Science.gov

Sample records for phytochrome gaf domain

  1. Solution structure of a cyanobacterial phytochrome GAF domain in the red-light-absorbing ground state.

    PubMed

    Cornilescu, Gabriel; Ulijasz, Andrew T; Cornilescu, Claudia C; Markley, John L; Vierstra, Richard D

    2008-11-01

    The unique photochromic absorption behavior of phytochromes (Phys) depends on numerous reversible interactions between the bilin chromophore and the associated polypeptide. To help define these dynamic interactions, we determined by NMR spectroscopy the first solution structure of the chromophore-binding cGMP phosphodiesterase/adenylcyclase/FhlA (GAF) domain from a cyanobacterial Phy assembled with phycocyanobilin (PCB). The three-dimensional NMR structure of Synechococcus OS-B' cyanobacterial Phy 1 in the red-light-absorbing state of Phy (Pr) revealed that PCB is bound to Cys138 of the GAF domain via the A-ring ethylidene side chain and is buried within the GAF domain in a ZZZsyn,syn,anti configuration. The D ring of the chromophore sits within a hydrophobic pocket and is tilted by approximately 80 degrees relative to the B/C rings by contacts with Lys52 and His169. The solution structure revealed remarkable flexibility for PCB and several adjacent amino acids, indicating that the Pr chromophore has more freedom in the binding pocket than anticipated. The propionic acid side chains of rings B and C and Arg101 and Arg133 nearby are especially mobile and can assume several distinct and energetically favorable conformations. Mutagenic studies on these arginines, which are conserved within the Phy superfamily, revealed that they have opposing roles, with Arg101 and Arg133 helping stabilize and destabilize the far-red-light-absorbing state of Phy (Pfr), respectively. Given the fact that the Synechococcus OS-B' GAF domain can, by itself, complete the Pr --> Pfr photocycle, it should now be possible to determine the solution structure of the Pfr chromophore and surrounding pocket using this Pr structure as a framework. PMID:18762196

  2. Minimal domain of bacterial phytochrome required for chromophore binding and fluorescence

    PubMed Central

    Rumyantsev, Konstantin A.; Shcherbakova, Daria M.; Zakharova, Natalia I.; Emelyanov, Alexander V.; Turoverov, Konstantin K.; Verkhusha, Vladislav V.

    2015-01-01

    Fluorescent proteins (FP) are used to study various biological processes. Recently, a series of near-infrared (NIR) FPs based on bacterial phytochromes was developed. Finding ways to improve NIR FPs is becoming progressively important. By applying rational design and molecular evolution we have engineered R. palustris bacterial phytochrome into a single-domain NIR FP of 19.6 kDa, termed GAF-FP, which is 2-fold and 1.4-fold smaller than bacterial phytochrome-based NIR FPs and GFP-like proteins, respectively. Engineering of GAF-FP involved a substitution of 15% of its amino acids and a deletion of the knot structure. GAF-FP covalently binds two tetrapyrrole chromophores, biliverdin (BV) and phycocyanobilin (PCB). With the BV chromophore GAF-FP absorbs at 635 nm and fluoresces at 670 nm. With the PCB chromophore GAF-FP becomes blue-shifted and absorbs at 625 nm and fluoresces at 657 nm. The GAF-FP structure has a high tolerance to small peptide insertions. The small size of GAF-FP and its additional absorbance band in the violet range has allowed for designing a chimeric protein with Renilla luciferase. The chimera exhibits efficient non-radiative energy transfer from luciferase to GAF-FP, resulting in NIR bioluminescence. This study opens the way for engineering of small NIR FPs and NIR luciferases from bacterial phytochromes. PMID:26679720

  3. Minimal domain of bacterial phytochrome required for chromophore binding and fluorescence.

    PubMed

    Rumyantsev, Konstantin A; Shcherbakova, Daria M; Zakharova, Natalia I; Emelyanov, Alexander V; Turoverov, Konstantin K; Verkhusha, Vladislav V

    2015-01-01

    Fluorescent proteins (FP) are used to study various biological processes. Recently, a series of near-infrared (NIR) FPs based on bacterial phytochromes was developed. Finding ways to improve NIR FPs is becoming progressively important. By applying rational design and molecular evolution we have engineered R. palustris bacterial phytochrome into a single-domain NIR FP of 19.6 kDa, termed GAF-FP, which is 2-fold and 1.4-fold smaller than bacterial phytochrome-based NIR FPs and GFP-like proteins, respectively. Engineering of GAF-FP involved a substitution of 15% of its amino acids and a deletion of the knot structure. GAF-FP covalently binds two tetrapyrrole chromophores, biliverdin (BV) and phycocyanobilin (PCB). With the BV chromophore GAF-FP absorbs at 635 nm and fluoresces at 670 nm. With the PCB chromophore GAF-FP becomes blue-shifted and absorbs at 625 nm and fluoresces at 657 nm. The GAF-FP structure has a high tolerance to small peptide insertions. The small size of GAF-FP and its additional absorbance band in the violet range has allowed for designing a chimeric protein with Renilla luciferase. The chimera exhibits efficient non-radiative energy transfer from luciferase to GAF-FP, resulting in NIR bioluminescence. This study opens the way for engineering of small NIR FPs and NIR luciferases from bacterial phytochromes. PMID:26679720

  4. Minimal domain of bacterial phytochrome required for chromophore binding and fluorescence

    NASA Astrophysics Data System (ADS)

    Rumyantsev, Konstantin A.; Shcherbakova, Daria M.; Zakharova, Natalia I.; Emelyanov, Alexander V.; Turoverov, Konstantin K.; Verkhusha, Vladislav V.

    2015-12-01

    Fluorescent proteins (FP) are used to study various biological processes. Recently, a series of near-infrared (NIR) FPs based on bacterial phytochromes was developed. Finding ways to improve NIR FPs is becoming progressively important. By applying rational design and molecular evolution we have engineered R. palustris bacterial phytochrome into a single-domain NIR FP of 19.6 kDa, termed GAF-FP, which is 2-fold and 1.4-fold smaller than bacterial phytochrome-based NIR FPs and GFP-like proteins, respectively. Engineering of GAF-FP involved a substitution of 15% of its amino acids and a deletion of the knot structure. GAF-FP covalently binds two tetrapyrrole chromophores, biliverdin (BV) and phycocyanobilin (PCB). With the BV chromophore GAF-FP absorbs at 635 nm and fluoresces at 670 nm. With the PCB chromophore GAF-FP becomes blue-shifted and absorbs at 625 nm and fluoresces at 657 nm. The GAF-FP structure has a high tolerance to small peptide insertions. The small size of GAF-FP and its additional absorbance band in the violet range has allowed for designing a chimeric protein with Renilla luciferase. The chimera exhibits efficient non-radiative energy transfer from luciferase to GAF-FP, resulting in NIR bioluminescence. This study opens the way for engineering of small NIR FPs and NIR luciferases from bacterial phytochromes.

  5. Multiple Roles of a Conserved GAF Domain Tyrosine Residue in Cyanobacterial and Plant Phytochromes†

    PubMed Central

    Fischer, Amanda J.; Rockwell, Nathan C.; Jang, Abigail Y.; Ernst, Lauren A.; Waggoner, Alan S.; Duan, Yong; Lei, Hongxing; Lagarias, J. Clark

    2005-01-01

    The phytochrome family of red/far-red photoreceptors has been optimized to support photochemical isomerization of a bound bilin chromophore, a process that triggers a conformational change and modulates biochemical output from the surrounding protein scaffold. Recent studies have established that the efficiency of this photochemical process is profoundly altered by mutation of a conserved tyrosine residue (Tyr176) within the bilin-binding GAF domain of the cyanobacterial phytochrome Cph1 [Fischer, A. J., and Lagarias, J. C. (2004) Harnessing phytochrome’s glowing potential, Proc. Natl. Acad. Sci. U.S.A. 101, 17334–17339]. Here, we show that the equivalent mutation in plant phytochromes behaves similarly, indicating that the function of this tyrosine in the primary photochemical mechanism is conserved. Saturation mutagenesis of Tyr176 in Cph1 establishes that no other residue can support comparably efficient photoisomerization. The spectroscopic consequences of Tyr176 mutations also reveal that Tyr176 regulates the conversion of the porphyrin-like conformation of the bilin precursor to a more extended conformation. The porphyrin-binding ability of the Tyr176Arg mutant protein indicates that Tyr176 also regulates the ligand-binding specificity of apophytochrome. On the basis of the hydrogen-bonding ability of Tyr176 substitutions that support the nonphotochemical C15-Z,syn to C15-Z,anti interconversion, we propose that Tyr176 orients the carboxyl side chain of a conserved acidic residue to stabilize protonation of the bilin chromophore. A homology model of the GAF domain of Cph1 predicts a C5-Z,syn, C10-Z,syn, C15-Z,anti configuration for the chromophore and implicates Glu189 as the proposed acidic residue stabilizing the extended conformation, an interpretation consistent with site-directed mutagenesis of this conserved acidic residue. PMID:16285723

  6. Bacterial phytochromes: more than meets the light.

    PubMed

    Auldridge, Michele E; Forest, Katrina T

    2011-02-01

    Phytochromes are environmental sensors, historically thought of as red/far-red photoreceptors in plants. Their photoperception occurs through a covalently linked tetrapyrrole chromophore, which undergoes a light-dependent conformational change propagated through the protein to a variable output domain. The phytochrome composition is modular, typically consisting of a PAS-GAF-PHY architecture for the N-terminal photosensory core. A collection of three-dimensional structures has uncovered key features, including an unusual figure-of-eight knot, an extension reaching from the PHY domain to the chromophore-binding GAF domain, and a centrally located, long α-helix hypothesized to be crucial for intramolecular signaling. Continuing identification of phytochromes in microbial systems has expanded the assigned sensory abilities of this family out of the red and into the yellow, green, blue, and violet portions of the spectrum. Furthermore, phytochromes acting not as photoreceptors but as redox sensors have been recognized. In addition, architectures other than PAS-GAF-PHY are known, thus revealing phytochromes to be a varied group of sensory receptors evolved to utilize their modular design to perceive a signal and respond accordingly. This review focuses on the structures of bacterial phytochromes and implications for signal transmission. We also discuss the small but growing set of bacterial phytochromes for which a physiological function has been ascertained. PMID:21250783

  7. A second conserved GAF domain cysteine is required for the blue/green photoreversibility of cyanobacteriochrome Tlr0924 from Thermosynechococcus elongatus.

    PubMed

    Rockwell, Nathan C; Njuguna, Stephanie Lane; Roberts, Laurel; Castillo, Elenor; Parson, Victoria L; Dwojak, Sunshine; Lagarias, J Clark; Spiller, Susan C

    2008-07-01

    Phytochromes are widely occurring red/far-red photoreceptors that utilize a linear tetrapyrrole (bilin) chromophore covalently bound within a knotted PAS-GAF domain pair. Cyanobacteria also contain more distant relatives of phytochromes that lack this knot, such as the phytochrome-related cyanobacteriochromes implicated to function as blue/green switchable photoreceptors. In this study, we characterize the cyanobacteriochrome Tlr0924 from the thermophilic cyanobacterium Thermosynechococcus elongatus. Full-length Tlr0924 exhibits blue/green photoconversion across a broad range of temperatures, including physiologically relevant temperatures for this organism. Spectroscopic characterization of Tlr0924 demonstrates that its green-absorbing state is in equilibrium with a labile, spectrally distinct blue-absorbing species. The photochemically generated blue-absorbing state is in equilibrium with another species absorbing at longer wavelengths, giving a total of 4 states. Cys499 is essential for this behavior, because mutagenesis of this residue results in red-absorbing mutant biliproteins. Characterization of the C 499D mutant protein by absorbance and CD spectroscopy supports the conclusion that its bilin chromophore adopts a similar conformation to the red-light-absorbing P r form of phytochrome. We propose a model photocycle in which Z/ E photoisomerization of the 15/16 bond modulates formation of a reversible thioether linkage between Cys499 and C10 of the chromophore, providing the basis for the blue/green switching of cyanobacteriochromes. PMID:18549244

  8. Cyclic nucleotide binding and structural changes in the isolated GAF domain of Anabaena adenylyl cyclase, CyaB2

    PubMed Central

    Badireddy, Suguna; Rajendran, Abinaya; Anand, Ganesh Srinivasan

    2015-01-01

    GAF domains are a large family of regulatory domains, and a subset are found associated with enzymes involved in cyclic nucleotide (cNMP) metabolism such as adenylyl cyclases and phosphodiesterases. CyaB2, an adenylyl cyclase from Anabaena, contains two GAF domains in tandem at the N-terminus and an adenylyl cyclase domain at the C-terminus. Cyclic AMP, but not cGMP, binding to the GAF domains of CyaB2 increases the activity of the cyclase domain leading to enhanced synthesis of cAMP. Here we show that the isolated GAFb domain of CyaB2 can bind both cAMP and cGMP, and enhanced specificity for cAMP is observed only when both the GAFa and the GAFb domains are present in tandem (GAFab domain). In silico docking and mutational analysis identified distinct residues important for interaction with either cAMP or cGMP in the GAFb domain. Structural changes associated with ligand binding to the GAF domains could not be detected by bioluminescence resonance energy transfer (BRET) experiments. However, amide hydrogen-deuterium exchange mass spectrometry (HDXMS) experiments provided insights into the structural basis for cAMP-induced allosteric regulation of the GAF domains, and differences in the changes induced by cAMP and cGMP binding to the GAF domain. Thus, our findings could allow the development of molecules that modulate the allosteric regulation by GAF domains present in pharmacologically relevant proteins. PMID:25922789

  9. Structure of the cyanobacterial phytochrome 2 photosensor implies a tryptophan switch for phytochrome signaling.

    PubMed

    Anders, Katrin; Daminelli-Widany, Grazia; Mroginski, Maria Andrea; von Stetten, David; Essen, Lars-Oliver

    2013-12-13

    Phytochromes are highly versatile photoreceptors, which occur ubiquitously in plants as well as in many light-responsive microorganisms. Here, photosynthetic cyanobacteria utilize up to three different phytochrome architectures, where only the plant-like and the single-domain cyanobacteriochromes are structurally characterized so far. Cph2 represents a third group in Synechocystis species and affects their capability of phototaxis by controlling c-di-GMP synthesis and degradation. The 2.6-Å crystal structure of its red/far-red responsive photosensory module in the Pr state reveals a tandem-GAF bidomain that lacks the figure-of-eight knot of the plant/cph1 subfamily. Its covalently attached phycocyanobilin chromophore adopts a highly tilted ZZZssa conformation with a novel set of interactions between its propionates and the GAF1 domain. The tongue-like protrusion from the GAF2 domain interacts with the GAF1-bound chromophore via its conserved PRXSF, WXE, and W(G/A)G motifs. Mutagenesis showed that the integrity of the tongue is indispensable for Pr → Pfr photoconversion and involves a swap of the motifs' tryptophans within the tongue-GAF1 interface. This "Trp switch" is supposed to be a crucial element for the photochromicity of all multidomain phytochromes. PMID:24174528

  10. Structure of the Cyanobacterial Phytochrome 2 Photosensor Implies a Tryptophan Switch for Phytochrome Signaling*

    PubMed Central

    Anders, Katrin; Daminelli-Widany, Grazia; Mroginski, Maria Andrea; von Stetten, David; Essen, Lars-Oliver

    2013-01-01

    Phytochromes are highly versatile photoreceptors, which occur ubiquitously in plants as well as in many light-responsive microorganisms. Here, photosynthetic cyanobacteria utilize up to three different phytochrome architectures, where only the plant-like and the single-domain cyanobacteriochromes are structurally characterized so far. Cph2 represents a third group in Synechocystis species and affects their capability of phototaxis by controlling c-di-GMP synthesis and degradation. The 2.6-Å crystal structure of its red/far-red responsive photosensory module in the Pr state reveals a tandem-GAF bidomain that lacks the figure-of-eight knot of the plant/cph1 subfamily. Its covalently attached phycocyanobilin chromophore adopts a highly tilted ZZZssa conformation with a novel set of interactions between its propionates and the GAF1 domain. The tongue-like protrusion from the GAF2 domain interacts with the GAF1-bound chromophore via its conserved PRXSF, WXE, and W(G/A)G motifs. Mutagenesis showed that the integrity of the tongue is indispensable for Pr → Pfr photoconversion and involves a swap of the motifs' tryptophans within the tongue-GAF1 interface. This “Trp switch” is supposed to be a crucial element for the photochromicity of all multidomain phytochromes. PMID:24174528

  11. The structure of a complete phytochrome sensory module in the Pr ground state

    PubMed Central

    Essen, Lars-Oliver; Mailliet, Jo; Hughes, Jon

    2008-01-01

    Phytochromes are red/far-red photochromic biliprotein photoreceptors, which in plants regulate seed germination, stem extension, flowering time, and many other light effects. However, the structure/functional basis of the phytochrome photoswitch is still unclear. Here, we report the ground state structure of the complete sensory module of Cph1 phytochrome from the cyanobacterium Synechocystis 6803. Although the phycocyanobilin (PCB) chromophore is attached to Cys-259 as expected, paralleling the situation in plant phytochromes but contrasting to that in bacteriophytochromes, the ZZZssa conformation does not correspond to that expected from Raman spectroscopy. We show that the PHY domain, previously considered unique to phytochromes, is structurally a member of the GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) family. Indeed, the tandem-GAF dumbbell revealed for phytochrome sensory modules is remarkably similar to the regulatory domains of cyclic nucleotide (cNMP) phosphodiesterases and adenylyl cyclases. A unique feature of the phytochrome structure is a long, tongue-like protrusion from the PHY domain that seals the chromophore pocket and stabilizes the photoactivated far-red-absorbing state (Pfr). The tongue carries a conserved PRxSF motif, from which an arginine finger points into the chromophore pocket close to ring D forming a salt bridge with a conserved aspartate residue. The structure that we present provides a framework for light-driven signal transmission in phytochromes. PMID:18799745

  12. Phototransformation of the Red Light Sensor Cyanobacterial Phytochrome 2 from Synechocystis Species Depends on Its Tongue Motifs*

    PubMed Central

    Anders, Katrin; Gutt, Alexander; Gärtner, Wolfgang; Essen, Lars-Oliver

    2014-01-01

    Phytochromes are photoreceptors using a bilin tetrapyrrole as chromophore, which switch in canonical phytochromes between red (Pr) and far red (Pfr) light-absorbing states. Cph2 from Synechocystis sp., a noncanonical phytochrome, harbors besides a cyanobacteriochrome domain a second photosensory module, a Pr/Pfr-interconverting GAF-GAF bidomain (SynCph2(1-2)). As in the canonical phytochromes, a unique motif of the second GAF domain, the tongue region, seals the bilin-binding site in the GAF1 domain from solvent access. Time-resolved spectroscopy of the SynCph2(1-2) module shows four intermediates during Pr → Pfr phototransformation and three intermediates during Pfr → Pr back-conversion. A mutation in the tongue's conserved PRXSF motif, S385A, affects the formation of late intermediate R3 and of a Pfr-like state but not the back-conversion to Pr via a lumi-F-like state. In contrast, a mutation in the likewise conserved WXE motif, W389A, changes the photocycle at intermediate R2 and causes an alternative red light-adapted state. Here, back-conversion to Pr proceeds via intermediates differing from SynCph2(1-2). Replacement of this tryptophan that is ∼15 Å distant from the chromophore by another aromatic amino acid, W389F, restores native Pr → Pfr phototransformation. These results indicate large scale conformational changes within the tongue region of GAF2 during the final processes of phototransformation. We propose that in early intermediates only the chromophore and its nearest surroundings are altered, whereas late changes during R2 formation depend on the distant WXE motifs of the tongue region. Ser-385 within the PRXSF motif affects only late intermediate R3, when refolding of the tongue and docking to the GAF1 domain are almost completed. PMID:25012656

  13. Tightening the knot in phytochrome by single-molecule atomic force microscopy.

    PubMed

    Bornschlögl, Thomas; Anstrom, David M; Mey, Elisabeth; Dzubiella, Joachim; Rief, Matthias; Forest, Katrina T

    2009-02-18

    A growing number of proteins have been shown to adopt knotted folds. Yet the biological roles and biophysical properties of these knots remain poorly understood. We used protein engineering and atomic force microscopy to explore the single-molecule mechanics of the figure-eight knot in the chromophore-binding domain of the red/far-red photoreceptor, phytochrome. Under load, apo phytochrome unfolds at forces of approximately 47 pN, whereas phytochrome carrying its covalently bound tetrapyrrole chromophore unfolds at approximately 73 pN. These forces are not unusual in mechanical protein unfolding, and thus the presence of the knot does not automatically indicate a superstable protein. Our experiments reveal a stable intermediate along the mechanical unfolding pathway, reflecting the sequential unfolding of two distinct subdomains in phytochrome, potentially the GAF and PAS domains. For the first time (to the best of our knowledge), our experiments allow a direct determination of knot size under load. In the unfolded chain, the tightened knot is reduced to 17 amino acids, resulting in apparent shortening of the polypeptide chain by 6.2 nm. Steered molecular-dynamics simulations corroborate this number. Finally, we find that covalent phytochrome dimers created for these experiments retain characteristic photoreversibility, unexpectedly arguing against a dramatic rearrangement of the native GAF dimer interface upon photoconversion. PMID:19217867

  14. The amino-terminal GAF domain of Azotobacter vinelandii NifA binds 2-oxoglutarate to resist inhibition by NifL under nitrogen-limiting conditions.

    PubMed

    Little, Richard; Dixon, Ray

    2003-08-01

    The expression of genes required for the synthesis of molybdenum nitrogenase in Azotobacter vinelandii is controlled by the NifL-NifA transcriptional regulatory complex in response to nitrogen, carbon, and redox status. Activation of nif gene expression by the transcriptional activator NifA is inhibited by direct protein-protein interaction with NifL under conditions unfavorable for nitrogen fixation. We have recently shown that the NifL-NifA system responds directly to physiological concentrations of 2-oxoglutarate, resulting in relief of NifA activity from inhibition by NifL under conditions when fixed nitrogen is limiting. The inhibitory activity of NifL is restored under conditions of excess combined nitrogen through the binding of the signal transduction protein Av GlnK to the carboxyl-terminal domain of NifL. The amino-terminal domain of NifA comprises a GAF domain implicated in the regulatory response to NifL. A truncated form of NifA lacking this domain is not responsive to 2-oxoglutarate in the presence of NifL, suggesting that the GAF domain is required for the response to this ligand. Using isothermal titration calorimetry, we demonstrate stoichiometric binding of 2-oxoglutarate to both the isolated GAF domain and the full-length A. vinelandii NifA protein with a dissociation constant of approximately 60 microm. Limited proteolysis experiments indicate that the binding of 2-oxoglutarate increases the susceptibility of the GAF domain to trypsin digestion and also prevents NifL from protecting these cleavage sites. However, protection by NifL is restored when the non-modified (non-uridylylated) form of Av GlnK is also present. Our results suggest that the binding of 2-oxoglutarate to the GAF domain of NifA may induce a conformational change that prevents inhibition by NifL under conditions when fixed nitrogen is limiting. PMID:12759352

  15. Redox-dependent Ligand Switching in a Sensory Heme-binding GAF Domain of the Cyanobacterium Nostoc sp. PCC7120.

    PubMed

    Tang, Kun; Knipp, Markus; Liu, Bing-Bing; Cox, Nicholas; Stabel, Robert; He, Qi; Zhou, Ming; Scheer, Hugo; Zhao, Kai-Hong; Gärtner, Wolfgang

    2015-07-31

    The genome of the cyanobacterium Nostoc sp. PCC7120 carries three genes (all4978, all7016, and alr7522) encoding putative heme-binding GAF (cGMP-specific phosphodiesterases, adenylyl cyclases, and FhlA) proteins that were annotated as transcriptional regulators. They are composed of an N-terminal cofactor domain and a C-terminal helix-turn-helix motif. All4978 showed the highest affinity for protoheme binding. The heme binding capability of All7016 was moderate, and Alr7522 did not bind heme at all. The "as isolated" form of All4978, identified by Soret band (λmax = 427 nm), was assigned by electronic absorption, EPR, and resonance Raman spectroscopy as a hexa-coordinated low spin Fe(III) heme with a distal cysteine ligand (absorption of δ-band around 360 nm). The protoheme cofactor is noncovalently incorporated. Reduction of the heme could be accomplished by chemically using sodium dithionite and electrospectrochemically; this latter method yielded remarkably low midpoint potentials of -445 and -453 mV (following Soret and α-band absorption changes, respectively). The reduced form of the heme (Fe(II) state) binds both NO and CO. Cysteine coordination of the as isolated Fe(III) protein is unambiguous, but interestingly, the reduced heme instead displays spectral features indicative of histidine coordination. Cys-His ligand switches have been reported as putative signaling mechanisms in other heme-binding proteins; however, these novel cyanobacterial proteins are the first where such a ligand-switch mechanism has been observed in a GAF domain. DNA binding of the helix-turn-helix domain was investigated using a DNA sequence motif from its own promoter region. Formation of a protein-DNA complex preferentially formed in ferric state of the protein. PMID:26063806

  16. Redox-dependent Ligand Switching in a Sensory Heme-binding GAF Domain of the Cyanobacterium Nostoc sp. PCC7120*

    PubMed Central

    Tang, Kun; Knipp, Markus; Liu, Bing-Bing; Cox, Nicholas; Stabel, Robert; He, Qi; Zhou, Ming; Scheer, Hugo; Zhao, Kai-Hong; Gärtner, Wolfgang

    2015-01-01

    The genome of the cyanobacterium Nostoc sp. PCC7120 carries three genes (all4978, all7016, and alr7522) encoding putative heme-binding GAF (cGMP-specific phosphodiesterases, adenylyl cyclases, and FhlA) proteins that were annotated as transcriptional regulators. They are composed of an N-terminal cofactor domain and a C-terminal helix-turn-helix motif. All4978 showed the highest affinity for protoheme binding. The heme binding capability of All7016 was moderate, and Alr7522 did not bind heme at all. The “as isolated” form of All4978, identified by Soret band (λmax = 427 nm), was assigned by electronic absorption, EPR, and resonance Raman spectroscopy as a hexa-coordinated low spin FeIII heme with a distal cysteine ligand (absorption of δ-band around 360 nm). The protoheme cofactor is noncovalently incorporated. Reduction of the heme could be accomplished by chemically using sodium dithionite and electrospectrochemically; this latter method yielded remarkably low midpoint potentials of −445 and −453 mV (following Soret and α-band absorption changes, respectively). The reduced form of the heme (FeII state) binds both NO and CO. Cysteine coordination of the as isolated FeIII protein is unambiguous, but interestingly, the reduced heme instead displays spectral features indicative of histidine coordination. Cys-His ligand switches have been reported as putative signaling mechanisms in other heme-binding proteins; however, these novel cyanobacterial proteins are the first where such a ligand-switch mechanism has been observed in a GAF domain. DNA binding of the helix-turn-helix domain was investigated using a DNA sequence motif from its own promoter region. Formation of a protein-DNA complex preferentially formed in ferric state of the protein. PMID:26063806

  17. A Phytochrome Sensory Domain Permits Receptor Activation by Red Light.

    PubMed

    Reichhart, Eva; Ingles-Prieto, Alvaro; Tichy, Alexandra-Madelaine; McKenzie, Catherine; Janovjak, Harald

    2016-05-17

    Optogenetics and photopharmacology enable the spatio-temporal control of cell and animal behavior by light. Although red light offers deep-tissue penetration and minimal phototoxicity, very few red-light-sensitive optogenetic methods are currently available. We have now developed a red-light-induced homodimerization domain. We first showed that an optimized sensory domain of the cyanobacterial phytochrome 1 can be expressed robustly and without cytotoxicity in human cells. We then applied this domain to induce the dimerization of two receptor tyrosine kinases-the fibroblast growth factor receptor 1 and the neurotrophin receptor trkB. This new optogenetic method was then used to activate the MAPK/ERK pathway non-invasively in mammalian tissue and in multicolor cell-signaling experiments. The light-controlled dimerizer and red-light-activated receptor tyrosine kinases will prove useful to regulate a variety of cellular processes with light. PMID:27101018

  18. Evidence that phytochrome functions as a protein kinase in plant light signalling

    PubMed Central

    Shin, Ah-Young; Han, Yun-Jeong; Baek, Ayoung; Ahn, Taeho; Kim, Soo Young; Nguyen, Thai Son; Son, Minky; Lee, Keun Woo; Shen, Yu; Song, Pill-Soon; Kim, Jeong-Il

    2016-01-01

    It has been suggested that plant phytochromes are autophosphorylating serine/threonine kinases. However, the biochemical properties and functional roles of putative phytochrome kinase activity in plant light signalling are largely unknown. Here, we describe the biochemical and functional characterization of Avena sativa phytochrome A (AsphyA) as a potential protein kinase. We provide evidence that phytochrome-interacting factors (PIFs) are phosphorylated by phytochromes in vitro. Domain mapping of AsphyA shows that the photosensory core region consisting of PAS-GAF-PHY domains in the N-terminal is required for the observed kinase activity. Moreover, we demonstrate that transgenic plants expressing mutant versions of AsphyA, which display reduced activity in in vitro kinase assays, show hyposensitive responses to far-red light. Further analysis reveals that far-red light-induced phosphorylation and degradation of PIF3 are significantly reduced in these transgenic plants. Collectively, these results suggest a positive relationship between phytochrome kinase activity and photoresponses in plants. PMID:27173885

  19. Evidence that phytochrome functions as a protein kinase in plant light signalling.

    PubMed

    Shin, Ah-Young; Han, Yun-Jeong; Baek, Ayoung; Ahn, Taeho; Kim, Soo Young; Nguyen, Thai Son; Son, Minky; Lee, Keun Woo; Shen, Yu; Song, Pill-Soon; Kim, Jeong-Il

    2016-01-01

    It has been suggested that plant phytochromes are autophosphorylating serine/threonine kinases. However, the biochemical properties and functional roles of putative phytochrome kinase activity in plant light signalling are largely unknown. Here, we describe the biochemical and functional characterization of Avena sativa phytochrome A (AsphyA) as a potential protein kinase. We provide evidence that phytochrome-interacting factors (PIFs) are phosphorylated by phytochromes in vitro. Domain mapping of AsphyA shows that the photosensory core region consisting of PAS-GAF-PHY domains in the N-terminal is required for the observed kinase activity. Moreover, we demonstrate that transgenic plants expressing mutant versions of AsphyA, which display reduced activity in in vitro kinase assays, show hyposensitive responses to far-red light. Further analysis reveals that far-red light-induced phosphorylation and degradation of PIF3 are significantly reduced in these transgenic plants. Collectively, these results suggest a positive relationship between phytochrome kinase activity and photoresponses in plants. PMID:27173885

  20. The human phosphodiesterase PDE10A gene genomic organization and evolutionary relatedness with other PDEs containing GAF domains.

