (plant physiology) to affect CO2 absorption had been the concerns of former researchers. This research intends to study the significant of plant structure (leaf area, fresh weight, and dry weight) that leads to reducing the concentration of CO2 by seven plant species (Anthurium, Dumb Cane, Golden Pothos, Kadaka Fern, Prayer Plants, Spider Plants, and Syngonium). The data of CO2 reduction by plants has been obtained from previous studies. Based on results show that, the leaf area is the most contributing the significant effect to the plant absorb CO2 compare to fresh weight and dry weight. It can be prove by Pearson Correlation, where only the value of leaf area is more than 0.5 for every four conditions. This study can be conclude that the leaf area is quite plays an important role to the plant treat air from CO2, while concentration of light and CO2 will become catalytic factor for the plants improve their photosynthesis process.

  4. The role of plant physiology in hydrology: looking backwards and forwards

    NASA Astrophysics Data System (ADS)

    Roberts, J.

    2007-01-01

    The implementation of plant physiological studies at the Institute of Hydrology focussed both on examining and understanding the physiological controls of transpiration as well as evaluating the value of using physiological methods to measure transpiration. Transpiration measurement by physiological methods would be particularly valuable where this could not be achieved by micrometeorological and soil physics methods. The principal physiological measurements used were determinations of leaf stomatal conductance and leaf water relations to monitor plant water stress. In this paper the value of these approaches is illustrated by describing a few case studies in which plant physiological insight, provided both as new measurements and existing knowledge, would aid in the interpretation of the hydrological behaviour of important vegetation. Woody vegetation figured largely in these studies, conducted in the UK and overseas. Each of these case studies is formulated as a quest to answer a particular question. A collaborative comparison of conifer forest transpiration in Thetford forest using micrometeorological and soil physics techniques exhibited a substantially larger (~1 mm day-1) estimate from the micrometeorological approach. So the question - Why is there a disagreement in the estimates of forest transpiration made using micrometeorological and soil physics approaches? A range of physiological studies followed that suggested that there was no one simple answer but that the larger estimate from the micrometeorology technique might include contributions of water taken up by deep roots, from shallow-rooted vegetation and possibly also from water previously stored in trees. These sources of water were probably not included in the soil physics estimate of transpiration. The annual transpiration from woodlands in NW Europe shows a low magnitude and notable similarity between different sites raising the question - Why is transpiration from European forests low and

  5. Century long assessment of herbaceous plants' physiological responses to climate change in Switzerland

    NASA Astrophysics Data System (ADS)

    Moreno-Gutierrez, Cristina; Kahmen, Ansgar

    2017-04-01

    The isotopic analysis of archived plant material offers the exceptional opportunity to reconstruct the physiological activity of plants over long time periods and thus, to assess plant responses to environmental changes during the last centuries. In addition, the stable isotope analysis of herbarium samples offers the opportunity to reconstruct the physiological processes of a large range of different plant species and from different environments. Interestingly, only few studies have to date assessed these archives. We will present a novel analysis of leaf nitrogen, oxygen and carbon isotope ratios of more than a thousand herbarium specimens collected since 1800 until present from the unique herbaria hold at the University of Basel. The objective of our study was to assess century-long physiological responses of herbaceous plant species from different plant functional groups and along an altitudinal gradient in Switzerland. The goal of our study was to determine with our investigations the long-term responses of plants to climate change. Such investigations are important as they allow to assess long-term processes of acclimation and adaptation in plants to global enviromental change. In our study we found that herbaceous plants have increased their intrinsic water use efficiency in response to increasing atmospheric CO2 concentration but this increment was higher in plants from higher altitudes, due to the higher efficiency of CO2 assimilation of alpine plants compared to plants from lowlands. There were also differences among functional groups, with grasses and forbs showing the highest increments. In addition, herbaceous plants showed a decreasing trend with time in their N isotopic composition, which may indicate progressive N limitation due to higher biological activity with increasing atmospheric CO2 concentration.

  6. Preliminary results of Physiological plant growth modelling for human life support in space

    NASA Astrophysics Data System (ADS)

    Sasidharan L, Swathy; Dussap, Claude-Gilles; Hezard, Pauline

    2012-07-01

    Human life support is fundamental and crucial in any kind of space explorations. MELiSSA project of European Space Agency aims at developing a closed, artificial ecological life support system involving human, plants and micro organisms. Consuming carbon dioxide and water from the life support system, plants grow in one of the chambers and convert it into food and oxygen along with potable water. The environmental conditions, nutrient availability and its consumption of plants should be studied and necessarily modeled to predict the amount of food, oxygen and water with respect to the environmental changes and limitations. The reliability of a completely closed system mainly depends on the control laws and strategies used. An efficient control can occur, only if the system to control is itself well known, described and ideally if the responses of the system to environmental changes are predictable. In this aspect, the general structure of plant growth model has been designed together with physiological modelling.The physiological model consists of metabolic models of leaves, stem and roots, of which concern specific metabolisms of the associated plant parts. On the basis of the carbon source transport (eg. sucrose) through stem, the metabolic models (leaf and root) can be interconnected to each other and finally coupled to obtain the entire plant model. For the first step, leaf metabolic model network was built using stoichiometric, mass and energy balanced metabolic equations under steady state approach considering all necessary plant pathways for growth and maintenance of leaves. As the experimental data for lettuce plants grown in closed and controlled environmental chambers were available, the leaf metabolic model has been established for lettuce leaves. The constructed metabolic network is analyzed using known stoichiometric metabolic technique called metabolic flux analysis (MFA). Though, the leaf metabolic model alone is not sufficient to achieve the

  7. The need for plant electro-physiology

    NASA Astrophysics Data System (ADS)

    Gorgolewski, S.

    The already experimentaly evidenced existance of electrotropism for some plant species permits me to propose to extend these studies. Electrotropism is not well defined in plant physiology handbooks. There is a confusion of current and electric field which leads to communication problems between biologists and physicists. The electric field E, is measured in units of volts/metre=newtons/coulomb. We do not attach any wires to the plant leaves but subject them to the electric field. The plant distords the electrical field lines which in turn modify the shape of the plant. It has been verified in fitotron experiments that the direction and strength of the E vector relative to the gravitational force has different effects on plant growth. The natural fair weather global value of E is close to 130 V/m with positive charges in the air and negative on the ground. The most important results are: fields of (1.6 kV/m) enhance plant growth. Reversed fields overwhelm the gravitational field and plants grow towards the grownd. Horizontal E also enhances the plant growth in the horizontal direction ignoring the gravity. It shows that we can restore the directional orientation for plants in the absence of gravity by means of electrotropism. This is an important result for the plant growth in micro-gravity, basic advantage for long duration space fligths for raising edible crops for the vegetarian crew. It has the advantage of selecting in laboratory environment the plants which are suitable for space applications. The use of electic fields in ground based and space plant cultivation opens up important applications based on these novel trends also in modern greenhouses including the Biosphere 2. In addition to the fitotron experiments we have also studied plant growth in natural and modified natural electrical field environment. Two pioneering papers describing the above mentioned results and their possible ground based and space applications are cited as well as several

  8. Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects

    PubMed Central

    Abbas, Ghulam; Murtaza, Behzad; Bibi, Irshad; Shahid, Muhammad; Khan, Muhammad Imran; Amjad, Muhammad; Hussain, Munawar; Natasha

    2018-01-01

    Environmental contamination with arsenic (As) is a global environmental, agricultural and health issue due to the highly toxic and carcinogenic nature of As. Exposure of plants to As, even at very low concentration, can cause many morphological, physiological, and biochemical changes. The recent research on As in the soil-plant system indicates that As toxicity to plants varies with its speciation in plants (e.g., arsenite, As(III); arsenate, As(V)), with the type of plant species, and with other soil factors controlling As accumulation in plants. Various plant species have different mechanisms of As(III) or As(V) uptake, toxicity, and detoxification. This review briefly describes the sources and global extent of As contamination and As speciation in soil. We discuss different mechanisms responsible for As(III) and As(V) uptake, toxicity, and detoxification in plants, at physiological, biochemical, and molecular levels. This review highlights the importance of the As-induced generation of reactive oxygen species (ROS), as well as their damaging impacts on plants at biochemical, genetic, and molecular levels. The role of different enzymatic (superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase) and non-enzymatic (salicylic acid, proline, phytochelatins, glutathione, nitric oxide, and phosphorous) substances under As(III/V) stress have been delineated via conceptual models showing As translocation and toxicity pathways in plant species. Significantly, this review addresses the current, albeit partially understood, emerging aspects on (i) As-induced physiological, biochemical, and genotoxic mechanisms and responses in plants and (ii) the roles of different molecules in modulation of As-induced toxicities in plants. We also provide insight on some important research gaps that need to be filled to advance our scientific understanding in this area of research on As in soil-plant systems. PMID:29301332

  9. Beyond Chemical Triggers: Evidence for Sound-Evoked Physiological Reactions in Plants

    PubMed Central

    Jung, Jihye; Kim, Seon-Kyu; Kim, Joo Y.; Jeong, Mi-Jeong; Ryu, Choong-Min

    2018-01-01

    Sound is ubiquitous in nature. Recent evidence supports the notion that naturally occurring and artificially generated sound waves contribute to plant robustness. New information is emerging about the responses of plants to sound and the associated downstream signaling pathways. Here, beyond chemical triggers which can improve plant health by enhancing plant growth and resistance, we provide an overview of the latest findings, limitations, and potential applications of sound wave treatment as a physical trigger to modulate physiological traits and to confer an adaptive advantage in plants. We believe that sound wave treatment is a new trigger to help protect plants against unfavorable conditions and to maintain plant fitness. PMID:29441077

  10. Physiological Significance of Low Atmospheric CO 2 for Plant-Climate Interactions

    NASA Astrophysics Data System (ADS)

    Cowling, Sharon A.; Sykes, Martin T.

    1999-09-01

    Methods of palaeoclimate reconstruction from pollen are built upon the assumption that plant-climate interactions remain the same through time or that these interactions are independent of changes in atmospheric CO2. The latter may be problematic because air trapped in polar ice caps indicates that atmospheric CO2 has fluctuated significantly over at least the past 400,000 yr, and likely the last 1.6 million yr. Three other points indicate potential biases for vegetation-based climate proxies. First, C3-plant physiological research shows that the processes that determine growth optima in plants (photosynthesis, mitochondrial respiration, photorespiration) are all highly CO2-dependent, and thus were likely affected by the lower CO2 levels of the last glacial maximum. Second, the ratio of carbon assimilation per unit transpiration (called water-use efficiency) is sensitive to changes in atmospheric CO2 through effects on stomatal conductance and may have altered C3-plant responses to drought. Third, leaf gas-exchange experiments indicate that the response of plants to carbon-depleting environmental stresses are strengthened under low CO2 relative to today. This paper reviews the scope of research addressing the consequences of low atmospheric CO2 for plant and ecosystem processes and highlights why consideration of the physiological effects of low atmospheric CO2 on plant function is recommended for any future refinements to pollen-based palaeoclimatic reconstructions.

  11. Effects of rare earth elements and REE-binding proteins on physiological responses in plants.

    PubMed

    Liu, Dongwu; Wang, Xue; Chen, Zhiwei

    2012-02-01

    Rare earth elements (REEs), which include 17 elements in the periodic table, share chemical properties related to a similar external electronic configuration. REEs enriched fertilizers have been used in China since the 1980s. REEs could enter the cell and cell organelles, influence plant growth, and mainly be bound with the biological macromolecules. REE-binding proteins have been found in some plants. In addition, the chlorophyll activities and photosynthetic rate can be regulated by REEs. REEs could promote the protective function of cell membrane and enhance the plant resistance capability to stress produced by environmental factors, and affect the plant physiological mechanism by regulating the Ca²⁺ level in the plant cells. The focus of present review is to describe how REEs and REE-binding proteins participate in the physiological responses in plants.

  12. The physiology of invasive plants in low-resource environments

    PubMed Central

    Funk, Jennifer L.

    2013-01-01

    While invasive plant species primarily occur in disturbed, high-resource environments, many species have invaded ecosystems characterized by low nutrient, water, and light availability. Species adapted to low-resource systems often display traits associated with resource conservation, such as slow growth, high tissue longevity, and resource-use efficiency. This contrasts with our general understanding of invasive species physiology derived primarily from studies in high-resource environments. These studies suggest that invasive species succeed through high resource acquisition. This review examines physiological and morphological traits of native and invasive species in low-resource environments. Existing data support the idea that species invading low-resource environments possess traits associated with resource acquisition, resource conservation or both. Disturbance and climate change are affecting resource availability in many ecosystems, and understanding physiological differences between native and invasive species may suggest ways to restore invaded ecosystems. PMID:27293610

  13. Polyamines in plants: biosynthesis from arginine, and metabolic, physiological, and stress-response roles

    USDA-ARS?s Scientific Manuscript database

    Biogenic amines in all organisms including plants affect a myriad of growth and developmental processes. Therefore, there is continued interest in understanding their (here polyamines) biosynthesis and functional roles in regulating plant metabolism, physiology and development. The role of polyamine...

  14. Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses-A review.

    PubMed

    Zuverza-Mena, Nubia; Martínez-Fernández, Domingo; Du, Wenchao; Hernandez-Viezcas, Jose A; Bonilla-Bird, Nestor; López-Moreno, Martha L; Komárek, Michael; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2017-01-01

    Recent investigations show that carbon-based and metal-based engineered nanomaterials (ENMs), components of consumer goods and agricultural products, have the potential to build up in sediments and biosolid-amended agricultural soils. In addition, reports indicate that both carbon-based and metal-based ENMs affect plants differently at the physiological, biochemical, nutritional, and genetic levels. The toxicity threshold is species-dependent and responses to ENMs are driven by a series of factors including the nanomaterial characteristics and environmental conditions. Effects on the growth, physiological and biochemical traits, production and food quality, among others, have been reported. However, a complete understanding of the dynamics of interactions between plants and ENMs is not clear enough yet. This review presents recent publications on the physiological and biochemical effects that commercial carbon-based and metal-based ENMs have in terrestrial plants. This document focuses on crop plants because of their relevance in human nutrition and health. We have summarized the mechanisms of interaction between plants and ENMs as well as identified gaps in knowledge for future investigations. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community.

    PubMed

    Bokhorst, Stef; Bjerke, Jarle W; Davey, Matthew P; Taulavuori, Kari; Taulavuori, Erja; Laine, Kari; Callaghan, Terry V; Phoenix, Gareth K

    2010-10-01

    Insulation provided by snow cover and tolerance of freezing by physiological acclimation allows Arctic plants to survive cold winter temperatures. However, both the protection mechanisms may be lost with winter climate change, especially during extreme winter warming events where loss of snow cover from snow melt results in exposure of plants to warm temperatures and then returning extreme cold in the absence of insulating snow. These events cause considerable damage to Arctic plants, but physiological responses behind such damage remain unknown. Here, we report simulations of extreme winter warming events using infrared heating lamps and soil warming cables in a sub-Arctic heathland. During these events, we measured maximum quantum yield of photosystem II (PSII), photosynthesis, respiration, bud swelling and associated bud carbohydrate changes and lipid peroxidation to identify physiological responses during and after the winter warming events in three dwarf shrub species: Empetrum hermaphroditum, Vaccinium vitis-idaea and Vaccinium myrtillus. Winter warming increased maximum quantum yield of PSII, and photosynthesis was initiated for E. hermaphroditum and V. vitis-idaea. Bud swelling, bud carbohydrate decreases and lipid peroxidation were largest for E. hermaphroditum, whereas V. myrtillus and V. vitis-idaea showed no or less strong responses. Increased physiological activity and bud swelling suggest that sub-Arctic plants can initiate spring-like development in response to a short winter warming event. Lipid peroxidation suggests that plants experience increased winter stress. The observed differences between species in physiological responses are broadly consistent with interspecific differences in damage seen in previous studies, with E. hermaphroditum and V. myrtillus tending to be most sensitive. This suggests that initiation of spring-like development may be a major driver in the damage caused by winter warming events that are predicted to become more

  16. Amplification of heat extremes by plant CO2 physiological forcing.

    PubMed

    Skinner, Christopher B; Poulsen, Christopher J; Mankin, Justin S

    2018-03-15

    Plants influence extreme heat events by regulating land-atmosphere water and energy exchanges. The contribution of plants to changes in future heat extremes will depend on the responses of vegetation growth and physiology to the direct and indirect effects of elevated CO 2 . Here we use a suite of earth system models to disentangle the radiative versus vegetation effects of elevated CO 2 on heat wave characteristics. Vegetation responses to a quadrupling of CO 2 increase summer heat wave occurrence by 20 days or more-30-50% of the radiative response alone-across tropical and mid-to-high latitude forests. These increases are caused by CO 2 physiological forcing, which diminishes transpiration and its associated cooling effect, and reduces clouds and precipitation. In contrast to recent suggestions, our results indicate CO 2 -driven vegetation changes enhance future heat wave frequency and intensity in most vegetated regions despite transpiration-driven soil moisture savings and increases in aboveground biomass from CO 2 fertilization.

  17. Physiological responses of planting frozen and thawed Douglas-fir seedlings

    Treesearch

    M. Anisul Islam; Kent G. Apostol; Douglass F. Jacobs; R. Kasten Dumroese

    2008-01-01

    We studied the short-term (7-day) physiological responses of planting thawed and frozen root plugs of Douglas-fir (Pseudotsuga menziesii) seedlings in 2 separate experiments under cool-moist and warm-dry growing conditions, respectively. Our results showed that shoot water potential, root hydraulic conductance, net photosynthesis (A), and...

  18. Fifth workshop on seedling physiology and growth problems in oak plantings (abstracts).

    Treesearch

    Janette R. Thompson; Richard C. Schultz; J.W. Van Sambeek

    1993-01-01

    Research results and ongoing research activities in field performance of planted trees, seedling propagation, physiology, genetics, acorn germination, and natural regeneration for oaks are described in 30 abstracts.

  19. Molecular and physiological mechanisms regulating tissue reunion in incised plant tissues.

    PubMed

    Asahina, Masashi; Satoh, Shinobu

    2015-05-01

    Interactions among the functionally specialized organs of higher plants ensure that the plant body develops and functions properly in response to changing environmental conditions. When an incision or grafting procedure interrupts the original organ or tissue connection, cell division is induced and tissue reunion occurs to restore physiological connections. Such activities have long been observed in grafting techniques, which are advantageous not only for agriculture and horticulture but also for basic research. To understand how this healing process is controlled and how this process is initiated and regulated at the molecular level, physiological and molecular analyses of tissue reunion have been performed using incised hypocotyls of cucumber (Cucumis sativus) and tomato (Solanum lycopersicum) and incised flowering stems of Arabidopsis thaliana. Our results suggest that leaf gibberellin and microelements from the roots are required for tissue reunion in the cortex of the cucumber and tomato incised hypocotyls. In addition, the wound-inducible hormones ethylene and jasmonic acid contribute to the regulation of the tissue reunion process in the upper and lower parts, respectively, of incised Arabidopsis stems. Ethylene and jasmonic acid modulate the expression of ANAC071 and RAP2.6L, respectively, and auxin signaling via ARF6/8 is essential for the expression of these transcription factors. In this report, we discuss recent findings regarding molecular and physiological mechanisms of the graft union and the tissue reunion process in wounded tissues of plants.

  20. Plant Ion Channels: Gene Families, Physiology, and Functional Genomics Analyses

    PubMed Central

    Ward, John M.; Mäser, Pascal; Schroeder, Julian I.

    2016-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization-and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide–gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport. PMID:18842100

  1. Plant ion channels: gene families, physiology, and functional genomics analyses.

    PubMed

    Ward, John M; Mäser, Pascal; Schroeder, Julian I

    2009-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.

  2. Physiological responses in potato plants under continuous irradiation

    NASA Technical Reports Server (NTRS)

    Cao, W.; Tibbitts, T. W.

    1991-01-01

    The physiological responses of four potato (Solanum tuberosum L.) cultivars to continuous irradiation were determined in a controlled environment. Under a constant 18C and a constant photoperiod of 470 micromoles s-1 m-2 of photosynthetic photon flux, 'Denali' and 'Haig' grew well and produced large plant and tuber dry weights when harvested 56 days after transplanting. 'Kennebec' and 'Superior' were severely stunted, producing only 10% of the plant dry matter produced by 'Denali' and 'Haig'. The differences in leaf chlorophyll concentration and stomatal conductance were not consistent between these two groups of cultivars. The leaf net CO2 assimilation rates in 'Kennebec' and 'Superior' were lower, and intercellular CO2 partial pressures were higher than in 'Denali' and 'Haig'. These results indicate that inhibition of net CO2 assimilation in 'Kennebec' and 'Superior' was not due to a limiting amount of chlorophyll or to CO2 in the leaf tissues. Concentrations of starch in leaflets of 'Kennebec' and 'Superior' plants were only 10% of those in 'Denali' and 'Haig' plants, although soluble sugar concentrations were similar in the four cultivars. Therefore, the lower net CO2 assimilation rates in stunted 'Kennebec' and 'Superior' plants were not associated with an excess carbohydrate accumulation in the leaves.

  3. Evaluating physiological responses of plants to salinity stress

    PubMed Central

    Negrão, S.; Schmöckel, S. M.; Tester, M.

    2017-01-01

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making it difficult to study in toto. Instead, it is more tractable to dissect the plant’s response into traits that are hypothesized to be involved in the overall tolerance of the plant to salinity. Scope and conclusions We discuss how to quantify the impact of salinity on different traits, such as relative growth rate, water relations, transpiration, transpiration use efficiency, ionic relations, photosynthesis, senescence, yield and yield components. We also suggest some guidelines to assist with the selection of appropriate experimental systems, imposition of salinity stress, and obtaining and analysing relevant physiological data using appropriate indices. We illustrate how these indices can be used to identify relationships amongst the proposed traits to identify which traits are the most important contributors to salinity tolerance. Salinity tolerance is complex and involves many genes, but progress has been made in studying the mechanisms underlying a plant’s response to salinity. Nevertheless, several previous studies on salinity tolerance could have benefited from improved experimental design. We hope that this paper will provide pertinent information to researchers on performing proficient assays and interpreting results from salinity tolerance experiments. PMID:27707746

  4. On the language and physiology of dormancy and quiescence in plants.

    PubMed

    Considine, Michael J; Considine, John A

    2016-05-01

    The language of dormancy is rich and poetic, as researchers spanning disciplines and decades have attempted to understand the spell that entranced 'Sleeping Beauty', and how she was gently awoken. The misleading use of 'dormancy', applied to annual axillary buds, for example, has confounded progress. Language is increasingly important as genetic and genomic approaches become more accessible to species of agricultural and ecological importance. Here we examine how terminology has been applied to different eco-physiological states in plants, and with pertinent reference to quiescent states described in other domains of life, in order to place plant quiescence and dormancy in a more complete context than previously described. The physiological consensus defines latency or quiescence as opportunistic avoidance states, where growth resumes in favourable conditions. In contrast, the dormant state in higher plants is entrained in the life history of the organism. Competence to resume growth requires quantitative and specific conditioning. This definition applies only to the embryo of seeds and specialized meristems in higher plants; however, mechanistic control of dormancy extends to mobile signals from peripheral tissues and organs, such as the endosperm of seed or subtending leaf of buds. The distinction between dormancy, quiescence, and stress-hardiness remains poorly delineated, most particularly in buds of winter perennials, which comprise multiple meristems of differing organogenic states. Studies in seeds have shown that dormancy is not a monogenic trait, and limited study has thus far failed to canalize dormancy as seen in seeds and buds. We argue that a common language, based on physiology, is central to enable further dissection of the quiescent and dormant states in plants. We direct the topic largely to woody species showing a single cycle of growth and reproduction per year, as these bear the majority of global timber, fruit, and nut production, as well being

  5. Basic versus applied research: Julius Sachs (1832-1897) and the experimental physiology of plants.

    PubMed

    Kutschera, Ulrich

    2015-01-01

    The German biologist Julius Sachs was the first to introduce controlled, accurate, quantitative experimentation into the botanical sciences, and is regarded as the founder of modern plant physiology. His seminal monograph Experimental-Physiologie der Pflanzen (Experimental Physiology of Plants) was published 150 y ago (1865), when Sachs was employed as a lecturer at the Agricultural Academy in Poppelsdorf/Bonn (now part of the University). This book marks the beginning of a new era of basic and applied plant science. In this contribution, I summarize the achievements of Sachs and outline his lasting legacy. In addition, I show that Sachs was one of the first biologists who integrated bacteria, which he considered to be descendants of fungi, into the botanical sciences and discussed their interaction with land plants (degradation of wood etc.). This "plant-microbe-view" of green organisms was extended and elaborated by the laboratory botanist Wilhelm Pfeffer (1845-1920), so that the term "Sachs-Pfeffer-Principle of Experimental Plant Research" appears to be appropriate to characterize this novel way of performing scientific studies on green, photoautotrophic organisms (embryophytes, algae, cyanobacteria).

  6. The phytotronist and the phenotype: plant physiology, Big Science, and a Cold War biology of the whole plant.

    PubMed

    Munns, David P D

    2015-04-01

    This paper describes how, from the early twentieth century, and especially in the early Cold War era, the plant physiologists considered their discipline ideally suited among all the plant sciences to study and explain biological functions and processes, and ranked their discipline among the dominant forms of the biological sciences. At their apex in the late-1960s, the plant physiologists laid claim to having discovered nothing less than the "basic laws of physiology." This paper unwraps that claim, showing that it emerged from the construction of monumental big science laboratories known as phytotrons that gave control over the growing environment. Control meant that plant physiologists claimed to be able to produce a standard phenotype valid for experimental biology. Invoking the standards of the physical sciences, the plant physiologists heralded basic biological science from the phytotronic produced phenotype. In the context of the Cold War era, the ability to pursue basic science represented the highest pinnacle of standing within the scientific community. More broadly, I suggest that by recovering the history of an underappreciated discipline, plant physiology, and by establishing the centrality of the story of the plant sciences in the history of biology can historians understand the massive changes wrought to biology by the conceptual emergence of the molecular understanding of life, the dominance of the discipline of molecular biology, and the rise of biotechnology in the 1980s. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Host physiological condition regulates parasitic plant performance: Arceuthobium vaginatum subsp. cryptopodum on Pinus ponderosa.

    PubMed

    Bickford, Christopher P; Kolb, Thomas E; Geils, Brian W

    2005-12-01

    Much research has focused on effects of plant parasites on host-plant physiology and growth, but little is known about effects of host physiological condition on parasite growth. Using the parasitic dwarf mistletoe Arceuthobium vaginatum subsp. cryptopodum (Viscaceae) and its host Pinus ponderosa, we investigated whether changes in host physiological condition influenced mistletoe shoot development in northern Arizona forests. We conducted two studies in two consecutive years and used forest thinning (i.e., competitive release) to manipulate host physiological condition. We removed dwarf mistletoe shoots in April, before the onset of the growing season, and measured the amount of regrowth in the first season after forest thinning (Study I: n=38 trees; Study II: n=35 trees). Thinning increased tree uptake of water and carbon in both studies, but had no effect on leaf N concentration or delta13C. Mistletoe shoot growth was greater on trees with high uptake of water and carbon in thinned stands than trees with low uptake in unthinned stands. These findings show that increased resource uptake by host trees increases resources to these heterotrophic dwarf mistletoes, and links mistletoe performance to changes in host physiological condition.

  8. Polyamines in plant physiology

    NASA Technical Reports Server (NTRS)

    Galston, A. W.; Sawhney, R. K.

    1990-01-01

    The diamine putrescine, the triamine spermidine, and the tetramine spermine are ubiquitous in plant cells, while other polyamines are of more limited occurrence. Their chemistry and pathways of biosynthesis and metabolism are well characterized. They occur in the free form as cations, but are often conjugated to small molecules like phenolic acids and also to various macromolecules. Their titer varies from approximately micromolar to more than millimolar, and depends greatly on environmental conditions, especially stress. In cereals, the activity of one of the major polyamine biosynthetic enzymes, arginine decarboxylase, is rapidly and dramatically increased by almost every studied external stress, leading to 50-fold or greater increases in putrescine titer within a few hours. The physiological significance of this increase is not yet clear, although most recent work suggests an adaptive, protective role. Polyamines produced through the action of ornithine decarboxylase, by contrast, seem essential for DNA replication and cell division. The application of exogenous polyamines produces effects on patterns of senescence and morphogenesis, suggesting but not proving a regulatory role for polyamines in these processes. The evidence for such a regulatory role is growing.

  9. Plant Physiological, Morphological and Yield-Related Responses to Night Temperature Changes across Different Species and Plant Functional Types

    PubMed Central

    Jing, Panpan; Wang, Dan; Zhu, Chunwu; Chen, Jiquan

    2016-01-01

    Land surface temperature over the past decades has shown a faster warming trend during the night than during the day. Extremely low night temperatures have occurred frequently due to the influence of land-sea thermal difference, topography and climate change. This asymmetric night temperature change is expected to affect plant ecophysiology and growth, as the plant carbon consumption processes could be affected more than the assimilation processes because photosynthesis in most plants occurs during the daytime whereas plant respiration occurs throughout the day. The effects of high night temperature (HNT) and low night temperature (LNT) on plant ecophysiological and growing processes and how the effects vary among different plant functional types (PFTs) have not been analyzed extensively. In this meta-analysis, we examined the effect of HNT and LNT on plant physiology and growth across different PFTs and experimental settings. Plant species were grouped according to their photosynthetic pathways (C3, C4, and CAM), growth forms (herbaceous, woody), and economic purposes (crop, non-crop). We found that HNT and LNT both had a negative effect on plant yield, but the effect of HNT on plant yield was primarily related to a reduction in biomass allocation to reproduction organs and the effect of LNT on plant yield was more related to a negative effect on total biomass. Leaf growth was stimulated at HNT and suppressed at LNT. HNT accelerated plants ecophysiological processes, including photosynthesis and dark respiration, while LNT slowed these processes. Overall, the results showed that the effects of night temperature on plant physiology and growth varied between HNT and LNT, among the response variables and PFTs, and depended on the magnitude of temperature change and experimental design. These findings suggest complexities and challenges in seeking general patterns of terrestrial plant growth in HNT and LNT. The PFT specific responses of plants are critical for

  10. Mechanisms and effective control of physiological browning phenomena in plant cell cultures.

    PubMed

    Dong, Yan-Shan; Fu, Chun-Hua; Su, Peng; Xu, Xiang-Ping; Yuan, Jie; Wang, Sheng; Zhang, Meng; Zhao, Chun-Fang; Yu, Long-Jiang

    2016-01-01

    Browning phenomena are ubiquitous in plant cell cultures that severely hamper scientific research and widespread application of plant cell cultures. Up to now, this problem still has not been well controlled due to the unclear browning mechanisms in plant cell cultures. In this paper, the mechanisms were investigated using two typical materials with severe browning phenomena, Taxus chinensis and Glycyrrhiza inflata cells. Our results illustrated that the browning is attributed to a physiological enzymatic reaction, and phenolic biosynthesis regulated by sugar plays a decisive role in the browning. Furthermore, to confirm the specific compounds which participate in the enzymatic browning reaction, transcriptional profile and metabolites of T. chinensis cells, and UV scanning and high-performance liquid chromatography-mass spectrometry (HPLC-MS) profile of the browning compounds extracted from the brown-turned medium were analyzed, flavonoids derived from phenylpropanoid pathway were found to be the main compounds, and myricetin and quercetin were deduced to be the main substrates of the browning reaction. Inhibition of flavonoid biosynthesis can prevent the browning occurrence, and the browning is effectively controlled via blocking flavonoid biosynthesis by gibberellic acid (GA3 ) as an inhibitor, which further confirms that flavonoids mainly contribute to the browning. On the basis above, a model elucidating enzymatic browning mechanisms in plant cell cultures was put forward, and effective control approaches were presented. © 2015 Scandinavian Plant Physiology Society.

  11. How to Do It. Plant Eco-Physiology: Experiments on Crassulacean Acid Metabolism, Using Minimal Equipment.

    ERIC Educational Resources Information Center

    Friend, Douglas J. C.

    1990-01-01

    Features of Crassulacean Acid Metabolism plants are presented. Investigations of a complex eco-physiological plant adaptation to the problems of growth in an arid environment are discussed. Materials and procedures for these investigations are described. (CW)

  12. Experiments and appropriate facilities for plant physiology research in space

    NASA Astrophysics Data System (ADS)

    Lork, W.

    Light is a very essential parameter in a plant's life. Changing the quality and/or quantity of illumination will not only determine the further development (photomorphogenesis), but also effect spontaneous responses like curvatures (phototropism). But there are several still unknown links in the signal transduction chain from the perception of the light signals to the terminal response. It is known from ground-based experiments, that part of this signal transduction path is congruous with that of gravitational signals. Biosample is a technology development programme, which enables sophisticated experiments with whole plants in a microgravity environment. It allows complex sequences of gravitational- and light-stimuli with simultaneous recording of the plant's response (e.g. curvature of the stem) by video. This facility in union with new genetic mutants, which are less- or insensitive to light, gravity or both, are convenient tools for progress in plant physiology research.

  13. Isoprene improves photochemical efficiency and enhances heat dissipation in plants at physiological temperatures.

    PubMed

    Pollastri, Susanna; Tsonev, Tsonko; Loreto, Francesco

    2014-04-01

    Isoprene-emitting plants are better protected against thermal and oxidative stresses. Isoprene may strengthen membranes avoiding their denaturation and may quench reactive oxygen and nitrogen species, achieving a similar protective effect. The physiological role of isoprene in unstressed plants, up to now, is not understood. It is shown here, by monitoring the non-photochemical quenching (NPQ) of chlorophyll fluorescence of leaves with chemically or genetically altered isoprene biosynthesis, that chloroplasts of isoprene-emitting leaves dissipate less energy as heat than chloroplasts of non-emitting leaves, when exposed to physiologically high temperatures (28-37 °C) that do not impair the photosynthetic apparatus. The effect was especially remarkable at foliar temperatures between 30 °C and 35 °C, at which isoprene emission is maximized and NPQ is quenched by about 20%. Isoprene may also allow better stability of photosynthetic membranes and a more efficient electron transfer through PSII at physiological temperatures, explaining most of the NPQ reduction and the slightly higher photochemical quenching that was also observed in isoprene-emitting leaves. The possibility that isoprene emission helps in removing thermal energy at the thylakoid level is also put forward, although such an effect was calculated to be minimal. These experiments expand current evidence that isoprene is an important trait against thermal and oxidative stresses and also explains why plants invest resources in isoprene under unstressed conditions. By improving PSII efficiency and reducing the need for heat dissipation in photosynthetic membranes, isoprene emitters are best fitted to physiologically high temperatures and will have an evolutionary advantage when adapting to a warming climate.

  14. Pollen viability, physiology, and production of maize plants exposed to pyraclostrobin+epoxiconazole.

    PubMed

    Junqueira, Verônica Barbosa; Costa, Alan Carlos; Boff, Tatiana; Müller, Caroline; Mendonça, Maria Andréia Corrêa; Batista, Priscila Ferreira

    2017-04-01

    The use of fungicides in maize has been more frequent due to an increase in the incidence of diseases and also the possible physiological benefits that some of these products may cause. However, some of these products (e.g., strobilurins and triazoles) may interfere with physiological processes and the formation of reproductive organs. Therefore, the effect of these products on plants at different developmental stages needs to be better understood to reduce losses and maximize production. The effect of the fungicide pyraclostrobin+epoxiconazole (P+E) was evaluated at different growth stages in meiosis, pollen grain viability and germination, physiology, and production of maize plants in the absence of disease. An experiment was carried out with the hybrid DKB390 PROII and the application of pyraclostrobin+epoxiconazole at the recommended dose and an untreated control at 3 different timings (S1 - V10; S2 - V14; S3 - R1) with 5 replications. Gas exchange, chlorophyll fluorescence, pollen viability and germination, as well as the hundred-grain weight were evaluated. Anthers were collected from plants of S1 for cytogenetic analysis. The fungicide pyraclostrobin+epoxiconazole reduced the viability of pollen grains (1.4%), but this was not enough to reduce production. Moreover, no differences were observed in any of the other parameters analyzed, suggesting that P+E at the recommended dose and the tested stages does not cause toxic effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. PHYSIOLOGY OF ECOTYPIC PLANT RESPONSE TO SULFUR DIOXIDE IN 'GERANIUM CAROLINIANUM' L

    EPA Science Inventory

    Populations of Geranium carolinianum, winter annual plant common in disturbed habitats vary in their folair response to sulfur dioxide and pollution resistance is characteristic of populations sampled from areas in which SO2 has been a prominent stress. The physiological basis of...

  16. Isoprene improves photochemical efficiency and enhances heat dissipation in plants at physiological temperatures

    PubMed Central

    Loreto, Francesco

    2014-01-01

    Isoprene-emitting plants are better protected against thermal and oxidative stresses. Isoprene may strengthen membranes avoiding their denaturation and may quench reactive oxygen and nitrogen species, achieving a similar protective effect. The physiological role of isoprene in unstressed plants, up to now, is not understood. It is shown here, by monitoring the non-photochemical quenching (NPQ) of chlorophyll fluorescence of leaves with chemically or genetically altered isoprene biosynthesis, that chloroplasts of isoprene-emitting leaves dissipate less energy as heat than chloroplasts of non-emitting leaves, when exposed to physiologically high temperatures (28–37 °C) that do not impair the photosynthetic apparatus. The effect was especially remarkable at foliar temperatures between 30 °C and 35 °C, at which isoprene emission is maximized and NPQ is quenched by about 20%. Isoprene may also allow better stability of photosynthetic membranes and a more efficient electron transfer through PSII at physiological temperatures, explaining most of the NPQ reduction and the slightly higher photochemical quenching that was also observed in isoprene-emitting leaves. The possibility that isoprene emission helps in removing thermal energy at the thylakoid level is also put forward, although such an effect was calculated to be minimal. These experiments expand current evidence that isoprene is an important trait against thermal and oxidative stresses and also explains why plants invest resources in isoprene under unstressed conditions. By improving PSII efficiency and reducing the need for heat dissipation in photosynthetic membranes, isoprene emitters are best fitted to physiologically high temperatures and will have an evolutionary advantage when adapting to a warming climate. PMID:24676032

  17. Physiological and gene expression responses of sunflower (Helianthus annuus L.) plants differ according to irrigation placement.

    PubMed

    Aguado, Ana; Capote, Nieves; Romero, Fernando; Dodd, Ian C; Colmenero-Flores, José M

    2014-10-01

    To investigate effects of soil moisture heterogeneity on plant physiology and gene expression in roots and leaves, three treatments were implemented in sunflower plants growing with roots split between two compartments: a control (C) treatment supplying 100% of plant evapotranspiration, and two treatments receiving 50% of plant evapotranspiration, either evenly distributed to both compartments (deficit irrigation - DI) or unevenly distributed to ensure distinct wet and dry compartments (partial rootzone drying - PRD). Plants receiving the same amount of water responded differently under the two irrigation systems. After 3 days, evapotranspiration was similar in C and DI, but 20% less in PRD, concomitant with decreased leaf water potential (Ψleaf) and increased leaf xylem ABA concentration. Six water-stress responsive genes were highly induced in roots growing in the drying soil compartment of PRD plants, and their expression was best correlated with local soil water content. On the other hand, foliar gene expression differed significantly from that of the root and correlated better with xylem ABA concentration and Ψleaf. While the PRD irrigation strategy triggered stronger physiological and molecular responses, suggesting a more intense and systemic stress reaction due to local dehydration of the dry compartment of PRD plants, the DI strategy resulted in similar water savings without strongly inducing these responses. Correlating physiological and molecular responses in PRD/DI plants may provide insights into the severity and location of water deficits and may enable a better understanding of long-distance signalling mechanisms. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Phytotoxicity assessment of atrazine on growth and physiology of three emergent plants.

    PubMed

    Wang, Qinghai; Que, Xiaoe; Zheng, Ruilun; Pang, Zuo; Li, Cui; Xiao, Bo

    2015-07-01

    The emergent plants Acorus calamus, Lythrum salicaria, and Scirpus tabernaemontani were exposed to atrazine for 15, 30, 45, and 60 days in a hydroponic system. Effects were evaluated investigating plant growth, chlorophyll (Chl) content, peroxidase (POD) activity, and malondialdehyde (MDA) content. Results showed that selected plants survived in culture solution with atrazine ≤8 mg L(-1), but relative growth rates decreased significantly in the first 15-day exposure. Chla content decreased, but MDA increased with increasing atrazine concentration. S. tabernaemontani was the most insensitive species, followed by A. calamus and L.salicaria. The growth indicators exhibited significant changes in the early stage of atrazine exposure; subsequently, the negative impacts weakened and disappeared. Plant growth may be more representative of emergent plant fitness than physiological endpoints in toxicity assessment of herbicides to emergent plants.

  19. Physiological Integration Affects Expansion of an Amphibious Clonal Plant from Terrestrial to Cu-Polluted Aquatic Environments.

    PubMed

    Xu, Liang; Zhou, Zhen-Feng

    2017-03-08

    The effects of physiological integration on clonal plants growing in aquatic and terrestrial habitats have been extensively studied, but little is known about the role in the extension of amphibious clonal plants in the heterogeneous aquatic-terrestrial ecotones, especially when the water environments are polluted by heavy metals. Ramets of the amphibious clonal herb Alternanthera philoxeroides were rooted in unpolluted soil and polluted water at three concentrations of Cu. The extension of populations from unpolluted terrestrial to polluted aqueous environments mainly relied on stem elongation rather than production of new ramets. The absorbed Cu in the ramets growing in polluted water could be spread horizontally to other ramets in unpolluted soil via physiological integration and redistributed in different organs. The performances of ramets in both terrestrial and aquatic habitats were negatively correlated with Cu intensities in different organs of plants. It is concluded that physiological integration might lessen the fitness of connected ramets in heterogeneously polluted environments. The mechanical strength of the stems decreased with increasing Cu levels, especially in polluted water. We suggest that, except for direct toxicity to growth and expansion, heavy metal pollution might also increase the mechanical risk in breaking failure of plants.

  20. Physiological Integration Affects Expansion of an Amphibious Clonal Plant from Terrestrial to Cu-Polluted Aquatic Environments

    PubMed Central

    Xu, Liang; Zhou, Zhen-Feng

    2017-01-01

    The effects of physiological integration on clonal plants growing in aquatic and terrestrial habitats have been extensively studied, but little is known about the role in the extension of amphibious clonal plants in the heterogeneous aquatic-terrestrial ecotones, especially when the water environments are polluted by heavy metals. Ramets of the amphibious clonal herb Alternanthera philoxeroides were rooted in unpolluted soil and polluted water at three concentrations of Cu. The extension of populations from unpolluted terrestrial to polluted aqueous environments mainly relied on stem elongation rather than production of new ramets. The absorbed Cu in the ramets growing in polluted water could be spread horizontally to other ramets in unpolluted soil via physiological integration and redistributed in different organs. The performances of ramets in both terrestrial and aquatic habitats were negatively correlated with Cu intensities in different organs of plants. It is concluded that physiological integration might lessen the fitness of connected ramets in heterogeneously polluted environments. The mechanical strength of the stems decreased with increasing Cu levels, especially in polluted water. We suggest that, except for direct toxicity to growth and expansion, heavy metal pollution might also increase the mechanical risk in breaking failure of plants. PMID:28272515

  1. Physiological Integration Affects Expansion of an Amphibious Clonal Plant from Terrestrial to Cu-Polluted Aquatic Environments

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Zhou, Zhen-Feng

    2017-03-01

    The effects of physiological integration on clonal plants growing in aquatic and terrestrial habitats have been extensively studied, but little is known about the role in the extension of amphibious clonal plants in the heterogeneous aquatic-terrestrial ecotones, especially when the water environments are polluted by heavy metals. Ramets of the amphibious clonal herb Alternanthera philoxeroides were rooted in unpolluted soil and polluted water at three concentrations of Cu. The extension of populations from unpolluted terrestrial to polluted aqueous environments mainly relied on stem elongation rather than production of new ramets. The absorbed Cu in the ramets growing in polluted water could be spread horizontally to other ramets in unpolluted soil via physiological integration and redistributed in different organs. The performances of ramets in both terrestrial and aquatic habitats were negatively correlated with Cu intensities in different organs of plants. It is concluded that physiological integration might lessen the fitness of connected ramets in heterogeneously polluted environments. The mechanical strength of the stems decreased with increasing Cu levels, especially in polluted water. We suggest that, except for direct toxicity to growth and expansion, heavy metal pollution might also increase the mechanical risk in breaking failure of plants.

  2. Evaluating the influence of plant-specific physiological parameterizations on the partitioning of land surface energy fluxes

    NASA Astrophysics Data System (ADS)

    Sulis, Mauro; Langensiepen, Matthias; Shrestha, Prabhakar; Schickling, Anke; Simmer, Clemens; Kollet, Stefan

    2015-04-01

    Vegetation has a significant influence on the partitioning of radiative forcing, the spatial and temporal variability of soil water and soil temperature. Therefore plant physiological properties play a key role in mediating and amplifying interactions and feedback mechanisms in the soil-vegetation-atmosphere continuum. Because of the direct impact on latent heat fluxes, these properties may also influence weather generating processes, such as the evolution of the atmospheric boundary layer (ABL). In land surface models, plant physiological properties are usually obtained from literature synthesis by unifying several plant/crop species in predefined vegetation classes. In this work, crop-specific physiological characteristics, retrieved from detailed field measurements, are included in the bio-physical parameterization of the Community Land Model (CLM), which is a component of the Terrestrial Systems Modeling Platform (TerrSysMP). The measured set of parameters for two typical European mid-latitudinal crops (sugar beet and winter wheat) is validated using eddy covariance measurements (sensible heat and latent heat) over multiple years from three measurement sites located in the North Rhine-Westphalia region, Germany. We found clear improvements of CLM simulations, when using the crop-specific physiological characteristics of the plants instead of the generic crop type when compared to the measurements. In particular, the increase of latent heat fluxes in conjunction with decreased sensible heat fluxes as simulated by the two new crop-specific parameter sets leads to an improved quantification of the diurnal energy partitioning. These findings are cross-validated using estimates of gross primary production extracted from net ecosystem exchange measurements. This independent analysis reveals that the better agreement between observed and simulated latent heat using the plant-specific physiological properties largely stems from an improved simulation of the

  3. [Plant physiological and molecular biological mechanism in response to aluminium toxicity].

    PubMed

    Liu, Qiang; Zheng, Shaojian; Lin, Xianyong

    2004-09-01

    Aluminium toxicity is the major factor limiting crop growth on acid soils, which greatly affects the crop productivity on about 40% cultivated soils of the world and 21% of China. In the past decades, a lot of researches on aluminium toxicity and resistant mechanisms have been doing, and great progress was achieved. This paper dealt with the genetic differences in aluminium tolerance among plants, screening and selecting methods and technologies for identifying aluminium resistance in plants, and physiological and molecular mechanism resistance to aluminium toxicity. Some aspects needed to be further studied were also briefly discussed.

  4. Basic versus applied research: Julius Sachs (1832–1897) and the experimental physiology of plants

    PubMed Central

    Kutschera, Ulrich

    2015-01-01

    The German biologist Julius Sachs was the first to introduce controlled, accurate, quantitative experimentation into the botanical sciences, and is regarded as the founder of modern plant physiology. His seminal monograph Experimental-Physiologie der Pflanzen (Experimental Physiology of Plants) was published 150 y ago (1865), when Sachs was employed as a lecturer at the Agricultural Academy in Poppelsdorf/Bonn (now part of the University). This book marks the beginning of a new era of basic and applied plant science. In this contribution, I summarize the achievements of Sachs and outline his lasting legacy. In addition, I show that Sachs was one of the first biologists who integrated bacteria, which he considered to be descendants of fungi, into the botanical sciences and discussed their interaction with land plants (degradation of wood etc.). This “plant-microbe-view” of green organisms was extended and elaborated by the laboratory botanist Wilhelm Pfeffer (1845–1920), so that the term “Sachs-Pfeffer-Principle of Experimental Plant Research” appears to be appropriate to characterize this novel way of performing scientific studies on green, photoautotrophic organisms (embryophytes, algae, cyanobacteria). PMID:26146794

  5. Ecosystem services and plant physiological status during endophyte-assisted phytoremediation of metal contaminated soil.

    PubMed

    Burges, Aritz; Epelde, Lur; Blanco, Fernando; Becerril, José M; Garbisu, Carlos

    2017-04-15

    Mining sites shelter a characteristic biodiversity with large potential for the phytoremediation of metal contaminated soils. Endophytic plant growth-promoting bacteria were isolated from two metal-(hyper)accumulator plant species growing in a metal contaminated mine soil. After characterizing their plant growth-promoting traits, consortia of putative endophytes were used to carry out an endophyte-assisted phytoextraction experiment using Noccaea caerulescens and Rumex acetosa (singly and in combination) under controlled conditions. We evaluated the influence of endophyte-inoculated plants on soil physicochemical and microbial properties, as well as plant physiological parameters and metal concentrations. Data interpretation through the grouping of soil properties within a set of ecosystem services was also carried out. When grown together, we observed a 41 and 16% increase in the growth of N. caerulescens and R. acetosa plants, respectively, as well as higher values of Zn phytoextraction and soil microbial biomass and functional diversity. Inoculation of the consortia of putative endophytes did not lead to higher values of plant metal uptake, but it improved the plants' physiological status, by increasing the content of chlorophylls and carotenoids by up to 28 and 36%, respectively, indicating a reduction in the stress level of plants. Endophyte-inoculation also stimulated soil microbial communities: higher values of acid phosphatase activity (related to the phosphate solubilising traits of the endophytes), bacterial and fungal abundance, and structural diversity. The positive effects of plant growth and endophyte inoculation on soil properties were reflected in an enhancement of some ecosystem services (biodiversity, nutrient cycling, water flow regulation, water purification and contamination control). Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Interaction of metal oxide nanoparticles with higher terrestrial plants: Physiological and biochemical aspects.

    PubMed

    Du, Wenchao; Tan, Wenjuan; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L; Ji, Rong; Yin, Ying; Guo, Hongyan

    2017-01-01

    Multiple applications of metal oxide nanoparticles (MONPs) could result in their accumulation in soil, threatening higher terrestrial plants. Several reports have shown the effects of MONPs on plants. In this review, we analyze the most recent reports about the physiological and biochemical responses of plants to stress imposed by MONPs. Findings demonstrate that MONPs may be taken up and accumulated in plant tissues causing adverse or beneficial effects on seed germination, seedling elongation, photosynthesis, antioxidative stress response, agronomic, and yield characteristics. Given the importance of determining the potential risks of MONPs on crops and other terrestrial higher plants, research questions about field long-term conditions, transgenernational phytotoxicity, genotype specific sensitivity, and combined pollution problems should be considered. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients

    USGS Publications Warehouse

    Spasojevic, Marko J.; Grace, James B.; Harrison, Susan; Damschen, Ellen Ingman

    2013-01-01

    1. The physiological tolerance hypothesis proposes that plant species richness is highest in warm and/or wet climates because a wider range of functional strategies can persist under such conditions. Functional diversity metrics, combined with statistical modeling, offer new ways to test whether diversity-environment relationships are consistent with this hypothesis. 2. In a classic study by R. H. Whittaker (1960), herb species richness declined from mesic (cool, moist, northerly) slopes to xeric (hot, dry, southerly) slopes. Building on this dataset, we measured four plant functional traits (plant height, specific leaf area, leaf water content and foliar C:N) and used them to calculate three functional diversity metrics (functional richness, evenness, and dispersion). We then used a structural equation model to ask if ‘functional diversity’ (modeled as the joint responses of richness, evenness, and dispersion) could explain the observed relationship of topographic climate gradients to species richness. We then repeated our model examining the functional diversity of each of the four traits individually. 3. Consistent with the physiological tolerance hypothesis, we found that functional diversity was higher in more favorable climatic conditions (mesic slopes), and that multivariate functional diversity mediated the relationship of the topographic climate gradient to plant species richness. We found similar patterns for models focusing on individual trait functional diversity of leaf water content and foliar C:N. 4. Synthesis. Our results provide trait-based support for the physiological tolerance hypothesis, suggesting that benign climates support more species because they allow for a wider range of functional strategies.

  8. A comparison of physiological indicators of sublethal cadmium stress in wetland plants

    USGS Publications Warehouse

    Mendelssohn, I.A.; McKee, K.L.; Kong, T.

    2001-01-01

    Physiological indices, including photosynthesis, chlorophyll fluorescence, adenylate energy charge (AEC) ratio, and leaf reflectance, were determined for Typha domingensis and Spartina alterniflora in response to increasing concentrations of Cd and compared with the growth responses of these species. Leaf expansion, the live/total ratio of plant aboveground biomass, and the aboveground regrowth rate after the initial harvests were significantly reduced with increasing Cd concentration in the growth medium. Of the four physiological responses measured, only photosynthesis and AEC responded to the Cd treatment before damage was visually apparent. Also, these indices were significantly correlated with leaf expansion rate and live/total ratio in most instances. Except at the end of the experiment, when the most stressed plants began to die, the Fv/Fm ratio was not significantly affected by the Cd treatment. The leaf spectral reflectance parameters showed no significant change during the entire treatment period. The significant correlation between the stress indicators and plant growth supported the findings that photosynthesis and AEC were the most responsive of the indicators tested, however, further research investigating other chlorophyll fluorescence and leaf reflectance parameters may demonstrate as well the value of these indicators in quantifying sublethal stress. ?? 2001 Elsevier Science B.V. All rights reserved.

  9. Emerging Use of Gene Expression Microarrays in Plant Physiology

    DOE PAGES

    Wullschleger, Stan D.; Difazio, Stephen P.

    2003-01-01

    Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology weremore » selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry.« less

  10. Physiological and Biochemical Responses of Saltmarsh Plant Spartina alterniflora to Long-term Wave Exposure

    NASA Astrophysics Data System (ADS)

    Zhou, W.

    2017-12-01

    In recent years, ecosystem-based flood defence, i.e., eco-shoreline or living shoreline, that is more sustainable and cost-effective than conventional coastal engineering structures has been brought into large-scale practice. Numerous laboratory experiments have been performed to explore the wave-attenuation effects of saltmarsh plants that are widely used in eco-shoreline, and yet no study has ever been conducted on the physiological and biochemical responses of saltmarsh plants to long-term wave exposure, presumably due to the constraint that traditional wave generator fails to provide long-term stable wave conditions necessary for physiological experiments. In this study, a long-term shallow water wave environment simulator using crank-yoke mechanism was built in the laboratory to address this gap. Experiments using the wave simulator were conducted for 8 weeks in a greenhouse and the temperature was maintained at 24-30°C. 5‰ artificial sea water was filled in the test tank, and the water was changed every week. After being acclimatized, nine S. alterniflora individual plants (initial height 30 cm) were planted in each of the three streamlined cuboid containers (12cm×12cm×20cm), which were partially submerged in a test tank, and undertook horizontal sinusoidal motion imposed by the crank-yoke mechanism to mimic plants exposed to shallow water waves. The substrate filled in the containers were soils collected from the Yellow River Delta, so were the S. alterniflora plants. A realistic stem density of 400 stems/m2 was tested, which corresponded to a grid spacing of 5.0 cm. Shallow water waves with six wave heights (H: 0.041, 0.055, 0.069, 0.033, 0.044 and 0.056m), one plants submerged depth (0.1m) and two wave periods (2s and 3s) were simulated in the experiments. A no wave condition was also tested as control. Key physiological and biochemical parameters, such as stem length, peroxidase activity, catalase, superoxide dismutase, ascorbate peroxidase, etc

  11. ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight.

    PubMed

    Zupanska, Agata K; Schultz, Eric R; Yao, JiQiang; Sng, Natasha J; Zhou, Mingqi; Callaham, Jordan B; Ferl, Robert J; Paul, Anna-Lisa

    2017-11-01

    Scientific access to spaceflight and especially the International Space Station has revealed that physiological adaptation to spaceflight is accompanied or enabled by changes in gene expression that significantly alter the transcriptome of cells in spaceflight. A wide range of experiments have shown that plant physiological adaptation to spaceflight involves gene expression changes that alter cell wall and other metabolisms. However, while transcriptome profiling aptly illuminates changes in gene expression that accompany spaceflight adaptation, mutation analysis is required to illuminate key elements required for that adaptation. Here we report how transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity 1 (Arg1), a gene known to affect gravity responses in plants on Earth. The study compared expression profiles of cultured lines of Arabidopsis thaliana derived from wild-type (WT) cultivar Col-0 to profiles from a knock-out line deficient in the gene encoding ARG1 (ARG1 KO), both on the ground and in space. The cell lines were launched on SpaceX CRS-2 as part of the Cellular Expression Logic (CEL) experiment of the BRIC-17 spaceflight mission. The cultured cell lines were grown within 60 mm Petri plates in Petri Dish Fixation Units (PDFUs) that were housed within the Biological Research In Canisters (BRIC) hardware. Spaceflight samples were fixed on orbit. Differentially expressed genes were identified between the two environments (spaceflight and comparable ground controls) and the two genotypes (WT and ARG1 KO). Each genotype engaged unique genes during physiological adaptation to the spaceflight environment, with little overlap. Most of the genes altered in expression in spaceflight in WT cells were found to be Arg1-dependent, suggesting a major role for that gene in the physiological adaptation of undifferentiated cells to spaceflight. Key Words: ARG1-Spaceflight-Gene expression-Physiological

  12. Allocation, morphology, physiology, architecture: the multiple facets of plant above- and below-ground responses to resource stress.

    PubMed

    Freschet, Grégoire T; Violle, Cyrille; Bourget, Malo Y; Scherer-Lorenzen, Michael; Fort, Florian

    2018-06-01

    Plants respond to resource stress by changing multiple aspects of their biomass allocation, morphology, physiology and architecture. To date, we lack an integrated view of the relative importance of these plastic responses in alleviating resource stress and of the consistency/variability of these responses among species. We subjected nine species (legumes, forbs and graminoids) to nitrogen and/or light shortages and measured 11 above-ground and below-ground trait adjustments critical in the alleviation of these stresses (plus several underlying traits). Nine traits out of 11 showed adjustments that improved plants' potential capacity to acquire the limiting resource at a given time. Above ground, aspects of plasticity in allocation, morphology, physiology and architecture all appeared important in improving light capture, whereas below ground, plasticity in allocation and physiology were most critical to improving nitrogen acquisition. Six traits out of 11 showed substantial heterogeneity in species plasticity, with little structuration of these differences within trait covariation syndromes. Such comprehensive assessment of the complex nature of phenotypic responses of plants to multiple stress factors, and the comparison of plant responses across multiple species, makes a clear case for the high (but largely overlooked) diversity of potential plastic responses of plants, and for the need to explore the potential rules structuring them. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  13. Physiological relevance of plant 2-Cys peroxiredoxin overoxidation level and oligomerization status.

    PubMed

    Cerveau, Delphine; Ouahrani, Djelloul; Marok, Mohamed Amine; Blanchard, Laurence; Rey, Pascal

    2016-01-01

    Peroxiredoxins are ubiquitous thioredoxin-dependent peroxidases presumed to display, upon environmental constraints, a chaperone function resulting from a redox-dependent conformational switch. In this work, using biochemical and genetic approaches, we aimed to unravel the factors regulating the redox status and the conformation of the plastidial 2-Cys peroxiredoxin (2-Cys PRX) in plants. In Arabidopsis, we show that in optimal growth conditions, the overoxidation level mainly depends on the availability of thioredoxin-related electron donors, but not on sulfiredoxin, the enzyme reducing the 2-Cys PRX overoxidized form. We also observed that upon various physiological temperature, osmotic and light stress conditions, the overoxidation level and oligomerization status of 2-Cys PRX can moderately vary depending on the constraint type. Further, no major change was noticed regarding protein conformation in water-stressed Arabidopsis, barley and potato plants, whereas species-dependent up- and down-variations in overoxidation were observed. In contrast, both 2-Cys PRX overoxidation and oligomerization were strongly induced during a severe oxidative stress generated by methyl viologen. From these data, revealing that the oligomerization status of plant 2-Cys PRX does not exhibit important variation and is not tightly linked to the protein redox status upon physiologically relevant environmental constraints, the possible in planta functions of 2-Cys PRX are discussed. © 2015 John Wiley & Sons Ltd.

  14. The gravitational plant physiology facility-Description of equipment developed for biological research in spacelab

    NASA Technical Reports Server (NTRS)

    Heathcote, D. G.; Chapman, D. K.; Brown, A. H.; Lewis, R. F.

    1994-01-01

    In January 1992, the NASA Suttle mission STS 42 carried a facility designed to perform experiments on plant gravi- and photo-tropic responses. This equipment, the Gravitational Plant Physiology Facility (GPPF) was made up of a number of interconnected units mounted within a Spacelab double rack. The details of these units and the plant growth containers designed for use in GPPF are described. The equipment functioned well during the mission and returned a substantial body of time-lapse video data on plant responses to tropistic stimuli under conditions of orbital microgravity. GPPF is maintained by NASA Ames Research Center, and is flight qualifiable for future spacelab missions.

  15. Physiological and biochemical perspectives of non-salt tolerant plants during bacterial interaction against soil salinity.

    PubMed

    Radhakrishnan, Ramalingam; Baek, Kwang Hyun

    2017-07-01

    Climatic changes on earth affect the soil quality of agricultural lands, especially by increasing salt deposition in soil, which results in soil salinity. Soil salinity is a major challenge to growth and reproduction among glycophytes (including all crop plants). Soil bacteria present in the rhizosphere and/or roots naturally protect plants from the adverse effects of soil salinity by reprogramming the stress-induced physiological changes in plants. Bacteria can enrich the soil with major nutrients (nitrogen, phosphorus, and potassium) in a form easily available to plants and prevent the transport of excess sodium to roots (exopolysaccharides secreted by bacteria bind with sodium ions) for maintaining ionic balance and water potential in cells. Salinity also affects plant growth regulators and suppresses seed germination and root and shoot growth. Bacterial secretion of indole-3-acetic acid and gibberellins compensates for the salt-induced hormonal decrease in plants, and bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase synthesis decreases ethylene production to stimulate plant growth. Furthermore, bacteria modulate the redox state of salinity-affected plants by enhancing antioxidants and polyamines, which leads to increased photosynthetic efficiency. Bacteria-induced accumulation of compatible solutes in stressed plants regulates plant cellular activities and prevents salt stress damage. Plant-bacterial interaction reprograms the expression of salt stress-responsive genes and proteins in salinity-affected plants, resulting in a precise stress mitigation metabolism as a defense mechanism. Soil bacteria increase the fertility of soil and regulate the plant functions to prevent the salinity effects in glycophytes. This review explains the current understanding about the physiological changes induced in glycophytes during bacterial interaction to alleviate the adverse effects of soil salinity stress. Copyright © 2017 Elsevier Masson SAS. All rights

  16. Biological consilience of hydrogen sulfide and nitric oxide in plants: Gases of primordial earth linking plant, microbial and animal physiologies.

    PubMed

    Yamasaki, Hideo; Cohen, Michael F

    2016-05-01

    Hydrogen sulfide (H2S) is produced in the mammalian body through the enzymatic activities of cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3MST). A growing number of studies have revealed that biogenic H2S produced in tissues is involved in a variety of physiological responses in mammals including vasorelaxation and neurotransmission. It is now evident that mammals utilize H2S to regulate multiple signaling systems, echoing the research history of the gaseous signaling molecules nitric oxide (NO) and carbon monoxide (CO) that had previously only been recognized for their cytotoxicity. In the human diet, meats (mammals, birds and fishes) and vegetables (plants) containing cysteine and other sulfur compounds are the major dietary sources for endogenous production of H2S. Plants are primary producers in ecosystems on the earth and they synthesize organic sulfur compounds through the activity of sulfur assimilation. Although plant H2S-producing activities have been known for a long time, our knowledge of H2S biology in plant systems has not been updated to the extent of mammalian studies. Here we review recent progress on H2S studies, highlighting plants and bacteria. Scoping the future integration of H2S, NO and O2 biology, we discuss a possible linkage between physiology, ecology and evolutional biology of gas metabolisms that may reflect the historical changes of the Earth's atmospheric composition. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Physiological, structural and molecular traits activated in strawberry plants after inoculation with the plant growth-promoting bacterium Azospirillum brasilense REC3.

    PubMed

    Guerrero-Molina, M F; Lovaisa, N C; Salazar, S M; Martínez-Zamora, M G; Díaz-Ricci, J C; Pedraza, R O

    2015-05-01

    The plant growth-promoting strain REC3 of Azospirillum brasilense, isolated from strawberry roots, prompts growth promotion and systemic protection against anthracnose disease in this crop. Hence, we hypothesised that A. brasilense REC3 can induce different physiological, structural and molecular responses in strawberry plants. Therefore, the aim of this work was to study these traits activated in Azospirillum-colonised strawberry plants, which have not been assessed until now. Healthy, in vitro micropropagated plants were root-inoculated with REC3 under hydroponic conditions; root and leaf tissues were sampled at different times, and oxidative burst, phenolic compound content, malondialdehyde (MDA) concentration, callose deposition, cell wall fortification and gene expression were evaluated. Azospirillum inoculation enhanced levels of soluble phenolic compounds after 12 h post-inoculation (hpi), while amounts of cell wall bound phenolics were similar in inoculated and control plants. Other early responses activated by REC3 (at 24 hpi) were a decline of lipid peroxidation and up-regulation of strawberry genes involved in defence (FaPR1), bacterial recognition (FaFLS2) and H₂O₂ depuration (FaCAT and FaAPXc). The last may explain the apparent absence of oxidative burst in leaves after bacterial inoculation. Also, REC3 inoculation induced delayed structural responses such as callose deposition and cell wall fortification (at 72 hpi). Results showed that A. brasilense REC3 is capable of exerting beneficial effects on strawberry plants, reinforcing their physiological and cellular characteristics, which in turns contribute to improve plant performance. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Protocol: optimising hydroponic growth systems for nutritional and physiological analysis of Arabidopsis thaliana and other plants

    PubMed Central

    2013-01-01

    Background Hydroponic growth systems are a convenient platform for studying whole plant physiology. However, we found through trialling systems as they are described in the literature that our experiments were frequently confounded by factors that affected plant growth, including algal contamination and hypoxia. We also found the way in which the plants were grown made them poorly amenable to a number of common physiological assays. Results The drivers for the development of this hydroponic system were: 1) the exclusion of light from the growth solution; 2) to simplify the handling of individual plants, and 3) the growth of the plant to allow easy implementation of multiple assays. These aims were all met by the use of pierced lids of black microcentrifuge tubes. Seed was germinated on a lid filled with an agar-containing germination media immersed in the same solution. Following germination, the liquid growth media was exchanged with the experimental solution, and after 14-21 days seedlings were transferred to larger tanks with aerated solution where they remained until experimentation. We provide details of the protocol including composition of the basal growth solution, and separate solutions with altered calcium, magnesium, potassium or sodium supply whilst maintaining the activity of the majority of other ions. We demonstrate the adaptability of this system for: gas exchange measurement on single leaves and whole plants; qRT-PCR to probe the transcriptional response of roots or shoots to altered nutrient composition in the growth solution (we demonstrate this using high and low calcium supply); producing highly competent mesophyll protoplasts; and, accelerating the screening of Arabidopsis transformants. This system is also ideal for manipulating plants for micropipette techniques such as electrophysiology or SiCSA. Conclusions We present an optimised plant hydroponic culture system that can be quickly and cheaply constructed, and produces plants with similar

  19. Physiological Roles of Plant Post-Golgi Transport Pathways in Membrane Trafficking.

    PubMed

    Uemura, Tomohiro

    2016-10-01

    Membrane trafficking is the fundamental system through which proteins are sorted to their correct destinations in eukaryotic cells. Key regulators of this system include RAB GTPases and soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs). Interestingly, the numbers of RAB GTPases and SNAREs involved in post-Golgi transport pathways in plant cells are larger than those in animal and yeast cells, suggesting that plants have evolved unique and complex post-Golgi transport pathways. The trans-Golgi network (TGN) is an important organelle that acts as a sorting station in the post-Golgi transport pathways of plant cells. The TGN also functions as the early endosome, which is the first compartment to receive endocytosed proteins. Several endocytosed proteins on the plasma membrane (PM) are initially targeted to the TGN/EE, then recycled back to the PM or transported to the vacuole for degradation. The recycling and degradation of the PM localized proteins is essential for the development and environmental responses in plant. The present review describes the post-Golgi transport pathways that show unique physiological functions in plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Transient physiological responses of planting frozen root plugs of Douglas-fir seedlings

    Treesearch

    M. Anisul Islam; Douglass F. JAcobs; Kent G. Apostol; R. Kasten Dumroese

    2008-01-01

    Short-term physiological responses of planting frozen (FR) and rapidly thawed (TR) root plugs of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings were examined through time series (0 h, 6 h, 12 h, 1 day, 3 days, and 7 days) measurements in two separate experiments: 10 C day: 6 C night, RH 75% and 30 C day: 20 C night, RH 50%, respectively...

  1. Host plant-specific remodeling of midgut physiology in the generalist insect herbivore Trichoplusia ni.

    PubMed

    Herde, Marco; Howe, Gregg A

    2014-07-01

    Species diversity in terrestrial ecosystems is influenced by plant defense compounds that alter the behavior, physiology, and host preference of insect herbivores. Although it is established that insects evolved the ability to detoxify specific allelochemicals, the mechanisms by which polyphagous insects cope with toxic compounds in diverse host plants are not well understood. Here, we used defended and non-defended plant genotypes to study how variation in chemical defense affects midgut responses of the lepidopteran herbivore Trichoplusia ni, which is a pest of a wide variety of native and cultivated plants. The genome-wide midgut transcriptional response of T. ni larvae to glucosinolate-based defenses in the crucifer Arabidopsis thaliana was characterized by strong induction of genes encoding Phase I and II detoxification enzymes. In contrast, the response of T. ni to proteinase inhibitors and other jasmonate-regulated defenses in tomato (Solanum lycopersicum) was dominated by changes in the expression of digestive enzymes and, strikingly, concomitant repression of transcripts encoding detoxification enzymes. Unbiased proteomic analyses of T. ni feces demonstrated that tomato defenses remodel the complement of T.ni digestive enzymes, which was associated with increased amounts of serine proteases and decreased lipase protein abundance upon encountering tomato defense chemistry. These collective results indicate that T. ni adjusts its gut physiology to the presence of host plant-specific chemical defenses, and further suggest that plants may exploit this digestive flexibility as a defensive strategy to suppress the production of enzymes that detoxify allelochemicals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress.

    PubMed

    Kebede, Hirut; Abbas, Hamed K; Fisher, Daniel K; Bellaloui, Nacer

    2012-11-20

    Increased aflatoxin contamination in corn by the fungus Aspergillus flavus is associated with frequent periods of drought and heat stress during the reproductive stages of the plants. The objective of this study was to evaluate the relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress. The study was conducted in Stoneville, MS, USA under irrigated and non-irrigated conditions. Five commercial hybrids, P31G70, P33F87, P32B34, P31B13 and DKC63-42 and two inbred germplasm lines, PI 639055 and PI 489361, were evaluated. The plants were inoculated with Aspergillus flavus (K-54) at mid-silk stage, and aflatoxin contamination was determined on the kernels at harvest. Several physiological measurements which are indicators of stress response were determined. The results suggested that PI 639055, PI 489361 and hybrid DKC63-42 were more sensitive to drought and high temperature stress in the non-irrigated plots and P31G70 was the most tolerant among all the genotypes. Aflatoxin contamination was the highest in DKC63-42 and PI 489361 but significantly lower in P31G70. However, PI 639055, which is an aflatoxin resistant germplasm, had the lowest aflatoxin contamination, even though it was one of the most stressed genotypes. Possible reasons for these differences are discussed. These results suggested that the physiological responses were associated with the level of aflatoxin contamination in all the genotypes, except PI 639055. These and other physiological responses related to stress may help examine differences among corn genotypes in aflatoxin contamination.

  3. Resolving the role of plant glutamate dehydrogenase: II. Physiological characterization of plants overexpressing the two enzyme subunits individually or simultaneously.

    PubMed

    Tercé-Laforgue, Thérèse; Bedu, Magali; Dargel-Grafin, Céline; Dubois, Frédéric; Gibon, Yves; Restivo, Francesco M; Hirel, Bertrand

    2013-10-01

    Glutamate dehydrogenase (GDH; EC 1.4.1.2) is able to carry out the deamination of glutamate in higher plants. In order to obtain a better understanding of the physiological function of GDH in leaves, transgenic tobacco (Nicotiana tabacum L.) plants were constructed that overexpress two genes from Nicotiana plumbaginifolia (GDHA and GDHB under the control of the Cauliflower mosiac virus 35S promoter), which encode the α- and β-subunits of GDH individually or simultaneously. In the transgenic plants, the GDH protein accumulated in the mitochondria of mesophyll cells and in the mitochondria of the phloem companion cells (CCs), where the native enzyme is normally expressed. Such a shift in the cellular location of the GDH enzyme induced major changes in carbon and nitrogen metabolite accumulation and a reduction in growth. These changes were mainly characterized by a decrease in the amount of sucrose, starch and glutamine in the leaves, which was accompanied by an increase in the amount of nitrate and Chl. In addition, there was an increase in the content of asparagine and a decrease in proline. Such changes may explain the lower plant biomass determined in the GDH-overexpressing lines. Overexpressing the two genes GDHA and GDHB individually or simultaneously induced a differential accumulation of glutamate and glutamine and a modification of the glutamate to glutamine ratio. The impact of the metabolic changes occurring in the different types of GDH-overexpressing plants is discussed in relation to the possible physiological function of each subunit when present in the form of homohexamers or heterohexamers.

  4. Beyond the climate envelope: using trait filtering models to predict biome boundaries from plant physiology.

    NASA Astrophysics Data System (ADS)

    Fisher, R.; Hoffmann, W. A.; Muszala, S.

    2014-12-01

    The introduction of second-generation dynamic vegetation models - which simulate the distribution of light resources between plant types along the vertical canopy profile, and therefore facilitate the representation of plant competition explicitly - is a large increase in the complexity and fidelity with which the terrestrial biosphere is abstracted into Earth System Models. In this new class of model, biome boundaries are predicted as the emergent properties of plant physiology, and are therefore sensitive to the high-dimensional parameterizations of plant functional traits. These new approaches offer the facility to quantitatively test ecophysiological hypotheses of plant distribution at large scales, a field which remains surprisingly under-developed. Here we describe experiments conducted with the Community Land Model Ecosystem Demography component, CLM(ED), in which we reduce the complexity of the problem by testing how individual plant functional trait changes to control the location of biome boundaries between functional types. Specifically, we investigate which physiological trade-offs determine the boundary between frequently burned savanna and forest biomes, and attempt to distinguish how each strategic life-history trade-off (carbon storage, bark investment, re-sprouting strategy) contributes towards the maintenance of sharp geographical gradients between fire adapted and typically inflammable closed canopy ecosystems. This study forms part of the planning for a model-inspired fire manipulation experiment at the cerrado-forest boundary in South-Eastern Brazil, and the results will be used to guide future data-collection and analysis strategies.

  5. Induction of phenolic metabolites and physiological changes in chamomile plants in relation to nitrogen nutrition.

    PubMed

    Kováčik, Jozef; Klejdus, Bořivoj

    2014-01-01

    Alternative tools, such as the manipulation of mineral nutrition, may affect secondary metabolite production and thus the nutritional value of food/medicinal plants. We studied the impact of nitrogen (N) nutrition (nitrate/NO3(-) or ammonium/NH4(+) nitrogen) and subsequent nitrogen deficit on phenolic metabolites and physiology in Matricaria chamomilla plants. NH4(+)-fed plants revealed a strong induction of selected phenolic metabolites but, at the same time, growth, Fv/Fm, tissue water content and soluble protein depletion occurred in comparison with NO3(-)-fed ones. On the other hand, NO3(-)-deficient plants also revealed an increase in phenolic metabolites but growth depression was not observed after the given exposure period. Free amino acids were more accumulated in NH4(+)-fed shoots (strong increase in arginine and proline mainly), while the pattern of roots' accumulation was independent of N form. Among phenolic acids, NH4(+) strongly elevated mainly the accumulation of chlorogenic acid. Within flavonoids, flavonols decreased while flavones strongly increased in response to N deficiency. Coumarin-related metabolites revealed a similar increase in herniarin glucosidic precursor in response to N deficiency, while herniarin was more accumulated in NO3(-)- and umbelliferone in NH4(+)-cultured plants. These data indicate a negative impact of NH4(+) as the only source of N on physiology, but also a higher stimulation of some valuable phenols. Nitrogen-induced changes in comparison with other food/crop plants are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. PHYSIOLOGY OF ION TRANSPORT ACROSS THE TONOPLAST OF HIGHER PLANTS.

    PubMed

    Barkla, Bronwyn J.; Pantoja, Omar

    1996-06-01

    The vacuole of plant cells plays an important role in the homeostasis of the cell. It is involved in the regulation of cytoplasmic pH, sequestration of toxic ions and xenobiotics, regulation of cell turgor, storage of amino acids, sugars and CO2 in the form of malate, and possibly as a source for elevating cytoplasmic calcium. All these activities are driven by two primary active transport mechanisms present in the vacuolar membrane (tonoplast). These two mechanisms employ high-energy metabolites to pump protons into the vacuole, establishing a proton electrochemical potential that mediates the transport of a diverse range of solutes. Within the past few years, great advances at the molecular and functional levels have been made on the characterization and identification of these mechanisms. The aim of this review is to summarize these studies in the context of the physiology of the plant cell.

  7. PPDB - A tool for investigation of plants physiology based on gene ontology.

    PubMed

    Sharma, Ajay Shiv; Gupta, Hari Om; Prasad, Rajendra

    2014-09-02

    Representing the way forward, from functional genomics and its ontology to functional understanding and physiological model, in a computationally tractable fashion is one of the ongoing challenges faced by computational biology. To tackle the standpoint, we herein feature the applications of contemporary database management to the development of PPDB, a searching and browsing tool for the Plants Physiology Database that is based upon the mining of a large amount of gene ontology data currently available. The working principles and search options associated with the PPDB are publicly available and freely accessible on-line ( http://www.iitr.ernet.in/ajayshiv/ ) through a user friendly environment generated by means of Drupal-6.24. By knowing that genes are expressed in temporally and spatially characteristic patterns and that their functionally distinct products often reside in specific cellular compartments and may be part of one or more multi-component complexes, this sort of work is intended to be relevant for investigating the functional relationships of gene products at a system level and, thus, helps us approach to the full physiology.

  8. PPDB: A Tool for Investigation of Plants Physiology Based on Gene Ontology.

    PubMed

    Sharma, Ajay Shiv; Gupta, Hari Om; Prasad, Rajendra

    2015-09-01

    Representing the way forward, from functional genomics and its ontology to functional understanding and physiological model, in a computationally tractable fashion is one of the ongoing challenges faced by computational biology. To tackle the standpoint, we herein feature the applications of contemporary database management to the development of PPDB, a searching and browsing tool for the Plants Physiology Database that is based upon the mining of a large amount of gene ontology data currently available. The working principles and search options associated with the PPDB are publicly available and freely accessible online ( http://www.iitr.ac.in/ajayshiv/ ) through a user-friendly environment generated by means of Drupal-6.24. By knowing that genes are expressed in temporally and spatially characteristic patterns and that their functionally distinct products often reside in specific cellular compartments and may be part of one or more multicomponent complexes, this sort of work is intended to be relevant for investigating the functional relationships of gene products at a system level and, thus, helps us approach to the full physiology.

  9. Plant Survival and Mortality during Drought Can be Mediated by Co-occurring Species' Physiological and Morphological Traits: Results from a Model

    NASA Astrophysics Data System (ADS)

    Tai, X.; Mackay, D. S.

    2015-12-01

    Interactions among co-occurring species are mediated by plant physiology, morphology and environment. Without proper mechanisms to account for these factors, it remains difficult to predict plant mortality/survival under changing climate. A plant ecophysiological model, TREES, was extended to incorporate co-occurring species' belowground interaction for water. We used it to examine the interaction between two commonly co-occurring species during drought experiment, pine (Pinus edulis) and juniper (Juniperus monosperma), with contrasting physiological traits (vulnerability to cavitation and leaf water potential regulation). TREES was parameterized and validated using field-measured plant physiological traits. The root architecture (depth, profile, and root area to leaf area ratio) of juniper was adjusted to see how root morphology could affect the survival/mortality of its neighboring pine under both ambient and drought conditions. Drought suppressed plant water and carbon uptake, as well increased the average percentage loss of conductivity (PLC). Pine had 59% reduction in water uptake, 48% reduction in carbon uptake, and 38% increase in PLC, while juniper had 56% reduction in water uptake, 50% reduction in carbon and 29% increase in PLC, suggesting different vulnerability to drought as mediated by plant physiological traits. Variations in juniper root architecture further mediated drought stress on pine, from negative to positive. Different juniper root architecture caused variations in response of pine over drought (water uptake reduction ranged 0% ~63%, carbon uptake reduction ranged 0% ~ 70%, and PLC increase ranged 2% ~ 91%). Deeper or more uniformly distributed roots of juniper could effectively mitigate stress experienced by pine. In addition, the total water and carbon uptake tended to increase as the ratio of root area to leaf area increased while PLC showed non-monotonic response, suggesting the potential trade-off between maximizing resource uptake and

  10. Does plasticity in plant physiological traits explain the rapid increase in water use efficiency? An ecohydrological modeling approach

    NASA Astrophysics Data System (ADS)

    Mastrotheodoros, Theodoros; Fatichi, Simone; Pappas, Christoforos; Molnar, Peter; Burlando, Paolo

    2016-04-01

    The rise of atmospheric CO2 concentration is expected to stimulate plant productivity by enhancing photosynthesis and reducing stomatal conductance and thus increasing plant water use efficiency (WUE) worldwide. An analysis of eddy covariance flux tower data from 21 forested ecosystems across the north hemisphere detected an unexpectedly large increase in WUE (Keenan et al, 2013), which was six times larger than the increase found by most previous studies based on controlled experiments (e.g., FACE), leaf-scale analyses, and numerical modelling. This increase could be solely attributed to the increase in atmospheric CO2 since other confounding factors were ruled out. Here, we investigate the potential contribution of plant plasticity, reflected in the temporal adjustment of major plant physiological traits, on changes in WUE using the ecohydrological model Tethys and Chloris (T&C). We hypothesize that the increase in WUE can be attributed to small variations in plant physiological traits, undetectable through observations, eventually triggered by the atmospheric CO2 increase. Data from the 21 sites in the above mentioned study are used to force the model. Simulation results with and without plasticity in the physiological traits (i.e., model parameters in our numerical experiments) are compared with the observed trends in WUE. We test several plant adaptation strategies in being effective in explaining the observed increase in WUE using a multifactorial numerical experiment in which we perturb in a systematic way selected plant parameters. Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., and Richardson, A. D. (2013). Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499(7458), 324-7.

  11. ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight

    NASA Astrophysics Data System (ADS)

    Zupanska, Agata K.; Schultz, Eric R.; Yao, JiQiang; Sng, Natasha J.; Zhou, Mingqi; Callaham, Jordan B.; Ferl, Robert J.; Paul, Anna-Lisa

    2017-11-01

    Scientific access to spaceflight and especially the International Space Station has revealed that physiological adaptation to spaceflight is accompanied or enabled by changes in gene expression that significantly alter the transcriptome of cells in spaceflight. A wide range of experiments have shown that plant physiological adaptation to spaceflight involves gene expression changes that alter cell wall and other metabolisms. However, while transcriptome profiling aptly illuminates changes in gene expression that accompany spaceflight adaptation, mutation analysis is required to illuminate key elements required for that adaptation. Here we report how transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity 1 (Arg1), a gene known to affect gravity responses in plants on Earth. The study compared expression profiles of cultured lines of Arabidopsis thaliana derived from wild-type (WT) cultivar Col-0 to profiles from a knock-out line deficient in the gene encoding ARG1 (ARG1 KO), both on the ground and in space. The cell lines were launched on SpaceX CRS-2 as part of the Cellular Expression Logic (CEL) experiment of the BRIC-17 spaceflight mission. The cultured cell lines were grown within 60 mm Petri plates in Petri Dish Fixation Units (PDFUs) that were housed within the Biological Research In Canisters (BRIC) hardware. Spaceflight samples were fixed on orbit. Differentially expressed genes were identified between the two environments (spaceflight and comparable ground controls) and the two genotypes (WT and ARG1 KO). Each genotype engaged unique genes during physiological adaptation to the spaceflight environment, with little overlap. Most of the genes altered in expression in spaceflight in WT cells were found to be Arg1-dependent, suggesting a major role for that gene in the physiological adaptation of undifferentiated cells to spaceflight.

  12. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology.

    PubMed

    Brooker, Rob W; Bennett, Alison E; Cong, Wen-Feng; Daniell, Tim J; George, Timothy S; Hallett, Paul D; Hawes, Cathy; Iannetta, Pietro P M; Jones, Hamlyn G; Karley, Alison J; Li, Long; McKenzie, Blair M; Pakeman, Robin J; Paterson, Eric; Schöb, Christian; Shen, Jianbo; Squire, Geoff; Watson, Christine A; Zhang, Chaochun; Zhang, Fusuo; Zhang, Junling; White, Philip J

    2015-04-01

    Intercropping is a farming practice involving two or more crop species, or genotypes, growing together and coexisting for a time. On the fringes of modern intensive agriculture, intercropping is important in many subsistence or low-input/resource-limited agricultural systems. By allowing genuine yield gains without increased inputs, or greater stability of yield with decreased inputs, intercropping could be one route to delivering ‘sustainable intensification’. We discuss how recent knowledge from agronomy, plant physiology and ecology can be combined with the aim of improving intercropping systems. Recent advances in agronomy and plant physiology include better understanding of the mechanisms of interactions between crop genotypes and species – for example, enhanced resource availability through niche complementarity. Ecological advances include better understanding of the context-dependency of interactions, the mechanisms behind disease and pest avoidance, the links between above- and below-ground systems, and the role of microtopographic variation in coexistence. This improved understanding can guide approaches for improving intercropping systems, including breeding crops for intercropping. Although such advances can help to improve intercropping systems, we suggest that other topics also need addressing. These include better assessment of the wider benefits of intercropping in terms of multiple ecosystem services, collaboration with agricultural engineering, and more effective interdisciplinary research.

  13. A global database of sap flow measurements (SAPFLUXNET) to link plant and ecosystem physiology

    NASA Astrophysics Data System (ADS)

    Poyatos, Rafael; Granda, Víctor; Flo, Víctor; Molowny-Horas, Roberto; Mencuccini, Maurizio; Oren, Ram; Katul, Gabriel; Mahecha, Miguel; Steppe, Kathy; Martínez-Vilalta, Jordi

    2017-04-01

    Regional and global networks of ecosystem CO2 and water flux monitoring have dramatically increased our understanding of ecosystem functioning in the last 20 years. More recently, analyses of ecosystem-level fluxes have successfully incorporated data streams at coarser (remote sensing) and finer (plant traits) organisational scales. However, there are few data sources that capture the diel to seasonal dynamics of whole-plant physiology and that can provide a link between organism- and ecosystem-level function. Sap flow measured in plant stems reveals the temporal patterns in plant water transport, as mediated by stomatal regulation and hydraulic architecture. The widespread use of thermometric methods of sap flow measurement since the 1990s has resulted in numerous data sets for hundreds of species and sites worldwide, but these data have remained fragmentary and generally unavailable for syntheses of regional to global scope. We are compiling the first global database of sub-daily sap flow measurements in individual plants (SAPFLUXNET), aimed at unravelling the environmental and biotic drivers of plant transpiration regulation globally. I will present the SAPFLUXNET data infrastructure and workflow, which is built upon flexible, open-source computing tools within the R environment (dedicated R packages and classes, interactive documents and apps with Rmarkdown and Shiny). Data collection started in mid-2016, we have already incorporated > 50 datasets representing > 40 species and > 350 individual plants, globally distributed, and the number of contributed data sets is increasing rapidly. I will provide a general overview of the distribution of available data sets according to climate, measurement method, species, functional groups and plant size attributes. In parallel to the sap flow data compilation, we have also collated published results from calibrations of sap flow methods, to provide a first quantification on the variability associated with different sap

  14. Plant-pathogen interactions: leaf physiology alterations in poplars infected with rust (Melampsora medusae).

    PubMed

    Gortari, Fermín; Guiamet, Juan José; Graciano, Corina

    2018-06-01

    Rust produced by Melampsora sp. is considered one of the most relevant diseases in poplar plantations. Growth reduction in poplar plantations takes place because rust, like other pathogens, alters leaf physiology. There is not a complete evaluation of several of the physiological traits that can be affected by rust at leaf level. Therefore, the aim of this work was to evaluate, in an integrative way and in the same pathosystem, which physiological processes are affected when Populus deltoides Bartr. ex Marsh. leaves are infected by rust (Melampsora medusae Thümen). Leaves of two clones with different susceptibility to rust were analyzed. Field and pot experiments were performed, and several physiological traits were measured in healthy and infected leaves. We conclude that rust affects leaf mesophyll integrity, and so water movement in the leaf in liquid phase is affected. As a consequence, gas exchange is reduced, affecting both carbon fixation and transpiration. However, there is an increase in respiration rate, probably due to plant and fungal respiration. The increase in respiration rate is important in the reduction of net photosynthetic rate, but also some damage in the photosynthetic apparatus limits leaf capacity to fix carbon. The decrease in chlorophyll content would start later and seems not to explain the reduction in net photosynthetic rate. Both clones, although they have different susceptibility to rust, are affected in the same physiological mechanisms.

  15. Psychological and physiological effect in humans of touching plant foliage - using the semantic differential method and cerebral activity as indicators

    PubMed Central

    2013-01-01

    Background Numerous studies have reported on the healing powers of plants and nature, but there have not been so many instances of experimental research. In particular, there are very few psychological and physiological studies using tactile stimuli. This study examines the psychological and physiological effects of touching plant foliage by using an evaluation profile of the subjects’ impressions and investigating cerebral blood flow. Methods The subjects were 14 young Japanese men aged from 21 to 27 years (mean ± standard deviation: 23.6 ± 2.4). With their eyes closed, the subjects touched four different tactile samples including a leaf of natural pothos (Epipremnum aureum). The physiological indices were compared before and after each stimulus. Psychological indices were obtained using a ‘semantic differential’ method. Results The fabric stimulus gave people ‘soft’ and ‘rough’ impressions, ‘kind’, ‘peaceful’ and ‘pleasant’ feelings psychologically, and a sense of physiological calm. On the other hand, the metal stimulus gave people ‘cold’, ‘smooth’ and ‘hard’ impressions and an image of something ‘artificial’. The metal stimulus caused a stress response in human cerebral blood flow although its evaluation in terms of ‘pleasant or unpleasant’ was neutral. There were no remarkable differences between the stimuli of natural and artificial pothos compared with other types of stimulus psychologically. However, only the natural pothos stimulus showed a sense of physiological calm in the same appearance as the fabric stimulus. Conclusions This study shows that people experience an unconscious calming reaction to touching a plant. It is to be concluded that plants are an indispensable element of the human environment. PMID:23587233

  16. Beyond cellular detoxification: a plethora of physiological roles for MDR transporter homologs in plants

    PubMed Central

    Remy, Estelle; Duque, Paula

    2014-01-01

    Higher plants possess a multitude of Multiple Drug Resistance (MDR) transporter homologs that group into three distinct and ubiquitous families—the ATP-Binding Cassette (ABC) superfamily, the Major Facilitator Superfamily (MFS), and the Multidrug And Toxic compound Extrusion (MATE) family. As in other organisms, such as fungi, mammals, and bacteria, MDR transporters make a primary contribution to cellular detoxification processes in plants, mainly through the extrusion of toxic compounds from the cell or their sequestration in the central vacuole. This review aims at summarizing the currently available information on the in vivo roles of MDR transporters in plant systems. Taken together, these data clearly indicate that the biological functions of ABC, MFS, and MATE carriers are not restricted to xenobiotic and metal detoxification. Importantly, the activity of plant MDR transporters also mediates biotic stress resistance and is instrumental in numerous physiological processes essential for optimal plant growth and development, including the regulation of ion homeostasis and polar transport of the phytohormone auxin. PMID:24910617

  17. A Computer-Assisted Personalized Approach in an Undergraduate Plant Physiology Class1

    PubMed Central

    Artus, Nancy N.; Nadler, Kenneth D.

    1999-01-01

    We used Computer-Assisted Personalized Approach (CAPA), a networked teaching and learning tool that generates computer individualized homework problem sets, in our large-enrollment introductory plant physiology course. We saw significant improvement in student examination performance with regular homework assignments, with CAPA being an effective and efficient substitute for hand-graded homework. Using CAPA, each student received a printed set of similar but individualized problems of a conceptual (qualitative) and/or quantitative nature with quality graphics. Because each set of problems is unique, students were encouraged to work together to clarify concepts but were required to do their own work for credit. Students could enter answers multiple times without penalty, and they were able to obtain immediate feedback and hints until the due date. These features increased student time on task, allowing higher course standards and student achievement in a diverse student population. CAPA handles routine tasks such as grading, recording, summarizing, and posting grades. In anonymous surveys, students indicated an overwhelming preference for homework in CAPA format, citing several features such as immediate feedback, multiple tries, and on-line accessibility as reasons for their preference. We wrote and used more than 170 problems on 17 topics in introductory plant physiology, cataloging them in a computer library for general access. Representative problems are compared and discussed. PMID:10198076

  18. Physiological integration modifies δ15N in the clonal plant Fragaria vesca, suggesting preferential transport of nitrogen to water-stressed offspring.

    PubMed

    Roiloa, S R; Antelo, B; Retuerto, R

    2014-08-01

    One of the most striking attributes of clonal plants is their capacity for physiological integration, which enables movement of essential resources between connected ramets. This study investigated the capacity of physiological integration to buffer differences in resource availability experienced by ramets of the clonal wild strawberry plant, Fragaria vesca. Specifically, a study was made of the responses of connected and severed offspring ramets growing in environments with different water availability conditions (well watered or water stressed) and nitrogen forms (nitrate or ammonium). The experimental design consisted of three factors, 'integration' (connected, severed) 'water status' (well watered, water stressed) and 'nitrogen form' (nitrate, ammonium), applied in a pot experiment. The effects of physiological integration were studied by analysing photochemical efficiency, leaf spectral reflectance, photosynthesis and carbon and nitrogen isotope discrimination, the last of which has been neglected in previous studies. Physiological integration buffered the stress caused by water deprivation. As a consequence, survival was improved in water-stressed offspring ramets that remained connected to their parent plants. The nitrogen isotope composition (δ(15)N) values in the connected water-stressed ramets were similar to those in ramets in the ammonium treatment; however, δ(15)N values in connected well-watered ramets were similar to those in the nitrate treatment. The results also demonstrated the benefit of integration for offspring ramets in terms of photochemical activity and photosynthesis. This is the first study in which carbon and nitrogen isotopic discrimination has been used to detect physiological integration in clonal plants. The results for nitrogen isotope composition represent the first evidence of preferential transport of a specific form of nitrogen to compensate for stressful conditions experienced by a member clone. Water consumption was lower

  19. Effect of low dosage biochar amendment on plant physiology parameters of sunflowers

    NASA Astrophysics Data System (ADS)

    María De la Rosa, José; Paneque, Marina; Franco-Navarro, Juan D.; Colmenero-Flores, José Manuel; Knicker, Heike

    2017-04-01

    Four different biochars were used as organic ameliorants in a typical agricultural soil of the Mediterranean region a (Calcic Cambisol). This field study was performed with plants of sunflower (Helianthus annuus L.) at the experimental station "La Hampa", located in the Guadalquivir river valley (SW Spain). The soil was amended with doses equivalent to 1.5 and 15 t ha-1 of the four biochars in two independent plantations. In addition, un-amended plots were prepared for comparison purposes 1. This study showed that the amendment with 1.5 t biochar ha-1 did not modify significantly soil properties, or the agronomic productivity of sunflowers. However, in spite of this low dose of biochar, positive effects on plant physiology were observed. The efficiency of Photosystem-II (quantum yield (QYPSII)), is a stress marker, related to the water status of the plant, and is reduced under drought stress. The QYPSII values of the plants grown with 1.5 t biochar ha-1 were higher than in the control and ranged between 72 and 77%. Values between 70 and 80% correspond to non-stressed (well-watered) sunflower plants. Biochar reduced stomatal conductance (gs, leaf transpiration) in both treatments. Therefore, the dependence of agronomic productivity on biochar dose was not observed, since both doses resulted in similar gs reductions. In C3 plants, such as sunflower, an increase of leaf area (LA) is usually associated to a decrease of gs caused by a reduction of stomatal frequency and increases the water use efficiency and drought tolerance 2. However, here no clear correlation could be established between biochar-induced LA stimulation and gs response after application of biochar. Thus, gs reduction was evident but not a consequence of LA increase. We hypothesize that biochar addition to soils alters anatomical and/or physiological parameters of the plants that in turn reduces stomatal conductance and increases water use efficiency of sunflower plants. After the last rain, increasing

  20. Impact of lead tolerant plant growth promoting rhizobacteria on growth, physiology, antioxidant activities, yield and lead content in sunflower in lead contaminated soil.

    PubMed

    Saleem, Muhammad; Asghar, Hafiz Naeem; Zahir, Zahir Ahmad; Shahid, Muhammad

    2018-03-01

    Present study was conducted to evaluate the effect of lead tolerant plant growth promoting rhizobacteria (LTPGPR) on growth, physiology, yield, antioxidant activities and lead uptake in sunflower in soil contaminated with lead under pot conditions. Three pre-characterized LTPGP strains (S2 (Pseudomonas gessardii strain BLP141), S5 (Pseudomonas fluorescens A506) and S10 (Pseudomonas fluorescens strain LMG 2189)) were used to inoculate sunflower growing in soil contaminated with different levels (300, 600 and 900 mg kg -1 ) of lead by using lead nitrate salt as source of lead. Treatments were arranged according to completely randomized design with factorial arrangements. At harvesting, data regarding growth attributes (root shoot length, root shoot fresh and dry weights), yield per plant, physiological attributes (Chlorophyll 'a', 'b' and carotenoids content), antioxidant activities (Ascorbate peroxidase, catalase, superoxide dismutase and glutathione reductase), proline and malanodialdehyde content, and lead content in root, shoot and achenes of sunflower were recorded. Data were analysed by standard statistical procedures. Results showed that lead contamination reduced the plants growth, physiology and yield at all levels of lead stress. But application of LTPGPR in soil contaminated with lead improved plant growth, physiology, yield, and antioxidant activities, proline, and reduced the malanodialdehyde content (that is reduced by the application of different strains in lead contamination) of sunflower as compared to plants grown in soil without inoculation. Inoculation also promoted the uptake of lead in root, shoots and reduced the uptake of lead in achenes of plants as compared to plants in lead contamination without inoculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Eighth workshop on seedling physiology and growth problems in oak plantings (abstracts). 2001 September 9-12; Hiwassee, GA.

    Treesearch

    S. Sung; P.P. Kormanik; W.J. Ostrosina; J.G. Isebrands

    2002-01-01

    Research results and ongoing research activities in field performance of planted trees, seedling propagation, physiology, genetics, acorn germination, and natural regeneration for oaks are described in 21 abstracts.

  2. Sixth workshop on seedling physiology and growth problems in oak plantings (abstracts); 1995 September 18-20; Tomahawk, WI.

    Treesearch

    Ronald M. Teclaw

    1996-01-01

    Research results and ongoing research activities in field performance of planted trees, seedling propagation, physiology, genetics, acorn germination ,and natural regeneration for oaks are described in 29 abstracts.

  3. Sex-related differences in stress tolerance in dioecious plants: a critical appraisal in a physiological context.

    PubMed

    Juvany, Marta; Munné-Bosch, Sergi

    2015-10-01

    Sex-related differences in reproductive effort can lead to differences in vegetative growth and stress tolerance. However, do all dioecious plants show sex-related differences in stress tolerance? To what extent can the environmental context and modularity mask sex-related differences in stress tolerance? Finally, to what extent can physiological measurements help us understand secondary sexual dimorphism? This opinion paper aims to answer these three basic questions with special emphasis on developments in research in this area over the last decade. Compelling evidence indicates that dimorphic species do not always show differences in stress tolerance between sexes; and when sex-related differences do occur, they seem to be highly species-specific, with greater stress tolerance in females than males in some species, and the opposite in others. The causes of such sex-related species-specific differences are still poorly understood, and more physiological studies and diversity of plant species that allow comparative analyses are needed. Furthermore, studies performed thus far demonstrate that the expression of dioecy can lead to sex-related differences in physiological traits-from leaf gas exchange to gene expression-but the biological significance of modularity and sectoriality governing such differences has been poorly investigated. Future studies that consider the importance of modularity and sectoriality are essential for unravelling the mechanisms underlying stress adaptation in male and female plants growing in their natural habitat. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Joint control of terrestrial gross primary productivity by plant phenology and physiology

    PubMed Central

    Xia, Jianyang; Niu, Shuli; Ciais, Philippe; Janssens, Ivan A.; Chen, Jiquan; Ammann, Christof; Arain, Altaf; Blanken, Peter D.; Cescatti, Alessandro; Bonal, Damien; Buchmann, Nina; Curtis, Peter S.; Chen, Shiping; Dong, Jinwei; Flanagan, Lawrence B.; Frankenberg, Christian; Georgiadis, Teodoro; Gough, Christopher M.; Hui, Dafeng; Kiely, Gerard; Li, Jianwei; Lund, Magnus; Magliulo, Vincenzo; Marcolla, Barbara; Merbold, Lutz; Olesen, Jørgen E.; Piao, Shilong; Raschi, Antonio; Roupsard, Olivier; Suyker, Andrew E.; Vaccari, Francesco P.; Varlagin, Andrej; Vesala, Timo; Wilkinson, Matthew; Weng, Ensheng; Yan, Liming; Luo, Yiqi

    2015-01-01

    Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate–carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes. However, it is still unclear how plant phenology and physiology can be integrated to explain the spatiotemporal variability of terrestrial GPP. Based on analyses of eddy–covariance and satellite-derived data, we decomposed annual terrestrial GPP into the length of the CO2 uptake period (CUP) and the seasonal maximal capacity of CO2 uptake (GPPmax). The product of CUP and GPPmax explained >90% of the temporal GPP variability in most areas of North America during 2000–2010 and the spatial GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the European heatwave in 2003 (r2 = 0.90) and GPP recovery after a fire disturbance in South Dakota (r2 = 0.88). Additional analysis of the eddy–covariance flux data shows that the interbiome variation in annual GPP is better explained by that in GPPmax than CUP. These findings indicate that terrestrial GPP is jointly controlled by ecosystem-level plant phenology and photosynthetic capacity, and greater understanding of GPPmax and CUP responses to environmental and biological variations will, thus, improve predictions of GPP over time and space. PMID:25730847

  5. FPGA-based smart sensor for drought stress detection in tomato plants using novel physiological variables and discrete wavelet transform.

    PubMed

    Duarte-Galvan, Carlos; Romero-Troncoso, Rene de J; Torres-Pacheco, Irineo; Guevara-Gonzalez, Ramon G; Fernandez-Jaramillo, Arturo A; Contreras-Medina, Luis M; Carrillo-Serrano, Roberto V; Millan-Almaraz, Jesus R

    2014-10-09

    Soil drought represents one of the most dangerous stresses for plants. It impacts the yield and quality of crops, and if it remains undetected for a long time, the entire crop could be lost. However, for some plants a certain amount of drought stress improves specific characteristics. In such cases, a device capable of detecting and quantifying the impact of drought stress in plants is desirable. This article focuses on testing if the monitoring of physiological process through a gas exchange methodology provides enough information to detect drought stress conditions in plants. The experiment consists of using a set of smart sensors based on Field Programmable Gate Arrays (FPGAs) to monitor a group of plants under controlled drought conditions. The main objective was to use different digital signal processing techniques such as the Discrete Wavelet Transform (DWT) to explore the response of plant physiological processes to drought. Also, an index-based methodology was utilized to compensate the spatial variation inside the greenhouse. As a result, differences between treatments were determined to be independent of climate variations inside the greenhouse. Finally, after using the DWT as digital filter, results demonstrated that the proposed system is capable to reject high frequency noise and to detect drought conditions.

  6. Assessing Morphological and Physiological Properties of Forest Species Using High Throughput Plant Phenotyping and Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Mazis, A.; Hiller, J.; Morgan, P.; Awada, T.; Stoerger, V.

    2017-12-01

    High throughput plant phenotyping is increasingly being used to assess morphological and biophysical traits of economically important crops in agriculture. In this study, the potential application of this technique in natural resources management, through the characterization of woody plants regeneration, establishment, growth, and responses to water and nutrient manipulations was assessed. Two woody species were selected for this study, Quercus prinoides and Quercus bicolor. Seeds were collected from trees growing at the edge of their natural distribution in Nebraska and Missouri, USA. Seeds were germinated in the greenhouse and transferred to the Nebraska Innovation Campus Lemnatec3D High Throughput facility at the University of Nebraska-Lincoln. Seedlings subjected to water and N manipulations, were imaged twice or three times a week using four cameras (Visible, Fluorescence, Infrared and Hyperspectral), throughout the growing season. Traditional leaf to plant levels ecophysiological measurements were concurrently acquired to assess the relationship between these two techniques. These include gas exchange (LI 6400 and LI 6800, LICOR Inc., Lincoln NE), chlorophyll content, optical characteristics (Ocean Optics USB200), water and osmotic potentials, leaf area and weight and carbon isotope ratio. In the presentation, we highlight results on the potential use of high throughput plant phenotyping techniques to assess the morphology and physiology of woody species including responses to water availability and nutrient manipulation, and its broader application under field conditions and natural resources management. Also, we explore the different capabilities imaging provides us for modeling the plant physiological and morphological growth and how it can complement the current techniques

  7. Physiological, vascular and nanomechanical assessment of hybrid poplar leaf traits in micropropagated plants and plants propagated from root cuttings: A contribution to breeding programs.

    PubMed

    Ďurkovič, Jaroslav; Husárová, Hana; Javoříková, Lucia; Čaňová, Ingrid; Šuleková, Miriama; Kardošová, Monika; Lukáčik, Ivan; Mamoňová, Miroslava; Lagaňa, Rastislav

    2017-09-01

    Micropropagated plants experience significant stress from rapid water loss when they are transferred from an in vitro culture to either greenhouse or field conditions. This is caused both by inefficient stomatal control of transpiration and the change to a higher light intensity and lower humidity. Understanding the physiological, vascular and biomechanical processes that allow micropropagated plants to modify their phenotype in response to environmental conditions can help to improve both field performance and plant survival. To identify changes between the hybrid poplar [Populus tremula × (Populus × canescens)] plants propagated from in vitro tissue culture and those from root cuttings, we assessed leaf performance for any differences in leaf growth, photosynthetic and vascular traits, and also nanomechanical properties of the tracheary element cell walls. The micropropagated plants showed significantly higher values for leaf area, leaf length, leaf width and leaf dry mass. The greater leaf area and leaf size dimensions resulted from the higher transpiration rate recorded for this stock type. Also, the micropropagated plants reached higher values for chlorophyll a fluorescence parameters and for the nanomechanical dissipation energy of tracheary element cell walls which may indicate a higher damping capacity within the primary xylem tissue under abiotic stress conditions. The performance of the plants propagated from root cuttings was superior for instantaneous water-use efficiency which signifies a higher acclimation capacity to stressful conditions during a severe drought particularly for this stock type. Similarities were found among the majority of the examined leaf traits for both vegetative plant origins including leaf mass per area, stomatal conductance, net photosynthetic rate, hydraulic axial conductivity, indicators of leaf midrib vascular architecture, as well as for the majority of cell wall nanomechanical traits. This research revealed that

  8. Effect of low-level monochromatic radiations on some morphological and physiological parameters of plants.

    PubMed

    Siposan, Dan Georgel

    2011-01-01

    Studying the behavior of living organisms under the action of some physical or chemical factors (corpuscular or electromagnetic radiation, magnetic or electric field, sound waves, salinity, stimulants etc.) is enjoying major interest nowadays.(1,2)) The main goal is to understand the mechanisms of action of these factors on biological tissues, and use this knowledge for applications in biology and medicine. A special place in modern medicine is occupied by the therapeutic applications of laser radiation. In the current study we are attempting to determine whether the therapeutic lasers used in medicine have the potential to produce changes of some morphological and physiological parameters of plants. If these changes actually occur, the next task is to determine whether they are due to laser action on water used for watering by changing its properties, or by the direct action of laser radiation on the plants cells. Matcrials and Mcthods: We used as samples two groups of wheat seeds, planted in cotton. In the first group we only irradiated irrigation water, while in the second group only plants. We used as sources of radiation lasers and LEDs, with wavelengths between 455 nm and 850 nm. Power density was P = 50 mW/cm(2) for all samples, the exposure time ranged between 1s and 80s, and energy density (or fluence) between 0 and 4J/cm(2). We measured modifications of some morphological and physiological parameters (the biomass quantity, germination rate of seeds, number and height of the seedlings etc.) as a function of fluence. When only irrigation water was irradiated, we have found for all wavelength used a strong inhibitory effect on germination (between 30% and 50% for samples grown in the ground and between 13% and 40% for those grown in cotton). Regarding the other parameters determined, a stimulating effect, but less pronounced than if the plant was only irradiated, was noticed. When only plant was irradiated, the effects are altered depending on the wavelength

  9. Instrumentation enabling study of plant physiological response to elevated night temperature

    PubMed Central

    Mohammed, Abdul R; Tarpley, Lee

    2009-01-01

    Background Global climate warming can affect functioning of crops and plants in the natural environment. In order to study the effects of global warming, a method for applying a controlled heating treatment to plant canopies in the open field or in the greenhouse is needed that can accept either square wave application of elevated temperature or a complex prescribed diurnal or seasonal temperature regime. The current options are limited in their accuracy, precision, reliability, mobility or cost and scalability. Results The described system uses overhead infrared heaters that are relatively inexpensive and are accurate and precise in rapidly controlling the temperature. Remote computer-based data acquisition and control via the internet provides the ability to use complex temperature regimes and real-time monitoring. Due to its easy mobility, the heating system can randomly be allotted in the open field or in the greenhouse within the experimental setup. The apparatus has been successfully applied to study the response of rice to high night temperatures. Air temperatures were maintained within the set points ± 0.5°C. The incorporation of the combination of air-situated thermocouples, autotuned proportional integrative derivative temperature controllers and phase angled fired silicon controlled rectifier power controllers provides very fast proportional heating action (i.e. 9 ms time base), which avoids prolonged or intense heating of the plant material. Conclusion The described infrared heating system meets the utilitarian requirements of a heating system for plant physiology studies in that the elevated temperature can be accurately, precisely, and reliably controlled with minimal perturbation of other environmental factors. PMID:19519906

  10. Effects of foliage plants on human physiological and psychological responses at different temperatures

    NASA Astrophysics Data System (ADS)

    Jumeno, Desto; Matsumoto, Hiroshi

    2015-02-01

    Escalation of task demands and time pressures tends to make a worker run into work stress, which leads to mental fatigue and depression. The mental fatigue can be reduced when attention capacity is restored. Nature can serve as a source of fascination which can restore the attention capacity. People bring plants indoors so they can experience nature in their workplace. The stress and fatigue are also affected by air temperatures. The increase or decrease of temperatures from the comfort zone may induce the stress and fatigue. The objective of this study is to investigate the intervention of using foliage plants placed inside a building at different air temperature levels. The effects of foliage plants on human stress and fatigue were measured by human physiological responses such as heart rate, amylase level, electroencephalography (EEG), and the secondary task-reaction time. Several different tasks, namely typing, math and logical sequences are included in the investigation of these studies. Fifteen subjects, with the age ranged from 22 to 38 years old have participated in the study using within subject design. From the study, it is revealed that the presence of foliage plants at several temperatures have different effects on meditation, secondary task reaction time and typing accuracy. This study also revealed that the presence of plants on several types of tasks has different effects of attention which are useful for increasing work performance.

  11. Seventh workshop on seedling physiology and growth problems in oak plantings (abstracts); 1998 September 27-29; South Lake Tahoe, CA.

    Treesearch

    D.D. McCreary; J.G. Isebrands

    1999-01-01

    Research results and ongoing research activities in field performance of planted trees, seedling propagation, physiology, genetics, acorn germination, and natural regeneration for oaks are described in 17 abstracts.

  12. Genetic dissection of the Arabidopsis spaceflight transcriptome: Are some responses dispensable for the physiological adaptation of plants to spaceflight?

    PubMed Central

    Sng, Natasha J.; Zupanska, Agata K.; Krishnamurthy, Aparna; Schultz, Eric R.; Ferl, Robert J.

    2017-01-01

    Experimentation on the International Space Station has reached the stage where repeated and nuanced transcriptome studies are beginning to illuminate the structural and metabolic differences between plants grown in space compared to plants on the Earth. Genes that are important in establishing the spaceflight responses are being identified, their roles in spaceflight physiological adaptation are increasingly understood, and the fact that different genotypes adapt differently is recognized. However, the basic question of whether these spaceflight responses are actually required for survival has yet to be posed, and the fundamental notion that spaceflight responses may be non-adaptive has yet to be explored. Therefore the experiments presented here were designed to ask if portions of the plant spaceflight response can be genetically removed without causing loss of spaceflight survival and without causing increased stress responses. The CARA experiment compared the spaceflight transcriptome responses in the root tips of two Arabidopsis ecotypes, Col-0 and WS, as well as that of a PhyD mutant of Col-0. When grown with the ambient light of the ISS, phyD plants displayed a significantly reduced spaceflight transcriptome response compared to Col-0, suggesting that altering the activity of a single gene can actually improve spaceflight adaptation by reducing the transcriptome cost of physiological adaptation. The WS genotype showed an even simpler spaceflight transcriptome response in the ambient light of the ISS, more broadly indicating that the plant genotype can be manipulated to reduce the cost of spaceflight adaptation, as measured by transcriptional response. These differential genotypic responses suggest that genetic manipulation could further reduce, or perhaps eliminate the metabolic cost of spaceflight adaptation. When plants were germinated and then left in the dark on the ISS, the WS genotype actually mounted a larger transcriptome response than Col-0

  13. Genetic dissection of the Arabidopsis spaceflight transcriptome: Are some responses dispensable for the physiological adaptation of plants to spaceflight?

    PubMed

    Paul, Anna-Lisa; Sng, Natasha J; Zupanska, Agata K; Krishnamurthy, Aparna; Schultz, Eric R; Ferl, Robert J

    2017-01-01

    Experimentation on the International Space Station has reached the stage where repeated and nuanced transcriptome studies are beginning to illuminate the structural and metabolic differences between plants grown in space compared to plants on the Earth. Genes that are important in establishing the spaceflight responses are being identified, their roles in spaceflight physiological adaptation are increasingly understood, and the fact that different genotypes adapt differently is recognized. However, the basic question of whether these spaceflight responses are actually required for survival has yet to be posed, and the fundamental notion that spaceflight responses may be non-adaptive has yet to be explored. Therefore the experiments presented here were designed to ask if portions of the plant spaceflight response can be genetically removed without causing loss of spaceflight survival and without causing increased stress responses. The CARA experiment compared the spaceflight transcriptome responses in the root tips of two Arabidopsis ecotypes, Col-0 and WS, as well as that of a PhyD mutant of Col-0. When grown with the ambient light of the ISS, phyD plants displayed a significantly reduced spaceflight transcriptome response compared to Col-0, suggesting that altering the activity of a single gene can actually improve spaceflight adaptation by reducing the transcriptome cost of physiological adaptation. The WS genotype showed an even simpler spaceflight transcriptome response in the ambient light of the ISS, more broadly indicating that the plant genotype can be manipulated to reduce the cost of spaceflight adaptation, as measured by transcriptional response. These differential genotypic responses suggest that genetic manipulation could further reduce, or perhaps eliminate the metabolic cost of spaceflight adaptation. When plants were germinated and then left in the dark on the ISS, the WS genotype actually mounted a larger transcriptome response than Col-0

  14. State of the interface between conservation and physiology: a bibliometric analysis.

    PubMed

    Lennox, Robert; Cooke, Steven J

    2014-01-01

    Contemporary conservation science benefits from the perspectives of a variety of different disciplines, including a recent synergy with physiology, an interface known as 'conservation physiology'. To evaluate the degree of interaction between conservation and animal/plant physiology, we conducted three bibliometric analyses. We first pursued the use of the term 'conservation physiology' since its first definition in 2006 to determine how frequently it has been used and in which publications. Secondly, we evaluated the occurrence of conservation terms in animal and plant physiology journals, physiological terms in conservation journals, and a combination of terms in ecology journals. Thirdly, we explored trends in a subset of conservation physiology articles published between 2006 and 2012. We identified a surge in the use of the term 'conservation physiology' in 2012, after only a slow increase in usage between 2006 and 2011. Conservation journals tend to have been significantly more active in publishing conservation physiology than animal physiology, plant physiology or ecology journals. However, we found evidence that ecology and animal physiology journals began to incorporate more conservation physiology after 2006, while conservation- and plant physiology-themed journals did not. Among 299 conservation physiology articles that we identified, vertebrate taxa have been over-represented in conservation physiology compared with their relative taxonomic abundance, invertebrate taxa have been under-represented, and plants have been represented in proportion to their relative taxonomic abundance; however, those findings are reasonably consistent with publication trends in conservation biology. Diffuse distribution of conservation physiology papers throughout the literature may have been a barrier to the growth of the subdiscipline when the interface was emerging. The introduction of the focused journal Conservation Physiology in 2013 may address that deficiency

  15. Research on gravitational physiology

    NASA Technical Reports Server (NTRS)

    Brown, A. H.; Dahl, A. O.

    1974-01-01

    The topic of gravitational plant physiology was studied through aspects of plant development (in ARABIDOPSIS) and of behavior (in HELIANTHUS) as these were affected by altered g experience. The effect of increased g levels on stem polarity (in COLEUS) was also examined.

  16. Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms

    PubMed Central

    Pandey, Prachi; Ramegowda, Venkategowda; Senthil-Kumar, Muthappa

    2015-01-01

    In field conditions, plants are often simultaneously exposed to multiple biotic and abiotic stresses resulting in substantial yield loss. Plants have evolved various physiological and molecular adaptations to protect themselves under stress combinations. Emerging evidences suggest that plant responses to a combination of stresses are unique from individual stress responses. In addition, plants exhibit shared responses which are common to individual stresses and stress combination. In this review, we provide an update on the current understanding of both unique and shared responses. Specific focus of this review is on heat–drought stress as a major abiotic stress combination and, drought–pathogen and heat–pathogen as examples of abiotic–biotic stress combinations. We also comprehend the current understanding of molecular mechanisms of cross talk in relation to shared and unique molecular responses for plant survival under stress combinations. Thus, the knowledge of shared responses of plants from individual stress studies and stress combinations can be utilized to develop varieties with broad spectrum stress tolerance. PMID:26442037

  17. Physiological response and sulfur metabolism of the V. dahliae-infected tomato plants in tomato/potato onion companion cropping

    PubMed Central

    Fu, Xuepeng; Li, Chunxia; Zhou, Xingang; Liu, Shouwei; Wu, Fengzhi

    2016-01-01

    Companion cropping with potato onions (Allium cepa var. agrogatum Don.) can enhance the disease resistance of tomato plants (Solanum lycopersicum) to Verticillium dahliae infection by increasing the expressions of genes related to disease resistance. However, it is not clear how tomato plants physiologically respond to V. dahliae infection and what roles sulfur plays in the disease-resistance. Pot experiments were performed to examine changes in the physiology and sulfur metabolism of tomato roots infected by V. dahliae under the companion cropping (tomato/potato onion). The results showed that the companion cropping increased the content of total phenol, lignin and glutathione and increased the activities of peroxidase, polyphenol oxidase and phenylalanine ammonia lyase in the roots of tomato plants. RNA-seq analysis showed that the expressions of genes involved in sulfur uptake and assimilation, and the formation of sulfur-containing defense compounds (SDCs) were up-regulated in the V. dahlia-infected tomatoes in the companion cropping. In addition, the interactions among tomato, potato onion and V. dahliae induced the expression of the high- affinity sulfate transporter gene in the tomato roots. These results suggest that sulfur may play important roles in tomato disease resistance against V. dahliae. PMID:27808257

  18. Physiological response and sulfur metabolism of the V. dahliae-infected tomato plants in tomato/potato onion companion cropping.

    PubMed

    Fu, Xuepeng; Li, Chunxia; Zhou, Xingang; Liu, Shouwei; Wu, Fengzhi

    2016-11-03

    Companion cropping with potato onions (Allium cepa var. agrogatum Don.) can enhance the disease resistance of tomato plants (Solanum lycopersicum) to Verticillium dahliae infection by increasing the expressions of genes related to disease resistance. However, it is not clear how tomato plants physiologically respond to V. dahliae infection and what roles sulfur plays in the disease-resistance. Pot experiments were performed to examine changes in the physiology and sulfur metabolism of tomato roots infected by V. dahliae under the companion cropping (tomato/potato onion). The results showed that the companion cropping increased the content of total phenol, lignin and glutathione and increased the activities of peroxidase, polyphenol oxidase and phenylalanine ammonia lyase in the roots of tomato plants. RNA-seq analysis showed that the expressions of genes involved in sulfur uptake and assimilation, and the formation of sulfur-containing defense compounds (SDCs) were up-regulated in the V. dahlia-infected tomatoes in the companion cropping. In addition, the interactions among tomato, potato onion and V. dahliae induced the expression of the high- affinity sulfate transporter gene in the tomato roots. These results suggest that sulfur may play important roles in tomato disease resistance against V. dahliae.

  19. Development of sensors for monitoring oxygen and free radicals in plant physiology

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Prachee

    Oxygen plays a critical role in the physiology of photosynthetic organisms, including bioenergetics, metabolism, development, and stress response. Oxygen levels affect photosynthesis, respiration, and alternative oxidase pathways. Likewise, the metabolic rate of spatially distinct plant cells (and therefore oxygen flux) is known to be affected by biotic stress (e.g., herbivory) and environmental stress (e.g., salt/nutrient stress). During aerobic metabolism, cells produce reactive oxygen species (ROS) as a by product. Plants also produce ROS during adaptation to stress (e.g., abscisic acid (ABA) mediated stress responses). If stress conditions are prolonged, ROS levels surpass the capacity of detoxifying mechanisms within the cell, resulting in oxidative damage. While stress response pathways such as ABA-mediated mechanisms have been well characterized (e.g., water stress, inhibited shoot growth, synthesis of storage proteins in seeds), the connection between ROS production, oxygen metabolism and stress response remains unknown. In part, this is because details of oxygen transport at the interface of cell(s) and the surrounding microenvironment remains nebulous. The overall goal of this research was to develop oxygen and Free radical sensors for studying stress signaling in plants. Recent developments in nanomaterials and data acquisition systems were integrated to develop real-time, non-invasive oxygen and Free radical sensors. The availability of these sensors for plant physiologists is an exciting opportunity to probe the functional realm of cells and tissues in ways that were not previously possible.

  20. Physiological and growth responses of Centaurea maculosa (Asteraceae) to root herbivory under varying levels of interspecific plant competition and soil nitrogen availability.

    PubMed

    Steinger, Thomas; Müller-Schärer, Heinz

    1992-08-01

    Centaurea maculosa seedlings were grown in pots to study the effects of root herbivory by Agapeta zoegana L. (Lep.: Cochylidae) and Cyphocleonus achates Fahr. (Col.: Curculionidae), grass competition and nitrogen shortage (each present or absent), using a full factorial design. The aims of the study were to analyse the impact of root herbivory on plant growth, resource allocation and physiological processes, and to test if these plant responses to herbivory were influenced by plant competition and nitrogen availability. The two root herbivores differed markedly in their impact on plant growth. While feeding by the moth A. zoegana in the root cortex had no effect on shoot and root mass, feeding by the weevil C. achates in the central vascular tissue greatly reduced shoot mass, but not root mass, leading to a reduced shoot/root ratio. The absence of significant effects of the two herbivores on root biomass, despite considerable consumption, indicates that compensatory root growth occurred. Competition with grass affected plant growth more than herbivory and nutrient status, resulting in reduced shoot and root growth, and number of leaves. Nitrogen shortage did not affect plant growth directly but greatly influenced the compensatory capacity of Centaurea maculosa to root herbivory. Under high nitrogen conditions, shoot biomass of plants infested by the weevil was reduced by 30% compared with uninfested plants. However, under poor nitrogen conditions a 63% reduction was observed compared with corresponding controls. Root herbivory was the most important stress factor affecting plant physiology. Besides a relative increase in biomass allocation to the roots, infested plants also showed a significant increase in nitrogen concentration in the roots and a concomitant reduction in leaf nitrogen concentration, reflecting a redirection of the nitrogen to the stronger sink. The level of fructans was greatly reduced in the roots after herbivore feeding. This is thought to be a

  1. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.)

    PubMed Central

    Aranjuelo, Iker; Molero, Gemma; Erice, Gorka; Avice, Jean Christophe; Nogués, Salvador

    2011-01-01

    Despite its relevance, protein regulation, metabolic adjustment, and the physiological status of plants under drought is not well understood in relation to the role of nitrogen fixation in nodules. In this study, nodulated alfalfa plants were exposed to drought conditions. The study determined the physiological, metabolic, and proteomic processes involved in photosynthetic inhibition in relation to the decrease in nitrogenase (Nase) activity. The deleterious effect of drought on alfalfa performance was targeted towards photosynthesis and Nase activity. At the leaf level, photosynthetic inhibition was mainly caused by the inhibition of Rubisco. The proteomic profile and physiological measurements revealed that the reduced carboxylation capacity of droughted plants was related to limitations in Rubisco protein content, activation state, and RuBP regeneration. Drought also decreased amino acid content such as asparagine, and glutamic acid, and Rubisco protein content indicating that N availability limitations were caused by Nase activity inhibition. In this context, drought induced the decrease in Rubisco binding protein content at the leaf level and proteases were up-regulated so as to degrade Rubisco protein. This degradation enabled the reallocation of the Rubisco-derived N to the synthesis of amino acids with osmoregulant capacity. Rubisco degradation under drought conditions was induced so as to remobilize Rubisco-derived N to compensate for the decrease in N associated with Nase inhibition. Metabolic analyses showed that droughted plants increased amino acid (proline, a major compound involved in osmotic regulation) and soluble sugar (D-pinitol) levels to contribute towards the decrease in osmotic potential (Ψs). At the nodule level, drought had an inhibitory effect on Nase activity. This decrease in Nase activity was not induced by substrate shortage, as reflected by an increase in total soluble sugars (TSS) in the nodules. Proline accumulation in the nodule

  2. Silicon Regulates Potential Genes Involved in Major Physiological Processes in Plants to Combat Stress

    PubMed Central

    Manivannan, Abinaya; Ahn, Yul-Kuyn

    2017-01-01

    Silicon (Si), the quasi-essential element occurs as the second most abundant element in the earth's crust. Biological importance of Si in plant kingdom has become inevitable particularly under stressed environment. In general, plants are classified as high, medium, and low silicon accumulators based on the ability of roots to absorb Si. The uptake of Si directly influence the positive effects attributed to the plant but Si supplementation proves to mitigate stress and recover plant growth even in low accumulating plants like tomato. The application of Si in soil as well as soil-less cultivation systems have resulted in the enhancement of quantitative and qualitative traits of plants even under stressed environment. Silicon possesses several mechanisms to regulate the physiological, biochemical, and antioxidant metabolism in plants to combat abiotic and biotic stresses. Nevertheless, very few reports are available on the aspect of Si-mediated molecular regulation of genes with potential role in stress tolerance. The recent advancements in the era of genomics and transcriptomics have opened an avenue for the determination of molecular rationale associated with the Si amendment to the stress alleviation in plants. Therefore, the present endeavor has attempted to describe the recent discoveries related to the regulation of vital genes involved in photosynthesis, transcription regulation, defense, water transport, polyamine synthesis, and housekeeping genes during abiotic and biotic stress alleviation by Si. Furthermore, an overview of Si-mediated modulation of multiple genes involved in stress response pathways such as phenylpropanoid pathway, jasmonic acid pathway, ABA-dependent or independent regulatory pathway have been discussed in this review. PMID:28824681

  3. Effects of three fire-suppressant foams on the germination and physiological responses of plants.

    PubMed

    Song, Uhram; Mun, Saeromi; Waldman, Bruce; Lee, Eun Ju

    2014-10-01

    Suppressant foams used to fight forest fires may leave residual effects on surviving biota that managers need to consider prior to using them. We examined how three fire-suppressant foams (FSFs) (Forexpan S, Phos-Chek-WD881, and Silv-ex) affected seed germination and physiological responses of three plant species. Exposure to FSFs, whether in diluted concentrations or those typical in the field, reduced final germination percentages of seeds grown in petri dishes and within growth chambers. However, the FSFs did not cause total germination failure in any treatment. Inhibition of germination increased with longer exposure times, but only to diluted FSF solutions. Unlike in the laboratory experiments, none of the three FSFs affected seedling emergence when tested in field conditions. Further, we found no evidence of long-term phytotoxic effects on antioxidant enzyme activity nor chlorophyll content of the plant saplings. Therefore, although the three FSFs showed evidence of phytotoxicity to plants in laboratory tests, their actual impact on terrestrial ecosystems may be minimal. We suggest that the benefits of using these FSFs to protect plants in threatened forest ecosystems outweigh their minor risks.

  4. Effects of Three Fire-Suppressant Foams on the Germination and Physiological Responses of Plants

    NASA Astrophysics Data System (ADS)

    Song, Uhram; Mun, Saeromi; Waldman, Bruce; Lee, Eun Ju

    2014-10-01

    Suppressant foams used to fight forest fires may leave residual effects on surviving biota that managers need to consider prior to using them. We examined how three fire-suppressant foams (FSFs) (Forexpan S, Phos-Chek-WD881, and Silv-ex) affected seed germination and physiological responses of three plant species. Exposure to FSFs, whether in diluted concentrations or those typical in the field, reduced final germination percentages of seeds grown in petri dishes and within growth chambers. However, the FSFs did not cause total germination failure in any treatment. Inhibition of germination increased with longer exposure times, but only to diluted FSF solutions. Unlike in the laboratory experiments, none of the three FSFs affected seedling emergence when tested in field conditions. Further, we found no evidence of long-term phytotoxic effects on antioxidant enzyme activity nor chlorophyll content of the plant saplings. Therefore, although the three FSFs showed evidence of phytotoxicity to plants in laboratory tests, their actual impact on terrestrial ecosystems may be minimal. We suggest that the benefits of using these FSFs to protect plants in threatened forest ecosystems outweigh their minor risks.

  5. Eco-physiological Effects of Atmospheric Ozone and Polycyclic Aromatic Hydrocarbons (PAHs) on Plants

    NASA Astrophysics Data System (ADS)

    Bandai, S.; Sakugawa, H. H.

    2012-12-01

    [Introduction] Tropospheric ozone is one of most concerned air pollutant, by causing damage to trees and crops. Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants found in various environmental compartments. Photo-induced toxicity of PAHs can be driven from formation of intracellular single oxygen and other reactive oxygen intermediates (ROI) leading to biological damages.(1) In the present study, we measured photosynthesis rate and other variables to investigate the effects of ozone and PAHs on the eco-physiological status of plants such as eggplant, common bean and strawberry. Plants treated with the single or combined air pollutants are expected to exhibit altered physiological, morphological and possibly growth changes. [Materials and Methods] We performed three exposure experiments. Exp.1. Eggplant (Solanum melongena) seedlings, were placed in the open-top chambers (n=6 plants/treatment). Treatment system was ozone (O)(120ppb), phenanthrene (P)(10μM), O+P, fluoranthene (F)(10μM), O+F, mannitol (M)(1mM) and the control (Milli-Q water)(C). P, F and M were sprayed three times weekly on the foliage part of eggplant. Average volume sprayed per seedling was 50mL. The treatment period was 30days and [AOT 40 (Accumulated exposure over a threshold of 40 ppb)]=28.8 ppmh. Exp.2, Common bean (Phaseolus vulgaris L.) seedlings were used (n=5 plants/treatment). The treatment system was the same as Exp.1. The treatment period was 40days and [AOT 40]=38.4ppmh. Exp.3. Strawberry (Fragaria L.) seedlings were used (n=5 plants/treatment). Treatment system was O (120ppb), F(10μM), O+F, F+M, O+M and C. The treatment period was 90days and [AOT 40]=86.4ppmh. Ecophysiological variables examined were photosynthesis rate measured at saturated irradiance (Amax), stomatal conductance to water vapour (gs), internal CO2 concentration (Ci), photochemical efficiency of PS2 in the dark (Fv/Fm), chlorophyll contents, visual symptom assessment and elemental composition in the

  6. State of the interface between conservation and physiology: a bibliometric analysis

    PubMed Central

    Lennox, Robert; Cooke, Steven J.

    2014-01-01

    Contemporary conservation science benefits from the perspectives of a variety of different disciplines, including a recent synergy with physiology, an interface known as ‘conservation physiology’. To evaluate the degree of interaction between conservation and animal/plant physiology, we conducted three bibliometric analyses. We first pursued the use of the term ‘conservation physiology’ since its first definition in 2006 to determine how frequently it has been used and in which publications. Secondly, we evaluated the occurrence of conservation terms in animal and plant physiology journals, physiological terms in conservation journals, and a combination of terms in ecology journals. Thirdly, we explored trends in a subset of conservation physiology articles published between 2006 and 2012. We identified a surge in the use of the term ‘conservation physiology’ in 2012, after only a slow increase in usage between 2006 and 2011. Conservation journals tend to have been significantly more active in publishing conservation physiology than animal physiology, plant physiology or ecology journals. However, we found evidence that ecology and animal physiology journals began to incorporate more conservation physiology after 2006, while conservation- and plant physiology-themed journals did not. Among 299 conservation physiology articles that we identified, vertebrate taxa have been over-represented in conservation physiology compared with their relative taxonomic abundance, invertebrate taxa have been under-represented, and plants have been represented in proportion to their relative taxonomic abundance; however, those findings are reasonably consistent with publication trends in conservation biology. Diffuse distribution of conservation physiology papers throughout the literature may have been a barrier to the growth of the subdiscipline when the interface was emerging. The introduction of the focused journal Conservation Physiology in 2013 may address that

  7. Plant growth promoting effect of Bacillus amyloliquefaciens H-2-5 on crop plants and influence on physiological changes in soybean under soil salinity.

    PubMed

    Kim, Min-Ji; Radhakrishnan, Ramalingam; Kang, Sang-Mo; You, Young-Hyun; Jeong, Eun-Ju; Kim, Jong-Guk; Lee, In-Jung

    2017-07-01

    This study was aimed to identify plant growth-promoting bacterial isolates from soil samples and to investigate their ability to improve plant growth and salt tolerance by analysing phytohormones production and phosphate solubilisation. Among the four tested bacterial isolates (I-2-1, H-1-4, H-2-3, and H-2-5), H-2-5 was able to enhance the growth of Chinese cabbage, radish, tomato, and mustard plants. The isolated bacterium H-2-5 was identified as Bacillus amyloliquefaciens H-2-5 based on 16S rDNA sequence and phylogenetic analysis. The secretion of gibberellins (GA 4 , GA 8 , GA 9 , GA 19 , and GA 20 ) from B. amyloliquefaciens H-2-5 and their phosphate solubilisation ability may contribute to enhance plant growth. In addition, the H-2-5-mediated mitigation of short term salt stress was tested on soybean plants that were affected by sodium chloride. Abscisic acid (ABA) produced by the H-2-5 bacterium suppressed the NaCl-induced stress effects in soybean by enhancing plant growth and GA 4 content, and by lowering the concentration of ABA, salicylic acid, jasmonic acid, and proline. These results suggest that GAs, ABA production, and the phosphate solubilisation capacity of B. amyloliquefaciens H-2-5 are important stimulators that promote plant growth through their interaction and also to improve plant growth by physiological changes in soybean at saline soil.

  8. Mathematical literacy in Plant Physiology undergraduates: results of interventions aimed at improving students' performance

    NASA Astrophysics Data System (ADS)

    Vila, Francisca; Sanz, Amparo

    2013-09-01

    The importance of mathematical literacy in any scientific career is widely recognized. However, various studies report lack of numeracy and mathematical literacy in students from various countries. In the present work, we present a detailed study of the mathematical literacy of Spanish undergraduate students of Biology enrolled in a Plant Physiology course. We have performed individual analyses of results obtained during the period 2000-2011, for questions in the examinations requiring and not requiring mathematical skills. Additionally, we present the outcome of two interventions introduced with the aim of helping students improve their prospects for success in the course. Our results confirm previous research showing students' deficiencies in mathematical skills. However, the scores obtained for mathematical questions in the examinations are good predictors of the final grades attained in Plant Physiology, as there are strong correlations at the individual level between results for questions requiring and not requiring mathematical skills. The introduction of a laboratory session devoted to strengthening the application of students' previously acquired mathematical knowledge did not change significantly the results obtained for mathematical questions. Since mathematical abilities of students entering university have declined in recent years, this intervention may have helped to maintain students' performance to a level comparable to that of previous years. The outcome of self-assessment online tests indicates that although Mathematics anxiety is lower than during examinations, the poor results obtained for questions requiring mathematical skills are, at least in part, due to a lack of self-efficacy.

  9. Co-ordination of physiological and morphological responses of stomata to elevated [CO2] in vascular plants.

    PubMed

    Haworth, Matthew; Elliott-Kingston, Caroline; McElwain, Jennifer C

    2013-01-01

    Plant stomata display a wide range of short-term behavioural and long-term morphological responses to atmospheric carbon dioxide concentration ([CO(2)]). The diversity of responses suggests that plants may have different strategies for controlling gas exchange, yet it is not known whether these strategies are co-ordinated in some way. Here, we test the hypothesis that there is co-ordination of physiological (via aperture change) and morphological (via stomatal density change) control of gas exchange by plants. We examined the response of stomatal conductance (G(s)) to instantaneous changes in external [CO(2)] (C(a)) in an evolutionary cross-section of vascular plants grown in atmospheres of elevated [CO(2)] (1,500 ppm) and sub-ambient [O(2)] (13.0 %) compared to control conditions (380 ppm CO(2), 20.9 % O(2)). We found that active control of stomatal aperture to [CO(2)] above current ambient levels was not restricted to angiosperms, occurring in the gymnosperms Lepidozamia peroffskyana and Nageia nagi. The angiosperm species analysed appeared to possess a greater respiratory demand for stomatal movement than gymnosperm species displaying active stomatal control. Those species with little or no control of stomatal aperture (termed passive) to C(a) were more likely to exhibit a reduction in stomatal density than species with active stomatal control when grown in atmospheres of elevated [CO(2)]. The relationship between the degree of stomatal aperture control to C(a) above ambient and the extent of any reduction in stomatal density may suggest the co-ordination of physiological and morphological responses of stomata to [CO(2)] in the optimisation of water use efficiency. This trade-off between stomatal control strategies may have developed due to selective pressures exerted by the costs associated with passive and active stomatal control.

  10. Molecular Mechanisms behind the Physiological Resistance to Intense Transient Warming in an Iconic Marine Plant

    PubMed Central

    Marín-Guirao, Lazaro; Entrambasaguas, Laura; Dattolo, Emanuela; Ruiz, Juan M.; Procaccini, Gabriele

    2017-01-01

    The endemic Mediterranean seagrass Posidonia oceanica is highly threatened by the increased frequency and intensity of heatwaves. Meadows of the species offer a unique opportunity to unravel mechanisms marine plants activate to cope transient warming, since their wide depth distribution impose divergent heat-tolerance. Understanding these mechanisms is imperative for their conservation. Shallow and deep genotypes within the same population were exposed to a simulated heatwave in mesocosms, to analyze their transcriptomic and photo-physiological responses during and after the exposure. Shallow plants, living in a more unstable thermal environment, optimized phenotype variation in response to warming. These plants showed a pre-adaptation of genes in anticipation of stress. Shallow plants also showed a stronger activation of heat-responsive genes and the exclusive activation of genes involved in epigenetic mechanisms and in molecular mechanisms that are behind their higher photosynthetic stability and respiratory acclimation. Deep plants experienced higher heat-induced damage and activated metabolic processes for obtaining extra energy from sugars and amino acids, likely to support the higher protein turnover induced by heat. In this study we identify transcriptomic mechanisms that may facilitate persistence of seagrasses to anomalous warming events and we discovered that P. oceanica plants from above and below the mean depth of the summer thermocline have differential resilience to heat. PMID:28706528

  11. The Use of Light-Emitting Diodes (LEDs) as Green and Red/Far-Red Light Sources in Plant Physiology.

    ERIC Educational Resources Information Center

    Jackson, David L.; And Others

    1985-01-01

    The use of green, red, and far-red light-emitting diodes (LEDs) as light sources for plant physiological studies is outlined and evaluated. Indicates that LED lamps have the advantage over conventional light sources in that they are lightweight, low-cost, portable, easily constructed, and do not require color filters. (Author/DH)

  12. A physiologically-based plant hydraulics scheme for ESMs: impacts of hydraulic trait variability for tropical forests under drought

    NASA Astrophysics Data System (ADS)

    Christoffersen, B. O.; Xu, C.; Fisher, R.; Fyllas, N.; Gloor, M.; Fauset, S.; Galbraith, D.; Koven, C.; Knox, R. G.; Kueppers, L. M.; Chambers, J. Q.; Meir, P.; McDowell, N. G.

    2016-12-01

    A major challenge of Earth System Models (ESMs) is to capture the diversity of individual-level responses to changes in water availability. Yet, decades of research in plant physiological ecology have given us a means to quantify central tendencies and variances of plant hydraulic traits. If ESMs possessed the relevant hydrodynamic process structure, these traits could be incorporated into improved predictions of community- and ecosystem-level processes such as tree mortality. We present a model of plant hydraulics in which all parameters are biologically-interpretable and measurable traits, such as turgor loss point πtlp, bulk elastic modulus ɛ, hydraulic capacitance Cft, xylem hydraulic conductivity ks,max, water potential at 50 % loss of conductivity for both xylem (P50,x) and stomata (P50,gs). We applied this scheme to tropical forests by incorporating it into both an individual-based model `Trait Forest Simulator' (TFS) and the `Functionally Assembled Terrestrial Ecosystem Simulator' (FATES; derived from CLM(ED)), and explore the consequences of variability in plant hydraulic traits on simulated leaf water potential, a potentially powerful predictor of tree mortality. We show that, independent of the difference between P50,gs and P50,x, or the hydraulic safety margin (HSM), diversity in hydraulic traits can increase or decrease whole-ecosystem resistance to hydraulic failure, and thus ecosystem-level responses to drought. Key uncertainties remaining concern how coordination and trade-offs in hydraulic traits are parameterized. We conclude that inclusion of such a physiologically-based plant hydraulics scheme in ESMs will greatly improve the capability of ESMs to predict functional trait filtering within ecosystems in responding to environmental change.

  13. Non-linear effects of drought under shade: reconciling physiological and ecological models in plant communities.

    PubMed

    Holmgren, Milena; Gómez-Aparicio, Lorena; Quero, José Luis; Valladares, Fernando

    2012-06-01

    The combined effects of shade and drought on plant performance and the implications for species interactions are highly debated in plant ecology. Empirical evidence for positive and negative effects of shade on the performance of plants under dry conditions supports two contrasting theoretical models about the role of shade under dry conditions: the trade-off and the facilitation hypotheses. We performed a meta-analysis of field and greenhouse studies evaluating the effects of drought at two or more irradiance levels on nine response variables describing plant physiological condition, growth, and survival. We explored differences in plant response across plant functional types, ecosystem types and methodological approaches. The data were best fit using quadratic models indicating a humped-back shape response to drought along an irradiance gradient for survival, whole plant biomass, maximum photosynthetic capacity, stomatal conductance and maximal photochemical efficiency. Drought effects were ameliorated at intermediate irradiance, becoming more severe at higher or lower light levels. This general pattern was maintained when controlling for potential variations in the strength of the drought treatment among light levels. Our quantitative meta-analysis indicates that dense shade ameliorates drought especially among drought-intolerant and shade-tolerant species. Wet tropical species showed larger negative effects of drought with increasing irradiance than semiarid and cold temperate species. Non-linear responses to irradiance were stronger under field conditions than under controlled greenhouse conditions. Non-linear responses to drought along the irradiance gradient reconciliate opposing views in plant ecology, indicating that facilitation is more likely within certain range of environmental conditions, fading under deep shade, especially for drought-tolerant species.