    PubMed

    Fujishige, K; Kotera, J; Yuasa, K; Omori, K

    2000-10-01

    PDE10A is a cyclic nucleotide phosphodiesterase (PDE) exhibiting properties of a cAMP PDE and a cAMP-inhibited cGMP PDE. The transcripts are specifically expressed in the striatum. The human gene encoding PDE10A was cloned and investigated. The PDE10A gene spanned > 200 kb and contained 24 exons. The exon-intron organization of PDE10A was different from those of PDE5A and PDE6B, although these three PDEs include two GAF domains and have similar amino-acid sequences. The promoter sequence of PDE10A was highly GC-rich and did not contain a TATA motif and a CAAT box, suggesting it is a housekeeping gene. In Caenorhabditis elegans, the C32E12.2 gene encoding a probable PDE that is 48% identical to the human PDE10A protein showed similar exon organization to PDE10A but not PDE5A and PDE6B. This, together with the phylogenic tree analysis, suggested that the ancestral gene for PDE10A existed in a lower organism such as C. elegans. PMID:10998054

  1. Dominant negative suppression of arabidopsis photoresponses by mutant phytochrome A sequences identifies spatially discrete regulatory domains in the photoreceptor.

    PubMed Central

    Boylan, M; Douglas, N; Quail, P H

    1994-01-01

    We used the exaggerated short hypocotyl phenotype induced by oat phytochrome A overexpression in transgenic Arabidopsis to monitor the biological activity of mutant phytochrome A derivatives. Three different mutations, which were generated by removing 52 amino acids from the N terminus (delta N52), the entire C-terminal domain (delta C617), or amino acids 617-686 (delta 617-686) of the oat molecule, each caused striking dominant negative interference with the ability of endogenous Arabidopsis phytochrome A to inhibit hypocotyl growth in continuous far-red light ("far-red high irradiance response" conditions). By contrast, in continuous white or red light, delta N52 was as active as the unmutagenized oat phytochrome A protein in suppressing hypocotyl elongation, while delta C617 and delta 617-686 continued to exhibit dominant negative behavior under these conditions. These data suggest that at least three spatially discrete molecular domains coordinate the photoregulatory activities of phytochrome A in Arabidopsis seedlings. The first is the chromophore-bearing N-terminal domain between residues 53 and 616 that is apparently sufficient for the light-induced initiation but not the completion of productive interactions with transduction chain components. The second is the C-terminal domain between residues 617 and 1129 that is apparently necessary for completion of productive interactions under all irradiation conditions. The third is the N-terminal 52 amino acids that are apparently necessary for completion of productive interactions only under far-red high irradiance conditions and are completely dispensable under white and red light regimes. PMID:8180501

  2. A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome.

    PubMed

    Wagner, Jeremiah R; Brunzelle, Joseph S; Forest, Katrina T; Vierstra, Richard D

    2005-11-17

    Phytochromes are red/far-red light photoreceptors that direct photosensory responses across the bacterial, fungal and plant kingdoms. These include photosynthetic potential and pigmentation in bacteria as well as chloroplast development and photomorphogenesis in plants. Phytochromes consist of an amino-terminal region that covalently binds a single bilin chromophore, followed by a carboxy-terminal dimerization domain that often transmits the light signal through a histidine kinase relay. Here we describe the three-dimensional structure of the chromophore-binding domain of Deinococcus radiodurans phytochrome assembled with its chromophore biliverdin in the Pr ground state. Our model, refined to 2.5 A resolution, reaffirms Cys 24 as the chromophore attachment site, locates key amino acids that form a solvent-shielded bilin-binding pocket, and reveals an unusually formed deep trefoil knot that stabilizes this region. The structure provides the first three-dimensional glimpse into the photochromic behaviour of these photoreceptors and helps to explain the evolution of higher plant phytochromes from prokaryotic precursors. PMID:16292304

  3. Comparative investigation of the LOV1 and LOV2 domains in Adiantum phytochrome3.

    PubMed

    Iwata, Tatsuya; Nozaki, Dai; Tokutomi, Satoru; Kandori, Hideki

    2005-05-24

    Phototropin (phot) is a blue-light photoreceptor for phototropic responses, relocation of chloroplasts, and stomata opening in plants. Phototropin has two chromophore-binding domains named LOV1 and LOV2 in its N-terminal half, each of which binds a flavin mononucleotide (FMN) noncovalently. The C-terminal half is a Ser/Thr kinase. A transgenic study of Arabidopsis suggested that only LOV2 domain is necessary for the kinase activity, whereas X-ray crystallographic structures of LOV1 and LOV2 domains are almost identical. These facts imply that the detailed structures and/or structural changes are different between LOV1 and LOV2 domains. In this study, we compared light-induced structural changes of the LOV1 and LOV2 domains of a phototropin, Adiantum phytochrome3 (phy3), by means of UV-visible and Fourier transform infrared (FTIR) spectroscopy. Photochemical properties of an adduct formation between FMN and a cysteine are essentially similar between phy3-LOV1 and phy3-LOV2. On the other hand, the S-H group of the reactive cysteine forms a hydrogen bond in phy3-LOV1, which is strengthened at low temperatures. This is possibly correlated with the fact that no adduct formation takes place for phy3-LOV1 at 77 K as revealed by the UV-visible absorption spectra. The most prominent difference was seen in the amide-I vibration that monitors the secondary structure of peptide backbone. Protein structural changes in phy3-LOV2 involve the regions of loops, alpha-helices, and beta-sheets, which differ significantly among various temperatures. Extended protein structural changes are probably correlated with the signal transduction activity of LOV2. In contrast, protein structural changes were very small in phy3-LOV1, and they were almost temperature independent. The photocycle of phy3-LOV1 takes 3.1 h, being more than 100 times longer than that of phy3-LOV2. These facts suggest that Adiantum phy3-LOV1 does not work for light sensing, being consistent with the previous transgenic

  4. Novel Photodynamics in Phytochrome & Cyanobacteriochrome Photosensory Proteins

    NASA Astrophysics Data System (ADS)

    Larsen, Delmar

    2015-03-01

    The photodynamics of recently characterized phytochrome and cyanobacteriochrome photoreceptors are discussed. Phytochromes are red/far-red photosensory proteins that utilize the photoisomerization of a linear tetrapyrrole (bilin) chromophore to detect the red to far-red light ratio. Cyanobacteriochromes (CBCRs) are distantly related cyanobacterial photosensors with homologous bilin-binding GAF domains, but exhibit greater spectral diversity. The excited-state mechanisms underlying the initial photoisomerization in the forward reactions of the cyanobacterial photoreceptor Cph1 from Synechocystis, the RcaE CBCR from Fremyella diplosiphon, and Npr6012g4 CBCR from Nostoc punctiforme were contrasted via multipulse pump-dump-probe transient spectroscopy. A rich excited-state dynamics are resolved involving a complex interplay of excited-state proton transfer, photoisomerization, multilayered inhomogeneity, and reactive intermediates, and Le Chatelier redistribution. NpR6012g4 exhibits a high quantum yield for its forward photoreaction (40%) that was ascribed to the activity of hidden, productive ground-state intermediates via a ``second chance initiation dynamics'' (SCID) mechanism. This work was supported by a grant from the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, United States Department of Energy (DOE DE-FG02-09ER16117).

  5. Combined mutagenesis and kinetics characterization of the bilin-binding GAF domain of the protein Slr1393 from the Cyanobacterium Synechocystis PCC6803.

    PubMed

    Xu, Xiu-Ling; Gutt, Alexander; Mechelke, Jonas; Raffelberg, Sarah; Tang, Kun; Miao, Dan; Valle, Lorena; Borsarelli, Claudio D; Zhao, Kai-Hong; Gärtner, Wolfgang

    2014-05-26

    The gene slr1393 from Synechocystis sp. PCC6803 encodes a protein composed of three GAF domains, a PAS domain, and a histidine kinase domain. GAF3 is the sole domain able to bind phycocyanobilin (PCB) as chromophore and to accomplish photochemistry: switching between a red-absorbing parental and a green-absorbing photoproduct state (λmax =649 and 536 nm, respectively). Conversions in both directions were followed by time-resolved absorption spectroscopy with the separately expressed GAF3 domain of Slr1393. Global fit analysis of the recorded absorbance changes yielded three lifetimes (3.2 μs, 390 μs, and 1.5 ms) for the red-to-green conversion, and 1.2 μs, 340 μs, and 1 ms for the green-to-red conversion. In addition to the wild-type (WT) protein, 24 mutated proteins were studied spectroscopically. The design of these site-directed mutations was based on sequence alignments with related proteins and by employing the crystal structure of AnPixJg2 (PDB ID: 3W2Z), a Slr1393 orthologous from Anabaena sp. PCC7120. The structure of AnPixJg2 was also used as template for model building, thus confirming the strong structural similarity between the proteins, and for identifying amino acids to target for mutagenesis. Only amino acids in close proximity to the chromophore were exchanged, as these were considered likely to have an impact on the spectral and dynamic properties. Three groups of mutants were found: some showed absorption features similar to the WT protein, a second group showed modified absorbance properties, and the third group had lost the ability to bind the chromophore. The most unexpected result was obtained for the exchange at residue 532 (N532Y). In vivo assembly yielded a red-absorbing, WT-like protein. Irradiation, however, not only converted it into the green-absorbing form, but also produced a 660 nm, further-red-shifted absorbance band. This photoproduct was fully reversible to the parental form upon green light irradiation. PMID:24764310

  6. Phytochrome from green plants:

    SciTech Connect

    Quail, P.H.

    1988-03-01

    This research has been directed toward characterizing and purifying the molecular species of phytochrome detected in green Avena tissue. We have found major differences between the phytochrome extracted from green and from etiolated tissue as regards immunochemial and spectral properties. In addition, we have established: (a) that the predominant ()approximately)80% of total) phytochrome polypeptide in green tissue has a relative molecular mass (Mr) of 118,000;(b) that the proteolytic peptide map of this 118,000-Mr species differs considerably from that of 124,000-Mr phytochrome from etiolated tissue;(c) that the green-tissue, 118,000-Mr polypeptide carries only one of three spatially separate epitopes that are present on etiolated-tissue phytochrome (i.e., an epitope in the carboxy-terminal domain recognized by Type 3 monoclonal antibodies);(d) that the minor phytochrome species in green tissue ()approximately)20% of total) resembles that in etiolated tissue in that it is 124,000-Mr and is immunoprecipitable with polyclonal, anti-etiolated-oat-phytochrome antibodies, thereby accounting for the previously observed limited population of immunoprecipitable activity in green extracts;and (e) that the 118,000-Mr green-tissue molecule migrates on non-denaturing size exclusionchromatography as a )approximately)320 kDa entity, suggesting a quaternary structure similar to etiolated tissue 124,000-Mr phytochrome. A new purification protocol that enriches the green-tissue phytochrome )approximately)200-fold has been developed. The preparations obtained in this way are apparently free of residual endogenous proteolytic activity. We have examined the regulation of the level of the 118,000-MR species during seedling developement and have obtained evidence that the abundance of this species is not modulated by light, in contrast to its etiolated-tissue counterpart. 12 refs., 7 figs., 1 tab.

  7. Characterization of regions within the N-terminal 6-kilodalton domain of phytochrome A that modulate its biological activity.

    PubMed Central

    Jordan, E T; Marita, J M; Clough, R C; Vierstra, R D

    1997-01-01

    Phytochrome A (phyA) is a red/far-red (FR) light photoreceptor responsible for initiating numerous light-mediated plant growth and developmental responses, especially in FR light-enriched environments. We previously showed that the first 70 amino acids of the polypeptide contain at least two regions with potentially opposite functions (E.T. Jordan, J.R. Cherry, J.M. Walker, R.D. Vierstra [1996] Plant J 9: 243-257). One region is required for activity and correct apoprotein/chromophore interactions, whereas the second appears to regulate phytochrome activity. We have further resolved these functional regions by analysis of N-terminal deletion and alanine-scanning mutants of oat (Avena sativa) phyA in transgenic tobacco (Nicotiana tabacum). The results indicate that the region involved in chromophore/apoprotein interactions contains two separate segments (residues 25-33 and 50-62) also required for biological activity. The region that regulates phyA activity requires only five adjacent serines (Sers) (residues 8-12). Removal or alteration of these Sers generates a photoreceptor that increases the sensitivity of transgenic seedlings to red and FR light more than intact phyA. Taken together, these data identify three distinct regions in the N-terminal domain necessary for photoreceptor activity, and further define the Ser-rich region as an important site for phyA regulation. PMID:9342873

  8. Ultrafast ligand dynamics in the heme-based GAF sensor domains of the histidine kinases DosS and DosT from Mycobacterium tuberculosis.

    PubMed

    Vos, Marten H; Bouzhir-Sima, Latifa; Lambry, Jean-Christophe; Luo, Hao; Eaton-Rye, Julian J; Ioanoviciu, Alexandra; Ortiz de Montellano, Paul R; Liebl, Ursula

    2012-01-10

    The transcriptional regulator DosR from M. tuberculosis plays a crucial role in the virulence to dormancy transition of the pathogen. DosR can be activated by DosT and DosS, two histidine kinases with heme-containing sensor GAF domains, capable of diatomic ligand binding. To investigate the initial processes occurring upon ligand dissociation, we performed ultrafast time-resolved absorption spectroscopy of the isolated sensor domains ligated with O(2), NO, and CO. The results reveal a relatively closed heme pocket for both proteins. For DosT the yield of O(2) escape from the heme pocket on the picoseconds time scale upon photodissociation was found to be very low (1.5%), similar to other heme-based oxygen sensor proteins, implying that this sensor acts as an effective O(2) trap. Remarkably, this yield is an order of magnitude higher in DosS (18%). For CO, by contrast, the fraction of CO rebinding within the heme pocket is higher in DosS. Experiments with mutant DosT sensor domains and molecular dynamics simulations indicate an important role in ligand discrimination of the distal tyrosine, present in both proteins, which forms a hydrogen bond with heme-bound O(2). We conclude that despite their similarity, DosT and DosS display ligand-specific different primary dynamics during the initial phases of intraprotein signaling. The distal tyrosine, present in both proteins, plays an important role in these processes. PMID:22142262

  9. Ultrafast ligand dynamics in the heme-based GAF sensor domains of the histidine kinases DosS and DosT from Mycobacterium tuberculosis†

    PubMed Central

    Vos, Marten H.; Bouzhir-Sima, Latifa; Lambry, Jean-Christophe; Luo, Hao; Eaton-Rye, Julian J.; Ioanoviciu, Alexandra; Ortiz de Montellano, Paul R.; Liebl, Ursula

    2011-01-01

    The transcriptional regulator DosR from M. tuberculosis plays a crucial role in the virulence to dormancy transition of the pathogen. DosR can be activated by DosT and DosS, two histidine kinases with heme-containing sensor GAF domains, capable of diatomic ligand binding, To investigate the initial processes occurring upon ligand dissociation, we performed ultrafast time-resolved absorption spectroscopy of the isolated sensor domains ligated with O2, NO and CO. The results reveal a relatively closed heme pocket for both proteins. For DosT the yield of O2 escape from the heme pocket on the picoseconds timescale upon photodissociation was found to be very low (1.5%), similar to other heme-based oxygen sensor proteins, implying that this sensor acts as an effective O2 trap. Remarkably, this yield is an order of magnitude higher in DosS (18%). For CO, by contrast, the fraction of CO rebinding within the heme pocket is higher in DosS. Experiments with mutant DosT sensor domains and molecular dynamics simulations indicate an important role in ligand discrimination of the distal tyrosine, present in both proteins, which forms a hydrogen bond with heme-bound O2. We conclude that despite their similarity, DosT and DosS display ligand-specific different primary dynamics during the initial phases of intra-protein signaling. The distal tyrosine, present in both proteins, plays an important role in these processes. PMID:22142262

  10. Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors

    PubMed Central

    Karniol, Baruch; Wagner, Jeremiah R.; Walker, Joseph M.; Vierstra, Richard D.

    2005-01-01

    Phys (phytochromes) are a superfamily of photochromic photoreceptors that employ a bilin-type chromophore to sense red and far-red light. Although originally thought to be restricted to plants, accumulating genetic and genomic analyses now indicate that they are also prevalent among micro-organisms. By a combination of phylogenetic and biochemical studies, we have expanded the Phy superfamily and organized its members into distinct functional clades which include the phys (plant Phys), BphPs (bacteriophytochromes), Cphs (cyanobacterial Phys), Fphs (fungal Phys) and a collection of Phy-like sequences. All contain a signature GAF (cGMP phosphodiesterase/adenylate cyclase/FhlA) domain, which houses the bilin lyase activity. A PHY domain (uppercase letters are used to denote the PHY domain specifically), which helps stabilize the Pfr form (far-red-light-absorbing form of Phy), is downstream of the GAF region in all but the Phy-like sequences. The phy, Cph, BphP and Fph families also include a PLD [N-terminal PAS (Per/Arnt/Sim)-like domain] upstream of the GAF domain. Site-directed mutagenesis of conserved residues within the GAF and PLD motifs supports their importance in chromophore binding and/or spectral activity. In agreement with Lamparter, Carrascal, Michael, Martinez, Rottwinkel and Abian [(2004) Biochemistry 43, 3659–3669], a conserved cysteine within the PLD of several BphPs was found to be necessary for binding the chromophore via the C-3 vinyl side chain on the bilin A ring. Phy-type sequences were also discovered in the actinobacterium Kineococcus radiotolerans and collections of microorganisms obtained from marine and extremely acidic environments, thus expanding further the range of these photoreceptors. Based on their organization and distribution, the evolution of the Phy superfamily into distinct photoreceptor types is proposed. PMID:16004604

  11. Marine algae and land plants share conserved phytochrome signaling systems

    DOE PAGESBeta

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee -Hong; Jimenez, Valeria; Rockwell, Nathan C.; Martin, Shelley S.; Ngan, Chew Yee; Reistetter, Emily N.; van Baren, Marijke J.; et al

    2014-09-29

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence ofmore » phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. The expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.« less

  12. Marine algae and land plants share conserved phytochrome signaling systems

    PubMed Central

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee-Hong; Jiménez, Valeria; Rockwell, Nathan C.; Martin, Shelley S.; Ngan, Chew Yee; Reistetter, Emily N.; van Baren, Marijke J.; Price, Dana C.; Wei, Chia-Lin; Reyes-Prieto, Adrian; Lagarias, J. Clark; Worden, Alexandra Z.

    2014-01-01

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. Expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae. PMID:25267653

  13. Marine algae and land plants share conserved phytochrome signaling systems

    SciTech Connect

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee -Hong; Jimenez, Valeria; Rockwell, Nathan C.; Martin, Shelley S.; Ngan, Chew Yee; Reistetter, Emily N.; van Baren, Marijke J.; Price, Dana C.; Wei, Chia -Lin; Reyes-Prieto, Adrian; Lagarias, J. Clark; Worden, Alexandra Z.

    2014-09-29

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. The expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.

  14. A Modified Reverse One-Hybrid Screen Identifies Transcriptional Activation Domains in PHYTOCHROME-INTERACTING FACTOR 3

    PubMed Central

    Dalton, Jutta C.; Bätz, Ulrike; Liu, Jason; Curie, Gemma L.; Quail, Peter H.

    2016-01-01

    Transcriptional activation domains (TADs) are difficult to predict and identify, since they are not conserved and have little consensus. Here, we describe a yeast-based screening method that is able to identify individual amino acid residues involved in transcriptional activation in a high throughput manner. A plant transcriptional activator, PIF3 (phytochrome interacting factor 3), was fused to the yeast GAL4-DNA-binding Domain (BD), driving expression of the URA3 (Orotidine 5′-phosphate decarboxylase) reporter, and used for negative selection on 5-fluroorotic acid (5FOA). Randomly mutagenized variants of PIF3 were then selected for a loss or reduction in transcriptional activation activity by survival on FOA. In the process, we developed a strategy to eliminate false positives from negative selection that can be used for both reverse-1- and 2-hybrid screens. With this method we were able to identify two distinct regions in PIF3 with transcriptional activation activity, both of which are functionally conserved in PIF1, PIF4, and PIF5. Both are collectively necessary for full PIF3 transcriptional activity, but neither is sufficient to induce transcription autonomously. We also found that the TAD appear to overlap physically with other PIF3 functions, such as phyB binding activity and consequent phosphorylation. Our protocol should provide a valuable tool for identifying, analyzing and characterizing novel TADs in eukaryotic transcription factors, and thus potentially contribute to the unraveling of the mechanism underlying transcriptional activation. PMID:27379152

  15. Immunochemistry of Phytochrome 1

    PubMed Central

    Rice, Harbert V.; Briggs, Winslow R.

    1973-01-01

    Rabbit antibody was elicited against purified oat phytochrome polypeptides. Immunodiffusion and immunoelectrophoresis indicated the antibody elicited was predominantly a single precipitin system. No antigenic difference was detected between red-absorbing phytochrome and far red-absorbing phytochrome. Crude preparations of rye and corn phytochrome showed a line of identity when cross-reacted with oat polypeptide phytochrome; pea phytochrome showed a line of partial identity. Precipitin reactions with purified rye phytochrome analyzed with sucrose density gradient centrifugation and immunodiffusion confirmed that the same class of determinants was available to the antibody when the protein was known to be in a state which had not undergone extensive proteolytic attack. Images PMID:16658442

  16. Dynamic Inhomogeneity in the Photodynamics of Cyanobacterial Phytochrome Cph1

    PubMed Central

    2015-01-01

    Phytochromes are widespread red/far-red photosensory proteins well known as critical regulators of photomorphogenesis in plants. It is often assumed that natural selection would have optimized the light sensing efficiency of phytochromes to minimize nonproductive photochemical deexcitation pathways. Surprisingly, the quantum efficiency for the forward Pr-to-Pfr photoconversion of phytochromes seldom exceeds 15%, a value very much lower than that of animal rhodopsins. Exploiting ultrafast excitation wavelength- and temperature-dependent transient absorption spectroscopy, we resolve multiple pathways within the ultrafast photodynamics of the N-terminal PAS-GAF-PHY photosensory core module of cyanobacterial phytochrome Cph1 (termed Cph1Δ) that are primarily responsible for the overall low quantum efficiency. This inhomogeneity primarily reflects a long-lived fluorescent subpopulation that exists in equilibrium with a spectrally distinct, photoactive subpopulation. The fluorescent subpopulation is favored at elevated temperatures, resulting in anomalous excited-state dynamics (slower kinetics at higher temperatures). The spectral and kinetic behavior of the fluorescent subpopulation strongly resembles that of the photochemically compromised and highly fluorescent Y176H variant of Cph1Δ. We present an integrated, heterogeneous model for Cph1Δ that is based on the observed transient and static spectroscopic signals. Understanding the molecular basis for this dynamic inhomogeneity holds potential for rational design of efficient phytochrome-based fluorescent and photoswitchable probes. PMID:24742290

  17. Dynamic inhomogeneity in the photodynamics of cyanobacterial phytochrome Cph1.

    PubMed

    Kim, Peter W; Rockwell, Nathan C; Martin, Shelley S; Lagarias, J Clark; Larsen, Delmar S

    2014-05-01

    Phytochromes are widespread red/far-red photosensory proteins well known as critical regulators of photomorphogenesis in plants. It is often assumed that natural selection would have optimized the light sensing efficiency of phytochromes to minimize nonproductive photochemical deexcitation pathways. Surprisingly, the quantum efficiency for the forward Pr-to-Pfr photoconversion of phytochromes seldom exceeds 15%, a value very much lower than that of animal rhodopsins. Exploiting ultrafast excitation wavelength- and temperature-dependent transient absorption spectroscopy, we resolve multiple pathways within the ultrafast photodynamics of the N-terminal PAS-GAF-PHY photosensory core module of cyanobacterial phytochrome Cph1 (termed Cph1Δ) that are primarily responsible for the overall low quantum efficiency. This inhomogeneity primarily reflects a long-lived fluorescent subpopulation that exists in equilibrium with a spectrally distinct, photoactive subpopulation. The fluorescent subpopulation is favored at elevated temperatures, resulting in anomalous excited-state dynamics (slower kinetics at higher temperatures). The spectral and kinetic behavior of the fluorescent subpopulation strongly resembles that of the photochemically compromised and highly fluorescent Y176H variant of Cph1Δ. We present an integrated, heterogeneous model for Cph1Δ that is based on the observed transient and static spectroscopic signals. Understanding the molecular basis for this dynamic inhomogeneity holds potential for rational design of efficient phytochrome-based fluorescent and photoswitchable probes. PMID:24742290

  18. Structural mechanism of GAF-regulated σ(54) activators from Aquifex aeolicus.

    PubMed

    Batchelor, Joseph D; Lee, Peter S; Wang, Andrew C; Doucleff, Michaeleen; Wemmer, David E

    2013-01-01

    The σ subunits of bacterial RNA polymerase occur in many variant forms and confer promoter specificity to the holopolymerase. Members of the σ(54) family of σ subunits require the action of a 'transcriptional activator' protein to open the promoter and initiate transcription. The activator proteins undergo regulated assembly from inactive dimers to hexamers that are active ATPases. These contact σ(54) directly and, through ATP hydrolysis, drive a conformational change that enables promoter opening. σ(54) activators use several different kinds of regulatory domains to respond to a wide variety of intracellular signals. One common regulatory module, the GAF domain, is used by σ(54) activators to sense small-molecule ligands. The structural basis for GAF domain regulation in σ(54) activators has not previously been reported. Here, we present crystal structures of GAF regulatory domains for Aquifex aeolicus σ(54) activators NifA-like homolog (Nlh)2 and Nlh1 in three functional states-an 'open', ATPase-inactive state; a 'closed', ATPase-inactive state; and a 'closed', ligand-bound, ATPase-active state. We also present small-angle X-ray scattering data for Nlh2-linked GAF-ATPase domains in the inactive state. These GAF domain dimers regulate σ(54) activator proteins by holding the ATPase domains in an inactive dimer conformation. Ligand binding of Nlh1 dramatically remodels the GAF domain dimer interface, disrupting the contacts with the ATPase domains. This mechanism has strong parallels to the response to phosphorylation in some two-component regulated σ(54) activators. We describe a structural mechanism of GAF-mediated enzyme regulation that appears to be conserved among humans, plants, and bacteria. PMID:23123379

  19. The Serine-Rich N-Terminal Domain of Oat Phytochrome A Helps Regulate Light Responses and Subnuclear Localization of the Photoreceptor1

    PubMed Central

    Casal, Jorge J.; Davis, Seth J.; Kirchenbauer, Daniel; Viczian, Andras; Yanovsky, Marcelo J.; Clough, Richard C.; Kircher, Stefan; Jordan-Beebe, Emily T.; Schäfer, Eberhard; Nagy, Ferenc; Vierstra, Richard D.

    2002-01-01

    Phytochrome (phy) A mediates two distinct photobiological responses in plants: the very-low-fluence response (VLFR), which can be saturated by short pulses of very-low-fluence light, and the high-irradiance response (HIR), which requires prolonged irradiation with higher fluences of far-red light (FR). To investigate whether the VLFR and HIR involve different domains within the phyA molecule, transgenic tobacco (Nicotiana tabacum cv Xanthi) and Arabidopsis seedlings expressing full-length (FL) and various deletion mutants of oat (Avena sativa) phyA were examined for their light sensitivity. Although most mutants were either partially active or inactive, a strong differential effect was observed for the Δ6-12 phyA mutant missing the serine-rich domain between amino acids 6 and 12. Δ6-12 phyA was as active as FL phyA for the VLFR of hypocotyl growth and cotyledon unfolding in Arabidopsis, and was hyperactive in the VLFR of hypocotyl growth and cotyledon unfolding in tobacco, and the VLFR blocking subsequent greening under white light in Arabidopsis. In contrast, Δ6-12 phyA showed a dominant-negative suppression of HIR in both species. In hypocotyl cells of Arabidopsis irradiated with FR phyA:green fluorescent protein (GFP) and Δ6-12 phyA:GFP fusions localized to the nucleus and coalesced into foci. The proportion of nuclei with abundant foci was enhanced by continuous compared with hourly FR provided at equal total fluence in FL phyA:GFP, and by Δ6-12 phyA mutation under hourly FR. We propose that the N-terminal serine-rich domain of phyA is involved in channeling downstream signaling via the VLFR or HIR pathways in different cellular contexts. PMID:12114567

  20. Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome.