  14. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense.

    PubMed

    Fibach-Paldi, Sharon; Burdman, Saul; Okon, Yaacov

    2012-01-01

    Azospirillum brasilense is a plant growth promoting rhizobacterium (PGPR) that is being increasingly used in agriculture in a commercial scale. Recent research has elucidated key properties of A. brasilense that contribute to its ability to adapt to the rhizosphere habitat and to promote plant growth. They include synthesis of the auxin indole-3-acetic acid, nitric oxide, carotenoids, and a range of cell surface components as well as the ability to undergo phenotypic variation. Storage and utilization of polybetahydroxyalkanoate polymers are important for the shelf life of the bacteria in production of inoculants, products containing bacterial cells in a suitable carrier for agricultural use. Azospirillum brasilense is able to fix nitrogen, but despite some controversy, as judging from most systems evaluated so far, contribution of fixed nitrogen by this bacterium does not seem to play a major role in plant growth promotion. In this review, we focus on recent advances in the understanding of physiological properties of A. brasilense that are important for rhizosphere performance and successful interactions with plant roots. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. The role of silicon in physiology of the medicinal plant (Lonicera japonica L.) under salt stress

    NASA Astrophysics Data System (ADS)

    Gengmao, Zhao; Shihui, Li; Xing, Sun; Yizhou, Wang; Zipan, Chang

    2015-08-01

    Silicon(Si) is the only element which can enhance the resistance to multiple stresses. However, the role of silicon in medicinal plants under salt stress is not yet understood. This experiment was conducted to study the effects of silicon addition on the growth, osmotic adjustments, photosynthetic characteristics, chloroplast ultrastructure and Chlorogenic acid (CGA) production of Honeysuckle plant (Lonicera japonica L.) under salt-stressed conditions. Salinity exerted an adverse effect on the plant fresh weight and dry weight, whilst 0.5 g L-1 K2SiO3·nH2O addition obviously improved the plant growth. Although Na+ concentration in plant organs was drastically increased with increasing salinity, higher levels of K+/Na+ ratio was obtained after K2SiO3·nH2O addition. Salinity stress induced the destruction of the chloroplast envelope; however, K2SiO3·nH2O addition counteracted the adverse effect by salinity on the structure of the photosynthetic apparatus. K2SiO3·nH2O addition also enhanced the activities of superoxide dismutase and catalase. To sum up, exogenous Si plays a key role in enhancing its resistance to salt stresses in physiological base, thereby improving the growth and CGA production of Honeysuckle plant.

  16. Future flood risk in the tropics as measured by changes in extreme runoff intensity is strongly influenced by plant-physiological responses to rising CO2

    NASA Astrophysics Data System (ADS)

    Kooperman, G. J.; Hoffman, F. M.; Koven, C.; Lindsay, K. T.; Swann, A. L. S.; Randerson, J. T.

    2017-12-01

    Climate change is expected to increase the frequency of intense flooding events, and thus the risk of flood-related mortality, infrastructure damage, and economic loss. Assessments of future flooding from global climate models based only on precipitation intensity and temperature neglect important processes that occur within the land-surface, particularly the impacts of plant-physiological responses to rising CO2. Higher CO2 reduces stomatal conductance, leading to less water loss through transpiration and higher soil moisture. For a given precipitation rate, higher soil moisture decreases the amount of rainwater that infiltrates the surface and increases runoff. Here we assess the relative impacts of plant-physiological and radiative-greenhouse effects on changes in extreme runoff intensity over tropical continents using the Community Earth System Model. We find that extreme percentile rates increase significantly more than mean runoff in response to higher CO2. Plant-physiological effects contribute to only a small increase in precipitation intensity, but are a dominant driver of runoff intensification, contributing to one-half of the 99th percentile runoff intensity change and one-third of the 99.9th percentile change. Comprehensive assessments of future flooding risk need to account for the physiological as well as radiative impacts of CO2 in order to better inform flood prediction and mitigation practices.

  17. Exposure to air pollution near a steel plant and effects on cardiovascular physiology: a randomized crossover study.

    PubMed

    Liu, Ling; Kauri, Lisa Marie; Mahmud, Mamun; Weichenthal, Scott; Cakmak, Sabit; Shutt, Robin; You, Hongyu; Thomson, Errol; Vincent, Renaud; Kumarathasan, Premkumari; Broad, Gayle; Dales, Robert

    2014-03-01

    Iron and steel industry is an important source of air pollution emissions. Few studies have investigated cardiovascular effects of air pollutants emitted from steel plants. We examined the influence of outdoor air pollution in the vicinity of a steel plant on cardiovascular physiology in Sault Ste. Marie, Canada. Sixty-one healthy, non-smoking subjects (females/males=33/28, median age 22 years) spent 5 consecutive 8-hour days outdoors in a residential area neighbouring a steel plant, or on a college campus approximately 5 kilometres away from the plant, and then crossed over to the other site with a 9-day washout. Mid day, subjects underwent daily 30-minute moderate intensity exercise. Blood pressure (BP) and pulse rate were determined daily and post exercise at both sites. Flow-mediated vasodilation (FMD) was determined at the site near the plant. Air pollution was monitored at both sites. Mixed-effects regressions were run for statistical associations, adjusting for weather variables. Concentrations of ultrafine particles, sulphur dioxide (SO2), nitrogen dioxide (NO2) and carbon monoxide (CO) were 50-100% higher at the site near the plant than at the college site, with minor differences in temperature, humidity, and concentrations of particulate matter ≤2.5 μm in size (PM2.5) and ozone (O3). Resting pulse rate [mean (95% confidence interval)] was moderately higher near the steel plant [+1.53 bpm (0.31, 2.78)] than at the college site, male subjects having the highest pulse rate elevation [+2.77 bpm (0.78, 4.76)]. Resting systolic and diastolic BP and pulse pressure, and post-exercise BP and pulse rate were not significantly different between two sites. Interquartile range concentrations of SO2 (2.9 ppb), NO2 (5.0 ppb) and CO (0.2 ppm) were associated with increased pulse rate [0.19 bpm (-0.00, 0.38), 0.86 bpm (0.03, 1.68), and 0.11 bpm (0.00, 0.22), respectively], ultrafine particles (10,256 count/cm(3)) associated with increased pulse pressure [0.85 mmHg (0

  18. Comparison of Physiological and Psychological Relaxation Using Measurements of Heart Rate Variability, Prefrontal Cortex Activity, and Subjective Indexes after Completing Tasks with and without Foliage Plants.

    PubMed

    Park, Sin-Ae; Song, Chorong; Oh, Yun-Ah; Miyazaki, Yoshifumi; Son, Ki-Cheol

    2017-09-20

    The objective of this study was to compare physiological and psychological relaxation by assessing heart rate variability (HRV), prefrontal cortex activity, and subjective indexes while subjects performed a task with and without foliage plants. In a crossover experimental design, 24 university students performed a task transferring pots with and without a foliage plant for 3 min. HRV and oxyhemoglobin (oxy-Hb) concentration in the prefrontal cortex were continuously measured. Immediately thereafter, subjective evaluation of emotions was performed using a modified semantic differential (SD) method and a profile of mood state questionnaire (POMS). Results showed that the natural logarithmic (ln) ratio of low frequency/high frequency, as an estimate of sympathetic nerve activity, was significantly lower while performing the task with foliage plants for the average 3 min measurement interval. Oxy-Hb concentration in the left prefrontal cortex showed a tendency to decrease in the 2-3 min interval in the task with foliage plants compared to the task without plants. Moreover, significant psychological relaxation according to POMS score and SD was demonstrated when the task involved foliage plants. In conclusion, the task involving foliage plants led to more physiological and psychological relaxation compared with the task without foliage plants.

  19. Modifications of Morphometrical and Physiological Parameters of Pepper Plants Grown on Artificial Nutrient Medium for Experiments in Spaceflight

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.

    2016-07-01

    MODIFICATIONS OF MORPHOMETRICAL AND PHYSIOLOGICAL PARAMETERS OF PEPPER PLANTS GROWN ON ARTIFICIAL NUTRIENT MEDIUM FOR EXPERIMENTS IN SPACEFLIGHT Lui Min*, Zhao Hui*, Chen Yu*, Lu Jinying*, Li Huasheng*, Sun Qiao*, Nechitajlo G.S.**, Glushchenko N.N.*** *Shenzhou Space Biotechnology Group, China Academy of Space Technology (CAST), **Emanuel Institute of Biochemical Physics of Russian Academy of Sciences (IBCP RAS) mail: spacemal@mail.ru ***V.L. Talrose Institute for Energy Problems of Chemical Physics of Russian Academy of Science (INEPCP RAS) mail: nnglu@ mail.ru In circumstances of space flights, long residence of the staff at space stations and space settlements an optimal engineering system of the life-support allowing to solve a number of technical and psychological problems for successful work and a life of cosmonauts, researchers, etc. is important and prime. In this respect it is necessary to consider growing plants on board of spacecraft as one of the units in a life-support system. It is feasible due to modern development of biotechnologies in growing plants allowing us to receive materials with new improved properties. Thus, a composition and ratio of components of nutrient medium can considerably influence on plants properties. We have developed the nutrient medium in which essential metals such as iron, zinc, copper were added in an electroneutral state in the form of nanoparticles instead of sulfates or other salts of the same metals. Such replacement is appropriate through unique nanoparticles properties: metal nanoparticles are less toxic than their corresponding ionic forms; nanoparticles produce a prolonged effect, serving as a depot for elements in an organism; nanoparticles introduced in biotic doses stimulate the metabolic processes of the organism; nanoparticles effect is multifunctional. Pepper strain LJ-king was used for growing on a nutrient medium with ferrous, zinc, copper nanoparticles in different concentrations. Pepper plants grown on

  20. Plant Sterols: Diversity, Biosynthesis, and Physiological Functions.

    PubMed

    Valitova, J N; Sulkarnayeva, A G; Minibayeva, F V

    2016-08-01

    Sterols, which are isoprenoid derivatives, are structural components of biological membranes. Special attention is now being given not only to their structure and function, but also to their regulatory roles in plants. Plant sterols have diverse composition; they exist as free sterols, sterol esters with higher fatty acids, sterol glycosides, and acylsterol glycosides, which are absent in animal cells. This diversity of types of phytosterols determines a wide spectrum of functions they play in plant life. Sterols are precursors of a group of plant hormones, the brassinosteroids, which regulate plant growth and development. Furthermore, sterols participate in transmembrane signal transduction by forming lipid microdomains. The predominant sterols in plants are β-sitosterol, campesterol, and stigmasterol. These sterols differ in the presence of a methyl or an ethyl group in the side chain at the 24th carbon atom and are named methylsterols or ethylsterols, respectively. The balance between 24-methylsterols and 24-ethylsterols is specific for individual plant species. The present review focuses on the key stages of plant sterol biosynthesis that determine the ratios between the different types of sterols, and the crosstalk between the sterol and sphingolipid pathways. The main enzymes involved in plant sterol biosynthesis are 3-hydroxy-3-methylglutaryl-CoA reductase, C24-sterol methyltransferase, and C22-sterol desaturase. These enzymes are responsible for maintaining the optimal balance between sterols. Regulation of the ratios between the different types of sterols and sterols/sphingolipids can be of crucial importance in the responses of plants to stresses.

  1. Physiological integration enhanced the tolerance of Cynodon dactylon to flooding.

    PubMed

    Li, Z J; Fan, D Y; Chen, F Q; Yuan, Q Y; Chow, W S; Xie, Z Q

    2015-03-01

    Many flooding-tolerant species are clonal plants; however, the effects of physiological integration on plant responses to flooding have received limited attention. We hypothesise that flooding can trigger changes in metabolism of carbohydrates and ROS (reactive oxygen species) in clonal plants, and that physiological integration can ameliorate the adverse effects of stress, subsequently restoring the growth of flooded ramets. In the present study, we conducted a factorial experiment combining flooding to apical ramets and stolon severing (preventing physiological integration) between apical and basal ramets of Cynodon dactylon, which is a stoloniferous perennial grass with considerable flooding tolerance. Flooding-induced responses including decreased root biomass, accumulation of soluble sugar and starch, as well as increased activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in apical ramets. Physiological integration relieved growth inhibition, carbohydrate accumulation and induction of antioxidant enzyme activity in stressed ramets, as expected, without any observable cost in unstressed ramets. We speculate that relief of flooding stress in clonal plants may rely on oxidising power and electron acceptors transferred between ramets through physiological integration. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. The decrease in the population of Gluconacetobacter diazotrophicus in sugarcane after nitrogen fertilization is related to plant physiology in split root experiments.

    PubMed

    Rodríguez-Andrade, Osvaldo; Fuentes-Ramírez, Luis E; Morales-García, Yolanda E; Molina-Romero, Dalia; Bustillos-Cristales, María R; Martínez-Contreras, Rebeca D; Muñoz-Rojas, Jesús

    2015-01-01

    It has been established that a decrease in the population of Gluconacetobacter diazotrophicus associated with sugarcane occurs after nitrogen fertilization. This fact could be due to a direct influence of NH(4)NO(3) on bacterial cells or to changes in plant physiology after fertilizer addition, affecting bacterial establishment. In this work, we observed that survival of G. diazotrophicus was directly influenced when 44.8mM of NH(4)NO(3) (640mgN/plant) was used for in vitro experiments. Furthermore, micropropagated sugarcane plantlets were inoculated with G. diazotrophicus and used for split root experiments, in which both ends of the system were fertilized with a basal level of NH(4)NO(3) (0.35mM; 10mgN/plant). Twenty days post inoculation (dpi) one half of the plants were fertilized with a high dose of NH(4)NO(3) (6.3mM; 180 mgN/plant) on one end of the system. This nitrogen level was lower than that directly affecting G. diazotrophicus cells; however, it caused a decrease in the bacterial population in comparison with control plants fertilized with basal nitrogen levels. The decrease in the population of G. diazotrophicus was higher in pots fertilized with a basal nitrogen level when compared with the corresponding end supplied with high levels of NH4NO3 (100dpi; 80 days post fertilization) of the same plant system. These observations suggest that the high nitrogen level added to the plants induce systemic physiological changes that affect the establishment of G. diazotrophicus. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Physiological breeding.

    PubMed

    Reynolds, Matthew; Langridge, Peter

    2016-06-01

    Physiological breeding crosses parents with different complex but complementary traits to achieve cumulative gene action for yield, while selecting progeny using remote sensing, possibly in combination with genomic selection. Physiological approaches have already demonstrated significant genetic gains in Australia and several developing countries of the International Wheat Improvement Network. The techniques involved (see Graphical Abstract) also provide platforms for research and refinement of breeding methodologies. Recent examples of these include screening genetic resources for novel expression of Calvin cycle enzymes, identification of common genetic bases for heat and drought adaptation, and genetic dissection of trade-offs among yield components. Such information, combined with results from physiological crosses designed to test novel trait combinations, lead to more precise breeding strategies, and feed models of genotype-by-environment interaction to help build new plant types and experimental environments for future climates. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. Bacterial physiological diversity in the rhizosphere of range plants in response to retorted shale stress. [Agropyron smithii Rydb; Atriplex canescens (Pursh) Nutt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, W.C.; Klein, D.A.; Redente, E.F.

    1986-10-01

    Bacterial populations were isolated from the soil-root interface and root-free regions of Agropyron smithii Rydb. and Atriplex canescens (Pursh) Nutt. grown in soil, retorted shale, or soil over shale. Bacteria isolated from retorted shale exhibited a wider range of tolerance to alkalinity and salinity and decreased growth on amino acid substrates compared with bacteria from soil and soil-over-shale environments. Exoenzyme production was only slightly affected by growth medium treatment. Viable bacterial populations were higher in the rhizosphere and rhizoplane of plants grown in retorted shale than in plants grown in soil or soil over shale. In addition, a greater numbermore » of physiological groups of rhizosphere bacteria was observed in retorted shale, compared with soil alone. Two patterns of community similarity were observed in comparisons of bacteria from soil over shale with those from soil and retorted-shale environments. Root-associated populations from soil over shale had a higher proportion of physiological groups in common with those from the soil control than those from the retorted-shale treatment. However, in non-rhizosphere populations, bacterial groups from soil over shale more closely resembled the physiological groups from retorted shale.« less

  5. Comparison of Physiological and Psychological Relaxation Using Measurements of Heart Rate Variability, Prefrontal Cortex Activity, and Subjective Indexes after Completing Tasks with and without Foliage Plants

    PubMed Central

    Park, Sin-Ae

    2017-01-01

    The objective of this study was to compare physiological and psychological relaxation by assessing heart rate variability (HRV), prefrontal cortex activity, and subjective indexes while subjects performed a task with and without foliage plants. In a crossover experimental design, 24 university students performed a task transferring pots with and without a foliage plant for 3 min. HRV and oxyhemoglobin (oxy-Hb) concentration in the prefrontal cortex were continuously measured. Immediately thereafter, subjective evaluation of emotions was performed using a modified semantic differential (SD) method and a profile of mood state questionnaire (POMS). Results showed that the natural logarithmic (ln) ratio of low frequency/high frequency, as an estimate of sympathetic nerve activity, was significantly lower while performing the task with foliage plants for the average 3 min measurement interval. Oxy-Hb concentration in the left prefrontal cortex showed a tendency to decrease in the 2–3 min interval in the task with foliage plants compared to the task without plants. Moreover, significant psychological relaxation according to POMS score and SD was demonstrated when the task involved foliage plants. In conclusion, the task involving foliage plants led to more physiological and psychological relaxation compared with the task without foliage plants. PMID:28930169

  6. Plants and men in space - A new field in plant physiology

    NASA Technical Reports Server (NTRS)

    Andre, M.; Macelroy, R. D.

    1990-01-01

    Results are presented on a comparison of nutritional values of and human psychological responses to algae and of higher plants considered for growth as food on long-term missions in space, together with the technological complexities of growing these plants. The comparison shows the advantages of higher plants, with results suggesting that a high level of material recycling can be obtained. It is noted that the issue of space gravity may be not a major problem for plants because of the possibility that phototropism can provide an alternative sense of direction. Problems of waste recycling can be solved in association with plant cultivation, and a high degree of autonomy of food production can be obtained.

  7. Physiological and biochemical characterization of Trichoderma harzianum, a biological control agent against soilborne fungal plant pathogens.

    PubMed Central

    Grondona, I; Hermosa, R; Tejada, M; Gomis, M D; Mateos, P F; Bridge, P D; Monte, E; Garcia-Acha, I

    1997-01-01

    Monoconidial cultures of 15 isolates of Trichoderma harzianum were characterized on the basis of 82 morphological, physiological, and biochemical features and 99 isoenzyme bands from seven enzyme systems. The results were subjected to numerical analysis which revealed four distinct groups. Representative sequences of the internal transcribed spacer 1 (ITS 1)-ITS 2 region in the ribosomal DNA gene cluster were compared between groups confirming this distribution. The utility of the groupings generated from the morphological, physiological, and biochemical data was assessed by including an additional environmental isolate in the electrophoretic analysis. The in vitro antibiotic activity of the T. harzianum isolates was assayed against 10 isolates of five different soilborne fungal plant pathogens: Aphanomyces cochlioides, Rhizoctonia solani, Phoma betae, Acremonium cucurbitacearum, and Fusarium oxysporum f. sp. radicis lycopersici. Similarities between levels and specificities of biological activity and the numerical characterization groupings are both discussed in relation to antagonist-specific populations in known and potential biocontrol species. PMID:9251205

  8. Plant neighbor identity influences plant biochemistry and physiology related to defense.

    PubMed

    Broz, Amanda K; Broeckling, Corey D; De-la-Peña, Clelia; Lewis, Matthew R; Greene, Erick; Callaway, Ragan M; Sumner, Lloyd W; Vivanco, Jorge M

    2010-06-17

    Chemical and biological processes dictate an individual organism's ability to recognize and respond to other organisms. A small but growing body of evidence suggests that plants may be capable of recognizing and responding to neighboring plants in a species specific fashion. Here we tested whether or not individuals of the invasive exotic weed, Centaurea maculosa, would modulate their defensive strategy in response to different plant neighbors. In the greenhouse, C. maculosa individuals were paired with either conspecific (C. maculosa) or heterospecific (Festuca idahoensis) plant neighbors and elicited with the plant defense signaling molecule methyl jasmonate to mimic insect herbivory. We found that elicited C. maculosa plants grown with conspecific neighbors exhibited increased levels of total phenolics, whereas those grown with heterospecific neighbors allocated more resources towards growth. To further investigate these results in the field, we conducted a metabolomics analysis to explore chemical differences between individuals of C. maculosa growing in naturally occurring conspecific and heterospecific field stands. Similar to the greenhouse results, C. maculosa individuals accumulated higher levels of defense-related secondary metabolites and lower levels of primary metabolites when growing in conspecific versus heterospecific field stands. Leaf herbivory was similar in both stand types; however, a separate field study positively correlated specialist herbivore load with higher densities of C. maculosa conspecifics. Our results suggest that an individual C. maculosa plant can change its defensive strategy based on the identity of its plant neighbors. This is likely to have important consequences for individual and community success.

  9. The conservation physiology toolbox: status and opportunities

    PubMed Central

    Love, Oliver P; Hultine, Kevin R

    2018-01-01

    Abstract For over a century, physiological tools and techniques have been allowing researchers to characterize how organisms respond to changes in their natural environment and how they interact with human activities or infrastructure. Over time, many of these techniques have become part of the conservation physiology toolbox, which is used to monitor, predict, conserve, and restore plant and animal populations under threat. Here, we provide a summary of the tools that currently comprise the conservation physiology toolbox. By assessing patterns in articles that have been published in ‘Conservation Physiology’ over the past 5 years that focus on introducing, refining and validating tools, we provide an overview of where researchers are placing emphasis in terms of taxa and physiological sub-disciplines. Although there is certainly diversity across the toolbox, metrics of stress physiology (particularly glucocorticoids) and studies focusing on mammals have garnered the greatest attention, with both comprising the majority of publications (>45%). We also summarize the types of validations that are actively being completed, including those related to logistics (sample collection, storage and processing), interpretation of variation in physiological traits and relevance for conservation science. Finally, we provide recommendations for future tool refinement, with suggestions for: (i) improving our understanding of the applicability of glucocorticoid physiology; (ii) linking multiple physiological and non-physiological tools; (iii) establishing a framework for plant conservation physiology; (iv) assessing links between environmental disturbance, physiology and fitness; (v) appreciating opportunities for validations in under-represented taxa; and (vi) emphasizing tool validation as a core component of research programmes. Overall, we are confident that conservation physiology will continue to increase its applicability to more taxa, develop more non

  10. Reproduction, physiology and biochemistry

    USDA-ARS?s Scientific Manuscript database

    This chapter summarizes fundamental knowledge and recent discoveries about the reproduction, physiology and biochemistry of plant-parasitic nematodes. Various types of reproduction are reviewed, including sexual reproduction and mitotic and meiotic parthenogenesis. Although much is known about the p...

  11. Physiological relaxation induced by horticultural activity: transplanting work using flowering plants.

    PubMed

    Lee, Min-sun; Park, Bum-jin; Lee, Juyoung; Park, Kun-tae; Ku, Ja-hyeong; Lee, Jun-woo; Oh, Kyung-ok; Miyazaki, Yoshifumi

    2013-10-10

    Despite increasing attention and a growing volume of research data, little physiological evidence is available on the benefits of horticultural activity and the different effects on individuals. Therefore, the aim of the present study was to investigate the physiological effects of horticultural activity and to examine how differences in personality alter these effects. The effects of transplanting real flowers (horticultural activity) and handling artificial flowers (control activity) on human physiological activity were compared. On the first day, eight participants engaged in horticultural activity and another eight in the control activity. On the second day, participants switched roles. Participants' physiological conditions during each activity were assessed by measuring the heart rate and heart rate variability (HRV). Psychological responses, which were measured using a semantic differential rating scale, showed that the horticultural activity promoted comfortable, soothed, and natural feelings, compared to the control activity. Analysis of physiological responses using two-way repeated measures analysis of variance (ANOVA) revealed that sympathetic nervous activity significantly decreased in the late time period (11 to 15 minutes) of horticultural activity only in the type A group. This study supports the fact that the horticultural activity can enhance psychological and physiological relaxation effects, although these physiological effects can differ among individuals with different personalities.

  12. Physiological relaxation induced by horticultural activity: transplanting work using flowering plants

    PubMed Central

    2013-01-01

    Background Despite increasing attention and a growing volume of research data, little physiological evidence is available on the benefits of horticultural activity and the different effects on individuals. Therefore, the aim of the present study was to investigate the physiological effects of horticultural activity and to examine how differences in personality alter these effects. Results The effects of transplanting real flowers (horticultural activity) and handling artificial flowers (control activity) on human physiological activity were compared. On the first day, eight participants engaged in horticultural activity and another eight in the control activity. On the second day, participants switched roles. Participants’ physiological conditions during each activity were assessed by measuring the heart rate and heart rate variability (HRV). Psychological responses, which were measured using a semantic differential rating scale, showed that the horticultural activity promoted comfortable, soothed, and natural feelings, compared to the control activity. Analysis of physiological responses using two-way repeated measures analysis of variance (ANOVA) revealed that sympathetic nervous activity significantly decreased in the late time period (11 to 15 minutes) of horticultural activity only in the type A group. Conclusions This study supports the fact that the horticultural activity can enhance psychological and physiological relaxation effects, although these physiological effects can differ among individuals with different personalities. PMID:24112302

  13. Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants.

    PubMed

    Mostofa, Mohammad Golam; Hossain, Mohammad Anwar; Siddiqui, Md Nurealam; Fujita, Masayuki; Tran, Lam-Son

    2017-07-01

    The present study investigated the phenotypical, physiological and biochemical changes of rice plants exposed to high selenium (Se) concentrations to gain an insight into Se-induced phytotoxicity. Results showed that exposure of rice plants to excessive Se resulted in growth retardation and biomass reduction in connection with the decreased levels of chlorophyll, carotenoids and soluble proteins. The reduced water status and an associated increase in sugar and proline levels indicated Se-induced osmotic stress in rice plants. Measurements of Se contents in roots, leaf sheaths and leaves revealed that Se was highly accumulated in leaves followed by leaf sheaths and roots. Se also potentiated its toxicity by impairing oxidative metabolism, as evidenced by enhanced accumulation of hydrogen peroxide, superoxide and lipid peroxidation product. Se toxicity also displayed a desynchronized antioxidant system by elevating the level of glutathione and the activities of superoxide dismutase, glutathione-S-transferase and glutathione peroxidase, whereas decreasing the level of ascorbic acid and the activities of catalase, glutathione reductase and dehydroascorbate reductase. Furthermore, Se triggered methylglyoxal toxicity by inhibiting the activities of glyoxalases I and II, particularly at higher concentrations of Se. Collectively, our results suggest that excessive Se caused phytotoxic effects on rice plants by inducing chlorosis, reducing sugar, protein and antioxidant contents, and exacerbating oxidative stress and methylglyoxal toxicity. Accumulation levels of Se, proline and glutathione could be considered as efficient biomarkers to indicate degrees of Se-induced phytotoxicity in rice, and perhaps in other crops. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Plant neighbor identity influences plant biochemistry and physiology related to defense

    PubMed Central

    2010-01-01

    Background Chemical and biological processes dictate an individual organism's ability to recognize and respond to other organisms. A small but growing body of evidence suggests that plants may be capable of recognizing and responding to neighboring plants in a species specific fashion. Here we tested whether or not individuals of the invasive exotic weed, Centaurea maculosa, would modulate their defensive strategy in response to different plant neighbors. Results In the greenhouse, C. maculosa individuals were paired with either conspecific (C. maculosa) or heterospecific (Festuca idahoensis) plant neighbors and elicited with the plant defense signaling molecule methyl jasmonate to mimic insect herbivory. We found that elicited C. maculosa plants grown with conspecific neighbors exhibited increased levels of total phenolics, whereas those grown with heterospecific neighbors allocated more resources towards growth. To further investigate these results in the field, we conducted a metabolomics analysis to explore chemical differences between individuals of C. maculosa growing in naturally occurring conspecific and heterospecific field stands. Similar to the greenhouse results, C. maculosa individuals accumulated higher levels of defense-related secondary metabolites and lower levels of primary metabolites when growing in conspecific versus heterospecific field stands. Leaf herbivory was similar in both stand types; however, a separate field study positively correlated specialist herbivore load with higher densities of C. maculosa conspecifics. Conclusions Our results suggest that an individual C. maculosa plant can change its defensive strategy based on the identity of its plant neighbors. This is likely to have important consequences for individual and community success. PMID:20565801

  15. Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress.

    PubMed

    Pandey, Renu; Zinta, Gaurav; AbdElgawad, Hamada; Ahmad, Altaf; Jain, Vanita; Janssens, Ivan A

    2015-01-01

    Atmospheric [CO2] has increased substantially in recent decades and will continue to do so, whereas the availability of phosphorus (P) is limited and unlikely to increase in the future. P is a non-renewable resource, and it is essential to every form of life. P is a key plant nutrient controlling the responsiveness of photosynthesis to [CO2]. Increases in [CO2] typically results in increased biomass through stimulation of net photosynthesis, and hence enhance the demand for P uptake. However, most soils contain low concentrations of available P. Therefore, low P is one of the major growth-limiting factors for plants in many agricultural and natural ecosystems. The adaptive responses of plants to [CO2] and P availability encompass alterations at morphological, physiological, biochemical and molecular levels. In general low P reduces growth, whereas high [CO2] enhances it particularly in C3 plants. Photosynthetic capacity is often enhanced under high [CO2] with sufficient P supply through modulation of enzyme activities involved in carbon fixation such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, high [CO2] with low P availability results in enhanced dry matter partitioning towards roots. Alterations in below-ground processes including root morphology, exudation and mycorrhizal association are influenced by [CO2] and P availability. Under high P availability, elevated [CO2] improves the uptake of P from soil. In contrast, under low P availability, high [CO2] mainly improves the efficiency with which plants produce biomass per unit P. At molecular level, the spatio-temporal regulation of genes involved in plant adaptation to low P and high [CO2] has been studied individually in various plant species. Genome-wide expression profiling of high [CO2] grown plants revealed hormonal regulation of biomass accumulation through complex transcriptional networks. Similarly, differential transcriptional regulatory networks are involved in P

  16. A Method of High Throughput Monitoring Crop Physiology Using Chlorophyll Fluorescence and Multispectral Imaging.

    PubMed

    Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu

    2018-01-01

    We present a high throughput crop physiology condition monitoring system and corresponding monitoring method. The monitoring system can perform large-area chlorophyll fluorescence imaging and multispectral imaging. The monitoring method can determine the crop current condition continuously and non-destructively. We choose chlorophyll fluorescence parameters and relative reflectance of multispectral as the indicators of crop physiological status. Using tomato as experiment subject, the typical crop physiological stress, such as drought, nutrition deficiency and plant disease can be distinguished by the monitoring method. Furthermore, we have studied the correlation between the physiological indicators and the degree of stress. Besides realizing the continuous monitoring of crop physiology, the monitoring system and method provide the possibility of machine automatic diagnosis of the plant physiology. Highlights: A newly designed high throughput crop physiology monitoring system and the corresponding monitoring method are described in this study. Different types of stress can induce distinct fluorescence and spectral characteristics, which can be used to evaluate the physiological status of plants.

  17. [Physiological responses of five plants in northwest China arid area under drought stress].

    PubMed

    Ding, Long; Zhao, Hui Min; Zeng, Wen Jing; Li, Qing; Wang, Yang; Wang, Si Qing

    2017-05-18

    Effects of drought stress on photosynthetic characteristics, water status, physiological and biochemical indexes were studied in five arid area plants in northwest China, including Potentilla fruticosa, Lycium ruthenicum, Caryopteris mongholica, Caragana korshinskii and Hedysarum scoparium, using pot experiments. The results showed that with the prolongation of drought stress, the water conservation capacity of leaves totally increased in above five plants, the leaf relative water content rose first and then fell, and the relative chlorophyll content and chlorophyll fluorescence parameters decreased to some extent. Overall, the photosynthetic system of H. scoparium and L. ruthenicum least affected by the stress, and P. fruticosa suffered with the most serious damage. The electric conductivity and malondialdehyde (MDA) content of P. fruticosa firstly decreased and then sharply increased, while superoxide dismutase (SOD) and peroxidase (POD) activities firstly increased and then dramatically decreased. With the decrease of soil water content, the electric conductivity rose firstly and then fell in the other four plants,the change of MDA content rose first and then fell, or fell first and then rose, and the activities of SOD and POD almost displayed upward trend. Especially, SOD activity of C. mongholica and POD activity of H. scoparium had the biggest increment among the five plants after 28 days of drought stress, increasing by 1.1 and 13.1 times respectively, compared with before processing. Additionally, there was significant variance in the accumulation of organic solutes among the five plants during the drought stress treatment. The accumulation of soluble sugar and free proline was the most in P. fruticosa, increasing by 1.1 and 22.4 times respectively, after 28 days of drought treatment. H. sco-parium accumulated the most soluble protein, increasing by 1.0 times after 28 days of drought treatment. The result of membership function method showed that the

  18. Host Plant Physiology and Mycorrhizal Functioning Shift across a Glacial through Future [CO2] Gradient.

    PubMed

    Becklin, Katie M; Mullinix, George W R; Ward, Joy K

    2016-10-01

    Rising atmospheric carbon dioxide concentration ([CO 2 ]) may modulate the functioning of mycorrhizal associations by altering the relative degree of nutrient and carbohydrate limitations in plants. To test this, we grew Taraxacum ceratophorum and Taraxacum officinale (native and exotic dandelions) with and without mycorrhizal fungi across a broad [CO 2 ] gradient (180-1,000 µL L -1 ). Differential plant growth rates and vegetative plasticity were hypothesized to drive species-specific responses to [CO 2 ] and arbuscular mycorrhizal fungi. To evaluate [CO 2 ] effects on mycorrhizal functioning, we calculated response ratios based on the relative biomass of mycorrhizal (M Bio ) and nonmycorrhizal (NM Bio ) plants (R Bio = [M Bio - NM Bio ]/NM Bio ). We then assessed linkages between R Bio and host physiology, fungal growth, and biomass allocation using structural equation modeling. For T. officinale, R Bio increased with rising [CO 2 ], shifting from negative to positive values at 700 µL L -1 [CO 2 ] and mycorrhizal effects on photosynthesis and leaf growth rates drove shifts in R Bio in this species. For T. ceratophorum, R Bio increased from 180 to 390 µL L -1 and further increases in [CO 2 ] caused R Bio to shift from positive to negative values. [CO 2 ] and fungal effects on plant growth and carbon sink strength were correlated with shifts in R Bio in this species. Overall, we show that rising [CO 2 ] significantly altered the functioning of mycorrhizal associations. These symbioses became more beneficial with rising [CO 2 ], but nonlinear effects may limit plant responses to mycorrhizal fungi under future [CO 2 ]. The magnitude and mechanisms driving mycorrhizal-CO 2 responses reflected species-specific differences in growth rate and vegetative plasticity, indicating that these traits may provide a framework for predicting mycorrhizal responses to global change. © 2016 American Society of Plant Biologists. All Rights Reserved.

  19. The conservation physiology of seed dispersal

    PubMed Central

    Ruxton, Graeme D.; Schaefer, H. Martin

    2012-01-01

    At a time when plant species are experiencing increasing challenges from climate change, land-use change, harvesting and invasive species, dispersal has become a very important aspect of plant conservation. Seed dispersal by animals is particularly important because some animals disperse seeds to suitable sites in a directed fashion. Our review has two aims: (i) to highlight the various ways plant dispersal by animals can be affected by current anthropogenic change and (ii) to show the important role of plant and (particularly) animal physiology in shaping seed–dispersal interactions. We argue that large-bodied seed dispersers may be particularly important for plant conservation because seed dispersal of large-seeded plants is often more specialized and because large-bodied animals are targeted by human exploitation and have smaller population sizes. We further argue that more specialized seed-dispersal systems on island ecosystems might be particularly at risk from climate change both owing to small population sizes involved but also owing to the likely thermal specialization, particularly on tropical islands. More generally, the inherent vulnerability of seed-dispersal mutualisms to disruption driven by environmental change (as well as their ubiquity) demands that we continue to improve our understanding of their conservation physiology. PMID:22566677

  20. Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants.

    PubMed

    Großkinsky, Dominik K; Syaifullah, Syahnada Jaya; Roitsch, Thomas

    2018-02-12

    The study of senescence in plants is complicated by diverse levels of temporal and spatial dynamics as well as the impact of external biotic and abiotic factors and crop plant management. Whereas the molecular mechanisms involved in developmentally regulated leaf senescence are very well understood, in particular in the annual model plant species Arabidopsis, senescence of other organs such as the flower, fruit, and root is much less studied as well as senescence in perennials such as trees. This review addresses the need for the integration of multi-omics techniques and physiological phenotyping into holistic phenomics approaches to dissect the complex phenomenon of senescence. That became feasible through major advances in the establishment of various, complementary 'omics' technologies. Such an interdisciplinary approach will also need to consider knowledge from the animal field, in particular in relation to novel regulators such as small, non-coding RNAs, epigenetic control and telomere length. Such a characterization of phenotypes via the acquisition of high-dimensional datasets within a systems biology approach will allow us to systematically characterize the various programmes governing senescence beyond leaf senescence in Arabidopsis and to elucidate the underlying molecular processes. Such a multi-omics approach is expected to also spur the application of results from model plants to agriculture and their verification for sustainable and environmentally friendly improvement of crop plant stress resilience and productivity and contribute to improvements based on postharvest physiology for the food industry and the benefit of its customers. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Hormone Profiling in Plant Tissues.

    PubMed

    Müller, Maren; Munné-Bosch, Sergi

    2017-01-01

    Plant hormones are for a long time known to act as chemical messengers in the regulation of physiological processes during a plant's life cycle, from germination to senescence. Furthermore, plant hormones simultaneously coordinate physiological responses to biotic and abiotic stresses. To study the hormonal regulation of physiological processes, three main approaches have been used (1) exogenous application of hormones, (2) correlative studies through measurements of endogenous hormone levels, and (3) use of transgenic and/or mutant plants altered in hormone metabolism or signaling. A plant hormone profiling method is useful to unravel cross talk between hormones and help unravel the hormonal regulation of physiological processes in studies using any of the aforementioned approaches. However, hormone profiling is still particularly challenging due to their very low abundance in plant tissues. In this chapter, a sensitive, rapid, and accurate method to quantify all the five "classic" classes of plant hormones plus other plant growth regulators, such as jasmonates, salicylic acid, melatonin, and brassinosteroids is described. The method includes a fast and simple extraction procedure without time consuming steps as purification or derivatization, followed by optimized ultrahigh-performance liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (UHPLC-MS/MS) analysis. This protocol facilitates the high-throughput analysis of hormone profiling and is applicable to different plant tissues.

  2. Application of plant impedance for diagnosing plant disease

    NASA Astrophysics Data System (ADS)

    Xu, Huirong; Jiang, Xuesong; Zhu, Shengpan; Ying, Yibin

    2006-10-01

    Biological cells have components acting as electrical elements that maintain the health of the cell by regulation of the electrical charge content. Plant impedance is decided by the state of plant physiology and pathology. Plant physiology and pathology can be studies by measuring plant impedance. The effect of Cucumber Mosaic Virus red bean isolate (CMV-RB) on electrical resistance of tomato leaves was studied by the method of impedance measurement. It was found that the value of resistance of tomato leaves infected with CMV-RB was smaller than that in sound plant leaves. This decrease of impedances in leaf tissue was occurred with increased severity of disease. The decrease of resistance of tomato leaves infected with CMV-RB could be detected by electrical resistance detecting within 4 days after inoculation even though significant visible differences between the control and the infected plants were not noted, so that the technique for measurement of tomato leaf tissue impedance is a rapid, clever, simple method on diagnosis of plant disease.

  3. Morphological, physiological, cytological and phytochemical studies in diploid and colchicine-induced tetraploid plants of Fagopyrum tataricum (L.) Gaertn.

    PubMed

    Wang, Lin-Jiao; Sheng, Mao-Yin; Wen, Pei-Cai; Du, Jia-Ying

    2017-12-01

    Tartary buckwheat are very popular as an important functional food material and its cultivation is very widespread in our whole world, but there obviously lack works in the researches of genetic breeding for agricultural and medicinal utilization. The aim of this study is to obtain good germplasm resources for agricultural and medicinal use of tartary buckwheat (Fagopyrum tataricum) by inducing the tetraploid plants. Four cultivars of F. tataricum, that is, Qianwei 2#, Jinku 2#, Chuanqiao 1#, and Liuqiao 1# were selected to experiment. The tips of seedlings with two true leaves were treated by 0.25% (w/v) colchicine solution for 48, 72, and 96 h, respectively. The chromosome number of treated plants was determined by metaphase chromosome counting of root tip cells and PMCs (pollen mother cells) meiosis observation. Tetraploid induction successfully occurred in all three treatments with an efficiency ranging from 12.13 to 54.55%. The chromosome number of the diploid plants was 2n = 2x = 16, and that of the induced tetraploid plants was 2n = 4x = 32. The typical morphological and physiological qualities were compared between the control diploid and corresponding induced tetraploid plants. Results showed that the induced tetraploid plants had obviously larger leaves, flowers, and seeds. Moreover, the content of seed protein and flavonoid were also increased in the tetraploid plants. The pollen diameter and capsule size of diploid plants were significantly smaller than those of tetraploid plants. Fagopyrum tataricum can be effectively induced into tetraploids by colchicines. The tetraploid induction can produce valuable germplasm resources for breeding and is a practicable breeding way in F. tataricum.

  4. Plant anesthesia supports similarities between animals and plants

    PubMed Central

    Grémiaux, Alexandre; Yokawa, Ken; Mancuso, Stefano; Baluška, František

    2014-01-01

    The French scientist Claude Bernard (1813–1878) is famous for his discoveries in physiology and for introducing rigorous experimental methods to medicine and biology. One of his major technical innovations was the use of chemicals in order to disrupt normal physiological function to test hypotheses. But less known is his conviction that the physiological functions of all living organisms rely on the same underlying principles. He hypothesized that similarly to animals, plants are also able to sense changes in their environment. He called this ability “sensitivity.” In order to test his ideas, he performed anesthesia on plants and the results of these experiments were presented in 1878 in “Leçonssur les phénomènes de la vie communs aux animaux et aux végétaux.”1 The phenomena described by Claude Bernard more than a century ago are not fully understood yet. Here, we present a short overview of anesthetic effects in animals and we discuss how anesthesia affects plant movements, seed germination, and photosynthesis. Surprisingly, these phenomena may have ecological relevance, since stressed plants generate anesthetics such as ethylene and ether. Finally, we discuss Claude Bernard's interpretations and conclusions in the perspective of modern plant sciences. PMID:24476640

  5. Modelling of salad plants growth and physiological status in vitamin space greenhouse during lighting regime optimization

    NASA Astrophysics Data System (ADS)

    Konovalova, Irina; Berkovich, Yuliy A.; Smolyanina, Svetlana; Erokhin, Alexei; Yakovleva, Olga; Lapach, Sergij; Radchenko, Stanislav; Znamenskii, Artem; Tarakanov, Ivan

    2016-07-01

    The efficiency of the photoautotrophic element as part of bio-engineering life-support systems is determined substantially by lighting regime. The artificial light regime optimization complexity results from the wide range of plant physiological functions controlled by light: trophic, informative, biosynthetical, etc. An average photosynthetic photon flux density (PPFD), light spectral composition and pulsed light effects on the crop growth and plant physiological status were studied in the multivariate experiment, including 16 independent experiments in 3 replicates. Chinese cabbage plants (Brassica chinensis L.), cultivar Vesnianka, were grown during 24 days in a climatic chamber under white and red light-emitting diodes (LEDs): photoperiod 24 h, PPFD from 260 to 500 µM/(m ^{2}*s), red light share in the spectrum varying from 33% to 73%, pulsed (pulse period from 30 to 501 µs) and non-pulsed lighting. The regressions of plant photosynthetic and biochemical indexes as well as the crop specific productivity in response to the selected parameters of lighting regime were calculated. Developed models of crop net photosynthesis and dark respiration revealed the most intense gas exchange area corresponding to PPFD level 450 - 500 µM/(m ^{2}*s) with red light share in the spectrum about 60% and the pulse length 30 µs with a pulse period from 300 to 400 µs. Shoot dry weight increased monotonically in response to the increasing PPFD and changed depending on the pulse period under stabilized PPFD level. An increase in ascorbic acid content in the shoot biomass was revealed when increasing red light share in spectrum from 33% to 73%. The lighting regime optimization criterion (Q) was designed for the vitamin space greenhouse as the maximum of a crop yield square on its ascorbic acid concentration, divided by the light energy consumption. The regression model of optimization criterion was constructed based on the experimental data. The analysis of the model made it

  6. Phenolic metabolites in carnivorous plants: Inter-specific comparison and physiological studies.

    PubMed

    Kováčik, Jozef; Klejdus, Bořivoj; Repčáková, Klára

    2012-03-01

    Despite intensive phytochemical research, data related to the accumulation of phenols in carnivorous plants include mainly qualitative reports. We have quantified phenolic metabolites in three species: Drosera capensis, Dionaea muscipula and Nepenthes anamensis in the "leaf" (assimilatory part) and the "trap" (digestive part). For comparison, commercial green tea was analysed. Phenylalanine ammonia-lyase (PAL) activities in Dionaea and Nepenthes were higher in the trap than in the leaf while the opposite was found in Drosera. Soluble phenols and majority of phenolic acids were mainly accumulated in the trap among species. Flavonoids were abundant in Drosera and Dionaea traps but not in Nepenthes. Phenolic acids were preferentially accumulated in a glycosidically-bound form and gallic acid was the main metabolite. Green tea contained more soluble phenols and phenolic acids but less quercetin. In vitro experiments with Drosera spathulata revealed that nitrogen deficiency enhances PAL activity, accumulation of phenols and sugars while PAL inhibitor (2-aminoindane-2-phosphonic acid) depleted phenols and some amino acids (but free phenylalanine and sugars were elevated). Possible explanations in physiological, biochemical and ecological context are discussed. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  7. Cell physiology of plants growing in cold environments.

    PubMed

    Lütz, Cornelius

    2010-08-01

    The life of plants growing in cold extreme environments has been well investigated in terms of morphological, anatomical, and ecophysiological adaptations. In contrast, long-term cellular or metabolic studies have been performed by only a few groups. Moreover, a number of single reports exist, which often represent just a glimpse of plant behavior. The review draws together the literature which has focused on tissue and cellular adaptations mainly to low temperatures and high light. Most studies have been done with European alpine plants; comparably well studied are only two phanerogams found in the coastal Antarctic. Plant adaptation in northern polar regions has always been of interest in terms of ecophysiology and plant propagation, but nowadays, this interest extends to the effects of global warming. More recently, metabolic and cellular investigations have included cold and UV resistance mechanisms. Low-temperature stress resistance in plants from cold environments reflects the climate conditions at the growth sites. It is now a matter of molecular analyses to find the induced genes and their products such as chaperones or dehydrins responsible for this resistance. Development of plants under snow or pollen tube growth at 0 degrees C shows that cell biology is needed to explain the stability and function of the cytoskeleton. Many results in this field are based on laboratory studies, but several publications show that it is not difficult to study cellular mechanisms with the plants adapted to a natural stress. Studies on high light and UV loads may be split in two parts. Many reports describe natural UV as harmful for the plants, but these studies were mainly conducted by shielding off natural UV (as controls). Other experiments apply additional UV in the field and have had practically no negative impact on metabolism. The latter group is supported by the observations that green overwintering plants increase their flavonoids under snow even in the absence of

  8. Modeling plant growth and development.

    PubMed

    Prusinkiewicz, Przemyslaw

    2004-02-01

    Computational plant models or 'virtual plants' are increasingly seen as a useful tool for comprehending complex relationships between gene function, plant physiology, plant development, and the resulting plant form. The theory of L-systems, which was introduced by Lindemayer in 1968, has led to a well-established methodology for simulating the branching architecture of plants. Many current architectural models provide insights into the mechanisms of plant development by incorporating physiological processes, such as the transport and allocation of carbon. Other models aim at elucidating the geometry of plant organs, including flower petals and apical meristems, and are beginning to address the relationship between patterns of gene expression and the resulting plant form.

  9. Physiological Plasticity Is Important for Maintaining Sugarcane Growth under Water Deficit

    PubMed Central

    Marchiori, Paulo E. R.; Machado, Eduardo C.; Sales, Cristina R. G.; Espinoza-Núñez, Erick; Magalhães Filho, José R.; Souza, Gustavo M.; Pires, Regina C. M.; Ribeiro, Rafael V.

    2017-01-01

    The water availability at early phenological stages is critical for crop establishment and sugarcane varieties show differential performance under drought. Herein, we evaluated the relative importance of morphological and physiological plasticity of young sugarcane plants grown under water deficit, testing the hypothesis that high phenotypic plasticity is associated with drought tolerance. IACSP95-5000 is a high yielding genotype and IACSP94-2094 has good performance under water limiting environments. Plants were grown in rhizotrons for 35 days under three water availabilities: high (soil water matric potential [Ψm] higher than -20 kPa); intermediate (Ψm reached -65 and -90 kPa at the end of experimental period) and low (Ψm reached values lower than -150 kPa). Our data revealed that morphological and physiological responses of sugarcane to drought are dependent on genotype and intensity of water deficit. In general, IACSP95-5000 showed higher physiological plasticity given by leaf gas exchange and photochemical traits, whereas IACSP94-2094 showed higher morphological plasticity determined by changes in leaf area (LA) and specific LA. As IACSP94-2094 accumulated less biomass than IACSP95-5000 under varying water availability, it is suggested that high morphological plasticity does not always represent an effective advantage to maintain plant growth under water deficit. In addition, our results revealed that sugarcane varieties face water deficit using distinct strategies based on physiological or morphological changes. When the effectiveness of those changes in maintaining plant growth under low water availability is taken into account, our results indicate that the physiological plasticity is more important than the morphological one in young sugarcane plants. PMID:29326744

  10. Physiologically mediated self/non-self discrimination in roots

    PubMed Central

    Gruntman, Michal; Novoplansky, Ariel

    2004-01-01

    Recent evidence suggests that self/non-self discrimination exists among roots; its mechanisms, however, are still unclear. We compared the growth of Buchloe dactyloides cuttings that were grown in the presence of neighbors that belonged to the same physiological individual, were separated from each other for variable periods, or originated from adjacent or remote tillers on the same clone. The results demonstrate that B. dactyloides plants are able to differentiate between self and non-self neighbors and develop fewer and shorter roots in the presence of other roots of the same individual. Furthermore, once cuttings that originate from the very same node are separated, they become progressively alienated from each other and eventually relate to each other as genetically alien plants. The results suggest that the observed self/non-self discrimination is mediated by physiological coordination among roots that developed on the same plant rather than allogenetic recognition. The observed physiological coordination is based on an as yet unknown mechanism and has important ecological implications, because it allows the avoidance of competition with self and the allocation of greater resources to alternative functions. PMID:15004281

  11. Targeted and Untargeted Metabolic Profiling of Wild Grassland Plants identifies Antibiotic and Anthelmintic Compounds Targeting Pathogen Physiology, Metabolism and Reproduction.

    PubMed

    French, Katherine E; Harvey, Joe; McCullagh, James S O

    2018-01-26

    Plants traditionally used by farmers to manage livestock ailments could reduce reliance on synthetic antibiotics and anthelmintics but in many cases their chemical composition is unknown. As a case study, we analyzed the metabolite profiles of 17 plant species and 45 biomass samples from agricultural grasslands in England using targeted and untargeted metabolite profiling by liquid-chromatography mass spectrometry. We identified a range of plant secondary metabolites, including 32 compounds with known antimicrobial/anthelmintic properties which varied considerably across the different plant samples. These compounds have been shown previously to target multiple aspects of pathogen physiology and metabolism in vitro and in vivo, including inhibition of quorum sensing in bacteria and egg viability in nematodes. The most abundant bioactive compounds were benzoic acid, myricetin, p-coumaric acid, rhamnetin, and rosmarinic acid. Four wild plants (Filipendula ulmaria (L.) Maxim., Prunella vulgaris L., Centuarea nigra L., and Rhinanthus minor L.) and two forage legumes (Medicago sativa L., Trifolium hybridium L.) contained high levels of these compounds. Forage samples from native high-diversity grasslands had a greater abundance of medicinal compounds than samples from agriculturally improved grasslands. Incorporating plants with antibiotic/anthelmintic compounds into livestock feeds may reduce global drug-resistance and preserve the efficacy of last-resort drugs.

  12. Journal of Gravitational Physiology, Volume 13, No. 1

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A. (Editor); Cogoli, Augusto (Editor); Hargens, Alan R. (Editor); Smith, Arthur H. (Editor)

    2006-01-01

    At the outset, the Journal published one issue in 1994. The first number comprised the Proceedings of the 15th Annual International Gravitational Physiology Meeting, held in Barcelona, Spain in October 1993. The Proceedings of the previous 14 Annual Meetings appeared as supplements to The Physiologist from 1979 to 1993. Each year, one issue of the Journal is devoted to the Annual Meeting Proceedings, and up to four more issues are comprised of full-length research papers. Additionally, Supplement Issues are considered by the Editorial Board as they are submitted. The Journal is published for the International Society for Gravitational Physiology by the Galileo Foundation, a 501(c)(3) nonprofit public benefit corporation. This issue, the first number of 2006, comprises the Proceedings of the joint meeting of the International Society for Gravitational Physiology s 27th Annual International Gravitational Physiology Meeting, held in Osaka, Japan 23- 28 April, 2006. The Journal of Gravitational Physiology invites the submission of original experimental or observational papers on subjects in the field of gravitational physiology. Review articles, theoretical papers and historical or biographical articles will also be solicited by the Editor for publication. The wide scientific span of the Journal rests on physiology as its keystone. Gravitational physiology is considered to include the effects of changes in the magnitude and directions of the gravitational force environment on cells and physiological systems and behavior of humans, animals and plants. The effects of weightlessness during space flight, high sustained G forces and chronic acceleration, vibration, impact and the various forms of simulated weightlessness are also included, as well as is consideration of the evolutionary consequences of gravity and the role of gravity in the manifestation of scale effects in animals and plants.

  13. Are plants sentient?

    PubMed

    Calvo, Paco; Sahi, Vaidurya Pratap; Trewavas, Anthony

    2017-11-01

    Feelings in humans are mental states representing groups of physiological functions that usually have defined behavioural purposes. Feelings, being evolutionarily ancient, are thought to be coordinated in the brain stem of animals. One function of the brain is to prioritise between competing mental states and, thus, groups of physiological functions and in turn behaviour. Plants use groups of coordinated physiological activities to deal with defined environmental situations but currently have no known mental state to prioritise any order of response. Plants do have a nervous system based on action potentials transmitted along phloem conduits but which in addition, through anastomoses and other cross-links, forms a complex network. The emergent potential for this excitable network to form a mental state is unknown, but it might be used to distinguish between different and even contradictory signals to the individual plant and thus determine a priority of response. This plant nervous system stretches throughout the whole plant providing the potential for assessment in all parts and commensurate with its self-organising, phenotypically plastic behaviour. Plasticity may, in turn, depend heavily on the instructive capabilities of local bioelectric fields enabling both a degree of behavioural independence but influenced by the condition of the whole plant. © 2017 John Wiley & Sons Ltd.

  14. Physiological Assessment of Water Stress in Potato Using Spectral Information

    PubMed Central

    Romero, Angela P.; Alarcón, Andrés; Valbuena, Raúl I.; Galeano, Carlos H.

    2017-01-01

    Water stress in potato (Solanum tuberosum L.) causes considerable losses in yield, and therefore, potato is often considered to be a drought sensitive crop. Identification of water deficit tolerant potato genotypes is an adaptation strategy to mitigate the climatic changes that are occurring in the Cundiboyacense region in Colombia. Previous studies have evaluated potato plants under water stress conditions using physiological analyses. However, these methodologies require considerable amounts of time and plant material to perform these measurements. This study evaluated and compared the physiological and spectral traits between two genotypes, Diacol Capiro and Perla Negra under two drought levels (10 and 15 days without irrigation from flowering). Reflectance information was used to calculate indexes which were associated with the physiological behavior in plants. The results showed that spectral information was correlated (ρ < 0.0001) with physiological variables such as foliar area (FA), total water content (H2Ot), relative growth rate of potato tubers (RGTtub), leaf area ratio (LAR), and foliar area index (AFI). In general, there was a higher concentration of chlorophyll under drought treatments. In addition, Perla Negra under water deficit treatments did not show significant differences in its physiological variables. Therefore, it could be considered a drought tolerant genotype because its physiological performance was not affected under water stress conditions. However, yield was affected in both genotypes after being subject to 15 days of drought. The results suggested that reflectance indexes are a useful and affordable approach for potato phenotyping to select parent and segregant populations in breeding programs. PMID:28979277

  15. Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance.

    PubMed

    Shabala, Sergey

    2011-04-01

    Waterlogging affects large areas of agricultural land, resulting in severe economic penalties because of massive losses in crop production. Traditionally, plant breeding for waterlogging tolerance has been based on the field assessment of a range of agronomic and morphological characteristics. This review argues for a need to move towards more physiologically based approaches by targeting specific cellular mechanisms underling key components of waterlogging tolerance in plants. Also, while the main focus of researchers was predominantly on plant anoxia tolerance, less attention was given to plant tolerance to phytotoxins under waterlogged conditions. This paper reviews the production of major elemental and organic phytotoxins in waterlogged soils and describes their adverse effects on plant performance. The critical role of plasma membrane transporters in plant tolerance to secondary metabolite toxicity is highlighted, and ionic mechanisms mediating the this tolerance are discussed. A causal link between the secondary metabolite-induced disturbances to cell ionic homeostasis and programmed cell death is discussed, and a new ethylene-independent pathway for aerenchyma formation is put forward. It is concluded that plant breeding for waterlogging tolerance may significantly benefit from targeting mechanisms of tolerance to phytotoxins.

  16. Differences in Copper Absorption and Accumulation between Copper-Exclusion and Copper-Enrichment Plants: A Comparison of Structure and Physiological Responses.

    PubMed

    Fu, Lei; Chen, Chen; Wang, Bin; Zhou, Xishi; Li, Shuhuan; Guo, Pan; Shen, Zhenguo; Wang, Guiping; Chen, Yahua

    2015-01-01

    Differences in copper (Cu) absorption and transport, physiological responses and structural characteristics between two types of Cu-resistant plants, Oenothera glazioviana (Cu-exclusion type) and Elsholtzia haichowensis (Cu-enrichment type), were investigated in the present study. The results indicated the following: (1) After 50 μM Cu treatment, the Cu ratio in the xylem vessels of E. haichowensis increased by 60%. A Cu adsorption experiment indicated that O. glazioviana exhibited greater resistance to Cu, and Cu absorption and the shoot/root ratio of Cu were significantly lower in O. glazioviana than in E. haichowensis. (2) An analysis of the endogenous abscisic acid (ABA) variance and exogenous ABA treatment demonstrated that the ABA levels of both plants did not differ; exogenous ABA treatment clearly reduced Cu accumulation in both plants. (3) The leaf stomatal density of O. glazioviana was significantly less than that of E. haichowensis. Guard cells in E. haichowensis plants were covered with a thick cuticle layer, the epidermal hair was more numerous and longer, and the number of xylem conduits in the root was small. (4) The transpiration rate and the stomatal conductance of O. glazioviana were both significantly lower than those of E. haichowensis, regardless of whether the plants were treated with Cu. Taken together, these results indicate that the differences in the structural characteristics between these two plant species, particularly in the characteristics related to plant transpiration, are important factors that govern whether plants acquire or exclude Cu.

  17. Differences in Copper Absorption and Accumulation between Copper-Exclusion and Copper-Enrichment Plants: A Comparison of Structure and Physiological Responses

    PubMed Central

    Fu, Lei; Chen, Chen; Wang, Bin; Zhou, Xishi; Li, Shuhuan; Guo, Pan; Shen, Zhenguo; Wang, Guiping; Chen, Yahua

    2015-01-01

    Differences in copper (Cu) absorption and transport, physiological responses and structural characteristics between two types of Cu-resistant plants, Oenothera glazioviana (Cu-exclusion type) and Elsholtzia haichowensis (Cu-enrichment type), were investigated in the present study. The results indicated the following: (1) After 50 μM Cu treatment, the Cu ratio in the xylem vessels of E. haichowensis increased by 60%. A Cu adsorption experiment indicated that O. glazioviana exhibited greater resistance to Cu, and Cu absorption and the shoot/root ratio of Cu were significantly lower in O. glazioviana than in E. haichowensis. (2) An analysis of the endogenous abscisic acid (ABA) variance and exogenous ABA treatment demonstrated that the ABA levels of both plants did not differ; exogenous ABA treatment clearly reduced Cu accumulation in both plants. (3) The leaf stomatal density of O. glazioviana was significantly less than that of E. haichowensis. Guard cells in E. haichowensis plants were covered with a thick cuticle layer, the epidermal hair was more numerous and longer, and the number of xylem conduits in the root was small. (4) The transpiration rate and the stomatal conductance of O. glazioviana were both significantly lower than those of E. haichowensis, regardless of whether the plants were treated with Cu. Taken together, these results indicate that the differences in the structural characteristics between these two plant species, particularly in the characteristics related to plant transpiration, are important factors that govern whether plants acquire or exclude Cu. PMID:26207743

  18. Ethylenediurea as a potential tool in evaluating ozone phytotoxicity: a review study on physiological, biochemical and morphological responses of plants.

    PubMed

    Tiwari, Supriya

    2017-06-01

    Present-day climate change scenario has intensified the problem of continuously increasing ground-level ozone (O 3 ), which is responsible for causing deleterious effects on growth and development of plants. Studies involving use of ethylenediurea (EDU), a chemical with antiozonant properties, have given some promising results in evaluating O 3 injury in plants. The use of EDU is especially advantageous in developing countries which face a more severe problem of ground-level O 3 , and technical O 3 -induced yield loss assessment techniques like open-top chambers cannot be used. Recent studies have detected a hormetic response of EDU on plants; i.e. treatment with higher EDU concentrations may or may not show any adverse effect on plants depending upon the experimental conditions. Although the mode of action of EDU is still debated, it is confirmed that EDU remains confined in the apoplastic regions. Certain studies indicate that EDU significantly affects the electron transport chain and has positive impact on the antioxidant defence machinery of the plants. However, the mechanism of protecting the yield of plants without significantly affecting photosynthesis is still questionable. This review discusses in details the probable mode of action of EDU on the basis of available data along with the impact of EDU on physiological, biochemical, growth and yield response of plants under O 3 stress. Data regarding the effect of EDU on plant 'omics' is highly insufficient and can form an important aspect of future EDU research.

  19. Physiological Disorders of Pear Shoot Cultures

    USDA-ARS?s Scientific Manuscript database

    Physiological disorders are some of the most difficult challenges in micropropagation. Little is known of the causes of plant growth disorders which include callus formation, hyperhydricity, shoot tip necrosis, leaf lesions, epinasty, fasciation and hypertrophy. During our study of mineral nutritio...

  20. What limits evaporation from Mediterranean oak woodlands The supply of moisture in the soil, physiological control by plants or the demand by the atmosphere?

    NASA Astrophysics Data System (ADS)

    Baldocchi, Dennis D.; Xu, Liukang

    2007-10-01

    The prediction of evaporation from Mediterranean woodland ecosystems is complicated by an array of climate, soil and plant factors. To provide a mechanistic and process-oriented understanding, we evaluate theoretical and experimental information on water loss of Mediterranean oaks at three scales, the leaf, tree and woodland. We use this knowledge to address: what limits evaporation from Mediterranean oak woodlands - the supply of moisture in the soil, physiological control by plants or the demand by the atmosphere? The Mediterranean climate is highly seasonal with wet winters and hot, dry summers. Consequently, available sunlight is in surplus, causing potential evaporation to far exceed available rainfall on an annual basis. Because the amount of precipitation to support woody plants is marginal, Mediterranean oaks must meet their limited water supply by a variety of means. They do so by: (1) constraining the leaf area index of the landscape by establishing a canopy with widely spaced trees; (2) reducing the size of individual leaves; (3) by adopting physiological characteristics that meter the use of water (e.g. regulating stomatal, leaf nitrogen/photosynthetic capacity and/or hydraulic conductance); (4), by tapping deep supplies of water in the soil; (5) and/or by adopting a deciduous life form, which reduces the time interval that the vegetation transpires.

  1. An update: improvements in imaging perfluorocarbon-mounted plant leaves with implications for studies of plant pathology, physiology, development and cell biology

    PubMed Central

    Littlejohn, George R.; Mansfield, Jessica C.; Christmas, Jacqueline T.; Witterick, Eleanor; Fricker, Mark D.; Grant, Murray R.; Smirnoff, Nicholas; Everson, Richard M.; Moger, Julian; Love, John

    2014-01-01

    Plant leaves are optically complex, which makes them difficult to image by light microscopy. Careful sample preparation is therefore required to enable researchers to maximize the information gained from advances in fluorescent protein labeling, cell dyes and innovations in microscope technologies and techniques. We have previously shown that mounting leaves in the non-toxic, non-fluorescent perfluorocarbon (PFC), perfluorodecalin (PFD) enhances the optical properties of the leaf with minimal impact on physiology. Here, we assess the use of the PFCs, PFD, and perfluoroperhydrophenanthrene (PP11) for in vivo plant leaf imaging using four advanced modes of microscopy: laser scanning confocal microscopy (LSCM), two-photon fluorescence microscopy, second harmonic generation microscopy, and stimulated Raman scattering (SRS) microscopy. For every mode of imaging tested, we observed an improved signal when leaves were mounted in PFD or in PP11, compared to mounting the samples in water. Using an image analysis technique based on autocorrelation to quantitatively assess LSCM image deterioration with depth, we show that PP11 outperformed PFD as a mounting medium by enabling the acquisition of clearer images deeper into the tissue. In addition, we show that SRS microscopy can be used to image PFCs directly in the mesophyll and thereby easily delimit the “negative space” within a leaf, which may have important implications for studies of leaf development. Direct comparison of on and off resonance SRS micrographs show that PFCs do not to form intracellular aggregates in live plants. We conclude that the application of PFCs as mounting media substantially increases advanced microscopy image quality of living mesophyll and leaf vascular bundle cells. PMID:24795734

  2. Multiple bud cultures of 'Barhee' date palm (Phoenix dactylifera) and physiological status of regenerated plants.

    PubMed

    Fki, Lotfi; Bouaziz, Neila; Kriaa, Walid; Benjemaa-Masmoudi, Raja; Gargouri-Bouzid, Radhia; Rival, Alain; Drira, Noureddine

    2011-09-15

    Adventitious bud clusters of date palm 'Barhee' were successfully established from juvenile leaves (<1cm) using reduced amounts of 2,4-D (0.2mgL(-1)) to limit the risk of somaclonal variation. An average of 8.4 adventitious buds per explant were obtained. Histological examination showed that the superficial cell layers of leaves had the highest caulogenic capacity. High sucrose concentration (70gL(-1)) was used for the conversion of initial buds to multiple bud clusters. The promoting effect of temporary immersion on shoot proliferation was found to be significant when compared to cultivation on solid media. Elongation of shoots was also better using a thin film of PGR-free liquid medium instead of a solid medium. Anatomical observations indicated that roots from vitroplants were potentially functional at various developmental stages. However, only 12-month-old vitroplants were found to be physiologically able to control transpirational vapor loss. Additionally, the photochemical activity of photosystem II in these vitroplants was close to that measured in plants that were already acclimatized. As a result, 83.3% of regenerated plants were successfully acclimatized. No phenotypic variation was observed among more than 500 adventitious bud-derived plants. All regenerants survived after field transplantation. We found that the production of adventitious bud clusters in small bioreactors was able to provide an efficient micropropagation system for date palm cv. 'Barhee'. An in vitro hardening step was a prerequisite for the successful transfer of vitroplants in soil. Copyright © 2011 Elsevier GmbH. All rights reserved.

  3. Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy

    PubMed Central

    Cheng, Fang; Cheng, Zhihui

    2015-01-01

    Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment) or negative effects (e.g., autotoxicity, soil sickness, or biological invasion). To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory/inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides, and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1) Description of management practices related to allelopathy and allelochemicals in agriculture. (2) Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3) Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4) Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on plant

  4. Growth and physiological responses of some Capsicum frutescens varieties to copper stress

    NASA Astrophysics Data System (ADS)

    Jadid, Nurul; Maziyah, Rizka; Nurcahyani, Desy Dwi; Mubarokah, Nilna Rizqiyah

    2017-06-01

    Copper (Cu) is an essential micronutrient participating in various physiological processes. However, excessive uptake of this micronutrient could potentially affect plant growth and development as well as plant productivity. In this present work, growth and physiological responses of some Capsicum frustescens varieties to Cu stress were determined. Three C. frutescens varieties used in this work were var. Bara, CF 291, and Genie. In addition, these varieties were treated with different concentration of Cu (0, 30, 70, and 120 ppm). The growth and physiological responses measured in this work included plant height, root length, malondialdehyde (MDA), and chlorophyll. The result showed that all varieties tested relatively displayed plant growth reduction including plant height and root length. Likewise, an increase of MDA level, a major bioindicator for oxidative damage was also found in all varieties following exposure to elevated Cu concentration. Finally, the chlorophyll content was also affected indicated by a decreased amount of chlorophyll, especially in var. CF291. The overall results demonstrated that elevated Cu concentration might decrease C. frutescens productivity where among the three varieties tested, var CF 291 seemed to be the most sensitive varieties to Cu stress.

  5. Identification of Physiological Substrates and Binding Partners of the Plant Mitochondrial Protease FTSH4 by the Trapping Approach.

    PubMed

    Opalińska, Magdalena; Parys, Katarzyna; Jańska, Hanna

    2017-11-18

    Maintenance of functional mitochondria is vital for optimal cell performance and survival. This is accomplished by distinct mechanisms, of which preservation of mitochondrial protein homeostasis fulfills a pivotal role. In plants, inner membrane-embedded i -AAA protease, FTSH4, contributes to the mitochondrial proteome surveillance. Owing to the limited knowledge of FTSH4's in vivo substrates, very little is known about the pathways and mechanisms directly controlled by this protease. Here, we applied substrate trapping coupled with mass spectrometry-based peptide identification in order to extend the list of FTSH4's physiological substrates and interaction partners. Our analyses revealed, among several putative targets of FTSH4, novel (mitochondrial pyruvate carrier 4 (MPC4) and Pam18-2) and known (Tim17-2) substrates of this protease. Furthermore, we demonstrate that FTSH4 degrades oxidatively damaged proteins in mitochondria. Our report provides new insights into the function of FTSH4 in the maintenance of plant mitochondrial proteome.

  6. Identification of Physiological Substrates and Binding Partners of the Plant Mitochondrial Protease FTSH4 by the Trapping Approach

    PubMed Central

    Parys, Katarzyna; Jańska, Hanna

    2017-01-01

    Maintenance of functional mitochondria is vital for optimal cell performance and survival. This is accomplished by distinct mechanisms, of which preservation of mitochondrial protein homeostasis fulfills a pivotal role. In plants, inner membrane-embedded i-AAA protease, FTSH4, contributes to the mitochondrial proteome surveillance. Owing to the limited knowledge of FTSH4’s in vivo substrates, very little is known about the pathways and mechanisms directly controlled by this protease. Here, we applied substrate trapping coupled with mass spectrometry-based peptide identification in order to extend the list of FTSH4’s physiological substrates and interaction partners. Our analyses revealed, among several putative targets of FTSH4, novel (mitochondrial pyruvate carrier 4 (MPC4) and Pam18-2) and known (Tim17-2) substrates of this protease. Furthermore, we demonstrate that FTSH4 degrades oxidatively damaged proteins in mitochondria. Our report provides new insights into the function of FTSH4 in the maintenance of plant mitochondrial proteome. PMID:29156584

  7. Dynamic Plant-Plant-Herbivore Interactions Govern Plant Growth-Defence Integration.

    PubMed

    de Vries, Jorad; Evers, Jochem B; Poelman, Erik H

    2017-04-01

    Plants downregulate their defences against insect herbivores upon impending competition for light. This has long been considered a resource trade-off, but recent advances in plant physiology and ecology suggest this mechanism is more complex. Here we propose that to understand why plants regulate and balance growth and defence, the complex dynamics in plant-plant competition and plant-herbivore interactions needs to be considered. Induced growth-defence responses affect plant competition and herbivore colonisation in space and time, which has consequences for the adaptive value of these responses. Assessing these complex interactions strongly benefits from advanced modelling tools that can model multitrophic interactions in space and time. Such an exercise will allow a critical re-evaluation why and how plants integrate defence and competition for light. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Plants, plant pathogens, and microgravity--a deadly trio.