    PubMed

    Burgie, E Sethe; Bussell, Adam N; Walker, Joseph M; Dubiel, Katarzyna; Vierstra, Richard D

    2014-07-15

    Many aspects of plant photomorphogenesis are controlled by the phytochrome (Phy) family of bilin-containing photoreceptors that detect red and far-red light by photointerconversion between a dark-adapted Pr state and a photoactivated Pfr state. Whereas 3D models of prokaryotic Phys are available, models of their plant counterparts have remained elusive. Here, we present the crystal structure of the photosensing module (PSM) from a seed plant Phy in the Pr state using the PhyB isoform from Arabidopsis thaliana. The PhyB PSM crystallized as a head-to-head dimer with strong structural homology to its bacterial relatives, including a 5(Z)syn, 10(Z)syn, 15(Z)anti configuration of the phytochromobilin chromophore buried within the cGMP phosphodiesterase/adenylyl cyclase/FhlA (GAF) domain, and a well-ordered hairpin protruding from the Phy-specific domain toward the bilin pocket. However, its Per/Arnt/Sim (PAS) domain, knot region, and helical spine show distinct structural differences potentially important to signaling. Included is an elongated helical spine, an extended β-sheet connecting the GAF domain and hairpin stem, and unique interactions between the region upstream of the PAS domain knot and the bilin A and B pyrrole rings. Comparisons of this structure with those from bacterial Phys combined with mutagenic studies support a toggle model for photoconversion that engages multiple features within the PSM to stabilize the Pr and Pfr end states after rotation of the D pyrrole ring. Taken together, this Arabidopsis PhyB structure should enable molecular insights into plant Phy signaling and provide an essential scaffold to redesign their activities for agricultural benefit and as optogenetic reagents. PMID:24982198

  1. Studies on phytochrome. Some properties of electrophoretically pure phytochrome

    PubMed Central

    Walker, T. S.; Bailey, J. L.

    1970-01-01

    1. Phytochrome was purified from etiolated oat (Avena sativa) seedlings either by gel-filtration chromatography and ion-exchange chromatography or by gel-filtration chromatography and calcium phosphate chromatography. Differences were observed in the spectral properties of phytochrome isolated by the two methods. 2. Electrophoresis of pure phytochrome at pH values between 9.0 and 6.0 showed the tendency of phytochrome to form different molecular species. Studies in the ultracentrifuge did not show a corresponding change in the sedimentation coefficient with the change in pH. 3. Tryptic digestion of electrophoretically pure phytochrome gave 17 peptides and a photoactive core. The amino acid composition of the core is reported and compared with the analysis of whole phytochrome. 4. Some properties of phytochrome isolated from Pisum sativum are compared with those of phytochrome from A. sativa. 5. The properties of phytochrome purified by other workers are compared with our findings. ImagesFig. 4. PMID:5499974

  2. Allosteric effects of chromophore interaction with dimeric near-infrared fluorescent proteins engineered from bacterial phytochromes

    PubMed Central

    Stepanenko, Olesya V.; Baloban, Mikhail; Bublikov, Grigory S.; Shcherbakova, Daria M.; Stepanenko, Olga V.; Turoverov, Konstantin K.; Kuznetsova, Irina M.; Verkhusha, Vladislav V.

    2016-01-01

    Fluorescent proteins (FPs) engineered from bacterial phytochromes attract attention as probes for in vivo imaging due to their near-infrared (NIR) spectra and use of available in mammalian cells biliverdin (BV) as chromophore. We studied spectral properties of the iRFP670, iRFP682 and iRFP713 proteins and their mutants having Cys residues able to bind BV either in both PAS (Cys15) and GAF (Cys256) domains, in one of these domains, or without these Cys residues. We show that the absorption and fluorescence spectra and the chromophore binding depend on the location of the Cys residues. Compared with NIR FPs in which BV covalently binds to Cys15 or those that incorporate BV noncovalently, the proteins with BV covalently bound to Cys256 have blue-shifted spectra and higher quantum yield. In dimeric NIR FPs without Cys15, the covalent binding of BV to Сys256 in one monomer allosterically inhibits the covalent binding of BV to the other monomer, whereas the presence of Cys15 allosterically promotes BV binding to Cys256 in both monomers. The NIR FPs with both Cys residues have the narrowest blue-shifted spectra and the highest quantum yield. Our analysis resulted in the iRFP713/Val256Cys protein with the highest brightness in mammalian cells among available NIR FPs. PMID:26725513

  3. Allosteric effects of chromophore interaction with dimeric near-infrared fluorescent proteins engineered from bacterial phytochromes.

    PubMed

    Stepanenko, Olesya V; Baloban, Mikhail; Bublikov, Grigory S; Shcherbakova, Daria M; Stepanenko, Olga V; Turoverov, Konstantin K; Kuznetsova, Irina M; Verkhusha, Vladislav V

    2016-01-01

    Fluorescent proteins (FPs) engineered from bacterial phytochromes attract attention as probes for in vivo imaging due to their near-infrared (NIR) spectra and use of available in mammalian cells biliverdin (BV) as chromophore. We studied spectral properties of the iRFP670, iRFP682 and iRFP713 proteins and their mutants having Cys residues able to bind BV either in both PAS (Cys15) and GAF (Cys256) domains, in one of these domains, or without these Cys residues. We show that the absorption and fluorescence spectra and the chromophore binding depend on the location of the Cys residues. Compared with NIR FPs in which BV covalently binds to Cys15 or those that incorporate BV noncovalently, the proteins with BV covalently bound to Cys256 have blue-shifted spectra and higher quantum yield. In dimeric NIR FPs without Cys15, the covalent binding of BV to Сys256 in one monomer allosterically inhibits the covalent binding of BV to the other monomer, whereas the presence of Cys15 allosterically promotes BV binding to Cys256 in both monomers. The NIR FPs with both Cys residues have the narrowest blue-shifted spectra and the highest quantum yield. Our analysis resulted in the iRFP713/Val256Cys protein with the highest brightness in mammalian cells among available NIR FPs. PMID:26725513

  4. Residues clustered in the light-sensing knot of phytochrome B are necessary for conformer-specific binding to signaling partner PIF3.

    PubMed

    Kikis, Elise A; Oka, Yoshito; Hudson, Matthew E; Nagatani, Akira; Quail, Peter H

    2009-01-01

    The bHLH transcription factor, Phytochrome Interacting Factor 3 (PIF3), interacts specifically with the photoactivated, Pfr, form of Arabidopsis phytochrome B (phyB). This interaction induces PIF3 phosphorylation and degradation in vivo and modulates phyB-mediated seedling deetiolation in response to red light. To identify missense mutations in the phyB N-terminal domain that disrupt this interaction, we developed a yeast reverse-hybrid screen. Fifteen individual mutations identified in this screen, or in previous genetic screens for Arabidopsis mutants showing reduced sensitivity to red light, were shown to also disrupt light-induced binding of phyB to PIF3 in in vitro co-immunoprecipitation assays. These phyB missense mutants fall into two general classes: Class I (eleven mutants) containing those defective in light signal perception, due to aberrant chromophore attachment or photoconversion, and Class II (four mutants) containing those normal in signal perception, but defective in the capacity to transduce this signal to PIF3. By generating a homology model for the three-dimensional structure of the Arabidopsis phyB chromophore-binding region, based on the crystal structure of Deinococcus radiodurans phytochrome, we predict that three of the four Class II mutated phyB residues are solvent exposed in a cleft between the presumptive PAS and GAF domains. This deduction suggests that these residues could be directly required for the physical interaction of phyB with PIF3. Because these three residues are also necessary for phyB-imposed inhibition of hypocotyl elongation in response to red light, they are functionally necessary for signal transfer from photoactivated phyB, not only to PIF3 and other related bHLH transcription factors tested here, but also to other downstream signaling components involved in regulating seedling deetiolation. PMID:19165330

  5. Photoreversible changes in pH of pea phytochrome solutions

    SciTech Connect

    Tokutomi, S.; Yamamoto, K.T.; Miyoshi, Y.; Furuya, M.

    1982-02-01

    Phytochrome is a chromoprotein that serves as the photoreceptor for a variety of photomorphogenic responses in plants. Phytochrome was isolated from etiolated pea seedlings. Photoinduced pH changes of an unbuffered solution of the phytochrome were monitored with a semimicrocombination pH electrode at pH 6.5. Red-light irradiation increased the pH of the medium. This alkalinization was reversed by a subsequent far-red-light irradiation. The magnitude and direction of the red-light-induced pH changes was dependent on the pH of the photocrome solution, and the maximum alkalinization was observed at pH 6.0, where the number of protons taken up per phytochrome monomer was 0.18. These results suggest that phytochrome is a multifunctional protein composed of a chromophoric domain and a hydrophobic domain. It is probable that the hydrophobic domain is responsible for the photoinduced change of hydrophobicity of phytochrome and that the ionizable groups responsible for the photoinduced pH changes are localized in the chromophoric domain. (JMT)

  6. Molecular Basis of Spectral Diversity in Near-Infrared Phytochrome-Based Fluorescent Proteins.

    PubMed

    Shcherbakova, Daria M; Baloban, Mikhail; Pletnev, Sergei; Malashkevich, Vladimir N; Xiao, Hui; Dauter, Zbigniew; Verkhusha, Vladislav V

    2015-11-19

    Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes (BphPs) are the probes of choice for deep-tissue imaging. Detection of several processes requires spectrally distinct NIR FPs. We developed an NIR FP, BphP1-FP, which has the most blue-shifted spectra and the highest fluorescence quantum yield among BphP-derived FPs. We found that these properties result from the binding of the biliverdin chromophore to a cysteine residue in the GAF domain, unlike natural BphPs and other BphP-based FPs. To elucidate the molecular basis of the spectral shift, we applied biochemical, structural and mass spectrometry analyses and revealed the formation of unique chromophore species. Mutagenesis of NIR FPs of different origins indicated that the mechanism of the spectral shift is general and can be used to design multicolor NIR FPs from other BphPs. We applied pairs of spectrally distinct point cysteine mutants to multicolor cell labeling and demonstrated that they perform well in model deep-tissue imaging. PMID:26590639

  7. Phytochromes in photosynthetically competent plants

    SciTech Connect

    Pratt, L.H.

    1991-01-01

    Major improvements have been made in the purification of green-oat phytochrome. An effective protease inhibitor has been incorporated, the scale of preparations has been increased greatly, an immunodominant contaminant has been eliminated, and the extent of purification has been increased by at least a factor of ten. Five new MAbs and rabbit PAbs to green-oat phytochrome, as well as rabbit PAbs to a synthetic, putative green-oat phytochrome peptide, have been produced and characterized, together with two MAbs to green-oat phytochrome that had been identified previously. Our earlier hypothesis that green-oat phytochrome itself consists of two types was found to be true. One type of green-oat phytochrome has an apparent monomer size of 125 kDa while the other is 123 kDa. The latter undergoes a Zn[sup 2+]-induced mobility shift during SDS PAGE and the two phytochromes are immunochemically distinct from one another. Affinity columns prepared with MAbs to green-oat phytochrome have been used to purify 125-kDa green-oat phytochrome to near homogeneity. A proteolytically derived peptide has been isolated from immunopurified green-oat phytochrome and 19 residues have been determined by microsequencing. The results verify that in monocotyledons as well as dicotyledons green- and etiolated-oat phytochromes derive from different genes.

  8. Phytochromes: More Than Meets the Eye.

    PubMed

    Rensing, Stefan A; Sheerin, David J; Hiltbrunner, Andreas

    2016-07-01

    Phytochromes play a key role in the regulation of plant growth and development. Phytochrome-related proteins also occur in some bacteria, fungi, and algae. We highlight recent findings on the evolution of phytochromes and discuss novel hypotheses on the function of phytochromes in diatoms, a group of mainly pelagic algae. PMID:27270335

  9. Phytochrome functions in Arabiopsis development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Light signals are fundamental to the growth and development of plants. Red and far-red light are sensed using the phytochrome family of plant photoreceptors. Individual phytochromes display both unique and overlapping roles throughout the life cycle of plants, regulating a range of developmental pro...

  10. Phytochrome functions in Arabidopsis development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Light signals are fundamental to the growth and development of plants. Red and far-red light are sensed using the phytochrome family of plant photoreceptors. Individual phytochromes display both unique and overlapping roles throughout the life cycle of plants, regulating a range of developmental pro...

  11. Phytochrome diversity in green plants and the origin of canonical plant phytochromes

    PubMed Central

    Li, Fay-Wei; Melkonian, Michael; Rothfels, Carl J.; Villarreal, Juan Carlos; Stevenson, Dennis W.; Graham, Sean W.; Wong, Gane Ka-Shu; Pryer, Kathleen M.; Mathews, Sarah

    2015-01-01

    Phytochromes are red/far-red photoreceptors that play essential roles in diverse plant morphogenetic and physiological responses to light. Despite their functional significance, phytochrome diversity and evolution across photosynthetic eukaryotes remain poorly understood. Using newly available transcriptomic and genomic data we show that canonical plant phytochromes originated in a common ancestor of streptophytes (charophyte algae and land plants). Phytochromes in charophyte algae are structurally diverse, including canonical and non-canonical forms, whereas in land plants, phytochrome structure is highly conserved. Liverworts, hornworts and Selaginella apparently possess a single phytochrome, whereas independent gene duplications occurred within mosses, lycopods, ferns and seed plants, leading to diverse phytochrome families in these clades. Surprisingly, the phytochrome portions of algal and land plant neochromes, a chimera of phytochrome and phototropin, appear to share a common origin. Our results reveal novel phytochrome clades and establish the basis for understanding phytochrome functional evolution in land plants and their algal relatives. PMID:26215968

  12. Phytochrome diversity in green plants and the origin of canonical plant phytochromes.

    PubMed

    Li, Fay-Wei; Melkonian, Michael; Rothfels, Carl J; Villarreal, Juan Carlos; Stevenson, Dennis W; Graham, Sean W; Wong, Gane Ka-Shu; Pryer, Kathleen M; Mathews, Sarah

    2015-01-01

    Phytochromes are red/far-red photoreceptors that play essential roles in diverse plant morphogenetic and physiological responses to light. Despite their functional significance, phytochrome diversity and evolution across photosynthetic eukaryotes remain poorly understood. Using newly available transcriptomic and genomic data we show that canonical plant phytochromes originated in a common ancestor of streptophytes (charophyte algae and land plants). Phytochromes in charophyte algae are structurally diverse, including canonical and non-canonical forms, whereas in land plants, phytochrome structure is highly conserved. Liverworts, hornworts and Selaginella apparently possess a single phytochrome, whereas independent gene duplications occurred within mosses, lycopods, ferns and seed plants, leading to diverse phytochrome families in these clades. Surprisingly, the phytochrome portions of algal and land plant neochromes, a chimera of phytochrome and phototropin, appear to share a common origin. Our results reveal novel phytochrome clades and establish the basis for understanding phytochrome functional evolution in land plants and their algal relatives. PMID:26215968

  13. Phytochromes in photosynthetically competent plants

    SciTech Connect

    Pratt, L.H.

    1990-07-01

    Plants utilize light as a source of information in photomorphogenesis and of free energy in photosynthesis, two processes that are interrelated in that the former serves to increase the efficiency with which plants can perform the latter. Only one pigment involved in photomorphogenesis has been identified unequivocally, namely phytochrome. The thrust of this proposal is to investigate this pigment and its mode(s) of action in photosynthetically competent plants. Our long term objective is to characterize phytochrome and its functions in photosynthetically competent plants from molecular, biochemical and cellular perspectives. It is anticipated that others will continue to contribute indirectly to these efforts at the physiological level. The ultimate goal will be to develop this information from a comparative perspective in order to learn whether the different phytochromes have significantly different physicochemical properties, whether they fulfill independent functions and if so what these different functions are, and how each of the different phytochromes acts at primary molecular and cellular levels.

  14. From photon to signal in phytochromes: similarities and differences between prokaryotic and plant phytochromes.

    PubMed

    Nagano, Soshichiro

    2016-03-01

    Phytochromes represent a diverse family of red/far-red-light absorbing chromoproteins which are widespread across plants, cyanobacteria, non-photosynthetic bacteria, and more. Phytochromes play key roles in regulating physiological activities in response to light, a critical element in the acclimatization to the environment. The discovery of prokaryotic phytochromes facilitated structural studies which deepened our understanding on the general mechanisms of phytochrome action. An extrapolation of this information to plant phytochromes is justified for universally conserved functional aspects, but it is also true that there are many aspects which are unique to plant phytochromes. Here I summarize some structural studies carried out to date on both prokaryotic and plant phytochromes. I also attempt to identify aspects which are common or unique to plant and prokaryotic phytochromes. Phytochrome themselves, as well as the downstream signaling pathway in plants are more complex than in their prokaryotic counterparts. Thus many structural and functional aspects of plant phytochrome remain unresolved. PMID:26818948

  15. Temperature Effects on Agrobacterium Phytochrome Agp1

    PubMed Central

    Njimona, Ibrahim; Lamparter, Tilman

    2011-01-01

    Phytochromes are widely distributed biliprotein photoreceptors with a conserved N-terminal chromophore-binding domain. Most phytochromes bear a light-regulated C-terminal His kinase or His kinase-like region. We investigated the effects of light and temperature on the His kinase activity of the phytochrome Agp1 from Agrobacterium tumefaciens. As in earlier studies, the phosphorylation activity of the holoprotein after far-red irradiation (where the red-light absorbing Pr form dominates) was stronger than that of the holoprotein after red irradiation (where the far red-absorbing Pfr form dominates). Phosphorylation activities of the apoprotein, far red-irradiated holoprotein, and red-irradiated holoprotein decreased when the temperature increased from 25°C to 35°C; at 40°C, almost no kinase activity was detected. The activity of a holoprotein sample incubated at 40°C was nearly completely restored when the temperature returned to 25°C. UV/visible spectroscopy indicated that the protein was not denatured up to 45°C. At 50°C, however, Pfr denatured faster than the dark-adapted sample containing the Pr form of Agp1. The Pr visible spectrum was unaffected by temperatures of 20–45°C, whereas irradiated samples exhibited a clear temperature effect in the 30–40°C range in which prolonged irradiation resulted in the photoconversion of Pfr into a new spectral species termed Prx. Pfr to Prx photoconversion was dependent on the His-kinase module of Agp1; normal photoconversion occurred at 40°C in the mutant Agp1-M15, which lacks the C-terminal His-kinase module, and in a domain-swap mutant in which the His-kinase module of Agp1 is replaced by the His-kinase/response regulator module of the other A. tumefaciens phytochrome, Agp2. The temperature-dependent kinase activity and spectral properties in the physiological temperature range suggest that Agp1 serves as an integrated light and temperature sensor in A. tumefaciens. PMID:22043299

  16. Phytochrome from green plants: assay, purification and characterization. Progress report, June 1, 1984-July 15, 1986

    SciTech Connect

    Quail, P.H.

    1986-07-15

    This research has been directed toward characterizing and purifying the molecular species of phytochrome detected in green Avena tissue. The major differences that we have found between the phytochrome extracted from green and from etiolated tissue have now been published. In addition to the initially observed spectral and immunochemical differences, we have established: (1) That the predominant (approx.805 of total) phytochrome polypeptide in green tissue has a relative molecular mass (Mr) of 118,000; (b) That the proteolytic peptide map of this 118,000-Mr species differs considerably from that of 124,000-Mr phytochrome from etiolated tissue; (c) That the green-tissue, 118,000-Mr polypeptide carries only one of three spatially separate epitopes that are present on etiolated- tissue phytochrome (i.e. an epitope in the carboxy-terminal domain recognized by Type 3 monoclonal antibodies); (d) That the minor phytochrome species in green tissue (approx.20% of total) resemblies that in etiolated tissue in that it is 124,000-Mr and is immunoprecipitable with polyclonal, anti-etiolated-oat-phytochrome antibodies, thereby accounting for the previously observed limited population of immunoprecipitable activity in green extracts; and (e) That the 118,000-Mr green-tissue molecule migrates on non-denaturing size exclusion chromatography as a approx.320 kDa entity suggesting a quaternary structure similar to etiolated tissue 125,000-Mr phytochrome. A new purification protocol that enriches the green-tissue phytochrome approx.200-fold has been developed. The preparations obtained in this way are apparently free of residential endogeneous proteolytic activity. We have examined the regulation of the level of the 118,000-Mr species during seedling development and have obtained evidence that the abundance of this species is not modulated by light, in contrast to its etiolated-tissue counterpart. 11 refs., 7 figs., 1 tab.

  17. Phytochromes in photosynthetically competent plants. Final report

    SciTech Connect

    Pratt, L.H.

    1991-12-31

    Major improvements have been made in the purification of green-oat phytochrome. An effective protease inhibitor has been incorporated, the scale of preparations has been increased greatly, an immunodominant contaminant has been eliminated, and the extent of purification has been increased by at least a factor of ten. Five new MAbs and rabbit PAbs to green-oat phytochrome, as well as rabbit PAbs to a synthetic, putative green-oat phytochrome peptide, have been produced and characterized, together with two MAbs to green-oat phytochrome that had been identified previously. Our earlier hypothesis that green-oat phytochrome itself consists of two types was found to be true. One type of green-oat phytochrome has an apparent monomer size of 125 kDa while the other is 123 kDa. The latter undergoes a Zn{sup 2+}-induced mobility shift during SDS PAGE and the two phytochromes are immunochemically distinct from one another. Affinity columns prepared with MAbs to green-oat phytochrome have been used to purify 125-kDa green-oat phytochrome to near homogeneity. A proteolytically derived peptide has been isolated from immunopurified green-oat phytochrome and 19 residues have been determined by microsequencing. The results verify that in monocotyledons as well as dicotyledons green- and etiolated-oat phytochromes derive from different genes.

  18. Synthetic Studies in Phytochrome Chemistry

    PubMed Central

    Jacobi, Peter A.; Adel Odeh, Imad M.; Buddhu, Subhas C.; Cai, Guolin; Rajeswari, Sundaramoorthi; Fry, Douglas; Zheng, Wanjun; DeSimone, Robert W.; Guo, Jiasheng; Coutts, Lisa D.; Hauck, Sheila I.; Leung, Sam H.; Ghosh, Indranath; Pippin., Douglas

    2008-01-01

    An account is given of the author’s several approaches to the synthesis of the parent chromophore of phytochrome (1), a protein-bound linear tetrapyrrole derivative that controls photomorphogenesis in higher plants. These studies culminated in enantioselective syntheses of both 2R- and 2S-phytochromobilin (4), as well as several 13C-labeled derivatives designed to probe the site of Z,E-isomerization during photoexcitation. When reacted in vitro, synthetic 2R-4 and recombinant-derived phytochrome apoprotein N-C produced a protein-bound chromophore with identical difference spectra to naturally occurring 1. PMID:18633455

  19. Phytochrome-regulated Gene Expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of all genes involved in the phytochrome (phy)-mediated responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth and development. This article highlights and integrates the central findings of two recent compre...

  20. Structural photoactivation of a full-length bacterial phytochrome

    PubMed Central

    Björling, Alexander; Berntsson, Oskar; Lehtivuori, Heli; Takala, Heikki; Hughes, Ashley J.; Panman, Matthijs; Hoernke, Maria; Niebling, Stephan; Henry, Léocadie; Henning, Robert; Kosheleva, Irina; Chukharev, Vladimir; Tkachenko, Nikolai V.; Menzel, Andreas; Newby, Gemma; Khakhulin, Dmitry; Wulff, Michael; Ihalainen, Janne A.; Westenhoff, Sebastian

    2016-01-01

    Phytochromes are light sensor proteins found in plants, bacteria, and fungi. They function by converting a photon absorption event into a conformational signal that propagates from the chromophore through the entire protein. However, the structure of the photoactivated state and the conformational changes that lead to it are not known. We report time-resolved x-ray scattering of the full-length phytochrome from Deinococcus radiodurans on micro- and millisecond time scales. We identify a twist of the histidine kinase output domains with respect to the chromophore-binding domains as the dominant change between the photoactivated and resting states. The time-resolved data further show that the structural changes up to the microsecond time scales are small and localized in the chromophore-binding domains. The global structural change occurs within a few milliseconds, coinciding with the formation of the spectroscopic meta-Rc state. Our findings establish key elements of the signaling mechanism of full-length bacterial phytochromes. PMID:27536728

  1. Eukaryotic algal phytochromes span the visible spectrum.

    PubMed

    Rockwell, Nathan C; Duanmu, Deqiang; Martin, Shelley S; Bachy, Charles; Price, Dana C; Bhattacharya, Debashish; Worden, Alexandra Z; Lagarias, J Clark

    2014-03-11

    Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic algae from aquatic environments. We examined the photosensory properties of seven phytochromes from diverse algae: four prasinophyte (green algal) species, the heterokont (brown algal) Ectocarpus siliculosus, and two glaucophyte species. We demonstrate that algal phytochromes are not limited to red and far-red responses. Instead, different algal phytochromes can sense orange, green, and even blue light. Characterization of these previously undescribed photosensors using CD spectroscopy supports a structurally heterogeneous chromophore in the far-red-absorbing photostate. Our study thus demonstrates that extensive spectral tuning of phytochromes has evolved in phylogenetically distinct lineages of aquatic photosynthetic eukaryotes. PMID:24567382

  2. High Resolution Structure of Deinococcus Bacteriophytochrome Yields New Insights into Phytochrome Architecture and Evolution

    SciTech Connect

    Wagner, Jeremiah R.; Zhang, Junrui; Brunzelle, Joseph S.; Vierstra, Richard D.; Forest, Katrina T.

    2010-03-08

    Phytochromes are red/far red light photochromic photoreceptors that direct many photosensory behaviors in the bacterial, fungal, and plant kingdoms. They consist of an N-terminal domain that covalently binds a bilin chromophore and a C-terminal region that transmits the light signal, often through a histidine kinase relay. Using x-ray crystallography, we recently solved the first three-dimensional structure of a phytochrome, using the chromophore-binding domain of Deinococcus radiodurans bacterial phytochrome assembled with its chromophore, biliverdin IX{alpha}. Now, by engineering the crystallization interface, we have achieved a significantly higher resolution model. This 1.45 {angstrom} resolution structure helps identify an extensive buried surface between crystal symmetry mates that may promote dimerization in vivo. It also reveals that upon ligation of the C3{sup 2} carbon of biliverdin to Cys{sup 24}, the chromophore A-ring assumes a chiral center at C2, thus becoming 2(R),3(E)-phytochromobilin, a chemistry more similar to that proposed for the attached chromophores of cyanobacterial and plant phytochromes than previously appreciated. The evolution of bacterial phytochromes to those found in cyanobacteria and higher plants must have involved greater fitness using more reduced bilins, such as phycocyanobilin, combined with a switch of the attachment site from a cysteine near the N terminus to one conserved within the cGMP phosphodiesterase/adenyl cyclase/FhlA domain. From analysis of site-directed mutants in the D. radiodurans phytochrome, we show that this bilin preference was partially driven by the change in binding site, which ultimately may have helped photosynthetic organisms optimize shade detection. Collectively, these three-dimensional structural results better clarify bilin/protein interactions and help explain how higher plant phytochromes evolved from prokaryotic progenitors.

  3. Purification of Oat and Rye Phytochrome 1

    PubMed Central

    Rice, Harbert V.; Briggs, Winslow R.; Jackson-White, Cecil J.

    1973-01-01

    A purification procedure employing normal chromatographic techniques is outlined for isolating phytochrome from etiolated oat (Avena sativa L.) seedlings. Yields in excess of 20% (25 milligrams or more) of phytochrome in crude extract were obtained from 10- to 15-kilograms lots. The purified oat phytochrome had an absorbance ratio (A280 nm/A665 nm) of 0.78 to 0.85, comparable to reported values, and gave a single major band with an estimated molecular weight of 62,000 on electrophoresis in sodium dodecyl sulfate-polyacrylamide gels. A modification of the oat isolation procedure was used to isolate phytochrome from etiolated rye Secale cereale cv. Balbo) seedlings. During isolation rye phytochrome exhibited chromatographic profiles differing from oat phytochrome on diethylaminoethyl cellulose and on molecular sieve gels. It eluted at a higher salt concentration on diethylaminoethyl cellulose and nearer the void volume on molecular sieve gels. Yields of 5 to 10% (7.5-10 milligrams) of phytochrome in crude extract were obtained from 10- to 12-kilogram seedling lots. The purified rye phytochrome had an absorbance ratio of 1.25 to 1.37, significantly lower than values in the literature and gave a single major band with an estimated molecular weight of 120,000 on electrophoresis in sodium dodecyl sulfate-polyacrylamide gels. It is suggested that the absorbance ratio and electrophoretic behavior of rye phytochrome are indices of purified native phytochrome, and that oat phytochrome as it has been described is an artifact which arises as a result of endogenous proteolysis during isolation. A rationale is provided for further modifications of the purification procedure to alleviate presumed protease contaminants. Images PMID:16658440

  4. Heterogeneous Photodynamics of the Pfr State in the Cyanobacterial Phytochrome Cph1

    PubMed Central

    2015-01-01

    Femtosecond photodynamics of the Pfr form of the red/far-red phytochrome N-terminal PAS-GAF-PHY photosensory core module of the cyanobacterial phytochrome Cph1 (termed Cph1Δ) from Synechocystis were resolved with visible broadband transient absorption spectroscopy. Multiphasic generation dynamics via global target analysis revealed parallel evolution of two pathways with distinct excited- and ground-state kinetics. These measurements resolved two subpopulations: a majority subpopulation with fast excited-state decay and slower ground-state dynamics, corresponding to previous descriptions of Pfr dynamics, and a minority subpopulation with slower excited-state decay and faster ground-state primary dynamics. Both excited-state subpopulations generated the isomerized, red-shifted Lumi-Ff photoproduct (715 nm); subsequent ground-state evolution to a blue-shifted Meta-Fr population (635 nm) proceeded on 3 ps and 1.5 ns time scales for the two subpopulations. Meta-Fr was spectrally similar to a recently described photoinactive fluorescent subpopulation of Pr (FluorPr). Thus, the reverse Pfr to Pr photoconversion of Cph1Δ involves minor structural deformation of Meta-Fr to generate the fluorescent, photochemically refractory form of Pr, with slower subsequent equilibration with the photoactive Pr subpopulation (PhotoPr). PMID:24940993

  5. Intramolecular co-action of two independent photosensory modules in the fern phytochrome 3

    PubMed Central

    Kanegae, Takeshi

    2015-01-01

    Fern phytochrome3/neochrome1 (phy3/neo1) is a chimeric photoreceptor composed of a phytochrome-chromophore binding domain and an almost full-length phototropin. phy3 thus contains two different light-sensing modules; a red/far-red light receptor phytochrome and a blue light receptor phototropin. phy3 induces both red light- and blue light-dependent phototropism in phototropin-deficient Arabidopsis thaliana (phot1 phot2) seedlings. The red-light response is dependent on the phytochrome module of phy3, and the blue-light response is dependent on the phototropin module. We recently showed that both the phototropin-sensing module and the phytochrome-sensing module mediate the blue light-dependent phototropic response. Particularly under low-light conditions, these two light-sensing modules cooperate to induce the blue light-dependent phototropic response. This intramolecular co-action of two independent light-sensing modules in phy3 enhances light sensitivity, and perhaps allowed ferns to adapt to the low-light canopy conditions present in angiosperm forests. PMID:26340326

  6. Light-induced import of the chromoprotein, phytochrome, into mitochondria

    NASA Technical Reports Server (NTRS)

    Serlin, B. S.; Roux, S. J.

    1986-01-01

    Mitochondria extracted from plants that were irradiated with actinic light in vivo have associated with them the chromoprotein, phytochrome. This phytochrome retains its native subunit size of 124 kDa after proteolytic treatment of the mitochondria with trypsin and chymotrypsin. This result suggests that phytochrome is not exposed on the outer surface of the outer mitochondrial membrane. Phytochrome, so protected, is not found to be associated with mitochondria derived from unirradiated plants. The possibility that the photoactivation of phytochrome induces a conformational change in its structure which facilitates its transport into the mitochondrion is discussed.

  7. Phytochrome, plant growth and flowering

    NASA Technical Reports Server (NTRS)

    King, R. W.; Bagnall, D. J.

    1994-01-01

    Attempts to use artificially lit cabinets to grow plants identical to those growing in sunlight have provided compelling evidence of the importance of light quality for plant growth. Changing the balance of red (R) to far-red (FR) radiation, but with a fixed photosynthetic input can shift the phytochrome photoequilibrium in a plant and generate large differences in plant growth. With FR enrichment the plants elongate, and may produce more leaf area and dry matter. Similar morphogenic responses are also obtained when light quality is altered only briefly (15-30 min) at the end-of-the-day. Conversely, for plants grown in natural conditions the response of plant form to selective spectral filtering has again shown that red and far-red wavebands are important as found by Kasperbauer and coworkers. Also, where photosynthetic photon flux densities (PPFD) of sunlight have been held constant, the removal of far-red alone alters plant growth. With FR depletion plants grown in sunlight are small, more branched and darker green. Here we examine the implications for plant growth and flowering when the far-red composition of incident radiation in plant growth chambers is manipulated.

  8. The gaf Fimbrial Gene Cluster of Escherichia coli Expresses a Full-Size and a Truncated Soluble Adhesin Protein

    PubMed Central

    Tanskanen, Jarna; Saarela, Sirkku; Tankka, Sanna; Kalkkinen, Nisse; Rhen, Mikael; Korhonen, Timo K.; Westerlund-Wikström, Benita

    2001-01-01

    The GafD lectin of the G (F17) fimbriae of diarrhea-associated Escherichia coli was overexpressed and purified from the periplasm of E. coli by affinity chromatography on GlcNAc-agarose. The predicted mature GafD peptide comprises 321 amino acids, but the predominant form of GafD recovered from the periplasm was 19,092 Da in size and corresponded to the 178 N-terminal amino acid residues, as judged by mass spectrometry and amino acid sequencing, and was named ΔGafD. Expression of gafD from the cloned gaf gene cluster in DegP-, Lon-, and OmpT-deficient recombinant strains did not significantly decrease the formation of ΔGafD. The peptide was also detected in the periplasm of the wild-type E. coli strain from which the gaf gene cluster originally was cloned. We expressed gafD fragments encoding C-terminally truncated peptides. Peptides GafD1-252, GafD1-224, GafD1-189, and the GafD1-178, isolated from the periplasm by affinity chromatography, had apparent sizes closely similar to that of ΔGafD. Only trace amounts of truncated forms with expected molecular sizes were detected in spheroplasts. In contrast, the shorter GafD1-157 peptide was detected in spheroplasts but not in the periplasm, indicating that it was poorly translocated or was degraded by periplasmic proteases. Pulse-chase assays using gafD indicated that ΔGafD was processed from GafD and is not a primary translation product. The ΔGafD peptide was soluble by biochemical criteria and exhibited specific binding to GlcNAc-agarose. Inhibition assays with mono- and oligosaccharides gave a similar inhibition pattern in the hemagglutination by the G-fimbria-expressing recombinant E. coli strain and in the binding of [14C]ΔGafD to GlcNAc-agarose. ΔGafD bound specifically to laminin, a previously described tissue target for the G fimbria. Our results show that a soluble, protease-resistant subdomain of GafD exhibits receptor-binding specificity similar to that for intact G fimbriae and that it is formed when

  9. Pr-specific phytochrome phosphorylation in vitro by a protein kinase present in anti-phytochrome maize immunoprecipitates

    NASA Technical Reports Server (NTRS)

    Biermann, B. J.; Pao, L. I.; Feldman, L. J.

    1994-01-01

    Protein kinase activity has repeatedly been found to co-purify with the plant photoreceptor phytochrome, suggesting that light signals received by phytochrome may be transduced or modulated through protein phosphorylation. In this study immunoprecipitation techniques were used to characterize protein kinase activity associated with phytochrome from maize (Zea mays L.). A protein kinase that specifically phosphorylated phytochrome was present in washed anti-phytochrome immunoprecipitates of etiolated coleoptile proteins. No other substrate tested was phosphorylated by this kinase. Adding salts or detergents to disrupt low-affinity protein interactions reduced background phosphorylation in immunoprecipitates without affecting phytochrome phosphorylation, indicating that the protein kinase catalytic activity is either intrinsic to the phytochrome molecule or associated with it by high-affinity interactions. Red irradiation (of coleoptiles or extracts) sufficient to approach photoconversion saturation reduced phosphorylation of immunoprecipitated phytochrome. Subsequent far-red irradiation reversed the red-light effect. Phytochrome phosphorylation was stimulated about 10-fold by a co-immunoprecipitated factor. The stimulatory factor was highest in immunoprecipitates when Mg2+ was present in immunoprecipitation reactions but remained in the supernatant in the absence of Mg2+. These observations provide strong support for the hypothesis that phytochrome-associated protein kinase modulates light responses in vivo. Since only phytochrome was found to be phosphorylated, the co-immunoprecipitated protein kinase may function to regulate receptor activity.

  10. Mutant Screen Distinguishes between Residues Necessary for Light-Signal Perception and Signal Transfer by Phytochrome B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phytochromes (phyA to phyE) are a major plant photoreceptor family that regulate a diversity of developmental processes in response to light. The N-terminal 651–amino acid domain of phyB (N651), which binds an open tetrapyrrole chromophore, acts to perceive and transduce regulatory light signals...

  11. A comparison of psychiatrists' clinical-impression-based and social workers' computer-generated GAF scores.

    PubMed

    Harel, Tamar Zohar; Smith, Donald W; Rowles, J Mark

    2002-03-01

    The authors studied the utility of the DSM-IV Global Assessment of Functioning (GAF) scale for improving interdisciplinary communication about patient care. Discharge GAF scores for 165 discharged inpatients were computer generated by 13 trained unit social workers and derived by eight psychiatrists on the basis of their clinical impressions. Differences between the scores obtained by the two disciplinary groups were tested by using the paired t test and the nonparametric signed-rank test. Agreement between scores for various GAF categories was tested with kappa agreement indexes. Interdisciplinary agreement on discharge GAF scores was observed across diagnostic categories and across most categories of length of stay. The results suggest that social workers, after receiving systematic training in computer-based GAF reports, can provide reasonable assessments of clients' functioning. PMID:11875231

  12. New Constitutively Active Phytochromes Exhibit Light-Independent Signaling Activity.

    PubMed

    Jeong, A-Reum; Lee, Si-Seok; Han, Yun-Jeong; Shin, Ah-Young; Baek, Ayoung; Ahn, Taeho; Kim, Min-Gon; Kim, Young Soon; Lee, Keun Woo; Nagatani, Akira; Kim, Jeong-Il

    2016-08-01

    Plant phytochromes are photoreceptors that mediate a variety of photomorphogenic responses. There are two spectral photoisomers, the red light-absorbing Pr and far-red light-absorbing Pfr forms, and the photoreversible transformation between the two forms is important for the functioning of phytochromes. In this study, we isolated a Tyr-268-to-Val mutant of Avena sativa phytochrome A (AsYVA) that displayed little photoconversion. Interestingly, transgenic plants of AsYVA showed light-independent phytochrome signaling with a constitutive photomorphogenic (cop) phenotype that is characterized by shortened hypocotyls and open cotyledons in the dark. In addition, the corresponding Tyr-303-to-Val mutant of Arabidopsis (Arabidopsis thaliana) phytochrome B (AtYVB) exhibited nuclear localization and interaction with phytochrome-interacting factor 3 (PIF3) independently of light, conferring a constitutive photomorphogenic development to its transgenic plants, which is comparable to the first constitutively active version of phytochrome B (YHB; Tyr-276-to-His mutant). We also found that chromophore ligation was required for the light-independent interaction of AtYVB with PIF3. Moreover, we demonstrated that AtYVB did not exhibit phytochrome B activity when it was localized in the cytosol by fusion with the nuclear export signal and that AsYVA exhibited the full activity of phytochrome A when localized in the nucleus by fusion with the nuclear localization signal. Furthermore, the corresponding Tyr-269-to-Val mutant of Arabidopsis phytochrome A (AtYVA) exhibited similar cop phenotypes in transgenic plants to AsYVA. Collectively, these results suggest that the conserved Tyr residues in the chromophore-binding pocket play an important role during the Pr-to-Pfr photoconversion of phytochromes, providing new constitutively active alleles of phytochromes by the Tyr-to-Val mutation. PMID:27325667

  13. Phytochrome from green plants: assay, purification, and characterization

    SciTech Connect

    Quail, P.H.

    1983-01-01

    Phytochrome from the chlorophyllous cells of light-grown higher plants and green algae has been isolated and characterized. We have developed a simple procedure that separates chlorophyll from phytochrome in crude extracts from green tissue thus permitting spectral measurement of the phytochrome in such extracts for the first time. Spectral and immunochemical analysis of phytochrome from green oat tissue indicates the presence of two distinct species of the molecule: a minority species (approx. 20%) that is recognized by antibodies directed against phytochrome from etiolated tissue and that has an apparent molecular mass of 124 kilodaltons (kD), the same as that of the native molecule from etiolated tissue; and a majority species (approx. 80%) that is not recognized by anti-etiolated tissue phytochrome Ig and has a Pr absorbance maximum some 14 nm shorter than its etiolated tissue counterpart. Mixing experiments have established that these different molecular species preexist in the green cell and are not the results of posthomogenization modifications. Attempts to purify the phytochrome from green tissue by immunoaffinity chromatography have been thwarted by the lack of immunological cross-reactivity referred to. We have begun to identify monoclonal antibodies specific for antigenic sites distributed throughout the length of the etiolated-tissue phytochrome polypeptide. Axenic cultures of the alga Mesotaenium have been established and preliminary spectral analysis of phytochrome isolated from these cells has been carried out.

  14. Partial Characterization of Oat and Rye Phytochrome 1

    PubMed Central

    Rice, Harbert V.; Briggs, Winslow R.

    1973-01-01

    Purified oat and rye phytochrome were examined by analytical gel chromatography, polyacrylamide gel electrophoresis, N-terminal, and amino acid analysis. Purified oat phytochrome had a partition coefficient on Sephadex G-200 (σ200) of 0.350 with an estimated molecular weight of 62,000; sodium dodecyl sulfate polyacrylamide electrophoresis gave an equivalent weight estimate. Purified rye phytochrome had a σ200 value of 0.085 with an estimated molecular weight of 375,000; sodium dodecyl sulfate electrophoresis gave a weight estimate of 120,000, indicating a multimer structure for the nondenatured protein. Comparative sodium dodecyl sulfate electrophoresis with purified phycocyanin and allophycocyanin gave a molecular weight estimate of 15,000 for allophycocyanin, and two constituent classes of subunits for phycocyanin with molecular weights of 17,000 and 15,000. Amino acid analysis of oat phytochrome confirmed a previous report; amino acid analysis of rye phytochrome differs markedly from a previous report. Oat phytochome has four detectable N-terminal residues (glutamic acid, serine, lysine, and leucine, or isoleucine); rye phytochrome has two detectable groups (aspartic and glutamic acids). Model experiments subjecting purified rye phytochrome to proteinolysis generate a product with the characteristic spectral and weight properties of oat phytochrome, as it has been described in the literature. It is concluded that the structural characteristics of purified rye phytochrome are likely those of the native protein. Images PMID:16658441

  15. Role of calcium ions in phytochrome responses: an update

    NASA Technical Reports Server (NTRS)

    Roux, S. J.; Wayne, R. O.; Datta, N.

    1986-01-01

    Recent findings related to the role of calcium ions in phytochrome responses are reviewed and summarized. Hypotheses tested are the activation of calmodulin by light-regulated Ca2+ transport in cells and the photoinduction of calmodulin-activated enzyme activities. Discussion focuses on evidence that Ca2+ helps to regulate phytochrome responses, calcium requirements for photoinduced spore germination in the fern Onoclea, Ca2+ fluxes and phytochrome function in the alga Mougeotia, calmodulin antagonist blocking of red-light stimulated chloroplast rotation, the role of phosphorylation in calmodulin-regulated responses, and phytochrome regulation of nuclear protein phosphorylation.

  16. Evaluation of GafChromic EBT prototype B for external beam dose verification

    SciTech Connect

    Todorovic, M.; Fischer, M.; Cremers, F.; Thom, E.; Schmidt, R.

    2006-05-15

    The capability of the new GafChromic EBT prototype B for external beam dose verification is investigated in this paper. First the general characteristics of this film (dose response, postirradiation coloration, influence of calibration field size) were derived using a flat-bed scanner. In the dose range from 0.1 to 8 Gy, the sensitivity of the EBT prototype B film is ten times higher than the response of the GafChromic HS, which so far was the GafChromic film with the highest sensitivity. Compared with the Kodak EDR2 film, the response of the EBT is higher by a factor of 3 in the dose range from 0.1 to 8 Gy. The GafChromic EBT almost does not show a temporal growth of the optical density and there is no influence of the chosen calibration field size on the dose response curve obtained from this data. A MatLab program was written to evaluate the two-dimensional dose distributions from treatment planning systems and GafChromic EBT film measurements. Verification of external beam therapy (SRT, IMRT) using the above-mentioned approach resulted in very small differences between the planned and the applied dose. The GafChromic EBT prototype B together with the flat-bed scanner and MatLab is a successful approach for making the advantages of the GafChromic films applicable for verification of external beam therapy.

  17. Computer analysis of phytochrome sequences and reevaluation of the phytochrome secondary structure by Fourier transform infrared spectroscopy.

    PubMed

    Sühnel, J; Hermann, G; Dornberger, U; Fritzsche, H

    1997-07-18

    A repertoire of various methods of computer sequence analysis was applied to phytochromes in order to gain new insights into their structure and function. A statistical analysis of 23 complete phytochrome sequences revealed regions of non-random amino acid composition, which are supposed to be of particular structural or functional importance. All phytochromes other than phyD and phyE from Arabidopsis have at least one such region at the N-terminus between residues 2 and 35. A sequence similarity search of current databases indicated striking homologies between all phytochromes and a hypothetical 84.2-kDa protein from the cyanobacterium Synechocystis. Furthermore, scanning the phytochrome sequences for the occurrence of patterns defined in the PROSITE database detected the signature of the WD repeats of the beta-transducin family within the functionally important 623-779 region (sequence numbering of phyA from Avena) in a number of phytochromes. A multiple sequence alignment performed with 23 complete phytochrome sequences is made available via the IMB Jena World-Wide Web server (http://www.imb-jena.de/PHYTO.html). It can be used as a working tool for future theoretical and experimental studies. Based on the multiple alignment striking sequence differences between phytochromes A and B were detected directly at the N-terminal end, where all phytochromes B have an additional stretch of 15-42 amino acids. There is also a variety of positions with totally conserved but different amino acids in phytochromes A and B. Most of these changes are found in the sequence segment 150-200. It is, therefore, suggested that this region might be of importance in determining the photosensory specificity of the two phytochromes. The secondary structure prediction based on the multiple alignment resulted in a small but significant beta-sheet content. This finding is confirmed by a reevaluation of the secondary structure using FTIR spectroscopy. PMID:9252112

  18. Mechanism for the selective conjugation of ubiquitin to phytochrome

    SciTech Connect

    Vierstra, R.D.

    1990-01-01

    The goal of this project is to understand at the molecular level how phytochrome functions and how intracellular proteins are degraded. Phytochrome is marked for degradation by covalent attachment of ubiquitin. Ubiquitin-phytochrome conjugates (UbP) were characterized with respect to formation kinetics, subcellular localization and site of ubiquitin attachment. UbP appears to be a general phenomenon during phytochrome degradation in a variety of species. UbP was isolated from oat seedlings and characterized. Residues 747-830 of phytochrome have been identified as a possible attachment site for ubiquitin. By placing the gene for etiolated phytochrome in tobacco we have created a transgenic system for over expressing phytochrome. The effects of this over expression are described, and it appears that tobacco degrades this foreign protein through formation of UbP. We have created a series of site-directed mutants of the oat phytochrome gene, and are in the process of characterizing them to determine sequence requirements for ubiquination. 8 refs., 1 fig. (MHB)

  19. Mechanistic duality of transcription factor function in phytochrome signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phytochrome (phy) family of sensory photoreceptors (phyA–E in Arabidopsis) elicit changes in gene expression after light-induced migration to the nucleus, where they interact with basic helix–loop–helix transcription factors, such as phytochrome-interacting factor 3 (PIF3). The mechanism by whic...

  20. HEMERA Couples the Proteolysis and Transcriptional Activity of PHYTOCHROME INTERACTING FACTORs in Arabidopsis Photomorphogenesis

    PubMed Central

    Qiu, Yongjian; Li, Meina; Pasoreck, Elise K.; Long, Lingyun; Shi, Yiting; Galvão, Rafaelo M.; Chou, Conrad L.; Wang, He; Sun, Amanda Y.; Zhang, Yiyin C.; Jiang, Anna; Chen, Meng

    2015-01-01

    Phytochromes (phys) are red and far-red photoreceptors that control plant development and growth by promoting the proteolysis of a family of antagonistically acting basic helix-loop-helix transcription factors, the PHYTOCHROME-INTERACTING FACTORs (PIFs). We have previously shown that the degradation of PIF1 and PIF3 requires HEMERA (HMR). However, the biochemical function of HMR and the mechanism by which it mediates PIF degradation remain unclear. Here, we provide genetic evidence that HMR acts upstream of PIFs in regulating hypocotyl growth. Surprisingly, genome-wide analysis of HMR- and PIF-dependent genes reveals that HMR is also required for the transactivation of a subset of PIF direct-target genes. We show that HMR interacts with all PIFs. The HMR-PIF interaction is mediated mainly by HMR’s N-terminal half and PIFs’ conserved active-phytochrome B binding motif. In addition, HMR possesses an acidic nine-amino-acid transcriptional activation domain (9aaTAD) and a loss-of-function mutation in this 9aaTAD impairs the expression of PIF target genes and the destruction of PIF1 and PIF3. Together, these in vivo results support a regulatory mechanism for PIFs in which HMR is a transcriptional coactivator binding directly to PIFs and the 9aaTAD of HMR couples the degradation of PIF1 and PIF3 with the transactivation of PIF target genes. PMID:25944101

  1. A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene.

    PubMed Central

    Wang, Z Y; Kenigsbuch, D; Sun, L; Harel, E; Ong, M S; Tobin, E M

    1997-01-01

    We have isolated the gene for a protein designated CCA1. This protein can bind to a region of the promoter of an Arabidopsis light-harvesting chlorophyll a/b protein gene, Lhcb1*3, which is necessary for its regulation by phytochrome. The CCA1 protein interacted with two imperfect repeats in the Lhcb1*3 promoter, AAA/cAATCT, a sequence that is conserved in Lhcb genes. A region near the N terminus of CCA1, which has some homology to the repeated sequence found in the DNA binding domain of Myb proteins, is required for binding to the Lhcb1*3 promoter. Lines of transgenic Arabidopsis plants expressing antisense RNA for CCA1 showed reduced phytochrome induction of the endogenous Lhcb1*3 gene, whereas expression of another phytochrome-regulated gene, rbcS-1A, which encodes the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase, was not affected. Thus, the CCA1 protein acts as a specific activator of Lhcb1*3 transcription in response to brief red illumination. The expression of CCA1 RNA was itself transiently increased when etiolated seedlings were transferred to light. We conclude that the CCA1 protein is a key element in the functioning of the phytochrome signal transduction pathway leading to increased transcription of this Lhcb gene in Arabidopsis. PMID:9144958

  2. On the collective nature of phytochrome photoactivation.

    PubMed

    Song, Chen; Psakis, Georgios; Lang, Christina; Mailliet, Jo; Zaanen, Jan; Gärtner, Wolfgang; Hughes, Jon; Matysik, Jörg

    2011-12-27

    The red/far-red-sensing biological photoreceptor phytochrome is a paradigmatic two-state signaling system. The two thermally stable states are interconverted via a photoreaction of the covalently bound tetrapyrrole chromophore. Applying recently developed solid-state nuclear magnetic resonance, we study both the chromophore and its protein pocket in the Pr (red-absorbing) and Pfr (far-red-absorbing) states. The observations show that the phototransformation combines local chemical reactions with a mesoscopic transition of order. Both the chromophore and its binding pocket are quasi-liquid and disordered in Pr, yet quasi-solid and ordered in Pfr. Possible biochemical implications are discussed. PMID:22124256

  3. Regulation of phytochrome message abundance in root caps of maize

    NASA Technical Reports Server (NTRS)

    Johnson, E. M.; Pao, L. I.; Feldman, L. J.

    1991-01-01

    In many cultivars of maize (Zea mays L.) red light affects root development via the photomorphogenetic pigment phytochrome. The site of perception for the light is the root cap. In the maize cultivar Merit, we investigated phytochrome-mediated events in the cap. We established that the message encoded by the phyA1 gene was most abundant in dark-grown tissue and was asymmetrically distributed in the root cap, with greatest expression in the cells which make up the central columella core of the cap. Phytochrome message was negatively autoregulated in a specific region within the root cap. This autoregulation was sensitive to very-low-fluence red light, and thus was characterized as a phytochrome-mediated, very-low-fluence event. The kinetics of message reaccumulation in the dark were also examined and compared to the kinetics of the light requirement for root gravitropism in this cultivar. Similarly, the degree of autoregulation present in two other maize cultivars with different light requirements for gravitropic sensitivity was investigated. It appears that the Merit cultivar expresses a condition of hypersensitivity to phytochrome-mediated light regulation in root tissues. We conclude that phytochrome regulates many activities within the cap, but the degree to which these activities share common phytochrome-mediated steps is not known.

  4. Genetics of Germination-Arrest Factor (GAF) production by Pseudomonas fluorescens WH6: Identification of a gene cluster essential for GAF biosynthesis.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic basis of the biosynthesis of the Germination-Arrest Factor (GAF) produced by Pseudomonas fluorescens WH6, and previously identified as 4-formylaminooxyvinylglycine, has been investigated in the present study. In addition to its ability to inhibit the germination of a wide range of grass...

  5. Vibrational-rotational spectra of GaF and global multi-isotopologue analysis

    NASA Astrophysics Data System (ADS)

    Uehara, Hiromichi; Horiai, Koui; Katsuie, Shunsuke

    2016-07-01

    In total, 521 vibrational-rotational spectral lines of the Δv = 1 transitions of 69GaF and 71GaF up to bands v = 5-4 and 4-3, respectively, were recorded in emission with a Fourier-transform spectrometer at unapodized resolution 0.010 cm-1 in range 625-660 cm-1. The response of a HgCdTe detector enforced the lower limit, 625 cm-1. To calibrate accurately the spectral lines, the absorption spectrum of CO2 was simultaneously recorded, using dual sample cells, to serve as wavenumber standards. A set of 782 spectral lines comprising all present vibrational-rotational spectra of 69GaF and 71GaF, the reported laser-diode measurements of the Δv = 1 band sequence and the reported rotational spectra was subjected to a global multi-isotopologue analysis through fitting with 11 isotopically invariant, irreducible molecular parameters in a single set. Normalized standard deviation 1.093 indicates a satisfactory fit. For the effects of the breakdown of the Born-Oppenheimer approximation on GaF, the values of non-Born-Oppenheimer parameters ΔBGa, ΔωGa and r1qGa(=r1qF) are experimentally determined for the first time. To facilitate the calculations or predictions of spectral frequencies, the values of the Dunham coefficients of 24 Yij and 81 band parameters for both 69GaF and 71GaF were back-calculated with uncertainties using the 11 evaluated molecular parameters. To date, various types of effective Be, re, ωe, and k have been reported for GaF. Because, in the present work, Dunham coefficients Yij are algebraically expressed with the genuine Be, ωe, ai (i = 1, …) and the non-Born-Oppenheimer correction parameters, the exact expressions for the physical significance of effective quantities are derivable. The various effective quantities of Be, re, ωe and k calculated with these expressions for the physical significance and the determined values of the fitted parameters of GaF agree satisfactorily with the reported values. The physical significance of the conventional

  6. Phytochrome from green plants: Assay, purification, and characterization

    SciTech Connect

    Quail, P.H. . Dept. of Plant and Soil Biology Agricultural Research Service, Albany, CA . Plant Gene Expression Center)

    1991-06-10

    This funding period was directed at developing an in-depth molecular analysis of the low-abundance, 118,000 M{sub r} green-tissue phytochrome that had at that time been relatively recently identified as being distinct from the better characterized 124,000 M{sub r} phytochrome abundant in etiolated tissue. The specific objectives as stated in the original proposal were: (1) To generate monoclonal antibodies specific to the 118,000 M{sub r} green-tissue phytochrome. (2) To develop additional and improved procedures to permit progress toward the ultimate goal of purifying green-tissue phytochrome to homogeneity. (3) To initiate an alternative approach to determining the structural properties of green-tissue phytochrome by isolating and sequencing cDNA cones representing the 118,000 M{sub r} green-tissue polypeptide in Avena. This approach is based on and will test hypothesis that the 118,000 M{sub r} polypeptide is encoded by a gene(s) distinct from those encoding etiolated-tissue 124,000 M{sub r} phytochrome. (4) To utilize any such 118,000 M{sub r} phytochrome specific cDNA clones as hybridization probes to begin to investigate the structure, organization, and regulation of the corresponding gene(s) in Avena. (5) To begin to investigate the possible presence in other higher plant and algal species of sequences homologous to the 118,000 M{sub r} Avena polypeptide using the Avena clones at hybridization probes. Most of these objectives have been accomplished, at least in principle, although the major breakthrough establishing that phytochrome is encoded by a multigene family came from the use of Arabidopsis rather than Avena. Similarly, much of the characterization subsequent to this discovery has been performed in Arabidopsis and rise as model dicot and monocot systems, respectively, rather than Avena. 13 refs., 9 figs.

  7. Enhanced Phytochrome Sensitivity and Its Reversal in Amaranthus albus Seeds

    PubMed Central

    Chadoeuf-Hannel, Regine; Taylorson, Ray B.

    1985-01-01

    Seed of Amaranthus alus L. develop an enhanced sensitivity to the farred absorbing form of phytochrome after prolonged imbibition at temperatures >32°C. The enhanced sensitivity developed at 40°C could be reversed by subsequent treatment at 20°C and similarly reestablished by repeating a 40°C treatment. It is concluded that relative sensitivity to the far-red absorbing form of phytochrome may be readily manipulated in seeds of A. albus. PMID:16664221

  8. Structure and expression of maize phytochrome family homeologs.

    PubMed Central

    Sheehan, Moira J; Farmer, Phyllis R; Brutnell, Thomas P

    2004-01-01

    To begin the study of phytochrome signaling in maize, we have cloned and characterized the phytochrome gene family from the inbred B73. Through DNA gel blot analysis of maize genomic DNA and BAC library screens, we show that the PhyA, PhyB, and PhyC genes are each duplicated once in the genome of maize. Each gene pair was positioned to homeologous regions of the genome using recombinant inbred mapping populations. These results strongly suggest that the duplication of the phytochrome gene family in maize arose as a consequence of an ancient tetraploidization in the maize ancestral lineage. Furthermore, sequencing of Phy genes directly from BAC clones indicates that there are six functional phytochrome genes in maize. Through Northern gel blot analysis and a semiquantitative reverse transcriptase polymerase chain reaction assay, we determined that all six phytochrome genes are transcribed in several seedling tissues. However, expression from PhyA1, PhyB1, and PhyC1 predominate in all seedling tissues examined. Dark-grown seedlings express higher levels of PhyA and PhyB than do light-grown plants but PhyC genes are expressed at similar levels under light and dark growth conditions. These results are discussed in relation to phytochrome gene regulation in model eudicots and monocots and in light of current genome sequencing efforts in maize. PMID:15280251

  9. Phytochromes: An Atomic Perspective on Photoactivation and Signaling

    PubMed Central

    Burgie, E. Sethe

    2014-01-01

    The superfamily of phytochrome (Phy) photoreceptors regulates a wide array of light responses in plants and microorganisms through their unique ability to reversibly switch between stable dark-adapted and photoactivated end states. Whereas the downstream signaling cascades and biological consequences have been described, the initial events that underpin photochemistry of the coupled bilin chromophore and the ensuing conformational changes needed to propagate the light signal are only now being understood. Especially informative has been the rapidly expanding collection of 3D models developed by x-ray crystallographic, NMR, and single-particle electron microscopic methods from a remarkably diverse array of bacterial Phys. These structures have revealed how the modular architecture of these dimeric photoreceptors engages the buried chromophore through distinctive knot, hairpin, and helical spine features. When collectively viewed, these 3D structures reveal complex structural alterations whereby photoisomerization of the bilin drives nanometer-scale movements within the Phy dimer through bilin sliding, hairpin reconfiguration, and spine deformation that ultimately impinge upon the paired signal output domains. When integrated with the recently described structure of the photosensory module from Arabidopsis thaliana PhyB, new opportunities emerge for the rational redesign of plant Phys with novel photochemistries and signaling properties potentially beneficial to agriculture and their exploitation as optogenetic reagents. PMID:25480369

  10. LAF1, a MYB transcription activator for phytochrome A signaling

    PubMed Central

    Ballesteros, María L.; Bolle, Cordelia; Lois, Luisa M.; Moore, James M.; Vielle-Calzada, Jean-Philippe; Grossniklaus, Ueli; Chua, Nam-Hai

    2001-01-01

    The photoreceptor phytochrome (phy) A has a well-defined role in regulating gene expression in response to specific light signals. Here, we describe a new Arabidopsis mutant, laf1 (long after far-red light 1) that has an elongated hypocotyl specifically under far-red light. Gene expression studies showed that laf1 has reduced responsiveness to continuous far-red light but retains wild-type responses to other light wavelengths. As far-red light is only perceived by phyA, our results suggest that LAF1 is specifically involved in phyA signal transduction. Further analyses revealed that laf1 is affected in a subset of phyA-dependent responses and the phenotype is more severe at low far-red fluence rates. LAF1 encodes a nuclear protein with strong homology with the R2R3–MYB family of DNA-binding proteins. Experiments using yeast cells identified a transactivation domain in the C-terminal portion of the protein. LAF1 is constitutively targeted to the nucleus by signals in its N-terminal portion, and the full-length protein accumulates in distinct nuclear speckles. This accumulation in speckles is abolished by a point mutation in a lysine residue (K258R), which might serve as a modification site by a small ubiquitin-like protein (SUMO). PMID:11581165

  11. Selective inhibition of Erwinia amylovora by the herbicidally-active Germination-Arrest Factor (GAF) produced by Pseudomonas bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: The Germination-Arrest Factor (GAF) produced by Pseudomonas fluorescens WH6, and identified as 4-formylaminooxyvinylglycine, specifically inhibits the germination of a wide range of grassy weeds. The present study was undertaken to determine if GAF has antimicrobial activity in addition to it...