    PubMed

    Leach, J E; Ryba-White, M; Sun, Q; Wu, C J; Hilaire, E; Gartner, C; Nedukha, O; Kordyum, E; Keck, M; Leung, H; Guikema, J A

    2001-06-01

    Plants grown in spaceflight conditions are more susceptible to colonization by plant pathogens. The underlying causes for this enhanced susceptibility are not known. Possibly the formation of structural barriers and the activation of plant defense response components are impaired in spaceflight conditions. Either condition would result from altered gene expression of the plant. Because of the tools available, past studies focused on a few physiological responses or biochemical pathways. With recent advances in genomics research, new tools, including microarray technologies, are available to examine the global impact of growth in the spacecraft on the plant's gene expression profile. In ground-based studies, we have developed cDNA subtraction libraries of rice that are enriched for genes induced during pathogen infection and the defense response. Arrays of these genes are being used to dissect plant defense response pathways in a model system involving wild-type rice plants and lesion mimic mutants. The lesion mimic mutants are ideal experimental tools because they erratically develop defense response-like lesions in the absence of pathogens. The gene expression profiles from these ground-based studies will provide the molecular basis for understanding the biochemical and physiological impacts of spaceflight on plant growth, development and disease defense responses. This, in turn, will allow the development of strategies to manage plant disease for life in the space environment.

  9. Plants, plant pathogens, and microgravity--a deadly trio

    NASA Technical Reports Server (NTRS)

    Leach, J. E.; Ryba-White, M.; Sun, Q.; Wu, C. J.; Hilaire, E.; Gartner, C.; Nedukha, O.; Kordyum, E.; Keck, M.; Leung, H.; hide

    2001-01-01

    Plants grown in spaceflight conditions are more susceptible to colonization by plant pathogens. The underlying causes for this enhanced susceptibility are not known. Possibly the formation of structural barriers and the activation of plant defense response components are impaired in spaceflight conditions. Either condition would result from altered gene expression of the plant. Because of the tools available, past studies focused on a few physiological responses or biochemical pathways. With recent advances in genomics research, new tools, including microarray technologies, are available to examine the global impact of growth in the spacecraft on the plant's gene expression profile. In ground-based studies, we have developed cDNA subtraction libraries of rice that are enriched for genes induced during pathogen infection and the defense response. Arrays of these genes are being used to dissect plant defense response pathways in a model system involving wild-type rice plants and lesion mimic mutants. The lesion mimic mutants are ideal experimental tools because they erratically develop defense response-like lesions in the absence of pathogens. The gene expression profiles from these ground-based studies will provide the molecular basis for understanding the biochemical and physiological impacts of spaceflight on plant growth, development and disease defense responses. This, in turn, will allow the development of strategies to manage plant disease for life in the space environment.

  10. Gravity Plant Physiology Facility (GPPF) Team in the Spacelab Payload Operations Control Center (SL

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Gravity Plant Physiology Facility (GPPF) team in the SL POCC during the IML-1 mission.

  11. Attributing Increased River Flooding in the Future: Hydrodynamic Downscaling Reveals Role of Plant Physiological Responses to Increased CO2 is First Order

    NASA Astrophysics Data System (ADS)

    Fowler, M. D.; Kooperman, G. J.; Pritchard, M. S.; Randerson, J. T.

    2017-12-01

    River flooding events, which are the most frequently occurring natural disaster today, are expected to become more frequent and intense in response to climate change. However, the magnitude of these changes remains debated, in part due to uncertainty in our understanding of the physical processes that contribute to these events and their representation in global climate models. While the intensification of precipitation has been shown to be a primary driver of increased flooding, plant physiological responses to increasing CO2 may also play an important role. As the atmospheric concentration of CO2 increases, plants may respond by reducing the width of their stomata (i.e. stomatal conductance), which can decrease water lost through transpiration and in turn maintain higher soil moisture levels. On long timescales, reduced transpiration has been shown to increase average runoff, but on short timescales elevated soil moisture can also increase instantaneous runoff by limiting the rate at which water is able to infiltrate the soil surface. Here, through hydrodynamic downscaling, we isolate the portion of flooding amplification that can be attributed to the physiological response to increasing CO2. This builds on a new analysis that has revealed such physiological effects can rival changes caused by the atmospheric response alone in the tails of the runoff distribution. We use a set of four simulations run with the Community Earth System Model: one pre-industrial control simulation and three others that are forced with four times CO2. In the three climate change simulations, the increased CO2 is applied only to the land-surface, only to the atmosphere, and to both, respectively. Thirty years of daily runoff from these experiments are used as input for the hydrodynamic CaMa-Flood model. Our results reveal that both the radiative and physiological responses to climate change contribute significantly to future changes in flood return period and inundated area. This

  12. Host Plant Physiology and Mycorrhizal Functioning Shift across a Glacial through Future [CO2] Gradient1[OPEN

    PubMed Central

    Mullinix, George W.R.; Ward, Joy K.

    2016-01-01

    Rising atmospheric carbon dioxide concentration ([CO2]) may modulate the functioning of mycorrhizal associations by altering the relative degree of nutrient and carbohydrate limitations in plants. To test this, we grew Taraxacum ceratophorum and Taraxacum officinale (native and exotic dandelions) with and without mycorrhizal fungi across a broad [CO2] gradient (180–1,000 µL L−1). Differential plant growth rates and vegetative plasticity were hypothesized to drive species-specific responses to [CO2] and arbuscular mycorrhizal fungi. To evaluate [CO2] effects on mycorrhizal functioning, we calculated response ratios based on the relative biomass of mycorrhizal (MBio) and nonmycorrhizal (NMBio) plants (RBio = [MBio − NMBio]/NMBio). We then assessed linkages between RBio and host physiology, fungal growth, and biomass allocation using structural equation modeling. For T. officinale, RBio increased with rising [CO2], shifting from negative to positive values at 700 µL L−1. [CO2] and mycorrhizal effects on photosynthesis and leaf growth rates drove shifts in RBio in this species. For T. ceratophorum, RBio increased from 180 to 390 µL L−1 and further increases in [CO2] caused RBio to shift from positive to negative values. [CO2] and fungal effects on plant growth and carbon sink strength were correlated with shifts in RBio in this species. Overall, we show that rising [CO2] significantly altered the functioning of mycorrhizal associations. These symbioses became more beneficial with rising [CO2], but nonlinear effects may limit plant responses to mycorrhizal fungi under future [CO2]. The magnitude and mechanisms driving mycorrhizal-CO2 responses reflected species-specific differences in growth rate and vegetative plasticity, indicating that these traits may provide a framework for predicting mycorrhizal responses to global change. PMID:27573369

  13. Plant Biology Science Projects.

    ERIC Educational Resources Information Center

    Hershey, David R.

    This book contains science projects about seed plants that deal with plant physiology, plant ecology, and plant agriculture. Each of the projects includes a step-by-step experiment followed by suggestions for further investigations. Chapters include: (1) "Bean Seed Imbibition"; (2) "Germination Percentages of Different Types of Seeds"; (3)…

  14. Plant growth enhancement and associated physiological responses are coregulated by ethylene and gibberellin in response to harpin protein Hpa1.

    PubMed

    Li, Xiaojie; Han, Bing; Xu, Manyu; Han, Liping; Zhao, Yanying; Liu, Zhilan; Dong, Hansong; Zhang, Chunling

    2014-04-01

    The harpin protein Hpa1 produced by the bacterial blight pathogen of rice induces several growth-promoting responses in plants, activating the ethylene signaling pathway, increasing photosynthesis rates and EXPANSIN (EXP) gene expression levels, and thereby enhancing the vegetative growth. This study was attempted to analyze any mechanistic connections among the above and the role of gibberellin in these responses. Hpa1-induced growth enhancement was evaluated in Arabidopsis, tomato, and rice. And growth-promoting responses were determined mainly as an increase of chlorophyll a/b ratio, which indicates a potential elevation of photosynthesis rates, and enhancements of photosynthesis and EXP expression in the three plant species. In Arabidopsis, Hpa1-induced growth-promoting responses were partially compromised by a defect in ethylene perception or gibberellin biosynthesis. In tomato and rice, compromises of Hpa1-induced growth-promoting responses were caused by a pharmacological treatment with an ethylene perception inhibitor or a gibberellin biosynthesis inhibitor. In the three plant species, moreover, Hpa1-induced growth-promoting responses were significantly impaired, but not totally eliminated, by abolishing ethylene perception or gibberellin synthesis. However, simultaneous nullifications in both ethylene perception and gibberellin biosynthesis almost canceled the full effects of Hpa1 on plant growth, photosynthesis, and EXP2 expression. Theses results suggest that ethylene and gibberellin coregulate Hpa1-induced plant growth enhancement and associated physiological and molecular responses.

  15. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types

    PubMed Central

    Niinemets, Ülo; Keenan, Trevor F.; Hallik, Lea

    2018-01-01

    Summary Extensive within-canopy light gradients importantly affect photosynthetic productivity of leaves in different canopy positions and lead to light-dependent increases in foliage photosynthetic capacity per area (AA). However, the controls on AA variations by changes in underlying traits are poorly known. We constructed an unprecedented worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types, and analyzed within-canopy variations in 12 key foliage structural, chemical and physiological traits by quantitatively separating the contributions of different traits to photosynthetic acclimation. Although the light-dependent increase in AA is surprisingly similar in different plant functional types, they fundamentally differ in the share of the controls on AA by constituent traits. Species with high rates of canopy development and leaf turnover exhibiting highly dynamic light environments, actively change AA by nitrogen reallocation among and partitioning within leaves. In contrast, species with slow leaf turnover exhibit a passive AA acclimation response primarily determined by acclimation of leaf structure to growth light. This review emphasizes that different combinations of traits are responsible for within-canopy photosynthetic acclimation in different plant functional types and solves an old enigma of the role of mass- vs. area-based traits in vegetation acclimation. PMID:25318596

  16. Physiological mechanisms drive differing foliar calcium content in ferns and angiosperms.

    PubMed

    Funk, Jennifer L; Amatangelo, Kathryn L

    2013-09-01

    Recent evidence points to ferns containing significantly lower contents of foliar calcium and other cations than angiosperms. This is especially true of more ancient 'non-polypod' fern lineages, which predate the diversification of angiosperms. Calcium is an important plant nutrient, the lack of which can potentially slow plant growth and litter decomposition, and alter soil invertebrate communities. The physiological mechanisms limiting foliar calcium (Ca) content in ferns are unknown. While there is a lot we do not know about Ca uptake and transport in plants, three physiological processes are likely to be important. We measured transpiration rate, cation exchange capacity, and leaching loss to determine which process most strongly regulates foliar Ca content in a range of fern and co-occurring understory angiosperm species from a montane Hawaiian rainforest. We found higher instantaneous and lifetime (corrected for leaf lifespan) transpiration rates in angiosperms relative to ferns. Ferns preferentially incorporated Ca into leaves relative to strontium, which suggests that root or stem cation exchange capacity differs between ferns and angiosperms, potentially affecting calcium transport in plants. There were no differences in foliar Ca leaching loss between groups. Among the physiological mechanisms measured, foliar Ca was most strongly correlated with leaf-level transpiration rate and leaf lifespan. This suggests that inter-specific differences in a leaf's lifetime transpiration may play a significant role in determining plant nutrition.

  17. Plant anesthesia supports similarities between animals and plants: Claude Bernard's forgotten studies.

    PubMed

    Grémiaux, Alexandre; Yokawa, Ken; Mancuso, Stefano; Baluška, František

    2014-01-01

    The French scientist Claude Bernard (1813-1878) is famous for his discoveries in physiology and for introducing rigorous experimental methods to medicine and biology. One of his major technical innovations was the use of chemicals in order to disrupt normal physiological function to test hypotheses. But less known is his conviction that the physiological functions of all living organisms rely on the same underlying principles. He hypothesized that similarly to animals, plants are also able to sense changes in their environment. He called this ability "sensitivity." In order to test his ideas, he performed anesthesia on plants and the results of these experiments were presented in 1878 in "Leçonssur les phénomènes de la vie communs aux animaux et aux végétaux." The phenomena described by Claude Bernard more than a century ago are not fully understood yet. Here, we present a short overview of anesthetic effects in animals and we discuss how anesthesia affects plant movements, seed germination, and photosynthesis. Surprisingly, these phenomena may have ecological relevance, since stressed plants generate anesthetics such as ethylene and ether. Finally, we discuss Claude Bernard's interpretations and conclusions in the perspective of modern plant sciences.

  18. Journal of Gravitational Physiology. Volume 10, No. 1

    NASA Technical Reports Server (NTRS)

    Fuller, Charles (Editor); Cogoli, Augusto (Editor); Hargens, Alan R. (Editor); Smith, Arthur H. (Editor); Alberts, Jeffrey (Editor); Baldwin, Kenneth (Editor); Bjurstedt, Hilding (Editor); Blomqvist, C. Gunnar (Editor); Burton, Russell (Editor); Cardus, David (Editor)

    2003-01-01

    The topics addressed in this issue include: 1) Biosatellites: Past, Present, and Future; 2) Plant Physiology; 3) Neural/Sensory; 4) Musculoskeletal; 5) Endocrinology/Immunology; 6) Development; 7) Cardiovascular; 8) Countermeasures/Applied; 9) Technical.

  19. Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress

    PubMed Central

    Wu, Jiawen; Guo, Jia; Hu, Yanhong; Gong, Haijun

    2015-01-01

    The alleviative effects of silicon (Si) on cadmium (Cd) toxicity were investigated in cucumber (Cucumis sativus L.) and tomato (Solanum lycopersicum L.) grown hydroponically. The growth of both plant species was inhibited by 100 μM Cd, but Si application counteracted the adverse effects on growth. Si application significantly decreased the Cd concentrations in shoots of both species and roots of cucumber. The root-to-shoot transport of Cd was depressed by added Si in tomato whereas it was increased by added Si in cucumber. The total content of organic acids was decreased in tomato leaves but increased in cucumber roots and leaves by Si application under Cd stress. Si application also increased the cell wall polysaccharide levels in the roots of both species under Cd toxicity. Si-mediated changes in levels of organic acids and cell wall polysaccharides might contribute to the differences in Cd transport in the two species. In addition, Si application also mitigated Cd-induced oxidative damage in both species. The results indicate that there were different mechanisms for Si-mediated decrease in shoot Cd accumulation: in tomato, Si supply decreased root-to-shoot Cd transport; whereas in cucumber, Si supply reduced the Cd uptake by roots. It is suggested that Si-mediated Cd tolerance is associated with different physiological responses in tomato and cucumber plants. PMID:26136764

  20. Physiological and psychological effects of gardening activity in older adults.

    PubMed

    Hassan, Ahmad; Qibing, Chen; Tao, Jiang

    2018-04-06

    Gardening has long been one of most enjoyable pastimes among older adults. Whether gardening activities contribute to the well-being of older adults is a major question. Therefore, the aim of the present study was to clarify the psychophysiological relaxing effects of gardening activities on older adults living in modern institutional care. The study participants were 40 older women aged 79.5 ± 8.09 years (mean ± SD). A cross-over study design was used to investigate the physiological and psychological responses to environments with and without plants. Physiological evaluation was carried out using blood pressure and electroencephalography, and psychological evaluation was carried out using the State-Trait Anxiety Inventory and Semantic Differential method. Blood pressure was significantly lower, and changes in brainwaves were observed. Psychological responses showed that participants were more "comfortable and relaxed" after the plant task than after the control task. In addition, total anxiety levels were significantly lower after carrying out the plant task than after the control task. Our research suggests that gardening activities might enhance physiological and psychological relaxation in older adults. Geriatr Gerontol Int 2018; ••: ••-••. © 2018 Japan Geriatrics Society.

  1. Diagnosing plant problems

    Treesearch

    Cheryl A. Smith

    2008-01-01

    Diagnosing Christmas tree problems can be a challenge, requiring a basic knowledge of plant culture and physiology, the effect of environmental influences on plant health, and the ability to identify the possible causes of plant problems. Developing a solution or remedy to the problem depends on a proper diagnosis, a process that requires recognition of a problem and...

  2. Leaf proteome characterization in the context of physiological and morphological changes in response to copper stress in sorghum

    USDA-ARS?s Scientific Manuscript database

    Copper (Cu) is an essential micronutrient required for the growth and development of plants. However, at elevated concentrations in soil, copper is very toxic to plant cells due to its inhibitory effects against many physiological and biochemical processes. In spite of its potential physiological an...

  3. Plant Phenotyping using Probabilistic Topic Models: Uncovering the Hyperspectral Language of Plants

    PubMed Central

    Wahabzada, Mirwaes; Mahlein, Anne-Katrin; Bauckhage, Christian; Steiner, Ulrike; Oerke, Erich-Christian; Kersting, Kristian

    2016-01-01

    Modern phenotyping and plant disease detection methods, based on optical sensors and information technology, provide promising approaches to plant research and precision farming. In particular, hyperspectral imaging have been found to reveal physiological and structural characteristics in plants and to allow for tracking physiological dynamics due to environmental effects. In this work, we present an approach to plant phenotyping that integrates non-invasive sensors, computer vision, as well as data mining techniques and allows for monitoring how plants respond to stress. To uncover latent hyperspectral characteristics of diseased plants reliably and in an easy-to-understand way, we “wordify” the hyperspectral images, i.e., we turn the images into a corpus of text documents. Then, we apply probabilistic topic models, a well-established natural language processing technique that identifies content and topics of documents. Based on recent regularized topic models, we demonstrate that one can track automatically the development of three foliar diseases of barley. We also present a visualization of the topics that provides plant scientists an intuitive tool for hyperspectral imaging. In short, our analysis and visualization of characteristic topics found during symptom development and disease progress reveal the hyperspectral language of plant diseases. PMID:26957018

  4. Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants.

    PubMed

    Sosan, Arifa; Svistunenko, Dimitri; Straltsova, Darya; Tsiurkina, Katsiaryna; Smolich, Igor; Lawson, Tracy; Subramaniam, Sunitha; Golovko, Vladimir; Anderson, David; Sokolik, Anatoliy; Colbeck, Ian; Demidchik, Vadim

    2016-01-01

    Silver nanoparticles (Ag NPs) are the world's most important nanomaterial and nanotoxicant. The aim of this study was to determine the early stages of interactions between Ag NPs and plant cells, and to investigate their physiological roles. We have shown that the addition of Ag NPs to cultivation medium, at levels above 300 mg L(-1) , inhibited Arabidopsis thaliana root elongation and leaf expansion. This also resulted in decreased photosynthetic efficiency and the extreme accumulation of Ag in tissues. Acute application of Ag NPs induced a transient elevation of [Ca(2+) ]cyt and the accumulation of reactive oxygen species (ROS; partially generated by NADPH oxidase). Whole-cell patch-clamp measurements on root cell protoplasts demonstrated that Ag NPs slightly inhibited plasma membrane K(+) efflux and Ca(2+) influx currents, or caused membrane breakdown; however, in excised outside-out patches, Ag NPs activated Gd(3+) -sensitive Ca(2+) influx channels with unitary conductance of approximately 56 pS. Bulk particles did not modify the plasma membrane currents. Tests with electron paramagnetic resonance spectroscopy showed that Ag NPs were not able to catalyse hydroxyl radical generation, but that they directly oxidized the major plant antioxidant, l-ascorbic acid. Overall, the data presented shed light on mechanisms of the impact of nanosilver on plant cells, and show that these include the induction of classical stress signalling reactions (mediated by [Ca(2+) ]cyt and ROS) and a specific effect on the plasma membrane conductance and the reduced ascorbate. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  5. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types.

    PubMed

    Niinemets, Ülo; Keenan, Trevor F; Hallik, Lea

    2015-02-01

    Extensive within-canopy light gradients importantly affect the photosynthetic productivity of leaves in different canopy positions and lead to light-dependent increases in foliage photosynthetic capacity per area (AA). However, the controls on AA variations by changes in underlying traits are poorly known. We constructed an unprecedented worldwide database including 831 within-canopy gradients with standardized light estimates for 304 species belonging to major vascular plant functional types, and analyzed within-canopy variations in 12 key foliage structural, chemical and physiological traits by quantitative separation of the contributions of different traits to photosynthetic acclimation. Although the light-dependent increase in AA is surprisingly similar in different plant functional types, they differ fundamentally in the share of the controls on AA by constituent traits. Species with high rates of canopy development and leaf turnover, exhibiting highly dynamic light environments, actively change AA by nitrogen reallocation among and partitioning within leaves. By contrast, species with slow leaf turnover exhibit a passive AA acclimation response, primarily determined by the acclimation of leaf structure to growth light. This review emphasizes that different combinations of traits are responsible for within-canopy photosynthetic acclimation in different plant functional types, and solves an old enigma of the role of mass- vs area-based traits in vegetation acclimation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  6. Effect of Seed Position on Parental Plant on Proportion of Seeds Produced with Nondeep and Intermediate Physiological Dormancy

    PubMed Central

    Lu, Juan J.; Tan, Dun Y.; Baskin, Carol C.; Baskin, Jerry M.

    2017-01-01

    The position in which seeds develop on the parental plant can have an effect on dormancy-break and germination. We tested the hypothesis that the proportion of seeds with intermediate physiological dormancy (PD) produced in the proximal position on a raceme of Isatis violascens plants is higher than that produced in the distal position, and further that this difference is related to temperature during seed development. Plants were watered at 3-day intervals, and silicles and seeds from the proximal (early) and distal (late) positions of racemes on the same plants were collected separately and tested for germination. After 0 and 6 months dry storage at room temperature (afterripening), silicles and seeds were cold stratified for 0–16 weeks and tested for germination. Mean daily maximum and minimum temperatures during development/maturation of the two groups of seeds did not differ. A higher proportion of seeds with the intermediate level than with the nondeep level of PD was produced by silicles in the proximal position than by those in the distal position, while the proportion of seeds with nondeep PD was higher in the distal than in the proximal position of the raceme. The differences were not due only to seed mass. Since temperature and soil moisture conditions were the same during development of the seeds in the raceme, differences in proportion of seeds with intermediate and nondeep PD are attributed to position on parental plant. The ecological consequence of this phenomenon is that it ensures diversity in dormancy-breaking and germination characteristics within a seed cohort, a probable bet-hedging strategy. This is the first demonstration of position effects on level of PD in the offspring. PMID:28232842

  7. Effects of microcystin-LR on the tissue growth and physiological responses of the aquatic plant Iris pseudacorus L.

    PubMed

    Wang, Naiyu; Wang, Can

    2018-04-27

    The release of cyanobacterial toxins during algal bloom has adverse effects on aquatic plants and animals. This study aimed to understand the toxic effects and mechanism of microcystin-LR (MC-LR) on the seedling growth and physiological responses of Iris pseudacorus L. (calamus). After a one-month exposure experiment, the growth and development of the calamus leaves were significantly inhibited, and this inhibitory effect was verified to be concentration dependent. Furthermore, the cell membrane system was damaged, and the photosynthesis was also adversely affected by MC-LR. The relative conductivity of the leaves increased from 10.96% to 97.51%, and the total chlorophyll content decreased from 0.89 mg/g to 0.09 mg/g. Notably, the behavior of the roots in the presence of MC-LR was different from that of the leaves. The seedlings needed to absorb more nutrients to maintain the normal growth at low-toxin concentrations, but the high concentration of (over 250 μg/L) MC-LR exceeded the tolerance of plants and inhibited the growth of roots. In addition, MC-LR led to an excessive accumulation of H 2 O 2 , and the seedlings enhanced the activities of catalase, peroxidase, and superoxide dismutase to resist oxidative stress. The presence of MC-LR also affected the capacity of the plants to absorb nitrogen and phosphorus. The removal efficiency of NO 3 - -N, the main source of nitrogen, was 63.53% in the presence of 100 μg/L MC-LR. As a result, the pH increased, and the growth of plants was indirectly inhibited. Therefore, the presence of MC-LR could affect the purification efficiency of calamus in eutrophic water. This study provides theoretical support for the selection of plants in the eutrophic water. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Not all droughts are created equal: translating meteorological drought into woody plant mortality.

    PubMed

    Anderegg, Leander D L; Anderegg, William R L; Berry, Joseph A

    2013-07-01

    Widespread drought-induced mortality of woody plants has recently occurred worldwide, is likely to be exacerbated by future climate change and holds large ecological consequences. Yet despite decades of research on plant-water relations, the pathways through which drought causes plant mortality are poorly understood. Recent work on the physiology of tree mortality has begun to reveal how physiological dysfunction induced by water stress leads to plant death; however, we are still far from being able to predict tree mortality using easily observed or modeled meteorological variables. In this review, we contend that, in order to fully understand when and where plants will exceed mortality thresholds when drought occurs, we must understand the entire path by which precipitation deficit is translated into physiological dysfunction and lasting physiological damage. In temperate ecosystems with seasonal climate patterns, precipitation characteristics such as seasonality, timing, form (snow versus rain) and intensity interact with edaphic characteristics to determine when and how much water is actually available to plants as soil moisture. Plant and community characteristics then mediate how quickly water is used and seasonally varying plant physiology determines whether the resulting soil moisture deficit is physiologically damaging. Recent research suggests that drought seasonality and timing matter for how an ecosystem experiences drought. But, mortality studies that bridge the gaps between climatology, hydrology, plant ecology and plant physiology are rare. Drawing upon a broad hydrological and ecological perspective, we highlight key and underappreciated processes that may mediate drought-induced tree mortality and propose steps to better include these components in current research.

  9. Changes in physiological attributes of ponderosa pine from seedling to mature tree

    Treesearch

    Nancy E. Grulke; William A. Retzlaff

    2001-01-01

    Plant physiological models are generally parameterized from many different sources of data, including chamber experiments and plantations, from seedlings to mature trees. We obtained a comprehensive data set for a natural stand of ponderosa pine (Pinus ponderosa Laws.) and used these data to parameterize the physiologically based model, TREGRO....

  10. Application of real-time PCR to postharvest physiology – DNA isolation

    USDA-ARS?s Scientific Manuscript database

    Real-time PCR technology has been widely used in the postharvest plant physiology research. One of the difficulties to isolate DNA from plant martial and pathogen cells is the presence of rigid polysaccharide cell walls and capsules, which physically protect DNA from cell lysis. Many materials requi...

  11. Quo vadis plant hormone analysis?

    PubMed

    Tarkowská, Danuše; Novák, Ondřej; Floková, Kristýna; Tarkowski, Petr; Turečková, Veronika; Grúz, Jiří; Rolčík, Jakub; Strnad, Miroslav

    2014-07-01

    Plant hormones act as chemical messengers in the regulation of myriads of physiological processes that occur in plants. To date, nine groups of plant hormones have been identified and more will probably be discovered. Furthermore, members of each group may participate in the regulation of physiological responses in planta both alone and in concert with members of either the same group or other groups. The ideal way to study biochemical processes involving these signalling molecules is 'hormone profiling', i.e. quantification of not only the hormones themselves, but also their biosynthetic precursors and metabolites in plant tissues. However, this is highly challenging since trace amounts of all of these substances are present in highly complex plant matrices. Here, we review advances, current trends and future perspectives in the analysis of all currently known plant hormones and the associated problems of extracting them from plant tissues and separating them from the numerous potentially interfering compounds.

  12. Measuring sap flow in plants

    USDA-ARS?s Scientific Manuscript database

    Sap flow measurements provide a powerful tool for quantifying plant water use and monitoring qualitative physiological responses of plants to environmental conditions. As such, sap flow methods are widely employed to invesitgate the agronomic, ecological and hydrological outcomes of plant growth. T...

  13. Competing Influences of Anthropogenic Warming, ENSO, and Plant Physiology on Future Terrestrial Aridity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonfils, Céline; Anderson, Gemma; Santer, Benjamin D.

    The 2011–16 California drought illustrates that drought-prone areas do not always experience relief once a favorable phase of El Niño–Southern Oscillation (ENSO) returns. In the twenty-first century, such an expectation is unrealistic in regions where global warming induces an increase in terrestrial aridity larger than the changes in aridity driven by ENSO variability. This premise is also flawed in areas where precipitation supply cannot offset the global warming–induced increase in evaporative demand. Here, atmosphere-only experiments are analyzed to identify land regions where aridity is currently sensitive to ENSO and where projected future changes in mean aridity exceed the range causedmore » by ENSO variability. Insights into the drivers of these changes in aridity are obtained using simulations with the incremental addition of three different factors to the current climate: ocean warming, vegetation response to elevated CO 2 levels, and intensified CO 2 radiative forcing. The effect of ocean warming overwhelms the range of ENSO-driven temperature variability worldwide, increasing potential evapotranspiration (PET) in most ENSO-sensitive regions. Additionally, about 39% of the regions currently sensitive to ENSO will likely receive less precipitation in the future, independent of the ENSO phase. Consequently aridity increases in 67%–72% of the ENSO-sensitive area. When both radiative and physiological effects are considered, the area affected by arid conditions rises to 75%–79% when using PET-derived measures of aridity, but declines to 41% when an aridity indicator for total soil moisture is employed. This reduction mainly occurs because plant stomatal resistance increases under enhanced CO 2 concentrations, resulting in improved plant water-use efficiency, and hence reduced evapotranspiration and soil desiccation. Imposing CO 2-invariant stomatal resistance may overestimate future drying in PET-derived indices.« less

  14. Competing Influences of Anthropogenic Warming, ENSO, and Plant Physiology on Future Terrestrial Aridity

    DOE PAGES

    Bonfils, Céline; Anderson, Gemma; Santer, Benjamin D.; ...

    2017-07-27

    The 2011–16 California drought illustrates that drought-prone areas do not always experience relief once a favorable phase of El Niño–Southern Oscillation (ENSO) returns. In the twenty-first century, such an expectation is unrealistic in regions where global warming induces an increase in terrestrial aridity larger than the changes in aridity driven by ENSO variability. This premise is also flawed in areas where precipitation supply cannot offset the global warming–induced increase in evaporative demand. Here, atmosphere-only experiments are analyzed to identify land regions where aridity is currently sensitive to ENSO and where projected future changes in mean aridity exceed the range causedmore » by ENSO variability. Insights into the drivers of these changes in aridity are obtained using simulations with the incremental addition of three different factors to the current climate: ocean warming, vegetation response to elevated CO 2 levels, and intensified CO 2 radiative forcing. The effect of ocean warming overwhelms the range of ENSO-driven temperature variability worldwide, increasing potential evapotranspiration (PET) in most ENSO-sensitive regions. Additionally, about 39% of the regions currently sensitive to ENSO will likely receive less precipitation in the future, independent of the ENSO phase. Consequently aridity increases in 67%–72% of the ENSO-sensitive area. When both radiative and physiological effects are considered, the area affected by arid conditions rises to 75%–79% when using PET-derived measures of aridity, but declines to 41% when an aridity indicator for total soil moisture is employed. This reduction mainly occurs because plant stomatal resistance increases under enhanced CO 2 concentrations, resulting in improved plant water-use efficiency, and hence reduced evapotranspiration and soil desiccation. Imposing CO 2-invariant stomatal resistance may overestimate future drying in PET-derived indices.« less

  15. Physiological acclimation strategies of riparian plants to environment change in the delta of the Tarim River, China

    NASA Astrophysics Data System (ADS)

    Ruan, Xiao; Wang, Qiang; Pan, Cun-De; Chen, Ya-Ning; Jiang, Hao

    2009-06-01

    The occurrence and development of riparian forests, which were mainly dominated by mesophytes species related closely with surface water. Since there was no water discharged to the lower reaches of Tarim River in the past three decade years, the riparian forests degrade severely. The groundwater table, the saline content of the groundwater, as well as the content of free proline, soluble sugars, plant endogenous hormones (abscisic acid (ABA), and cytokinins (CTK)) of the leaves and relative rates of sap flow of the Populus euphratica Oliv. (arbor species), Tamarix ramosissima Ldb. (bush species), and Apocynum venetum L. (herb species) were monitored and analyzed at the lower reaches of the Tarim River in the study area where five positions on a transect were fixed at 100 m intervals along a sampling direction from riverbank to the sand dunes before and after water release. The physiological responses and acclimation strategies of three species to variations in water and salinity stress were discussed. It was found that A. venetum population recovered to groundwater table ranging from -1.73 to -3.56 m, and when exposed to saline content of the groundwater ranging from 36.59 to 93.48 m mol/L; P. euphratica appeared to be more sensitive to the elevation of groundwater table than the A. venetum and T. ramosissima at groundwater table ranging from -5.08 to -5.80 m, and when exposed to saline content of the groundwater ranging from 42.17 to 49.55 m mol/L. T. ramosissima tended to be the best candidate species for reclamation in this hyper-arid area because it responded to groundwater table ranging from -1.73 to -7.05 m, and when exposed to saline content of the groundwater ranging from 36.59 to 93.48 m mol/L. These results explained the distribution patterns of desert vegetation in the lower reaches of the Tarim River. Understanding the relationships among ecological factors variables, physiological response and acclimation strategies of plant individuals could provide

  16. Plant Systems Biology (editorial)

    USDA-ARS?s Scientific Manuscript database

    In June 2003, Plant Physiology published an Arabidopsis special issue devoted to plant systems biology. The intention of Natasha Raikhel and Gloria Coruzzi, the two editors of this first-of-its-kind issue, was ‘‘to help nucleate this new effort within the plant community’’ as they considered that ‘‘...

  17. Physiological and molecular responses of Lactuca sativa to colonization by Salmonella enterica serovar Dublin.

    PubMed

    Klerks, M M; van Gent-Pelzer, M; Franz, E; Zijlstra, C; van Bruggen, A H C

    2007-08-01

    This paper describes the physiological and molecular interactions between the human-pathogenic organism Salmonella enterica serovar Dublin and the commercially available mini Roman lettuce cv. Tamburo. The association of S. enterica serovar Dublin with lettuce plants was first determined, which indicated the presence of significant populations outside and inside the plants. The latter was evidenced from significant residual concentrations after highly efficient surface disinfection (99.81%) and fluorescence microscopy of S. enterica serovar Dublin in cross sections of lettuce at the root-shoot transition region. The plant biomass was reduced significantly compared to that of noncolonized plants upon colonization with S. enterica serovar Dublin. In addition to the physiological response, transcriptome analysis by cDNA amplified fragment length polymorphism analysis also provided clear differential gene expression profiles between noncolonized and colonized lettuce plants. From these, generally and differentially expressed genes were selected and identified by sequence analysis, followed by reverse transcription-PCR displaying the specific gene expression profiles in time. Functional grouping of the expressed genes indicated a correlation between colonization of the plants and an increase in expressed pathogenicity-related genes. This study indicates that lettuce plants respond to the presence of S. enterica serovar Dublin at physiological and molecular levels, as shown by the reduction in growth and the concurrent expression of pathogenicity-related genes. In addition, it was confirmed that Salmonella spp. can colonize the interior of lettuce plants, thus potentially imposing a human health risk when processed and consumed.

  18. Physiological Disorders in Closed, Controlled Environment Crops

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Morrow, Robert C.

    2010-01-01

    This slide presentation reviews some of the physiological disorders that affect crops grown in closed controlled environments. A physiological disorder is understood to be a problem resulting from the influence of environmental and horticultural factors on plan development other than a problem caused by a pathogen or some other abiotic cause. The topics that are addressed are: (1) Calcium-Related Disorders (2) Oedema (Intumescence) (3) Long-Photoperiod Injury (4) Light Spectral Quality Effects (5) Super-Elevated CO2 Injuries (6) Ethylene (7) Other Disorders (8) Considerations for Closed Space Environments. Views of plant with the disorders are shown.

  19. Steroid plant hormones: effects outside plant kingdom.

    PubMed

    Zhabinskii, Vladimir N; Khripach, Natalia B; Khripach, Vladimir A

    2015-05-01

    Brassinosteroids (BS) are the first group of steroid-hormonal compounds isolated from and acting in plants. Among numerous physiological effects of BS growth stimulation and adaptogenic activities are especially remarkable. In this review, we provide evidence that BS possess similar types of activity also beyond plant kingdom at concentrations comparable with those for plants. This finding allows looking at steroids from a new point of view: how common are the mechanisms of steroid bioregulation in different types of organisms from protozoa to higher animals. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Stress Memory and the Inevitable Effects of Drought: A Physiological Perspective

    PubMed Central

    Fleta-Soriano, Eva; Munné-Bosch, Sergi

    2016-01-01

    Plants grow and develop by adjusting their physiology to changes in their environment. Changes in the abiotic environment occur over years, seasons, and days, but also over minutes and even seconds. In this ever-changing environment, plants may adjust their structure and function rapidly to optimize growth and reproduction. Plant responses to reiterated drought (i.e., repeated cycles of drought) differ from those to single incidences of drought; in fact, in nature, plants are usually exposed to repeated cycles of drought that differ in duration and intensity. Nowadays, there is increased interest in better understanding mechanisms of plant response to reiterated drought due, at least in part, to the discovery of epigenomic changes that trigger drought stress memory in plants. Beyond epigenomic changes, there are, however, other aspects that should be considered in the study of plant responses to reiterated drought: from changes in other “omics” approaches (transcriptomics, proteomics, and metabolomics), to changes in plant structure; all of which may help us to better understand plant stress memory and its underlying mechanisms. Here, we present an example in which reiterated drought affects the pigment composition of leaves in the ornamental plant Silene dioica and discuss the importance of structural changes (in this case in the photosynthetic apparatus) for the plant response to reiterated drought; they represent a stress imprint that can affect plant response to subsequent stress episodes. Emphasis is placed on the importance of considering structural changes, in addition to physiological adjustments at the “omics” level, to understand stress memory in plants better. PMID:26913046

  1. Advanced Plant Habitat (APH)

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Reed, David W.

    2016-01-01

    The Advanced Plant Habitat (APH) hardware will be a large growth volume plant habitat, capable of hosting multigenerational studies, in which environmental variables (e.g., temperature, relative humidity, carbon dioxide level light intensity and spectral quality) can be tracked and controlled in support of whole plant physiological testing and Bio-regenerative Life Support System investigations.

  2. Tomato ethylene sensitivity determines interaction with plant growth-promoting bacteria.

    PubMed

    Ibort, Pablo; Molina, Sonia; Núñez, Rafael; Zamarreño, Ángel María; García-Mina, José María; Ruiz-Lozano, Juan Manuel; Orozco-Mosqueda, Maria Del Carmen; Glick, Bernard R; Aroca, Ricardo

    2017-07-01

    Plant growth-promoting bacteria (PGPB) are soil micro-organisms able to interact with plants and stimulate their growth, positively affecting plant physiology and development. Although ethylene plays a key role in plant growth, little is known about the involvement of ethylene sensitivity in bacterial inoculation effects on plant physiology. Thus, the present study was pursued to establish whether ethylene perception is critical for plant-bacteria interaction and growth induction by two different PGPB strains, and to assess the physiological effects of these strains in juvenile and mature tomato ( Solanum lycopersicum ) plants. An experiment was performed with the ethylene-insensitive tomato never ripe and its isogenic wild-type line in which these two strains were inoculated with either Bacillus megaterium or Enterobacter sp. C7. Plants were grown until juvenile and mature stages, when biomass, stomatal conductance, photosynthesis as well as nutritional, hormonal and metabolic statuses were analysed. Bacillus megaterium promoted growth only in mature wild type plants. However, Enterobacter C7 PGPB activity affected both wild-type and never ripe plants. Furthermore, PGPB inoculation affected physiological parameters and root metabolite levels in juvenile plants; meanwhile plant nutrition was highly dependent on ethylene sensitivity and was altered at the mature stage. Bacillus megaterium inoculation improved carbon assimilation in wild-type plants. However, insensitivity to ethylene compromised B. megaterium PGPB activity, affecting photosynthetic efficiency, plant nutrition and the root sugar content. Nevertheless, Enterobacter C7 inoculation modified the root amino acid content in addition to stomatal conductance and plant nutrition. Insensitivity to ethylene severely impaired B. megaterium interaction with tomato plants, resulting in physiological modifications and loss of PGPB activity. In contrast, Enterobacter C7 inoculation stimulated growth independently of

  3. Potential of the Sentinel-2 Red Edge Spectral Bands for Estimation of Eco-Physiological Plant Parameters

    NASA Astrophysics Data System (ADS)

    Malenovsky, Zbynek; Homolova, Lucie; Janoutova, Ruzena; Landier, Lucas; Gastellu-Etchegorry, Jean-Philippe; Berthelot, Beatrice; Huck, Alexis

    2016-08-01

    In this study we investigated importance of the space- borne instrument Sentinel-2 red edge spectral bands and reconstructed red edge position (REP) for retrieval of the three eco-physiological plant parameters, leaf and canopy chlorophyll content and leaf area index (LAI), in case of maize agricultural fields and beech and spruce forest stands. Sentinel-2 spectral bands and REP of the investigated vegetation canopies were simulated in the Discrete Anisotropic Radiative Transfer (DART) model. Their potential for estimation of the plant parameters was assessed through training support vector regressions (SVR) and examining their P-vector matrices indicating significance of each input. The trained SVR were then applied on Sentinel-2 simulated images and the acquired estimates were cross-compared with results from high spatial resolution airborne retrievals. Results showed that contribution of REP was significant for canopy chlorophyll content, but less significant for leaf chlorophyll content and insignificant for leaf area index estimations. However, the red edge spectral bands contributed strongly to the retrievals of all parameters, especially canopy and leaf chlorophyll content. Application of SVR on Sentinel-2 simulated images demonstrated, in general, an overestimation of leaf chlorophyll content and an underestimation of LAI when compared to the reciprocal airborne estimates. In the follow-up investigation, we will apply the trained SVR algorithms on real Sentinel-2 multispectral images acquired during vegetation seasons 2015 and 2016.

  4. Physiological and Metabolic Responses Triggered by Omeprazole Improve Tomato Plant Tolerance to NaCl Stress

    PubMed Central

    Rouphael, Youssef; Raimondi, Giampaolo; Lucini, Luigi; Carillo, Petronia; Kyriacou, Marios C.; Colla, Giuseppe; Cirillo, Valerio; Pannico, Antonio; El-Nakhel, Christophe; De Pascale, Stefania

    2018-01-01

    Interest in the role of small bioactive molecules (< 500 Da) in plants is on the rise, compelled by plant scientists' attempt to unravel their mode of action implicated in stimulating growth and enhancing tolerance to environmental stressors. The current study aimed at elucidating the morphological, physiological and metabolomic changes occurring in greenhouse tomato (cv. Seny) treated with omeprazole (OMP), a benzimidazole inhibitor of animal proton pumps. The OMP was applied at three rates (0, 10, or 100 μM) as substrate drench for tomato plants grown under nonsaline (control) or saline conditions sustained by nutrient solutions of 1 or 75 mM NaCl, respectively. Increasing NaCl concentration from 1 to 75 mM decreased the tomato shoot dry weight by 49% in the 0 μM OMP treatment, whereas the reduction was not significant at 10 or 100 μM of OMP. Treatment of salinized (75 mM NaCl) tomato plants with 10 and especially 100 μM OMP decreased Na+ and Cl− while it increased Ca2+ concentration in the leaves. However, OMP was not strictly involved in ion homeostasis since the K+ to Na+ ratio did not increase under combined salinity and OMP treatment. OMP increased root dry weight, root morphological characteristics (total length and surface), transpiration, and net photosynthetic rate independently of salinity. Metabolic profiling of leaves through UHPLC liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry facilitated identification of the reprogramming of a wide range of metabolites in response to OMP treatment. Hormonal changes involved an increase in ABA, decrease in auxins and cytokinin, and a tendency for GA down accumulation. Cutin biosynthesis, alteration of membrane lipids and heightened radical scavenging ability related to the accumulation of phenolics and carotenoids were observed. Several other stress-related compounds, such as polyamine conjugates, alkaloids and sesquiterpene lactones, were altered in response to OMP. Although a

  5. Physiology and toxicology of hormone-disrupting chemicals in higher plants.

    PubMed

    Couée, Ivan; Serra, Anne-Antonella; Ramel, Fanny; Gouesbet, Gwenola; Sulmon, Cécile

    2013-06-01

    Higher plants are exposed to natural environmental organic chemicals, associated with plant-environment interactions, and xenobiotic environmental organic chemicals, associated with anthropogenic activities. The effects of these chemicals result not only from interaction with metabolic targets, but also from interaction with the complex regulatory networks of hormone signaling. Purpose-designed plant hormone analogues thus show extensive signaling effects on gene regulation and are as such important for understanding plant hormone mechanisms and for manipulating plant growth and development. Some natural environmental chemicals also act on plants through interference with the perception and transduction of endogenous hormone signals. In a number of cases, bioactive xenobiotics, including herbicides that have been designed to affect specific metabolic targets, show extensive gene regulation effects, which are more in accordance with signaling effects than with consequences of metabolic effects. Some of these effects could be due to structural analogies with plant hormones or to interference with hormone metabolism, thus resulting in situations of hormone disruption similar to animal cell endocrine disruption by xenobiotics. These hormone-disrupting effects can be superimposed on parallel metabolic effects, thus indicating that toxicological characterisation of xenobiotics must take into consideration the whole range of signaling and metabolic effects. Hormone-disruptive signaling effects probably predominate when xenobiotic concentrations are low, as occurs in situations of residual low-level pollutions. These hormone-disruptive effects in plants may thus be of importance for understanding cryptic effects of low-dosage xenobiotics, as well as the interactive effects of mixtures of xenobiotic pollutants.

  6. New challenges in plant aquaporin biotechnology.

    PubMed

    Martinez-Ballesta, Maria del Carmen; Carvajal, Micaela

    2014-03-01

    Recent advances concerning genetic manipulation provide new perspectives regarding the improvement of the physiological responses in herbaceous and woody plants to abiotic stresses. The beneficial or negative effects of these manipulations on plant physiology are discussed, underlining the role of aquaporin isoforms as representative markers of water uptake and whole plant water status. Increasing water use efficiency and the promotion of plant water retention seem to be critical goals in the improvement of plant tolerance to abiotic stress. However, newly uncovered mechanisms, such as aquaporin functions and regulation, may be essential for the beneficial effects seen in plants overexpressing aquaporin genes. Under distinct stress conditions, differences in the phenotype of transgenic plants where aquaporins were manipulated need to be analyzed. In the development of nano-technologies for agricultural practices, multiple-walled carbon nanotubes promoted plant germination and cell growth. Their effects on aquaporins need further investigation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Plant Water Relations.

    ERIC Educational Resources Information Center

    Tomley, David

    1982-01-01

    Some simple field investigations on plant water relations are described which demonstrate links between physiological and external environmental factors. In this way, a more complex picture of a plant and how it functions within its habitat and the effects the environment has on it can be built up. (Author/JN)

  8. Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms

    PubMed Central

    Fu, Shih-Feng; Wei, Jyuan-Yu; Chen, Hung-Wei; Liu, Yen-Yu; Lu, Hsueh-Yu; Chou, Jui-Yu

    2015-01-01

    Plants as well as microorganisms, including bacteria and fungi, produce indole-3-acetic acid (IAA). IAA is the most common plant hormone of the auxin class and it regulates various aspects of plant growth and development. Thus, research is underway globally to exploit the potential for developing IAA-producing fungi for promoting plant growth and protection for sustainable agriculture. Phylogenetic evidence suggests that IAA biosynthesis evolved independently in bacteria, microalgae, fungi, and plants. Present studies show that IAA regulates the physiological response and gene expression in these microorganisms. The convergent evolution of IAA production leads to the hypothesis that natural selection might have favored IAA as a widespread physiological code in these microorganisms and their interactions. We summarize recent studies of IAA biosynthetic pathways and discuss the role of IAA in fungal ecology. PMID:26179718

  9. [Plant hydroponics and its application prospect in medicinal plants study].

    PubMed

    Zeng, Yan; Guo, Lan-Ping; Huang, Lu-Qi; Sun, Yu-Zhang

    2007-03-01

    This article introduced the theorem and method of hydroponics. Some examples of studies in agriculture and forestry were presented, the effects of elements, environmental stress and hormones on physiology of medicinal plants by using hydroponics were analyzed. It also introduced the feasibility and advantage of hydroponics in intermediate propagation and allelopathy of medicinal plant. And finally it made the conclusion that the way of hydroponics would be widely used in medicinal plant study.

  10. Enhanced growth, yield and physiological characteristics of rice under elevated carbon dioxide

    NASA Astrophysics Data System (ADS)

    Abzar, A.; Ahmad, Wan Juliana Wan; Said, Mohd Nizam Mohd; Doni, Febri; Zaidan, Mohd Waznul Adly Mohd; Fathurahman, Zain, Che Radziah Che Mohd

    2018-04-01

    Carbon dioxide (CO2) is rapidly increasing in the atmosphere. It is an essential element for photosynthesis which attracts attention among scientists on how plants will perform in the rising CO2 level. Rice as one of the most important staple food in the world has been studied on the growth responses under elevated CO2. The present research was carried out to determine the growth and physiology of rice in elevated CO2 condition. This research was carried out using complete randomized design with elevated (800 ppm) and ambient CO2. Results showed that growth parameters such as plant height, tillers and number of leaves per plant were increased by elevated CO2. The positive changes in plant physiology when exposed to high CO2 concentration includes significant change (p<0.05) in yield parameters such as panicle number, grain number per panicle, biomass and 1000 grain weight under the elevated CO2 of 800 ppm.

  11. Fundaments of plant cybernetics.

    PubMed

    Zucconi, F

    2001-01-01

    A systemic approach is proposed for analyzing plants' physiological organization and cybernesis. To this end, the plant is inspected as a system, starting from the integration of crown and root systems, and its impact on a number of basic epigenetic events. The approach proves to be axiomatic and facilitates the definition of the principles behind the plant's autonomous control of growth and reproduction.

  12. Estimating disturbance effects from military training using developmental instability and physiological measures of plant stress

    USGS Publications Warehouse

    Duda, J.J.; Freeman, D.C.; Brown, M.L.; Graham, J.H.; Krzysik, A.J.; Emlen, J.M.; Zak, J.C.; Kovacic, D.A.

    2004-01-01

    We used developmental instability, water potential, and variable fluorescence to determine if populations of winged sumac (Rhus copallinum) were being negatively effected by military training disturbance. We established nine sites that represented a land-use disturbance gradient with three impact levels (low, medium, and high), the effects mostly due to mechanized infantry training maneuvers. Although mean values of developmental instability, water potential, and variable fluorescence differed significantly among sites, the patterns did not consistently differentiate sites relative to the disturbance gradient. At the population level, some measures of developmental instability and variable fluorescence were positively correlated. All nine sites consisted of habitat mosaics, with the abundance of higher quality habitat patches and canopy gaps closely related to habitat impacts. It may be that R. copallinum is selecting similar micro-environments at all sites and therefore minimizing inter-site variation in stress measures, despite large differences in overall habitat condition. Our results call for caution in developing ecological indicators using the response of physiological and morphological measures from a single plant species. ?? 2003 Elsevier Ltd. All rights reserved.

  13. Plant ecdysteroids: plant sterols with intriguing distributions, biological effects and relations to plant hormones.

    PubMed

    Tarkowská, Danuše; Strnad, Miroslav

    2016-09-01

    The present review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones. Plant ecdysteroids (phytoecdysteroids) are natural polyhydroxylated compounds that have a four-ringed skeleton, usually composed of either 27 carbon atoms or 28-29 carbon atoms (biosynthetically derived from cholesterol or other plant sterols, respectively). Their physiological roles in plants have not yet been confirmed and their occurrence is not universal. Nevertheless, they are present at high concentrations in various plant species, including commonly consumed vegetables, and have a broad spectrum of pharmacological and medicinal properties in mammals, including hepatoprotective and hypoglycaemic effects, and anabolic effects on skeletal muscle, without androgenic side-effects. Furthermore, phytoecdysteroids can enhance stress resistance by promoting vitality and enhancing physical performance; thus, they are considered adaptogens. This review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones.

  14. Molecular Physiology of Root System Architecture in Model Grasses

    NASA Astrophysics Data System (ADS)

    Hixson, K.; Ahkami, A. H.; Anderton, C.; Veličković, D.; Myers, G. L.; Chrisler, W.; Lindenmaier, R.; Fang, Y.; Yabusaki, S.; Rosnow, J. J.; Farris, Y.; Khan, N. E.; Bernstein, H. C.; Jansson, C.

    2017-12-01

    Unraveling the molecular and physiological mechanisms involved in responses of Root System Architecture (RSA) to abiotic stresses and shifts in microbiome structure is critical to understand and engineer plant-microbe-soil interactions in the rhizosphere. In this study, accessions of Brachypodium distachyon Bd21 (C3 model grass) and Setaria viridis A10.1 (C4 model grass) were grown in phytotron chambers under current and elevated CO2 levels. Detailed growth stage-based phenotypic analysis revealed different above- and below-ground morphological and physiological responses in C3 and C4 grasses to enhanced CO2 levels. Based on our preliminary results and by screening values of total biomass, water use efficiency, root to shoot ratio, RSA parameters and net assimilation rates, we postulated a three-phase physiological mechanism, i.e. RootPlus, BiomassPlus and YieldPlus phases, for grass growth under elevated CO2 conditions. Moreover, this comprehensive set of morphological and process-based observations are currently in use to develop, test, and calibrate biophysical whole-plant models and in particular to simulate leaf-level photosynthesis at various developmental stages of C3 and C4 using the model BioCro. To further link the observed phenotypic traits at the organismal level to tissue and molecular levels, and to spatially resolve the origin and fate of key metabolites involved in primary carbohydrate metabolism in different root sections, we complement root phenotypic observations with spatial metabolomics data using mass spectrometry imaging (MSI) methods. Focusing on plant-microbe interactions in the rhizosphere, six bacterial strains with plant growth promoting features are currently in use in both gel-based and soil systems to screen root growth and development in Brachypodium. Using confocal microscopy, GFP-tagged bacterial systems are utilized to study the initiation of different root types of RSA, including primary root (PR), coleoptile node axile root (CNR

  15. Physiological role of phenolic biostimulants isolated from brown seaweed Ecklonia maxima on plant growth and development.

    PubMed

    Aremu, Adeyemi O; Masondo, Nqobile A; Rengasamy, Kannan R R; Amoo, Stephen O; Gruz, Jiří; Bíba, Ondřej; Šubrtová, Michaela; Pěnčík, Aleš; Novák, Ondřej; Doležal, Karel; Van Staden, Johannes

    2015-06-01

    Eckol, a major phenolic compound isolated from brown seaweed significantly enhanced the bulb size and bioactive compounds in greenhouse-grown Eucomis autumnalis. We investigated the effect of eckol and phloroglucinol (PG) (phenolic compounds) isolated from the brown seaweed, Ecklonia maxima (Osbeck) Papenfuss on the growth, phytochemical and auxin content in Eucomis autumnalis (Mill.) Chitt. The model plant is a popular medicinal species with increasing conservation concern. Eckol and PG were tested at 10(-5), 10(-6) and 10(-7) M using soil drench applications. After 4 months, growth parameters, phytochemical and auxin content were recorded. When compared to the control, eckol (10(-6) M) significantly improved bulb size, fresh weight and root production while the application of PG (10(-6) M) significantly increased the bulb numbers. However, both compounds had no significant stimulatory effect on aerial organs. Bioactive phytochemicals such as p-hydroxybenzoic and ferulic acids were significantly increased in eckol (10(-5) M) and PG (10(-6) M) treatments, compared to the control. Aerial (1,357 pmol/g DW) and underground (1,474 pmol/g DW) parts of eckol-treated (10(-5) M) plants yielded the highest concentration of indole-3-acetic acid. Overall, eckol and PG elicited a significant influence on the growth and physiological response in E. autumnalis. Considering the medicinal importance of E. autumnalis and the increasing strains on its wild populations, these compounds are potential tools to enhance their cultivation and growth.

  16. Heat Effects on Living Plants

    Treesearch

    Robert C. Hare

    1961-01-01

    This review of knowledge concerning the effects of high temperatures on plants was undertaken in preparation for research aimed at determining how forest fires affect physiological processes in woody species. Major subjects discussed include morphological and physiological responses to high temperatures, external and internal factors governing these responses,...

  17. [Progress on salt resistance in autopolyploid plants].

    PubMed

    Zhu, Hong Ju; Liu, Wen Ge

    2018-04-20

    Polyploidization is a key driving force that plays a vital role in the evolution of higher plants. Autopolyploid plants often demonstrate altered physiology phenomena due to the different genome composition and gene expression patterns. For example, autopolyploid plants are more resistant to stresses than their homologous diploid ancestors. Soil salinity and secondary salinization are two vital factors affecting crop production which severely limit the sustainable development of agriculture in China. Polyploid plants are important germplasm resources in crop genetic improvement due to their higher salt tolerance. Revealing the mechanism of salt tolerance in homologous plants will provide a foundation for breeding new plants with improved salt resistance. In this review, we describe the existing and ongoing characterization of the mechanism of salt tolerance in autopolyploid plants, including the salt tolerance evolution, physiology, biochemistry, cell structure and molecular level researches. Finally, we also discuss the prospects in this field by using polyploid watermelon as an example, which will be helpful in polyploid research and plant breeding.

  18. The physiological and biochemical effects of salicylic acid on sunflowers (Helianthus annuus) exposed to flurochloridone.

    PubMed

    Kaya, Armagan; Yigit, Emel

    2014-08-01

    In this study, we comparatively evaluated the effects of the flurochloridone as well as flurochloridone and exogenously applied salicylic acid (SA) on Helianthus annuus L. to find out herbicide-induced toxicity reducing influence of SA. We examined and compared the physiological and biochemical effects of different concentrations of flurochloridone (11, 32 and 72 mM) in both the SA pre-treated and non-treated plants. The plants treated with flurochloridone exhibited reduced total chlorophyll, carotenoid, and relative water content compared to the control group, whereas the plants that were pre-treated with SA exhibited relatively higher values for the same physiological parameters. In the SA non-treated plants, the superoxide dismutase, glutathione reductase and glutathione S-transferase activities were increased in the treatment groups compared to the control group. In the treatment groups, these enzyme activities were decreased in the SA-pre-treated plants compared to the non-treated plants. Ascorbate peroxidase and catalase activities decreased in the flurochloridone-treated plants compared to the control plants. The ascorbate peroxidase activity increased in the control groups but decreased in the treatment groups in the SA pre-treated plants compared to the non-treated plants. However, SA treatment decreased the activity of catalase in the control and treatment groups compared to the plants that were not treated with SA. Flurochloridone treatment increased the malondialdehyde content in the treated groups compared to the control groups, whereas SA-pretreatment decreased malondialdehyde content compared to plants that were not treated with SA. Flurochloridone treatment increased endogenous SA content compared to the control. Although the residual levels of herbicide in the plants increased proportionately with increasing herbicide concentrations, the SA-pre-treated plants exhibited reduced residual herbicide levels compared to the plants that were not treated

  19. Nitric Oxide-Dependent Posttranslational Modification in Plants: An Update

    PubMed Central

    Astier, Jeremy; Lindermayr, Christian

    2012-01-01

    Nitric oxide (NO) has been demonstrated as an essential regulator of several physiological processes in plants. The understanding of the molecular mechanism underlying its critical role constitutes a major field of research. NO can exert its biological function through different ways, such as the modulation of gene expression, the mobilization of second messengers, or interplays with protein kinases. Besides this signaling events, NO can be responsible of the posttranslational modifications (PTM) of target proteins. Several modifications have been identified so far, whereas metal nitrosylation, the tyrosine nitration and the S-nitrosylation can be considered as the main ones. Recent data demonstrate that these PTM are involved in the control of a wide range of physiological processes in plants, such as the plant immune system. However, a great deal of effort is still necessary to pinpoint the role of each PTM in plant physiology. Taken together, these new advances in proteomic research provide a better comprehension of the role of NO in plant signaling. PMID:23203119

  20. Polyphenol Oxidases in Crops: Biochemical, Physiological and Genetic Aspects

    PubMed Central

    Taranto, Francesca; Pasqualone, Antonella; Mangini, Giacomo; Tripodi, Pasquale; Miazzi, Monica Marilena; Pavan, Stefano; Montemurro, Cinzia

    2017-01-01

    Enzymatic browning is a colour reaction occurring in plants, including cereals, fruit and horticultural crops, due to oxidation during postharvest processing and storage. This has a negative impact on the colour, flavour, nutritional properties and shelf life of food products. Browning is usually caused by polyphenol oxidases (PPOs), following cell damage caused by senescence, wounding and the attack of pests and pathogens. Several studies indicated that PPOs play a role in plant immunity, and emerging evidence suggested that PPOs might also be involved in other physiological processes. Genomic investigations ultimately led to the isolation of PPO homologs in several crops, which will be possibly characterized at the functional level in the near future. Here, focusing on the botanic families of Poaceae and Solanaceae, we provide an overview on available scientific literature on PPOs, resulting in useful information on biochemical, physiological and genetic aspects. PMID:28208645

  1. Space Physiology within an Exercise Physiology Curriculum

    ERIC Educational Resources Information Center

    Carter, Jason R.; West, John B.

    2013-01-01

    Compare and contrast strategies remain common pedagogical practices within physiological education. With the support of an American Physiological Society Teaching Career Enhancement Award, we have developed a junior- or senior-level undergraduate curriculum for exercise physiology that compares and contrasts the physiological adaptations of…

  2. Physiological and molecular implications of plant polyamine metabolism during biotic interactions

    PubMed Central

    Jiménez-Bremont, Juan F.; Marina, María; Guerrero-González, María de la Luz; Rossi, Franco R.; Sánchez-Rangel, Diana; Rodríguez-Kessler, Margarita; Ruiz, Oscar A.; Gárriz, Andrés

    2014-01-01

    During ontogeny, plants interact with a wide variety of microorganisms. The association with mutualistic microbes results in benefits for the plant. By contrast, pathogens may cause a remarkable impairment of plant growth and development. Both types of plant–microbe interactions provoke notable changes in the polyamine (PA) metabolism of the host and/or the microbe, being each interaction a complex and dynamic process. It has been well documented that the levels of free and conjugated PAs undergo profound changes in plant tissues during the interaction with microorganisms. In general, this is correlated with a precise and coordinated regulation of PA biosynthetic and catabolic enzymes. Interestingly, some evidence suggests that the relative importance of these metabolic pathways may depend on the nature of the microorganism, a concept that stems from the fact that these amines mediate the activation of plant defense mechanisms. This effect is mediated mostly through PA oxidation, even though part of the response is activated by non-oxidized PAs. In the last years, a great deal of effort has been devoted to profile plant gene expression following microorganism recognition. In addition, the phenotypes of transgenic and mutant plants in PA metabolism genes have been assessed. In this review, we integrate the current knowledge on this field and analyze the possible roles of these amines during the interaction of plants with microbes. PMID:24672533

  3. Genetics and the physiological ecology of conifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitton, J.B.

    1995-07-01

    Natural selection acts on the diversity of genotypes, adapting populations to their specific environments and driving evolution in response to changes in climate. Genetically based differences in physiology and demography adapt species to alternate environments and produce, along with historical accidents, the present distribution of species. The sorting of conifer species by elevation is so marked that conifers help to define plant communities arranged in elevational bands in the Rocky Mountains. For these reasons, a genetic perspective is necessary to appreciate the evolution of ecophysiological patterns in the coniferous forests of the Rocky Mountains. The fascinating natural history and themore » economic importance of western conifers have stimulated numerous studies of their ecology, ecological genetics, and geographic variation. These studies yield some generalizations, and present some puzzling contradictions. This chapter focuses on the genetic variability associated with the physiological differences among genotypes in Rocky Mountain conifers. Variation among genotypes in survival, growth, and resistance to herbivores is used to illustrate genetically based differences in physiology, and to suggest the mechanistic studies needed to understand the relationships between genetic and physiological variation.« less

  4. Plant Hormones: Key Players in Gut Microbiota and Human Diseases?

    PubMed

    Chanclud, Emilie; Lacombe, Benoît

    2017-09-01

    It is well established that plant hormones such as auxins, cytokinins (CKs), and abscisic acid (ABA) not only govern important plant physiological traits but are key players in plant-microbe interactions. A poorly appreciated fact, however, is that both microbes and animals produce and perceive plant hormones and their mimics. Moreover, dietary plant hormones impact on human physiological process such as glucose assimilation, inflammation, and cell division. This leads us to wonder whether plant hormones could ensure functions in microbes per se as well as in animal-microbe interactions. We propose here and explore the hypothesis that plant hormones play roles in animal-microbiota relationships, with consequences for human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A self-referencing biosensor for real-time monitoring of physiological ATP transport in plant systems.

    PubMed

    Vanegas, Diana C; Clark, Greg; Cannon, Ashley E; Roux, Stanley; Chaturvedi, Prachee; McLamore, Eric S

    2015-12-15

    The objective of this study was to develop a self-referencing electrochemical biosensor for the direct measurement of ATP flux into the extracellular matrix by living cells/organisms. The working mechanism of the developed biosensor is based on the activity of glycerol kinase and glycerol-3-phosphate oxidase. A stratified bi-enzyme nanocomposite was created using a protein-templated silica sol gel encapsulation technique on top of graphene-modified platinum electrodes. The biosensor exhibited excellent electrochemical performance with a sensitivity of 2.4±1.8 nA/µM, a response time of 20±13 s and a lower detection limit of 1.3±0.7 nM. The self-referencing biosensor was used to measure exogenous ATP efflux by (i) germinating Ceratopteris spores and (ii) growing Zea mays L. roots. This manuscript demonstrates the first development of a non-invasive ATP micro-biosensor for the direct measurement of eATP transport in living tissues. Before this work, assays of eATP have not been able to record the temporally transient movement of ATP at physiological levels (nM and sub-nM). The method demonstrated here accurately measured [eATP] flux in the immediate vicinity of plant cells. Although these proof of concept experiments focus on plant tissues, the technique developed herein is applicable to any living tissue, where nanomolar concentrations of ATP play a critical role in signaling and development. This tool will be invaluable for conducting hypothesis-driven life science research aimed at understanding the role of ATP in the extracellular environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Plant stress signalling: understanding and exploiting plant-plant interactions.

    PubMed

    Pickett, J A; Rasmussen, H B; Woodcock, C M; Matthes, M; Napier, J A

    2003-02-01

    When plants are attacked by insects, volatile chemical signals can be released, not only from the damaged parts, but also systemically from other parts of the plant and this continues after cessation of feeding by the insect. These signals are perceived by olfactory sensory mechanisms in both the herbivorous insects and their parasites. Molecular structures involved can be characterized by means of electrophysiological assays, using the insect sensory system linked to chemical analysis. Evidence is mounting that such signals can also affect neighbouring intact plants, which initiate defence by the induction of further signalling systems, such as those that increase parasitoid foraging. Furthermore, insect electrophysiology can be used in the identification of plant compounds having effects on the plants themselves. It has been found recently that certain plants can release stress signals even when undamaged, and that these can cause defence responses in intact plants. These discoveries provide the basis for new crop protection strategies, that are either delivered by genetic modification of plants or by conventionally produced plants to which the signal is externally applied. Delivery can also be made by means of mixed seed strategies in which the provoking and recipient plants are grown together. Related signalling discoveries within the rhizosphere seem set to extend these approaches into new ways of controlling weeds, by exploiting the elusive potential of allelopathy, but through signalling rather than by direct physiological effects.

  7. Regulating Intracellular Calcium in Plants: From Molecular Genetics to Physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heven Sze

    To grow, develop, adapt, and reproduce, plants have evolved mechanisms to regulate the uptake, translocation and sorting of calcium ions into different cells and subcellular compartments. Yet how plants accomplish this remarkable feat is still poorly understood. The spatial and temporal changes in intracellular [Ca2+] during growth and during responses to hormonal and environmental stimuli indicate that Ca2+ influx and efflux transporters are diverse and tightly regulated in plants. The specific goals were to determine the biological roles of multiple Ca pumps (ECAs) in the model plant Arabidopsis thaliana. We had pioneered the use of K616 yeast strain to functionallymore » express plant Ca pumps, and demonstrated two distinct types of Ca pumps in plants (Sze et al., 2000. Annu Rev Plant Biol. 51,433). ACA2 represented one type that was auto-inhibited by the N-terminal region and stimulated by calmodulin. ECA1 represented another type that was not sensitive to calmodulin and phylogenetically distinct from ACAs. The goal to determine the biological roles of multiple ECA-type Ca pumps in Arabidopsis has been accomplished. Although we demonstrated ECA1 was a Ca pump by functional expression in yeast, the in vivo roles of ECAs was unclear. A few highlights are described. ECA1 and/or ECA4 are Ca/Mn pumps localized to the ER and are highly expressed in all cell types. Using homozygous T-DNA insertional mutants of eca1, we demonstrated that the ER-bound ECA1 supports growth and confers tolerance of plants growing on medium low in Ca or containing toxic levels of Mn. This is the first genetic study to determine the in vivo function of a Ca pump in plants. A phylogenetically distinct ECA3 is also a Ca/Mn pump that is localized to endosome, such as post-Golgi compartments. Although it is expressed at lower levels than ECA1, eca3 mutants are impaired in Ca-dependent root growth and in pollen tube elongation. Increased secretion of wall proteins in mutants suggests that Ca

  8. [Effects of biochar on the micro-ecology of tobacco-planting soil and physiology of flue-cured tobacco].

    PubMed

    Chen, Yi; Chen, Wei; Lin, Ye-chun; Cheng, Jian-zhong; Pan, Wen-jie

    2015-12-01

    Biochar is one of the research hotspots in the field of the agroforestry waste utilization. A field experiment was carried out to investigate the effects of different amounts of tobacco stem biochar (0, 1, 10, 50 t · hm⁻²) on soil micro-ecology and physiological properties of flue-cured tobacco. The results showed that soil water content (SWC) increased at all tobacco growth stages as the amounts of biochar applications increased. There were significant differences of SWC between the treatment of 50 t · hm⁻² and other treatments at the period of tobacco vigorous growth. As the application of biochar increased, the total soil porosity and capillary porosity increased, while soil bacteria, actinomyces, fungi amount increased firstly and then decreased. The amount of soil bacteria, actinomyces, fungi reached the maximum at the treatment of 10 t · hm⁻². Soil respiration rate (SRR) at earlier stage increased with the increase of biochar application. Compared with the control, SSR under biochar treatments increased by 7.9%-36.9%, and there were significant differences of SRR between high biochar application treatments (50 t · hm⁻² and 10 t · hm⁻²) and the control. Biochar improved leaf water potential, carotenoid and chlorophyll contents. Meanwhile, the dry mass of root, shoot and total dry mass under biochar application were higher than that of the control. These results indicated that the biochar played active roles in improving tobacco-planting soil micro-ecology and regulating physiological properties of flue-cured tobacco.

  9. Mutual physiological genetic mechanism of plant high water use efficiency and nutrition use efficiency.

    PubMed

    Cao, Hong-Xing; Zhang, Zheng-Bin; Xu, Ping; Chu, Li-Ye; Shao, Hong-Bo; Lu, Zhao-Hua; Liu, Jun-Hong

    2007-05-15

    Water deficiency and lower fertilizer utilization efficiency are major constraints of productivity and yield stability. Improvements of crop water use efficiency (WUE) and nutrient use efficiency (NUE) is becoming an important objective in crop breeding. With the introduction of new physiological and biological approaches, we can better understand the mutual genetics mechanism of high use efficiency of water and nutrient. Much work has been done in past decades mainly including the interactions between different fertilizers and water influences on root characteristics and crop growth. Fertilizer quantity and form were regulated in order to improve crop WUE. The crop WUE and NUE shared the same increment tendency during evolution process; some genes associated with WUE and NUE have been precisely located and marked on the same chromosomes, some genes related to WUE and NUE have been cloned and transferred into wheat and rice and other plants, they can enhance water and nutrient use efficiency. The proteins transporting nutrient and water were identified such as some water channel proteins. The advance on the mechanism of higher water and nutrient use efficiency in crop was reviewed in this article, and it could provide some useful information for further research on WUE and NUE in crop.