  12. Steric Effects Govern the Photoactivation of Phytochromes.

    PubMed

    Falklöf, Olle; Durbeej, Bo

    2016-04-01

    Phytochromes constitute a superfamily of photoreceptor proteins existing in two forms that absorb red (Pr) and far-red (Pfr) light. Although it is well-known that the conversion of Pr into Pfr (the biologically active form) is triggered by a Z→E photoisomerization of the linear tetrapyrrole chromophore, direct evidence is scarce as to why this reaction always occurs at the methine bridge between pyrrole rings C and D. Here, we present hybrid quantum mechanics/molecular mechanics calculations based on a high-resolution Pr crystal structure of Deinococcus radiodurans bacteriophytochrome to investigate the competition between all possible photoisomerizations at the three different (AB, BC and CD) methine bridges. The results demonstrate that steric interactions with the protein are a key discriminator between the different reaction channels. In particular, it is found that such interactions render photoisomerizations at the AB and BC bridges much less probable than photoisomerization at the CD bridge. PMID:26756452

  13. A Modified Global Assessment of Functioning (GAF) Scale for Use in Long-Term Care Settings

    ERIC Educational Resources Information Center

    Mossbarger, Brad

    2005-01-01

    Terminology in the Global Assessment of Functioning (GAF) Scale of DSM-IV often is irrelevant to the realities of nursing homes, assisted living centers, and similar facilities in which residents encounter stressors that are unique to their living environment and circumstances. As the mental health needs of long-term care residents are…

  14. Altered etioplast development in phytochrome chromophore-deficient mutants.

    PubMed

    Terry, M J; Ryberg, M; Raitt, C E; Page, A M

    2001-12-01

    Inhibition of chromophore synthesis in the phytochrome-deficient aurea (au) and yellow-green-2 (yg-2) mutants of tomato (Solanum lycopersicum L.) results in a severe reduction of protochlorophyllide (Pchlide) accumulation in dark-grown hypocotyls. Experiments with apophytochrome-deficient mutants indicate that the inhibition of Pchlide accumulation results from two separate effects: one dependent on the activity of phytochromes A and B1 and one phytochrome-independent effect that is attributed to a feedback inhibition of the tetrapyrrole biosynthesis pathway. Cotyledons only show phytochrome-independent inhibition of Pchlide synthesis. Analysis of NADPH:protochlorophyllide oxidoreductase levels by western blotting showed that the reduction in Pchlide in au and yg-2 is accompanied by a correlative, but less substantial, decrease in NADPH:protochlorophyllide oxidoreductase. Consistent with this result, in vivo fluorescence spectra demonstrate that both mutants are primarily deficient in non-phototransformable Pchlide. Analysis of etioplast structure indicates that plastid development in au and yg-2 is retarded in hypocotyls and partially impaired in cotyledons, again correlating with the reduction in Pchlide. Since Pchlide synthesis is also reduced in chromophore-deficient mutants of pea (Pisum sativum L.) and Arabidopsis thaliana (L.) Heynh. (Landsberg erecta) these results may be significant for explaining aspects of the phenotype of this mutant class that are independent of the loss of phytochrome. PMID:11800397

  15. Calcium requirement of phytochrome-mediated fern-spore germination: no direct phytochrome-calcium interaction in the phytochrome-initiated transduction chain

    NASA Technical Reports Server (NTRS)

    Scheuerlein, R.; Wayne, R.; Roux, S. J.

    1989-01-01

    Phytochrome-mediated germination of fern spores of Dryopteris paleacea Sw. was initiated by a saturating red-light (R) irradiation after 20 h of imbibition. For its realization external Ca2+ was required, with a threshold at a submicromolar concentration, and an optimum was reached around 10(-4) M. At concentrations > or = 10(-1) M only a reduced response was obtained, based probably on an unspecific osmotic or ionic effect. The germination response was inhibited by La3+, an antagonist of Ca2+. From these results it is concluded that Ca2+ influx from the medium into the spores may be an important event in phytochrome-mediated germination. In the absence of Ca2+ the R-stimulated system remained capable of responding to Ca2+, added as late as 40 h after R. Moreover, Ca2+ was effective even if added after the active form of phytochrome, Pfr, had been abolished by far-red (FR) 24 h after R. Thus, the primary effect of Pfr, that initiates the transduction chain, does not require calcium. "Coupling" of Pfr to subsequent dark reactions has been investigated by R-FR irradiations with various dark intervals. The resulting "escape kinetics" were characterized by a lag phase (6 h) and half-maximal escape from FR reversibility (19 h). These kinetics were not significantly changed by the presence or absence of calcium. Thus, direct interaction of Pfr and calcium is not a step in the transduction chain initiated by the active form of phytochrome.

  16. Dosimetric properties of improved GafChromic films for seven different digitizers.

    PubMed

    Devic, Slobodan; Seuntjens, Jan; Hegyi, Gyorgy; Podgorsak, Ervin B; Soares, Christopher G; Kirov, Assen S; Ali, Imad; Williamson, Jeffrey F; Elizondo, Angel

    2004-09-01

    Two recently introduced GafChromic film models, HS and XR-T, have been developed as more sensitive and uniform alternatives to GafChromic MD-55-2 film. The HS model has been specifically designed for measurement of absorbed dose in high-energy photon beams (above 1 MeV), while the XR-T model has been introduced for dose measurements of low energy (0.1 MeV) photons. The goal of this study is to compare the sensitometric curves and estimated dosimetric uncertainties associated with seven different GafChromic film dosimetry systems for the two new film models. The densitometers tested are: LKB Pharmacia UltroScan XL, Molecular Dynamics Personal Densitometer, Nuclear Associates Radiochromic Densitometer Model 37-443, Photoelectron Corporation CMR-604, Laser Pro 16, Vidar VXR-16, and AGFA Arcus II document scanner. Pieces of film were exposed to different doses in a dose range from 0.5 to 50 Gy using 6 MV photon beam. Functional forms for dose vs net optical density have been determined for each of the GafChromic film-dosimetry systems used in this comparison. Two sources of uncertainties in dose measurements, governed by the experimental measurement and calibration curve fit procedure, have been compared for the densitometers used. Among the densitometers tested, it is found that for the HS film type the uncertainty caused by the experimental measurement varies from 1% to 3% while the calibration fit uncertainty ranges from 2% to 4% for doses above 5 Gy. Corresponding uncertainties for XR-T film model are somewhat higher and range from 1% to 5% for experimental and from 2% to 7% for the fit uncertainty estimates. Notwithstanding the significant variations in sensitivity, the studied densitometers exhibit very similar precision for GafChromic film based dose measurements above 5 Gy. PMID:15487718

  17. TORC1 Regulates Developmental Responses to Nitrogen Stress via Regulation of the GATA Transcription Factor Gaf1

    PubMed Central

    Laor, Dana; Cohen, Adiel; Kupiec, Martin

    2015-01-01

    ABSTRACT The TOR (target of rapamycin [sirolimus]) is a universally conserved kinase that couples nutrient availability to cell growth. TOR complex 1 (TORC1) in Schizosaccharomyces pombe positively regulates growth in response to nitrogen availability while suppressing cellular responses to nitrogen stress. Here we report the identification of the GATA transcription factor Gaf1 as a positive regulator of the nitrogen stress-induced gene isp7+, via three canonical GATA motifs. We show that under nitrogen-rich conditions, TORC1 positively regulates the phosphorylation and cytoplasmic retention of Gaf1 via the PP2A-like phosphatase Ppe1. Under nitrogen stress conditions when TORC1 is inactivated, Gaf1 becomes dephosphorylated and enters the nucleus. Gaf1 was recently shown to negatively regulate the transcription induction of ste11+, a major regulator of sexual development. Our findings support a model of a two-faceted role of Gaf1 during nitrogen stress. Gaf1 positively regulates genes that are induced early in the response to nitrogen stress, while inhibiting later responses, such as sexual development. Taking these results together, we identify Gaf1 as a novel target for TORC1 signaling and a step-like mechanism to modulate the nitrogen stress response. PMID:26152587

  18. Collecting Information for Rating Global Assessment of Functioning (GAF): Sources of Information and Methods for Information Collection

    PubMed Central

    Aas, I. H. Monrad

    2014-01-01

    Introduction: Global Assessment of Functioning (GAF) is an assessment instrument that is known worldwide. It is widely used for rating the severity of illness. Results from evaluations in psychiatry should characterize the patients. Rating of GAF is based on collected information. The aim of the study is to identify the factors involved in collecting information that is relevant for rating GAF, and gaps in knowledge where it is likely that further development would play a role for improved scoring. Methods: A literature search was conducted with a combination of thorough hand search and search in the bibliographic databases PubMed, PsycINFO, Google Scholar, and Campbell Collaboration Library of Systematic Reviews. Results: Collection of information for rating GAF depends on two fundamental factors: the sources of information and the methods for information collection. Sources of information are patients, informants, health personnel, medical records, letters of referral and police records about violence and substance abuse. Methods for information collection include the many different types of interview – unstructured, semi-structured, structured, interviews for Axis I and II disorders, semistructured interviews for rating GAF, and interviews of informants – as well as instruments for rating symptoms and functioning, and observation. The different sources of information, and methods for collection, frequently result in inconsistencies in the information collected. The variation in collected information, and lack of a generally accepted algorithm for combining collected information, is likely to be important for rated GAF values, but there is a fundamental lack of knowledge about the degree of importance. Conclusions: Research to improve GAF has not reached a high level. Rated GAF values are likely to be influenced by both the sources of information used and the methods employed for information collection, but the lack of research-based information about these

  19. G-proteins in etiolated Avena seedlings. Possible phytochrome regulation.

    PubMed

    Romero, L C; Sommer, D; Gotor, C; Song, P S

    1991-05-01

    The molecular mechanism of light signal transduction in plants mediated by the photosensor phytochrome is not well understood. The possibility that phytochrome initiates the signal transduction chain by modulating a G-protein-like receptor is examined in the present work. Etiolated Avena seedlings contain G-proteins as examined in terms of the binding of GTP as well as by cross-reaction with mammalian G-protein antibodies. The binding of GTP was regulated in vivo by red/far-red light. The possible involvement of G-proteins in the phytochrome-mediated signal transduction in etiolated Avena seedlings has been implicated from the study of the light regulated expression of the Cab and phy genes. PMID:1903719

  20. Separation of Photolabile-Phytochrome and Photostable-Phytochrome Actions on Growth and Microtubule Orientation in Maize Coleoptiles (A Physiological Approach).

    PubMed Central

    Fischer, K.; Schopfer, P.

    1997-01-01

    For separating the physiological actions of photolabile (phy-l) and photostable phytochromes, we compared the effects of red (R) and far-red (FR) light on elongation growth and microtubule reorientation in segments of maize (Zea mays L.) coleoptiles raised either in darkness (phy-l present) or preirradiated with R (phy-l eliminated). In 4.5-d-old dark-grown seedlings R first promoted growth and induced a transverse microtubule orientation. In continuous R the phytochrome action responsible for these responses was replaced by an opposite phytochrome action that produced a stable growth inhibition and longitudinal microtubule orientation. In R-preirradiated segments only the second type of phytochrome action could be observed. Reversion experiments with FR light pulses demonstrated that both types of phytochrome action were dependent on the FR-absorbing form of phytochrome and mirrored the actual phytochrome state after 1 h. We conclude from these and related results that growth promotion and transverse microtubule orientation are mediated by phy-l, whereas growth inhibition and longitudinal microtubule orientation are mediated by photostable phytochrome. The opposite actions of the two phytochromes can be separated by preirradiating the seedlings with R. Photoresponsiveness ascribed to phy-l disappeared after 5 d. phy-l appears to play a distinct but transitory role in coleoptile development. PMID:12223819

  1. The Fission Yeast GATA Factor, Gaf1, Modulates Sexual Development via Direct Down-Regulation of ste11+ Expression in Response to Nitrogen Starvation

    PubMed Central

    Yu, Yeong Man; Yeon, Ji-Hyun; Maeng, Pil Jae

    2012-01-01

    Gaf1 is the first GATA family zinc-finger transcription factor identified in Schizosaccharomyces pombe. Here, we report that Gaf1 functions as a negatively acting transcription factor of ste11+, delaying the entrance of cells exposed to transient nitrogen starvation into the meiotic cycle. gaf1Δ strains exhibited accelerated G1-arrest upon nitrogen starvation. Moreover, gaf1Δ mutation caused increased mating and sporulation frequency under both nitrogen-starved and unstarved conditions, while overexpression of gaf1+ led to a significant impairment of sporulation. By microarray analysis, we found that approximately 63% (116 genes) of the 183 genes up-regulated in unstarved gaf1Δ cells were nitrogen starvation-responsive genes, and furthermore that 25 genes among the genes up-regulated by gaf1Δ mutation are Ste11 targets (e.g., gpa1+, ste4+, spk1+, ste11+, and mei2+). The phenotype caused by gaf1Δ mutation was masked by ste11Δ mutation, indicating that ste11+ is epistatic to gaf1+ with respect to sporulation efficiency, and accordingly that gaf1+ functions upstream of ste11+ in the signaling pathway governing sexual development. gaf1Δ strains showed accelerated ste11+ expression under nitrogen starvation and increased ste11+ expression even under normal conditions. Electrophoretic mobility shift assay analysis demonstrated that Gaf1 specifically binds to the canonical GATA motif (5′-HGATAR-3′) spanning from −371 to −366 in ste11+ promoter. Consequently, Gaf1 provides the prime example for negative regulation of ste11+ transcription through direct binding to a cis-acting motif of its promoter. PMID:22900017

  2. Binding of GID1 to DELLAs promotes dissociation of GAF1 from DELLA in GA dependent manner

    PubMed Central

    Fukazawa, Jutarou; Ito, Takeshi; Kamiya, Yuji; Yamaguchi, Shinjiro; Takahashi, Yohsuke

    2015-01-01

    Gibberellins (GAs) are important phytohormones for plant growth and development. DELLAs are members of the plant-specific GRAS protein family and act as repressors of GA signaling. DELLAs are rapidly degraded in the presence of GAs. GA-GID1-DELLA complexes are recognized and ubiquitinated by the SCFSLY complex. The sleepy1 (sly1) F-box mutant exhibits dwarfism and low-germination phenotypes due to high accumulation of DELLAs. Overexpression of GID1 in the sly1 mutant partially rescues these phenotypes without degradation of DELLAs suggesting that proteolysis independent regulation of DELLAs exists in GA signaling. But the molecular mechanisms of non-proteolytic regulation of DELLA are largely unknown. Recently we identified a DELLA binding transcription factor, GAI-ASSOCIATED FACTOR1 (GAF1). GAF1 also interacts with co-repressor TOPLESS RELATED (TPR) in nuclei. DELLAs and TPR act as coactivator and corepressor of GAF1, respectively. GAs converts the GAF1 complex from transcriptional activator to repressor via degradation of DELLAs. The overexpression of ΔPAM, lacking of DELLAs binding region of GAF1, partially rescue dwarf phenotypes of GA deficient or GA insensitive mutant. In this study, we investigate the relationship between non-proteolytic regulation of DELLAs and GA signaling via DELLA-GAF1 complex using modified yeast two-hybrid system. PMID:26237582

  3. A purified 124-kDa oat phytochrome does not possess a protein kinase activity.

    PubMed

    Kim, I S; Bai, U; Song, P S

    1989-03-01

    The presence of protein kinase activity in the purified phytochrome preparations [Wong, et al. (1986) J. Biol. Chem. 261, 12089-12097] has been re-examined. The phytochrome preparations having SAR (specific absorbance ratio, A668/A280 for the Pr form as a measure of phytochrome purity) values of greater than 0.95 were homogeneous on SDS gel, but could be further purified to a SAR value of 1.07 by repeated gel filtrations on a Bio-Gel A-0.5 m column. The protein kinase activity remained in the phytochrome preparations having SAR values less than 1.05, but it became undetectable in the phytochrome preparation with a SAR value of 1.07. Two dimensional gel electrophoresis of the phytochrome preparation (SAR, 0.89) showed that a phytochrome band with pl 5.8 had no kinase activity. Phosphorylating activity of the protein kinase was enhanced to some extent by polycations, polylysine and histone. Phytochrome served as a good substrate for this enzyme. The present data indicate that phytochrome has no intrinsic protein kinase activity, but a protein kinase is present in highly purified phytochrome preparations. PMID:2734369

  4. Characterization by enzyme-linked immunosorbent assay of monoclonal antibodies to Pisum and Avena phytochrome

    SciTech Connect

    Cordonnier, M.M.; Greppin, H.; Pratt, L.H.

    1984-01-01

    Nine monoclonal antibodies to pea (Pisum sativum L.) and 16 to oat (Avena sativa L.) phytochrome are characterized by enzyme-linked immunosorbent assay against phytochrome from six different sources: pea, zucchini (Cucurbita pepo L.), lettuce (Lactuca sativa L.), oat, rye (Secale cereale L.), and barley (Hordeum vulgare L.). All antibodies were raised against phytochrome with a monomer size near 120,000 daltons. Nevertheless, none of them discriminated qualitatively between 118/114-kilodalton oat phytochrome and a photoreversible, 60-kilodalton proteolytic degradation product derived from it. In addition, none of the 23 antibodies tested discriminated substantially between phytochrome - red-absorbing form and phytochrome - far red-absorbing form. Two antibodies to pea and six to oat phytochrome also bound strongly to phytochrome from the other species, even though these two plants are evolutionarily widely divergent. Of these eight antibodies, two bound significantly to all of the six phytochrome preparations tested, indicating that these two may recognize highly conserved regions of the chromoprotein. Since the molecular function of phytochrome is unknown, these two antibodies may serve as unique probes for regions of this pigment that are important to its mode of action. 27 references, 3 figures, 1 table.

  5. Mechanism for the selective conjugation of ubiquitin to phytochrome

    SciTech Connect

    Vierstra, R.D.

    1989-01-01

    The long term goal of this project is to understand at the molecular level how intracellular proteins are degraded. The purpose of this research is to characterize the form-dependent degradation of phytochrome as a model system for the study of selective protein breakdown. Phytochrome exists in two photo-interconveretible forms, a red-absorbing Pr form and a far-red absorbing Pfr form. Recent evidence indicates that selective breakdown of phytochrome in etiolated oat seedlings occurs by a ubiquitin-dependent proteolytic pathway. Ubiquitin is a 76 amino acid eukaryotic protein that is covalently ligated to proteins destined for catabolism and serves as recognition signal for proteases specific for ubiquitin-protein conjugates. In an attempt to understand why Pfr and not Pr is recognized by the ubiquitin pathway, we have characterized ubiquitin-phytochrome conjugates (Ub-P) with respect to their kinetics of accumulation, localization within the cell, and sites of ubiquitin attachment. We also examined Pfr degradation in etiolated seedlings from a variety of other plant species (corn, rye, pea and zucchini squash) for their ability to form Ub-P during Pfr degradation. 4 refs.

  6. My Path from Chemistry to Phytochrome and Circadian Rhythms

    PubMed Central

    Tobin, Elaine M.

    2016-01-01

    I summarize my scientific journey from my first interest in science to my career investigating how plants use the phytochrome photoreceptor to regulate what genes they express. I then describe how this work led to an understanding of how circadian rhythms function in plants and to the discovery of CCA1, a component of the plant central oscillator. PMID:27014288

  7. THE BRASSICA RAPA ELONGATED INTERNODE (EIN) GENE ENCODES PHYTOCHROME B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The elongated internode (ein) mutation of Brassica rapa leads to a deficiency in immunochemically detectable phytochrome B. Molecular analysis of the PHYB gene from ein indicates a deletion in the flanking DNA 5' of the ATG start codon, which could interfere either with PHYB transcription or process...

  8. Phytochrome-Regulated PIL1 Derepression is Developmentally Modulated

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We define the photoresponsiveness, during seedling de-etiolation, of PHYTOCHROME-INTERACTING FACTOR 3-LIKE 1 (PIL1), initially identified by microarray analysis as an early-response gene that is robustly repressed by first exposure to light. We show that PIL1 mRNA abundance declines rapidly, with a ...

  9. A novel Phytochrome B allele in Arabidopsis thaliana exhibits partial mutant phenotype: a short deletion in N-terminal extension reduces Phytochrome B activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During analysis of a line possessing a Phytochrome A epiallele (phyA'), a partial Phytochrome B-deficient phenotype was observed, consisting of lengthened hypocotyls in seedlings grown under constant white light or red light (660 nm). The observed hypocotyls were twice the length (8 mm) of wild-typ...

  10. New Constitutively Active Phytochromes Exhibit Light-Independent Signaling Activity1[OPEN

    PubMed Central

    Jeong, A-Reum; Lee, Si-Seok; Han, Yun-Jeong; Shin, Ah-Young; Baek, Ayoung; Ahn, Taeho; Kim, Min-Gon; Kim, Young Soon; Lee, Keun Woo; Nagatani, Akira

    2016-01-01

    Plant phytochromes are photoreceptors that mediate a variety of photomorphogenic responses. There are two spectral photoisomers, the red light-absorbing Pr and far-red light-absorbing Pfr forms, and the photoreversible transformation between the two forms is important for the functioning of phytochromes. In this study, we isolated a Tyr-268-to-Val mutant of Avena sativa phytochrome A (AsYVA) that displayed little photoconversion. Interestingly, transgenic plants of AsYVA showed light-independent phytochrome signaling with a constitutive photomorphogenic (cop) phenotype that is characterized by shortened hypocotyls and open cotyledons in the dark. In addition, the corresponding Tyr-303-to-Val mutant of Arabidopsis (Arabidopsis thaliana) phytochrome B (AtYVB) exhibited nuclear localization and interaction with phytochrome-interacting factor 3 (PIF3) independently of light, conferring a constitutive photomorphogenic development to its transgenic plants, which is comparable to the first constitutively active version of phytochrome B (YHB; Tyr-276-to-His mutant). We also found that chromophore ligation was required for the light-independent interaction of AtYVB with PIF3. Moreover, we demonstrated that AtYVB did not exhibit phytochrome B activity when it was localized in the cytosol by fusion with the nuclear export signal and that AsYVA exhibited the full activity of phytochrome A when localized in the nucleus by fusion with the nuclear localization signal. Furthermore, the corresponding Tyr-269-to-Val mutant of Arabidopsis phytochrome A (AtYVA) exhibited similar cop phenotypes in transgenic plants to AsYVA. Collectively, these results suggest that the conserved Tyr residues in the chromophore-binding pocket play an important role during the Pr-to-Pfr photoconversion of phytochromes, providing new constitutively active alleles of phytochromes by the Tyr-to-Val mutation. PMID:27325667

  11. Flowering responses to altered expression of phytochrome in mutants and transgenic lines of Arabidopsis thaliana (L.) Heynh.

    PubMed Central

    Bagnall, D J; King, R W; Whitelam, G C; Boylan, M T; Wagner, D; Quail, P H

    1995-01-01

    The long-day plant Arabidopsis thaliana (L.) Heynh. flowers early in response to brief end-of-day (EOD) exposures to far-red light (FR) following a fluorescent short day of 8 h. FR promotion of flowering was nullified by subsequent brief red light (R) EOD exposure, indicating phytochrome involvement. The EOD response to R or FR is a robust measure of phytochrome action. Along with their wild-type (WT) parents, mutants deficient in either phytochrome A or B responded similarly to the EOD treatments. Thus, neither phytochrome A nor B exclusively regulated flowering, although phytochrome B controlled hypocotyl elongation. Perhaps a third phytochrome species is important for the EOD responses of the mutants and/or their flowering is regulated by the amount of the FR-absorbing form of phytochrome, irrespective of the phytochrome species. Overexpression of phytochrome A or phytochrome B resulted in differing photoperiod and EOD responses among the genotypes. The day-neutral overexpressor of phytochrome A had an EOD response similar to all of the mutants and WTs, whereas R EOD exposure promoted flowering in the overexpressor of phytochrome B and FR EOD exposure inhibited this promotion. The comparisons between relative flowering times and leaf numbers at flowering of the over-expressors and their WTs were not consistent across photoperiods and light treatments, although both phytochromes A and B contributed to regulating flowering of the transgenic plants. PMID:7659750

  12. In vitro assembly of phytochrome B apoprotein with synthetic analogs of the phytochrome chromophore

    PubMed Central

    Hanzawa, Hiroko; Inomata, Katsuhiko; Kinoshita, Hideki; Kakiuchi, Takashi; Jayasundera, Krishanthi Padmarani; Sawamoto, Daisuke; Ohta, Atsuko; Uchida, Kenko; Wada, Keishiro; Furuya, Masaki

    2001-01-01

    Phytochrome B (PhyB), one of the major photosensory chromoproteins in plants, mediates a variety of light-responsive developmental processes in a photoreversible manner. To analyze the structural requirements of the chromophore for the spectral properties of PhyB, we have designed and chemically synthesized 20 analogs of the linear tetrapyrrole (bilin) chromophore and reconstituted them with PhyB apoprotein (PHYB). The A-ring acts mainly as the anchor for ligation to PHYB, because the modification of the side chains at the C2 and C3 positions did not significantly influence the formation or difference spectra of adducts. In contrast, the side chains of the B- and C-rings are crucial to position the chromophore properly in the chromophore pocket of PHYB and for photoreversible spectral changes. The side-chain structure of the D-ring is required for the photoreversible spectral change of the adducts. When methyl and ethyl groups at the C17 and C18 positions are replaced with an n-propyl, n-pentyl, or n-octyl group, respectively, the photoreversible spectral change of the adducts depends on the length of the side chains. From these studies, we conclude that each pyrrole ring of the linear tetrapyrrole chromophore plays a different role in chromophore assembly and the photochromic properties of PhyB. PMID:11248126

  13. Nuclear Import of the Parsley bZIP Transcription Factor CPRF2 Is Regulated by Phytochrome Photoreceptors

    PubMed Central

    Kircher, Stefan; Wellmer, Frank; Nick, Peter; Rügner, Alexander; Schäfer, Eberhard; Harter, Klaus

    1999-01-01

    In plants, light perception by photoreceptors leads to differential expression of an enormous number of genes. An important step for differential gene expression is the regulation of transcription factor activities. To understand these processes in light signal transduction we analyzed the three well-known members of the common plant regulatory factor (CPRF) family from parsley (Petroselinum crispum). Here, we demonstrate that these CPRFs, which belong to the basic- region leucine-zipper (bZIP) domain-containing transcription factors, are differentially distributed within parsley cells, indicating different regulatory functions within the regulatory networks of the plant cell. In particular, we show by cell fractionation and immunolocalization approaches that CPRF2 is transported from the cytosol into the nucleus upon irradiation due to action of phytochrome photoreceptors. Two NH2-terminal domains responsible for cytoplasmic localization of CPRF2 in the dark were characterized by deletion analysis using a set of CPRF2-green fluorescent protein (GFP) gene fusion constructs transiently expressed in parsley protoplasts. We suggest that light-induced nuclear import of CPRF2 is an essential step in phytochrome signal transduction. PMID:9922448

  14. Tor Signaling Regulates Transcription of Amino Acid Permeases through a GATA Transcription Factor Gaf1 in Fission Yeast

    PubMed Central

    Liu, Qingbin; Qi, Yao; Manabe, Ri-ichiroh; Furuyashiki, Tomoyuki

    2015-01-01

    In the fission yeast, two Tor isoforms, Tor1 and Tor2, oppositely regulate gene expression of amino acid permeases. To elucidate the transcriptional machinery for these regulations, here we have employed the cap analysis of gene expression (CAGE), a method of analyzing expression profiles and identifying transcriptional start sites (TSSs). The loss of Tor1 decreased, and Tor2 inhibition by its temperature sensitive mutation increased, mRNA expression of isp5+, per1+, put4+ and SPBPB2B2.01. In contrast, the loss of Tor1 increased, and Tor2 inhibition decreased, the expression of cat1+. These changes were confirmed by semi-quantitative RT-PCR. These opposite effects by the loss of Tor1 and Tor2 inhibition appeared to occur evenly across multiple TSSs for the respective genes. The motif discovery analysis based on the CAGE results identified the GATA motifs as a potential cis-regulatory element for Tor-mediated regulation. In the luciferase reporter assay, the loss of Tor1 reduced, and Tor2 inhibition and nitrogen depletion increased, the activity of isp5+ promoter as well as that of a GATAAG reporter. One of the GATAAG motifs in isp5+ promoter was critical for its transcriptional activity, and a GATA transcription factor Gaf1 was critical for the activities of isp5+ promoter and the GATAAG reporter. Furthermore, Tor2 inhibition and nitrogen depletion induced nuclear localization of Gaf1 from the cytosol and its dephosphorylation. These results suggest that Tor2 inhibition, which is known to be induced by nitrogen depletion, promotes nuclear localization of Gaf1, thereby inducing isp5+ transcription through Gaf1 binding to the GATAAG motif in its promoter. Since Gaf1 was also critical for transcription of per1+ and put4+, Tor-Gaf1 signaling may coordinate transcription of multiple amino acid permeases according to nutrient availability. PMID:26689777

  15. Negative regulation of Germination-Arrest Factor (GAF) production in Pseudomonas fluorescens WH6 by a putative extracytoplasmic function sigma factor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas fluorescens WH6 secretes a Germination-Arrest Factor (GAF) that we have previously identified as 4-formylaminooxyvinylglycine. GAF irreversibly inhibits germination of the seeds of numerous grassy weed species and selectively inhibits growth of the bacterial plant pathogen Erwinia amylo...

  16. MULTIPLE TRANSCRIPTION-FACTOR GENES ARE EARLY TARGETS OF PHYTOCHROME A SIGNALING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phytochrome family of sensory photoreceptors directs adaptational changes in gene expression in response to environmental light signals. Using oligonucleotide microarrays to measure expression profiles in wild-type and phytochrome A (phyA) null-mutant Arabidopsis seedlings, we have shown that 10...

  17. A Reduced-Function Allele Reveals That EARLY FLOWERING3 Repressive Action on the Circadian Clock Is Modulated by Phytochrome Signals in Arabidopsis[C][W

    PubMed Central

    Kolmos, Elsebeth; Herrero, Eva; Bujdoso, Nora; Millar, Andrew J.; Tóth, Réka; Gyula, Peter; Nagy, Ferenc; Davis, Seth J.

    2011-01-01

    Arabidopsis thaliana EARLY FLOWERING3 (ELF3) is essential for the generation of circadian rhythms. ELF3 has been proposed to restrict light signals to the oscillator through phytochrome photoreceptors, but that has not been explicitly shown. Furthermore, the genetic action of ELF3 within the clock had remained elusive. Here, we report a functional characterization of ELF3 through the analysis of the elf3-12 allele, which encodes an amino acid replacement in a conserved domain. Circadian oscillations persisted, and unlike elf3 null alleles, elf3-12 resulted in a short circadian period only under ambient light. The period shortening effect of elf3-12 was enhanced by the overexpression of phytochromes phyA and phyB. We found that elf3-12 was only modestly perturbed in resetting of the oscillator and in gating light-regulated gene expression. Furthermore, elf3-12 essentially displayed wild-type development. We identified targets of ELF3 transcriptional repression in the oscillator, highlighting the action at the morning gene PSEUDO-RESPONSE REGULATOR9. Taken together, we identified two separable roles for ELF3, one affecting the circadian network and the other affecting light input to the oscillator. This is consistent with a dual function of ELF3 as both an integrator of phytochrome signals and a repressor component of the core oscillator. PMID:21908721

  18. An application of GafChromic MD-55 film for 67.5 MeV clinical proton beam dosimetry.

    PubMed

    Daftari, I; Castenadas, C; Petti, P L; Singh, R P; Verhey, L J

    1999-11-01

    The purpose of this study is to explore the use of GafChromic MD-55 (RC) film for 67.5 MeV clinical proton beam dosimetry at the Crocker Nuclear Laboratory, University of California, Davis. Several strips of RC film 6 cm x 6 cm in dimension were irradiated at a depth of 18.2 mm corresponding to the middle of a 24 mm spread-out Bragg peak (SOBP). The films were irradiated to a proton dose in the range of 0.5 Gy to 100 Gy. The beam profiles were also measured at the middle of the 24 mm SOBP. The Bragg peak was measured by using a wedge shaped phantom made of Lucite. The Bragg peak measured with RC film was compared with diode and ionization chamber measurements. After background subtraction, the calibration of the dose response of RC film showed, to a maximum deviation of 10%, a linear increase of optical density (OD) with dose from 0.5 to 100 Gy. The uniformity of OD over a single sheet of film showed a variation of +/-6%. The distal-fall off between 90% and 20% measured with GafChromic film for the Bragg peak was 1.3 mm as compared to 1.1 mm for a diode measurement and 1.4 mm for an ionization chamber measurement. The FWHM of the Bragg peak was 7.5 mm when measured with GafChromic film, 5.3 mm when measured with a diode and 8.1 mm as measured by an ionization chamber. The peak/plateau ratio with GafChromic film was 3.3 as compared to 3.7 with a diode and 3.2 with an ionization chamber. In conclusion, GafChromic MD-55 film may be a useful and convenient detector for dose measurement and quality assurance programmes of proton beams. PMID:10588281

  19. The terminal phycobilisome emitter, LCM: A light-harvesting pigment with a phytochrome chromophore.

    PubMed

    Tang, Kun; Ding, Wen-Long; Höppner, Astrid; Zhao, Cheng; Zhang, Lun; Hontani, Yusaku; Kennis, John T M; Gärtner, Wolfgang; Scheer, Hugo; Zhou, Ming; Zhao, Kai-Hong

    2015-12-29

    Photosynthesis relies on energy transfer from light-harvesting complexes to reaction centers. Phycobilisomes, the light-harvesting antennas in cyanobacteria and red algae, attach to the membrane via the multidomain core-membrane linker, L(CM). The chromophore domain of L(CM) forms a bottleneck for funneling the harvested energy either productively to reaction centers or, in case of light overload, to quenchers like orange carotenoid protein (OCP) that prevent photodamage. The crystal structure of the solubly modified chromophore domain from Nostoc sp. PCC7120 was resolved at 2.2 Å. Although its protein fold is similar to the protein folds of phycobiliproteins, the phycocyanobilin (PCB) chromophore adopts ZZZssa geometry, which is unknown among phycobiliproteins but characteristic for sensory photoreceptors (phytochromes and cyanobacteriochromes). However, chromophore photoisomerization is inhibited in L(CM) by tight packing. The ZZZssa geometry of the chromophore and π-π stacking with a neighboring Trp account for the functionally relevant extreme spectral red shift of L(CM). Exciton coupling is excluded by the large distance between two PCBs in a homodimer and by preservation of the spectral features in monomers. The structure also indicates a distinct flexibility that could be involved in quenching. The conclusions from the crystal structure are supported by femtosecond transient absorption spectra in solution. PMID:26669441

  20. The terminal phycobilisome emitter, LCM: A light-harvesting pigment with a phytochrome chromophore

    PubMed Central

    Tang, Kun; Ding, Wen-Long; Höppner, Astrid; Zhao, Cheng; Zhang, Lun; Hontani, Yusaku; Kennis, John T. M.; Gärtner, Wolfgang; Scheer, Hugo; Zhou, Ming; Zhao, Kai-Hong

    2015-01-01

    Photosynthesis relies on energy transfer from light-harvesting complexes to reaction centers. Phycobilisomes, the light-harvesting antennas in cyanobacteria and red algae, attach to the membrane via the multidomain core-membrane linker, LCM. The chromophore domain of LCM forms a bottleneck for funneling the harvested energy either productively to reaction centers or, in case of light overload, to quenchers like orange carotenoid protein (OCP) that prevent photodamage. The crystal structure of the solubly modified chromophore domain from Nostoc sp. PCC7120 was resolved at 2.2 Å. Although its protein fold is similar to the protein folds of phycobiliproteins, the phycocyanobilin (PCB) chromophore adopts ZZZssa geometry, which is unknown among phycobiliproteins but characteristic for sensory photoreceptors (phytochromes and cyanobacteriochromes). However, chromophore photoisomerization is inhibited in LCM by tight packing. The ZZZssa geometry of the chromophore and π-π stacking with a neighboring Trp account for the functionally relevant extreme spectral red shift of LCM. Exciton coupling is excluded by the large distance between two PCBs in a homodimer and by preservation of the spectral features in monomers. The structure also indicates a distinct flexibility that could be involved in quenching. The conclusions from the crystal structure are supported by femtosecond transient absorption spectra in solution. PMID:26669441

  1. Structure of the biliverdin cofactor in the Pfr state of bathy and prototypical phytochromes.

    PubMed

    Salewski, Johannes; Escobar, Francisco Velazquez; Kaminski, Steve; von Stetten, David; Keidel, Anke; Rippers, Yvonne; Michael, Norbert; Scheerer, Patrick; Piwowarski, Patrick; Bartl, Franz; Frankenberg-Dinkel, Nicole; Ringsdorf, Simone; Gärtner, Wolfgang; Lamparter, Tilman; Mroginski, Maria Andrea; Hildebrandt, Peter

    2013-06-01

    Phytochromes act as photoswitches between the red- and far-red absorbing parent states of phytochromes (Pr and Pfr). Plant phytochromes display an additional thermal conversion route from the physiologically active Pfr to Pr. The same reaction pattern is found in prototypical biliverdin-binding bacteriophytochromes in contrast to the reverse thermal transformation in bathy bacteriophytochromes. However, the molecular origin of the different thermal stabilities of the Pfr states in prototypical and bathy bacteriophytochromes is not known. We analyzed the structures of the chromophore binding pockets in the Pfr states of various bathy and prototypical biliverdin-binding phytochromes using a combined spectroscopic-theoretical approach. For the Pfr state of the bathy phytochrome from Pseudomonas aeruginosa, the very good agreement between calculated and experimental Raman spectra of the biliverdin cofactor is in line with important conclusions of previous crystallographic analyses, particularly the ZZEssa configuration of the chromophore and its mode of covalent attachment to the protein. The highly homogeneous chromophore conformation seems to be a unique property of the Pfr states of bathy phytochromes. This is in sharp contrast to the Pfr states of prototypical phytochromes that display conformational equilibria between two sub-states exhibiting small structural differences at the terminal methine bridges A-B and C-D. These differences may mainly root in the interactions of the cofactor with the highly conserved Asp-194 that occur via its carboxylate function in bathy phytochromes. The weaker interactions via the carbonyl function in prototypical phytochromes may lead to a higher structural flexibility of the chromophore pocket opening a reaction channel for the thermal (ZZE → ZZZ) Pfr to Pr back-conversion. PMID:23603902

  2. Use of GafChromic film to diagnose laser generated proton beams

    SciTech Connect

    Hey, D. S.; Key, M. H.; Mackinnon, A. J.; MacPhee, A. G.; Patel, P. K.; Freeman, R. R.; Van Woerkom, L. D.; Castaneda, C. M.

    2008-05-15

    A calibration of three types of GafChromic radiochromic film (HS, MD-55, and HD-810) was carried out on the Crocker Nuclear Laboratory's 76 in. cyclotron at UC Davis over doses ranging from 0.001 to 15 kGy. The film was digitized with a scanning microdensitometer with which it was scanned twice with two different filters to increase the film's effective dynamic range. We demonstrate how this calibrated film can be used to measure the spectrum and total energy of a laser generated proton beam. This technique was applied to an experiment on the 10 J, 100 fs Callisto laser at Lawrence Livermore National Laboratory. The resulting proton spectrum was compared to that obtained by simultaneous measurement of Ti nuclear activation; the two methods give the same proton beam slope temperature and agree in number of protons to within 27%.

  3. Genetic Evidence That the Red-Absorbing Form of Phytochrome B Modulates Gravitropism in Arabidopsis thaliana.

    PubMed Central

    Liscum, E.; Hangarter, R. P.

    1993-01-01

    Hypocotyls of dark-grown Arabidopsis seedlings exhibit strong negative gravitropism, whereas in red light, gravitropism is strongly reduced. Red/far-red light-pulse experiments and analysis of specific phytochrome-deficient mutants indicate that the red-absorbing (Pr) form of phytochrome B regulates normal hypocotyl gravitropism in darkness, and depletion of Pr by photoconversion to the far-red-absorbing form attenuates hypocotyl gravitropism. These studies provide genetic evidence that the Pr form of phytochrome has an active function in plant development. PMID:12231913

  4. Phytochrome B affects responsiveness to gibberellins in Arabidopsis.

    PubMed Central

    Reed, J W; Foster, K R; Morgan, P W; Chory, J

    1996-01-01

    Plant responses to red and far-red light are mediated by a family of photoreceptors called phytochromes. Arabidopsis thaliana seedlings lacking one of the phytochromes, phyB, have elongated hypocotyls and other tissues, suggesting that they may have an alteration in hormone physiology. We have studied the possibility that phyB mutations affect seedling gibberellin (GA) perception and metabolism by testing the responsiveness of wild-type and phyB seedlings to exogenous GAs. The phyB mutant elongates more than the wild type in response to the same exogenous concentrations of GA3 or GA4, showing that the mutation causes an increase in responsiveness to GAs. Among GAs that we were able to detect, we found no significant difference in endogenous levels between wild-type and phyB mutant seedlings. However, GA4 levels were below our limit of detectability, and the concentration of that active GA could have varied between wild-type and phyB mutant seedlings. These results suggest that, although GAs are required for hypocotyl cell elongation, phyB does not act primarily by changing total seedling GA levels but rather by decreasing seedling responsiveness to GAs. PMID:8819329

  5. Phytochrome and retrograde signalling pathways coverage to antogonistically regulate a light-induced transcription network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plastid-to-nucleus retrograde signals emitted by dysfunctional chloroplasts impact photomorphogenic development, but the molecular link between retrograde and photosensory-receptor signaling has remained undefined. Here, we show that the phytochrome (phy) and retrograde signaling pathways converge a...

  6. Stable Concentrations of Phytochrome in Pisum Under Continuous Illumination with Red Light 1

    PubMed Central

    Clarkson, David T.; Hillman, William S.

    1968-01-01

    In vivo spectrophotometry showed that the phytochrome concentration in pea epicotyl hooks decreased at a constant rate for 4 hours when the tissue was exposed to continuous red light. Thereafter the rate slowed progressively so that a steady concentration of phytochrome was approached at hour 7. Returning the plants to darkness resulted in an increase in phytochrome due to the apparent synthesis of PR. A closely similar pattern of changes was found in the amount of phytochrome extracted from the tissue. The establishment of the stable concentration was inhibited by 2,4-dichlorophenoxyacetic acid and did not occur in segments which had been incubated for longer than 24 hours, but was observed when segment growth was inhibited by mannitol. The results may be explained by an equilibrium between PFR destruction and apparent PR synthesis. PMID:16656742

  7. X-ray Radiation Induces Deprotonation of the Bilin Chromophore in Crystalline D. Radiodurans Phytochrome

    SciTech Connect

    Li, Feifei; Burgie, E. Sethe; Yu, Tao; Heroux, Annie; Schatz, George C.; Vierstra, Richard D.; Orville, Allen M.

    2015-02-04

    We report that in the red light-absorbing (Pr) state, the bilin chromophore of the Deinococcus radiodurans proteobacterial phytochrome (DrBphP) is hypersensitive to X-ray photons used in typical synchrotron X-ray protein crystallography experiments. This causes the otherwise fully protonated chromophore to deprotonate without additional major structural changes. Furthermore, these results have major implications for our understanding of the structural and chemical characteristics of the resting and intermediate states of phytochromes and other photoreceptor proteins.

  8. Phytochrome from green plants: assay, purification and characterization. Progress report, June 1, 1984-May 1, 1985

    SciTech Connect

    Quail, P.H.

    1985-01-01

    The major differences that we have found between the phytochrome extracted from green and from etiolated tissue has been documented in a paper that is now in press. In addition to the previously reported spectral and immunochemical differences, we have now established: (a) that the predominant (approx. 80% of total) phytochrome polypeptide in green tissue has a relative molecular mass (Mr) of 118,000; (b) that the proteolytic peptide map of this 118,000-Mr species differs considerably from that of 124,000-Mr phytochrome from etiolated tissue; (c) that the green-tissue, 118,000-Mr polypeptide carries only one of three spatially separate epitopes that are present on etiolated-tissue phytochrome (i.e., an epitope at the carboxy-terminal end recognized by Type 3 monoclonal antibodies); and (d) that the minor phytochrome species in green tissue (approx. 20% of total) resembles that in etiolated tissue in that it is 124,000-Mr and is immunoprecipitable with polyclonal, anti-etiolated-oat antibodies, thereby accounting for the previously observed limited population of immunoprecipitable activity in green extracts. Present efforts are being concentrated on purification of the new phytochrome species. 3 references.

  9. Characterization of GafChromic XR-RV2 film and comparator strip using a flatbed scanner in reflection mode

    NASA Astrophysics Data System (ADS)

    Mendoza-Moctezuma, A. I.; Aguilar, J. García; García-Garduño, O. A.

    2010-12-01

    Interventional cardiology procedures are an effective alternative for the reestablishment of correct sanguineous circulation in the heart. However, this kind of procedures exposes to the patients to a relatively high radiation doses. Usually, the surface peak skin dose is evaluated using a visual scale with a comparator strip, nevertheless, even if the comparator strip provides a simple and quick method for estimating the dose it has an uncertainty of ±25%. For this reason, a better evaluation method is needed. The objective of our project is to determine the surface peak skin dose of interventional cardiology procedures using GafChromic XR-RV2 film together with a commercial flatbed scanner in reflection mode. Here we report a protocol to handle GafChromic XR-RV2 film using a commercial flat bed scanner in reflection mode aiming at an uncertainty of ±3%.

  10. Characterization of GafChromic XR-RV2 film and comparator strip using a flatbed scanner in reflection mode

    SciTech Connect

    Mendoza-Moctezuma, A. I.

    2010-12-07

    Interventional cardiology procedures are an effective alternative for the reestablishment of correct sanguineous circulation in the heart. However, this kind of procedures exposes to the patients to a relatively high radiation doses. Usually, the surface peak skin dose is evaluated using a visual scale with a comparator strip, nevertheless, even if the comparator strip provides a simple and quick method for estimating the dose it has an uncertainty of {+-}25%. For this reason, a better evaluation method is needed. The objective of our project is to determine the surface peak skin dose of interventional cardiology procedures using GafChromic XR-RV2 film together with a commercial flatbed scanner in reflection mode. Here we report a protocol to handle GafChromic XR-RV2 film using a commercial flat bed scanner in reflection mode aiming at an uncertainty of {+-}3%.

  11. The GafD protein of the G (F17) fimbrial complex confers adhesiveness of Escherichia coli to laminin.

    PubMed Central

    Saarela, S; Westerlund-Wikström, B; Rhen, M; Korhonen, T K

    1996-01-01

    Escherichia coli IHE11088(pRR-5) expressing the G (F17) fimbria adhered to immobilized laminin as well as to reconstituted basement membranes. No adhesion was seen with the plasmidless strain IHE11088 or with the deletion derivative IHE11088(pHUB110), which expresses the G-fimbrial filament with a defective GafD lectin and lacks N-acetyl-D-glucosamine-specific binding. Adhesion of IHE11088(pRR-5) to laminin and to reconstituted basement membranes was specifically inhibited by N-acetyl-D-glucosamine, and adhesion was abolished after N-glycosidase F treatment of laminin. The results show that the GafD lectin binds to laminin carbohydrate and suggest a novel function for the F17 fimbria in binding to mammalian basement membranes. PMID:8698525

  12. Near-infrared fluorescent proteins engineered from bacterial phytochromes

    PubMed Central

    Shcherbakova, Daria M.; Baloban, Mikhail; Verkhusha, Vladislav V.

    2015-01-01

    Near-infrared fluorescent proteins (NIR FPs), photoactivatable NIR FPs and NIR reporters of protein-protein interactions developed from bacterial phytochrome photoreceptors (BphPs) have advanced non-invasive deep-tissue imaging. Here we provide a brief guide to the BphP-derived NIR probes with an emphasis on their in vivo applications. We describe phenotypes of NIR FPs and their photochemical and intracellular properties. We discuss NIR FP applications for imaging of various cell types, tissues and animal models in basic and translational research. In this discussion, we focus on NIR FPs that efficiently incorporate endogenous biliverdin chromophore and therefore can be used as straightforward as GFP-like proteins. We also overview a usage of NIR FPs in different imaging platforms, from planar epifluorescence to tomographic and photoacoustic technologies. PMID:26115447

  13. Near-infrared fluorescent proteins engineered from bacterial phytochromes.

    PubMed

    Shcherbakova, Daria M; Baloban, Mikhail; Verkhusha, Vladislav V

    2015-08-01

    Near-infrared fluorescent proteins (NIR FPs), photoactivatable NIR FPs and NIR reporters of protein-protein interactions developed from bacterial phytochrome photoreceptors (BphPs) have advanced non-invasive deep-tissue imaging. Here we provide a brief guide to the BphP-derived NIR probes with an emphasis on their in vivo applications. We describe phenotypes of NIR FPs and their photochemical and intracellular properties. We discuss NIR FP applications for imaging of various cell types, tissues and animal models in basic and translational research. In this discussion, we focus on NIR FPs that efficiently incorporate endogenous biliverdin chromophore and therefore can be used as straightforward as GFP-like proteins. We also overview a usage of NIR FPs in different imaging platforms, from planar epifluorescence to tomographic and photoacoustic technologies. PMID:26115447

  14. X-ray derived experimental charge density distribution in GaF3 and VF3 solid systems

    NASA Astrophysics Data System (ADS)

    Sujatha, K.; Israel, S.; Anzline, C.; Niranjana Devi, R.; Sheeba, R. A. J. R.

    2016-09-01

    The electronic structure and bonding features of metal and transition metal fluorides in low oxidation states, GaF3 and VF3, have been studied from precise single crystal X-ray diffraction data using multipole and maximum entropy methods. The topology of the charge density is analyzed and the (3,-1) bond critical points are determined. Existences of ionic nature of bonding in low valent fluorine compounds are clearly evident. The spherical core of metal atom and aspherical or twisted core of transition metal atom reveal the fact that GaF3 is much more rigid than VF3. Aspherical cores of the polarized ligand atoms are also visible in the two-dimensional density distribution pictures. The true valence charge density surfaces with encapsulating the atomic basins maps are elucidated. An elongated saddle with mid-bond density of 0.6191 e/Å3, observed in the compound VF3, shows that its lattice is less rigid and has more ionic character than GaF3.

  15. Transcription factors GAF and HSF act at distinct regulatory steps to modulate stress-induced gene activation

    PubMed Central

    Fuda, Nicholas J.; Mahat, Dig B.; Core, Leighton J.; Guertin, Michael J.

    2016-01-01

    The coordinated regulation of gene expression at the transcriptional level is fundamental to development and homeostasis. Inducible systems are invaluable when studying transcription because the regulatory process can be triggered instantaneously, allowing the tracking of ordered mechanistic events. Here, we use precision run-on sequencing (PRO-seq) to examine the genome-wide heat shock (HS) response in Drosophila and the function of two key transcription factors on the immediate transcription activation or repression of all genes regulated by HS. We identify the primary HS response genes and the rate-limiting steps in the transcription cycle that GAGA-associated factor (GAF) and HS factor (HSF) regulate. We demonstrate that GAF acts upstream of promoter-proximally paused RNA polymerase II (Pol II) formation (likely at the step of chromatin opening) and that GAF-facilitated Pol II pausing is critical for HS activation. In contrast, HSF is dispensable for establishing or maintaining Pol II pausing but is critical for the release of paused Pol II into the gene body at a subset of highly activated genes. Additionally, HSF has no detectable role in the rapid HS repression of thousands of genes. PMID:27492368

  16. Phytochrome types in Picea and Pinus. Expression patterns of PHYA-Related types.

    PubMed

    Clapham, D H; Kolukisaoglu, H U; Larsson, C T; Qamaruddin, M; Ekberg, I; Wiegmann-Eirund, C; Schneider-Poetsch, H A; von Arnold, S

    1999-07-01

    Knowledge of the genes in gymnosperms encoding the apoproteins of the plant photoreceptor phytochrome is currently scanty as for gymnosperm nuclear protein coding sequences in general. Here we report two complete cDNA-derived sequences which code for two different types of gymnosperm phytochrome. One sequence stems from Norway spruce (Picea abies) and the other from Scots pine (Pinus sylvestris). More detailed studies have shown that both types of phytochrome gene are present in Norway spruce. From phylogenetic analyses, these types appear to branch off from progenitors that are also the common ancestors of the angiosperm PHYA/PHYC and PHYB/PHYD/PHYE lineages. Partial phytochrome sequences of other gymnosperms cluster with either the one type or the other of the gymnosperm phytochrome genes characterized here. Southern blot analysis of Picea DNA using probes derived from the full-length Picea gene indicated a family of at least five members. Whether they code for new types may be doubted since only two phylogenetic clusters were found. Studies using RNA-PCR of Picea RNA extracted from either light- or dark-grown seedlings indicated that the steady-state levels of the transcripts of two PHYA/C-related genes were hardly affected by light. PMID:10480390

  17. Kinetic and Thermodynamic Analysis of the Light-induced Processes in Plant and Cyanobacterial Phytochromes

    PubMed Central

    Chizhov, Igor; Zorn, Björn; Manstein, Dietmar J.; Gärtner, Wolfgang

    2013-01-01

    The light-induced processes of the biological photoreceptor phytochrome (recombinant phyA of oat and recombinant CphA from the cyanobacterium Tolypothrix PCC7601) have been investigated in a time-resolved manner in the temperature range from 0 to 30°C. Both proteins were heterologously expressed and assembled in vitro with phycocyanobilin. The Pr state of plant phytochrome phyA is converted to the Pfr state after formation of four intermediates with an overall quantum yield of ∼18%. The reversal reaction (Pfr-to-Pr) shows several intermediates, all of which, even the first detectable one, exhibit already all spectral features of the Pr state. The canonical phytochrome CphA from Tolypothrix showed a similar intermediate sequence as its plant ortholog. Whereas the kinetics for the forward reaction (Pr-to-Pfr) was nearly identical for both proteins, the reverse process (Pr formation) in the cyanobacterial phytochrome was slower by a factor of three. As found for the Pfr-to-Pr intermediates in the plant protein, also in CphA all detectable intermediates showed the spectral features of the Pr form. For both phytochromes, activation parameters for both the forward and the backward reaction pathways were determined. PMID:24209867

  18. Phytochrome structure and photochemistry: recent advances toward a complete molecular picture.

    PubMed

    Ulijasz, Andrew T; Vierstra, Richard D

    2011-10-01

    Phytochromes are nature's primary photoreceptors dedicated to detecting the red and far-red regions of the visible light spectrum, a region also essential for photosynthesis and thus crucial to the survival of plants and other photosynthetic organisms. Given their roles in measuring competition and diurnal/seasonal light fluctuations, understanding how phytochromes work at the molecular level would greatly aid in engineering crop plants better suited to specific agricultural settings. Recently, scientists have determined the three-dimensional structures of prokaryotic phytochromes, which now provide clues as to how these modular photoreceptors might work at the atomic level. The models point toward a largely unifying mechanism whereby novel knot, hairpin, and dimeric interfaces transduce photoreversible bilin isomerization into protein conformational changes that alter signal output. PMID:21733743

  19. UV-B Inhibition of Phytochrome-Mediated Anthocyanin Formation in Sinapis alba L. Cotyledons 1

    PubMed Central

    Wellmann, Eckard; Schneider-Ziebert, Ulricke; Beggs, Christopher J.

    1984-01-01

    An action spectrum was measured for ultraviolet (UV) radiation-induced damage to (inhibition of) phytochrome-induced anthocyanin formation in cotyledons of 40-hour-old Sinapis alba L. seedlings. The action spectrum showed maximum effectiveness in the 260 to 280 nanometer waveband with little effect above 295 nanometers. The damaging effect of UV could be photorepaired by subsequent exposure to sunlight or to long wavelength (360 nanometers) UV radiation. Because this form of damage is subject to photorepair (photoreactivation), it is probably due to the formation of pyrimidine dimers, and the results suggest that it would not be ecologically relevant even if there was an increase in solar UV due to a decrease in stratospheric ozone levels of about 30%. If a dark period of more than 1 hour is interspersed between the phytochrome induction and the UV irradiation, the inhibition of the phytochrome induction gradually decreases with increasing dark period. PMID:16663776

  20. A protonation-coupled feedback mechanism controls the signalling process in bathy phytochromes

    NASA Astrophysics Data System (ADS)

    Velazquez Escobar, Francisco; Piwowarski, Patrick; Salewski, Johannes; Michael, Norbert; Fernandez Lopez, Maria; Rupp, Anna; Muhammad Qureshi, Bilal; Scheerer, Patrick; Bartl, Franz; Frankenberg-Dinkel, Nicole; Siebert, Friedrich; Andrea Mroginski, Maria; Hildebrandt, Peter

    2015-05-01

    Phytochromes are bimodal photoswitches composed of a photosensor and an output module. Photoactivation of the sensor is initiated by a double bond isomerization of the tetrapyrrole chromophore and eventually leads to protein conformational changes. Recently determined structural models of phytochromes identify differences between the inactive and the signalling state but do not reveal the mechanism of photosensor activation or deactivation. Here, we report a vibrational spectroscopic study on bathy phytochromes that demonstrates that the formation of the photoactivated state and thus (de)activation of the output module is based on proton translocations in the chromophore pocket coupling chromophore and protein structural changes. These proton transfer steps, involving the tetrapyrrole and a nearby histidine, also enable thermal back-isomerization of the chromophore via keto-enol tautomerization to afford the initial dark state. Thus, the same proton re-arrangements inducing the (de)activation of the output module simultaneously initiate the reversal of this process, corresponding to a negative feedback mechanism.

  1. Genetic analysis of the roles of phytochromes A and B1 in the reversed gravitropic response of the lz-2 tomato mutant

    NASA Technical Reports Server (NTRS)

    Behringer, F. J.; Lomax, T. L.