  10. Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer.

    PubMed

    Heredia, Antonio

    2003-03-17

    Cutin is a support biopolyester involved in waterproofing the leaves and fruits of higher plants, regulating the flow of nutrients among various plant cells and organs, and minimizing the deleterious impact of pathogens. Despite the complexity and intractable nature of this biopolymer, significant progress in chemical composition, molecular architecture and, more recently, biosynthesis have been made in the past 10 years. This review is focused in the description of these advances and their physiological impacts to improve our knowledge on plant cutin, an unusual topic in most plant physiology and biochemistry books and reviews.

  11. Optimal plant water use across temporal scales: bridging eco-hydrological theories and plant eco-physiological responses

    NASA Astrophysics Data System (ADS)

    Manzoni, S.; Vico, G.; Palmroth, S.; Katul, G. G.; Porporato, A. M.

    2013-12-01

    In terrestrial ecosystems, plant photosynthesis occurs at the expense of water losses through stomata, thus creating an inherent hydrologic constrain to carbon (C) gains and productivity. While such a constraint cannot be overcome, evolution has led to a number of adaptations that allow plants to thrive under highly variable and often limiting water availability. It may be hypothesized that these adaptations are optimal and allow maximum C gain for a given water availability. A corollary hypothesis is that these adaptations manifest themselves as coordination between the leaf photosynthetic machinery and the plant hydraulic system. This coordination leads to functional relations between the mean hydrologic state, plant hydraulic traits, and photosynthetic parameters that can be used as bridge across temporal scales. Here, optimality theories describing the behavior of stomata and plant morphological features in a fluctuating soil moisture environment are proposed. The overarching goal is to explain observed global patterns of plant water use and their ecological and biogeochemical consequences. The problem is initially framed as an optimal control problem of stomatal closure during drought of a given duration, where maximizing the total photosynthesis under limited and diminishing water availability is the objective function. Analytical solutions show that commonly used transpiration models (in which stomatal conductance is assumed to depend on soil moisture) are particular solutions emerging from the optimal control problem. Relations between stomatal conductance, vapor pressure deficit, and atmospheric CO2 are also obtained without any a priori assumptions under this framework. Second, the temporal scales of the model are expanded by explicitly considering the stochasticity of rainfall. In this context, the optimal control problem becomes a maximization problem for the mean photosynthetic rate. Results show that to achieve maximum C gains under these

  12. Plant Science View on Biohybrid Development

    PubMed Central

    Skrzypczak, Tomasz; Krela, Rafał; Kwiatkowski, Wojciech; Wadurkar, Shraddha; Smoczyńska, Aleksandra; Wojtaszek, Przemysław

    2017-01-01

    Biohybrid consists of a living organism or cell and at least one engineered component. Designing robot–plant biohybrids is a great challenge: it requires interdisciplinary reconsideration of capabilities intimate specific to the biology of plants. Envisioned advances should improve agricultural/horticultural/social practice and could open new directions in utilization of plants by humans. Proper biohybrid cooperation depends upon effective communication. During evolution, plants developed many ways to communicate with each other, with animals, and with microorganisms. The most notable examples are: the use of phytohormones, rapid long-distance signaling, gravity, and light perception. These processes can now be intentionally re-shaped to establish plant–robot communication. In this article, we focus on plants physiological and molecular processes that could be used in bio-hybrids. We show phototropism and biomechanics as promising ways of effective communication, resulting in an alteration in plant architecture, and discuss the specifics of plants anatomy, physiology and development with regards to the bio-hybrids. Moreover, we discuss ways how robots could influence plants growth and development and present aims, ideas, and realized projects of plant–robot biohybrids. PMID:28856135

  13. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem.

    PubMed

    Hao, Yi; Ma, Chuanxin; Zhang, Zetian; Song, Youhong; Cao, Weidong; Guo, Jing; Zhou, Guopeng; Rui, Yukui; Liu, Liming; Xing, Baoshan

    2018-01-01

    The aim of this study was to compare the toxicity effects of carbon nanomaterials (CNMs), namely fullerene (C 60 ), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs), on a mini-ecosystem of rice grown in a loamy potted soil. We measured plant physiological and biochemical parameters and examined bacterial community composition in the CNMs-treated plant-soil system. After 30 days of exposure, all the three CNMs negatively affected the shoot height and root length of rice, significantly decreased root cortical cells diameter and resulted in shrinkage and deformation of cells, regardless of exposure doses (50 or 500 mg/kg). Additionally, at the high exposure dose of CNM, the concentrations of four phytohormones, including auxin, indoleacetic acid, brassinosteroid and gibberellin acid 4 in rice roots significantly increased as compared to the control. At the high exposure dose of MWCNTs and C 60 , activities of the antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD) in roots increased significantly. High-throughput sequencing showed that three typical CNMs had little effect on shifting the predominant soil bacterial species, but the presence of CNMs significantly altered the composition of the bacterial community. Our results indicate that different CNMs indeed resulted in environmental toxicity to rice and soil bacterial community in the rhizosphere and suggest that CNMs themselves and their incorporated products should be reasonably used to control their release/discharge into the environment to prevent their toxic effects on living organisms and the potential risks to food safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. 30-year progress of membrane transport in plants.

    PubMed

    Hedrich, Rainer; Marten, Irene

    2006-09-01

    In the past 30 years enormous progress was made in plant membrane biology and transport physiology, a fact reflected in the appearance of textbooks. The first book dedicated to 'Membrane Transport in Plants' was published on the occasion of the 'International Workshop on Membrane Transport in Plants' held at the Nuclear Research Center, Jülich, Germany [Zimmermann and Dainty (eds) 1974] and was followed in 1976 by a related volume 'Transport in plants II' in the 'Encyclopedia of plant physiology' [Lüttge and Pitman (eds) 1976]. A broad spectrum of topics including thermodynamics of transport processes, water relations, primary reactions of photosynthesis, as well as more conventional aspects of membrane transport was presented. The aim of the editors of the first book was to bring advanced thermodynamical concepts to the attention of biologists and to show physical chemists and biophysicist what the more complex biological systems were like. To bundle known data on membrane transport in plants and relevant fields for mutual understanding, interdisciplinary research and clarification of problems were considered highly important for further progress in this scientific area of plant physiology. The present review will critically evaluate the progress in research in membrane transport in plants that was achieved during the past. How did 'Membrane Transport in Plants' progress within the 30 years between the publication of the first book about this topic (Zimmermann and Dainty 1974), a recent one with the same title (Blatt 2004), and today?

  15. Plant responses to tropospheric ozone

    USDA-ARS?s Scientific Manuscript database

    Tropospheric ozone is the second most abundant air pollutant and an important component of the global climate change. Over five decades of research on the phytotoxicity of ozone in model plants systems, crop plants and forest trees have provided some insight into the physiological, biochemical and m...

  16. Differential effects of Pseudomonas mendocina and Glomus intraradices on lettuce plants physiological response and aquaporin PIP2 gene expression under elevated atmospheric CO2 and drought.

    PubMed

    Alguacil, Maria Del Mar; Kohler, Josef; Caravaca, Fuensanta; Roldán, Antonio

    2009-11-01

    Arbuscular mycorrhizal (AM) symbiosis and plant-growth-promoting rhizobacterium (PGPR) can alleviate the effects of water stress in plants, but it is unknown whether these benefits can be maintained at elevated CO2. Therefore, we carried out a study where seedlings of Lactuca sativa were inoculated with the AM fungus (AMF) Glomus intraradices N.C. Schenk & G.S. Sm. or the PGPR Pseudomonas mendocina Palleroni and subjected to two levels of watering and two levels of atmospheric CO2 to ascertain their effects on plant physiological parameters and gene expression of one PIP aquaporin in roots. The inoculation with PGPR produced the greatest growth in lettuce plants under all assayed treatments as well as the highest foliar potassium concentration and leaf relative water content under elevated [CO2] and drought. However, under such conditions, the PIP2 gene expression remained almost unchanged. G. intraradices increased significantly the AMF colonization, foliar phosphorus concentration and leaf relative water content in plants grown under drought and elevated [CO2]. Under drought and elevated [CO2], the plants inoculated with G. intraradices showed enhanced expression of the PIP2 gene as compared to P. mendocina or control plants. Our results suggest that both microbial inoculation treatments could help to alleviate drought at elevated [CO2]. However, the PIP2 gene expression was increased only by the AMF but not by the PGPR under these conditions.

  17. Molecular regulation and physiological functions of a novel FaHsfA2c cloned from tall fescue conferring plant tolerance to heat stress.

    PubMed

    Wang, Xiuyun; Huang, Wanlu; Liu, Jun; Yang, Zhimin; Huang, Bingru

    2017-02-01

    Heat stress transcription factors (HSFs) compose a large gene family, and different members play differential roles in regulating plant responses to abiotic stress. The objectives of this study were to identify and characterize an A2-type HSF, FaHsfA2c, in a cool-season perennial grass tall fescue (Festuca arundinacea Schreb.) for its association with heat tolerance and to determine the underlying physiological functions and regulatory mechanisms of FaHsfA2c imparting plant tolerance to heat stress. FaHsfA2c was localized in nucleus and exhibited a rapid transcriptional increase in leaves and roots during early phase of heat stress. Ectopic expression of FaHsfA2c improved basal and acquired thermotolerance in wild-type Arabidopsis and also restored heat-sensitive deficiency of hsfa2 mutant. Overexpression of FaHsfA2c in tall fescue enhanced plant tolerance to heat by triggering transcriptional regulation of heat-protective gene expression, improving photosynthetic capacity and maintaining plant growth under heat stress. Our results indicated that FaHsfA2c acted as a positive regulator conferring thermotolerance improvement in Arabidopsis and tall fescue, and it could be potentially used as a candidate gene for genetic modification and molecular breeding to develop heat-tolerant cool-season grass species. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Hydrogen isotopic compositions of organic compounds in plants reflect the plant's carbon metabolism

    NASA Astrophysics Data System (ADS)

    Cormier, M. A.; Kahmen, A.; Werner, R. A.

    2015-12-01

    The main factors controlling δ2H of plant organic compounds are generally assumed to be the plant's source water and the evaporative deuterium enrichment of leaf water. Hydrogen isotope analyses of plant compounds from sediments or tree rings are therefore mainly applied to assess hydrological conditions at different spatial and temporal scales. However, the biochemical hydrogen isotope fractionation occurring during biosynthesis of plant organic compounds (ɛbio) also accounts for a large part of the variability observed in the δ2H values. Nevertheless, only few studies have directly addressed the physiological basis of this variability and even fewer studies have thus explored possible applications of hydrogen isotope variability in plant organic compounds for plant physiological research. Here we show two datasets indicating that the plant's carbon metabolism can have a substantial influence on δ2H values of n-alkanes and cellulose. First, we performed a controlled experiment where we forced plants into heterotrophic and autotrophic C-metabolism by growing them under four different light treatments. Second, we assessed the δ2H values of different parasitic heterotrophic plants and their autotrophic host plants. Our two datasets show a systematic shift in ɛbio of up to 80 ‰ depending on the plant's carbon metabolism (heterotrophic or autotrophic). Differences in n-alkane and cellulose δ2H values in plants with autotrophic vs. heterotrophic metabolisms can be explained by different NADPH pools that are used by the plants to build their compounds either with assimilates that originate directly from photosynthesis or from stored carbohydrates. Our results have significant implications for the calibration and interpretation of geological records. More importantly, as the δ2H values reflect the plant's carbon metabolism involved during the tissue formation, our findings highlight the potential of δ2H values as new tool for studying plant and ecosystem carbon

  19. Lifting date affects black walnut planting stock quality.

    Treesearch

    W.J. Rietveld; Robert D. Williams

    1981-01-01

    Presents information for black walnut seedlings on storage chilling requirement, fall lifting for overwinter storage, spring lifting, planting times, use of root regeneration potential (RRP) to assess physiological quality of planting stock, and relation between RRP at planting and field performance.

  20. STRESS ETHYLENE PRODUCTION - A MEASURE OF PLANT RESPONSE TO STRESS

    EPA Science Inventory

    Contents: Introduction to the symposium; Environmental data acquisition; Plant organ chambers in plant physiology field research; Interpreting the metabolic responses of plants to water stress; Stress ethylene production.

  1. Polyamines and abiotic stress in plants: a complex relationship Frontiers in Plant Science

    Treesearch

    Rakesh Minocha; Rajtilak Majumdar; Subhash C. Minocha

    2014-01-01

    The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism...

  2. The fascinating facets of plant selenium accumulation - biochemistry, physiology, evolution and ecology.

    PubMed

    Schiavon, Michela; Pilon-Smits, Elizabeth A H

    2017-03-01

    Contents 1582 I. 1582 II. 1583 III. 1588 IV. 1590 V. 1592 1592 References 1592 SUMMARY: The importance of selenium (Se) for medicine, industry and the environment is increasingly apparent. Se is essential for many species, including humans, but toxic at elevated concentrations. Plant Se accumulation and volatilization may be applied in crop biofortification and phytoremediation. Topics covered here include beneficial and toxic effects of Se on plants, mechanisms of Se accumulation and tolerance in plants and algae, Se hyperaccumulation, and ecological and evolutionary aspects of these processes. Plant species differ in the concentration and forms of Se accumulated, Se partitioning at the whole-plant and tissue levels, and the capacity to distinguish Se from sulfur. Mechanisms of Se hyperaccumulation and its adaptive significance appear to involve constitutive up-regulation of sulfate/selenate uptake and assimilation, associated with elevated concentrations of defense-related hormones. Hyperaccumulation has evolved independently in at least three plant families, probably as an elemental defense mechanism and perhaps mediating elemental allelopathy. Elevated plant Se protects plants from generalist herbivores and pathogens, but also gives rise to the evolution of Se-resistant specialists. Plant Se accumulation affects ecological interactions with herbivores, pollinators, neighboring plants, and microbes. Hyperaccumulation tends to negatively affect Se-sensitive ecological partners while facilitating Se-resistant partners, potentially affecting species composition and Se cycling in seleniferous ecosystems. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  3. Analytical traceability of melon (Cucumis melo var reticulatus): proximate composition, bioactive compounds, and antioxidant capacity in relation to cultivar, plant physiology state, and seasonal variability.

    PubMed

    Maietti, Annalisa; Tedeschi, Paola; Stagno, Caterina; Bordiga, Matteo; Travaglia, Fabiano; Locatelli, Monica; Arlorio, Marco; Brandolini, Vincenzo

    2012-06-01

    Two morphologically different cultivars of Italian melons (Baggio and Giusto) were characterized considering samples harvested in different times, at the beginning (BPP) and at the end of the physiological plant production period (EPP). Proximate composition, protein, minerals, pH, phenolic content, antioxidant capacity, ascorbic acid, carotenoids, condensed tannins, and flavonoids were measured, showing a significant decrease in EPP samples (phenolics, antioxidant capacity, condensed tannins, and flavonoids); ascorbic acid decreased in Giusto cv, carotenoids in Baggio cv. Mineral content increased in either the cultivars (EPP samples). Year-to-year difference was significantly highlighted; the plant growing cycle significantly affected the chemotype. Despite these effects, the Principal Component Analysis (PCA) permitted the discrimination of Baggio from Giusto cv, and the discrimination of BPP from EPP samples as well. © 2012 Institute of Food Technologists®

  4. Effect of azoxystrobin fungicide on the physiological and biochemical indices and ginsenoside contents of ginseng leaves.

    PubMed

    Liang, Shuang; Xu, Xuanwei; Lu, Zhongbin

    2018-04-01

    The impact of fungicide azoxystrobin, applied as foliar spray, on the physiological and biochemical indices and ginsenoside contents of ginseng was studied in ginseng ( Panax ginseng Mey. cv. "Ermaya") under natural environmental conditions. Different concentrations of 25% azoxystrobin SC (150 g a.i./ha and 225 g a.i./ha) on ginseng plants were sprayed three times, and the changes in physiological and biochemical indices and ginsenoside contents of ginseng leaves were tested. Physiological and biochemical indices were measured using a spectrophotometer (Shimadzu UV-2450). Every index was determined three times per replication. Extracts of ginsenosides were analyzed by HPLC (Shimadzu LC20-AB) utilizing a GL-Wondasil C 18 column. Chlorophyll and soluble protein contents were significantly ( p  = 0.05) increased compared with the control by the application of azoxystrobin. Additionally, activities of superoxide dismutase, catalase, ascorbate peroxidase, peroxidase, and ginsenoside contents in azoxystrobin-treated plants were improved, and malondialdehyde content and O 2 - contents were reduced effectively. Azoxystrobin treatments to ginseng plants at all growth stages suggested that the azoxystrobin-induced delay of senescence was due to an enhanced antioxidant enzyme activity protecting the plants from harmful active oxygen species. When the dose of azoxystrobin was 225 g a.i./ha, the effect was more significant. This work suggested that azoxystrobin played a role in delaying senescence by changing physiological and biochemical indices and improving ginsenoside contents in ginseng leaves.

  5. [Effects of soil moisture content and light intensity on the plant growth and leaf physiological characteristics of squash].

    PubMed

    Du, She-ni; Bai, Gang-shuan; Liang, Yin-li

    2011-04-01

    A pot experiment with artificial shading was conducted to study the effects of soil moisture content and light intensity on the plant growth and leaf physiological characteristics of squash variety "Jingyingyihao". Under all test soil moisture conditions, 30% shading promoted the growth of "Jingyingyihao", with the highest yield at 70% - 80% soil relative moisture contents. 70% shading inhibited plant growth severely, only flowering and not bearing fruits, no economic yield produced. In all treatments, there was a similar water consumption trend, i. e., both the daily and the total water consumption decreased with increasing shading and decreasing soil moisture content. Among all treatments, 30% shading and 70% - 80% soil relative moisture contents had the highest water use efficiency (2.36 kg mm(-1) hm(-2)) and water output rate (1.57 kg mm(-1) hm(-2)). The net photosynthetic rate, transpiration rate, stomatal conductance, and chlorophyll content of squash leaves decreased with increasing shading, whereas the intercellular CO2 concentration was in adverse. The leaf protective enzyme activity and proline content decreased with increasing shading, and the leaf MAD content decreased in the order of 70% shading, natural radiation, and 30% shading. Under the three light intensities, the change characteristics of squash leaf photosynthesis, protective enzyme activity, and proline and MAD contents differed with the increase of soil relative moisture content.

  6. Surface Acoustic Waves to Drive Plant Transpiration

    NASA Astrophysics Data System (ADS)

    Gomez, Eliot F.; Berggren, Magnus; Simon, Daniel T.

    2017-03-01

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals—as well as the primary vehicle for current e-plant and phtyo-nanotechnology work—we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.

  7. Surface Acoustic Waves to Drive Plant Transpiration.

    PubMed

    Gomez, Eliot F; Berggren, Magnus; Simon, Daniel T

    2017-03-31

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals-as well as the primary vehicle for current e-plant and phtyo-nanotechnology work-we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.

  8. Physiological Response of Orchids to Mealybugs (Hemiptera: Pseudococcidae) Infestation.

    PubMed

    Kmiec, K; Kot, I; Golan, K; Górska-Drabik, E; Lagowska, B; Rubinowska, K; Michalek, W

    2016-12-01

    The harmfulness of mealybugs resulting from sucking plant sap, secreting honeydew, and transmitting plant viruses can give them the status of serious pests. This study documents the influence of Pseudococcus maritimus (Ehrhorn) and Pseudococcus longispinus (Targioni Tozzetti) infestation on alterations in selected physiological parameters of Phalaenopsis x hybridum 'Innocence'. The condition of the cytoplasmic membranes was expressed as the value of thiobarbituric acid reactive substances. We have determined changes in the activities of catalase and guaiacol peroxidase and measured the following chlorophyll fluorescence parameters: maximum quantum yield of photosystem II (Fv/Fm), effective quantum yield (Y), photochemical quenching (qP), and nonphotochemical quenching (qN). The strongest physiological response of orchids was recorded in the initial period of mealybugs infestation. Prolonged insect feeding suppressed lipid peroxidation, peroxidase and catalase activity, as well as photosynthesis photochemistry. The pattern of changes was dependent on mealybug species. This indicated the complexity of the processes responsible for plant tolerance. Data generated in this study have provided a better understanding of the impact of two mealybug species infestation on Phalaenopsis and should be useful in developing pest management strategies. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Optofluidics of plants

    NASA Astrophysics Data System (ADS)

    Psaltis, Demetri; Vasdekis, Andreas E.; Choi, Jae-Woo

    2016-05-01

    Optofluidics is a tool for synthesizing optical systems, making use of the interaction of light with fluids. In this paper we explore optofluidic mechanisms that have evolved in plants where sunlight and fluidic control combine to define most of the functionality of the plan. We hope that the presentation of how plants function, from an optofluidics point of view, will open a window for the optics community to the vast literature of plant physiology and provide inspiration for new ideas for the design of bio-mimetic optofluidic devices.

  10. Morpho-Physiological and Proteome Level Responses to Cadmium Stress in Sorghum

    PubMed Central

    Kamal, Abu Hena Mostafa; Kim, Sang-Woo; Oh, Myeong-Won; Lee, Moon-Soon; Chung, Keun-Yook; Xin, Zhanguo; Woo, Sun-Hee

    2016-01-01

    Cadmium (Cd) stress may cause serious morphological and physiological abnormalities in addition to altering the proteome in plants. The present study was performed to explore Cd-induced morpho-physiological alterations and their potential associated mechanisms in Sorghum bicolor leaves at the protein level. Ten-day-old sorghum seedlings were exposed to different concentrations (0, 100, and 150 μM) of CdCl2, and different morpho-physiological responses were recorded. The effects of Cd exposure on protein expression patterns in S. bicolor were investigated using two-dimensional gel electrophoresis (2-DE) in samples derived from the leaves of both control and Cd-treated seedlings. The observed morphological changes revealed that the plants treated with Cd displayed dramatically altered shoot lengths, fresh weights and relative water content. In addition, the concentration of Cd was markedly increased by treatment with Cd, and the amount of Cd taken up by the shoots was significantly and directly correlated with the applied concentration of Cd. Using the 2-DE method, a total of 33 differentially expressed protein spots were analyzed using MALDI-TOF/TOF MS. Of these, treatment with Cd resulted in significant increases in 15 proteins and decreases in 18 proteins. Major changes were absorbed in the levels of proteins known to be involved in carbohydrate metabolism, transcriptional regulation, translation and stress responses. Proteomic results revealed that Cd stress had an inhibitory effect on carbon fixation, ATP production and the regulation of protein synthesis. Our study provides insights into the integrated molecular mechanisms involved in responses to Cd and the effects of Cd on the growth and physiological characteristics of sorghum seedlings. We have aimed to provide a reference describing the mechanisms involved in heavy metal damage to plants. PMID:26919231

  11. Agroecology: Implications for plant response to climate change

    USDA-ARS?s Scientific Manuscript database

    Agricultural ecosystems (agroecosystems) represent the balance between the physiological responses of plants and plant canopies and the energy exchanges. Rising temperature and increasing CO2 coupled with an increase in variability of precipitation will create a complex set of interactions on plant ...

  12. Simulation of Plant Physiological Process Using Fuzzy Variables

    Treesearch

    Daniel L. Schmoldt

    1991-01-01

    Qualitative modelling can help us understand and project effects of multiple stresses on trees. It is not practical to collect and correlate empirical data for all combinations of plant/environments and human/climate stresses, especially for mature trees in natural settings. Therefore, a mechanistic model was developed to describe ecophysiological processes. This model...

  13. Effects of ultraviolet-B radiation on the growth, physiology and cannabinoid production of Cannabis sativa L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lydon, J.

    The concentration of cannabinoids in Cannabis sativa L. is correlated with high ultraviolet-B (UV-B) radiation environments. ..delta../sup 9/-Tetrahydrocannabinolic acid and cannabidiolic acid, both major secondary products of C. sativa, absorb UV-B radiation and may function as solar screens. The object of this study was to test the effects of UV-B radiation on the physiology and cannabinoid production of C. sativa. Drug and fiber-type C. sativa were irradiated with three levels of UV-B radiation for 40 days in greenhouse experiments. Physiological measurements on leaf tissues were made by infra-red gas analysis. Drug and fiber-type control plants had similar CO/sub 2/ assimilationmore » rates from 26 to 32/sup 0/C. Drug-type control plant had higher dark respiration rates and stomatal conductances than fiber-type control plants. The concentration of ..delta../sup 9/-THC, but not of other cannabinoids) in both vegetative and reproductive tissues increased with UV-B dose in drug-type plants. None of the cannabinoids in fiber-type plants were affected by UV-B radiation. The increased level of ..delta../sup 9/-THC found in leaves after irradiation may account for the physiological and morphological insensitivity to UV-B radiation in the drug-type plants. However, fiber plants showed no comparable change in the level of cannabidoil (CBD). Resin stripped form fresh fiber-type floral tissue by sonication was spotted on filter paper and irradiated continuously for 7 days. Cannabidiol (CBD) gradually decreased when irradiated but ..delta../sup 9/-THC and cannabichromene did not.« less

  14. Assessment of filtration efficiency and physiological responses of selected plant species to indoor air pollutants (toluene and 2-ethylhexanol) under chamber conditions.

    PubMed

    Hörmann, Vanessa; Brenske, Klaus-Reinhard; Ulrichs, Christian

    2018-01-01

    Three common plant species (Dieffenbachia maculata, Spathiphyllum wallisii, and Asparagus densiflorus) were tested against their capacity to remove the air pollutants toluene (20.0 mg m -3 ) and 2-ethylhexanol (14.6 mg m -3 ) under light or under dark in chamber experiments of 48-h duration. Results revealed only limited pollutant filtration capabilities and indicate that aerial plant parts of the tested species are only of limited value for indoor air quality improvement. The removal rate constant ranged for toluene from 3.4 to 5.7 L h -1  m -2 leaf area with no significant differences between plant species or light conditions (light/dark). The values for 2-ethylhexanol were somewhat lower, fluctuating around 2 L h -1  m -2 leaf area for all plant species tested, whereas differences between light and dark were observed for two of the three species. In addition to pollutant removal, CO 2 fixation/respiration and transpiration as well as quantum yield were evaluated. These physiological characteristics seem to have no major impact on the VOC removal rate constant. Exposure to toluene or 2-ethylhexanol revealed no or only minor effects on D. maculata and S. wallisii. In contrast, a decrease in quantum yield and CO 2 fixation was observed for A. densiflorus when exposed to 2-ethylhexanol or toluene under light, indicating phytotoxic effects in this species.

  15. Plant Habitat (PH)

    NASA Technical Reports Server (NTRS)

    Onate, Bryan

    2016-01-01

    The International Space Station (ISS) will soon have a platform for conducting fundamental research of Large Plants. Plant Habitat (PH) is designed to be a fully controllable environment for high-quality plant physiological research. PH will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional capabilities include leaf temperature and root zone moisture and oxygen sensing. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs. There will be several internal cameras (visible and IR) to monitor and record plant growth and operations.

  16. Electronic plants

    PubMed Central

    Stavrinidou, Eleni; Gabrielsson, Roger; Gomez, Eliot; Crispin, Xavier; Nilsson, Ove; Simon, Daniel T.; Berggren, Magnus

    2015-01-01

    The roots, stems, leaves, and vascular circuitry of higher plants are responsible for conveying the chemical signals that regulate growth and functions. From a certain perspective, these features are analogous to the contacts, interconnections, devices, and wires of discrete and integrated electronic circuits. Although many attempts have been made to augment plant function with electroactive materials, plants’ “circuitry” has never been directly merged with electronics. We report analog and digital organic electronic circuits and devices manufactured in living plants. The four key components of a circuit have been achieved using the xylem, leaves, veins, and signals of the plant as the template and integral part of the circuit elements and functions. With integrated and distributed electronics in plants, one can envisage a range of applications including precision recording and regulation of physiology, energy harvesting from photosynthesis, and alternatives to genetic modification for plant optimization. PMID:26702448

  17. Indirect Plant Defense against Insect Herbivores: A Review

    USDA-ARS?s Scientific Manuscript database

    Plants respond to herbivore attack by launching two types of defenses: direct defense and indirect defense. Direct defense includes all plant traits that increase the resistance of host plants to attacking insect herbivores by affecting the physiology and/or behavior of the attackers. Indirect defe...

  18. Plant poisons: their occurrence, biochemistry and physiological properties.

    PubMed

    Vickery, Margaret

    2010-01-01

    Plants produce poisons as a defence against predators. Many of these substances are biosynthesised from non-protein amino acids by biosynthetic pathways which have been deduced from the results of isotopic tracer analysis. These secondary metabolites have been used by humans over thousands of years, both as drugs and as agents to kill animals and commit homicide.

  19. Sex-specific morphological and physiological differences in the moss Ceratodon purpureus (Dicranales).

    PubMed

    Slate, Mandy L; Rosenstiel, Todd N; Eppley, Sarah M

    2017-11-10

    Dioecy and sexual dimorphism occur in many terrestrial plant species but are especially widespread among the bryophytes. Despite the prevalence of dioecy in non-vascular plants, surprisingly little is known about how fine-scale sex-specific cell and leaf morphological traits are correlated with sex-specific physiology and population sex ratios. Such data are critical to understanding the inter-relationship between sex-specific morphological and physiological characters and how their relationship influences population structure. In this study, these data types were assessed to determine how they vary across three populations within one moss species and whether fine-scale morphological traits scale up to physiological and sex ratio characteristics. Twenty cell-, leaf- and canopy-level traits and two photochemical measurements were compared between sexes and populations of the dioecious moss Ceratodon purpureus . Field population-expressed sex ratios were obtained for the same populations. Male and female plants differed in cell, leaf and photochemical measures. These sexual dimorphisms were female biased, with females having larger and thicker leaves and greater values for chlorophyll fluorescence-based, leaf photochemistry measurements than males. Female traits were also more variable than male traits. Interestingly, field population sex ratios were significantly male biased in two study populations and female biased in the third study population. The results demonstrate that the larger morphology and the greater physiological output of female C. purpureus gametophytes compared with males occurs across populations and is likely to have significant effects on resource allocation and biotic interactions. However, this high level of dimorphism does not explain population sex ratio variation in the three study populations tested. This research lays the groundwork for future studies on how differential sex-specific variation in cell and leaf traits influences bryophyte

  20. Reversible, partial inactivation of plant betaine aldehyde dehydrogenase by betaine aldehyde: mechanism and possible physiological implications.

    PubMed

    Zárate-Romero, Andrés; Murillo-Melo, Darío S; Mújica-Jiménez, Carlos; Montiel, Carmina; Muñoz-Clares, Rosario A

    2016-04-01

    In plants, the last step in the biosynthesis of the osmoprotectant glycine betaine (GB) is the NAD(+)-dependent oxidation of betaine aldehyde (BAL) catalysed by some aldehyde dehydrogenase (ALDH) 10 enzymes that exhibit betaine aldehyde dehydrogenase (BADH) activity. Given the irreversibility of the reaction, the short-term regulation of these enzymes is of great physiological relevance to avoid adverse decreases in the NAD(+):NADH ratio. In the present study, we report that the Spinacia oleracea BADH (SoBADH) is reversibly and partially inactivated by BAL in the absence of NAD(+)in a time- and concentration-dependent mode. Crystallographic evidence indicates that the non-essential Cys(450)(SoBADH numbering) forms a thiohemiacetal with BAL, totally blocking the productive binding of the aldehyde. It is of interest that, in contrast to Cys(450), the catalytic cysteine (Cys(291)) did not react with BAL in the absence of NAD(+) The trimethylammonium group of BAL binds in the same position in the inactivating or productive modes. Accordingly, BAL does not inactivate the C(450)SSoBADH mutant and the degree of inactivation of the A(441)I and A(441)C mutants corresponds to their very different abilities to bind the trimethylammonium group. Cys(450)and the neighbouring residues that participate in stabilizing the thiohemiacetal are strictly conserved in plant ALDH10 enzymes with proven or predicted BADH activity, suggesting that inactivation by BAL is their common feature. Under osmotic stress conditions, this novel partial and reversible covalent regulatory mechanism may contribute to preventing NAD(+)exhaustion, while still permitting the synthesis of high amounts of GB and avoiding the accumulation of the toxic BAL. © 2016 Authors; published by Portland Press Limited.

  1. Feasibility study on mental healthcare using indoor plants for office workers

    NASA Astrophysics Data System (ADS)

    Kubota, Tsuyoshi; Matsumoto, Hiroshi; Genjo, Kaori; Nakano, Takaoki

    2017-10-01

    In recent years, it has become a problem that office workers' stresses affect their intellectual productivity. As one of strategies mitigating the stress while working, many studies on the effect of indoor plants introduced into the office have been conducted. The psychological and physiological effects of indoor plants have been expected to mitigate the office workers' stresses. Also, the effects of green amenities such as improvement of productivity, control of the indoor thermal environment, relaxation and recovery of visual fatigue, and improvement of air quality have been expected. In this study, a field investigation on the green amenity effects of indoor plants on office workers' psychological and physiological responses in an actual office was conducted and discussed. This paper describes the measurement results of the physical environment and workers' psychological and physiological responses under the condition with shelves installed with indoor plants in an office room. It was suggested that indoor plants such as mint, basil and begonia, and a combination of red and green plants were effective for mitigating worker's stresses.

  2. Size-dependent sex allocation in Aconitum gymnandrum (Ranunculaceae): physiological basis and effects of maternal family and environment.

    PubMed

    Zhao, Z-G; Meng, J-L; Fan, B-L; Du, G-Z

    2008-11-01

    Theory predicts size-dependent sex allocation (SDS): flowers on plants with a high-resource status should have larger investment in females than plants with a low-resource status. Through a pot experiment with Aconitum gymnandrum (Ranunculaceae) in the field, we examined the relationship between sex allocation of individual flowers and plant size for different maternal families under different environmental conditions. We also determined the physiological base of variations in plant size. Our results support the prediction of SDS, and show that female-biased allocation with plant size is consistent under different environmental conditions. Negative correlations within families showed a plastic response of sex allocation to plant size. Negative genetic correlations between sex allocation and plant size at the family level indicate a genetic cause of the SDS pattern, although genetic correlation was influenced by environmental factors. Hence, the size-dependency of sex allocation in this species had both plastic and genetic causes. Furthermore, genotypes that grew large also had higher assimilation ability, thus showing a physiological basis for SDS.

  3. Field Guide to Plant Model Systems.

    PubMed

    Chang, Caren; Bowman, John L; Meyerowitz, Elliot M

    2016-10-06

    For the past several decades, advances in plant development, physiology, cell biology, and genetics have relied heavily on the model (or reference) plant Arabidopsis thaliana. Arabidopsis resembles other plants, including crop plants, in many but by no means all respects. Study of Arabidopsis alone provides little information on the evolutionary history of plants, evolutionary differences between species, plants that survive in different environments, or plants that access nutrients and photosynthesize differently. Empowered by the availability of large-scale sequencing and new technologies for investigating gene function, many new plant models are being proposed and studied. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Field Guide to Plant Model Systems

    PubMed Central

    Chang, Caren; Bowman, John L.; Meyerowitz, Elliot M.

    2016-01-01

    For the past several decades, advances in plant development, physiology, cell biology, and genetics have relied heavily on the model (or reference) plant Arabidopsis thaliana. Arabidopsis resembles other plants, including crop plants, in many but by no means all respects. Study of Arabidopsis alone provides little information on the evolutionary history of plants, evolutionary differences between species, plants that survive in different environments, or plants that access nutrients and photosynthesize differently. Empowered by the availability of large-scale sequencing and new technologies for investigating gene function, many new plant models are being proposed and studied. PMID:27716506

  5. The Soil-Plant-Atmosphere System - Past and Present.

    NASA Astrophysics Data System (ADS)

    Berry, J. A.; Baker, I. T.; Randall, D. A.; Sellers, P. J.

    2012-12-01

    Plants with stomata, roots and a vascular system first appeared on earth about 415 million years ago. This evolutionary innovation helped to set in motion non-linear feedback mechanisms that led to an acceleration of the hydrologic cycle over the continents and an expansion of the climate zones favorable for plant (and animal) life. Skeletal soils that developed long before plants came onto the land would have held water and nutrients in their pore space, yet these resources would have been largely unavailable to primitive, surface-dwelling non-vascular plants due to physical limitations on water transport once the surface layer of soil dries. Plants with roots and a vascular system that could span this dry surface layer could gain increased and prolonged access to the water and nutrients stored in the soil for photosynthesis. Maintenance of the hydraulic connections permitting water to be drawn through the vascular system from deep in the soil to the sites of evaporation in the leaves required a cuticle and physiological regulation of stomata. These anatomical and physiological innovations changed properties of the terrestrial surface (albedo, roughness, a vascular system and control of surface conductance) and set in motion complex interactions of the soil - plant - atmosphere system. We will use coupled physiological and meteorological models to examine some of these interactions.

  6. Auxin physiology of the tomato mutant diageotropica

    NASA Technical Reports Server (NTRS)

    Daniel, S. G.; Rayle, D. L.; Cleland, R. E.

    1989-01-01

    The tomato (Lycopersicon esculentum, Mill.) mutant diageotropica (dgt) exhibits biochemical, physiological, and morphological abnormalities that suggest the mutation may have affected a primary site of auxin perception or action. We have compared two aspects of the auxin physiology of dgt and wild-type (VFN8) seedlings: auxin transport and cellular growth parameters. The rates of basipetal indole-3-acetic acid (IAA) polar transport are identical in hypocotyl sections of the two genotypes, but dgt sections have a slightly greater capacity for IAA transport. 2,3,5-Triiodobenzoic acid and ethylene reduce transport in both mutant and wild-type sections. The kinetics of auxin uptake into VFN8 and dgt sections are nearly identical. These results make it unlikely that an altered IAA efflux carrier or IAA uptake symport are responsible for the pleiotropic effects resulting from the dgt mutation. The lack of auxin-induced cell elongation in dgt plants is not due to insufficient turgor, as the osmotic potential of dgt cell sap is less (more negative) than that of VFN8. An auxin-induced increase in wall extensibility, as measured by the Instron technique, only occurs in the VFN8 plants. These data suggest dgt hypocotyls suffer a defect in the sequence of events culminating in auxin-induced cell wall loosening.

  7. Leaf δ15N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated [CO2], temperature and low water availability

    PubMed Central

    Ariz, Idoia; Cruz, Cristina; Neves, Tomé; Irigoyen, Juan J.; Garcia-Olaverri, Carmen; Nogués, Salvador; Aparicio-Tejo, Pedro M.; Aranjuelo, Iker

    2015-01-01

    The natural 15N/14N isotope composition (δ15N) of a tissue is a consequence of its N source and N physiological mechanisms in response to the environment. It could potentially be used as a tracer of N metabolism in plants under changing environmental conditions, where primary N metabolism may be complex, and losses and gains of N fluctuate over time. In order to test the utility of δ15N as an indicator of plant N status in N2-fixing plants grown under various environmental conditions, alfalfa (Medicago sativa L.) plants were subjected to distinct conditions of [CO2] (400 vs. 700 μmol mol−1), temperature (ambient vs. ambient +4°C) and water availability (fully watered vs. water deficiency—WD). As expected, increased [CO2] and temperature stimulated photosynthetic rates and plant growth, whereas these parameters were negatively affected by WD. The determination of δ15N in leaves, stems, roots, and nodules showed that leaves were the most representative organs of the plant response to increased [CO2] and WD. Depletion of heavier N isotopes in plants grown under higher [CO2] and WD conditions reflected decreased transpiration rates, but could also be related to a higher N demand in leaves, as suggested by the decreased leaf N and total soluble protein (TSP) contents detected at 700 μmol mol−1 [CO2] and WD conditions. In summary, leaf δ15N provides relevant information integrating parameters which condition plant responsiveness (e.g., photosynthesis, TSP, N demand, and water transpiration) to environmental conditions. PMID:26322051

  8. Leaf δ(15)N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated [CO2], temperature and low water availability.

    PubMed

    Ariz, Idoia; Cruz, Cristina; Neves, Tomé; Irigoyen, Juan J; Garcia-Olaverri, Carmen; Nogués, Salvador; Aparicio-Tejo, Pedro M; Aranjuelo, Iker

    2015-01-01

    The natural (15)N/(14)N isotope composition (δ(15)N) of a tissue is a consequence of its N source and N physiological mechanisms in response to the environment. It could potentially be used as a tracer of N metabolism in plants under changing environmental conditions, where primary N metabolism may be complex, and losses and gains of N fluctuate over time. In order to test the utility of δ(15)N as an indicator of plant N status in N2-fixing plants grown under various environmental conditions, alfalfa (Medicago sativa L.) plants were subjected to distinct conditions of [CO2] (400 vs. 700 μmol mol(-1)), temperature (ambient vs. ambient +4°C) and water availability (fully watered vs. water deficiency-WD). As expected, increased [CO2] and temperature stimulated photosynthetic rates and plant growth, whereas these parameters were negatively affected by WD. The determination of δ(15)N in leaves, stems, roots, and nodules showed that leaves were the most representative organs of the plant response to increased [CO2] and WD. Depletion of heavier N isotopes in plants grown under higher [CO2] and WD conditions reflected decreased transpiration rates, but could also be related to a higher N demand in leaves, as suggested by the decreased leaf N and total soluble protein (TSP) contents detected at 700 μmol mol(-1) [CO2] and WD conditions. In summary, leaf δ(15)N provides relevant information integrating parameters which condition plant responsiveness (e.g., photosynthesis, TSP, N demand, and water transpiration) to environmental conditions.

  9. Physiological and biochemical characterization of Azospirillum brasilense strains commonly used as plant growth-promoting rhizobacteria.

    PubMed

    Di Salvo, Luciana P; Silva, Esdras; Teixeira, Kátia R S; Cote, Rosalba Esquivel; Pereyra, M Alejandra; García de Salamone, Inés E

    2014-12-01

    Azospirillum is a plant growth-promoting rhizobacteria (PGPR) genus vastly studied and utilized as agriculture inoculants. Isolation of new strains under different environmental conditions allows the access to the genetic diversity and improves the success of inoculation procedures. Historically, the isolation of this genus has been performed by the use of some traditional culture media. In this work we characterized the physiology and biochemistry of five different A. brasilense strains, commonly used as cereal inoculants. The aim of this work is to contribute to pose into revision some concepts concerning the most used protocols to isolate and characterize this bacterium. We characterized their growth in different traditional and non-traditional culture media, evaluated some PGPR mechanisms and characterized their profiles of fatty acid methyl esters and carbon-source utilization. This work shows, for the first time, differences in both profiles, and ACC deaminase activity of A. brasilense strains. Also, we show unexpected results obtained in some of the evaluated culture media. Results obtained here and an exhaustive knowledge revision revealed that it is not appropriate to conclude about bacterial species without analyzing several strains. Also, it is necessary to continue developing studies and laboratory techniques to improve the isolation and characterization protocols. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Physiological Response of Plants Grown on Porous Ceramic Tubes

    NASA Technical Reports Server (NTRS)

    Tsao, David; Okos, Martin

    1997-01-01

    This research involves the manipulation of the root-zone water potential for the purposes of discriminating the rate limiting step in the inorganic nutrient uptake mechanism utilized by higher plants. This reaction sequence includes the pathways controlled by the root-zone conditions such as water tension and gradient concentrations. Furthermore, plant based control mechanisms dictated by various protein productions are differentiated as well. For the nutrients limited by the environmental availability, the kinetics were modeled using convection and diffusion equations. Alternatively, for the nutrients dependent upon enzyme manipulations, the uptakes are modeled using Michaelis-Menten kinetics. In order to differentiate between these various mechanistic steps, an experimental apparatus known as the Porous Ceramic Tube - Nutrient Delivery System (PCT-NDS) was used. Manipulation of the applied suction pressure circulating a nutrient solution through this system imposes a change in the matric component of the water potential. This compensates for the different osmotic components of water potential dictated by nutrient concentration. By maintaining this control over the root-zone conditions, the rate limiting steps in the uptake of the essential nutrients into tomato plants (Lycopersicon esculentum cv. Cherry Elite) were differentiated. Results showed that the uptake of some nutrients were mass transfer limited while others were limited by the enzyme kinetics. Each of these were adequately modeled with calculations and discussions of the parameter estimations provided.

  11. Exogenously Applied Plant Growth Regulators Enhance the Morpho-Physiological Growth and Yield of Rice under High Temperature.

    PubMed

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Ihsan, Zahid; Shah, Adnan N; Wu, Chao; Yousaf, Muhammad; Nasim, Wajid; Alharby, Hesham; Alghabari, Fahad; Huang, Jianliang

    2016-01-01

    A 2-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR) on rice growth and yield attributes under high day (HDT) and high night temperature (HNT). Two rice cultivars (IR-64 and Huanghuazhan) were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA), and triazoles (Tr) were applied. High temperature severely affected rice morphology, and also reduced leaf area, above-, and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more detrimental for grain formation and yield. The Huanghuazhan performed better than IR-64 under high temperature stress with better growth and higher grain yield. Exogenous application of PGRs was helpful in alleviating the adverse effects of high temperature. Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress. The highest grain production by Vc+Ve+MejA+Br treated plants was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature stress. Taken together, these results will be of worth for further understanding the adaptation and survival mechanisms of rice to high temperature and will assist in developing heat-resistant rice germplasm in future.

  12. Common bean varieties demonstrate differential physiological and metabolic responses to the pathogenic fungus Sclerotinia sclerotiorum.

    PubMed

    Robison, Faith M; Turner, Marie F; Jahn, Courtney E; Schwartz, Howard F; Prenni, Jessica E; Brick, Mark A; Heuberger, Adam L

    2018-02-24

    Plant physiology and metabolism are important components of a plant response to microbial pathogens. Physiological resistance of common bean (Phaseolus vulgaris L.) to the fungal pathogen Sclerotinia sclerotiorum has been established, but the mechanisms of resistance are largely unknown. Here, the physiological and metabolic responses of bean varieties that differ in physiological resistance to S. sclerotiorum are investigated. Upon infection, the resistant bean variety A195 had a unique physiological response that included reduced photosynthesis and maintaining a higher leaf surface pH during infection. Leaf metabolomics was performed on healthy tissue adjacent to the necrotic lesion at 16, 24, and 48 hr post inoculation, and 144 metabolites were detected that varied between A195 and Sacramento following infection. The metabolites that varied in leaves included amines/amino acids, organic acids, phytoalexins, and ureides. The metabolic pathways associated with resistance included amine metabolism, uriede-based nitrogen remobilization, antioxidant production, and bean-specific phytoalexin production. A second experiment was conducted in stems of 13 bean genotypes with varying resistance. Stem resistance was associated with phytoalexin production, but unlike leaf metabolism, lipid changes were associated with susceptibility. Taken together, the data supports a multifaceted, physiometabolic response of common bean to S. sclerotiorum that mediates resistance. © 2018 John Wiley & Sons Ltd.

  13. Morphological, Physiological, and Taxonomic Characterization of Actinobacterial Isolates Living as Endophytes of Cacao Pods and Cacao Seeds

    PubMed Central

    Tchinda, Romaric Armel Mouafo; Boudjeko, Thaddée; Simao-Beaunoir, Anne-Marie; Lerat, Sylvain; Tsala, Éric; Monga, Ernest; Beaulieu, Carole

    2016-01-01

    Vascular plants are commonly colonized by endophytic actinobacteria. However, very little is known about the relationship between these microorganisms and cacao fruits. In order to determine the physiological and taxonomic relationships between the members of this community, actinobacteria were isolated from cacao fruits and seeds. Among the 49 isolates recovered, 11 morphologically distinct isolates were selected for further characterization. Sequencing of the 16S rRNA gene allowed the partition of the selected isolates into three phylogenetic clades. Most of the selected endophytic isolates belonged to the Streptomyces violaceusniger clade. Physiological characterization was carried out and a similarity index was used to cluster the isolates. However, clustering based on physiological properties did not match phylogenetic lineages. Isolates were also characterized for traits commonly associated with plant growth-promoting bacteria, including antibiosis and auxin biosynthesis. All isolates exhibited resistance to geldanamycin, whereas only two isolates were shown to produce this antibiotic. Endophytes were inoculated on radish seedlings and most isolates were found to possess plant growth-promoting abilities. These endophytic actinobacteria inhibited the growth of various plant pathogenic fungi and/or bacteria. The present study showed that S. violaceusniger clade members represent a significant part of the actinobacterial community living as endophytes in cacao fruits and seeds. While several members of this clade are known to be geldanamycin producers and efficient biocontrol agents of plant diseases, we herein established the endophytic lifestyle of some of these microorganisms, demonstrating their potential as plant health agents. PMID:26947442

  14. Morphological, Physiological, and Taxonomic Characterization of Actinobacterial Isolates Living as Endophytes of Cacao Pods and Cacao Seeds.

    PubMed

    Tchinda, Romaric Armel Mouafo; Boudjeko, Thaddée; Simao-Beaunoir, Anne-Marie; Lerat, Sylvain; Tsala, Éric; Monga, Ernest; Beaulieu, Carole

    2016-01-01

    Vascular plants are commonly colonized by endophytic actinobacteria. However, very little is known about the relationship between these microorganisms and cacao fruits. In order to determine the physiological and taxonomic relationships between the members of this community, actinobacteria were isolated from cacao fruits and seeds. Among the 49 isolates recovered, 11 morphologically distinct isolates were selected for further characterization. Sequencing of the 16S rRNA gene allowed the partition of the selected isolates into three phylogenetic clades. Most of the selected endophytic isolates belonged to the Streptomyces violaceusniger clade. Physiological characterization was carried out and a similarity index was used to cluster the isolates. However, clustering based on physiological properties did not match phylogenetic lineages. Isolates were also characterized for traits commonly associated with plant growth-promoting bacteria, including antibiosis and auxin biosynthesis. All isolates exhibited resistance to geldanamycin, whereas only two isolates were shown to produce this antibiotic. Endophytes were inoculated on radish seedlings and most isolates were found to possess plant growth-promoting abilities. These endophytic actinobacteria inhibited the growth of various plant pathogenic fungi and/or bacteria. The present study showed that S. violaceusniger clade members represent a significant part of the actinobacterial community living as endophytes in cacao fruits and seeds. While several members of this clade are known to be geldanamycin producers and efficient biocontrol agents of plant diseases, we herein established the endophytic lifestyle of some of these microorganisms, demonstrating their potential as plant health agents.

  15. Morphological and Physiological Alteration of Maize Root Architectures on Drought Stress.

    USDA-ARS?s Scientific Manuscript database

    Drought tolerance is a complex agronomic trait and root characteristics logically play an important role in determining the response of plants to drought stress. Research experiments were conducted to investigate genotypic variations in morphological and physiological responses of roots to drought s...

  16. The emergence of Applied Physiology within the discipline of Physiology.

    PubMed

    Tipton, Charles M

    2016-08-01

    Despite the availability and utilization of the physiology textbooks authored by Albrecht von Haller during the 18th century that heralded the modern age of physiology, not all physicians or physiologists were satisfied with its presentation, contents, or application to medicine. Initial reasons were fundamental disagreements between the "mechanists," represented by Boerhaave, Robinson, and von Haller, and the "vitalists," represented by the faculty and graduates of the Montpellier School of Medicine in France, notably, Bordeu and Barthez. Subsequently, objections originated from Europe, United Kingdom, and the United States in publications that focused not only on the teaching of physiology to medical and secondary students, but on the specific applications of the content of physiology to medicine, health, hygiene, pathology, and chronic diseases. At the turn of the 20th century, texts began to appear with applied physiology in their titles and in 1926, physician Samson Wright published a textbook entitled Applied Physiology that was intended for both medical students and the medical profession. Eleven years later, physicians Best and Taylor published The Physiological Basis of Medical Practice: A University of Toronto Texbook in Applied Physiology Although both sets of authors defined the connection between applied physiology and physiology, they failed to define the areas of physiology that were included within applied physiology. This was accomplished by the American Physiological Society (APS) Publications Committee in 1948 with the publication of the Journal of Appplied Physiology, that stated the word "applied" would broadly denote human physiology whereas the terms stress and environment would broadly include work, exercise, plus industrial, climatic and social factors. NIH established a study section (SS) devoted to applied physiology in 1964 which remained active until 2001 when it became amalgamated into other SSs. Before the end of the 20th century when

  17. Morphological and Physiological Responses of Cotton (Gossypium hirsutum L.) Plants to Salinity

    PubMed Central

    Zhang, Lei; Ma, Huijuan; Chen, Tingting; Pen, Jun; Yu, Shuxun; Zhao, Xinhua

    2014-01-01

    Salinization usually plays a primary role in soil degradation, which consequently reduces agricultural productivity. In this study, the effects of salinity on growth parameters, ion, chlorophyll, and proline content, photosynthesis, antioxidant enzyme activities, and lipid peroxidation of two cotton cultivars, [CCRI-79 (salt tolerant) and Simian 3 (salt sensitive)], were evaluated. Salinity was investigated at 0 mM, 80 mM, 160 mM, and 240 mM NaCl for 7 days. Salinity induced morphological and physiological changes, including a reduction in the dry weight of leaves and roots, root length, root volume, average root diameter, chlorophyll and proline contents, net photosynthesis and stomatal conductance. In addition, salinity caused ion imbalance in plants as shown by higher Na+ and Cl− contents and lower K+, Ca2+, and Mg2+ concentrations. Ion imbalance was more pronounced in CCRI-79 than in Simian3. In the leaves and roots of the salt-tolerant cultivar CCRI-79, increasing levels of salinity increased the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), but reduced catalase (CAT) activity. The activities of SOD, CAT, APX, and GR in the leaves and roots of CCRI-79 were higher than those in Simian 3. CAT and APX showed the greatest H2O2 scavenging activity in both leaves and roots. Moreover, CAT and APX activities in conjunction with SOD seem to play an essential protective role in the scavenging process. These results indicate that CCRI-79 has a more effective protection mechanism and mitigated oxidative stress and lipid peroxidation by maintaining higher antioxidant activities than those in Simian 3. Overall, the chlorophyll a, chlorophyll b, and Chl (a+b) contents, net photosynthetic rate and stomatal conductance, SOD, CAT, APX, and GR activities showed the most significant variation between the two cotton cultivars. PMID:25391141

  18. Combining ability, heritability and genotypic relations of different physiological traits in cacao hybrids

    PubMed Central

    de Almeida, Alex-Alan Furtado; Branco, Márcia Christina da Silva; Costa, Marcio Gilberto Cardoso; Ahnert, Dario

    2017-01-01

    Selecting parents and evaluating progenies is a very important step in breeding programs and involves approaches such as understanding the initial stages of growth and characterizing the variability among genotypes for different parameters, such as physiological, growth, biomass partitioning and nutrient translocation to the aerial part. In these cases, facilitating tools can be used to understand the involved gene dynamics, such as diallel crosses and genetic and phenotypic correlations. Our main hypothesis is that the contrasting phenotypes of these parental genotypes of cocoa used are due to genetic factors, and progenies derived from crosses of these parental genotypes are useful for breeding programs related to plant architecture, physiological parameters and translocation of mineral nutrients. We aimed to evaluate the combining abilities in progenies of cacao (Theobroma cacao L) originating from contrasting parents for canopy vigor. Emphasis was given to the evaluation of morphological and physiological parameters and the phenotypic and genotypic correlations to understand the dynamics of the action of the genes involved, as well as in expression profile from genes of gibberellins biosynthesis pathway in the parents. Fifteen F1 progenies were obtained from crosses of six clones (IMC 67, P4B, PUCALA, SCA 6, SCA 24 and SJ 02) that were evaluated in a randomized complete block design with four replicates of 12 plants per progeny, in a balanced half table diallel scheme. It is possible to identify and select plants and progenies of low, medium and high height, as there is expressive genetic variability for the evaluated parameters, some of these on higher additive effects, others on larger nonadditive effects and others under a balance of these effects. Most physiological parameters evaluated show that for selection of plants with the desired performance, no complex breeding methods would be necessary due to the high and medium heritability observed. Strong

  19. Combining ability, heritability and genotypic relations of different physiological traits in cacao hybrids.

    PubMed

    Pereira, Allan Silva; de Almeida, Alex-Alan Furtado; Branco, Márcia Christina da Silva; Costa, Marcio Gilberto Cardoso; Ahnert, Dario

    2017-01-01

    Selecting parents and evaluating progenies is a very important step in breeding programs and involves approaches such as understanding the initial stages of growth and characterizing the variability among genotypes for different parameters, such as physiological, growth, biomass partitioning and nutrient translocation to the aerial part. In these cases, facilitating tools can be used to understand the involved gene dynamics, such as diallel crosses and genetic and phenotypic correlations. Our main hypothesis is that the contrasting phenotypes of these parental genotypes of cocoa used are due to genetic factors, and progenies derived from crosses of these parental genotypes are useful for breeding programs related to plant architecture, physiological parameters and translocation of mineral nutrients. We aimed to evaluate the combining abilities in progenies of cacao (Theobroma cacao L) originating from contrasting parents for canopy vigor. Emphasis was given to the evaluation of morphological and physiological parameters and the phenotypic and genotypic correlations to understand the dynamics of the action of the genes involved, as well as in expression profile from genes of gibberellins biosynthesis pathway in the parents. Fifteen F1 progenies were obtained from crosses of six clones (IMC 67, P4B, PUCALA, SCA 6, SCA 24 and SJ 02) that were evaluated in a randomized complete block design with four replicates of 12 plants per progeny, in a balanced half table diallel scheme. It is possible to identify and select plants and progenies of low, medium and high height, as there is expressive genetic variability for the evaluated parameters, some of these on higher additive effects, others on larger nonadditive effects and others under a balance of these effects. Most physiological parameters evaluated show that for selection of plants with the desired performance, no complex breeding methods would be necessary due to the high and medium heritability observed. Strong

  20. Plant architecture, growth and radiative transfer for terrestrial and space environments

    NASA Technical Reports Server (NTRS)

    Norman, John M.; Goel, Narendra S.

    1993-01-01

    The overall objective of this research was to develop a hardware implemented model that would incorporate realistic and dynamic descriptions of canopy architecture in physiologically based models of plant growth and functioning, with an emphasis on radiative transfer while accommodating other environmental constraints. The general approach has five parts: a realistic mathematical treatment of canopy architecture, a methodology for combining this general canopy architectural description with a general radiative transfer model, the inclusion of physiological and environmental aspects of plant growth, inclusion of plant phenology, and integration.

  1. Landscape and plant physiological controls on water dynamics within a watershed

    NASA Astrophysics Data System (ADS)

    Hu, J.; Looker, N. T.; Martin, J. T.; Hoylman, Z. H.; Jencso, K. G.

    2014-12-01

    Across the Western U.S., declining snowpacks have resulted in increased water limitation, leading to reduced productivity in high elevation forests. While our current understanding of how forests respond to climate change is typically focused on measuring/modeling the physiological responses and climate feedbacks, our study aims to combine physiology with hydrology to examine how landscape topography modulates the sensitivity of forests to climate. In a forested watershed in Western Montana, we linked climate variability to the physical watershed characteristics and the physiological response of vegetation to examine forest transpiration and productivity rates. Across the entire watershed, we found a strong relationship between productivity and the topographic wetness index, a proxy for soil moisture storage. However, this relationship was highly dependent on the intensity of solar radiation, suggesting that at high elevations productivity was limited by temperature, while at low elevations productivity was limited by moisture. In order to identify the mechanisms responsible for this relationship, we then examined how different coniferous species respond to changing environmental and hydrologic regimes. We first examined transpiration and productivity rates at the hillslope scale at four plots, ranging in elevation and aspect across the watershed. We found trees growing in the hollows had higher transpiration and productivity rates than trees growing in the side slope, but that these differences were more pronounced at lower elevations. We then used oxygen isotope to examine water source use by different species across the watershed. We found that trees growing in the hollows used snowmelt for a longer period. This was most likely due to upslope subsidies of snowmelt water to the hollow areas. However, we found that trees growing at lower elevations used proportionally more snowmelt than trees at the higher elevations. This was most likely due to the trees at lower

  2. The Physiology of Adventitious Roots1

    PubMed Central

    Steffens, Bianka; Rasmussen, Amanda

    2016-01-01

    Adventitious roots are plant roots that form from any nonroot tissue and are produced both during normal development (crown roots on cereals and nodal roots on strawberry [Fragaria spp.]) and in response to stress conditions, such as flooding, nutrient deprivation, and wounding. They are important economically (for cuttings and food production), ecologically (environmental stress response), and for human existence (food production). To improve sustainable food production under environmentally extreme conditions, it is important to understand the adventitious root development of crops both in normal and stressed conditions. Therefore, understanding the regulation and physiology of adventitious root formation is critical for breeding programs. Recent work shows that different adventitious root types are regulated differently, and here, we propose clear definitions of these classes. We use three case studies to summarize the physiology of adventitious root development in response to flooding (case study 1), nutrient deficiency (case study 2), and wounding (case study 3). PMID:26697895

  3. Physiological response and productivity of safflower lines under water deficit and rehydration.

    PubMed

    Bortolheiro, Fernanda P A P; Silva, Marcelo A

    2017-01-01

    Water deficit is one of the major stresses affecting plant growth and productivity worldwide. Plants induce various morphological, physiological, biochemical and molecular changes to adapt to the changing environment. Safflower (Carthamus tinctorius L.), a potential oil producer, is highly adaptable to various environmental conditions, such as lack of rainfall and temperatures. The objective of this work was to study the physiological and production characteristics of six safflower lines in response to water deficit followed by rehydration. The experiment was conducted in a protected environment and consisted of 30 days of water deficit followed by 18 days of rehydration. A differential response in terms of photosynthetic pigments, electrolyte leakage, water potential, relative water content, grain yield, oil content, oil yield and water use efficiency was observed in the six lines under water stress. Lines IMA 04, IMA 10, IMA 14 showed physiological characteristics of drought tolerance, with IMA 14 and IMA 16 being the most productive after water deficit. IMA 02 and IMA 21 lines displayed intermediate characteristics of drought tolerance. It was concluded that the lines responded differently to water deficit stress, showing considerable genetic variation and influence to the environment.

  4. Physiological, morphological and allocation plasticity of a semi-deciduous shrub

    NASA Astrophysics Data System (ADS)

    Zunzunegui, M.; Ain-Lhout, F.; Barradas, M. C. Díaz; Álvarez-Cansino, L.; Esquivias, M. P.; García Novo, F.

    2009-05-01

    The main objective of this study was to look into the phenotypic plasticity of the semi-deciduous Mediterranean shrub, Halimium halimifolium. We studied morphological, allocation and physiological traits to determine which characters were more plastic and contribute in a greater extent to the acclimation ability of the species. We present a phenotypic plasticity index for morphological, physiological and allocation traits, which we have applied in the most contrasted plant communities where the species grows naturally. Data published by Díaz Barradas, M.C., García Novo, F. [1987. The vertical structure of Mediterranean scrub in Doñana National Park (SW Spain). Folia Geobotanica Phytotaxonomica 22, 415-433; 1988. Modificación y extinción de la luz a través de la copa en cuatro especies de matorral en el Parque Nacional de Doñana. Monografias Instituto Pirenaico de Ecologia 4, 503-516; 1990. Seasonal changes in canopy structure in two mediterranean dune shrubs. Journal of Vegetation Science 1, 31-40.], Díaz Barradas, M.C., Zunzunegui, M., García Novo, F. [1999a. Autoecological traits of Halimium halimifolium in contrasted habitats under Mediterranean type climate. Folia Geobotanica 34, 189-208.] and Zunzunegui et al. [Zunzunegui, M., Díaz Barradas, M.C., García Novo, F. 1997. Autoecological notes of Halimium halimifolium. Lagascalia 19, 725-736. Sevilla, Spain; Zunzunegui, M., Díaz Barradas, M.C., Fernández Baco, L., García Novo, F. 1999. Seasonal changes in photochemical efficiency in leaves of Halimium halimifolium a Mediterranean semideciduous shrub. Photosynthetica 36, 17-31; Zunzunegui, M., Díaz Barradas, M.C., García Novo, F. 2000. Different phenotypic response of Halimium halimifolium in relation to groundwater availability. Plant Ecology 148, 165-174; Zunzunegui, M., Díaz Barradas, M.C., Aguilar, F., Ain-Lhout, F., Clavijo, A., García Novo, F. 2002. Growth response of Halimium halimifolium at four sites with different soil water availability

  5. Intercellular and systemic spread of RNA and RNAi in plants.

    PubMed

    Nazim Uddin, Mohammad; Kim, Jae-Yean

    2013-01-01

    Plants possess dynamic networks of intercellular communication that are crucial for plant development and physiology. In plants, intercellular communication involves a combination of ligand-receptor-based apoplasmic signaling, and plasmodesmata and phloem-mediated symplasmic signaling. The intercellular trafficking of macromolecules, including RNAs and proteins, has emerged as a novel mechanism of intercellular communication in plants. Various forms of regulatory RNAs move over distinct cellular boundaries through plasmodesmata and phloem. This plant-specific, non-cell-autonomous RNA trafficking network is also involved in development, nutrient homeostasis, gene silencing, pathogen defense, and many other physiological processes. However, the mechanism underlying macromolecular trafficking in plants remains poorly understood. Current progress made in RNA trafficking research and its biological relevance to plant development will be summarized. Diverse plant regulatory mechanisms of cell-to-cell and systemic long-distance transport of RNAs, including mRNAs, viral RNAs, and small RNAs, will also be discussed. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Winter variation in physiological status of cold stored and freshly lifted semi-evergreen quercus nigra seedlings

    Treesearch

    Rosa C. Goodman; Douglass F. Jacobs; Kent G. Apostol; Barrett C. Wilson; Emile S. Gardiner

    2009-01-01

    Water oak (Quercus nigra L.) is a tardily deciduous species commonly planted in afforestation projects in the Lower Mississippi River Alluvial Valley, USA. Field performance is often marked by low survival rates and top dieback, which may be associated with poor physiological quality of planting stock.

  7. Genetic stability of physiological responses to defoliation in a eucalypt and altered chemical defence in regrowth foliage.

    PubMed

    Borzak, Christina L; Potts, Brad M; Barry, Karen M; Pinkard, Elizabeth A; O'Reilly-Wapstra, Julianne M

    2017-02-01

    Defoliation may initiate physiological recovery and chemical defence mechanisms that allow a plant to improve fitness after damage. Such responses may result in changes in plant resource allocation that influence growth and foliar chemistry. In this study, we investigated the nature and stability of the defoliation response of juvenile plants from three divergent populations of Eucalyptus globulus Labill. A partial defoliation treatment that removed all upper crown leaves and the apical buds was applied to plants sourced from eight families from each of three populations representing contrasting chemical resistance to mammalian herbivory. Growth, photosynthetic rate and chlorophyll content were assessed pre-defoliation and periodically up to 12 weeks post-defoliation. The content of key plant primary and secondary metabolites was assessed pre-defoliation, at 12 weeks post-defoliation in the old foliage (positioned below the point of defoliation) and in the new foliage of the control plants and regrowth (from axillary buds) on the defoliated plants. There were clear treatment impacts on physiological responses, growth and foliar chemical traits, but despite significant constitutive differences in physiology, growth and chemistry the three E. globulus populations did not vary in their response to foliage loss. Distinct physiological responses to defoliation were observed with treatment plants showing significant up-regulation of photosynthetic rate and increased chlorophyll content in the old foliage remaining in the lower crown. There was a significant increase in the concentrations of a number of foliar chemical compounds in the regrowth arising from previously dormant axillary buds compared with new growth derived from apical meristems. There were changes in biomass allocation; defoliated plants had increased branching and leaf biomass, with changes in regrowth morphology to increase light capture. This study argues for multiple responses of E. globulus juveniles

  8. Plant physiological models of heat, water and photoinhibition stress for climate change modelling and agricultural prediction

    NASA Astrophysics Data System (ADS)

    Nicolas, B.; Gilbert, M. E.; Paw U, K. T.

    2015-12-01

    Soil-Vegetation-Atmosphere Transfer (SVAT) models are based upon well understood steady state photosynthetic physiology - the Farquhar-von Caemmerer-Berry model (FvCB). However, representations of physiological stress and damage have not been successfully integrated into SVAT models. Generally, it has been assumed that plants will strive to conserve water at higher temperatures by reducing stomatal conductance or adjusting osmotic balance, until potentially damaging temperatures and the need for evaporative cooling become more important than water conservation. A key point is that damage is the result of combined stresses: drought leads to stomatal closure, less evaporative cooling, high leaf temperature, less photosynthetic dissipation of absorbed energy, all coupled with high light (photosynthetic photon flux density; PPFD). This leads to excess absorbed energy by Photosystem II (PSII) and results in photoinhibition and damage, neither are included in SVAT models. Current representations of photoinhibition are treated as a function of PPFD, not as a function of constrained photosynthesis under heat or water. Thus, it seems unlikely that current models can predict responses of vegetation to climate variability and change. We propose a dynamic model of damage to Rubisco and RuBP-regeneration that accounts, mechanistically, for the interactions between high temperature, light, and constrained photosynthesis under drought. Further, these predictions are illustrated by key experiments allowing model validation. We also integrated this new framework within the Advanced Canopy-Atmosphere-Soil Algorithm (ACASA). Preliminary results show that our approach can be used to predict reasonable photosynthetic dynamics. For instances, a leaf undergoing one day of drought stress will quickly decrease its maximum quantum yield of PSII (Fv/Fm), but it won't recover to unstressed levels for several days. Consequently, cumulative effect of photoinhibition on photosynthesis can cause

  9. Peer Assisted Learning Strategy for Improving Students’ Physiologic Literacy

    NASA Astrophysics Data System (ADS)

    Diana, S.

    2017-09-01

    Research about the implementation of the Peer Assisted Learning (PAL) strategy in Plant Physiology lecture has carried out, in which it aims to improve students’ physiologic literacy. The PAL strategy began with a briefing by the lecturers to the students tutor about pretest questions, followed by the interaction between student tutors with their peers to discuss response problems, terminated by answering responsiveness questions individually. This study used a quasi-experimental method, one - group pre-test post-test design. This design includes a group of students observed in the pre-test phase (tests carried out before PAL treatment) which is then followed by treatment with PAL and ends with post-test. The other students group (control) was given the pre-test and post-test only. The results showed that the PAL strategy can increase student’s physiologic literacy significantly. One of the weaknesses of students’ physiologic literacy is that they have not been able to read the graph. The faculties are encouraged to begin introducing and teaching material using a variety of strategies with scientific literacy aspects, for example teaching research-based material. All students respond positively to the PAL strategy.

  10. Influence of Environmental Changes on Physiology and Development of Polar Vascular Plants

    NASA Astrophysics Data System (ADS)

    Giełwanowska, Irena; Pastorczyk, Marta; Kellmann-Sopyła, Wioleta

    2011-01-01

    Polar vascular plants native to the Arctic and the Antarctic geobotanical zone have been growing and reproducing effectively under difficult environmental conditions, colonizing frozen ground areas formerly covered by ice. Our macroscopic observations and microscopic studies conducted by means of a light microscope (LM) and transmission electron microscope (TEM) concerning the anatomical and ultrastructural observations of vegetative and generative tissue in Cerastium arcticum, Colobanthus quitensis, Silene involucrata, plants from Caryophyllaceae and Deschampsia antarctica, Poa annua and Poa arctica, from Poaceae family. In the studies, special attention was paid to plants coming from diversity habitats where stress factors operated with clearly different intensity. In all examinations plants, differences in anatomy were considerable. In Deschampsia antarctica the adaxial epidermis of hairgrass leaves from a humid microhabitat, bulliform cells differentiated. Mesophyll was composed of cells of irregular shapes and resembled aerenchyma. The ultrastructural observations of mesophyll in all plants showed tight adherence of chloroplasts, mitochondria and peroxisomes, surface deformations of these organelles and formation of characteristic outgrowths and pocket concavities filled with cytoplasm with vesicles and organelles by chloroplasts. In reproduction biology of examined Caryophyllaceae and Poaceae plants growing in natural conditions, in the Arctic and in the Antarctic, and in a greenhouse in Olsztyn showed that this plant develops two types of bisexual flowers. Almost all ovules developed and formed seeds with a completely differentiated embryo both under natural conditions in the Arctic and the Antarctic and in a greenhouse in Olsztyn.

  11. Plant sphingolipids: decoding the enigma of the Sphinx

    PubMed Central

    Pata, Mickael O.; Hannun, Yusuf A.; Ng, Carl K.-Y.