    1999-01-01

    The lz-2 mutation in tomato (Lycopersicon esculentum) causes conditional reversal of shoot gravitropism by light. This response is mediated by phytochrome. To further elicit the mechanism by which phytochrome regulates the lz-2 phenotype, phytochrome-deficient lz-2 plants were generated. Introduction of au alleles, which severely block chromophore biosynthesis, eliminated the reversal of hypocotyl gravitropism in continuous red and far-red light. The fri1 and tri1 alleles were introduced to specifically deplete phytochromes A and B1, respectively. In dark-grown seedlings, phytochrome A was necessary for response to high-irradiance far-red light, a complete response to low fluence red light, and also mediated the effects of blue light in a far-red reversible manner. Loss of phytochrome B1 alone did not significantly affect the behaviour of lz-2 plants under any light treatment tested. However, dark-grown lz-2 plants lacking both phytochrome A and B1 exhibited reduced responses to continuous red and were less responsive to low fluence red light and high fluence blue light than plants that were deficient for phytochrome A alone. In high light, full spectrum greenhouse conditions, lz-2 plants grew downward regardless of the phytochrome deficiency. These results indicate that phytochromes A and B1 play significant roles in mediating the lz-2 phenotype and that at least one additional phytochrome is involved in reversing shoot gravitropism in this mutant.

  2. Morphological responses of wheat to changes in phytochrome photoequilibrium

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Bugbee, B.

    1991-01-01

    Wheat plants (Triticum aestivum L.) were grown at the same photosynthetic photon flux (PPF), 200 micromoles per square meter per second, but with phytochrome photoequilibrium (phi) values of 0.81, 0.55, and 0.33. Plants grown at phi values of 0.55 and 0.33 tillered 43 and 56%, less compared with plants grown at phi of 0.81. Main culm development (Haun stage) was slightly more advanced at lower values of phi, and leaf sheaths, but not leaf lamina, were longer at lower phi. Dry-mass accumulation was not affected by different levels of phi. Three levels of PPF (100, 200, and 400 micromoles per square meter per second) and two lamp types, metal halide and high pressure sodium, were also tested. Higher levels of PPF resulted in more dry mass, more tillering, and a more advanced Haun stage. There was no difference in plant dry mass or development under metal halide versus high pressure sodium lamps, except for total leaf length, which was greater under high pressure sodium lamps (49.5 versus 44.9 centimeters, P < 0.01).

  3. Ion Fluxes and Phytochrome Protons in Mung Bean Hypocotyl Segments

    PubMed Central

    Brownlee, Colin; Kendrick, Richard E.

    1979-01-01

    K+ [86Rb+] uptake by Phaseolus aureus Roxb. hypocotyl segments cut immediately below the hook is inhibited by the active form of phytochrome (Pfr). Short load-short wash experiments indicate that the inhibition of uptake occurs across the plasmalemma. A maximal inhibition of short term uptake occurs in 10 to 50 millimolar KCI. Low temperature had only a small effect on influx and the inhibition of influx from 50 millimolar KCI. A consideration of the electrochemical gradient for K+ suggests that passive K+ fluxes may predominate under these conditions. Red light induces small depolarizations of membrane potential in subhook cells. Far red light antagonizes this effect. Pfr inhibits efflux of K+[86Rb+] from subhook segments. This effect is also relatively insensitive to low temperature. This inhibition of efflux may reflect inhibition of a K+ -K+ exchange process, or reduced passive permeability of the plasmalemma to K+. In contrast, Pfr enhances short term uptake of K+[86Rb+] in apical hypocotyl hook segments of Phaseolus aureus Roxb. Short load-short wash experiments indicate that fluxes across the plasmalemma are modified by Pfr. A maximal enhancement of short term influx occurs in 50 millimolar KCI. Influx and the red light enhancement of influx from 50 millimolar KCI are relatively insensitive to low temperature. Pfr also enhances efflux of K+[86Rb+] from preloaded apical hook segments. This increased influx may reflect enhancement of a K+ -K+ exchange process or increased passive permeability of the plasmalemma to K+. PMID:16660933

  4. Evidence for involvement of phytochrome in tumor development on plants

    NASA Technical Reports Server (NTRS)

    Morrow, R. C.; Tibbitts, T. W.

    1988-01-01

    The regulation of nonpathogenic tumorous growths on tomato plants by red and far-red radiation was studied using leaf discs floated on water and irradiated from beneath. It was found that red light (600-700 nanometers) was required for the induction of tumors on tomato (Lycopersicon hirsutum Humb. & Bonpl. Plant Introduction LA 1625), while both blue (400-500 nanometers) and green (500-600 nanometers) light had little effect on tumor development. Detailed studies with red light demonstrated that tumor development increased with increasing photon flux and duration, though duration was the more significant factor. It was observed that tumor development could be prevented by the addition of far-red irradiance to red irradiance or by providing far-red irradiance immediately following red irradiance. The effectiveness of red and far-red irradiance in the regulation of tumor development indicates phytochrome involvement in this response. These findings should provide additional insight into the multiplicity of physiological factors regulating the development of nonpathogenic tumorous growths in plants.

  5. Ability of Lactobacillus rhamnosus GAF01 to remove AFM1 in vitro and to counteract AFM1 immunotoxicity in vivo.

    PubMed

    Abbès, Samir; Salah-Abbès, Jalila Ben; Sharafi, Hakimeh; Jebali, Rania; Noghabi, Kambiz Akbari; Oueslati, Ridha

    2013-01-01

    Aflatoxin M1 (AFM1) has been detected in many parts of the world both in raw milk and many dairy products, causing great economic losses and human disease. Unfortunately, there are few studies dealing with AFM1 immunotoxicity/interactions with lactic acid bacteria for potential application as a natural preventive agent. The aim of this study was to isolate (from dairy products) food-grade probiotic bacteria able to degrade/bind AFM1 in vitro and evaluate whether the same organism(s) could impart a protective role against AFM1-induced immunotoxicity in exposed Balb/c mice. Bacteria (Lactobacillus plantarum MON03 and L. rhamnosus GAF01) were isolated from Tunisian artisanal butter and then tested for abilities to eliminate AFM1 from phosphate-buffered saline (PBS) and reconstituted milk (containing 0.05, 0.10, and 0.20 µg AFM1/ml) after 0, 6, and 24 h at 37°C. Results showed that the selected bacteria could 'remove' AFM1 both in PBS and skimmed milk. The binding abilities of AFM1 by L. plantarum MON03 and L. rhamnosus GAF01 strains (at 10(8) CFU/ml) in PBS and reconstituted milk ranged, respectively, from 16.1-78.6% and 15.3-95.1%; overall, L. rhamnosus showed a better potential for removal than L. plantarum. 'Removal' appeared to be by simple binding; the bacteria/AFM1 complex was stable and only a very small proportion of mycotoxin was released back into the solution. L. rhamnosus GAF01 had the highest binding capacity and was selected for use in the in vivo study. Those results indicated that use of the organism prevented AFM1-induced effects on total white and red blood cells, and lymphocyte subtypes, after 15 days of host treatment. These studies clearly indicated that L. rhamnosus GAF01 was able to bind AFM1 in vitro and-by mechanisms that might also be related to a binding effect-counteract AFM1-induced immunotoxicity. Moreover, by itself, this bacterium was not toxic and could potentially be used as an additive in dairy products and in biotechnology for

  6. A role for ethylene in the phytochrome-mediated control of vegetative development.

    PubMed

    Foo, Eloise; Ross, John J; Davies, Noel W; Reid, James B; Weller, James L

    2006-06-01

    Members of the phytochrome family of photoreceptors play key roles in vegetative plant development, including the regulation of stem elongation, leaf development and chlorophyll accumulation. Hormones have been implicated in the control of these processes in de-etiolating seedlings. However, the mechanisms by which the phytochromes regulate vegetative development in more mature plants are less well understood. Pea (Pisum sativum) mutant plants lacking phytochromes A and B, the two phytochromes present in this species, develop severe defects later in development, including short, thick, distorted internodes and reduced leaf expansion, chlorophyll content and CAB gene transcript level. Studies presented here indicate that many of these defects in phyA phyB mutant plants appear to be due to elevated ethylene production, and suggest that an important role of the phytochromes in pea is to restrict ethylene production to a level that does not inhibit vegetative growth. Mutant phyA phyB plants produce significantly more ethylene than WT plants, and application of an ethylene biosynthesis inhibitor rescued many aspects of the phyA phyB mutant phenotype. This deregulation of ethylene production in phy-deficient plants appears likely to be due, at least in part, to the elevated transcript levels of key ethylene-biosynthesis genes. The phytochrome A photoreceptor appears to play a prominent role in the regulation of ethylene production, as phyA, but not phyB, single-mutant plants also exhibit a phenotype consistent with elevated ethylene production. Potential interactions between ethylene and secondary plant hormones in the control of the phy-deficient mutant phenotype were explored, revealing that ethylene may inhibit stem elongation in part by reducing gibberellin levels. PMID:16805726

  7. Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes

    PubMed Central

    Velazquez Escobar, Francisco; von Stetten, David; Günther-Lütkens, Mina; Keidel, Anke; Michael, Norbert; Lamparter, Tilman; Essen, Lars-Oliver; Hughes, Jon; Gärtner, Wolfgang; Yang, Yang; Heyne, Karsten; Mroginski, Maria A.; Hildebrandt, Peter

    2015-01-01

    Phytochromes are biological photoreceptors that can be reversibly photoconverted between a dark and photoactivated state. The underlying reaction sequences are initiated by the photoisomerization of the tetrapyrrole cofactor, which in plant and cyanobacterial phytochromes are a phytochromobilin (PΦB) and a phycocyanobilin (PCB), respectively. The transition between the two states represents an on/off-switch of the output module activating or deactivating downstream physiological processes. In addition, the photoactivated state, i.e., Pfr in canonical phytochromes, can be thermally reverted to the dark state (Pr). The present study aimed to improve our understanding of the specific reactivity of various PΦB- and PCB-binding phytochromes in the Pfr state by analysing the cofactor structure by vibrational spectroscopic techniques. Resonance Raman (RR) spectroscopy revealed two Pfr conformers (Pfr-I and Pfr-II) forming a temperature-dependent conformational equilibrium. The two sub-states—found in all phytochromes studied, albeit with different relative contributions—differ in structural details of the C-D and A-B methine bridges. In the Pfr-I sub-state the torsion between the rings C and D is larger by ca. 10° compared to Pfr-II. This structural difference is presumably related to different hydrogen bonding interactions of ring D as revealed by time-resolved IR spectroscopic studies of the cyanobacterial phytochrome Cph1. The transitions between the two sub-states are evidently too fast (i.e., nanosecond time scale) to be resolved by NMR spectroscopy which could not detect a structural heterogeneity of the chromophore in Pfr. The implications of the present findings for the dark reversion of the Pfr state are discussed. PMID:26217669

  8. Duplication, divergence and persistence in the Phytochrome photoreceptor gene family of cottons (Gossypium spp.)

    PubMed Central

    2010-01-01

    Background Phytochromes are a family of red/far-red photoreceptors that regulate a number of important developmental traits in cotton (Gossypium spp.), including plant architecture, fiber development, and photoperiodic flowering. Little is known about the composition and evolution of the phytochrome gene family in diploid (G. herbaceum, G. raimondii) or allotetraploid (G. hirsutum, G. barbadense) cotton species. The objective of this study was to obtain a preliminary inventory and molecular-evolutionary characterization of the phytochrome gene family in cotton. Results We used comparative sequence resources to design low-degeneracy PCR primers that amplify genomic sequence tags (GSTs) for members of the PHYA, PHYB/D, PHYC and PHYE gene sub-families from A- and D-genome diploid and AD-genome allotetraploid Gossypium species. We identified two paralogous PHYA genes (designated PHYA1 and PHYA2) in diploid cottons, the result of a Malvaceae-specific PHYA gene duplication that occurred approximately 14 million years ago (MYA), before the divergence of the A- and D-genome ancestors. We identified a single gene copy of PHYB, PHYC, and PHYE in diploid cottons. The allotetraploid genomes have largely retained the complete gene complements inherited from both of the diploid genome ancestors, with at least four PHYA genes and two genes encoding PHYB, PHYC and PHYE in the AD-genomes. We did not identify a PHYD gene in any cotton genomes examined. Conclusions Detailed sequence analysis suggests that phytochrome genes retained after duplication by segmental duplication and allopolyploidy appear to be evolving independently under a birth-and-death-process with strong purifying selection. Our study provides a preliminary phytochrome gene inventory that is necessary and sufficient for further characterization of the biological functions of each of the cotton phytochrome genes, and for the development of 'candidate gene' markers that are potentially useful for cotton improvement via

  9. Independent and interdependent functions of LAF1 and HFR1 in phytochrome A signaling

    PubMed Central

    Jang, In-Cheol; Yang, Seong Wook; Yang, Jun-Yi; Chua, Nam-Hai

    2007-01-01

    Several positive regulators of phytochrome A signaling—e.g., LAF1, HFR1, and HY5—operate downstream from the photoreceptor, but their relative sites of action in the transduction pathway are unknown. Here, we show that HFR1RNAi/laf1 or hfr1-201/LAF1RNAi generated by RNA interference (RNAi) has an additive phenotype under FR light compared with the single mutants, hfr1-201 or laf1. This result indicates that LAF1 and HFR1 function in largely independent pathways. LAF1, an R2R3-MYB factor, interacts with HFR1, a basic helix–loop–helix (bHLH) factor, and this interaction is abolished by the R97A mutation in the LAF1 R2R3 domain. Polyubiquitinations of LAF1 and HFR1 by the COP1 E3 ligase in vitro are inhibited by LAF1/HFR1 association. Consistent with this result, endogenous HFR1 is less stable in laf1 compared with wild type, and similarly, LAF1-3HA expressed from a transgene is also less stable in hfr1-201 than wild type. In transgenic plants, HFR1 levels are significantly elevated upon induced expression of LAF1 but not LAF1(R97A). Moreover, induced expression of LAF1 but not LAF1(R97A) delays post-translational HFR1 degradation in FR light. Constitutive coexpression of HFR1 and LAF1 but not HFR1 and LAF1 (R97A) confers FR hypersensitivity in double transgenic plants. Our results show that in addition to their independent functions in phyA signaling, LAF1 and HFR1 also cooperate post-translationally to stabilize each other through inhibition of ubiquitination by COP1, thereby enhancing phyA photoresponses. PMID:17699755

  10. Demonstration of transcriptional regulation of specific genes by phytochrome action

    PubMed Central

    Silverthorne, Jane; Tobin, Elaine M.

    1984-01-01

    We have developed an in vitro transcription system that uses nuclei isolated from Lemna gibba G-3. The in vitro transcripts include sequences homologous to hybridization probes for the small subunit of ribulose-1,5-bisphosphate carboxylase [3-phospho-D-glycerate carboxy-lyase (dimerizing), EC 4.1.1.39], the light-harvesting chlorophyll a/b-protein, and rRNA. Light-harvesting chlorophyll a/b-protein sequences are transcribed to a greater extent in nuclei isolated from plants grown in darkness with 2 min of red light every 8 hr than in nuclei isolated from dark-treated plants. Furthermore, the amount of these transcripts measured in plants given a single minute of red light after dark treatment is increased over the amount measured in dark-treated plants. The effect of red light is at least partially reversible by 10 min of far-red light given immediately after the red light pulse. Transcription of both rRNA and small subunit sequences is also stimulated by a single minute of red light as compared to dark-treated tissue. However, the relative magnitudes of the increases compared to the dark levels are smaller than the increase seen for the chlorophyll a/b-protein, possibly because of the higher level of transcription of these sequences in the dark. The effect of red light on the transcription of small subunit and rRNA sequences is also reversible by immediate treatment with 10 min of far-red light. Pulse chase studies of dark-treated nuclei for up to 110 min do not show substantial turnover of in vitro labeled small subunit and chlorophyll a/b-protein transcripts. We therefore conclude that phytochrome action has induced specific changes in transcription of these genes. Images PMID:16593420

  11. A Novel Molecular Recognition Motif Necessary for Targeting Photoactivated Phytochrome Signaling to Specific Basic Helix-Loop-Helix Transcription FactorsW⃞

    PubMed Central

    Khanna, Rajnish; Huq, Enamul; Kikis, Elise A.; Al-Sady, Bassem; Lanzatella, Christina; Quail, Peter H.

    2004-01-01

    The phytochrome (phy) family of sensory photoreceptors (phyA to phyE) in Arabidopsis thaliana control plant developmental transitions in response to informational light signals throughout the life cycle. The photoactivated conformer of the photoreceptor Pfr has been shown to translocate into the nucleus where it induces changes in gene expression by an unknown mechanism. Here, we have identified two basic helix-loop-helix (bHLH) transcription factors, designated PHYTOCHROME-INTERACTING FACTOR5 (PIF5) and PIF6, which interact specifically with the Pfr form of phyB. These two factors cluster tightly with PIF3 and two other phy-interacting bHLH proteins in a phylogenetic subfamily within the large Arabidopsis bHLH (AtbHLH) family. We have identified a novel sequence motif (designated the active phytochrome binding [APB] motif) that is conserved in these phy-interacting AtbHLHs but not in other noninteractors. Using the isolated domain and site-directed mutagenesis, we have shown that this motif is both necessary and sufficient for binding to phyB. Transgenic expression of the native APB-containing AtbHLH protein, PIF4, in a pif4 null mutant, rescued the photoresponse defect in this mutant, whereas mutated PIF4 constructs with site-directed substitutions in conserved APB residues did not. These data indicate that the APB motif is necessary for PIF4 function in light-regulated seedling development and suggest that conformer-specific binding of phyB to PIF4 via the APB motif is necessary for this function in vivo. Binding assays with the isolated APB domain detected interaction with phyB, but none of the other four Arabidopsis phys. Collectively, the data suggest that the APB domain provides a phyB-specific recognition module within the AtbHLH family, thereby conferring photoreceptor target specificity on a subset of these transcription factors and, thus, the potential for selective signal channeling to segments of the transcriptional network. PMID:15486100

  12. The circadian oscillator is regulated by a very low fluence response of phytochrome in wheat.

    PubMed Central

    Nagy, F; Fejes, E; Wehmeyer, B; Dallman, G; Schafer, E

    1993-01-01

    Expression of genes encoding the light-harvesting chlorophyll a/b binding proteins of photosystem II (Cab) in etiolated wheat seedlings is controlled by phytochrome and a circadian clock. Even photoconversion of <1% of phytochrome to its active form, which can be achieved by moonlight, induces the expression of the Cab genes, particularly that of the Cab-1 gene, in circadian fashion. Thus, this reaction shows the characteristics of a low and a very low fluence response. A single far-red light pulse given to an etiolated seedling is sufficient for a persistence of the circadian oscillation of the Cab-1 mRNA level for at least 100 h. Subsequent red (R) or long-wavelength far-red (RG9) light irradiations alter the free running rhythm. These observations indicate a change in sensitivity to phytochrome and/or a control by stable phytochrome. The latter hypothesis is supported by the observation that the level of Cab-1 mRNA is increased or decreased by a second R or RG9 light pulse, respectively. Images Fig. 1 Fig. 2 Fig. 3 PMID:11607411

  13. Photoactivated Phytochrome Induces Rapid PIF3 Phosphorylation Prior to Proteasome-Mediated Degradation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Following light-induced nuclear translocation, specific members of the phytochrome (phy) photoreceptor family (phyA to phyE) interact with bHLH transcription factors, such as PIF3, and induce changes in target-gene expression. The biochemical mechanism comprising signal transfer from phy to PIF3 has...

  14. Phytochrome Induces Rapid PIF5 Phosphorylation and Degradation in Response to Red-Light Activation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phytochrome (phy) family of sensory photoreceptors (phyA–phyE in Arabidopsis thaliana) induces changes in target-gene expression upon light-induced translocation to the nucleus, where certain members interact with selected members of the constitutively nuclear basic helix-loop-helix transcriptio...

  15. Phytochrome, Gibberellins, and Hypocotyl Growth (A Study Using the Cucumber (Cucumis sativus L.) long hypocotyl Mutant).

    PubMed Central

    Lopez-Juez, E.; Kobayashi, M.; Sakurai, A.; Kamiya, Y.; Kendrick, R. E.

    1995-01-01

    The possible involvement of gibberellins (GAs) in the regulation of hypocotyl elongation by phytochrome was examined. Under white light the tall long hypocotyl (lh) cucumber (Cucumis sativus L.) mutant, deficient in a type B-like phytochrome, shows an increased "responsiveness" (defined as response capability) to applied GA4 (the main endogenous active GA) compared to the wild type. Supplementing far-red irradiation results in a similar increase in responsiveness in the wild type. Experiments involving application of the precursor GA9 and of an inhibitor of GA4 inactivation suggest that both the GA4 activation and inactivation steps are phytochrome independent. Endogenous GA levels of whole seedlings were analyzed by combined gas chromatography-mass spectrometry using deuterated internal standards. The levels of GA4 (and those of GA34, the inactivated GA4) were lower in the lh mutant under low-irradiance fluorescent light compared with the wild type, similar to wild type under higher irradiance light during the initial hypocotyl extension phase, and higher during the phase of sustained growth, in which extension involved an increase in the number of cells in the upper region. In all cases, growth of the lh mutant was more rapid than that of the wild type. It is proposed that GA4 and phytochrome control cell elongation primarily through separate mechanisms that interact at a step close to the terminal response. PMID:12228348

  16. The discovery of phytochrome: unlocking the secrets of plants and their connection to light

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US Department of Agriculture (USDA), Beltsville Agricultural Research Center in Beltsville, Maryland USA was recently designated an American Chemical Society National Historic Chemical Landmark for the seminal work of USDA scientists in the discovery of phytochrome, the ubiquitous plant pigment ...

  17. Phytochrome-Interacting Factors Have Both Shared and Distinct Biological Roles

    PubMed Central

    Jeong, Jinkil; Choi, Giltsu

    2013-01-01

    Phytochromes are plant photoreceptors that perceive red and far-red light. Upon the perception of light in Arabidopsis, light-activated phytochromes enter the nucleus and act on a set of interacting proteins, modulating their activities and thereby altering the expression levels of ∼10% of the organism’s entire gene complement. Phytochrome-interacting factors (PIFs) belonging to Arabidopsis basic helix-loop-helix (bHLH) subgroup 15 are key interacting proteins that play negative roles in light responses. Their activities are post-translationally countered by light-activated phytochromes, which promote the degradation of PIFs and directly or indirectly inhibit their binding to DNA. The PIFs share a high degree of similarity, but examinations of pif single and multiple mutants have indicated that they have shared and distinct functions in various developmental and physiological processes. These are believed to stem from differences in both intrinsic protein properties and their gene expression patterns. In an effort to clarify the basis of these shared and distinct functions, we compared recently published genome-wide ChIP data, developmental gene expression maps, and responses to various stimuli for the various PIFs. Based on our observations, we propose that the biological roles of PIFs stem from their shared and distinct DNA binding targets and specific gene expression patterns. PMID:23708772

  18. Complex formation between heme oxygenase and phytochrome during biosynthesis in Pseudomonas syringae pv. tomato.

    PubMed

    Shah, Rashmi; Schwach, Julia; Frankenberg-Dinkel, Nicole; Gärtner, Wolfgang

    2012-06-01

    The plant pathogen Pseudomonas syringae pv. tomato carries two genes encoding bacterial phytochromes. Sequence motifs identify both proteins (PstBphP1 and PstBphP2, respectively) as biliverdin IXα (BV)-binding phytochromes. PstbphP1 is arranged in an operon with a heme oxygenase (PstBphO)-encoding gene (PstbphO), whereas PstbphP2 is flanked downstream by a gene encoding a CheY-type response regulator. Expression of the heme oxygenase PstBphO yielded a green protein (λ(max) = 650 nm), indicative for bound BV. Heterologous expression of PstbphP1 and PstbphP2 and in vitro assembly with BV IXα yielded the apoproteins for both phytochromes, but only in the case of PstBphP1 a light-inducible chromoprotein. Attempts to express the endogenous heme oxygenase BphO and either of the two phytochromes from two plasmids yielded only holo-PstBphP1. Relatively small amounts of soluble holo-PstBphP2 were just obtained upon co-expression with BphO from P. aeruginosa. Expression of the operon containing PstbphO:PstbphP1 led to an improved yield and better photoreactivity for PstBphP1, whereas an identical construct, exchanging PstbphP1 for PstbphP2 (PstbphO:PstbphP2), again yielded only minute amounts of chromophore-loaded BphP2-holoprotein. The improved yield for PstBphP1 from the PstbphO:PstbphP1 operon expression is apparently caused by complex formation between both proteins during biosynthesis as affinity chromatography of either protein using two different tags always co-purified the reaction partner. These results support the importance of protein-protein interactions during tetrapyrrole metabolism and phytochrome assembly. PMID:22415794

  19. Agrobacterium phytochrome as an enzyme for the production of ZZE bilins.

    PubMed

    Lamparter, Tilman; Michael, Norbert

    2005-06-14

    Photoconversion of phytochrome from the red-absorbing form Pr to the far-red-absorbing form Pfr is initiated by a Z to E isomerization around the ring C-ring D connecting double bond; the chromophore undergoes a ZZZ to ZZE isomerization. In vivo, phytochrome chromophores are covalently bound to the protein, but several examples of noncovalent in vitro adducts have been reported which also undergo Pr to Pfr photoconversion. We show that free biliverdin or phycocyanobilin, highly enriched in the ZZE isomer, can easily be obtained from chromophores bound in a noncovalent manner to Agrobacterium phytochrome Agp1, and used for spectral assays. Photoconversion of free biliverdin in a methanol/HCl solution from ZZE to ZZZ proceeded with a quantum yield of 1.8%, but was negligible in neutral methanol solution, indicating that this process is proton-dependent. The ZZE form of biliverdin and phycocyanobilin were tested for their ability to assemble with Agp1 and cyanobacterial phytochrome Cph1, respectively. In both cases, a Pfr-like adduct was formed but the chromophore was bound in a noncovalent manner to the protein. Agp1 Pfr undergoes dark reversion to Pr; the same feature was found for the noncovalent ZZE adduct. After dark reversion, the chromophore became covalently bound to the protein. In analogy, the PCB chromophore became covalently bound to Cph1 upon irradiation with strong far-red light which initiated ZZE to ZZZ isomerization. Agrobacterium Agp2 belongs to a yet small group of phytochromes which also assemble in the Pr form but convert from Pr to Pfr in darkness. When the Agp2 apoprotein was assembled with the ZZE form of biliverdin, the formation of the final adduct was accelerated compared to the formation of the ZZZ control, indicating that the ZZE chromophore fits directly into the chromophore pocket of Agp2. PMID:15938635

  20. Spatiotemporal Phytochrome Signaling during Photomorphogenesis: From Physiology to Molecular Mechanisms and Back

    PubMed Central

    Montgomery, Beronda L.

    2016-01-01

    Light exposure results in distinct responses in specific seedling tissues during photomorphogenesis. Light promotes growth of cotyledons and leaves, as well as development and elongation of roots, whereas light inhibits elongation of hypocotyls. For distinct plant responses such as shade avoidance, far-red light or shifts in spectral light quality similarly have disparate impacts on distinct plant tissues, resulting in elongation of stems or petioles and a reduction in growth of leaf blades for many species. The physiological bases of such tissue- and organ-specific light responses were initially studied using localized irradiation of specific tissues and organs, or irradiation of dissected plant parts. These historical approaches were used to identify spatial-specific pools of photoreceptors responsible for regulating local, i.e., tissue- or organ-specific, or distal, i.e., interorgan, plant responses. The red/far-red responsive phytochromes have been the most widely studied among photoreceptors in this regard. Whereas, the spatial localization of photoreceptors regulating many tissue- or organ-specific light responses were identified, the underlying signaling networks responsible for mediating the observed responses have not been well defined. Recent approaches used to investigate the molecular bases of spatiotemporal light responses include selective irradiation of plants harboring mutations in specific photoreceptors, tissue-specific expression of photoreceptors, primarily in photoreceptor mutant backgrounds, or tissue-specific biochemical ablation of photoreceptor accumulation. Progressive integration of such approaches for regulating the availability of localized pools of phytochromes with the use of transcriptomic or proteomic analyses for assessing the genes or proteins which these spatially discrete pools of phytochrome regulate is yielding emergent insight into the molecular bases of spatiotemporal phytochrome signaling pathways responsible for regulating

  1. Spatiotemporal Phytochrome Signaling during Photomorphogenesis: From Physiology to Molecular Mechanisms and Back.

    PubMed

    Montgomery, Beronda L

    2016-01-01

    Light exposure results in distinct responses in specific seedling tissues during photomorphogenesis. Light promotes growth of cotyledons and leaves, as well as development and elongation of roots, whereas light inhibits elongation of hypocotyls. For distinct plant responses such as shade avoidance, far-red light or shifts in spectral light quality similarly have disparate impacts on distinct plant tissues, resulting in elongation of stems or petioles and a reduction in growth of leaf blades for many species. The physiological bases of such tissue- and organ-specific light responses were initially studied using localized irradiation of specific tissues and organs, or irradiation of dissected plant parts. These historical approaches were used to identify spatial-specific pools of photoreceptors responsible for regulating local, i.e., tissue- or organ-specific, or distal, i.e., interorgan, plant responses. The red/far-red responsive phytochromes have been the most widely studied among photoreceptors in this regard. Whereas, the spatial localization of photoreceptors regulating many tissue- or organ-specific light responses were identified, the underlying signaling networks responsible for mediating the observed responses have not been well defined. Recent approaches used to investigate the molecular bases of spatiotemporal light responses include selective irradiation of plants harboring mutations in specific photoreceptors, tissue-specific expression of photoreceptors, primarily in photoreceptor mutant backgrounds, or tissue-specific biochemical ablation of photoreceptor accumulation. Progressive integration of such approaches for regulating the availability of localized pools of phytochromes with the use of transcriptomic or proteomic analyses for assessing the genes or proteins which these spatially discrete pools of phytochrome regulate is yielding emergent insight into the molecular bases of spatiotemporal phytochrome signaling pathways responsible for regulating

  2. Structure of (NH4)3GaF6 investigated by multinuclear magic-angle spinning NMR spectroscopy in comparison with rietveld refinement.