    2009-01-01

    Summary Sphingolipids are a ubiquitous class of lipids present in a variety of organisms including eukaryotes and bacteria. In the last two decades, research has focused on characterizing the individual species of this complex family of lipids, leading to a new field of research called sphingolipidomics. There are at least 500 (and perhaps thousands) different molecular species of sphingolipids in cells, and in Arabidopsis alone, it has been reported that there are at least 168 different sphingolipids. Plant sphingolipids can be divided into four classes: glycosyl inositol phosphoceramides (GIPCs), glycosylceramides, ceramides, and free long chain bases (LCBs). Numerous enzymes involved in plant sphingolipid metabolism have now been cloned and characterized, and, in general, there is broad conservation in the way sphingolipids are metabolized in animals, yeast and plants. Here, we review the diversity of sphingolipids reported in the literature, some of the recent advances in our understanding of sphingolipid metabolism in plants, and the physiological roles that sphingolipids and sphingolipid metabolites play in plant physiology. PMID:20028469

  12. A novel model for estimating organic chemical bioconcentration in agricultural plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, H.; Mackay, D.; Di Guardo, A.

    1995-12-31

    There is increasing recognition that much human and wildlife exposure to organic contaminants can be traced through the food chain to bioconcentration in vegetation. For risk assessment, there is a need for an accurate model to predict organic chemical concentrations in plants. Existing models range from relatively simple correlations of concentrations using octanol-water or octanol-air partition coefficients, to complex models involving extensive physiological data. To satisfy the need for a relatively accurate model of intermediate complexity, a novel approach has been devised to predict organic chemical concentrations in agricultural plants as a function of soil and air concentrations, without themore » need for extensive plant physiological data. The plant is treated as three compartments, namely, leaves, roots and stems (including fruit and seeds). Data readily available from the literature, including chemical properties, volume, density and composition of each compartment; metabolic and growth rate of plant; and readily obtainable environmental conditions at the site are required as input. Results calculated from the model are compared with observed and experimentally-determined concentrations. It is suggested that the model, which includes a physiological database for agricultural plants, gives acceptably accurate predictions of chemical partitioning between plants, air and soil.« less

  13. Degradation of PVC/HC blends. II. Terrestrial plant growth test.

    PubMed

    Pascu, Mihaela; Agafiţei, Gabriela-Elena; Profire, Lenuţa; Vasile, Cornelia

    2009-01-01

    The behavior at degradation by soil burial of some plasticized polyvinyl chloride (PVC) based blends with a variable content of hydrolyzed collagen (HC) has been followed. The modifications induced in the environment by the polymer systems (pH variation, physiologic state of the plants, assimilatory pigments) were studied. Using the growth test of the terrestrial plants, we followed the development of Triticum (wheat), Helianthus annus minimus (little sunflower), Pisum sativum (pea), and Vicia X hybrida hort, during a vegetation cycle. After the harvest, for each plant, the quantities of chlorophyll and carotenoidic pigments and of trace- and macroelements were determined. It was proved that, in the presence of polymer blends, the plants do not suffer morphological and physiological modifications, the products released in the culture soil being not toxic for the plants growth.

  14. Plant Tolerance: A Unique Approach to Control Hemipteran Pests.

    PubMed

    Koch, Kyle G; Chapman, Kaitlin; Louis, Joe; Heng-Moss, Tiffany; Sarath, Gautam

    2016-01-01

    Plant tolerance to insect pests has been indicated to be a unique category of resistance, however, very little information is available on the mechanism of tolerance against insect pests. Tolerance is distinctive in terms of the plant's ability to withstand or recover from herbivore injury through growth and compensatory physiological processes. Because plant tolerance involves plant compensatory characteristics, the plant is able to harbor large numbers of herbivores without interfering with the insect pest's physiology or behavior. Some studies have observed that tolerant plants can compensate photosynthetically by avoiding feedback inhibition and impaired electron flow through photosystem II that occurs as a result of insect feeding. Similarly, the up-regulation of peroxidases and other oxidative enzymes during insect feeding, in conjunction with elevated levels of phytohormones can play an important role in providing plant tolerance to insect pests. Hemipteran insects comprise some of the most economically important plant pests (e.g., aphids, whiteflies), due to their ability to achieve high population growth and their potential to transmit plant viruses. In this review, results from studies on plant tolerance to hemipterans are summarized, and potential models to understand tolerance are presented.

  15. Effects of inert dust on olive (Olea europaea L.) leaf physiological para.

    PubMed

    Nanos, George D; Ilias, Ilias F

    2007-05-01

    Cement factories are major pollutants for the surrounding areas. Inert dust deposition has been found to affect photosynthesis, stomatal functioning and productivity. Very few studies have been conducted on the effects of cement kiln dust on the physiology of perennial fruit crops. Our goal was to study some cement dust effects on olive leaf physiology.effects on olive leaf physiology. On Cement kiln dust has been applied periodically since April 2003 onto olive leaves. Cement dust accumulation and various leaf physiological parameters were evaluated early in July 2003. Measurements were also taken on olive trees close to the cement factory. Leaf dry matter content and specific leaf weight increased with leaf age and dust content. Cement dust decreased leaf total chlorophyll content and chlorophyll a/chlorophyll b ratio. As a result, photosynthetic rate and quantum yield decreased. In addition, transpiration rate slightly decreased, stomatal conductance to H2O and CO2 movement decreased, internal CO2 concentration remained constant and leaf temperature increased. The changes in chlorophyll are possibly due to shading and/or photosystem damage. The changes in stomatal functioning were possibly due to dust accumulation between the peltates or othe effects on stomata. Dust (in this case from a cement kiln) seems to cause substantial changes to leaf physiology, possibly leading to reduced olive productivity. Avoidance of air contamination from cement factories by using available technology should be examined together with any possible methodologies to reduce plant tissue contamination from cement dust. Longterm effects of dust (from cement kiln or other sources) on olive leaf, plant productivity and nutritional quality of edible parts could be studied for conclusive results on dust contamination effects to perennial crops.

  16. Physiological plasticity of epiphytic orchids from two contrasting tropical dry forests

    NASA Astrophysics Data System (ADS)

    de la Rosa-Manzano, Edilia; Andrade, José Luis; Zotz, Gerhard; Reyes-García, Casandra

    2017-11-01

    An enormous variation in light, both temporally and spatially, exists in tropical forests, which represents a potential driver for plant physiological plasticity. The physiological plasticity of epiphytic orchids from two tropical dry forests in response to different light environments was experimentally investigated. Plants of five species were growing in a shade-house under three different light regimes (photosynthetic photon flux density; PPFD of 20, 50 and 70% of total daily incident radiation) under watered and drought conditions. Orchids with similar leaf morphology but from different forests responded differently to the same light environment. Linear leaves of Encyclia nematocaulon avoided drought stress through stomata control and had a notable increase of photosynthesis, lower osmotic potential, and high photosynthetic efficiency under 50% daily PPFD during both drought and watered periods. In contrast, orchids with cylindrical and oval leaves had a marked decrease of these physiological parameters under 50 and 70% of PPFD during the drought period, but then recovered after rewatering. Oval leaves of Lophiaris oerstedii were more sensitive to high light and water availability because they had a strong decrease of their physiological parameters at 70% of PPFD, even during the rewatering period. Contrary to our predictions, E. nematocaulon had low plasticity and Laelia rubescens, from the deciduous forest, was the most able to acclimate. In general, orchids from the drier forest had higher plasticity than those from the more humid forest, which might help them to tolerate the higher fluctuations of light and water availability that occur there.

  17. Functional Plant Types Drive Plant Interactions in a Mediterranean Mountain Range

    PubMed Central

    Macek, Petr; Prieto, Iván; Macková, Jana; Pistón, Nuria; Pugnaire, Francisco I.

    2016-01-01

    Shrubs have positive (facilitation) and negative (competition) effects on understory plants, the net interaction effect being modulated by abiotic conditions. Overall shrubs influence to great extent the structure of plant communities where they have significant presence. Interactions in a plant community are quite diverse but little is known about their variability and effects at community level. Here we checked the effects of co-occurring shrub species from different functional types on a focal understory species, determining mechanisms driving interaction outcome, and tested whether effects measured on the focal species were a proxy for effects measured at the community level. Growth, physiological, and reproductive traits of Euphorbia nicaeensis, our focal species, were recorded on individuals growing in association with four dominant shrub species and in adjacent open areas. We also recorded community composition and environmental conditions in each microhabitat. Shrubs provided environmental conditions for plant growth, which contrasted with open areas, including moister soil, greater N content, higher air temperatures, and lower radiation. Shrub-associated individuals showed lower reproductive effort and greater allocation to growth, while most physiological traits remained unaffected. Euphorbia individuals were bigger and had more leaf N under N-fixing than under non-fixing species. Soil moisture was also higher under N-fixing shrubs; therefore soil conditions in the understory may counter reduced light conditions. There was a significant effect of species identity and functional types in the outcome of plant interactions with consistent effects at individual and community levels. The contrasting allocation strategies to reproduction and growth in Euphorbia plants, either associated or not with shrubs, showed high phenotypic plasticity and evidence its ability to cope with contrasting environmental conditions. PMID:27242863

  18. Functional Plant Types Drive Plant Interactions in a Mediterranean Mountain Range.

    PubMed

    Macek, Petr; Prieto, Iván; Macková, Jana; Pistón, Nuria; Pugnaire, Francisco I

    2016-01-01

    Shrubs have positive (facilitation) and negative (competition) effects on understory plants, the net interaction effect being modulated by abiotic conditions. Overall shrubs influence to great extent the structure of plant communities where they have significant presence. Interactions in a plant community are quite diverse but little is known about their variability and effects at community level. Here we checked the effects of co-occurring shrub species from different functional types on a focal understory species, determining mechanisms driving interaction outcome, and tested whether effects measured on the focal species were a proxy for effects measured at the community level. Growth, physiological, and reproductive traits of Euphorbia nicaeensis, our focal species, were recorded on individuals growing in association with four dominant shrub species and in adjacent open areas. We also recorded community composition and environmental conditions in each microhabitat. Shrubs provided environmental conditions for plant growth, which contrasted with open areas, including moister soil, greater N content, higher air temperatures, and lower radiation. Shrub-associated individuals showed lower reproductive effort and greater allocation to growth, while most physiological traits remained unaffected. Euphorbia individuals were bigger and had more leaf N under N-fixing than under non-fixing species. Soil moisture was also higher under N-fixing shrubs; therefore soil conditions in the understory may counter reduced light conditions. There was a significant effect of species identity and functional types in the outcome of plant interactions with consistent effects at individual and community levels. The contrasting allocation strategies to reproduction and growth in Euphorbia plants, either associated or not with shrubs, showed high phenotypic plasticity and evidence its ability to cope with contrasting environmental conditions.

  19. Influence of Environmental Changes on Physiology and Development of Polar Vascular Plants

    NASA Astrophysics Data System (ADS)

    Giełwanowska, Irena; Pastorczyk, Marta; Kellmann-Sopyła, Wioleta

    2011-01-01

    Polar vascular plants native to the Arctic and the Antarctic geobotanical zone have been growing and reproducing effectively under difficult environmental conditions, colonizing frozen ground areas formerly covered by ice. Our macroscopic observations and microscopic studies conducted by means of a light microscope (LM) and transmission electron microscope (TEM) concerning the anatomical and ultrastructural observations of vegetative and generative tissue in Cerastium arcticum, Colobanthus quitensis, Silene involucrata, plants from Caryophyllaceae and Deschampsia antarctica, Poa annua and Poa arctica, from Poaceae family. In the studies, special attention was paid to plants coming from diversity habitats where stress factors operated with clearly different intensity. In all examinations plants, differences in anatomy were considerable. In Deschampsia antarctica the adaxial epidermis of hairgrass leaves from a humid microhabitat, bulliform cells differentiated. Mesophyll was composed of cells of irregular shapes and resembled aerenchyma. The ultrastructural observations of mesophyll in all plants showed tight adherence of chloroplasts, mitochondria and peroxisomes, surface deformations of these organelles and formation of characteristic outgrowths and pocket concavities filled with cytoplasm with vesicles and organelles by chloroplasts. In reproduction biology of examined Caryophyllaceae and Poaceae plants growing in natural conditions, in the Arctic and in the Antarctic, and in a greenhouse in Olsztyn showed that this plant develops two types of bisexual flowers. Almost all ovules developed and formed seeds with a completely differentiated embryo both under natural conditions in the Arctic and the Antarctic and in a greenhouse in Olsztyn.

  20. Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome

    PubMed Central

    Colla, Giuseppe; Hoagland, Lori; Ruzzi, Maurizio; Cardarelli, Mariateresa; Bonini, Paolo; Canaguier, Renaud; Rouphael, Youssef

    2017-01-01

    Plant-derived protein hydrolysates (PHs) have gained prominence as plant biostimulants because of their potential to increase the germination, productivity and quality of a wide range of horticultural and agronomic crops. Application of PHs can also alleviate the negative effects of abiotic plant stress due to salinity, drought and heavy metals. Recent studies aimed at uncovering the mechanisms regulating these beneficial effects indicate that PHs could be directly affecting plants by stimulating carbon and nitrogen metabolism, and interfering with hormonal activity. Indirect effects could also play a role as PHs could enhance nutrient availability in plant growth substrates, and increase nutrient uptake and nutrient-use efficiency in plants. Moreover, the beneficial effects of PHs also could be due to the stimulation of plant microbiomes. Plants are colonized by an abundant and diverse assortment of microbial taxa that can help plants acquire nutrients and water and withstand biotic and abiotic stress. The substrates provided by PHs, such as amino acids, could provide an ideal food source for these plant-associated microbes. Indeed, recent studies have provided evidence that plant microbiomes are modified by the application of PHs, supporting the hypothesis that PHs might be acting, at least in part, via changes in the composition and activity of these microbial communities. Application of PHs has great potential to meet the twin challenges of a feeding a growing population while minimizing agriculture’s impact on human health and the environment. However, to fully realize the potential of PHs, further studies are required to shed light on the mechanisms conferring the beneficial effects of these products, as well as identify product formulations and application methods that optimize benefits under a range of agro-ecological conditions. PMID:29312427

  1. Morphoanatomical and physiological changes in Bauhinia variegata L. as indicators of herbicide diuron action.

    PubMed

    Lima, Dêmily Andrômeda de; Müller, Caroline; Costa, Alan Carlos; Batista, Priscila Ferreira; Dalvi, Valdnéa Casagrande; Domingos, Marisa

    2017-07-01

    The wide use of the herbicide diuron has compromised surrounding uncultivated areas, resulting in acute and/or chronic damage to non-target plants. Thus, the aim of this research was to evaluate physiological and morphoanatomical responses in Bauhinia variegata L. plants to different doses of diuron. Seedlings of 90-day-old B. variegata were transplanted into 10liter pots. After an acclimation period (about 30 days), treatments consisting of different diuron doses were applied: 0 (control), 400, 800, 1600, and 2400g ai ha -1 . The experiment was conducted in a randomized block design in a 5×5 factorial scheme with five doses of diuron five evaluation times, and five replicates per treatment. Anatomical and physiological injuries were observed in leaves of Bauhina variegata 10h after diuron application. Disruption of waxes was observed on both sides of the leaves of plants exposed since the lowest dose. Plasmolysis in cells were observed in treated leaves; more severe damage was observed in plants exposed to higher doses, resulting in rupture of epidermis. The diuron herbicide also caused gradual reduction in the gas exchange and chlorophyll fluorescence variables. Among the morphoanatomical and physiological variables analyzed, the non-invasive ones (e.g., ETR, Y II , and F v /F m ) may be used as biomarkers of diuron action in association with visible symptoms. In addition, changes in leaf blade waxes and chlorophyll parenchyma damage may also be considered additional leaf biomarkers of diuron herbicide action. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Effects of silicon application on diurnal variations of physiological properties of rice leaves of plants at the heading stage under elevated UV-B radiation

    NASA Astrophysics Data System (ADS)

    Lou, Yun-sheng; Wu, Lei; Lixuan, Ren; Meng, Yan; Shidi, Zhao; Huaiwei, Zhu; Yiwei, Zhang

    2016-02-01

    We investigated the effects of silicon (Si) application on diurnal variations of photosynthetic and transpiration physiological parameters in potted rice ( Oryza sativa L. cv Nanjing 45) at the heading stage. The plants were subjected to two UV-B radiation levels, i.e., reference UV-B (A, ambient, 12.0 kJ m-2 day-1) and elevated UV-B radiation (E, a 20 % higher dose of UV-B than the reference, 14.4 kJ m-2 day-1), and four Si application levels, i.e., Si0 (no silicon supplementation, 0 kg SiO2 ha-1), Si1 (sodium silicate, 100 kg SiO2 ha-1), Si2 (sodium silicate, 200 kg SiO2 ha-1), and Si3 (slag silicon fertilizer, 200 kg SiO2 ha-1). Compared with the reference, elevated UV-B radiation decreased the diurnal mean values of the net photosynthetic rate ( Pn), intercellular carbon dioxide (CO2) concentration ( Ci), transpiration rate ( Tr), stomatal conductivity ( Gs), and water use efficiency (WUE) by 11.3, 5.5, 10.4, 20.3, and 6.3 %, respectively, in plants not supplemented with silicon (Si0), and decreased the above parameters by 3.8-5.5, 0.7-4.8, 4.0-8.7, 7.4-20.2, and 0.7-5.9 %, respectively, in plants treated with silicon (Si1, Si2, and Si3), indicating that silicon application mitigates the negative effects of elevated UV-B radiation. Under elevated UV-B radiation, silicon application (Si1, Si2, and Si3) increased the diurnal mean values of Pn, Ci, Gs, and WUE by 16.9-28.0, 3.5-14.3, 16.8-38.7, and 29.0-51.2 %, respectively, but decreased Tr by 1.9-10.8 %, compared with plants not treated with silicon (E+Si0), indicating that silicon application mitigates the negative effects of elevated UV-B radiation by significantly increasing the P n, C i, G s, and WUE and decreasing the T r of rice. Evident differences existed in mitigating the depressive effects of elevated UV-B radiation on diurnal variations of physiological parameters among different silicon application treatments, exhibiting as Si3>Si2>Si1>Si0. In addition to recycling steel industrial wastes, the

  3. Effects of silicon application on diurnal variations of physiological properties of rice leaves of plants at the heading stage under elevated UV-B radiation.

    PubMed

    Lou, Yun-sheng; Wu, Lei; Lixuan, Ren; Meng, Yan; Shidi, Zhao; Huaiwei, Zhu; Yiwei, Zhang

    2016-02-01

    We investigated the effects of silicon (Si) application on diurnal variations of photosynthetic and transpiration physiological parameters in potted rice (Oryza sativa L. cv Nanjing 45) at the heading stage. The plants were subjected to two UV-B radiation levels, i.e., reference UV-B (A, ambient, 12.0 kJ m(-2) day(-1)) and elevated UV-B radiation (E, a 20% higher dose of UV-B than the reference, 14.4 kJ m(-2) day(-1)), and four Si application levels, i.e., Si0 (no silicon supplementation, 0 kg SiO2 ha(-1)), Si1 (sodium silicate, 100 kg SiO2 ha(-1)), Si2 (sodium silicate, 200 kg SiO2 ha(-1)), and Si3 (slag silicon fertilizer, 200 kg SiO2 ha(-1)). Compared with the reference, elevated UV-B radiation decreased the diurnal mean values of the net photosynthetic rate (Pn), intercellular carbon dioxide (CO2) concentration (Ci), transpiration rate (Tr), stomatal conductivity (Gs), and water use efficiency (WUE) by 11.3, 5.5, 10.4, 20.3, and 6.3%, respectively, in plants not supplemented with silicon (Si0), and decreased the above parameters by 3.8-5.5, 0.7-4.8, 4.0-8.7, 7.4-20.2, and 0.7-5.9%, respectively, in plants treated with silicon (Si1, Si2, and Si3), indicating that silicon application mitigates the negative effects of elevated UV-B radiation. Under elevated UV-B radiation, silicon application (Si1, Si2, and Si3) increased the diurnal mean values of Pn, Ci, Gs, and WUE by 16.9-28.0, 3.5-14.3, 16.8-38.7, and 29.0-51.2%, respectively, but decreased Tr by 1.9-10.8%, compared with plants not treated with silicon (E+Si0), indicating that silicon application mitigates the negative effects of elevated UV-B radiation by significantly increasing the P n, C i, G s, and WUE and decreasing the T r of rice. Evident differences existed in mitigating the depressive effects of elevated UV-B radiation on diurnal variations of physiological parameters among different silicon application treatments, exhibiting as Si3>Si2>Si1>Si0. In addition to recycling steel industrial wastes, the

  4. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption.

    PubMed

    Chen, Wei; Yao, Xiaoqin; Cai, Kunzheng; Chen, Jining

    2011-07-01

    Drought is a major constraint for rice production in the rainfed lowlands in China. Silicon (Si) has been verified to play an important role in enhancing plant resistance to environmental stress. Two near-isogenic lines of rice (Oryza sativa L.), w-14 (drought susceptible) and w-20 (drought resistant), were selected to study the effects of exogenous Si application on the physiological traits and nutritional status of rice under drought stress. In wet conditions, Si supply had no effects on growth and physiological parameters of rice plants. Drought stress was found to reduce dry weight, root traits, water potential, photosynthetic parameters, basal quantum yield (F(v)/F(0)), and maximum quantum efficiency of PSII photochemistry (F(v)/F(m)) in rice plants, while Si application significantly increased photosynthetic rate (Pr), transpiration rate (Tr), F(v)/F(0), and F(v)/F(m) of rice plants under drought stress. In addition, water stress increased K, Na, Ca, Mg, Fe content of rice plants, but Si treatment significantly reduced these nutrient level. These results suggested that silicon application was useful to increase drought resistance of rice through the enhancement of photochemical efficiency and adjustment of the mineral nutrient absorption in rice plants.

  5. Soil type and species diversity influence selection on physiology in Panicum virgatum

    USDA-ARS?s Scientific Manuscript database

    Species diversity influences the productivity and stability of plant communities, but its effect on the evolution of species within those communities is poorly understood. In this study, we tested whether species diversity and soil type influence selection on physiology in switchgrass (Panicum virga...

  6. Differentiation of Staphylococcus aureus from freshly slaughtered poultry and strains 'endemic' to processing plants by biochemical and physiological tests.

    PubMed

    Mead, G C; Norris, A P; Bratchell, N

    1989-02-01

    A comparison was made of 27 'endemic' strains of Staphylococcus aureus and 35 strains from freshly slaughtered birds, isolated at five commercial slaughterhouses processing chickens or turkeys. Of 112 biochemical and physiological tests used, 74 gave results which differed among the strains. Cluster analysis revealed several distinct groupings which were influenced by strain type, processing plant and bird origin; these included a single group at the 72% level of similarity containing most of the 'endemic' strains. In comparison with strains from freshly slaughtered birds, a higher proportion of 'endemic' strains produced fibrinolysin, alpha-glucosidase and urease and were beta-haemolytic on sheep-blood agar. The 'endemic' type also showed a greater tendency to coagulate human but not bovine plasma, and to produce mucoid growth and clumping. The last two properties, relevant to colonization of processing equipment, were less evident in heart infusion broth than in richer media or process water collected during defeathering of the birds.

  7. Science and Measurement Requirements for a Plant Physiology and Functional Types Mission: Measuring the Composition, Function and Health of Global Land and Coastal Ocean Ecosystems

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Rogez, Francois; Green, Rob; Ungar, Steve; Knox, Robert; Asner, Greg; Muller-Karger, Frank; Bissett, Paul; Chekalyuk, Alex; Dierssen, Heidi; hide

    2007-01-01

    This slide presentation reviews the proposed Plant Physiology and Functional Types (PPFT) Mission. The National Academy of Sciences Decadal Survey, placed a critical priority on a Mission to observe distribution and changes in ecosystem functions. The PPFT satellite mission provides the essential measurements needed to assess drivers of change in biodiversity and ecosystem services that affect human welfare. The presentation reviews the science questions that the mission will be designed to answer, the science rationale, the science measurements, the mission concept, the planned instrumentation, the calibration method, and key signal to noise ratios and uniformity requirements.

  8. Plant Tolerance: A Unique Approach to Control Hemipteran Pests

    PubMed Central

    Koch, Kyle G.; Chapman, Kaitlin; Louis, Joe; Heng-Moss, Tiffany; Sarath, Gautam

    2016-01-01

    Plant tolerance to insect pests has been indicated to be a unique category of resistance, however, very little information is available on the mechanism of tolerance against insect pests. Tolerance is distinctive in terms of the plant’s ability to withstand or recover from herbivore injury through growth and compensatory physiological processes. Because plant tolerance involves plant compensatory characteristics, the plant is able to harbor large numbers of herbivores without interfering with the insect pest’s physiology or behavior. Some studies have observed that tolerant plants can compensate photosynthetically by avoiding feedback inhibition and impaired electron flow through photosystem II that occurs as a result of insect feeding. Similarly, the up-regulation of peroxidases and other oxidative enzymes during insect feeding, in conjunction with elevated levels of phytohormones can play an important role in providing plant tolerance to insect pests. Hemipteran insects comprise some of the most economically important plant pests (e.g., aphids, whiteflies), due to their ability to achieve high population growth and their potential to transmit plant viruses. In this review, results from studies on plant tolerance to hemipterans are summarized, and potential models to understand tolerance are presented. PMID:27679643

  9. Comparing cold-stored and freshly lifted water oak (Quercus nigra) seedlings based on physiological parameters

    Treesearch

    Rosa C. Goodman; Kent G. Apostol; Douglass F. Jacobs; Barrett C. Wilson; Emile S. Gardiner

    2007-01-01

    Water oak is often used in afforestation projects in the Lower Mississippi Alluvial Valley, but its field performance is often poor due to low survival rates and severe top dieback immediately after planting. The poor physiological quality of planting stock may be a contributing factor to this transplanting problem. In this study, cold storage was investigated to...

  10. Root features related to plant growth and nutrient removal of 35 wetland plants.

    PubMed

    Lai, Wen-Ling; Wang, Shu-Qiang; Peng, Chang-Lian; Chen, Zhang-He

    2011-07-01

    Morphological, structural, and eco-physiological features of roots, nutrient removal, and correlation between the indices were comparatively studied for 35 emergent wetland plants in small-scale wetlands for further investigation into the hypothesis of two types of wetland plant roots (Chen et al., 2004). Significant differences in root morphological, structural, and eco-physiological features were found among the 35 species. They were divided into two types: fibrous-root plants and thick-root plants. The fibrous-root plants had most or all roots of diameter (D) ≤ 1 mm. Roots of D > 1 mm also had many fine and long lateral roots of D ≤ 1 mm. The roots of these plants were long and had a thin epidermis and a low degree of lignification. The roots of the thick-root plants were almost all thicker than 1 mm, and generally had no further fine lateral roots. The roots were short, smooth, and fleshy, and had a thick epidermis. Root porosity of the fibrous-root plants was higher than that of the thick-root plants (p = 0.001). The aerenchyma of the fibrous-root plants was composed of large cavities which were formed from many small cavities, and distributed radially between the exodermis and vascular tissues. The aerenchyma of the thick-root plants had a large number of small cavities which were distributed in the mediopellis. The fibrous-root plants had a significantly larger root biomass of D ≤ 1 mm, of 1 mm < D < 3 mm, above-ground biomass, total biomass, and longer root system, but shorter root longevity than those of the thick-root plants (p = 0.003, 0.018, 0.020, 0.032, 0.042, 0.001). The fibrous-root plants also had significantly higher radial oxygen loss (ROL), root activity, photosynthetic rate, transpiration rate, and removal rates of total nitrogen and total phosphorus than the thick-root plants (p = 0.001, 0.008, 0.010, 0.004, 0.020, 0.002). The results indicate that significantly different root morphological and structural features existed among different

  11. Physiological and microbial adjustments to diet quality permit facultative herbivory in an omnivorous lizard.

    PubMed

    Kohl, Kevin D; Brun, Antonio; Magallanes, Melisa; Brinkerhoff, Joshua; Laspiur, Alejandro; Acosta, Juan Carlos; Bordenstein, Seth R; Caviedes-Vidal, Enrique

    2016-06-15

    While herbivory is a common feeding strategy in a number of vertebrate classes, less than 4% of squamate reptiles feed primarily on plant material. It has been hypothesized that physiological or microbial limitations may constrain the evolution of herbivory in lizards. Herbivorous lizards exhibit adaptations in digestive morphology and function that allow them to better assimilate plant material. However, it is unknown whether these traits are fixed or perhaps phenotypically flexible as a result of diet. Here, we maintained a naturally omnivorous lizard, Liolaemus ruibali, on a mixed diet of 50% insects and 50% plant material, or a plant-rich diet of 90% plant material. We compared parameters of digestive performance, gut morphology and function, and gut microbial community structure between the two groups. We found that lizards fed the plant-rich diet maintained nitrogen balance and exhibited low minimum nitrogen requirements. Additionally, lizards fed the plant-rich diet exhibited significantly longer small intestines and larger hindguts, demonstrating that gut morphology is phenotypically flexible. Lizards fed the plant-rich diet harbored small intestinal communities that were more diverse and enriched in Melainabacteria and Oscillospira compared with mixed diet-fed lizards. Additionally, the relative abundance of sulfate-reducing bacteria in the small intestine significantly correlated with whole-animal fiber digestibility. Thus, we suggest that physiological and microbial limitations do not sensu stricto constrain the evolution of herbivory in lizards. Rather, ecological context and fitness consequences may be more important in driving the evolution of this feeding strategy. © 2016. Published by The Company of Biologists Ltd.

  12. Gravity related features of plant growth behavior studied with rotating machines

    NASA Technical Reports Server (NTRS)

    Brown, A. H.

    1996-01-01

    Research in plant physiology consists mostly of studies on plant growth because almost everything a plant does is done by growing. Most aspects of plant growth are strongly influenced by the earth's gravity vector. Research on those phenomena address scientific questions specifically about how plants use gravity to guide their growth processes.

  13. Demonstrating the Effects of Light Quality on Plant Growth.

    ERIC Educational Resources Information Center

    Whitesell, J. H.; Garcia, Maria

    1977-01-01

    Describes a lab demonstration that illustrates the effect of different colors or wavelengths of visible light on plant growth and development. This demonstration is appropriate for use in college biology, botany, or plant physiology courses. (HM)

  14. Chemicals on plant surfaces as a heretofore unrecognized, but ecologically informative, class for investigations into plant defence.

    PubMed

    LoPresti, Eric F

    2016-11-01

    Plants produce and utilize a great diversity of chemicals for a variety of physiological and ecological purposes. Many of these chemicals defend plants against herbivores, pathogens and competitors. The location of these chemicals varies within the plant, some are located entirely within plant tissues, others exist in the air- (or water-) space around plants, and still others are secreted onto plant surfaces as exudates. I argue herein that the location of a given defensive chemical has profound implications for its ecological function; specifically, I focus on the characteristics of chemical defences secreted onto plant surfaces. Drawing from a broad literature encompassing ecology, evolution, taxonomy and physiology, I found that these external chemical defences (ECDs) are common and widespread in plants and algae; hundreds of examples have been detailed, yet they are not delineated as a separate class from internal chemical defences (ICDs). I propose a novel typology for ECDs and, using existing literature, explore the ecological consequences of the hypothesized unique characteristics of ECDs. The axis of total or proportional investment in ECDs versus ICDs should be considered as one axis of investment by a plant, in the same way as quantitative versus qualitative chemical defences or induced versus constitutive defences is considered. The ease of manipulating ECDs in many plant systems presents a powerful tool to help test plant defence theory (e.g. optimal defence). The framework outlined here integrates various disciplines of botany and ecology and suggests a need for further examinations of exudates in a variety of contexts, as well as recognition of the effects of within-plant localization of defences. © 2015 Cambridge Philosophical Society.

  15. Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses.

    PubMed

    Marín-Guirao, Lazaro; Ruiz, Juan M; Dattolo, Emanuela; Garcia-Munoz, Rocio; Procaccini, Gabriele

    2016-06-27

    The increase in extreme heat events associated to global warming threatens seagrass ecosystems, likely by affecting key plant physiological processes such as photosynthesis and respiration. Understanding species' ability to acclimate to warming is crucial to better predict their future trends. Here, we study tolerance to warming in two key Mediterranean seagrasses, Posidonia oceanica and Cymodocea nodosa. Stress responses of shallow and deep plants were followed during and after short-term heat exposure in mesocosms by coupling photo-physiological measures with analysis of expression of photosynthesis and stress-related genes. Contrasting tolerance and capacity to heat acclimation were shown by shallow and deep P. oceanica ecotypes. While shallow plants acclimated through respiratory homeostasis and activation of photo-protective mechanisms, deep ones experienced photosynthetic injury and impaired carbon balance. This suggests that P. oceanica ecotypes are thermally adapted to local conditions and that Mediterranean warming will likely diversely affect deep and shallow meadow stands. On the other hand, contrasting mechanisms of heat-acclimation were adopted by the two species. P. oceanica regulates photosynthesis and respiration at the level of control plants while C. nodosa balances both processes at enhanced rates. These acclimation discrepancies are discussed in relation to inherent attributes of the two species.

  16. Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses

    NASA Astrophysics Data System (ADS)

    Marín-Guirao, Lazaro; Ruiz, Juan M.; Dattolo, Emanuela; Garcia-Munoz, Rocio; Procaccini, Gabriele

    2016-06-01

    The increase in extreme heat events associated to global warming threatens seagrass ecosystems, likely by affecting key plant physiological processes such as photosynthesis and respiration. Understanding species’ ability to acclimate to warming is crucial to better predict their future trends. Here, we study tolerance to warming in two key Mediterranean seagrasses, Posidonia oceanica and Cymodocea nodosa. Stress responses of shallow and deep plants were followed during and after short-term heat exposure in mesocosms by coupling photo-physiological measures with analysis of expression of photosynthesis and stress-related genes. Contrasting tolerance and capacity to heat acclimation were shown by shallow and deep P. oceanica ecotypes. While shallow plants acclimated through respiratory homeostasis and activation of photo-protective mechanisms, deep ones experienced photosynthetic injury and impaired carbon balance. This suggests that P. oceanica ecotypes are thermally adapted to local conditions and that Mediterranean warming will likely diversely affect deep and shallow meadow stands. On the other hand, contrasting mechanisms of heat-acclimation were adopted by the two species. P. oceanica regulates photosynthesis and respiration at the level of control plants while C. nodosa balances both processes at enhanced rates. These acclimation discrepancies are discussed in relation to inherent attributes of the two species.

  17. The Use of Grafting to Study Systemic Signaling in Plants.

    PubMed

    Tsutsui, Hiroki; Notaguchi, Michitaka

    2017-08-01

    Grafting has long been an important technique in agriculture. Nowadays, grafting is a widely used technique also to study systemic long-distance signaling in plants. Plants respond to their surrounding environment, and at that time many aspects of their physiology are regulated systemically; these start from local input signals and are followed by the transmission of information to the rest of the plant. For example, soil nutrient conditions, light/photoperiod, and biotic and abiotic stresses affect plants heterogeneously, and plants perceive such information in specific plant tissues or organs. Such environmental cues are crucial determinants of plant growth and development, and plants drastically change their morphology and physiology to adapt to various events in their life. Hitherto, intensive studies have been conducted to understand systemic signaling in plants, and grafting techniques have permitted advances in this field. The breakthrough technique of micrografting in Arabidopsis thaliana was established in 2002 and led to the development of molecular genetic tools in this field. Thereafter, various phenomena of systemic signaling have been identified at the molecular level, including nutrient fixation, flowering, circadian clock and defense against pathogens. The significance of grafting is that it can clarify the transmission of the stimulus and molecules. At present, many micro- and macromolecules have been identified as mobile signals, which are transported through plant vascular tissues to co-ordinate their physiology and development. In this review, we introduce the various grafting techniques that have been developed, we report on the recent advances in the field of plant systemic signaling where grafting techniques have been applied and provide insights for the future. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Ninth International Workshop on Plant Membrane Biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-31

    This report is a compilation of abstracts from papers which were discussed at a workshop on plant membrane biology. Topics include: plasma membrane ATP-ases; plant-environment interactions, membrane receptors; signal transduction; ion channel physiology; biophysics and molecular biology; vaculor H+ pumps; sugar carriers; membrane transport; and cellular structure and function.

  19. Physiological response of Pinus halepensis needles under ozone and water stress conditions.

    PubMed

    Manes, Fausto; Donato, Eugenio; Vitale, Marcello

    2001-10-01

    The aim of this study was to evaluate how physiological processes of potted Pinus halepensis plants, grown under controlled conditions, were affected by ozone (O3) and/or water stress, integrating the gas exchange and biochemical data with fluorescence OJIP polyphasic transient data. Plants submitted to only water stress (T1) and with ozone (T3) showed a strong decrease in stomatal conductance and gas exchange, coinciding with a reduction of maximum yield of photochemistry (varphipo) and very negative values of leaf water potential. Simultaneously, a great increase of both PSII antenna size, indicated by absorption per reaction centre, and electron transport per reaction centre were found. The reduction of photosynthesis in the O3-treated plants (T2) by a slowing down of the Calvin cycle was supported by the increase of related fluorescence parameters such as relative variable fluorescence, heat de-excitation constant, energy de-excitation by spillover, and the decrease of varphipo. We suggest an antagonistic effect between the two stresses to explain the delayed ozone-induced decrease of stomatal conductance values for T3 with respect to T1 plants, by an alteration of the physiological mechanisms of stomatal opening, which involve the increase of intra-cellular free-calcium induced by ABA under co-occurring water shortage. We emphasise the importance of considering the intensity of the individual stress factor in studies concerning the interaction of stresses.

  20. Compulsory winding in the opposite direction of climbing plants promotes yield.

    PubMed

    Kodama, Yoshiaki; Tezuka, Takafumi

    2004-04-01

    The stem of kidney bean plant (Phaseolus vulgaris L., cv. Kentucky 101), a typical dextrorse climbing plant, was subjected to compulsorily sinistrorse-winding. The compulsory sinistrorse-winding induced changes in physiological activities. The number of pods with immature seeds (used as vegetable) was doubled and the fresh weight of the pods also significantly increased by sinistrorse-winding. Compulsory sinistrorse-winding increased chlorophyll content, photosynthetic rate, respiration, nodule formation, N(2)-fixation, glutamine synthetase [L-glutamate: ammonia ligase (ADP-forming); E.C. 6.3.1.2] activity and protein content. Thus, it seems to affect the basic physiological processes that promote physiological activities though the action mechanism is unknown.

  1. Characterization of Gladiolus Germplasm Using Morphological, Physiological, and Molecular Markers.

    PubMed

    Singh, Niraj; Pal, Ashish K; Roy, R K; Tewari, S K; Tamta, Sushma; Rana, T S

    2018-04-01

    Estimation of variability and genetic relationships among breeding materials is one of the important strategies in crop improvement programs. Morphological (plant height, spike length, a number of florets/spike), physiological (chlorophyll content, chlorophyll fluorescence, and rapid light curve parameters) and Directed amplification of minisatellite DNA (DAMD) markers were used to investigate the relationships among 50 Gladiolus cultivars. Cluster analysis based on morphological data, physiological characteristics, molecular markers, and cumulative data discriminated all cultivars into seven, five, seven, and six clusters in the unweighted pair-group method using arithmetic mean (UPGMA) dendrogram, respectively. The results of the principal coordinate analysis (PCoA) also supported UPGMA clustering. Variations among the Gladiolus cultivars at phenotypic level could be due to the changes in physiology, environmental conditions, and genetic variability. DAMD analysis using 10 primers produced 120 polymorphic bands with 80% polymorphism showing polymorphic information content (PIC = 0.28), Marker index (MI = 3.37), Nei's gene diversity (h = 0.267), and Shannon's information index (I = 0.407). Plant height showed a positive significant correlation with Spike length and Number of florets/spike (r = 0.729, p < 0.001 and r = 0.448, p = 0.001 respectively). Whereas, Spike length showed positive significant correlation with Number of florets/spike (r = 0.688, p < 0.001) and Chlorophyll content showed positive significant correlation with Electron transport rate (r = 0.863, p < 0.001). Based on significant morphological variations, high physiological performance, high genetic variability, and genetic distances between cultivars, we have been able to identify diverse cultivars of Gladiolus that could be the potential source as breeding material for further genetic improvement in this ornamental crop.

  2. Contrasting physiological responses of ozone-tolerant Phaseolus vulgaris and Nicotiana tobaccum varieties to ozone and nitric acid

    Treesearch

    Cara M. Stripe; Louis S. Santiago; Pamela E. Padgett

    2014-01-01

    Ozone (O3) and nitric acid (HNO3) are synthesized by the same atmospheric photochemical processes and are almost always co-pollutants. Effects of O3 on plants have been well-elucidated, yet less is known about the effects of HNO3 on plants. We investigated the physiological...

  3. Parasitic plants in agriculture: Chemical ecology of germination and host-plant location as targets for sustainable control: A review

    Treesearch

    Justin B. Runyon; John F. Tooker; Mark C. Mescher; Consuelo M. De Moraes

    2009-01-01

    Parasitic plants are among the most problematic pests of agricultural crops worldwide. Effective means of control are generally lacking, in part because of the close physiological connection between the established parasite and host plant hindering efficient control using traditional methods. Seed germination and host location are critical early-growth stages that...

  4. Ferritins and iron storage in plants.

    PubMed

    Briat, Jean-François; Duc, Céline; Ravet, Karl; Gaymard, Frédéric

    2010-08-01

    Iron is essential for both plant productivity and nutritional quality. Improving plant iron content was attempted through genetic engineering of plants overexpressing ferritins. However, both the roles of these proteins in the plant physiology, and the mechanisms involved in the regulation of their expression are largely unknown. Although the structure of ferritins is highly conserved between plants and animals, their cellular localization differ. Furthermore, regulation of ferritin gene expression in response to iron excess occurs at the transcriptional level in plants, in contrast to animals which regulate ferritin expression at the translational level. In this review, our knowledge of the specific features of plant ferritins is presented, at the level of their (i) structure/function relationships, (ii) cellular localization, and (iii) synthesis regulation during development and in response to various environmental cues. A special emphasis is given to their function in plant physiology, in particular concerning their respective roles in iron storage and in protection against oxidative stress. Indeed, the use of reverse genetics in Arabidopsis recently enabled to produce various knock-out ferritin mutants, revealing strong links between these proteins and protection against oxidative stress. In contrast, their putative iron storage function to furnish iron during various development processes is unlikely to be essential. Ferritins, by buffering iron, exert a fine tuning of the quantity of metal required for metabolic purposes, and help plants to cope with adverse situations, the deleterious effects of which would be amplified if no system had evolved to take care of free reactive iron. Copyright 2009 Elsevier B.V. All rights reserved.

  5. PlantNATsDB: a comprehensive database of plant natural antisense transcripts.

    PubMed

    Chen, Dijun; Yuan, Chunhui; Zhang, Jian; Zhang, Zhao; Bai, Lin; Meng, Yijun; Chen, Ling-Ling; Chen, Ming

    2012-01-01

    Natural antisense transcripts (NATs), as one type of regulatory RNAs, occur prevalently in plant genomes and play significant roles in physiological and pathological processes. Although their important biological functions have been reported widely, a comprehensive database is lacking up to now. Consequently, we constructed a plant NAT database (PlantNATsDB) involving approximately 2 million NAT pairs in 69 plant species. GO annotation and high-throughput small RNA sequencing data currently available were integrated to investigate the biological function of NATs. PlantNATsDB provides various user-friendly web interfaces to facilitate the presentation of NATs and an integrated, graphical network browser to display the complex networks formed by different NATs. Moreover, a 'Gene Set Analysis' module based on GO annotation was designed to dig out the statistical significantly overrepresented GO categories from the specific NAT network. PlantNATsDB is currently the most comprehensive resource of NATs in the plant kingdom, which can serve as a reference database to investigate the regulatory function of NATs. The PlantNATsDB is freely available at http://bis.zju.edu.cn/pnatdb/.

  6. Biological properties of extracellular vesicles and their physiological functions

    PubMed Central

    Yáñez-Mó, María; Siljander, Pia R.-M.; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E.; Buzas, Edit I.; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Silva, Anabela Cordeiro-da; Fais, Stefano; Falcon-Perez, Juan M.; Ghobrial, Irene M.; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H. H.; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Hoen, Esther N.M. Nolte-‘t; Nyman, Tuula A.; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; del Portillo, Hernando A.; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N.; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem; Stukelj, Roman; Van der Grein, Susanne G.; Vasconcelos, M. Helena; Wauben, Marca H. M.; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system. PMID:25979354

  7. Biological properties of extracellular vesicles and their physiological functions.

    PubMed

    Yáñez-Mó, María; Siljander, Pia R-M; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E; Buzas, Edit I; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Cordeiro-da Silva, Anabela; Fais, Stefano; Falcon-Perez, Juan M; Ghobrial, Irene M; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H H; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Nolte-'t Hoen, Esther N M; Nyman, Tuula A; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; Del Portillo, Hernando A; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem; Stukelj, Roman; Van der Grein, Susanne G; Vasconcelos, M Helena; Wauben, Marca H M; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.

  8. Salinity Tolerance Mechanism of Economic Halophytes From Physiological to Molecular Hierarchy for Improving Food Quality

    PubMed Central

    Xu, Chongzhi; Tang, Xiaoli; Shao, Hongbo; Wang, Hongyan

    2016-01-01

    Soil salinity is becoming the key constraints factor to agricultural production. Therefore, the plant especially the crops possessing capacities of salt tolerance will be of great economic significance. The adaptation or tolerance of plant to salinity stress involves a series of physiological, metabolic and molecular mechanisms. Halophytes are the kind of organisms which acquire special salt tolerance mechanisms to respond to the salt tress and ensure normal growth and development under saline conditions in their lengthy evolutionary adaptation, so understanding how halophytes respond to salinity stress will provide us with methods and tactics to foster and develop salt resistant varieties of crops. The strategies in physiological and molecular level adopted by halophytes are various including the changes in photosynthetic and transpiration rate, the sequestration of Na+ to extracellular or vacuole, the regulation of stomata aperture and stomatal density, the accumulation and synthesis of the phytohormones as well as the relevant gene expression underlying these physiological traits, such as the stress signal transduction, the regulation of the transcription factors, the activation and expression of the transporter genes, the activation or inhibition of the synthetases and so on. This review focuses on the research advances of the regulating mechanisms in halophytes from physiological to molecular, which render the halophytes tolerance and adaption to salinity stress. PMID:27252587

  9. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology.

    PubMed

    Ligresti, Alessia; De Petrocellis, Luciano; Di Marzo, Vincenzo

    2016-10-01

    Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ(9)-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field. Copyright © 2016 the American Physiological Society.

  10. Interaction between Japanese flowering cherry trees and some wild animals observed during physiological experiment in fields

    NASA Technical Reports Server (NTRS)

    Nakamura, Teruko

    2003-01-01

    We have studied the weeping habit of Japanese flowering cherry tree in the field of Tama Forest Science Garden, Forestry and Forest Products Research Institute at the foot of Mt. Takao. Since cherry trees at various age were the materials for our plant physiology experiments, our studies were conducted in the fields where we experienced certain difficulties. Even under such difficult environment that was rather unexpected and uncontrollable, we could obtain fruitful results on the growth of cherry tree, and found them scientifically significant, especially in terms of biological effects of gravity on earth. Moreover, a lot of interesting interactions of cherry trees with various kinds of animals were observed in parallel to the plant physiology.

  11. Rice Physiology

    Treesearch

    P.A. Counce; Davidi R. Gealy; Shi-Jean Susana Sung

    2002-01-01

    Physiology occurs tn physical space through chemical reactions constrained by anatomy and morphology, yet guided by genetics. Physiology has been called the logic of life. Genes encode structural and fimcdonal proteins. These proteins are subsequently processed to produce enzymes that direct and govern the biomechanical processes involved in the physiology of the...

  12. Canopy and physiological controls of GPP during drought and heat wave

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Xiao, Xiangming; Zhou, Sha; Ciais, Philippe; McCarthy, Heather; Luo, Yiqi

    2016-04-01

    Vegetation indices (VIs) derived from satellite reflectance measurements are often used as proxies of canopy activity to evaluate the impacts of drought and heat wave on gross primary production (GPP) through production efficiency models. However, GPP is also regulated by physiological processes that cannot be directly detected using reflectance measurements. This study analyzes the co-limitation of canopy and plant physiology (represented by VIs and climate anomalies, respectively) on GPP during the 2003 European summer drought and heat wave for 15 Euroflux sites. During the entire drought period, spatial pattern of GPP anomalies can be quantified by relative changes in VIs. We also find that GPP sensitivity to relative canopy changes is higher for nonforest ecosystems (1.81 ± 0.32%GPP/%enhanced vegetation index), while GPP sensitivity to physiological changes is higher for forest ecosystems (-0.18 ± 0.05 g C m-2 d-1/hPa). A conceptual model is further built to better illustrate the canopy and physiological controls on GPP during drought periods.

  13. Prognosis of physiological disorders in physic nut to N, P, and K deficiency during initial growth.

    PubMed

    Santos, Elcio Ferreira; Macedo, Fernando Giovannetti; Zanchim, Bruno José; Lima, Giuseppina Pace Pereira; Lavres, José

    2017-06-01

    The description of physiological disorders in physic nut plants deficient in nitrogen (N), phosphorus (P) and potassium (K) may help to predict nutritional imbalances before the appearance of visual symptoms and to guide strategies for early nutrient supply. The aim of this study was to evaluate the growth of physic nuts (Jatropha curcas L.) during initial development by analyzing the gas exchange parameters, nutrient uptake and use efficiency, as well as the nitrate reductase and acid phosphatase activities and polyamine content. Plants were grown in a complete nutrient solution and solutions from which N, P or K was omitted. The nitrate reductase activity, phosphatase acid activity, polyamine content and gas exchange parameters from leaves of N, P and K-deficient plants indicates earlier imbalances before the appearance of visual symptoms. Nutrient deficiencies resulted in reduced plant growth, although P- and K-deficient plants retained normal net photosynthesis (A), stomatal conductance (g s ) and instantaneous carboxylation efficiency (k) during the first evaluation periods, as modulated by the P and K use efficiencies. Increased phosphatase acid activity in P-deficient plants may also contribute to the P use efficiency and to A and gs during the first evaluations. Early physiological and biochemical evaluations of N-, P- and K-starved plants may rely on reliable, useful methods to predict early nutritional imbalances. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Adaptive biochemical and physiological responses of Eriobotrya japonica to fluoride air pollution.

    PubMed

    Elloumi, Nada; Zouari, Mohamed; Mezghani, Imed; Ben Abdallah, Ferjani; Woodward, Steve; Kallel, Monem

    2017-09-01

    The biochemical and physiological effects of fluoride were investigated in loquat trees (Eriobotrya japonica) grown in the vicinity of a phosphate fertilizer plant in Tunisia. Photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (E), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities were assessed; along with photosynthetic pigments, lipid peroxidation, electrolytic leakage (EL) and total phenolic contents in foliage and roots of trees at different distances from the phosphate fertilizer plant. All assessed parameters showed significant discrepancies in comparison with unpolluted sites. Obtained results showed high oxidative stress indices including H 2 O 2 , lipid peroxidation, and EL, SOD, CAT and GPx activities and proline contents in leaves and roots at the polluted sites as compared to control. In contrast, leaf Pn, Gs, E and photosynthetic pigment contents were low as compared to the control. These results indicate that even though antioxidant responses increased near the factory, adverse effects on physiology were pronounced.

  15. Plant sphingolipids: decoding the enigma of the Sphinx.

    PubMed

    Pata, Mickael O; Hannun, Yusuf A; Ng, Carl K-Y

    2010-02-01

    Sphingolipids are a ubiquitous class of lipids present in a variety of organisms including eukaryotes and bacteria. In the last two decades, research has focused on characterizing the individual species of this complex family of lipids, which has led to a new field of research called 'sphingolipidomics'. There are at least 500 (and perhaps thousands of) different molecular species of sphingolipids in cells, and in Arabidopsis alone it has been reported that there are at least 168 different sphingolipids. Plant sphingolipids can be divided into four classes: glycosyl inositol phosphoceramides (GIPCs), glycosylceramides, ceramides, and free long-chain bases (LCBs). Numerous enzymes involved in plant sphingolipid metabolism have now been cloned and characterized, and, in general, there is broad conservation in the way in which sphingolipids are metabolized in animals, yeast and plants. Here, we review the diversity of sphingolipids reported in the literature, some of the recent advances in our understanding of sphingolipid metabolism in plants, and the physiological roles that sphingolipids and sphingolipid metabolites play in plant physiology.

  16. The role of silicon in plant tissue culture

    PubMed Central

    Sivanesan, Iyyakkannu; Park, Se Won

    2014-01-01

    Growth and morphogenesis of in vitro cultures of plant cells, tissues, and organs are greatly influenced by the composition of the culture medium. Mineral nutrients are necessary for the growth and development of plants. Several morpho-physiological disorders such as hooked leaves, hyperhydricity, fasciation, and shoot tip necrosis are often associated with the concentration of inorganic nutrient in the tissue culture medium. Silicon (Si) is the most abundant mineral element in the soil. The application of Si has been demonstrated to be beneficial for growth, development and yield of various plants and to alleviate various stresses including nutrient imbalance. Addition of Si to the tissue culture medium improves organogenesis, embryogenesis, growth traits, morphological, anatomical, and physiological characteristics of leaves, enhances tolerance to low temperature and salinity, protects cells and against metal toxicity, prevents oxidative phenolic browning and reduces the incidence of hyperhydricity in various plants. Therefore, Si possesses considerable potential for application in a wide range of plant tissue culture studies such as cryopreservation, organogenesis, micropropagation, somatic embryogenesis and secondary metabolites production. PMID:25374578

  17. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    PubMed Central

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-01-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality. PMID:27258266

  18. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science.

    PubMed

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-06-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.

  19. Overexpression of Tobacco GCN2 Stimulates Multiple Physiological Changes Associated With Stress Tolerance

    PubMed Central

    Li, Ning; Zhang, Song-jie; Zhao, Qi; Long, Yue; Guo, Hao; Jia, Hong-fang; Yang, Yong-xia; Zhang, Hong-ying; Ye, Xie-feng; Zhang, Song-tao

    2018-01-01

    General control non-derepressible-2 (GCN2) is a ubiquitous protein kinase that phosphorylates the α subunit of the eukaryotic initiation factor, eIF2, preventing the initiation of a new cycle of protein synthesis, subsequently reducing the global protein biosynthesis. GCN2 can also regulate the response of plants to biotic and abiotic stresses. In this study, two GCN2 homologs, NtGCN2-1 and NtGCN2-2, were cloned from Nicotiana tabacum, and were predicted to have been derived from their progenitors in N. tomentosiformis and N. sylvestris, respectively. The phosphorylation of NteIF2α could be activated by promoting the expression of NtGCN2 with plant hormones, including salicylic acid (SA), azelaic acid (AZA), methyl jasmonate (MeJA), and by imposition of different stresses (Bemisia tabaci infection, drought, and cold), indicating that NtGCN2 is involved in the response of plants to multiple biotic and abiotic stresses. We also observed that the overexpression of NtGCN2-1 significantly influenced different physiological processes. It promoted seed germination and root elongation. The content of total soluble sugars and reducing sugars were decreased, whereas those of chlorophyll a and b were increased in the GCN2 overexpressing plants. In addition, the overexpressing plants had lower content of reactive oxygen species and exhibited higher antioxidant activities. These physiological alterations could be attributed to the changes in the endogenous phytohormones, decrease in the SA and abscisic acid content, and accumulation of MeJA and AZA. It indicated that the overexpression of NtGCN2 in tobacco, stimulated the plant defense responses via phosphorylation of NteIF2α and regulation of plant hormones, and changes in the antioxidant ability and plant nutrient status. PMID:29910821

  20. Implications of bioactive solute transfer from hosts to parasitic plants.

    PubMed

    Smith, Jason D; Mescher, Mark C; De Moraes, Consuelo M

    2013-08-01

    Parasitic plants--which make their living by extracting nutrients and other resources from other plants--are important components of many natural ecosystems; and some parasitic species are also devastating agricultural pests. To date, most research on plant parasitism has focused on nutrient transfer from host to parasite and the impacts of parasites on host plants. Far less work has addressed potential effects of the translocation of bioactive non-nutrient solutes-such as phytohormones, secondary metabolites, RNAs, and proteins-on the development and physiology of parasitic plants and on their subsequent interactions with other organisms such as insect herbivores. A growing number of recent studies document the transfer of such molecules from hosts to parasites and suggest that they may have significant impacts on parasite physiology and ecology. We review this literature and discuss potential implications for management and priorities for future research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs.

    PubMed

    O'Leary, Brendan; Park, Joonho; Plaxton, William C

    2011-05-15

    PEPC [PEP (phosphoenolpyruvate) carboxylase] is a tightly controlled enzyme located at the core of plant C-metabolism that catalyses the irreversible β-carboxylation of PEP to form oxaloacetate and Pi. The critical role of PEPC in assimilating atmospheric CO(2) during C(4) and Crassulacean acid metabolism photosynthesis has been studied extensively. PEPC also fulfils a broad spectrum of non-photosynthetic functions, particularly the anaplerotic replenishment of tricarboxylic acid cycle intermediates consumed during biosynthesis and nitrogen assimilation. An impressive array of strategies has evolved to co-ordinate in vivo PEPC activity with cellular demands for C(4)-C(6) carboxylic acids. To achieve its diverse roles and complex regulation, PEPC belongs to a small multigene family encoding several closely related PTPCs (plant-type PEPCs), along with a distantly related BTPC (bacterial-type PEPC). PTPC genes encode ~110-kDa polypeptides containing conserved serine-phosphorylation and lysine-mono-ubiquitination sites, and typically exist as homotetrameric Class-1 PEPCs. In contrast, BTPC genes encode larger ~117-kDa polypeptides owing to a unique intrinsically disordered domain that mediates BTPC's tight interaction with co-expressed PTPC subunits. This association results in the formation of unusual ~900-kDa Class-2 PEPC hetero-octameric complexes that are desensitized to allosteric effectors. BTPC is a catalytic and regulatory subunit of Class-2 PEPC that is subject to multi-site regulatory phosphorylation in vivo. The interaction between divergent PEPC polypeptides within Class-2 PEPCs adds another layer of complexity to the evolution, physiological functions and metabolic control of this essential CO(2)-fixing plant enzyme. The present review summarizes exciting developments concerning the functions, post-translational controls and subcellular location of plant PTPC and BTPC isoenzymes.

  2. How insects overcome two-component plant chemical defence: plant β-glucosidases as the main target for herbivore adaptation.

    PubMed

    Pentzold, Stefan; Zagrobelny, Mika; Rook, Fred; Bak, Søren

    2014-08-01

    Insect herbivory is often restricted by glucosylated plant chemical defence compounds that are activated by plant β-glucosidases to release toxic aglucones upon plant tissue damage. Such two-component plant defences are widespread in the plant kingdom and examples of these classes of compounds are alkaloid, benzoxazinoid, cyanogenic and iridoid glucosides as well as glucosinolates and salicinoids. Conversely, many insects have evolved a diversity of counteradaptations to overcome this type of constitutive chemical defence. Here we discuss that such counter-adaptations occur at different time points, before and during feeding as well as during digestion, and at several levels such as the insects’ feeding behaviour, physiology and metabolism. Insect adaptations frequently circumvent or counteract the activity of the plant β-glucosidases, bioactivating enzymes that are a key element in the plant’s two-component chemical defence. These adaptations include host plant choice, non-disruptive feeding guilds and various physiological adaptations as well as metabolic enzymatic strategies of the insect’s digestive system. Furthermore, insect adaptations often act in combination, may exist in both generalists and specialists, and can act on different classes of defence compounds. We discuss how generalist and specialist insects appear to differ in their ability to use these different types of adaptations: in generalists, adaptations are often inducible, whereas in specialists they are often constitutive. Future studies are suggested to investigate in detail how insect adaptations act in combination to overcome plant chemical defences and to allow ecologically relevant conclusions.

  3. Water stress and recovery in the performance of two Eucalyptus globulus clones: physiological and biochemical profiles.

    PubMed

    Correia, Barbara; Pintó-Marijuan, Marta; Neves, Lucinda; Brossa, Ricard; Dias, Maria Celeste; Costa, Armando; Castro, Bruno B; Araújo, Clara; Santos, Conceição; Chaves, Maria Manuela; Pinto, Glória

    2014-04-01

    Eucalyptus plantations are among the most productive forest stands in Portugal and Spain, being mostly used for pulp production and, more recently, as an energy crop. However, the region's Mediterranean climate, with characteristic severe summer drought, negatively affects eucalypt growth and increases mortality. Although the physiological response to water shortage is well characterized for this species, evidence about the plants' recovery ability remains scarce. In order to assess the physiological and biochemical response of Eucalyptus globulus during the recovery phase, two genotypes (AL-18 and AL-10) were submitted to a 3-week water stress period at two different intensities (18 and 25% of field capacity), followed by 1 week of rewatering. Recovery was assessed 1 day and 1 week after rehydration. Drought reduced height, biomass, water potential, NPQ and gas exchange in both genotypes. Contrarily, the levels of pigments, chlorophyll fluorescence parameters (F(v) /F(m) and (φPSII)), MDA and ABA increased. During recovery, the physiological and biochemical profile of stressed plants showed a similar trend: they experienced reversion of altered traits (MDA, ABA, E, g(s), pigments), while other parameters did not recover ((φPSII), NPQ). Furthermore, an overcompensation of CO(2) assimilation was achieved 1 week after rehydration, which was accompanied by greater growth and re-establishment of oxidative balance. Both genotypes were tolerant to the tested conditions, although clonal differences were found. AL-10 was more productive and showed a more rapid and dynamic response to rehydration (namely in carotenoid content, (φPSII) and NPQ) compared to clone AL-18. © 2013 Scandinavian Plant Physiology Society.

  4. Water deficit mechanisms in perennial shrubs Cerasus humilis leaves revealed by physiological and proteomic analyses.

    PubMed

    Yin, Zepeng; Ren, Jing; Zhou, Lijuan; Sun, Lina; Wang, Jiewan; Liu, Yulong; Song, Xingshun

    2016-01-01

    Drought (Water deficit, WD) poses a serious threat to extensively economic losses of trees throughout the world. Chinese dwarf cherry ( Cerasus humilis ) is a good perennial plant for studying the physiological and sophisticated molecular network under WD. The aim of this study is to identify the effect of WD on C. humilis through physiological and global proteomics analysis and improve understanding of the WD resistance of plants. Currently, physiological parameters were applied to investigate C. humilis response to WD. Moreover, we used two-dimensional gel electrophoresis (2DE) to identify differentially expressed proteins in C. humilis leaves subjected to WD (24 d). Furthermore, we also examined the correlation between protein and transcript levels. Several physiological parameters, including relative water content and Pn were reduced by WD. In addition, the malondialdehyde (MDA), relative electrolyte leakage (REL), total soluble sugar, and proline were increased in WD-treated C. humilis . Comparative proteomic analysis revealed 46 protein spots (representing 43 unique proteins) differentially expressed in C. humilis leaves under WD. These proteins were mainly involved in photosynthesis, ROS scavenging, carbohydrate metabolism, transcription, protein synthesis, protein processing, and nitrogen and amino acid metabolisms, respectively. WD promoted the CO 2 assimilation by increase light reaction and Calvin cycle, leading to the reprogramming of carbon metabolism. Moreover, the accumulation of osmolytes (i.e., proline and total soluble sugar) and enhancement of ascorbate-glutathione cycle and glutathione peroxidase/glutathione s-transferase pathway in leaves could minimize oxidative damage of membrane and other molecules under WD. Importantly, the regulation role of carbohydrate metabolisms (e. g. glycolysis, pentose phosphate pathways, and TCA) was enhanced. These findings provide key candidate proteins for genetic improvement of perennial plants metabolism under

  5. Plant hormones and ecophysiology of conifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, W.J.

    1995-07-01

    Over the past 30 years, there have been very substantial fluctuations in the interests of plant scientists in the involvement of plant growth regulators in the control of physiology, growth, and development of plants. In the years following the identification of the five major classes of growth regulators and identification of other groups of compounds of somewhat more restricted interest, an enormous number of papers reported the effects of hormones applied externally to a very wide range of plants. During this period, it became very fashionable to compare effects of hormones with the effects of the environment on developmental andmore » physiological phenomena and to suggest a regulatory role for the hormone(s) in the processes under consideration. Ross et al. (1983) have published a very comprehensive survey of the effects of growth regulators applied externally to conifers, and even 10 years later, it is difficult to improve on what they have done. Nevertheless, in the light of recent changes in our understanding of how growth regulators may work, it is necessary to reexamine this field and ask what we really know about the involvement of growth regulators in the ecophysiology of conifers.« less

  6. Unique Physiological and Transcriptional Shifts under Combinations of Salinity, Drought, and Heat.

    PubMed

    Shaar-Moshe, Lidor; Blumwald, Eduardo; Peleg, Zvi

    2017-05-01

    Climate-change-driven stresses such as extreme temperatures, water deficit, and ion imbalance are projected to exacerbate and jeopardize global food security. Under field conditions, these stresses usually occur simultaneously and cause damages that exceed single stresses. Here, we investigated the transcriptional patterns and morpho-physiological acclimations of Brachypodium dystachion to single salinity, drought, and heat stresses, as well as their double and triple stress combinations. Hierarchical clustering analysis of morpho-physiological acclimations showed that several traits exhibited a gradually aggravating effect as plants were exposed to combined stresses. On the other hand, other morphological traits were dominated by salinity, while some physiological traits were shaped by heat stress. Response patterns of differentially expressed genes, under single and combined stresses (i.e. common stress genes), were maintained only among 37% of the genes, indicating a limited expression consistency among partially overlapping stresses. A comparison between common stress genes and genes that were uniquely expressed only under combined stresses (i.e. combination unique genes) revealed a significant shift from increased intensity to antagonistic responses, respectively. The different transcriptional signatures imply an alteration in the mode of action under combined stresses and limited ability to predict plant responses as different stresses are combined. Coexpression analysis coupled with enrichment analysis revealed that each gene subset was enriched with different biological processes. Common stress genes were enriched with known stress response pathways, while combination unique-genes were enriched with unique processes and genes with unknown functions that hold the potential to improve stress tolerance and enhance cereal productivity under suboptimal field conditions. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. Molecular and Physiological Properties Associated with Zebra Complex Disease in Potatoes and Its Relation with Candidatus Liberibacter Contents in Psyllid Vectors

    PubMed Central

    Alvarado, Veria Y.; Odokonyero, Denis; Duncan, Olivia; Mirkov, T. Erik; Scholthof, Herman B.

    2012-01-01

    Zebra complex (ZC) disease on potatoes is associated with Candidatus Liberibacter solanacearum (CLs), an α-proteobacterium that resides in the plant phloem and is transmitted by the potato psyllid Bactericera cockerelli (Šulc). The name ZC originates from the brown striping in fried chips of infected tubers, but the whole plants also exhibit a variety of morphological features and symptoms for which the physiological or molecular basis are not understood. We determined that compared to healthy plants, stems of ZC-plants accumulate starch and more than three-fold total protein, including gene expression regulatory factors (e.g. cyclophilin) and tuber storage proteins (e.g., patatins), indicating that ZC-affected stems are reprogrammed to exhibit tuber-like physiological properties. Furthermore, the total phenolic content in ZC potato stems was elevated two-fold, and amounts of polyphenol oxidase enzyme were also high, both serving to explain the ZC-hallmark rapid brown discoloration of air-exposed damaged tissue. Newly developed quantitative and/or conventional PCR demonstrated that the percentage of psyllids in laboratory colonies containing detectable levels of CLs and its titer could fluctuate over time with effects on colony prolificacy, but presumed reproduction-associated primary endosymbiont levels remained stable. Potato plants exposed in the laboratory to psyllid populations with relatively low-CLs content survived while exposure of plants to high-CLs psyllids rapidly culminated in a lethal collapse. In conclusion, we identified plant physiological biomarkers associated with the presence of ZC and/or CLs in the vegetative potato plant tissue and determined that the titer of CLs in the psyllid population directly affects the rate of disease development in plants. PMID:22615987

  8. Variation of saponin contents and physiological status in Quillaja saponaria under different environmental conditions.

    PubMed

    Grandón, Angélica S; Espinosa, B Miguel; Ríos, Darcy L; Sánchez, O Manuel; Sáez, C Katia; Hernández, S Víctor; Becerra, A José

    2013-12-01

    Quillaja saponaria (Quillay), an evergreen tree found in Chile, is one of the main sources of saponins. Quillaja saponins have hypocholesterolaemic, anticarcinogenic, antioxidant and pesticidal properties, and are used as adjuvants for vaccines. Samples of Quillay growing at three zones in O'Higgins Region, Chile (Coastal, Central and Mountain zones) were analyzed for content of saponins and physiological status. The results revealed differences in the content of saponins depending on the zone of sample collection. The highest contents were found in samples from the Mountain zone, where the highest saponin contents were accompanied by the lowest foliar nitrogen contents, the highest antioxidant activity and the highest carotenoid contents. The results suggest a physiological and adaptive mechanism of saponins in plants to survive under unfavourable environmental conditions. The results have important implications for a theoretical basis for the design of a reasonable harvest, to avoid the cost of poor quality material, and also to provide a sustainable use and conservation of this important species. Further research on the effects of stress will improve our understanding of the saponins production and their physiological functions in plants, whereas they have generally been studied for their biological and chemical applications.

  9. Comparing Plant and Animal Glutamate Receptors: Common Traits but Different Fates?

    PubMed

    Wudick, Michael M; Michard, Erwan; Oliveira Nunes, Custódio; Feijó, José A

    2018-04-19

    Animal ionotropic glutamate receptors (iGluRs) are ligand-gated channels whose evolution is intimately linked to the one of the nervous system, where the agonist glutamate and co-agonists glycine/D-serine act as neuro-transmitters or -modulators. While iGluRs are specialized in neuronal communication, plant glutamate receptor-like (GLR) homologues have evolved many plant-specific physiological functions, such as sperm signaling in moss, pollen tube growth, root meristem proliferation, innate immune and wound responses. GLRs have been associated with Ca2+ signaling by directly channeling its extracellular influx into the cytosol. Nevertheless, very limited information on functional properties of GLRs is available, and we mostly rely on structure/function data obtained for animal iGluRs to interpret experimental results obtained for plant GLRs. Yet, a deeper characterization and better understanding of plant GLRs is progressively unveiling original and different mode of functions when compared to their mammalian counterparts. Here, we review the function of plant GLRs comparing their predicted structure and physiological roles to the well-documented ones of iGluRs. We conclude that interpreting GLR function based on comparison to their animal counterparts calls for caution, especially when presuming physiological roles and mode of action for plant GLRs from comparison to iGluRs in peripheral, non-neuronal tissues.

  10. Physiological and ionic changes in dwarf coconut seedlings irrigated with saline water

    USDA-ARS?s Scientific Manuscript database

    The use of salt-tolerant plants is an important alternative to cope with the problem of salinity in semi-arid regions. The dwarf coconut palm (Cocos nucifera L.) has emerged as a salt-tolerant crop once established. However, little is known about the physiological mechanisms that may contribute to t...

  11. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants

    PubMed Central

    Khan, M. Iqbal R.; Fatma, Mehar; Per, Tasir S.; Anjum, Naser A.; Khan, Nafees A.

    2015-01-01

    Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. In particular, the significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses; (c) cross-talks potential mechanisms potentially governing SA-induced plant abiotic stress-tolerance; and finally (d) briefly highlights major aspects so far unexplored in the current context. PMID:26175738

  12. The physiology of ex vitro pineapple (Ananas comosus L. Merr. var MD-2) as CAM or C3 is regulated by the environmental conditions.

    PubMed

    Aragón, C; Carvalho, L; González, J; Escalona, M; Amancio, S

    2012-04-01

    Many plant species grown under in vitro controlled conditions can be used as models for the study of physiological processes. Adult pineapple can display CAM physiology while in vitro it functions as a C3 plant. Ex vitro Ananas comosus has plastic morphology and physiology, both easy to modify from C3 to CAM by changing the environmental conditions. The yield of survival for a rentable propagation protocol of pineapple is closely related with the C3/CAM shift and the associated physiological characteristics. In the present work, ex vitro pineapple plants were divided in two sets and subjected to C3 and CAM-inducing environmental conditions, determined by light intensity and relative humidity, respectively, 40 μmol m(-2) s(-1)/85% and 260 μmol m(-2) s(-1)/50%. The results demonstrated that the stress imposed by the environmental conditions switched pineapple plants from C3 to CAM behavior. Comparing to CAM induced, C3-induced pineapple plants showed substandard growth parameters and morphological leaf characteristics but a better rooting process and a higher ABA production, a phenotype closer to adult plants, which are expected to produce fruits in a normal production cycle. We conclude that the upholding of these characteristics is conditioned by low light intensity plus high relative humidity, especially during the first 8 weeks of ex vitro growth. It is expected that the better understanding of pineapple acclimatization will contribute to the design of a protocol to apply as a rentable tool in the pineapple agronomic industry. © Springer-Verlag 2011

  13. Evolution and mechanisms of plant tolerance to flooding stress

    PubMed Central

    Jackson, Michael B.; Ishizawa, Kimiharu; Ito, Osamu

    2009-01-01

    Background In recognition of the 200th anniversary of Charles Darwin's birth, this short article on flooding stress acknowledges not only Darwin's great contribution to the concept of evolution but also to the study of plant physiology. In modern biology, Darwin-inspired reductionist physiology continues to shed light on mechanisms that confer competitive advantage in many varied and challenging environments, including those where flooding is prevalent. Scope Mild flooding is experienced by most land plants but as its severity increases, fewer species are able to grow and survive. At the extreme, a highly exclusive aquatic lifestyle appears to have evolved numerous times over the past 120 million years. Although only 1–2% of angiosperms are aquatics, some of their adaptive characteristics are also seen in those adopting an amphibious lifestyle where flooding is less frequent. Lowland rice, the staple cereal for much of tropical Asia falls into this category. But, even amongst dry-land dwellers, or certain of their sub-populations, modest tolerance to occasional flooding is to be found, for example in wheat. The collection of papers summarized in this article describes advances to the understanding of mechanisms that explain flooding tolerance in aquatic, amphibious and dry-land plants. Work to develop more tolerant crops or manage flood-prone environments more effectively is also included. The experimental approaches range from molecular analyses, through biochemistry and metabolomics to whole-plant physiology, plant breeding and ecology. PMID:19145714

  14. Ecological and population genetics of locally rare plants: A review

    Treesearch

    Simon A. Lei

    2001-01-01

    Plant species with limited dispersal ability, narrow geographical and physiological tolerance ranges, as well as with specific habitat and ecological requirements are likely to be rare. Small and isolated populations and species contain low levels of within-population genetic variation in many plant species. The gene pool of plants is a product of phenotype-environment...

  15. Arbuscular Mycorrhizal Fungus Species Dependency Governs Better Plant Physiological Characteristics and Leaf Quality of Mulberry (Morus alba L.) Seedlings

    PubMed Central

    Shi, Song-Mei; Chen, Ke; Gao, Yuan; Liu, Bei; Yang, Xiao-Hong; Huang, Xian-Zhi; Liu, Gui-Xi; Zhu, Li-Quan; He, Xin-Hua

    2016-01-01

    Understanding the synergic interactions between arbuscular mycorrhizal fungi (AMF) and its host mulberry (Morus alba L.), an important perennial multipurpose plant, has theoretical and practical significance in mulberry plantation, silkworm cultivation, and relevant textile industry. In a greenhouse study, we compared functional distinctions of three genetically different AMF species (Acaulospora scrobiculata, Funneliformis mosseae, and Rhizophagus intraradices) on physiological and growth characteristics as well as leaf quality of 6-month-old mulberry seedlings. Results showed that mulberry was AMF-species dependent, and AMF colonization significantly increased shoot height and taproot length, stem base and taproot diameter, leaf and fibrous root numbers, and shoot and root biomass production. Meanwhile, leaf chlorophyll a or b and carotenoid concentrations, net photosynthetic rate, transpiration rate and stomatal conductance were generally significantly greater, while intercellular CO2 concentration was significantly lower in AMF-inoculated seedlings than in non-AMF-inoculated counterparts. These trends were also generally true for leaf moisture, total nitrogen, all essential amino acids, histidine, proline, soluble protein, sugar, and fatty acid as they were significantly increased under mycorrhization. Among these three tested AMFs, significantly greater effects of AMF on above-mentioned mulberry physiological and growth characteristics ranked as F. mosseae > A. scrobiculata > R. intraradices, whilst on mulberry leaf quality (e.g., nutraceutical values) for better silkworm growth as F. mosseae ≈A. scrobiculata > R. intraradices. In conclusion, our results showed that greater mulberry biomass production, and nutritional quality varied with AMF species or was AMF-species dependent. Such improvements were mainly attributed to AMF-induced positive alterations of mulberry leaf photosynthetic pigments, net photosynthetic rate, transpiration rate, and N

  16. Arbuscular Mycorrhizal Fungus Species Dependency Governs Better Plant Physiological Characteristics and Leaf Quality of Mulberry (Morus alba L.) Seedlings.

    PubMed

    Shi, Song-Mei; Chen, Ke; Gao, Yuan; Liu, Bei; Yang, Xiao-Hong; Huang, Xian-Zhi; Liu, Gui-Xi; Zhu, Li-Quan; He, Xin-Hua

    2016-01-01

    Understanding the synergic interactions between arbuscular mycorrhizal fungi (AMF) and its host mulberry (Morus alba L.), an important perennial multipurpose plant, has theoretical and practical significance in mulberry plantation, silkworm cultivation, and relevant textile industry. In a greenhouse study, we compared functional distinctions of three genetically different AMF species (Acaulospora scrobiculata, Funneliformis mosseae, and Rhizophagus intraradices) on physiological and growth characteristics as well as leaf quality of 6-month-old mulberry seedlings. Results showed that mulberry was AMF-species dependent, and AMF colonization significantly increased shoot height and taproot length, stem base and taproot diameter, leaf and fibrous root numbers, and shoot and root biomass production. Meanwhile, leaf chlorophyll a or b and carotenoid concentrations, net photosynthetic rate, transpiration rate and stomatal conductance were generally significantly greater, while intercellular CO2 concentration was significantly lower in AMF-inoculated seedlings than in non-AMF-inoculated counterparts. These trends were also generally true for leaf moisture, total nitrogen, all essential amino acids, histidine, proline, soluble protein, sugar, and fatty acid as they were significantly increased under mycorrhization. Among these three tested AMFs, significantly greater effects of AMF on above-mentioned mulberry physiological and growth characteristics ranked as F. mosseae > A. scrobiculata > R. intraradices, whilst on mulberry leaf quality (e.g., nutraceutical values) for better silkworm growth as F. mosseae ≈A. scrobiculata > R. intraradices. In conclusion, our results showed that greater mulberry biomass production, and nutritional quality varied with AMF species or was AMF-species dependent. Such improvements were mainly attributed to AMF-induced positive alterations of mulberry leaf photosynthetic pigments, net photosynthetic rate, transpiration rate, and N

  17. Early physiological and biochemical responses of rice seedlings to low concentration of microcystin-LR.

    PubMed

    Azevedo, Catarina C; Azevedo, Joana; Osório, Hugo; Vasconcelos, Vitor; Campos, Alexandre

    2014-03-01

    Microcystin-leucine and arginine (microcystin-LR) is a cyanotoxin produced by cyanobacteria like Microcystis aeruginosa, and it's considered a threat to water quality, agriculture, and human health. Rice (Oryza sativa) is a plant of great importance in human food consumption and economy, with extensive use around the world. It is therefore important to assess the possible effects of using water contaminated with microcystin-LR to irrigate rice crops, in order to ensure a safe, high quality product to consumers. In this study, 12 and 20-day-old plants were exposed during 2 or 7 days to a M. aeruginosa extract containing environmentally relevant microcystin-LR concentrations, 0.26-78 μg/L. Fresh and dry weight of roots and leaves, chlorophyll fluorescence, glutathione S-transferase and glutathione peroxidase activities, and protein identification by mass spectrometry through two-dimensional gel electrophoresis from root and leaf tissues, were evaluated in order to gauge the plant's physiological condition and biochemical response after toxin exposure. Results obtained from plant biomass, chlorophyll fluorescence, and enzyme activity assays showed no significant differences between control and treatment groups. However, proteomics data indicates that plants respond to M. aeruginosa extract containing environmentally relevant microcystin-LR concentrations by changing their metabolism, responding differently to different toxin concentrations. Biological processes most affected were related to protein folding and stress response, protein biosynthesis, cell signalling and gene expression regulation, and energy and carbohydrate metabolism which may denote a toxic effect induced by M. aeruginosa extract and microcystin-LR. The implications of the metabolic alterations in plant physiology and growth require further elucidation.

  18. Controlled Ecological Life Support System: Use of Higher Plants

    NASA Technical Reports Server (NTRS)

    Tibbits, T. W.; Alford, D. K.

    1982-01-01

    Results of two workshops concerning the use of higher plants in Controlled Ecological Life Support Systems (CELSS) are summarized. Criteria for plant selection were identified from these categories: food production, nutrition, oxygen production and carbon dioxide utilization, water recycling, waste recycling, and other morphological and physiological considerations. Types of plant species suitable for use in CELSS, growing procedures, and research priorities were recommended. Also included are productivity values for selected plant species.

  19. Salinity and High Temperature Tolerance in Mungbean [Vigna radiata (L.) Wilczek] from a Physiological Perspective

    PubMed Central

    HanumanthaRao, Bindumadhava; Nair, Ramakrishnan M.; Nayyar, Harsh

    2016-01-01

    Biotic and abiotic constraints seriously affect the productivity of agriculture worldwide. The broadly recognized benefits of legumes in cropping systems—biological nitrogen fixation, improving soil fertility and broadening cereal-based agro-ecologies, are desirable now more than ever. Legume production is affected by hostile environments, especially soil salinity and high temperatures (HTs). Among legumes, mungbean has acceptable intrinsic tolerance mechanisms, but many agro-physiological characteristics of the Vigna species remain to be explored. Mungbean has a distinct advantage of being short-duration and can grow in wide range of soils and environments (as mono or relay legume). This review focuses on salinity and HT stresses on mungbean grown as a fallow crop (mungbean-rice-wheat to replace fallow-rice-wheat) and/or a relay crop in cereal cropping systems. Salinity tolerance comprises multifaceted responses at the molecular, physiological and plant canopy levels. In HTs, adaptation of physiological and biochemical processes gradually may lead to improvement of heat tolerance in plants. At the field level, managing or manipulating cultural practices can mitigate adverse effects of salinity and HT. Greater understanding of physiological and biochemical mechanisms regulating these two stresses will contribute to an evolving profile of the genes, proteins, and metabolites responsible for mungbean survival. We focus on abiotic stresses in legumes in general and mungbean in particular, and highlight gaps that need to be bridged through future mungbean research. Recent findings largely from physiological and biochemical fronts are examined, along with a few agronomic and farm-based management strategies to mitigate stress under field conditions. PMID:27446183

  20. Multiscale Models in the Biomechanics of Plant Growth

    PubMed Central

    Fozard, John A.

    2015-01-01

    Plant growth occurs through the coordinated expansion of tightly adherent cells, driven by regulated softening of cell walls. It is an intrinsically multiscale process, with the integrated properties of multiple cell walls shaping the whole tissue. Multiscale models encode physical relationships to bring new understanding to plant physiology and development. PMID:25729061

  1. Studies on saponin production in tropical medicinal plants Maesa argentea and Maesa lanceolata

    NASA Astrophysics Data System (ADS)

    Faizal, Ahmad; Geelen, Danny

    2015-09-01

    The continuous need for new compounds with important medicinal activities has lead to the identification and characterization of various plant-derived natural products. As a part of this program, we studied the saponin production from two tropical medicinal plants Maesa argentea and M. lanceolata and evaluated several treatments to enhance their saponin production. In this experiment, we present the analyses of saponin production from greenhouse grown plants by means of TLC and HPLC-MS. We observed that the content of saponin from these plants varied depending on organ and physiological age of the plants. In addition, the impact of elicitors on saponin accumulation on in vitro grown plants was analyzed using TLC. The production of saponin was very stable and not affected by treatment with methyl jasmonate, and salicylic acid. In conclusion, Maesa saponins are constitutively produced in plants and the level of these compounds in plants is mainly affected by the developmental or physiological stage.

  2. Calcium and signal transduction in plants

    NASA Technical Reports Server (NTRS)

    Poovaiah, B. W.; Reddy, A. S.

    1993-01-01

    Environmental and hormonal signals control diverse physiological processes in plants. The mechanisms by which plant cells perceive and transduce these signals are poorly understood. Understanding biochemical and molecular events involved in signal transduction pathways has become one of the most active areas of plant research. Research during the last 15 years has established that Ca2+ acts as a messenger in transducing external signals. The evidence in support of Ca2+ as a messenger is unequivocal and fulfills all the requirements of a messenger. The role of Ca2+ becomes even more important because it is the only messenger known so far in plants. Since our last review on the Ca2+ messenger system in 1987, there has been tremendous progress in elucidating various aspects of Ca(2+) -signaling pathways in plants. These include demonstration of signal-induced changes in cytosolic Ca2+, calmodulin and calmodulin-like proteins, identification of different Ca2+ channels, characterization of Ca(2+) -dependent protein kinases (CDPKs) both at the biochemical and molecular levels, evidence for the presence of calmodulin-dependent protein kinases, and increased evidence in support of the role of inositol phospholipids in the Ca(2+) -signaling system. Despite the progress in Ca2+ research in plants, it is still in its infancy and much more needs to be done to understand the precise mechanisms by which Ca2+ regulates a wide variety of physiological processes. The purpose of this review is to summarize some of these recent developments in Ca2+ research as it relates to signal transduction in plants.

  3. Determinants of physiological and perceived physiological stress reactivity in children and adolescents.

    PubMed

    Evans, Brittany E; Greaves-Lord, Kirstin; Euser, Anja S; Tulen, Joke H M; Franken, Ingmar H A; Huizink, Anja C

    2013-01-01

    Abnormal physiological stress reactivity is increasingly investigated as a vulnerability marker for various physical and psychological health problems. However, studies are inconsistent in taking into account potential covariates that may influence the developing stress system. We systematically tested determinants (individual, developmental, environmental and substance use-related) of physiological and perceived physiological stress reactivity. We also examined the relation between physiological and perceived physiological stress reactivity. In a stratified sample of 363 children (7-12 years) and 344 adolescents (13-20 years) from the general population, we examined cortisol, heart rate, respiratory sinus arrhythmia and perceived physiological stress reactivity to a psychosocial stress procedure. Using multivariate linear regression models, we found that individual, developmental, environmental and substance use-related factors were related to each of the stress response indices. These determinant factors were different for each of the stress reactivity indices, and different in children versus adolescents. Perceived physiological stress reactivity predicted cortisol reactivity in adolescents only. All other relations between perceived physiological and physiological stress reactivity were not significant. As physiological stress variables are often examined as vulnerability markers for the development of health problems, we maintain that it is essential that future studies take into consideration factors that may account for found relations. Our study provides an overview and indication of which variables should be considered in the investigation of the relation between physiological stress indices and illness.

  4. Proposed physiologic functions of boron in plants pertinent to animal and human metabolism.

    PubMed Central

    Blevins, D G; Lukaszewski, K M

    1994-01-01

    Boron has been recognized since 1923 as an essential micronutrient element for higher plants. Over the years, many roles for boron in plants have been proposed, including functions in sugar transport, cell wall synthesis and lignification, cell wall structure, carbohydrate metabolism, RNA metabolism, respiration, indole acetic acid metabolism, phenol metabolism and membrane transport. However, the mechanism of boron involvement in each case remains unclear. Recent work has focused on two major plant-cell components: cell walls and membranes. In both, boron could play a structural role by bridging hydroxyl groups. In membranes, it could also be involved in ion transport and redox reactions by stimulating enzymes like nicotinamide adenine dinucleotide and reduced (NADH) oxidase. There is a very narrow window between the levels of boron required by and toxic to plants. The mechanisms of boron toxicity are also unknown. In nitrogen-fixing leguminous plants, foliarly applied boron causes up to a 1000% increase in the concentration of allantoic acid in leaves. In vitro studies show that boron inhibits the manganese-dependent allantoate amidohydrolase, and foliar application of manganese prior to application of boron eliminates allantoic acid accumulation in leaves. Interaction between borate and divalent cations like manganese may alter metabolic pathways, which could explain why higher concentrations of boron can be toxic to plants. PMID:7889877

  5. Plant growth-promoting rhizobacteria and root system functioning

    PubMed Central

    Vacheron, Jordan; Desbrosses, Guilhem; Bouffaud, Marie-Lara; Touraine, Bruno; Moënne-Loccoz, Yvan; Muller, Daniel; Legendre, Laurent; Wisniewski-Dyé, Florence; Prigent-Combaret, Claire

    2013-01-01

    The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture. PMID:24062756

  6. A Physiological and Behavioral Mechanism for Leaf Herbivore-Induced Systemic Root Resistance1[OPEN

    PubMed Central

    Erb, Matthias; Robert, Christelle A.M.; Marti, Guillaume; Lu, Jing; Doyen, Gwladys R.; Villard, Neil; Barrière, Yves; Wolfender, Jean-Luc; Turlings, Ted C.J.

    2015-01-01

    Indirect plant-mediated interactions between herbivores are important drivers of community composition in terrestrial ecosystems. Among the most striking examples are the strong indirect interactions between spatially separated leaf- and root-feeding insects sharing a host plant. Although leaf feeders generally reduce the performance of root herbivores, little is known about the underlying systemic changes in root physiology and the associated behavioral responses of the root feeders. We investigated the consequences of maize (Zea mays) leaf infestation by Spodoptera littoralis caterpillars for the root-feeding larvae of the beetle Diabrotica virgifera virgifera, a major pest of maize. D. virgifera strongly avoided leaf-infested plants by recognizing systemic changes in soluble root components. The avoidance response occurred within 12 h and was induced by real and mimicked herbivory, but not wounding alone. Roots of leaf-infested plants showed altered patterns in soluble free and soluble conjugated phenolic acids. Biochemical inhibition and genetic manipulation of phenolic acid biosynthesis led to a complete disappearance of the avoidance response of D. virgifera. Furthermore, bioactivity-guided fractionation revealed a direct link between the avoidance response of D. virgifera and changes in soluble conjugated phenolic acids in the roots of leaf-attacked plants. Our study provides a physiological mechanism for a behavioral pattern that explains the negative effect of leaf attack on a root-feeding insect. Furthermore, it opens up the possibility to control D. virgifera in the field by genetically mimicking leaf herbivore-induced changes in root phenylpropanoid patterns. PMID:26430225

  7. Carbon allocation to root and shoot systems of woody plants

    Treesearch

    Mark D. Coleman; J.G. Isebrands

    1994-01-01

    Carbon allocation to roots is of widespread and increasing interest due to a growing appreciation of the importance of root processes to whole-plant physiology and plant productivity. Carbon (C) allocation commonly refers to the distribution of C among plant organs (e.g., leaves, stems, roots); however, the term also applies to functional categories within organs such...

  8. Mathematical Modeling Approaches in Plant Metabolomics.

    PubMed

    Fürtauer, Lisa; Weiszmann, Jakob; Weckwerth, Wolfram; Nägele, Thomas

    2018-01-01

    The experimental analysis of a plant metabolome typically results in a comprehensive and multidimensional data set. To interpret metabolomics data in the context of biochemical regulation and environmental fluctuation, various approaches of mathematical modeling have been developed and have proven useful. In this chapter, a general introduction to mathematical modeling is presented and discussed in context of plant metabolism. A particular focus is laid on the suitability of mathematical approaches to functionally integrate plant metabolomics data in a metabolic network and combine it with other biochemical or physiological parameters.

  9. Plant-eriophyoid mite interactions: cellular biochemistry and metabolic responses induced in mite-injured plants. Part I.

    PubMed

    Petanović, Radmila; Kielkiewicz, Malgorzata

    2010-07-01

    This review is a comprehensive study of recent advances related to cytological, biochemical and physiological changes induced in plants in response to eriophyoid mite attack. It has been shown that responses of host plants to eriophyoids are variable. Most of the variability is due to individual eriophyoid mite-plant interactions. Usually, the direction and intensity of changes in eriophyoid-infested plant organs depend on mite genotype, density, or the feeding period, and are strongly differentiated relative to host plant species, cultivar, age and location. Although the mechanisms of changes elicited by eriophyoid mites within plants are not fully understood, in many cases the qualitative and quantitative biochemical status of mite-infested plants are known to affect the performance of consecutive herbivorous arthropods. In future, elucidation of the pathways from eriophyoid mite damage to plant gene activation will be necessary to clarify plant responses and to explain variation in plant tissue damage at the feeding and adjacent sites.

  10. Molecular, physiological and morphological analysis of waterlogging tolerance in clonal genotypes of Theobroma cacao

    USDA-ARS?s Scientific Manuscript database

    In soil, hypoxia and anoxia conditions generated by waterlogging induce changes in genetic morphological, physiological processes, and as well as altering the growth and development of plant The mass propagation of cacao (Theobroma cacao) cuttings-to produce plantlets (clones) is affected by waterlo...

  11. Higher Plants in life support systems: design of a model and plant experimental compartment

    NASA Astrophysics Data System (ADS)

    Hezard, Pauline; Farges, Berangere; Sasidharan L, Swathy; Dussap, Claude-Gilles

    The development of closed ecological life support systems (CELSS) requires full control and efficient engineering for fulfilling the common objectives of water and oxygen regeneration, CO2 elimination and food production. Most of the proposed CELSS contain higher plants, for which a growth chamber and a control system are needed. Inside the compartment the development of higher plants must be understood and modeled in order to be able to design and control the compartment as a function of operating variables. The plant behavior must be analyzed at different sub-process scales : (i) architecture and morphology describe the plant shape and lead to calculate the morphological parameters (leaf area, stem length, number of meristems. . . ) characteristic of life cycle stages; (ii) physiology and metabolism of the different organs permit to assess the plant composition depending on the plant input and output rates (oxygen, carbon dioxide, water and nutrients); (iii) finally, the physical processes are light interception, gas exchange, sap conduction and root uptake: they control the available energy from photosynthesis and the input and output rates. These three different sub-processes are modeled as a system of equations using environmental and plant parameters such as light intensity, temperature, pressure, humidity, CO2 and oxygen partial pressures, nutrient solution composition, total leaf surface and leaf area index, chlorophyll content, stomatal conductance, water potential, organ biomass distribution and composition, etc. The most challenging issue is to develop a comprehensive and operative mathematical model that assembles these different sub-processes in a unique framework. In order to assess the parameters for testing a model, a polyvalent growth chamber is necessary. It should permit a controlled environment in order to test and understand the physiological response and determine the control strategy. The final aim of this model is to have an envi

  12. Sensitivity of Terrestrial Water and Energy Budgets to CO2-Physiological Forcing: An Investigation Using an Offline Land Model

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, Ranjith; Bala, Govindsamy; Jayaraman, Mathangi; Cao, Long; Nemani, Ramakrishna; Ravindranath, N. H.

    2011-01-01

    Increasing concentrations of atmospheric carbon dioxide (CO2) influence climate by suppressing canopy transpiration in addition to its well-known greenhouse gas effect. The decrease in plant transpiration is due to changes in plant physiology (reduced opening of plant stomata). Here, we quantify such changes in water flux for various levels of CO2 concentrations using the National Center for Atmospheric Research s (NCAR) Community Land Model. We find that photosynthesis saturates after 800 ppmv (parts per million, by volume) in this model. However, unlike photosynthesis, canopy transpiration continues to decline at about 5.1% per 100 ppmv increase in CO2 levels. We also find that the associated reduction in latent heat flux is primarily compensated by increased sensible heat flux. The continued decline in canopy transpiration and subsequent increase in sensible heat flux at elevated CO2 levels implies that incremental warming associated with the physiological effect of CO2 will not abate at higher CO2 concentrations, indicating important consequences for the global water and carbon cycles from anthropogenic CO2 emissions. Keywords: CO2-physiological effect, CO2-fertilization, canopy transpiration, water cycle, runoff, climate change 1.

  13. Challenges in tracing the fate and effects of atmospheric polycyclic aromatic hydrocarbon deposition in vascular plants.

    PubMed

    Desalme, Dorine; Binet, Philippe; Chiapusio, Geneviève

    2013-05-07

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic pollutants that raise environmental concerns because of their toxicity. Their accumulation in vascular plants conditions harmful consequences to human health because of their position in the food chain. Consequently, understanding how atmospheric PAHs are taken up in plant tissues is crucial for risk assessment. In this review we synthesize current knowledge about PAH atmospheric deposition, accumulation in both gymnosperms and angiosperms, mechanisms of transfer, and ecological and physiological effects. PAHs emitted in the atmosphere partition between gas and particulate phases and undergo atmospheric deposition on shoots and soil. Most PAH concentration data from vascular plant leaves suggest that contamination occurs by both direct (air-leaf) and indirect (air-soil-root) pathways. Experimental studies demonstrate that PAHs affect plant growth, interfering with plant carbon allocation and root symbioses. Photosynthesis remains the most studied physiological process affected by PAHs. Among scientific challenges, identifying specific physiological transfer mechanisms and improving the understanding of plant-symbiont interactions in relation to PAH pollution remain pivotal for both fundamental and applied environmental sciences.

  14. Physiological performance of the soybean crosses in salinity stress

    NASA Astrophysics Data System (ADS)

    Wibowo, F.; Armaniar

    2018-02-01

    Plants grown in saline soils will experience salinity stress. Salinity stresses, one of which causes oxidative stress, that cause an imbalance in the production ROS compounds (Reactive Oxygen Species), antioxidants and chlorophyll. Where the reaction of this compound can affect plant growth and plant production. This study aims to inform performance and action gene to soybean physiological character that potential to tolerant from salinity soil that characterized by the presence of SOD and POD antioxidant compounds and chlorophyll. This research used a destructive analysis from crossbred (AxN) and (GxN). A = Anjasmoro varieties and G = Grobogan varieties as female elders and N = Grobogan varieties as male elders (N1, N2, N3, N4, N5) that have been through the stage of saline soil selection. Research result can be concluded that GxN cross is more potential for Inheritance of the offspring. This can be seen from the observed skewness of character SOD, POD compounds, Chlorophyll a and chlorophyll b.

  15. A comparative analysis of transcriptomic, biochemical and physiological responses to elevated ozone identifies species-specific mechanisms of resilience in legume crops

    USDA-ARS?s Scientific Manuscript database

    Current concentrations of tropospheric ozone (O3) pollution negatively impact plant metabolism, which can result in decreased crop yields. Interspecific variation in the physiological response of plants to elevated [O3] exists; however, the underlying cellular responses explaining species-specific d...

  16. Regulation and physiological role of silicon in alleviating drought stress of mango.

    PubMed

    Helaly, Mohamed Naser; El-Hoseiny, Hanan; El-Sheery, Nabil Ibrahim; Rastogi, Anshu; Kalaji, Hazem M

    2017-09-01

    Improvement of drought stress of mango plants requires intensive research that focuses on physiological processes. In three successive seasons (2014, 2015and 2016) field experiments with four different strains of mango were subjected to two water regimes. The growth and physiological parameters of possible relevance for drought stress tolerances in mango were investigated. Yield and its components were also evaluated. The data showed that all growth and physiological parameters were increased under K 2 SiO 3 (Si) supplement and were followed by the interaction treatment (Si treatment and its combination with drought stress) compared to that of the controlled condition. Drought stress decreased the concentration of auxins (IAA), gibberellins (GA) and cytokinins (CK) in the three mango cultivars leaves, whereas, it increased the concentration of abscisic acid (ABA). On the contrary, IAA, GA, and CK (promoters) endogenous levels were improved by supplementing Si, in contrary ABA was decreased. Drought stress increased the activity of peroxidase (POX), catalase (CAT), and superoxide dismutase (SOD) in the leaves of all mango cultivars grown during three experimental seasons. However, Si supplementation reduced the levels of all these antioxidative enzymes, especially the concentration of SOD when compared to that of control leaves. Fruit quality was improved in three successive seasons when Si was applied. Our results clearly show that the increment in drought tolerance was associated with an increase in antioxidative enzyme activity, allowing mango plants to cope better with drought stress. Si possesses an efficient system for scavenging reactive oxygen species, which protects the plant against destructive oxidative reactions, thereby improving the ability of the mango trees to withstand environmental stress in arid regions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Physiological Level: Plants in Climate Change Impacts on Florida's Biodiversity and Ecology

    NASA Technical Reports Server (NTRS)

    Foster, Tammy Elaine

    2016-01-01

    Plants grown under elevated concentrations of CO2 use resources more efficiently than plants growing at ambient CO2 (Drake, Gonzalez-Meler, and Long 1997). Photosynthesis is often stimulated while stomatal conductance and leaf nitrogen are reduced resulting in greater water-use and nitrogen-use efficiency (Drake, Gonzalez-Meler, and Long 1997, Ainsworth and Long 2005). Growth and biomass production are also often stimulated by CO2 (Ainsworth and Long 2005).

  18. Determinants of Physiological and Perceived Physiological Stress Reactivity in Children and Adolescents

    PubMed Central

    Evans, Brittany E.; Greaves-Lord, Kirstin; Euser, Anja S.; Tulen, Joke H. M.; Franken, Ingmar H. A.; Huizink, Anja C.

    2013-01-01

    Aims Abnormal physiological stress reactivity is increasingly investigated as a vulnerability marker for various physical and psychological health problems. However, studies are inconsistent in taking into account potential covariates that may influence the developing stress system. We systematically tested determinants (individual, developmental, environmental and substance use-related) of physiological and perceived physiological stress reactivity. We also examined the relation between physiological and perceived physiological stress reactivity. Method In a stratified sample of 363 children (7–12 years) and 344 adolescents (13–20 years) from the general population, we examined cortisol, heart rate, respiratory sinus arrhythmia and perceived physiological stress reactivity to a psychosocial stress procedure. Results Using multivariate linear regression models, we found that individual, developmental, environmental and substance use-related factors were related to each of the stress response indices. These determinant factors were different for each of the stress reactivity indices, and different in children versus adolescents. Perceived physiological stress reactivity predicted cortisol reactivity in adolescents only. All other relations between perceived physiological and physiological stress reactivity were not significant. Conclusions As physiological stress variables are often examined as vulnerability markers for the development of health problems, we maintain that it is essential that future studies take into consideration factors that may account for found relations. Our study provides an overview and indication of which variables should be considered in the investigation of the relation between physiological stress indices and illness. PMID:23620785

  19. Molecular and physiological mechanisms of plant tolerance to toxic metals

    USDA-ARS?s Scientific Manuscript database

    Plants have evolved a myriad of adaptive mechanisms based on a number of genes to deal with the different toxic metals they encounter in the soils worldwide. These genes encode a range of different metal and organic compound transporters and enzyme pathways for the synthesis of metal detoxifying lig...

  20. Nasal Physiology

    MedlinePlus

    ... Anatomy Virtual Anatomy Disclosure Statement Printer Friendly Nasal Physiology Jeremiah A. Alt, MD, PhD Noam Cohen, MD, ... control the inflammation. CONCLUSION An understanding of the physiology of the nose is critical to understand nasal ...

  1. iTREE: Long-term variability of tree growth in a changing environment - identifying physiological mechanisms using stable C and O isotopes in tree rings.

    NASA Astrophysics Data System (ADS)

    Siegwolf, R. T. W.; Buchmann, N.; Frank, D.; Joos, F.; Kahmen, A.; Treydte, K.; Leuenberger, M.; Saurer, M.

    2012-04-01

    Trees play are a critical role in the carbon cycle - their photosynthetic assimilation is one of the largest terrestrial carbon fluxes and their standing biomass represents the largest carbon pool of the terrestrial biosphere. Understanding how tree physiology and growth respond to long-term environmental change is pivotal to predict the magnitude and direction of the terrestrial carbon sink. iTREE is an interdisciplinary research framework to capitalize on synergies among leading dendroclimatologists, plant physiologists, isotope specialists, and global carbon cycle modelers with the objectives of reducing uncertainties related to tree/forest growth in the context of changing natural environments. Cross-cutting themes in our project are tree rings, stable isotopes, and mechanistic modelling. We will (i) establish a European network of tree-ring based isotope time-series to retrodict interannual to long-term tree physiological changes, (ii) conduct laboratory and field experiments to adapt a mechanistic isotope model to derive plant physiological variables from tree-ring isotopes, (iii) implement this model into a dynamic global vegetation model, and perform subsequent model-data validation exercises to refine model representation of plant physiological processes and (iv) attribute long-term variation in tree growth to plant physiological and environmental drivers, and identify how our refined knowledge revises predictions of the coupled carbon-cycle climate system. We will contribute to i) advanced quantifications of long-term variation in tree growth across Central Europe, ii) novel long-term information on key physiological processes that underlie variations in tree growth, and iii) improved carbon cycle models that can be employed to revise predictions of the coupled carbon-cycle climate system. Hence iTREE will significantly contribute towards a seamless understanding of the responses of terrestrial ecosystems to long-term environmental change, and ultimately

  2. Towards engineering of hormonal crosstalk in plant immunity.

    PubMed

    Shigenaga, Alexandra M; Berens, Matthias L; Tsuda, Kenichi; Argueso, Cristiana T

    2017-08-01

    Plant hormones regulate physiological responses in plants, including responses to pathogens and beneficial microbes. The last decades have provided a vast amount of evidence about the contribution of different plant hormones to plant immunity, and also of how they cooperate to orchestrate immunity activation, in a process known as hormone crosstalk. In this review we highlight the complexity of hormonal crosstalk in immunity and approaches currently being used to further understand this process, as well as perspectives to engineer hormone crosstalk for enhanced pathogen resistance and overall plant fitness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Tenth workshop on seedling physiology and growth problems in oak plantings

    Treesearch

    Brian Roy Lockhart; Emile S. Gardiner; Daniel C. Dey

    2008-01-01

    Research results and ongoing research activities in field performance of oak plantings, seedling propagation, genetics, acorn germination, and natural regeneration of oaks are described in 15 abstracts.

  4. Magnetic fields: how is plant growth and development impacted?

    PubMed

    da Silva, Jaime A Teixeira; Dobránszki, Judit

    2016-03-01

    This review provides detailed insight on the effects of magnetic fields on germination, growth, development, and yield of plants focusing on ex vitro growth and development and discussing the possible physiological and biochemical responses. The MFs considered in this review range from the nanoTesla (nT) to geomagnetic levels, up to very strong MFs greater than 15 Tesla (T) and also super-weak MFs (near 0 T). The theoretical bases of the action of MFs on plant growth, which are complex, are not discussed here and thus far, there is limited mathematical background about the action of MFs on plant growth. MFs can positively influence the morphogenesis of several plants which allows them to be used in practical situations. MFs have thus far been shown to modify seed germination and affect seedling growth and development in a wide range of plants, including field, fodder, and industrial crops; cereals and pseudo-cereals; grasses; herbs and medicinal plants; horticultural crops (vegetables, fruits, ornamentals); trees; and model crops. This is important since MFs may constitute a non-residual and non-toxic stimulus. In addition to presenting and summarizing the effects of MFs on plant growth and development, we also provide possible physiological and biochemical explanations for these responses including stress-related responses of plants, explanations based on dia-, para-, and ferromagnetism, oriented movements of substances, and cellular and molecular changes.

  5. Nitrate Transport, Sensing, and Responses in Plants.

    PubMed

    O'Brien, José A; Vega, Andrea; Bouguyon, Eléonore; Krouk, Gabriel; Gojon, Alain; Coruzzi, Gloria; Gutiérrez, Rodrigo A

    2016-06-06

    Nitrogen (N) is an essential macronutrient that affects plant growth and development. N is an important component of chlorophyll, amino acids, nucleic acids, and secondary metabolites. Nitrate is one of the most abundant N sources in the soil. Because nitrate and other N nutrients are often limiting, plants have developed sophisticated mechanisms to ensure adequate supply of nutrients in a variable environment. Nitrate is absorbed in the root and mobilized to other organs by nitrate transporters. Nitrate sensing activates signaling pathways that impinge upon molecular, metabolic, physiological, and developmental responses locally and at the whole plant level. With the advent of genomics technologies and genetic tools, important advances in our understanding of nitrate and other N nutrient responses have been achieved in the past decade. Furthermore, techniques that take advantage of natural polymorphisms present in divergent individuals from a single species have been essential in uncovering new components. However, there are still gaps in our understanding of how nitrate signaling affects biological processes in plants. Moreover, we still lack an integrated view of how all the regulatory factors identified interact or crosstalk to orchestrate the myriad N responses plants typically exhibit. In this review, we provide an updated overview of mechanisms by which nitrate is sensed and transported throughout the plant. We discuss signaling components and how nitrate sensing crosstalks with hormonal pathways for developmental responses locally and globally in the plant. Understanding how nitrate impacts on plant metabolism, physiology, and growth and development in plants is key to improving crops for sustainable agriculture. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  6. Morphological, physiological, and genetic variation between metallicolous and nonmetallicolous populations of Dianthus carthusianorum.

    PubMed

    Wójcik, Małgorzata; Dresler, Sławomir; Jawor, Emilia; Kowalczyk, Krzysztof; Tukiendorf, Anna

    2013-01-01

    Waste deposits produced by metal mining and smelting activities provide extremely difficult habitats for plant colonization and growth. Therefore, plants spontaneously colonizing such areas represent a very interesting system for studying evolution of plant adaptation and population differentiation between contaminated and noncontaminated environments. In this study, two populations of Dianthus carthusianorum, one originating from Zn-Pb waste deposit (a metallicolous population, M) and the other from unpolluted soil (a nonmetallicolous population, NM), were analyzed in respect of their morphological and physiological traits as well as genetic markers. It was found that the plants inhabiting the waste heap differed significantly from the NM plants in terms of leaf size and shape, and these differences were persistent between the first generation of the plants of both populations cultivated under uniform, controlled laboratory conditions. In contrast with the evident morphological differences, no significant differentiation between the populations regarding the physiological traits measured (accumulation of proline, anthocyanins, chlorophyll, carotenoids) was found. These traits can be regarded as neither population specific nor stress markers. The genetic variability was analyzed using 17 random amplified polymorphic DNA (RAPD) and four inter simple sequence repeat (ISSR) markers; this proved that the differentiation between the M and NM populations exists also at the genetic level. Analysis of molecular variance (AMOVA) showed that 24% of the total genetic diversity resided among populations, while 76% - within the populations. However, no significant differences in intrapopulation genetic diversity (Hj) between the M and NM populations of D. carthusianorum was found, which contradicts the theory that acquisition of adaptation mechanisms to adverse, isolated growth habitats is related to reduction in genetic diversity. Distinct genetic differences between the two

  7. Fusing chlorophyll fluorescence and plant canopy reflectance to detect TNT contamination in soils

    NASA Astrophysics Data System (ADS)

    Naumann, Julie C.; Rubis, Kathryn; Young, Donald R.

    2010-04-01

    TNT is released into the soil from many different sources, especially from military and mining activities, including buried land mines. Vegetation may absorb explosive residuals, causing stress and by understanding how plants respond to energetic compounds, we may be able to develop non-invasive techniques to detect soil contamination. The objectives of our study were to examine the physiological response of plants grown in TNT contaminated soils and to use remote sensing methods to detect uptake in plant leaves and canopies in both laboratory and field studies. Differences in physiology and light-adapted fluorescence were apparent in laboratory plants grown in N enriched soils and when compared with plants grown in TNT contaminated soils. Several reflectance indices were able to detect TNT contamination prior to visible signs of stress, including the fluorescence-derived indices, R740/R850 and R735/R850, which may be attributed to transformation and conjugation of TNT metabolites with other compounds. Field studies at the Duck, NC Field Research Facility revealed differences in physiological stress measures, and leaf and canopy reflectance when plants growing over suspected buried UXOs were compared with reference plants. Multiple reflectance indices indicated stress at the suspected contaminated sites, including R740/R850 and R735/R850. Under natural conditions of constant leaching of TNT into the soil, TNT uptake would be continuous in plants, potentially creating a distinct signature from remotely sensed vegetation. We may be able to use remote sensing of plant canopies to detect TNT soil contamination prior to visible signs.

  8. Introgression of physiological traits for a comprehensive improvement of drought adaptation in crop plants

    NASA Astrophysics Data System (ADS)

    Sreeman, Sheshshayee M.; Vijayaraghavareddy, Preethi; Sreevathsa, Rohini; Rajendrareddy, Sowmya; Arakesh, Smitharani; Bharti, Pooja; Dharmappa, Prathibha; Soolanayakanahally, Raju

    2018-04-01

    Burgeoning population growth, industrial demand and the predicted global climate change resulting in erratic monsoon rains are expected to severely limit fresh water availability for agriculture both in irrigated and rainfed ecosystems. In order to remain food and nutrient secure, agriculture research needs to focus on devising strategies to save water in irrigated conditions and to develop superior cultivars with improved water productivity to sustain yield under rainfed conditions. Recent opinions accruing in the scientific literature strongly favour the adoption of a “trait based” approach for increasing water productivity especially the traits associated with maintenance of positive tissue turgor and maintenance of increased carbon assimilation as the most relevant traits to improve crop growth rates under water limiting conditions and to enhance water productivity. The advent of several water saving agronomic practices notwithstanding, a genetic enhancement strategy of introgressing distinct physiological, morphological and cellular mechanisms on to a single elite genetic background is essential for achieving a comprehensive improvement in drought adaptation in crop plants. The significant progress made in genomics, though would provide the necessary impetus, a clear understanding of the “traits” to be introgressed is the most essential need of the hour. Water uptake by a better root architecture, water conservation by preventing unproductive transpiration is crucial for maintaining positive tissue water relations. Improved carbon assimilation associated with carboxylation capacity and mesophyll conductance is equally important in sustaining crop growth rates under water limited conditions. Besides these major traits, we summarized the available information in literature on classifying various drought adaptive traits. We provide evidences that water-use efficiency when introgressed with moderately higher transpiration, would significantly enhance

  9. Major Crop Species Show Differential Balance between Root Morphological and Physiological Responses to Variable Phosphorus Supply

    PubMed Central

    Lyu, Yang; Tang, Hongliang; Li, Haigang; Zhang, Fusuo; Rengel, Zed; Whalley, William R.; Shen, Jianbo

    2016-01-01

    The relationship between root morphological and physiological responses to variable P supply in different plant species is poorly understood. We compared root morphological and physiological responses to P supply in seven crop species (Zea mays, Triticum aestivum, Brassica napus, Lupinus albus, Glycine max, Vicia faba, Cicer arietinum) treated with or without 100 mg P kg-1 in two soils (acidic and calcareous). Phosphorus deficiency decreased root length more in fibrous root species (Zea mays, Triticum aestivum, Brassica napus) than legumes. Zea mays and Triticum aestivum had higher root/shoot biomass ratio and Brassica napus had higher specific root length compared to legumes, whereas legumes (except soybean) had higher carboxylate exudation than fibrous root species. Lupinus albus exhibited the highest P-acquisition efficiency due to high exudation of carboxylates and acid phosphatases. Lupinus albus and Cicer arietinum depended mostly on root exudation (i.e., physiological response) to enhance P acquisition, whereas Zea mays, Triticum aestivum and Brassica napus had higher root morphology dependence, with Glycine max and Vicia faba in between. Principal component analysis using six morphological and six physiological responses identified root size and diameter as the most important morphological traits, whereas important physiological responses included carboxylate exudation, and P-acquisition and P-utilization efficiency followed by rhizosphere soil pH and acid phosphatase activity. In conclusion, plant species can be grouped on the basis of their response to soil P being primarily via root architectural or exudation plasticity, suggesting a potential benefit of crop-specific root-trait-based management to cope with variable soil P supply in sustainable grain production. PMID:28066491

  10. Salicylic acid beyond defence: its role in plant growth and development.

    PubMed

    Rivas-San Vicente, Mariana; Plasencia, Javier

    2011-06-01

    In recent years salicylic acid (SA) has been the focus of intensive research due to its function as an endogenous signal mediating local and systemic plant defence responses against pathogens. It has also been found that SA plays a role during the plant response to abiotic stresses such as drought, chilling, heavy metal toxicity, heat, and osmotic stress. In this sense, SA appears to be, just like in mammals, an 'effective therapeutic agent' for plants. Besides this function during biotic and abiotic stress, SA plays a crucial role in the regulation of physiological and biochemical processes during the entire lifespan of the plant. The discovery of its targets and the understanding of its molecular modes of action in physiological processes could help in the dissection of the complex SA signalling network, confirming its important role in both plant health and disease. Here, the evidence that supports the role of SA during plant growth and development is reviewed by comparing experiments performed by exogenous application of SA with analysis of genotypes affected by SA levels and/or perception.

  11. Modification of cytogenetic and physiological effects of space flight factors by biologically active compounds

    NASA Technical Reports Server (NTRS)

    Aliyev, A. A.; Mekhti-Zade, E. R.; Mashinskiy, A. L.; Alekperov, U. K.

    1986-01-01

    Physiological and cytogenetic changes in the Welsh onion plants induced by a short (82 days) and long term (522 days) space flight are expressed in decrease of seed germination, inhibition of stem growth, depression of cell division in root meristem, and increase in the number of structural chromosome rearrangements. The treatment of such plants with solutions of a-tocopherol, auxin, and kinetin decreased the level of chromosome aberrations to the control one and normalized cell divisions and growth partly or completely.

  12. Proteomics as an approach to the understanding of the molecular physiology of fruit development and ripening.

    PubMed

    Palma, José M; Corpas, Francisco J; del Río, Luís A

    2011-08-12

    Fruit ripening is a developmental complex process which occurs in higher plants and involves a number of stages displayed from immature to mature fruits that depend on the plant species and the environmental conditions. Nowadays, the importance of fruit ripening comes mainly from the link between this physiological process in plants and the economic repercussions as a result of one of the human activities, the agricultural industry. In most cases, fruit ripening is accompanied by colour changes due to different pigment content and increases in sugar levels, among others. Major physiological modifications that affect colour, texture, flavour, and aroma are under the control of both external (light and temperature) and internal (developmental gene regulation and hormonal control) factors. Due to the huge amount of metabolic changes that take place during ripening in fruits from higher plants, the accomplishment of new throughput methods which can provide a global evaluation of this process would be desirable. Differential proteomics of immature and mature fruits would be a useful tool to gain information on the molecular changes which occur during ripening, but also the investigation of fruits at different ripening stages will provide a dynamic picture of the whole transformation of fruits. This subject is furthermore of great interest as many fruits are essential for human nutrition. Thus far different maturation profiles have been reported specific for each crop species. In this work, a thorough review of the proteomic database from fruit development and maturation of important crop species will be updated to understand the molecular physiology of fruits at ripening stages. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Effects of calcium at toxic concentrations of cadmium in plants.

    PubMed

    Huang, Danlian; Gong, Xiaomin; Liu, Yunguo; Zeng, Guangming; Lai, Cui; Bashir, Hassan; Zhou, Lu; Wang, Dafei; Xu, Piao; Cheng, Min; Wan, Jia

    2017-05-01

    This review provides new insight that calcium plays important roles in plant growth, heavy metal accumulation and translocation, photosynthesis, oxidative damage and signal transduction under cadmium stress. Increasing heavy metal pollution problems have raised word-wide concerns. Cadmium (Cd), being a highly toxic metal, poses potential risks both to ecosystems and human health. Compared with conventional technologies, phytoremediation, being cost-efficient, highly stable and environment-friendly, is believed to be a promising green technology for Cd decontamination. However, Cd can be easily taken up by plants and may cause severe phytotoxicity to plants, thus limiting the efficiency of phytoremediation. Various researches are being done to investigate the effects of exogenous substances on the mitigation of Cd toxicity to plants. Calcium (Ca) is an essential plant macronutrient that involved in various plant physiological processes, such as plant growth and development, cell division, cytoplasmic streaming, photosynthesis and intracellular signaling transduction. Due to the chemical similarity between Ca and Cd, Ca may mediate Cd-induced physiological or metabolic changes in plants. Recent studies have shown that Ca could be used as an exogenous substance to protect plants against Cd stress by the alleviation of growth inhibition, regulation of metal uptake and translocation, improvement of photosynthesis, mitigation of oxidative damages and the control of signal transduction in the plants. The effects of Ca on toxic concentrations of Cd in plants are reviewed. This review also provides new insight that plants with enhanced Ca level have improved resistance to Cd stress.

  14. Controlled ecological life support system higher plant flight experiments

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.; Wheeler, R. M.

    1984-01-01

    Requirements for spaceflight experments which involve higher plants were determined. The plants are studied for use in controlled ecological life support systems (CELSS). Two categories of research requirements are discussed: (1) the physical needs which include nutrient, water and gas exchange requirements; (2) the biological and physiological functions which affect plants in zero gravity environments. Physical problems studies are given the priority since they affect all biological experiments.

  15. The excitability of plant cells: with a special emphasis on characean internodal cells

    NASA Technical Reports Server (NTRS)

    Wayne, R.

    1994-01-01

    This review describes the basic principles of electrophysiology using the generation of an action potential in characean internodal cells as a pedagogical tool. Electrophysiology has proven to be a powerful tool in understanding animal physiology and development, yet it has been virtually neglected in the study of plant physiology and development. This review is, in essence, a written account of my personal journey over the past five years to understand the basic principles of electrophysiology so that I can apply them to the study of plant physiology and development. My formal background is in classical botany and cell biology. I have learned electrophysiology by reading many books on physics written for the lay person and by talking informally with many patient biophysicists. I have written this review for the botanist who is unfamiliar with the basics of membrane biology but would like to know that she or he can become familiar with the latest information without much effort. I also wrote it for the neurophysiologist who is proficient in membrane biology but knows little about plant biology (but may want to teach one lecture on "plant action potentials"). And lastly, I wrote this for people interested in the history of science and how the studies of electrical and chemical communication in physiology and development progressed in the botanical and zoological disciplines.

  16. Exploring Photosynthesis and Plant Stress Using Inexpensive Chlorophyll Fluorometers

    ERIC Educational Resources Information Center

    Cessna, Stephen; Demmig-Adams, Barbara; Adams, William W., III

    2010-01-01

    Mastering the concept of photosynthesis is of critical importance to learning plant physiology and its applications, but seems to be one of the more challenging concepts in biology. This teaching challenge is no doubt compounded by the complexity by which plants alter photosynthesis in different environments. Here we suggest the use of chlorophyll…

  17. A SIMPLE MODEL FOR THE UPTAKE, TRANSLOCATION, AND ACCUMULATION OF PERCHLORATE IN TOBACCO PLANTS

    EPA Science Inventory

    A simple mathematical model is being developed to describe the uptake, translocation, and accumulation of perchlorate in tobacco plants. The model defines a plant as a set of compartments, consisting of mass balance differential equations and plant-specific physiological paramet...

  18. Chilling and Drought Stresses in Crop Plants: Implications, Cross Talk, and Potential Management Opportunities

    PubMed Central

    Hussain, Hafiz A.; Hussain, Saddam; Khaliq, Abdul; Ashraf, Umair; Anjum, Shakeel A.; Men, Shengnan; Wang, Longchang

    2018-01-01

    Plants face a combination of different abiotic stresses under field conditions which are lethal to plant growth and production. Simultaneous occurrence of chilling and drought stresses in plants due to the drastic and rapid global climate changes, can alter the morphological, physiological and molecular responses. Both these stresses adversely affect the plant growth and yields due to physical damages, physiological and biochemical disruptions, and molecular changes. In general, the co-occurrence of chilling and drought combination is even worse for crop production rather than an individual stress condition. Plants attain various common and different physiological and molecular protective approaches for tolerance under chilling and drought stresses. Nevertheless, plant responses to a combination of chilling and drought stresses are unique from those to individual stress. In the present review, we summarized the recent evidence on plant responses to chilling and drought stresses on shared as well as unique basis and tried to find a common thread potentially underlying these responses. We addressed the possible cross talk between plant responses to these stresses and discussed the potential management strategies for regulating the mechanisms of plant tolerance to drought and/or chilling stresses. To date, various novel approaches have been tested in minimizing the negative effects of combine stresses. Despite of the main improvements there is still a big room for improvement in combination of drought and chilling tolerance. Thus, future researches particularly using biotechnological and molecular approaches should be carried out to develop genetically engineered plants with enhanced tolerance against these stress factors. PMID:29692787

  19. Virtual Plant Tissue: Building Blocks for Next-Generation Plant Growth Simulation

    PubMed Central

    De Vos, Dirk; Dzhurakhalov, Abdiravuf; Stijven, Sean; Klosiewicz, Przemyslaw; Beemster, Gerrit T. S.; Broeckhove, Jan

    2017-01-01

    Motivation: Computational modeling of plant developmental processes is becoming increasingly important. Cellular resolution plant tissue simulators have been developed, yet they are typically describing physiological processes in an isolated way, strongly delimited in space and time. Results: With plant systems biology moving toward an integrative perspective on development we have built the Virtual Plant Tissue (VPTissue) package to couple functional modules or models in the same framework and across different frameworks. Multiple levels of model integration and coordination enable combining existing and new models from different sources, with diverse options in terms of input/output. Besides the core simulator the toolset also comprises a tissue editor for manipulating tissue geometry and cell, wall, and node attributes in an interactive manner. A parameter exploration tool is available to study parameter dependence of simulation results by distributing calculations over multiple systems. Availability: Virtual Plant Tissue is available as open source (EUPL license) on Bitbucket (https://bitbucket.org/vptissue/vptissue). The project has a website https://vptissue.bitbucket.io. PMID:28523006

  20. Laser-Induced Fluorescence (LIF) from plant foliage

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Williams, D. L.

    1986-01-01

    The fluorescence spectra and fluorescence induction kinetics of green plants excited at 337 nm by a laser were studied. They correlate with plant type, as well as with changes in the physiology of the plant as the result of stress. The plant types studied include herbaceous dicots, monocots, hardwoods, conifers, and algae. These plant types could be identified on the basis of differences in either the number of fluorescent bands or the relative intensity of the bands. Differences in fluorescent spectra which could be related to vigor status are observed in conifers located in an area of high atmospheric deposition. Changes in the fluorescence spectra and induction kinetics are also seen in plants grown under conditions of nutrient deficiency and drought stress.

  1. Laser-Induced Fluorescence (LIF) from plant foliage

    NASA Technical Reports Server (NTRS)

    Chappelle, Emmett W.; Williams, Darrel L.

    1987-01-01

    The fluorescence spectra and fluorescence induction kinetics of green plants excited at 337 nm by a laser were studied. They correlate with plant type, as well as with changes in the physiology of the plant as the result of stress. The plant types studied include herbaceous dicots, monocots, hardwoods, conifers, and algae. These plant types could be identified on the basis of differences in either the number of fluorescent bands or the relative intensity of the bands. Differences in fluorescent spectra which could be related to vigor status are observed in conifers located in an area of high atmospheric deposition. Changes in the fluorescence spectra and induction kinetics are also seen in plants grown under conditions of nutrient deficiency and drought stress.

  2. Mitochondrial Energy and Redox Signaling in Plants

    PubMed Central

    Schwarzländer, Markus

    2013-01-01

    Abstract Significance: For a plant to grow and develop, energy and appropriate building blocks are a fundamental requirement. Mitochondrial respiration is a vital source for both. The delicate redox processes that make up respiration are affected by the plant's changing environment. Therefore, mitochondrial regulation is critically important to maintain cellular homeostasis. This involves sensing signals from changes in mitochondrial physiology, transducing this information, and mounting tailored responses, by either adjusting mitochondrial and cellular functions directly or reprogramming gene expression. Recent Advances: Retrograde (RTG) signaling, by which mitochondrial signals control nuclear gene expression, has been a field of very active research in recent years. Nevertheless, no mitochondrial RTG-signaling pathway is yet understood in plants. This review summarizes recent advances toward elucidating redox processes and other bioenergetic factors as a part of RTG signaling of plant mitochondria. Critical Issues: Novel insights into mitochondrial physiology and redox-regulation provide a framework of upstream signaling. On the other end, downstream responses to modified mitochondrial function have become available, including transcriptomic data and mitochondrial phenotypes, revealing processes in the plant that are under mitochondrial control. Future Directions: Drawing parallels to chloroplast signaling and mitochondrial signaling in animal systems allows to bridge gaps in the current understanding and to deduce promising directions for future research. It is proposed that targeted usage of new technical approaches, such as quantitative in vivo imaging, will provide novel leverage to the dissection of plant mitochondrial signaling. Antioxid. Redox Signal. 18, 2122–2144. PMID:23234467

  3. A review of major factors influencing plant responses to recreation impacts

    NASA Astrophysics Data System (ADS)

    Kuss, Fred R.

    1986-09-01

    This article reviews some of the more important factors found to influence the susceptibility of plants to trampling impacts associated with recreational use of natural areas. A three-way interaction mediates plant responses to impacts: plant x environment x stress level(s). Plant responses vary in part according to the genetic constitution of the plant, life and growth form, the adaptive flexibility of the plant, and anatomical differences inherent to growth habit and morphology. Other factors that influence plant sensitivities to impacts are the habitat environments in which plants grow, since a number of conditions such as moisture excesses or deficiencies, nitrogen or oxygen starvation, late frosts, etc., cause physiological injury and may increase plant sensitivity to impacts. Among the environmental factors that may increase or lessen plant sensitivities to impacts are soil moisture levels, canopy density, elevation, aspect, microclimate, soil drainage, texture, fertility and productivity. Seasonal influences also bear consideration since environmental changes and phonological and physiological events are mediated by time of year. Stresses are caused by both direct and indirect forms of impact and vary according to season of use, frequency and amount of use, and the type of activity. These interactions are further complicated by evidence that inter- and intraspecific competition, antagonism, and commensalism may influence differences in the sensitivity of plant communities to impacts.

  4. K₂p channels in plants and animals.

    PubMed

    González, Wendy; Valdebenito, Braulio; Caballero, Julio; Riadi, Gonzalo; Riedelsberger, Janin; Martínez, Gonzalo; Ramírez, David; Zúñiga, Leandro; Sepúlveda, Francisco V; Dreyer, Ingo; Janta, Michael; Becker, Dirk

    2015-05-01

    Two-pore domain potassium (K2P) channels are membrane proteins widely identified in mammals, plants, and other organisms. A functional channel is a dimer with each subunit comprising two pore-forming loops and four transmembrane domains. The genome of the model plant Arabidopsis thaliana harbors five genes coding for K2P channels. Homologs of Arabidopsis K2P channels have been found in all higher plants sequenced so far. As with the K2P channels in mammals, plant K2P channels are targets of external and internal stimuli, which fine-tune the electrical properties of the membrane for specialized transport and/or signaling tasks. Plant K2P channels are modulated by signaling molecules such as intracellular H(+) and calcium and physical factors like temperature and pressure. In this review, we ask the following: What are the similarities and differences between K2P channels in plants and animals in terms of their physiology? What is the nature of the last common ancestor (LCA) of these two groups of proteins? To answer these questions, we present physiological, structural, and phylogenetic evidence that discards the hypothesis proposing that the duplication and fusion that gave rise to the K2P channels occurred in a prokaryote LCA. Conversely, we argue that the K2P LCA was most likely a eukaryote organism. Consideration of plant and animal K2P channels in the same study is novel and likely to stimulate further exchange of ideas between students of these fields.

  5. Plant physiological response of strawberry fruit to chlorine dioxide gas treatment during postharvest storage

    USDA-ARS?s Scientific Manuscript database

    Chlorine dioxide, a strong oxidizing and sanitizing agent, is used as a postharvest sanitizer for fruits and vegetables and generally applied on a packing line using a chlorine dioxide generator. The objective of this research was to study the physiological responses of strawberries to ClO2 when app...

  6. The plant perceptron connects environment to development.

    PubMed

    Scheres, Ben; van der Putten, Wim H

    2017-03-15

    Plants cope with the environment in a variety of ways, and ecological analyses attempt to capture this through life-history strategies or trait-based categorization. These approaches are limited because they treat the trade-off mechanisms that underlie plant responses as a black box. Approaches that involve the molecular or physiological analysis of plant responses to the environment have elucidated intricate connections between developmental and environmental signals, but in only a few well-studied model species. By considering diversity in the plant response to the environment as the adaptation of an information-processing network, new directions can be found for the study of life-history strategies, trade-offs and evolution in plants.

  7. Nitric oxide: a multitasked signaling gas in plants.

    PubMed

    Domingos, Patricia; Prado, Ana Margarida; Wong, Aloysius; Gehring, Christoph; Feijo, Jose A

    2015-04-01

    Nitric oxide (NO) is a gaseous reactive oxygen species (ROS) that has evolved as a signaling hormone in many physiological processes in animals. In plants it has been demonstrated to be a crucial regulator of development, acting as a signaling molecule present at each step of the plant life cycle. NO has also been implicated as a signal in biotic and abiotic responses of plants to the environment. Remarkably, despite this plethora of effects and functional relationships, the fundamental knowledge of NO production, sensing, and transduction in plants remains largely unknown or inadequately characterized. In this review we cover the current understanding of NO production, perception, and action in different physiological scenarios. We especially address the issues of enzymatic and chemical generation of NO in plants, NO sensing and downstream signaling, namely the putative cGMP and Ca(2+) pathways, ion-channel activity modulation, gene expression regulation, and the interface with other ROS, which can have a profound effect on both NO accumulation and function. We also focus on the importance of NO in cell-cell communication during developmental processes and sexual reproduction, namely in pollen tube guidance and embryo sac fertilization, pathogen defense, and responses to abiotic stress. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  8. Interaction of Salinity and CaCO3 Affects the Physiology and Fatty Acid Metabolism in Portulaca oleracea.

    PubMed

    Bessrour, Mouna; Chelbi, Najla; Moreno, Diego A; Chibani, Farhat; Abdelly, Chedly; Carvajal, Micaela

    2018-06-25

    As a result of the extreme conditions that usually occur in Mediterranean climates, the objective of this work is to study the combined and/or separate effects of saline and alkaline stresses in Portulaca oleracea. The study was carried out to determine the nutritional food potential in relation to plant physiological parameters. The results show that alkaline media in which CaCO 3 was present did not affect growth but exposure to 100 mM NaCl decreased it greatly. Fatty acid content increased under all stress conditions but to a higher extent with salinity; however, the protein content was increased only by alkaline media. The beneficial effect of each stress on P. oleracea is discussed in light of the physiological response, pointing out the suitability of this plant for human nutrition.

  9. Genetically modified plants for tactical systems applications

    NASA Astrophysics Data System (ADS)

    Stewart, C. Neal, Jr.

    2002-08-01

    Plants are ubiquitous in the environment and have the ability to respond to their environment physiologically and through altered gene expression profiles (they cannot walk away). In addition, plant genetic transformation techniques and genomic information in plants are becoming increasingly advanced. We have been performing research to express the jellyfish green fluorescent protein (GFP) in plants. GFP emits green light when excited by blue or UV light. In addition, my group and collaborators have developed methods to detect GFP in plants by contact instruments and at a standoff. There are several tactical uses for this technology. Some obvious applications are using plants as sentinels for detecting biological and chemical warfare agents or their derivatives from a remote platform, as well as detecting explosives. Another tactical application is covert monitoring using individual plants. Different methods to detect GFP in transgenic plants will be discussed.

  10. Physiological and Proteomics Analyses Reveal the Mechanism of Eichhornia crassipes Tolerance to High-Concentration Cadmium Stress Compared with Pistia stratiotes

    PubMed Central

    Yang, Yunqiang; Yang, Shihai; Sun, Xudong; Yang, Yongping

    2015-01-01

    Cadmium (Cd) pollution is an environmental problem worldwide. Phytoremediation is a convenient method of removing Cd from both soil and water, but its efficiency is still low, especially in aquatic environments. Scientists have been trying to improve the ability of plants to absorb and accumulate Cd based on interactions between plants and Cd, especially the mechanism by which plants resist Cd. Eichhornia crassipes and Pistia stratiotes are aquatic plants commonly used in the phytoremediation of heavy metals. In the present study, we conducted physiological and biochemical analyses to compare the resistance of these two species to Cd stress at 100 mg/L. E. crassipes showed stronger resistance and was therefore used for subsequent comparative proteomics to explore the potential mechanism of E. crassipes tolerance to Cd stress at the protein level. The expression patterns of proteins in different functional categories revealed that the physiological activities and metabolic processes of E. crassipes were affected by exposure to Cd stress. However, when some proteins related to these processes were negatively inhibited, some analogous proteins were induced to compensate for the corresponding functions. As a result, E. crassipes could maintain more stable physiological parameters than P. stratiotes. Many stress-resistance substances and proteins, such as proline and heat shock proteins (HSPs) and post translational modifications, were found to be involved in the protection and repair of functional proteins. In addition, antioxidant enzymes played important roles in ROS detoxification. These findings will facilitate further understanding of the potential mechanism of plant response to Cd stress at the protein level. PMID:25886466

  11. Hydraulics of Asteroxylon mackei, an early Devonian vascular plant, and the early evolution of water transport tissue in terrestrial plants.

    PubMed

    Wilson, J P; Fischer, W W

    2011-03-01

    The core of plant physiology is a set of functional solutions to a tradeoff between CO(2) acquisition and water loss. To provide an important evolutionary perspective on how the earliest land plants met this tradeoff, we constructed a mathematical model (constrained geometrically with measurements of fossils) of the hydraulic resistance of Asteroxylon, an Early Devonian plant. The model results illuminate the water transport physiology of one of the earliest vascular plants. Results show that Asteroxylon's vascular system contains cells with low hydraulic resistances; these resistances are low because cells were covered by scalariform pits, elliptical structures that permit individual cells to have large areas for water to pass from one cell to another. Asteroxylon could move a large amount of water quickly given its large pit areas; however, this would have left these plants particularly vulnerable to damage from excessive evapotranspiration. These results highlight a repeated pattern in plant evolution, wherein the evolution of highly conductive vascular tissue precedes the appearance of adaptations to increase water transport safety. Quantitative insight into the vascular transport of Asteroxylon also allows us to reflect on the quality of CO(2) proxy estimates based on early land plant fossils. Because Asteroxylon's vascular tissue lacked any safety features to prevent permanent damage, it probably used stomatal abundance and behavior to prevent desiccation. If correct, low stomatal frequencies in Asteroxylon reflect the need to limit evapotranspiration, rather than adaptation to high CO(2) concentrations in the atmosphere. More broadly, methods to reveal and understand water transport in extinct plants have a clear use in testing and bolstering fossil plant-based paleoclimate proxies. © 2011 Blackwell Publishing Ltd.

  12. Hop (Humulus lupulus L.) response mechanisms in drought stress: Proteomic analysis with physiology.

    PubMed

    Kolenc, Zala; Vodnik, Dominik; Mandelc, Stanislav; Javornik, Branka; Kastelec, Damijana; Čerenak, Andreja

    2016-08-01

    Drought is one of the major environmental devastating stressors that impair the growth and productivity of crop plants. Despite the relevance of drought stress, changes in physiology and resistance mechanisms are not completely understood for certain crops, including hop (Humulus lupulus L.). In this research the drought response of hop was studied using a conventional physiological approach (gas exchange techniques, fluorescence, relative water content measurements) and proteomic analysis (2D-DIGE). Plants of two cultivars (Aurora and Savinjski golding) were exposed to progressive drought in a pot experiment and analysed at different stress stages (mild, moderate and severe). Measurements of relative water content revealed a hydrostable water balance of hop. Photosynthesis was decreased due to stomatal and non-stomatal limitation to the same extent in both cultivars. Of 28 identified differentially abundant proteins, the majority were down regulated and included in photosynthetic (41%) and sugar metabolism (33%). Fifteen % of identified proteins were classified into the nitrogen metabolism, 4% were related to a ROS related pathway and 7% to other functions. Copyright © 2016. Published by Elsevier Masson SAS.

  13. Physiological Effects of Nature Therapy: A Review of the Research in Japan.

    PubMed

    Song, Chorong; Ikei, Harumi; Miyazaki, Yoshifumi

    2016-08-03

    Humans have evolved into what they are today after the passage of 6-7 million years. If we define the beginning of urbanization as the rise of the industrial revolution, less than 0.01% of our species' history has been spent in modern surroundings. Humans have spent over 99.99% of their time living in the natural environment. The gap between the natural setting, for which our physiological functions are adapted, and the highly urbanized and artificial setting that we inhabit is a contributing cause of the "stress state" in modern people. In recent years, scientific evidence supporting the physiological effects of relaxation caused by natural stimuli has accumulated. This review aimed to objectively demonstrate the physiological effects of nature therapy. We have reviewed research in Japan related to the following: (1) the physiological effects of nature therapy, including those of forests, urban green space, plants, and wooden material and (2) the analyses of individual differences that arise therein. The search was conducted in the PubMed database using various keywords. We applied our inclusion/exclusion criteria and reviewed 52 articles. Scientific data assessing physiological indicators, such as brain activity, autonomic nervous activity, endocrine activity, and immune activity, are accumulating from field and laboratory experiments. We believe that nature therapy will play an increasingly important role in preventive medicine in the future.

  14. Phanerozoic pCO2 recorded by the plants that used it: refinement, independent validation and multi-proxy comparison of a physiological model.

    NASA Astrophysics Data System (ADS)

    Franks, P.; Royer, D. L.; Kowalczyk, J.; Milligan, J.

    2016-12-01

    CO2 has been described as the most important greenhouse gas in terms of maintaining a habitable climate on Earth. However, pCO2 has not been constant through time and the resulting variability of its forcing has contributed to periodic swings in global climate between warmer and cooler periods. Reliable prediction of the magnitude and effects of future global warming with increasing pCO2 depends on quantifying climate sensitivity to forcing by pCO2, which can only be measured from the record of pCO2 and temperature in Earth's geological past. This has been difficult because of inherent uncertainties, sometimes unquantifiable, in the reconstruction of pCO2 for past geologic periods. Recently a new CO2 proxy was developed based on the principle that photosynthesis by plants is quantitatively dependent on pCO2 (CO2 being the substrate for photosynthesis), with the record of this relationship preserved in the structure and chemistry of plant fossils (Franks et al., 2014, Geophysical Research Letters, 41: 4685-4694). This method has constrained uncertainty to more moderate bounds and eliminated instances of unbounded uncertainty. Here we describe a refinement to one of the input physiological quantities, the present-day ratio of intercellular to ambient CO2 concentration, ci/ca, which improves model accuracy. We also summarise the key findings of an independent validation and multi proxy comparison of the model using fossil plant material from a floristically diverse early Paleocene site which, at 64.5 Ma, was living 1.5 m.y after the Cretaceous-Paleogene boundary (KPB) mass extinction event. Principal amongst these findings is an upward revision of pCO2 to a median 612 ppm for the early Paleocene, with a corresponding minimum average Earth system sensitivity of 3.8 °C.

  15. The target plant concept-a history and brief overview

    Treesearch

    Thomas D. Landis

    2011-01-01

    The target plant concept originated with morphological classification of conifer nursery stock in the 1930s, and the concept was enhanced through physiological research and seedling testing towards the end of the century. Morphological grading standards such as shoot height, stem diameter, and root mass are the most common use of the target plant concept, and some...

  16. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters.

    PubMed

    Ramesh, Sunita A; Tyerman, Stephen D; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A; Ryan, Peter R; Gilliham, Matthew; Gillham, Matthew

    2015-07-29

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms.

  17. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters

    PubMed Central

    Ramesh, Sunita A.; Tyerman, Stephen D.; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A.; Ryan, Peter R.; Gillham, Matthew

    2015-01-01

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms. PMID:26219411

  18. Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in Brassica rapa

    PubMed Central

    Gehan, Malia A; Mockler, Todd C; Weinig, Cynthia; Ewers, Brent E

    2017-01-01

    The dynamics of local climates make development of agricultural strategies challenging. Yield improvement has progressed slowly, especially in drought-prone regions where annual crop production suffers from episodic aridity. Underlying drought responses are circadian and diel control of gene expression that regulate daily variations in metabolic and physiological pathways. To identify transcriptomic changes that occur in the crop Brassica rapa during initial perception of drought, we applied a co-expression network approach to associate rhythmic gene expression changes with physiological responses. Coupled analysis of transcriptome and physiological parameters over a two-day time course in control and drought-stressed plants provided temporal resolution necessary for correlation of network modules with dynamic changes in stomatal conductance, photosynthetic rate, and photosystem II efficiency. This approach enabled the identification of drought-responsive genes based on their differential rhythmic expression profiles in well-watered versus droughted networks and provided new insights into the dynamic physiological changes that occur during drought. PMID:28826479

  19. Rowing Physiology.

    ERIC Educational Resources Information Center

    Spinks, W. L.

    This review of the literature discusses and examines the methods used in physiological assessment of rowers, results of such assessments, and future directions emanating from research in the physiology of rowing. The first section discusses the energy demands of rowing, including the contribution of the energy system, anaerobic metabolism, and the…

  20. [Roles of organic acid metabolism in plant adaptation to nutrient deficiency and aluminum toxicity stress].

    PubMed

    Wang, Jianfei; Shen, Qirong

    2006-11-01

    Organic acids not only act as the intermediates in carbon metabolism, but also exert key roles in the plant adaptation to nutrient deficiency and metal stress and in the plant-microbe interactions at root-soil interface. From the viewpoint of plant nutrition, this paper reviewed the research progress on the formation and physiology of organic acids in plant, and their functions in nitrogen metabolism, phosphorus and iron uptake, aluminum tolerance, and soil ecology. New findings in the membrane transport of organic acids and the biotechnological manipulation of organic acids in transgenic model were also discussed. This novel perspectives of organic acid metabolism and its potential manipulation might present a possibility to understand the fundamental aspects of plant physiology, and lead to the new strategies to obtain crop varieties better adapted to environmental and metal stress.

  1. Eco-physiological basis of shade adaptation of Camellia nitidissima, a rare and endangered forest understory plant of Southeast Asia.

    PubMed

    Chai, Shengfeng; Tang, Jianmin; Mallik, Azim; Shi, Yancai; Zou, Rong; Li, Jitao; Wei, Xiao

    2018-02-07

    Camellia nitidissima, a rare and endangered shrub is narrowly distributed in South China and North Vietnam occurring in forest understory. Their light tolerance mechanism is unclear. We measured photosynthesis and related parameters on 2-years-old cuttings growing at 10, 30, 50 and 100% sunlight. Our research question was: At what light level are C. nitidissima cuttings responding most favorably, and what is the eco-physiological basis for their response to light? We hypothesized that as a forest understory growth of C. nitidissima would respond most favorably at low to intermediate light by optimizing photosynthetic activity, and high light will affect photosynthetic functions due to photoinhibition, damage of photosynthetic apparatus and concomitant enzyme activity. With increasing light, the maximum net photosynthetic rate (P Nmax ) and apparent quantum yield (AQY) decreased, while the light compensation point increased, and light saturation point first increased followed by a decrease. The P Nmax and AQY under 50 and 100% sunlight were significantly lower than that under 10 and 30% sunlight. The chlorophyll fluorescence parameters F m , F v , F v /F m all decreased under high light (> 50%). The contents of chlorophyll a (Chla), chlorophyll b (Chlb), and carotenoid (Car) decreased with increasing light. Relative conductivity, malondialdehyde (MDA) and proline contents in leaves were significantly increased in high light but we found no significant difference in these indices at 10 and 30% sunlight. We conclude that C. nitidissima is a shade adapted plant with poor adaptability to high light (> 50%). The novelty of this research is the demonstration of the eco-physiological basis of its light tolerance (conversely, shade adaptation) mechanisms indicated by decreased photosynthetic activity, chlorophyll fluorescence, Chla, Chlb and Car contents and concomitant increase in relative conductivity, MDA and proline contents at high light causing photoinhibition. For

  2. Carbon Dioxide Physiological Forcing Dominates Projected Eastern Amazonian Drying

    NASA Astrophysics Data System (ADS)

    Richardson, T. B.; Forster, P. M.; Andrews, T.; Boucher, O.; Faluvegi, G.; Fläschner, D.; Kasoar, M.; Kirkevâg, A.; Lamarque, J.-F.; Myhre, G.; Olivié, D.; Samset, B. H.; Shawki, D.; Shindell, D.; Takemura, T.; Voulgarakis, A.

    2018-03-01

    Future projections of east Amazonian precipitation indicate drying, but they are uncertain and poorly understood. In this study we analyze the Amazonian precipitation response to individual atmospheric forcings using a number of global climate models. Black carbon is found to drive reduced precipitation over the Amazon due to temperature-driven circulation changes, but the magnitude is uncertain. CO2 drives reductions in precipitation concentrated in the east, mainly due to a robustly negative, but highly variable in magnitude, fast response. We find that the physiological effect of CO2 on plant stomata is the dominant driver of the fast response due to reduced latent heating and also contributes to the large model spread. Using a simple model, we show that CO2 physiological effects dominate future multimodel mean precipitation projections over the Amazon. However, in individual models temperature-driven changes can be large, but due to little agreement, they largely cancel out in the model mean.

  3. Genetic and physiological bases for phenological responses to current and predicted climates

    PubMed Central

    Wilczek, A. M.; Burghardt, L. T.; Cobb, A. R.; Cooper, M. D.; Welch, S. M.; Schmitt, J.

    2010-01-01

    We are now reaching the stage at which specific genetic factors with known physiological effects can be tied directly and quantitatively to variation in phenology. With such a mechanistic understanding, scientists can better predict phenological responses to novel seasonal climates. Using the widespread model species Arabidopsis thaliana, we explore how variation in different genetic pathways can be linked to phenology and life-history variation across geographical regions and seasons. We show that the expression of phenological traits including flowering depends critically on the growth season, and we outline an integrated life-history approach to phenology in which the timing of later life-history events can be contingent on the environmental cues regulating earlier life stages. As flowering time in many plants is determined by the integration of multiple environmentally sensitive gene pathways, the novel combinations of important seasonal cues in projected future climates will alter how phenology responds to variation in the flowering time gene network with important consequences for plant life history. We discuss how phenology models in other systems—both natural and agricultural—could employ a similar framework to explore the potential contribution of genetic variation to the physiological integration of cues determining phenology. PMID:20819808

  4. Ethylene synthesis and sensitivity in crop plants

    NASA Technical Reports Server (NTRS)

    Klassen, Stephen P.; Bugbee, Bruce

    2004-01-01

    Closed and semi-closed plant growth chambers have long been used in studies of plant and crop physiology. These studies include the measurement of photosynthesis and transpiration via photosynthetic gas exchange. Unfortunately, other gaseous products of plant metabolism can accumulate in these chambers and cause artifacts in the measurements. The most important of these gaseous byproducts is the plant hormone ethylene (C2H4). In spite of hundreds of manuscripts on ethylene, we still have a limited understanding of the synthesis rates throughout the plant life cycle. We also have a poor understanding of the sensitivity of intact, rapidly growing plants to ethylene. We know ethylene synthesis and sensitivity are influenced by both biotic and abiotic stresses, but such whole plant responses have not been accurately quantified. Here we present an overview of basic studies on ethylene synthesis and sensitivity.

  5. Physiology in conservation translocations.

    PubMed

    Tarszisz, Esther; Dickman, Christopher R; Munn, Adam J

    2014-01-01

    Conservation translocations aim to restore species to their indigenous ranges, protect populations from threats and/or reinstate ecosystem functions. They are particularly important for the conservation and management of rare and threatened species. Despite tremendous efforts and advancement in recent years, animal conservation translocations generally have variable success, and the reasons for this are often uncertain. We suggest that when little is known about the physiology and wellbeing of individuals either before or after release, it will be difficult to determine their likelihood of survival, and this could limit advancements in the science of translocations for conservation. In this regard, we argue that physiology offers novel approaches that could substantially improve translocations and associated practices. As a discipline, it is apparent that physiology may be undervalued, perhaps because of the invasive nature of some physiological measurement techniques (e.g. sampling body fluids, surgical implantation). We examined 232 publications that dealt with translocations of terrestrial vertebrates and aquatic mammals and, defining 'success' as high or low, determined how many of these studies explicitly incorporated physiological aspects into their protocols and monitoring. From this review, it is apparent that physiological evaluation before and after animal releases could progress and improve translocation/reintroduction successes. We propose a suite of physiological measures, in addition to animal health indices, for assisting conservation translocations over the short term and also for longer term post-release monitoring. Perhaps most importantly, we argue that the incorporation of physiological assessments of animals at all stages of translocation can have important welfare implications by helping to reduce the total number of animals used. Physiological indicators can also help to refine conservation translocation methods. These approaches fall under a

  6. Physiological and Proteomic Analyses of Saccharum spp. Grown under Salt Stress

    PubMed Central

    Murad, Aline Melro; Molinari, Hugo Bruno Correa; Magalhães, Beatriz Simas; Franco, Augusto Cesar; Takahashi, Frederico Scherr Caldeira; de Oliveira-, Nelson Gomes; Franco, Octávio Luiz; Quirino, Betania Ferraz

    2014-01-01

    Sugarcane (Saccharum spp.) is the world most productive sugar producing crop, making an understanding of its stress physiology key to increasing both sugar and ethanol production. To understand the behavior and salt tolerance mechanisms of sugarcane, two cultivars commonly used in Brazilian agriculture, RB867515 and RB855536, were submitted to salt stress for 48 days. Physiological parameters including net photosynthesis, water potential, dry root and shoot mass and malondialdehyde (MDA) content of leaves were determined. Control plants of the two cultivars showed similar values for most traits apart from higher root dry mass in RB867515. Both cultivars behaved similarly during salt stress, except for MDA levels for which there was a delay in the response for cultivar RB867515. Analysis of leaf macro- and micronutrients concentrations was performed and the concentration of Mn2+ increased on day 48 for both cultivars. In parallel, to observe the effects of salt stress on protein levels in leaves of the RB867515 cultivar, two-dimensional gel electrophoresis followed by MS analysis was performed. Four proteins were differentially expressed between control and salt-treated plants. Fructose 1,6-bisphosphate aldolase was down-regulated, a germin-like protein and glyceraldehyde 3-phosphate dehydrogenase showed increased expression levels under salt stress, and heat-shock protein 70 was expressed only in salt-treated plants. These proteins are involved in energy metabolism and defense-related responses and we suggest that they may be involved in protection mechanisms against salt stress in sugarcane. PMID:24893295

  7. Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: physiological responses.

    PubMed

    Penella, Consuelo; Nebauer, Sergio G; Bautista, Alberto San; López-Galarza, Salvador; Calatayud, Ángeles

    2014-06-15

    Recent studies have shown that tolerance to abiotic stress, including water stress, is improved by grafting. In a previous work, we took advantage of the natural variability of Capsicum spp. and selected accessions tolerant and sensitive to water stress as rootstocks. The behavior of commercial cultivar 'Verset' seedlings grafted onto the selected rootstocks at two levels of water stress provoked by adding 3.5 and 7% PEG (polyethylene glycol) was examined over 14 days. The objective was to identify the physiological traits responsible for the tolerance provided by the rootstock in order to determine if the tolerance is based on the maintenance of the water relations under water stress or through the activation of protective mechanisms. To achieve this goal, various physiological parameters were measured, including: water relations; proline accumulation; gas exchange; chlorophyll fluorescence; nitrate reductase activity; and antioxidant capacity. Our results indicate that the effect of water stress on the measured parameters depends on the duration and intensity of the stress level, as well as the rootstock used. Under control conditions (0% PEG) all plant combinations showed similar values for all measured parameters. In general terms, PEG provoked a strong decrease in the gas exchange parameters in the cultivar grafted onto the sensitive accessions, as also observed in the ungrafted plants. This effect was related to lower relative water content in the plants, provoked by an inefficient osmotic adjustment that was dependent on reduced proline accumulation. At the end of the experiment, chronic photoinhibition was observed in these plants. However, the plants grafted onto the tolerant rootstocks, despite the reduction in photosynthetic rate, maintained the protective capacity of the photosynthetic machinery mediated by osmotic adjustment (based on higher proline content). In addition, water stress limited uptake and further NO3(-) transfer to the leaves. Increased

  8. The Plant as Metaorganism and Research on Next-Generation Systemic Pesticides – Prospects and Challenges

    PubMed Central

    Vryzas, Zisis

    2016-01-01

    Systemic pesticides (SPs) are usually recommended for soil treatments and as seed coating agents and are taken up from the soil by involving various plant-mediated processes, physiological, and morphological attributes of the root systems. Microscopic insights and next-generation sequencing combined with bioinformatics allow us now to identify new functions and interactions of plant-associated bacteria and perceive plants as meta-organisms. Host symbiotic, rhizo-epiphytic, endophytic microorganisms and their functions on plants have not been studied yet in accordance with uptake, tanslocation and action of pesticides. Root tips exudates mediated by rhizobacteria could modify the uptake of specific pesticides while bacterial ligands and enzymes can affect metabolism and fate of pesticide within plant. Over expression of specific proteins in cell membrane can also modify pesticide influx in roots. Moreover, proteins and other membrane compartments are usually involved in pesticide modes of action and resistance development. In this article it is discussed what is known of the physiological attributes including apoplastic, symplastic, and trans-membrane transport of SPs in accordance with the intercommunication dictated by plant–microbe, cell to cell and intracellular signaling. Prospects and challenges for uptake, translocation, storage, exudation, metabolism, and action of SPs are given through the prism of new insights of plant microbiome. Interactions of soil applied pesticides with physiological processes, plant root exudates and plant microbiome are summarized to scrutinize challenges for the next-generation pesticides. PMID:28018306

  9. Biosynthesis and function of plant lipids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, W.W.; Mudd, J.B.; Gibbs, M.

    The Sixth Annual Symposium in Botany and Plant Physiology was held January 13-15, 1983, at the University of California, Riverside. This volume comprises the papers that were presented. Subjects discussed at the symposium covered a wide range in the field of plant lipids. Biosynthesis of lipids occupied an important fraction of the presentations at the symposium. Subjects included detailed studies of the enzymes of fatty acid synthesis, several discussions of the incorporation of fatty acids into glycerolipids and the further modification of the fatty acids, and the synthesis of glycerolipids and desaturation of fatty acids in both maturing oilseeds andmore » chloroplasts. The physicochemical studies of glycerolipids and sterols in artificial membranes have led to distinct conclusions about their behaviour which must be relevant in the biological membrane. Results on the functional consequences of modifying the galactolipid composition in the chloroplast were an encouraging sign of progress in the attempts to relate membrane lipid composition to physiological function.« less

  10. Physiological traits and antioxidant metabolism of leaves of tropical woody species challenged with cement dust.

    PubMed

    Siqueira-Silva, Advanio Inácio; Pereira, Eduardo Gusmão; Lemos-Filho, José Pires de; Modolo, Luzia Valentina; Paiva, Elder Antonio Sousa

    2017-10-01

    Tropical woody species occurring in limestone outcrops are frequently exposed to particulate material from cement factories. The effects of 60-day cement dust exposure on physiological traits and enzymatic antioxidant system of young plant leaves of Guazuma ulmifolia Lam., Myracrodruon urundeuva Allemão and Trichilia hirta L. were investigated. Cement dust (2.5 or 5mgcm -2 ) was applied to the leaf surface or soil or both (leaf plus soil) and plants were maintained at greenhouse. Cement dust barely affected the mineral nutrient levels, except for iron whose content was decreased in leaves/leaflets of all species studied. The incident light was partly blocked in cement dust-treated leaves, regardless of the plant species, causing a decrease in the photosynthetic pigments in M. urundeuva. The chlorophyll b content, however, increased in G. ulmifolia and T. hirta leaves upon cement dust treatment. The potential quantum yield of photosystem II in challenged leaves of G. ulmifolia was 3.8% lower than that of control plants, while such trait remained unaffected in the leaves of the other species. No changes in leaf stomatal conductance and antioxidant enzymes activities were observed, except for M. urundeuva, which experienced a 31% increment in the superoxide dismutase activity upon 5mgcm -2 cement dust (leaf plus soil treatment), when compared with control plants. Overall, the mild changes caused by cement dust in the in physiological and biochemical traits of the species studied indicate that such species might be eligible for further studies of revegetation in fields impacted by cement factories. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Gamma irradiation to improve plant vigour, grain development, and yield attributes of wheat

    NASA Astrophysics Data System (ADS)

    Singh, Bhupinder; Datta, P. S.

    2010-02-01

    Utilizing low dose gamma radiation holds promise for physiological crop improvement. Seed treatment of low dose gamma radiation 0.01-0.10 kGy reduced plant height, improved plant vigour, flag leaf area, total and number of EBT. Gamma irradiation increased grain yield due to an increase in number of EBT and grain number while 1000 grain weight was negatively affected. Further uniformity in low dose radiation response in wheat in the field suggests that the affect is essentially at physiological than at genetic level and that role of growth hormones could be crucial.

  12. Development of electrical conductivity measurement technology for key plant physiological information using microneedle sensor

    NASA Astrophysics Data System (ADS)

    Jeon, Eunyong; Choi, Seungyul; Yeo, Kyung-Hwan; Park, Kyoung Sub; Rathod, Mitesh L.; Lee, Junghoon

    2017-08-01

    Impedance measurement is a widely used technique for monitoring ion species in various applications. In plant cultivation, the impedance system is used to measure the electrical conductivity (EC) of nutrient solutions. Recent research has shown that the quality and quantity of horticultural crops, e.g. tomato, can be optimized by controlling the salinity of nutrient solutions. However, understanding the detailed response of a plant to a nutrient solution is not possible until the fruit is fully grown or by sacrificing the stem. To overcome this issue, horticultural crop cultivation requires real-time monitoring of the EC inside the stem. Using this data, the growth model of a plant could be constructed, and the response of the plant to external environment determined. In this paper, we propose an implantable microneedle device equipped with a micro-patterned impedance measurement system for direct measurement of the EC inside the tomato stem. The fabrication process includes silicon-based steps such as microscale deposition, photolithography, and a deep etching process. Further, microscale fabrication enables all functional elements to fulfill the area budget and be very accurate with minimal plant invasion. A two-electrode geometry is used to match the measurement condition of the tomato stem. Real-time measurement of local sap condition inside the plant in which real-time data for tomato sap EC is obtained after calibration at various concentrations of standard solution demonstrate the efficacy of the proposed device.

  13. Use of energy filtering transmission electron microscopy for image generation and element analysis in plant organisms.

    PubMed

    Lütz-Meindl, Ursula

    2007-01-01

    Energy filtering TEM (EFTEM) with modern spectrometers and software offers new possibilities for element analysis and image generation in plant cells. In the present review, applications of EFTEM in plant physiology, such as identification of light elements and ion transport, analyses of natural cell incrustations, determination of element exchange between fungi and rootlets during mycorrhiza development, heavy metal storage and detoxification, and employment in plant physiological experiments are summarized. In addition, it is demonstrated that EFTEM can be successfully used in more practical approaches, for example, in phytoremediation, food and wood industry, and agriculture. Preparation methods for plant material as prerequisites for EFTEM analysis are compared with respect to their suitability and technical problems are discussed.

  14. Morphological and physiological responses of plants to cadmium toxicity: A review

    USDA-ARS?s Scientific Manuscript database

    Since the dawn of industrial revolution, anthropogenic activities have accelerated release of hazardous heavy metals, such as cadmium (Cd), copper (Cu), lead (Pb), chromium (Cr) and mercury (Hg) to the environment. Cadmium is toxic to animals and plants. Its bioaccumulation in food chain has surpass...

  15. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability

    PubMed Central

    Reyer, C.; Leuzinger, S.; Rammig, A.; Wolf, A.; Bartholomeus, R. P.; Bonfante, A.; de Lorenzi, F.; Dury, M.; Gloning, P.; Abou Jaoudé, R.; Klein, T.; Kuster, T. M.; Martins, M.; Niedrist, G.; Riccardi, M.; Wohlfahrt, G.; de Angelis, P.; de Dato, G.; François, L.; Menzel, A.; Pereira, M.

    2013-01-01

    We review observational, experimental and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied but potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational and /or modeling studies have the potential to overcome important caveats of the respective individual approaches. PMID:23504722

  16. Regulation of potassium transport and signaling in plants.

    PubMed

    Wang, Yi; Wu, Wei-Hua

    2017-10-01

    As an essential macronutrient, potassium (K + ) plays crucial roles in diverse physiological processes during plant growth and development. The K + concentration in soils is relatively low and fluctuating. Plants are able to perceive external K + changes and generate chemical and physical signals in plant cells. The signals can be transducted across the plasma membrane and into the cytosol, and eventually regulates the downstream targets, particularly K + channels and transporters. As a result, K + homeostasis in plant cells is modulated, which facilitates plant adaptation to K + deficient conditions. This minireview focuses on the latest research progress in the diverse functions of K + channels and transporters as well as their regulatory mechanisms in plant response to low-K + stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Dietary fiber type reflects physiological functionality: comparison of grain fiber, inulin, and polydextrose.

    PubMed

    Raninen, Kaisa; Lappi, Jenni; Mykkänen, Hannu; Poutanen, Kaisa

    2011-01-01

    Dietary fiber is a nutritional concept based not on physiological functions but on defined chemical and physical properties. Recent definitions of dietary fiber differentiate inherent plant cell wall-associated fiber from isolated or synthetic fiber. For the latter to be defined as fiber, beneficial physiological effects should be demonstrated, such as laxative effects, fermentability, attenuation of blood cholesterol levels, or postprandial glucose response. Grain fibers are a major natural source of dietary fiber worldwide, while inulin, a soluble indigestible fructose polymer isolated from chicory, and polydextrose, a synthetic indigestible glucose polymer, have more simple structures. Inulin and polydextrose show many of the same functionalities of grain fiber in the large intestine, in that they are fermentable, bifidogenic, and laxative. The reported effects on postprandial blood glucose and fasting cholesterol levels have been modest, but grain fibers also show variable effects. New biomarkers are needed to link the physiological functions of specific fibers with long-term health benefits. © 2011 International Life Sciences Institute.

  18. The Plant Research Unit: Long-Term Plant Growth Support for Space Station

    NASA Technical Reports Server (NTRS)

    Heathcote, D. G.; Brown, C. S.; Goins, G. D.; Kliss, M.; Levine, H.; Lomax, P. A.; Porter, R. L.; Wheeler, R.

    1996-01-01

    The specifications of the plant research unit (PRU) plant habitat, designed for space station operations, are presented. A prototype brassboard model of the PRU is described, and the results of the subsystems tests are outlined. The effects of the long term red light emitting diode (LED) illumination as the sole source for plant development were compared with red LEDs supplemented with blue wavelengths, and white fluorescent sources. It was found that wheat and Arabidopsis were able to complete a life cycle under red LEDs alone, but with differences in physiology and morphology. The differences noted were greatest for the Arabidopsis, where the time to flowering was increased under red illumination. The addition of 10 percent of blue light was effective in eliminating the observed differences. The results of the comparative testing of three nutrient delivery systems for the PRU are discussed.

  19. Plants for Sustainable Improvement of Indoor Air Quality.

    PubMed

    Brilli, Federico; Fares, Silvano; Ghirardo, Andrea; de Visser, Pieter; Calatayud, Vicent; Muñoz, Amalia; Annesi-Maesano, Isabella; Sebastiani, Federico; Alivernini, Alessandro; Varriale, Vincenzo; Menghini, Flavio

    2018-06-01

    Indoor pollution poses a serious threat to human health. Plants represent a sustainable but underexploited solution to enhance indoor air quality. However, the current selection of plants suitable for indoors fails to consider the physiological processes and mechanisms involved in phytoremediation. Therefore, the capacity of plants to remove indoor air pollutants through stomatal uptake (absorption) and non-stomatal deposition (adsorption) remains largely unknown. Moreover, the effects of the indoor plant-associated microbiome still need to be fully analyzed. Here, we discuss how a combination of the enhanced phytoremediation capacity of plants together with cutting-edge air-cleaning and smart sensor technologies can improve indoor life while reducing energy consumption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Potential Tools for Phenotyping for Physical Characteristics of Plants, Pods, and Seed

    USDA-ARS?s Scientific Manuscript database

    Advances in phenotyping are a key factor for success in modern breeding as well as for basic plant research. Phenotyping provides a critical means to understand morphological, biochemical, physiological principles in the control of basic plant functions as well as for selecting superior genotypes in...

  1. Regulatory Peptides in Plants.

    PubMed

    Vanyushin, B F; Ashapkin, V V; Aleksandrushkina, N I

    2017-02-01

    Many different peptides regulating cell differentiation, growth, and development are found in plants. Peptides participate in regulation of plant ontogenesis starting from pollination, pollen tube growth, and the very early stages of embryogenesis, including formation of embryo and endosperm. They direct differentiation of meristematic stem cells, formation of tissues and individual organs, take part in regulation of aging, fruit maturation, and abscission of plant parts associated with apoptosis. Biological activity of peptides is observed at very low concentrations, and it has mainly signal nature and hormonal character. "Mature" peptides appear mainly due to processing of protein precursors with (or without) additional enzymatic modifications. Plant peptides differ in origin, structure, and functional properties. Their specific action is due to binding with respective receptors and interactions with various proteins and other factors. Peptides can also regulate physiological functions by direct peptide-protein interactions. Peptide action is coordinated with the action of known phytohormones (auxins, cytokinins, and others); thus, peptides control phytohormonal signal pathways.

  2. Photosynthetic diversity meets biodiversity: the C4 plant example.

    PubMed

    Sage, Rowan F; Stata, Matt

    2015-01-01

    Physiological diversification reflects adaptation for specific environmental challenges. As the major physiological process that provides plants with carbon and energy, photosynthesis is under strong evolutionary selection that gives rise to variability in nearly all parts of the photosynthetic apparatus. Here, we discuss how plants, notably those using C4 photosynthesis, diversified in response to environmental challenges imposed by declining atmospheric CO2 content in recent geological time. This reduction in atmospheric CO2 increases the rate of photorespiration and reduces photosynthetic efficiency. While plants have evolved numerous mechanisms to compensate for low CO2, the most effective are the carbon concentration mechanisms of C4, C2, and CAM photosynthesis; and the pumping of dissolved inorganic carbon, mainly by algae. C4 photosynthesis enables plants to dominate warm, dry and often salinized habitats, and to colonize areas that are too stressful for most plant groups. Because C4 lineages generally lack arborescence, they cannot form forests. Hence, where they predominate, C4 plants create a different landscape than would occur if C3 plants were to predominate. These landscapes (mostly grasslands and savannahs) present unique selection environments that promoted the diversification of animal guilds able to graze upon the C4 vegetation. Thus, the rise of C4 photosynthesis has made a significant contribution to the origin of numerous biomes in the modern biosphere. Copyright © 2014. Published by Elsevier GmbH.

  3. Quantitative Aspects of Cyclosis in Plant Cells.

    ERIC Educational Resources Information Center

    Howells, K. F.; Fell, D. A.

    1979-01-01

    Describes an exercise which is currently used in a course in cell physiology at Oxford Polytechnic in England. This exercise can give students some idea of the molecular events involved in bringing about movement of chloroplasts (and other organelles) in plant cells. (HM)

  4. Current understanding on ethylene signaling in plants: the influence of nutrient availability.

    PubMed

    Iqbal, Noushina; Trivellini, Alice; Masood, Asim; Ferrante, Antonio; Khan, Nafees A

    2013-12-01

    The plant hormone ethylene is involved in many physiological processes, including plant growth, development and senescence. Ethylene also plays a pivotal role in plant response or adaptation under biotic and abiotic stress conditions. In plants, ethylene production often enhances the tolerance to sub-optimal environmental conditions. This role is particularly important from both ecological and agricultural point of views. Among the abiotic stresses, the role of ethylene in plants under nutrient stress conditions has not been completely investigated. In literature few reports are available on the interaction among ethylene and macro- or micro-nutrients. However, the published works clearly demonstrated that several mineral nutrients largely affect ethylene biosynthesis and perception with a strong influence on plant physiology. The aim of this review is to revisit the old findings and recent advances of knowledge regarding the sub-optimal nutrient conditions on the effect of ethylene biosynthesis and perception in plants. The effect of deficiency or excess of the single macronutrient or micronutrient on the ethylene pathway and plant responses are reviewed and discussed. The synergistic and antagonist effect of the different mineral nutrients on ethylene plant responses is critically analyzed. Moreover, this review highlights the status of information between nutritional stresses and plant response, emphasizing the topics that should be further investigated. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Alternative splicing in plant immunity.

    PubMed

    Yang, Shengming; Tang, Fang; Zhu, Hongyan

    2014-06-10

    Alternative splicing (AS) occurs widely in plants and can provide the main source of transcriptome and proteome diversity in an organism. AS functions in a range of physiological processes, including plant disease resistance, but its biological roles and functional mechanisms remain poorly understood. Many plant disease resistance (R) genes undergo AS, and several R genes require alternatively spliced transcripts to produce R proteins that can specifically recognize pathogen invasion. In the finely-tuned process of R protein activation, the truncated isoforms generated by AS may participate in plant disease resistance either by suppressing the negative regulation of initiation of immunity, or by directly engaging in effector-triggered signaling. Although emerging research has shown the functional significance of AS in plant biotic stress responses, many aspects of this topic remain to be understood. Several interesting issues surrounding the AS of R genes, especially regarding its functional roles and regulation, will require innovative techniques and additional research to unravel.

  6. Plant oligosaccharides - outsiders among elicitors?

    PubMed

    Larskaya, I A; Gorshkova, T A

    2015-07-01

    This review substantiates the need to study the plant oligoglycome. The available information on oligosaccharins - physiologically active fragments of plant cell wall polysaccharides - is summarized. The diversity of such compounds in chemical composition, origin, and proved biological activity is highlighted. At the same time, plant oligosaccharides can be considered as outsiders among elicitors of various natures in research intensity of recent decades. This review discusses the reasons for such attitude towards these regulators, which are largely connected with difficulties in isolation and identification. Together with that, approaches are suggested whose potentials can be used to study oligosaccharins. The topics of oligosaccharide metabolism in plants, including the ways of formation, transport, and inactivation are presented, together with data on biological activity and interaction with plant hormones. The current viewpoints on the mode of oligosaccharin action - perception, signal transduction, and possible "targets" - are considered. The potential uses of such compounds in medicine, food industry, agriculture, and biotechnology are discussed.

  7. Physiological and proteomic analysis of plant growth enhancement by the rhizobacteria Bacillus sp. JS.

    PubMed

    Kim, Ji Seong; Lee, Jeong Eun; Nie, Hualin; Lee, Yong Jae; Kim, Sun Tae; Kim, Sun-Hyung

    2018-02-01

    In this study, the effects of the plant growth-promoting rhizobacterium (PGPR), Bacillus sp. JS on the growth of tobacco (Nicotiana tabacum 'Xanthi') and lettuce (Lactuca sativa 'Crispa'), were evaluated by comparing various growth parameters between plants treated with the bacterium and those exposed to water or nutrient broth as control. In both tobacco and lettuce, fresh weight and length of shoots were increased upon exposure to Bacillus sp. JS. To explain the overall de novo expression of plant proteins by bacterial volatiles, two-dimensional gel electrophoresis was performed on samples from PGPR-treated tobacco plants. Our results showed that chlorophyll a/b binding proteins were significantly up-regulated, and total chlorophyll content was also increased. Our findings indicate the potential benefits of using Bacillus sp. JS as a growth-promoting factor in agricultural practice, and highlight the need for further research to explore these benefits.

  8. Positive impact of bio-stimulators on growth and physiological activity of willow in climate change conditions

    NASA Astrophysics Data System (ADS)

    Piotrowski, Krzysztof; Romanowska-Duda, Zdzisława

    2018-04-01

    The aim of this research was to evaluate the physiological activity and growth of willow (Salix viminalis L.) plants cultivated under the conditions of adverse temperature and soil moisture content, and to assess the effect of the foliar application of Biojodis (1.0%) and Asahi SL (0.03%) bio-stimulators, or a mixture of Microcistis aeruginosa MKR 0105 and Anabaena PCC 7120 cyanobacteria under such changing growth conditions. The obtained results showed different reactions to the applied constant or periodically changed temperature and soil moisture content. The plants which grew at periodically changed adverse temperature (from -5 to 40oC) or in scantily (20% m.c.) or excessively (60% m.c.) watered soils, grew slowly, in comparison with those growing at 20oC and in optimally moistened soil (30% m.c.). Foliar application of Biojodis and Asahi SL cyanobacteria increased the growth of willow at optimal and adverse temperature or in scantily and excessively moistened soil. The changes in plant growth were associated with the changes in electrolyte leakage, activity of acid or alkaline phosphatases, RNase, index of chlorophyll content in leaves and gas exchange. The above indicates that the foliar application of the studied cyanobacteria and bio-stimulators partly alleviates the harmful impact of adverse temperature and water stress on growth and physiological activity of willow plants

  9. (Hydroxyproline-rich glycoproteins of the plant cell wall)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varner, J.E.

    1990-01-01

    We are studying the chemistry and architecture of plant cells walls, the extracellular matrices that taken together shape the plant and provide mechanical support for the plant. Cell walls are dynamic structures that regulate, or are the site of, many physiological processes, in addition to being the cells' first line of defense against invading pathogens. In the past year we have examined the role of the cell wall enzyme ascorbic acid oxidase as related to the structure of the wall and its possible interactions with hydroxyproline-rich glycoproteins of the wall.

  10. Physiology in conservation translocations

    PubMed Central

    Tarszisz, Esther; Dickman, Christopher R.; Munn, Adam J.

    2014-01-01

    Conservation translocations aim to restore species to their indigenous ranges, protect populations from threats and/or reinstate ecosystem functions. They are particularly important for the conservation and management of rare and threatened species. Despite tremendous efforts and advancement in recent years, animal conservation translocations generally have variable success, and the reasons for this are often uncertain. We suggest that when little is known about the physiology and wellbeing of individuals either before or after release, it will be difficult to determine their likelihood of survival, and this could limit advancements in the science of translocations for conservation. In this regard, we argue that physiology offers novel approaches that could substantially improve translocations and associated practices. As a discipline, it is apparent that physiology may be undervalued, perhaps because of the invasive nature of some physiological measurement techniques (e.g. sampling body fluids, surgical implantation). We examined 232 publications that dealt with translocations of terrestrial vertebrates and aquatic mammals and, defining ‘success’ as high or low, determined how many of these studies explicitly incorporated physiological aspects into their protocols and monitoring. From this review, it is apparent that physiological evaluation before and after animal releases could progress and improve translocation/reintroduction successes. We propose a suite of physiological measures, in addition to animal health indices, for assisting conservation translocations over the short term and also for longer term post-release monitoring. Perhaps most importantly, we argue that the incorporation of physiological assessments of animals at all stages of translocation can have important welfare implications by helping to reduce the total number of animals used. Physiological indicators can also help to refine conservation translocation methods. These approaches fall

  11. Growth and physiological plasticity among differentially adapted genotypes of a widespread C4 grass under altered precipitation

    USDA-ARS?s Scientific Manuscript database

    Background/Question/Methods Variation in precipitation expected with climate change may impact plant fitness and alter ecosystem dynamics by modifying species phenology, productivity, and physiology. Species responses to varied precipitation will depend in part on plastic responses of genotypes ad...

  12. Influence of fly ash aided phytostabilisation of Pb, Cd and Zn highly contaminated soils on Lolium perenne and Trifolium repens metal transfer and physiological stress.

    PubMed

    Lopareva-Pohu, Alena; Verdin, Anthony; Garçon, Guillaume; Lounès-Hadj Sahraoui, Anissa; Pourrut, Bertrand; Debiane, Djouher; Waterlot, Christophe; Laruelle, Frédéric; Bidar, Géraldine; Douay, Francis; Shirali, Pirouz

    2011-06-01

    Due to anthropogenic activities, large extends of soils are highly contaminated by Metal Trace Element (MTE). Aided phytostabilisation aims to establish a vegetation cover in order to promote in situ immobilisation of trace elements by combining the use of metal-tolerant plants and inexpensive mineral or organic soil amendments. Eight years after Coal Fly Ash (CFA) soil amendment, MTE bioavailability and uptake by two plants, Lolium perenne and Trifolium repens, were evaluated, as some biological markers reflecting physiological stress. Results showed that the two plant species under study were suitable to reduce the mobility and the availability of these elements. Moreover, the plant growth was better on CFA amended MTE-contaminated soils, and the plant sensitivity to MTE-induced physiological stress, as studied through photosynthetic pigment contents and oxidative damage was lower or similar. In conclusion, these results supported the usefulness of aided phytostabilisation of MTE-highly contaminated soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Personalized physiological medicine.

    PubMed

    Ince, Can

    2017-12-28

    This paper introduces the concept of personalized physiological medicine that is specifically directed at the needs of the critically ill patient. This differs from the conventional view of personalized medicine, characterized by biomarkers and gene profiling, instead focusing on time-variant changes in the pathophysiology and regulation of various organ systems and their cellular and subcellular constituents. I propose that personalized physiological medicine is composed of four pillars relevant to the critically ill patient. Pillar 1 is defined by the frailty and fitness of the patient and their physiological reserve to cope with the stress of critical illness and therapy. Pillar 2 involves monitoring of the key physiological variables of the different organ systems and their response to disease and therapy. Pillar 3 concerns the evaluation of the success of resuscitation by assessment of the hemodynamic coherence between the systemic and microcirculation and parenchyma of the organ systems. Finally, pillar 4 is defined by the integration of the physiological and clinical data into a time-learning adaptive model of the patient to provide feedback about the function of organ systems and to guide and assess the response to disease and therapy. I discuss each pillar and describe the challenges to research and development that will allow the realization of personalized physiological medicine to be practiced at the bedside for critically ill patients.

  14. Physiological responses of root-less epiphytic plants to acid rain.

    PubMed

    Kováčik, Jozef; Klejdus, Bořivoj; Bačkor, Martin; Stork, František; Hedbavny, Josef

    2011-03-01

    Selected physiological responses of Tillandsia albida (Bromeliaceae) and two lichens (Hypogymnia physodes and Xanthoria parietina) exposed to simulated acid rain (AR) over 3 months were studied. Pigments were depressed in all species being affected the most in Tillandsia. Amounts of hydrogen peroxide and superoxide were elevated and soluble proteins decreased only in AR-exposed Hypogymnia. Free amino acids were slightly affected among species and only glutamate sharply decreased in AR-exposed Xanthoria. Slight increase in soluble phenols but decrease in flavonoids in almost all species suggests that the latter are not essential for tolerance to AR. Almost all phenolic acids in Tillandsia leaves decreased in response to AR and activities of selected enzymes (phenylalanine ammonia-lyase, polyphenol oxidase, ascorbate- and guaiacol-peroxidase) were enhanced by AR. In lichens, considerable increase in metabolites (physodalic acid, atranorin and parietin) in response to AR was found but amount of ergosterol was unchanged. Macronutrients (K, Ca, Mg) decreased more pronouncedly in comparison with micronutrients in all species. Xanthoria showed higher tolerance in comparison with Hypogymnia, suggesting that could be useful for long-term biomonitoring.

  15. Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities.

    PubMed

    Gorzelak, Monika A; Asay, Amanda K; Pickles, Brian J; Simard, Suzanne W

    2015-05-15

    Adaptive behaviour of plants, including rapid changes in physiology, gene regulation and defence response, can be altered when linked to neighbouring plants by a mycorrhizal network (MN). Mechanisms underlying the behavioural changes include mycorrhizal fungal colonization by the MN or interplant communication via transfer of nutrients, defence signals or allelochemicals. We focus this review on our new findings in ectomycorrhizal ecosystems, and also review recent advances in arbuscular mycorrhizal systems. We have found that the behavioural changes in ectomycorrhizal plants depend on environmental cues, the identity of the plant neighbour and the characteristics of the MN. The hierarchical integration of this phenomenon with other biological networks at broader scales in forest ecosystems, and the consequences we have observed when it is interrupted, indicate that underground 'tree talk' is a foundational process in the complex adaptive nature of forest ecosystems. Published by Oxford University Press on behalf of the Annals of Botany Company.

  16. Physiological and genetic characterization of plant growth and gravitropism in LED light sources

    NASA Technical Reports Server (NTRS)

    Deitzer, Gerald F.

    1994-01-01

    Among the many problems of growing plants in completely controlled environments, such as those anticipated for the space station and the CELSS program, is the need to provide light that is both adequate for photosynthesis and of proper quality for normal growth and development. NASA scientists and engineers have recently become interested in the possibility of utilizing densely packed, solid state, light emitting diodes (LED's) as a source for this light. Unlike more conventional incandescent or electrical discharge lamps, these sources are highly monochromatic and lack energy in spectral regions thought to be important for normal plant development. In addition, a recent observation by NASA scientist has suggested that infra-red LED's, that are routinely used as photographic safelights for plants grown in darkness, may interact with the ability of plants to detect gravity. In order to establish how plants respond to light from these LED light sources we carried out a series of experiments with known pigment mutants of the model mustard plant, Arabidopsis thaliana, growing in either a gravity field or on a clinostat to simulate a micro-gravity environment. Results indicate that only red light from the 665 nm LED's disrupts the ability of normal wildtype seedlings to detect a gravity stimulus. There was no consistent effect found for the far-red (735 nm) LED's or either of the infrared (880 nm or 935 nm) LED sources but both showed some effect in one or more of the genotypes tested. Of these five members of the phytochrome multigene family in Arabidopsis, only the phytochrome B pigment mutant (hy3) lacked the ability to detect gravity under all conditions. There was no effect of either micro-gravity (clinostat) or the infra-red LED's on the light induced inhibition of hypocotyl elongation. Measurements of the pigment phytochrome in oats also showed no photoconversion by 15 min irradiations with the infra-red LED's. We conclude that phytochrome B is required for the

  17. Use of space for development of commercial plant natural products

    NASA Astrophysics Data System (ADS)

    Draeger, Norman A.

    1997-01-01

    Plant experiments conducted in environments where conditions are carefully controlled reveal fundamental information about physiological processes. An important environmental parameter is gravity, the effects of which may be better understood in part through experiments conducted in space. New insights gained can be used to develop commercial plant natural products in industries such as pharmaceuticals and biocontrol.

  18. The barley anion channel, HvALMT1, has multiple roles in guard cell physiology and grain metabolism.

    PubMed

    Xu, Muyun; Gruber, Benjamin D; Delhaize, Emmanuel; White, Rosemary G; James, Richard A; You, Jiangfeng; Yang, Zhenming; Ryan, Peter R

    2015-01-01

    The barley (Hordeum vulgare) gene HvALMT1 encodes an anion channel in guard cells and in certain root tissues indicating that it may perform multiple roles. The protein localizes to the plasma membrane and facilitates malate efflux from cells when constitutively expressed in barley plants and Xenopus oocytes. This study investigated the function of HvALMT1 further by identifying its tissue-specific expression and by generating and characterizing RNAi lines with reduced HvALMT1 expression. We show that transgenic plants with 18-30% of wild-type HvALMT1 expression had impaired guard cell function. They maintained higher stomatal conductance in low light intensity and lost water more rapidly from excised leaves than the null segregant control plants. Tissue-specific expression of HvALMT1 was investigated in developing grain and during germination using transgenic barley lines expressing the green fluorescent protein (GFP) with the HvALMT1 promoter. We found that HvALMT1 is expressed in the nucellar projection, the aleurone layer and the scutellum of developing barley grain. Malate release measured from isolated aleurone layers prepared from imbibed grain was significantly lower in the RNAi barley plants compared with control plants. These data provide molecular and physiological evidence that HvALMT1 functions in guard cells, in grain development and during germination. We propose that HvALMT1 releases malate and perhaps other anions from guard cells to promote stomatal closure. The likely roles of HvALMT1 during seed development and grain germination are also discussed. © 2014 Scandinavian Plant Physiology Society.

  19. Effect of Cuscuta campestris parasitism on the physiological and anatomical changes in untreated and herbicide-treated sugar beet.

    PubMed

    Saric-Krsmanovic, Marija M; Bozic, Dragana M; Radivojevic, Ljiljana M; Umiljendic, Jelena S Gajic; Vrbnicanin, Sava P

    2017-11-02

    The effects of field dodder on physiological and anatomical processes in untreated sugar beet plants and the effects of propyzamide on field dodder were examined under controlled conditions. The experiment included the following variants: N-noninfested sugar beet plants (control); I - infested sugar beet plants (untreated), and infested plants treated with propyzamide (1500 g a.i. ha -1 (T 1 ) and 2000 g a.i. ha -1 (T 2 )). The following parameters were checked: physiological-pigment contents (chlorophyll a, chlorophyll b, total carotenoids); anatomical -leaf parameters: thickness of epidermis, parenchyma and spongy tissue, mesophyll and underside leaf epidermis, and diameter of bundle sheath cells; petiole parameters: diameter of tracheid, petiole hydraulic conductance, xylem surface, phloem cell diameter and phloem area in sugar beet plants. A conventional paraffin wax method was used to prepare the samples for microscopy. Pigment contents were measured spectrophotometrically after methanol extraction. All parameters were measured: prior to herbicide application (0 assessment), then 7, 14, 21, 28 and 35 days after application (DAA). Field dodder was found to affect the pigment contents in untreated sugar beet plants, causing significant reductions. Conversely, reduction in the treated plants decreased 27% to 4% for chlorophyll a, from 21% to 5% for chlorophyll b, and from 28% to 5% for carotenoids (T 1 ). Also, in treatment T 2, reduction decreased in infested and treated plants from 19% to 2% for chlorophyll a, from 21% to 2% for chlorophyll b, from 23% to 3% for carotenoids and stimulation of 1% and 2% was observed 28 and 35 DAA, respectively. Plants infested (untreated) by field dodder had lower values of most anatomical parameters, compared to noninfested plants. The measured anatomical parameters of sugar beet leaves and petiole had significantly higher values in noninfested plants and plants treated with propyzamide than in untreated plants. Also, the

  20. Ninth workshop on seedling physiology and growth problems in oak plantings (abstracts)

    Treesearch

    D.R. Weigel; J.W. Van Sambeek; C.H., eds. Michler

    2005-01-01

    Research results and ongoing research activities in field performance of oak plantings, seedling propagation, genetics, acorn germination, and natural regeneration of oaks are described in 26 abstracts.

  1. Phenols, ozone, and their involvement in pigmentation and physiology of plant injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, R.K.

    1974-01-01

    In plant cells, phenols and derivatives are located in chloroplasts and in vacuoles; enzymes that oxidize phenols are also located in chloroplasts and in cytoplasm but are maintained in separate compartments by membranes. Ozone impairs the integrity of cell membranes and thus permits oxidative enzymes to oxidize phenols to their respective quinones. o-Quinones have an E/sub 0/' of +1.9V and will polymerize with amino acids, amines and sulfhydryl groups of proteins to form low molecular weight reddish-brown pigments in leaves of ozone-treated plants. This involvement of phenols appears to be the cause of the visible necrotic lesions on injured leaves.more » The polymers are lignin- or tannin-like and as such detract from the esthetic and probably nutritional value of foliage from important food and feed crops. Concentrations of caffeoyl derivatives, caffeic and chlorogenic acids are increased in ozone-damaged tissues. Both o-diphenols increase O/sub 2/ consumption and reduce CO/sub 2/ fixation. Therefore, plant growth and quality could be reduced by ozone's (a) impairing membrane integrity which would promote cell degradation through reduction in synthesis of products of primary metabolism and by (b) increasing products of secondary metabolism. 48 references, 8 figures, 1 table.« less

  2. A model framework to represent plant-physiology and rhizosphere processes in soil profile simulation models

    NASA Astrophysics Data System (ADS)

    Vanderborght, J.; Javaux, M.; Couvreur, V.; Schröder, N.; Huber, K.; Abesha, B.; Schnepf, A.; Vereecken, H.

    2013-12-01

    Plant roots play a crucial role in several key processes in soils. Besides their impact on biogeochemical cycles and processes, they also have an important influence on physical processes such as water flow and transport of dissolved substances in soils. Interaction between plant roots and soil processes takes place at different scales and ranges from the scale of an individual root and its directly surrounding soil or rhizosphere over the scale of a root system of an individual plant in a soil profile to the scale of vegetation patterns in landscapes. Simulation models that are used to predict water flow and solute transport in soil-plant systems mainly focus on the individual plant root system scale, parameterize single-root scale phenomena, and aggregate the root system scale to the vegetation scale. In this presentation, we will focus on the transition from the single root to the root system scale. Using high resolution non-invasive imaging techniques and methods, gradients in soil properties and states around roots and their difference from the bulk soil properties could be demonstrated. Recent developments in plant sciences provide new insights in the mechanisms that control water fluxes in plants and in the adaptation of root properties or root plasticity to changing soil conditions. However, since currently used approaches to simulate root water uptake neither resolve these small scale processes nor represent processes and controls within the root system, transferring this information to the whole soil-plant system scale is a challenge. Using a simulation model that describes flow and transport processes in the soil, resolves flow and transport towards individual roots, and describes flow and transport within the root system, such a transfer could be achieved. We present a few examples that illustrate: (i) the impact of changed rhizosphere hydraulic properties, (ii) the effect of root hydraulic properties and root system architecture, (iii) the regulation

  3. Plant trait detection with multi-scale spectrometry

    NASA Astrophysics Data System (ADS)

    Gamon, J. A.; Wang, R.

    2017-12-01

    Proximal and remote sensing using imaging spectrometry offers new opportunities for detecting plant traits, with benefits for phenotyping, productivity estimation, stress detection, and biodiversity studies. Using proximal and airborne spectrometry, we evaluated variation in plant optical properties at various spatial and spectral scales with the goal of identifying optimal scales for distinguishing plant traits related to photosynthetic function. Using directed approaches based on physiological vegetation indices, and statistical approaches based on spectral information content, we explored alternate ways of distinguishing plant traits with imaging spectrometry. With both leaf traits and canopy structure contributing to the signals, results exhibit a strong scale dependence. Our results demonstrate the benefits of multi-scale experimental approaches within a clear conceptual framework when applying remote sensing methods to plant trait detection for phenotyping, productivity, and biodiversity studies.

  4. The August Krogh principle applies to plants

    NASA Technical Reports Server (NTRS)

    Wayne, R.; Staves, M. P.

    1996-01-01

    The Krogh principle refers to the use of a large number of animals to study the large number of physiological problems, rather than limiting study to a particular organism for all problems. There may be organisms that are more suited to study of a particular problem than others. This same principle applies to plants. The authors are concerned with the recent trend in plant biology of using Arabidopsis thaliana as the "organism of choice." Arabidopsis is an excellent organism for molecular genetic research, but other plants are superior models for other research areas of plant biology. The authors present examples of the successful use of the Krogh principle in plant cell biology research, emphasizing the particular characteristics of the selected research organisms that make them the appropriate choice.

  5. Gender-related traits in the dioecious shrub Empetrum rubrum in two plant communities in the Magellanic steppe

    NASA Astrophysics Data System (ADS)

    Díaz-Barradas, Mari Cruz; Zunzunegui, María; Collantes, Marta; Álvarez-Cansino, Leonor; García Novo, Francisco

    2014-10-01

    Following the theory on costs of reproduction, sexually dimorphic plants may exhibit several trade-offs in energy and resources that can determine gender dimorphism in morphological or physiological traits, especially during the reproductive period. In this study we assess whether the sexes of the dioecious species Empetrum rubrum differ in morphological and ecophysiological traits related to water economy and photochemical efficiency and whether these differences change in nearby populations with contrasting plant communities. We conducted physiological, morphological, sex ratio, and cover measurements in E. rubrum plants in the Magellanic steppe, North-Eastern part of Tierra del Fuego (Argentina), from two types of heathlands with differing community composition. We found differences between sites in soil pH and wind speed at the canopy level. E. rubrum plants exhibited lower photosynthetic height and higher LAI (leaf area index), lower RWC (relative water content) and higher water-use efficiency (lower Δ13C) in the heathland with harsher environmental conditions. Gender dimorphism in the physiological response was patent for photochemical efficiency and water use (RWC and Δ13C discrimination), with males showing a more conservative strategy in relation to females. Accordingly, male-biased sex ratio in the stress-prone community suggested a better performance of male plants under stressful environmental conditions. The integrated analysis of all variables (photochemical efficiency, RWC, leaf dry matter content (LDMC), pigments, and Δ13C) indicated an interaction between gender and heathland community effects in the physiological response. We suggest that female plants may exhibit compensatory mechanisms to face their higher reproductive costs.

  6. Transcriptomic Profiling and Physiological Responses of Halophyte Kochia sieversiana Provide Insights into Salt Tolerance

    PubMed Central

    Zhao, Long; Yang, Zongze; Guo, Qiaobing; Mao, Shun; Li, Shaoqiang; Sun, Fasheng; Wang, Huan; Yang, Chunwu

    2017-01-01

    Halophytes are remarkable plants that can tolerate extremely high-salinity conditions, and have different salinity tolerance mechanisms from those of glycophytic plants. In this work, we investigated the mechanisms of salinity tolerance of an extreme halophyte, Kochia sieversiana (Pall.) C. A. M, using RNA sequencing and physiological tests. The results showed that moderate salinity stimulated the growth and water uptake of K. sieversiana and, even under 480-mM salinity condition, K. sieversiana maintained an extremely high water content. This high water content may be a specific adaptive strategy of K. sieversiana to high salinity. The physiological analysis indicated that increasing succulence and great accumulations of sodium, alanine, sucrose, and maltose may be favorable to the water uptake and osmotic regulation of K. sieversiana under high-salinity stress. Transcriptome data indicated that some aquaporin genes and potassium (K+) transporter genes may be important for water uptake and ion balance, respectively, while different members of those gene families were employed under low- and high-salinity stresses. In addition, several aquaporin genes were up-regulated in low- but not high-salinity stressed roots. The highly expressed aquaporin genes may allow low-salinity stressed K. sieversiana plants to uptake more water than control plants. The leaf K+/root K+ ratio was enhanced under low- but not high-salinity stress, which suggested that low salinity might promote K+ transport from the roots to the shoots. Hence, we speculated that low salinity might allow K. sieversiana to uptake more water and transport more K+ from roots to shoots, increasing the growth rate of K. sieversiana. PMID:29225608

  7. A miniature ultrasonic actuator-control system for plant stem diameter micro-variation measurements

    USDA-ARS?s Scientific Manuscript database

    Measurements of micro-variations in plant stem diameter are potentially useful to optimize irrigation decision support systems that are based on plant physiological responses. However, for this technology to be suitable for field applications, problems associated with stem softness and micro variati...

  8. Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations.

    PubMed

    Andrade, Sara A L; Gratão, Priscila L; Schiavinato, Marlene A; Silveira, Adriana P D; Azevedo, Ricardo A; Mazzafera, Paulo

    2009-06-01

    The influence of arbuscular mycorrhizal fungi (AMF) inoculation on Canavalia ensiformis growth, nutrient and Zn uptake, and on some physiological parameters in response to increasing soil Zn concentrations was studied. Treatments were applied in seven replicates in a 2 x 4 factorial design, consisting of the inoculation or not with the AMF Glomus etunicatum, and the addition of Zn to soil at the concentrations of 0, 100, 300 and 900 mg kg(-1). AMF inoculation enhanced the accumulation of Zn in tissues and promoted biomass yields and root nodulation. Mycorrhizal plants exhibited relative tolerance to Zn up to 300 mg kg(-1) without exhibiting visual symptoms of toxicity, in contrast to non-mycorrhizal plants which exhibited a significant growth reduction at the same soil Zn concentration. The highest concentration of Zn added to soil was highly toxic to the plants. Leaves of plants grown in high Zn concentration exhibited a Zn-induced proline accumulation and also an increase in soluble amino acid contents; however proline contents were lower in mycorrhizal jack beans. Plants in association or not with the AMF exhibited marked differences in the foliar soluble amino acid profile and composition in response to Zn addition to soil. In general, Zn induced oxidative stress which could be verified by increased lipid peroxidation rates and changes in catalase, ascorbate peroxidase, glutathione reductase and superoxide dismutase activities. In summary, G. etunicatum was able to maintain an efficient symbiosis with jack bean plants in moderately contaminated Zn-soils, improving plant performance under those conditions, which is likely to be due to a combination of physiological and nutritional changes caused by the intimate relation between fungus and plant. The enhanced Zn uptake by AMF inoculated jack bean plants might be of interest for phytoremediation purposes.

  9. Landscape and plant physiological controls on water dynamics and forest productivity within a watershed

    NASA Astrophysics Data System (ADS)

    Hu, Jia; Jencso, Kelsey; Looker, Nathaniel; Martin, Justin; Hoylman, Zachary

    2015-04-01

    Across the Western U.S., declining snowpacks have resulted in increased water limitation, leading to reduced productivity in high elevation forests. While our current understanding of how forests respond to climate change is typically focused on measuring/modeling the physiological responses and climate feedbacks, our study aims to combine physiology with hydrology to examine how landscape topography modulates the sensitivity of forests to climate. In a forested watershed in Western Montana, we linked climate variability to the physical watershed characteristics and the physiological response of vegetation to examine forest transpiration and productivity rates. Across the entire watershed, we found a strong relationship between productivity and the topographic wetness index, a proxy for soil moisture storage. However, this relationship was highly dependent on the intensity of solar radiation, suggesting that at high elevations productivity was limited by temperature, while at low elevations productivity was limited by moisture. In order to identify the mechanisms responsible for this relationship, we then examined how different coniferous species respond to changing environmental and hydrologic regimes. We first examined transpiration and productivity rates at the hillslope scale at four plots, ranging in elevation and aspect across the watershed. We found trees growing in the hollows had higher transpiration and productivity rates than trees growing in the side slope, but that these differences were more pronounced at lower elevations. We then used oxygen isotope to examine water source use by different species across the watershed. We found that trees growing in the hollows used snowmelt for a longer period. This was most likely due to upslope subsidies of snowmelt water to the hollow areas. However, we found that trees growing at lower elevations used proportionally more snowmelt than trees at the higher elevations. This was most likely due to the trees at lower

  10. Effects of monsoon precipitation variability on the physiological response of two dominant C₄ grasses across a semiarid ecotone.

    PubMed

    Thomey, Michell L; Collins, Scott L; Friggens, Michael T; Brown, Renee F; Pockman, William T

    2014-11-01

    For the southwestern United States, climate models project an increase in extreme precipitation events and prolonged dry periods. While most studies emphasize plant functional type response to precipitation variability, it is also important to understand the physiological characteristics of dominant plant species that define plant community composition and, in part, regulate ecosystem response to climate change. We utilized rainout shelters to alter the magnitude and frequency of rainfall and measured the physiological response of the dominant C4 grasses, Bouteloua eriopoda and Bouteloua gracilis. We hypothesized that: (1) the more drought-adapted B. eriopoda would exhibit faster recovery and higher rates of leaf-level photosynthesis (A(net)) than B. gracilis, (2) A(net) would be greater under the higher average soil water content in plots receiving 30-mm rainfall events, (3) co-dominance of B. eriopoda and B. gracilis in the ecotone would lead to intra-specific differences from the performance of each species at the site where it was dominant. Throughout the study, soil moisture explained 40-70% of the variation in A(net). Consequently, differences in rainfall treatments were not evident from intra-specific physiological function without sufficient divergence in soil moisture. Under low frequency, larger rainfall events B. gracilis exhibited improved water status and longer periods of C gain than B. eriopoda. Results from this study indicate that less frequent and larger rainfall events could provide a competitive advantage to B. gracilis and influence species composition across this arid-semiarid grassland ecotone.

  11. Regulatory Physiology

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Whitson, Peggy A.; Putcha, Lakshmi; Baker, Ellen; Smith, Scott M.; Stewart, Karen; Gretebeck, Randall; Nimmagudda, R. R.; Schoeller, Dale A.; Davis-Street, Janis

    1999-01-01

    As noted elsewhere in this report, a central goal of the Extended Duration Orbiter Medical Project (EDOMP) was to ensure that cardiovascular and muscle function were adequate to perform an emergency egress after 16 days of spaceflight. The goals of the Regulatory Physiology component of the EDOMP were to identify and subsequently ameliorate those biochemical and nutritional factors that deplete physiological reserves or increase risk for disease, and to facilitate the development of effective muscle, exercise, and cardiovascular countermeasures. The component investigations designed to meet these goals focused on biochemical and physiological aspects of nutrition and metabolism, the risk of renal (kidney) stone formation, gastrointestinal function, and sleep in space. Investigations involved both ground-based protocols to validate proposed methods and flight studies to test those methods. Two hardware tests were also completed.

  12. Visualized modeling platform for virtual plant growth and monitoring on the internet

    NASA Astrophysics Data System (ADS)

    Zhou, De-fu; Tian, Feng-qui; Ren, Ping

    2009-07-01

    Virtual plant growth is a key research topic in Agriculture Information Technique and Computer Graphics. It has been applied in botany, agronomy, environmental sciences, computre sciences and applied mathematics. Modeling leaf color dynamics in plant is of significant importance for realizing virtual plant growth. Using systematic analysis method and dynamic modeling technology, a SPAD-based leaf color dynamic model was developed to simulate time-course change characters of leaf SPAD on the plant. In addition, process of plant growth can be computer-stimulated using Virtual Reality Modeling Language (VRML) to establish a vivid and visible model, including shooting, rooting, blooming, as well as growth of the stems and leaves. In the resistance environment, e.g., lacking of water, air or nutrient substances, high salt or alkaline, freezing injury, high temperature, suffering from diseases and insect pests, the changes from the level of whole plant to organs, tissues and cells could be computer-stimulated. Changes from physiological and biochemistry could also be described. When a series of indexes were input by the costumers, direct view and microcosmic changes could be shown. Thus, the model has a good performance in predicting growth condition of the plant, laying a foundation for further constructing virtual plant growth system. The results revealed that realistic physiological and pathological processes of 3D virtual plants could be demonstrated by proper design and effectively realized in the internet.

  13. The Power of Physiology in Changing Landscapes: Considerations for the Continued Integration of Conservation and Physiology.

    PubMed

    Madliger, Christine L; Love, Oliver P

    2015-10-01

    The growing field of conservation physiology applies a diversity of physiological traits (e.g., immunological, metabolic, endocrine, and nutritional traits) to understand and predict organismal, population, and ecosystem responses to environmental change and stressors. Although the discipline of conservation physiology is gaining momentum, there is still a pressing need to better translate knowledge from physiology into real-world tools. The goal of this symposium, ‘‘Physiology in Changing Landscapes: An Integrative Perspective for Conservation Biology’’, was to highlight that many current investigations in ecological, evolutionary, and comparative physiology are necessary for understanding the applicability of physiological measures for conservation goals, particularly in the context of monitoring and predicting the health, condition, persistence, and distribution of populations in the face of environmental change. Here, we outline five major investigations common to environmental and ecological physiology that can contribute directly to the progression of the field of conservation physiology: (1) combining multiple measures of physiology and behavior; (2) employing studies of dose–responses and gradients; (3) combining a within-individual and population-level approach; (4) taking into account the context-dependency of physiological traits; and (5) linking physiological variables with fitness metrics. Overall, integrative physiologists have detailed knowledge of the physiological systems that they study; however, communicating theoretical and empirical knowledge to conservation biologists and practitioners in an approachable and applicable way is paramount to the practical development of physiological tools that will have a tangible impact for conservation.

  14. Regulation of thermogenesis in plants: the interaction of alternative oxidase and plant uncoupling mitochondrial protein.

    PubMed

    Zhu, Yan; Lu, Jianfei; Wang, Jing; Chen, Fu; Leng, Feifan; Li, Hongyu

    2011-01-01

    Thermogenesis is a process of heat production in living organisms. It is rare in plants, but it does occur in some species of angiosperm. The heat is generated via plant mitochondrial respiration. As possible involvement in thermogenesis of mitochondrial factors, alternative oxidases (AOXs) and plant uncoupling mitochondrial proteins (PUMPs) have been well studied. AOXs and PUMPs are ubiquitously present in the inner membrane of plant mitochondria. They serve as two major energy dissipation systems that balance mitochondrial respiration and uncoupled phosphorylation by dissipating the H+ redox energy and proton electrochemical gradient (ΔμH+) as heat, respectively. AOXs and PUMPs exert similar physiological functions during homeothermic heat production in thermogenic plants. AOXs have five isoforms, while PUMPs have six. Both AOXs and PUMPs are encoded by small nuclear multigene families. Multiple isoforms are expressed in different tissues or organs. Extensive studies have been done in the area of thermogenesis in higher plants. In this review, we focus on the involvement and regulation of AOXs and PUMPs in thermogenesis.

  15. Chewing Over Physiology Integration

    ERIC Educational Resources Information Center

    Abdulkader, Fernando; Azevedo-Martins, Anna Karenina; de Arcisio Miranda, Manoel; Brunaldi, Kellen

    2005-01-01

    An important challenge for both students and teachers of physiology is to integrate the differentareas in which physiological knowledge is didactically divided. In developing countries, such an issue is even more demanding, because budget restrictions often affect the physiology program with laboratory classes being the first on the list when it…

  16. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria

    PubMed Central

    Delmotte, Nathanaël; Knief, Claudia; Chaffron, Samuel; Innerebner, Gerd; Roschitzki, Bernd; Schlapbach, Ralph; von Mering, Christian; Vorholt, Julia A.

    2009-01-01

    Aerial plant surfaces represent the largest biological interface on Earth and provide essential services as sites of carbon dioxide fixation, molecular oxygen release, and primary biomass production. Rather than existing as axenic organisms, plants are colonized by microorganisms that affect both their health and growth. To gain insight into the physiology of phyllosphere bacteria under in situ conditions, we performed a culture-independent analysis of the microbiota associated with leaves of soybean, clover, and Arabidopsis thaliana plants using a metaproteogenomic approach. We found a high consistency of the communities on the 3 different plant species, both with respect to the predominant community members (including the alphaproteobacterial genera Sphingomonas and Methylo bacterium) and with respect to their proteomes. Observed known proteins of Methylobacterium were to a large extent related to the ability of these bacteria to use methanol as a source of carbon and energy. A remarkably high expression of various TonB-dependent receptors was observed for Sphingomonas. Because these outer membrane proteins are involved in transport processes of various carbohydrates, a particularly large substrate utilization pattern for Sphingomonads can be assumed to occur in the phyllosphere. These adaptations at the genus level can be expected to contribute to the success and coexistence of these 2 taxa on plant leaves. We anticipate that our results will form the basis for the identification of unique traits of phyllosphere bacteria, and for uncovering previously unrecorded mechanisms of bacteria-plant and bacteria-bacteria relationships. PMID:19805315

  17. The disadvantages of being a hybrid during drought: A combined analysis of plant morphology, physiology and leaf proteome in maize

    PubMed Central

    Benešová, Monika; Fischer, Lukáš; Haisel, Daniel; Hnilička, František; Hniličková, Helena; Jedelský, Petr L.; Kočová, Marie; Rothová, Olga; Tůmová, Lenka; Wilhelmová, Naďa

    2017-01-01

    A comparative analysis of various parameters that characterize plant morphology, growth, water status, photosynthesis, cell damage, and antioxidative and osmoprotective systems together with an iTRAQ analysis of the leaf proteome was performed in two inbred lines of maize (Zea mays L.) differing in drought susceptibility and their reciprocal F1 hybrids. The aim of this study was to dissect the parent-hybrid relationships to better understand the mechanisms of the heterotic effect and its potential association with the stress response. The results clearly showed that the four examined genotypes have completely different strategies for coping with limited water availability and that the inherent properties of the F1 hybrids, i.e. positive heterosis in morphological parameters (or, more generally, a larger plant body) becomes a distinct disadvantage when the water supply is limited. However, although a greater loss of photosynthetic efficiency was an inherent disadvantage, the precise causes and consequences of the original predisposition towards faster growth and biomass accumulation differed even between reciprocal hybrids. Both maternal and paternal parents could be imitated by their progeny in some aspects of the drought response (e.g., the absence of general protein down-regulation, changes in the levels of some carbon fixation or other photosynthetic proteins). Nevertheless, other features (e.g., dehydrin or light-harvesting protein contents, reduced chloroplast proteosynthesis) were quite unique to a particular hybrid. Our study also confirmed that the strategy for leaving stomata open even when the water supply is limited (coupled to a smaller body size and some other physiological properties), observed in one of our inbred lines, is associated with drought-resistance not only during mild drought (as we showed previously) but also during more severe drought conditions. PMID:28419152

  18. The disadvantages of being a hybrid during drought: A combined analysis of plant morphology, physiology and leaf proteome in maize.

    PubMed

    Holá, Dana; Benešová, Monika; Fischer, Lukáš; Haisel, Daniel; Hnilička, František; Hniličková, Helena; Jedelský, Petr L; Kočová, Marie; Procházková, Dagmar; Rothová, Olga; Tůmová, Lenka; Wilhelmová, Naďa

    2017-01-01

    A comparative analysis of various parameters that characterize plant morphology, growth, water status, photosynthesis, cell damage, and antioxidative and osmoprotective systems together with an iTRAQ analysis of the leaf proteome was performed in two inbred lines of maize (Zea mays L.) differing in drought susceptibility and their reciprocal F1 hybrids. The aim of this study was to dissect the parent-hybrid relationships to better understand the mechanisms of the heterotic effect and its potential association with the stress response. The results clearly showed that the four examined genotypes have completely different strategies for coping with limited water availability and that the inherent properties of the F1 hybrids, i.e. positive heterosis in morphological parameters (or, more generally, a larger plant body) becomes a distinct disadvantage when the water supply is limited. However, although a greater loss of photosynthetic efficiency was an inherent disadvantage, the precise causes and consequences of the original predisposition towards faster growth and biomass accumulation differed even between reciprocal hybrids. Both maternal and paternal parents could be imitated by their progeny in some aspects of the drought response (e.g., the absence of general protein down-regulation, changes in the levels of some carbon fixation or other photosynthetic proteins). Nevertheless, other features (e.g., dehydrin or light-harvesting protein contents, reduced chloroplast proteosynthesis) were quite unique to a particular hybrid. Our study also confirmed that the strategy for leaving stomata open even when the water supply is limited (coupled to a smaller body size and some other physiological properties), observed in one of our inbred lines, is associated with drought-resistance not only during mild drought (as we showed previously) but also during more severe drought conditions.

  19. Linking chlorophyll fluorescence, hyperspectral reflectance and plant physiological responses to detect stress using the photochemical reflectance index (PRI) (Invited)

    NASA Astrophysics Data System (ADS)

    Naumann, J. C.; Young, D.; Anderson, J.

    2009-12-01

    The concept of using vegetation as sentinels to indicate natural or anthropogenic stress is not new and could potentially provide an ideal mechanism for large-scale detection. Advances in fluorescence spectroscopy and reflectance-derived fluorescence have made possible earlier detection of stress in plants, especially before changes in chlorophyll content are visible. Our studies have been used to fuse leaf fluorescence and reflectance characteristics to remotely sense and rapidly detect vegetation stress and terrain characteristics. Laboratory studies have indicated that light-adapted fluorescence (ΔF/F‧m) measurements have been successful in all experiments at detecting stress from flooding, salinity, drought, herbicide and TNT contamination prior to visible signs of damage. ΔF/F‧m was related to plant physiological status in natural stress conditions, as seen in the relationships with stomatal conductance and photosynthesis The photochemical reflectance index (PRI) and other reflectance ratios were effective at tracking changes in ΔF/F‧m at the leaf and canopy-level scales. At the landscape-level, chlorophyll fluorescence and airborne reflectance imagery were used to evaluate spatial variations in stress in the dominant shrub on a barrier island, Myrica cerifera, during a severe drought and compared to an extremely wet year. Measurements of relative water content and the water band index (WBI970) indicated that water stress did not vary across the island. In contrast, there were significant differences in tissue chlorides across sites. Using PRI we were able to detect salinity stress across the landscape. PRI did not differ between wet and dry years. There was a positive relationship between PRI and ΔF/F‧m for M. cerifera (r2 = 0.79). The normalized difference vegetation index (NDVI), the chlorophyll index (CI) and WBI970 were higher during the wet summer but varied little across the island. PRI was not significantly related to NDVI, suggesting that

  20. Plant Chlorophyll Content Imager with Reference Detection Signals

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A. (Inventor); Carter, Gregory A. (Inventor)

    2000-01-01

    A portable plant chlorophyll imaging system is described which collects light reflected from a target plant and separates the collected light into two different wavelength bands. These wavelength bands, or channels, are described as having center wavelengths of 700 nm and 840 nm. The light collected in these two channels is processed using synchronized video cameras. A controller provided in the system compares the level of light of video images reflected from a target plant with a reference level of light from a source illuminating the plant. The percent of reflection in the two separate wavelength bands from a target plant are compared to provide a ratio video image which indicates a relative level of plant chlorophyll content and physiological stress. Multiple display modes are described for viewing the video images.