    PubMed

    Krahl, Thoralf; Ahrens, Mike; Scholz, Gudrun; Heidemann, Detlef; Kemnitz, Erhard

    2008-01-21

    The structure of ammonium gallium cryolite (NH(4))(3)GaF(6) was investigated by (19)F and (69,71)Ga magic-angle spinning (MAS) NMR in comparison with X-ray powder diffraction followed by Rietveld refinement. In agreement with previous thermodynamic measurements, NMR experiments on (NH(4))(3)GaF(6) support the model of rigid GaF(6) octahedra. At high spinning speeds (30 kHz), the scalar coupling between the six equivalent (19)F nuclei and (69,71)Ga can be directly observed in the powder spectra. The coupling constants are J(19)F(69)Ga = 197 Hz and J(19)F(71)Ga = 264 Hz. To explain the (71)Ga spectra recorded at 3 kHz a small distribution of quadrupolar frequencies has to be included. The spread of the spinning sidebands hints to a largest nu(Q) value of 28 kHz for (71)Ga. This can be explained by the occurrence of highly symmetric GaF(6) octahedra, which are tilted against the surrounding atoms. In addition, the incomplete motional excitation does not average out the quadrupolar effects. NMR findings are in discrepancy to those of Rietveld refinement. As result it appears that X-ray diffraction is not sensitive enough to deliver proper results. PMID:18069821

  3. Genetic Regulation of Development in Sorghum bicolor: VI. The ma(3) Allele Results in Abnormal Phytochrome Physiology.

    PubMed

    Childs, K L; Pratt, L H; Morgan, P W

    1991-10-01

    Physiological processes controlled by phytochrome were examined in three near-isogenic genotypes of Sorghum bicolor, differing at the allele of the third maturity gene locus. Seedlings of 58M (ma(3) (R)ma(3) (R)) did not show phytochrome control of anthocyanin synthesis. In contrast, seedlings of 90M (ma(3)ma(3)) and 100M (Ma(3)Ma(3)) demonstrated reduced anthocyanin synthesis after treatment with far red and reversal of the far red effect by red. De-etiolation of 48-hour-old 90M and 100M dark-grown seedlings occurred with 48 hours of continuous red. Dark-grown 58M seedlings did not de-etiolate with continuous red treatment. Treatment of seedlings with gibberellic acid or tetcyclacis, a gibberellin synthesis inhibitor, did not alter anthocyanin synthesis. Levels of chlorophyll and anthocyanin were lower in light-grown 58M seedlings than in 90M and 100M. Etiolated seedlings of all three genotypes have similar amounts of photoreversible phytochrome. Crude protein extracts from etiolated seedlings were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to nitrocellulose. Phytochrome was visualized with Pea-25, a monoclonal antibody directed to phytochrome from etiolated peas. The samples from all three genotypes contained approximately equivalent amounts of a prominent, immunostaining band at 126 kD. However, the sample from 58M did not show a fainter, secondary band at 123 kD that was present in 90M and 100M. The identity and importance of this secondary band at 123 kD is unknown. We propose that 58M is a phytochrome-related mutant that contains normal amounts of photoreversible phytochrome and normal phytochrome protein when grown in the dark. PMID:16668457

  4. Detection of Spatial-Specific Phytochrome Responses Using Targeted Expression of Biliverdin Reductase in Arabidopsis1[OA

    PubMed Central

    Warnasooriya, Sankalpi N.; Montgomery, Beronda L.

    2009-01-01

    To regulate levels of holophytochrome in a spatial-specific manner and investigate the major sites of action of phytochromes during seedling development, we constructed transgenic Arabidopsis (Arabidopsis thaliana) plant lines expressing plastid-targeted mammalian biliverdin IXα reductase (pBVR) under regulatory control of CAB3 and MERI5 promoters. Comparative photobiological and phenotypic analyses indicated that spatial-specific expression of pBVR led to the disruption of distinct subsets of phytochrome-regulated responses for different promoters. pBVR expression in photosynthetic tissues (CAB3∷pBVR lines) had intermediate effects on chlorophyll accumulation, carotenoid production, anthocyanin synthesis, and leaf development responses in white-light conditions. CAB3∷pBVR expression, however, resulted in distinctive phenotypes in far-red (FR) conditions. A number of FR high irradiance responses were disrupted in CAB∷pBVR lines, including FR-dependent inhibition of hypocotyl elongation and stimulation of anthocyanin accumulation. By contrast, preferential expression of pBVR in the shoot apical meristem in MERI5∷pBVR lines resulted in a phytochrome-deficient, leaf development phenotype under short-day growth conditions. These results implicate leaf-localized phytochrome A as having a unique role in regulating FR-mediated hypocotyl elongation and meristem- and/or leaf primordia-localized phytochromes as having a novel role in phytochrome-dependent responses. Taken together, these studies demonstrate the efficacy of selectively inactivating distinct phytochrome-mediated responses by regulated expression of BVR in transgenic plants, a novel means to investigate the sites of phytochrome photoperception and to regulate specifically light-mediated plant growth and development. PMID:18971430

  5. The biliverdin chromophore binds covalently to a conserved cysteine residue in the N-terminus of Agrobacterium phytochrome Agp1.

    PubMed

    Lamparter, Tilman; Carrascal, Montserrat; Michael, Norbert; Martinez, Enriqueta; Rottwinkel, Gregor; Abian, Joaquin

    2004-03-30

    Phytochromes are widely distributed biliprotein photoreceptors. Typically, the chromophore becomes covalently linked to the protein during an autocatalytic lyase reaction. Plant and cyanobacterial phytochromes incorporate bilins with a ring A ethylidene side chain, whereas other bacterial phytochromes utilize biliverdin as chromophore, which has a vinyl ring A side chain. For Agrobacterium phytochrome Agp1, site-directed mutagenesis provided evidence that biliverdin is bound to cysteine 20. This cysteine is highly conserved within bacterial homologues, but its role as attachment site has as yet not been proven. We therefore performed mass spectrometry studies on proteolytic holopeptide fragments. For that purpose, an Agp1 expression vector was re-engineered to produce a protein with an N-terminal affinity tag. Following proteolysis, the chromophore co-purified with a ca. 5 kDa fragment during affinity chromatography, showing that the attachment site is located close to the N-terminus. Mass spectrometry analyses performed with the purified chromopeptide confirmed the role of the cysteine 20 as biliverdin attachment site. We also analyzed the role of the highly conserved histidine 250 by site-directed mutagenesis. The homologous amino acid plays an important but yet undefined role in plant phytochromes and has been proposed as chromophore attachment site of Deinococcus phytochrome. We found that in Agp1, this amino acid is dispensable for covalent attachment, but required for tight chromophore-protein interaction. PMID:15035636

  6. Using GafChromic film to estimate the effective dose from dental cone beam CT and panoramic radiography

    PubMed Central

    Al-Okshi, A; Nilsson, M; Petersson, A; Wiese, M; Lindh, C

    2013-01-01

    Objectives: To demonstrate the feasibility of GafChromic® XR-QA2 (ISP Corp., Wayne, NJ) as a dosemeter when performing measurements of the effective dose from three cone beam CT (CBCT) units and to compare the doses from examinations of three common dental clinical situations. A second aim was to compare the radiation doses for three digital panoramic units with the doses for the CBCT units. Methods: The CBCT units used were Veraviewepocs 3De® (J Morita MFG Corp., Kyoto, Japan), ProMax® 3D (Planmeca, Helsinki, Finland) and NewTom VGi® (Quantitative Radiology, Verona, Italy). GafChromic XR-QA2 films were placed between the selected layers of the head and neck of a tissue-equivalent human skull (RANDO® phantom; The Phantom Laboratory, Salem, NY). The exposure parameters were set using the automatic exposure control function of the units. Depending on the availability, medium and smaller field of view (FOV) scanning modes were used. The effective dose was estimated using the 2007 International Commission on Radiological Protection formalism. Results: The lowest effective dose of a CBCT unit was observed for ProMax 3D, FOV 4 × 5 cm (10 μSv), the highest for NewTom VGi, FOV 8 × 8 cm—high resolution (129 μSv). The range of effective doses for digital panoramic machines measured was 8–14 μSv. Conclusions: This study demonstrates the feasibility of using radiochromic films for dental CBCT and panoramic dosimetry. PMID:23610090

  7. Phytochrome from Green Plants: Properties and biological Function

    SciTech Connect

    Quail, Peter H.

    2014-07-25

    Plants constantly monitor the light environment for informational light signals used to direct adaptational responses to the prevailing conditions. One major such response, the Shade-Avaoidance Response (SAR), triggered when plants sense the presence of competing neighbors, results in enhanced channeling of photosynthetically-fixed carbon into stem elongation at the expense of deposition in reproductive tissues. This response has been selected against in many modern food crops to ensure maximum edible yield (e.g. seeds). Converse enhancement of the SAR, with consequent increased carbon channeling into vegetative cellulose, could contribute to the generation of crops with improved yield of tissues suitable for cellulosic biofuel production. The signal for this response is light enriched in far-red wavelengths. This signal is produced by sunlight filtered through, or reflected from, neighboring vegetation, as a result of preferential depletion of red photons through chlorophyll absorption. The plant phytochrome (phy) photoreceptor system (predominantly phyB) senses this signal through its capacity to switch reversibly, in milliseconds, between two molecular states: the biologically inactive Pr (red-light-absorbing) and biologically active Pfr (far-red-light-absorbing) conformers. The photoequilibrium established between these two conformers in light-grown plants is determined by the ratio of red-to-far-red wavelengths in the incoming signal. The levels of Pfr then dictate the recipient plant’s growth response: high levels suppress elongation growth; low levels promote elongation growth. Studies on seedling deetiolation have advanced our understanding considerably in recent years, of the mechanism by which the photoactivated phy molecule transduces its signal into cellular growth responses. The data show that a subfamily of phy-interacting bHLH transcription factors (PIFs) promote skotomorphogenic seedling development in post-germinative darkness, but that the phy

  8. Calcium-regulated nuclear enzymes: potential mediators of phytochrome-induced changes in nuclear metabolism?

    NASA Technical Reports Server (NTRS)

    Roux, S. J.

    1992-01-01

    Calcium ions have been proposed to serve as important regulatory elements in stimulus-response coupling for phytochrome responses. An important test of this hypothesis will be to identify specific targets of calcium action that are required for some growth or development process induced by the photoactivated form of phytochrome (Pfr). Initial studies have revealed that there are at least two enzymes in pea nuclei that are stimulated by Pfr in a Ca(2+)-dependent fashion, a calmodulin-regulated nucleoside triphosphatase and a calmodulin-independent but Ca(2+)-dependent protein kinase. The nucleoside triphosphatase appears to be associated with the nuclear envelope, while the protein kinase co-purifies with a nuclear fraction highly enriched for chromatin. This short review summarizes the latest findings on these enzymes and relates them to what is known about Pfr-regulated nuclear metabolism.

  9. Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development

    SciTech Connect

    Thiele, A.; Herold, M.; Lenk, I.; Gatz, C. . Albrecht von Haller Inst. fuer Pflanzenwissenschaften); Quail, P.H. )

    1999-05-01

    Transgenic potato (Solanum tuberosum) plants expressing Arabidopsis phytochrome B were characterized morphologically and physiologically under white light in a greenhouse to explore their potential for improved photosynthesis and higher tuber yields. As expected, overexpression of functional phytochrome B caused pleiotropic effects such as semidwarfism, decreased apical dominance, a higher number of smaller but thicker leaves, and increased pigmentation. Because of increased numbers of chloroplasts in elongated palisade cells, photosynthesis per leaf area and in each individual plant increased. In addition, photosynthesis was less sensitive to photoinactivation under prolonged light stress. The beginning of senescence was not delayed, but deceleration of chlorophyll degradation extended the lifetime of photosynthetically active plants. Both the higher photosynthetic performance and the longer lifespan of the transgenic plants allowed greater biomass production, resulting in extended underground organs with increased tuber yields.

  10. TOPP4 Regulates the Stability of PHYTOCHROME INTERACTING FACTOR5 during Photomorphogenesis in Arabidopsis.

    PubMed

    Yue, Jing; Qin, Qianqian; Meng, Siyuan; Jing, Huiting; Gou, Xiaoping; Li, Jia; Hou, Suiwen

    2016-03-01

    In plants, photoreceptors transfer light signals to phytochrome-interacting factors (PIFs), inducing the rapid phosphorylation and degradation of PIFs to promote photomorphogenesis. However, the phosphatase responsible for PIF dephosphorylation remains unknown. In this study, we identified a type 1 protein phosphatase, TOPP4, that is essential for PIF5 protein stability in Arabidopsis (Arabidopsis thaliana). Compared with the wild type, the dominant-negative mutant, topp4-1, displayed reduced hypocotyl length and larger apical hook and cotyledon opening angle under red light. Overexpression of topp4-1 in the wild type led to defects that were similar to those in the topp4-1 mutant. Red light induced phytochrome B (phyB)-dependent TOPP4 expression in hypocotyls. The topp4-1 mutation weakened the closed cotyledon angle of phyB-9 and phyA-211 phyB-9, while overexpression of TOPP4 significantly repressed the short hypocotyls of phyB-green fluorescent protein seedlings, indicating that TOPP4 and phyB function in an antagonistic way during photomorphogenesis. Protein interaction assays and phosphorylation studies demonstrate that TOPP4 interacts directly with PIF5 and dephosphorylates it. Furthermore, TOPP4 inhibits the red light-induced ubiquitination and degradation of PIF5. These findings demonstrate that dephosphorylation of PIF5 by TOPP4 inhibits its ubiquitin-mediated degradation during photomorphogenesis. These data outline a novel phytochrome signaling mechanism by which TOPP4-mediated dephosphorylation of PIF5 attenuates phytochrome-dependent light responses. PMID:26704640

  11. Phytochrome Is Involved in the Light-Regulation of Vindoline Biosynthesis in Catharanthus1

    PubMed Central

    Aerts, Rob J.; De Luca, Vincenzo

    1992-01-01

    The enzyme acetylcoenzyme A:deacetylvindoline 4-O-acetyl-transferase (DAT) catalyzes the final step in the biosynthesis of the monoterpenoid indole alkaloid, vindoline. Previous studies have shown that the appearance of DAT activity in etiolated seedlings of Catharanthus roseus is induced by exposure of seedlings to light and that enzyme activity is restricted principally to the cotyledons. Evidence is now presented that phytochrome is involved in the light-mediated induction of DAT activity in Catharanthus cotyledons. PMID:16653011

  12. Reversibly switchable photoacoustic tomography using a genetically encoded near-infrared phytochrome

    NASA Astrophysics Data System (ADS)

    Yao, Junjie; Kaberniuk, Andrii A.; Li, Lei; Shcherbakova, Daria M.; Zhang, Ruiying; Wang, Lidai; Li, Guo; Verkhusha, Vladislav V.; Wang, Lihong V.

    2016-03-01

    Optical imaging of genetically encoded probes has revolutionized biomedical studies by providing valuable information about targeted biological processes. Here, we report a novel imaging technique, termed reversibly switchable photoacoustic tomography (RS-PAT), which exhibits large penetration depth, high detection sensitivity, and super-resolution. RS-PAT combines advanced photoacoustic imaging techniques with, for the first time, a nonfluorescent photoswitchable bacterial phytochrome. This bacterial phytochrome is the most near-infrared shifted genetically encoded probe reported so far. Moreover, this bacterial phytochrome is reversibly photoconvertible between its far-red and near-infrared light absorption states. Taking maximum advantage of the powerful imaging capability of PAT and the unique photochemical properties of the phytochrome, RS-PAT has broken through both the optical diffusion limit for deep-tissue imaging and the optical diffraction limit for super-resolution photoacoustic microscopy. Specifically, with RS-PAT we have achieved an unprecedented detection sensitivity of ~2 μM, or as few as ~20 tumor cells, at a centimeter depth. Such high sensitivity is fully demonstrated in our study by monitoring tumor growth and metastasis at whole-body level with ~100 μm resolution. Moreover, our microscopic implementation of RS-PAT is capable of imaging mammalian cells with a sub-diffraction lateral resolution of ~140 nm and axial resolution of ~400 nm, which are respectively ~2-fold and ~75-fold finer than those of our conventional photoacoustic microscopy. Overall, RS-PAT is a new and promising imaging technology for studying biological processes at different length scales.

  13. Phytochrome-mediated regulation of cell division and growth during regeneration and sporeling development in the liverwort Marchantia polymorpha.

    PubMed

    Nishihama, Ryuichi; Ishizaki, Kimitsune; Hosaka, Masashi; Matsuda, Yoriko; Kubota, Akane; Kohchi, Takayuki

    2015-05-01

    Light regulates various aspects of development throughout the life cycle of sessile land plants. Photoreceptors, such as the red (R) and far-red (FR) light receptors phytochromes, play pivotal roles in modulating developmental programs. Reflecting high developmental plasticity, plants can regenerate tissues, organs, and whole bodies from varieties of cells. Among land plants, bryophytes exhibit extraordinary competency of regeneration under hormone-free conditions. As an environmental factor, light plays critical roles in regeneration of bryophytes. However, how light regulates regeneration remains unknown. Here we show that using the liverwort Marchantia polymorpha, which contains a single phytochrome gene, the phytochrome regulates re-entry into the cell cycle and cell shape in newly regenerating tissues. Our morphological and cytological observations revealed that S-phase entry of G1-arrested epidermal cells around the midrib on the ventral surface of thallus explants was greatly retarded in the dark or under phytochrome-inactive R/FR cycle irradiation conditions, where, nevertheless, small, laterally narrow regenerants were eventually formed. Thus, consistent with earlier descriptions published over a century ago, light is not essential for, but exerts profound effects on regeneration in M. polymorpha. Ventral cells in regenerants grown under R/FR cycle conditions were longer and narrower than those under R cycle. Expression of a constitutively active mutant of M. polymorpha phytochrome allowed regeneration of well grown, widely expanded thalli even in the dark when sugar was supplied, further demonstrating that the phytochrome signal promotes cell proliferation, which is rate-limited by sucrose availability. Similar effects of R and FR irradiation on cell division and elongation were observed in sporelings as well. Thus, besides activation of photosynthesis, major roles of R in regeneration of M. polymorpha are to facilitate proliferation of rounder cells

  14. Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis.

    PubMed

    Sakuraba, Yasuhito; Jeong, Jinkil; Kang, Min-Young; Kim, Junghyun; Paek, Nam-Chon; Choi, Giltsu

    2014-01-01

    Plants initiate senescence to shed photosynthetically inefficient leaves. Light deprivation induces leaf senescence, which involves massive transcriptional reprogramming to dismantle cellular components and remobilize nutrients. In darkness, intermittent pulses of red light can inhibit senescence, likely via phytochromes. However, the precise molecular mechanisms transducing the signals from light perception to the inhibition of senescence remain elusive. Here, we show that in Arabidopsis, dark-induced senescence requires phytochrome-interacting transcription factors PIF4 and PIF5 (PIF4/PIF5). ELF3 and phytochrome B inhibit senescence by repressing PIF4/PIF5 at the transcriptional and post-translational levels, respectively. PIF4/PIF5 act in the signalling pathways of two senescence-promoting hormones, ethylene and abscisic acid, by directly activating expression of EIN3, ABI5 and EEL. In turn, PIF4, PIF5, EIN3, ABI5 and EEL directly activate the expression of the major senescence-promoting NAC transcription factor ORESARA1, thus forming multiple, coherent feed-forward loops. Our results reveal how classical light signalling connects to senescence in Arabidopsis. PMID:25119965

  15. Spatially and genetically distinct control of seed germination by phytochromes A and B.

    PubMed

    Lee, Keun Pyo; Piskurewicz, Urszula; Turečková, Veronika; Carat, Solenne; Chappuis, Richard; Strnad, Miroslav; Fankhauser, Christian; Lopez-Molina, Luis

    2012-09-01

    Phytochromes phyB and phyA mediate a remarkable developmental switch whereby, early upon seed imbibition, canopy light prevents phyB-dependent germination, whereas later on, it stimulates phyA-dependent germination. Using a seed coat bedding assay where the growth of dissected embryos is monitored under the influence of dissected endosperm, allowing combinatorial use of mutant embryos and endosperm, we show that canopy light specifically inactivates phyB activity in the endosperm to override phyA-dependent signaling in the embryo. This interference involves abscisic acid (ABA) release from the endosperm and distinct spatial activities of phytochrome signaling components. Under the canopy, endospermic ABA opposes phyA signaling through the transcription factor (TF) ABI5, which shares with the TF PIF1 several target genes that negatively regulate germination in the embryo. ABI5 enhances the expression of phytochrome signaling genes PIF1, SOMNUS, GAI, and RGA, but also of ABA and gibberellic acid (GA) metabolic genes. Over time, weaker ABA-dependent responses eventually enable phyA-dependent germination, a distinct type of germination driven solely by embryonic growth. PMID:22948663

  16. Contributions of photosynthesis and phytochrome to the formation of anthocyanin in turnip seedlings.

    PubMed

    Schneider, M J; Stimson, W R

    1971-09-01

    Turnip seedlings (Brassica rapa L.) irradiated for 24 hours with radiation at 720 nanometers synthesize chlorophyll a and anthocyanin. Antimycin A and 2,4-dinitrophenol, which are known to reduce cyclic photophosphorylation, also reduce anthocyanin synthesis. Noncyclic photophosphorylation is inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and o-phenanthroline. These compounds promote cyclic photophosphorylation and anthocyanin synthesis. On the basis of these findings it is suggested that the photomorphogenic response of anthocyanin synthesis in turnip seedlings arises in part through photosynthetic activity.Phytochrome involvement in turnip seedling photomorphogenesis is evidenced by the photoreversibility of anthocyanin synthesis in response to 5-minute irradiations with red or far red light. The inhibition of anthocyanin synthesis by 2,4-dinitrophenol does not arise from a destruction of phytochrome photoreversibility.It is suggested that plant photomorphogenic responses to prolonged far red irradiations arise through the photochemical activation of at least two pigment systems; namely, the photosynthetic pigments and phytochrome. PMID:16657788

  17. Phytochrome and retrograde signalling pathways converge to antagonistically regulate a light-induced transcriptional network

    PubMed Central

    Martín, Guiomar; Leivar, Pablo; Ludevid, Dolores; Tepperman, James M.; Quail, Peter H.; Monte, Elena

    2016-01-01

    Plastid-to-nucleus retrograde signals emitted by dysfunctional chloroplasts impact photomorphogenic development, but the molecular link between retrograde- and photosensory-receptor signalling has remained unclear. Here, we show that the phytochrome and retrograde signalling (RS) pathways converge antagonistically to regulate the expression of the nuclear-encoded transcription factor GLK1, a key regulator of a light-induced transcriptional network central to photomorphogenesis. GLK1 gene transcription is directly repressed by PHYTOCHROME-INTERACTING FACTOR (PIF)-class bHLH transcription factors in darkness, but light-activated phytochrome reverses this activity, thereby inducing expression. Conversely, we show that retrograde signals repress this induction by a mechanism independent of PIF mediation. Collectively, our data indicate that light at moderate levels acts through the plant's nuclear-localized sensory-photoreceptor system to induce appropriate photomorphogenic development, but at excessive levels, sensed through the separate plastid-localized RS system, acts to suppress such development, thus providing a mechanism for protection against photo-oxidative damage by minimizing the tissue exposure to deleterious radiation. PMID:27150909

  18. Photoregulation of a phytochrome gene promoter from oat transferred into rice by particle bombardment.

    PubMed Central

    Bruce, W B; Christensen, A H; Klein, T; Fromm, M; Quail, P H

    1989-01-01

    The regulatory photoreceptor phytochrome controls the transcription of its own phy genes in a negative feedback fashion. We have exploited microprojectile-mediated gene transfer to develop a rapid transient expression assay system for the study of DNA sequences involved in the phytochrome-regulated expression of these genes. The 5'-flanking sequence and part of the structural region of an oat phy gene have been fused to a reporter coding sequence (chloramphenicol acetyltransferase, CAT) and introduced into intact darkgrown seedlings by using high-velocity microprojectiles. Expression is assayable in less than 24 hr from bombardment. The introduced oat phy-CAT fusion gene is expressed and down-regulated by white light in barley, rice, and oat, whereas no expression is detected in three dicots tested, tobacco, cucumber, and Arabidopsis thaliana. In bombarded rice shoots, red/far-red light-reversible repression of expression of the heterologous oat phy-CAT gene shows that it is regulated by phytochrome in a manner parallel to that of the endogenous rice phy genes. These data indicate that the transduction pathway components and promoter sequences involved in autoregulation of phy expression have been evolutionarily conserved between oat and rice. The experiments show the feasibility of using high-velocity microprojectile-mediated gene transfer for the rapid analysis of light-controlled monocot gene promoters in monocot tissues that until now have been recalcitrant to such studies. Images PMID:2602370

  19. Phytochrome Intermediates and Action Spectra for Light Perception by Dry Seeds 1

    PubMed Central

    Bartley, Michael R.; Frankland, Barry

    1984-01-01

    It has previously been demonstrated that far-red irradiation of dry Lactuca sativa L. seeds results in inhibition of subsequent germination. Although red has no effect on dry seeds, a red irradiation following a farred irradiation reverses the effect of far-red. This phenomenon is most noticeable in seeds with artificially raised levels of phytochrome in the far-red absorbing form. Qualitatively similar results have been found for the seeds of Plantago major L., Sinapis arvensis L., and Bromus sterilis L. Action spectra studies on Plantago seeds show that the action peaks for promotion and inhibition of germination of hydrated seeds are at 660 and 730 nanometers, respectively. The action spectrum for inhibition of subsequent germination following irradiation of dry seeds is qualitatively and quantitatively similar to that for hydrated seeds, with an action peak at 730 nanometers, indicating absorption by phytochrome in the far-red absorbing form. However, the action spectrum for the reversal of this far-red effect on dry seeds has a broad peak at 680 nanometers and subsidiary peaks at 650 and 600 nanometers. It is proposed that this effect is due to light absorption by the phytochrome intermediate complex meta-Fa, and that the action spectrum reflects the in vivo absorption properties of this intermediate. PMID:16663467

  20. Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B

    PubMed Central

    Kircher, S; Kozma-Bognar, L; Kim, L; Adam, E; Harter, K; Schafer, E; Nagy, F

    1999-01-01

    The phytochrome (phy) family of plant photoreceptors controls various aspects of photomorphogenesis. Overexpression of rice phyA-green fluorescent protein (GFP) and tobacco phyB-GFP fusion proteins in tobacco results in functional photoreceptors. phyA-GFP and phyB-GFP are localized in the cytosol of dark-adapted plants. In our experiments, red light treatment led to nuclear translocation of phyA-GFP and phyB-GFP, albeit with different kinetics. Red light-induced nuclear import of phyB-GFP, but not that of phyA-GFP, was inhibited by far-red light. Far-red light alone only induced nuclear translocation of phyA-GFP. These observations indicate that nuclear import of phyA-GFP is controlled by a very low fluence response, whereas translocation of phyB-GFP is regulated by a low fluence response of phytochrome. Thus, light-regulated nucleocytoplasmic partitioning of phyA and phyB is a major step in phytochrome signaling. PMID:10449579

  1. Phytochrome and retrograde signalling pathways converge to antagonistically regulate a light-induced transcriptional network.

    PubMed

    Martín, Guiomar; Leivar, Pablo; Ludevid, Dolores; Tepperman, James M; Quail, Peter H; Monte, Elena

    2016-01-01

    Plastid-to-nucleus retrograde signals emitted by dysfunctional chloroplasts impact photomorphogenic development, but the molecular link between retrograde- and photosensory-receptor signalling has remained unclear. Here, we show that the phytochrome and retrograde signalling (RS) pathways converge antagonistically to regulate the expression of the nuclear-encoded transcription factor GLK1, a key regulator of a light-induced transcriptional network central to photomorphogenesis. GLK1 gene transcription is directly repressed by PHYTOCHROME-INTERACTING FACTOR (PIF)-class bHLH transcription factors in darkness, but light-activated phytochrome reverses this activity, thereby inducing expression. Conversely, we show that retrograde signals repress this induction by a mechanism independent of PIF mediation. Collectively, our data indicate that light at moderate levels acts through the plant's nuclear-localized sensory-photoreceptor system to induce appropriate photomorphogenic development, but at excessive levels, sensed through the separate plastid-localized RS system, acts to suppress such development, thus providing a mechanism for protection against photo-oxidative damage by minimizing the tissue exposure to deleterious radiation. PMID:27150909

  2. Diatom Phytochromes Reveal the Existence of Far-Red-Light-Based Sensing in the Ocean.

    PubMed

    Fortunato, Antonio Emidio; Jaubert, Marianne; Enomoto, Gen; Bouly, Jean-Pierre; Raniello, Raffaella; Thaler, Michael; Malviya, Shruti; Bernardes, Juliana Silva; Rappaport, Fabrice; Gentili, Bernard; Huysman, Marie J J; Carbone, Alessandra; Bowler, Chris; d'Alcalà, Maurizio Ribera; Ikeuchi, Masahiko; Falciatore, Angela

    2016-03-01

    The absorption of visible light in aquatic environments has led to the common assumption that aquatic organisms sense and adapt to penetrative blue/green light wavelengths but show little or no response to the more attenuated red/far-red wavelengths. Here, we show that two marine diatom species, Phaeodactylum tricornutum and Thalassiosira pseudonana, possess a bona fide red/far-red light sensing phytochrome (DPH) that uses biliverdin as a chromophore and displays accentuated red-shifted absorbance peaks compared with other characterized plant and algal phytochromes. Exposure to both red and far-red light causes changes in gene expression in P. tricornutum, and the responses to far-red light disappear in DPH knockout cells, demonstrating that P. tricornutum DPH mediates far-red light signaling. The identification of DPH genes in diverse diatom species widely distributed along the water column further emphasizes the ecological significance of far-red light sensing, raising questions about the sources of far-red light. Our analyses indicate that, although far-red wavelengths from sunlight are only detectable at the ocean surface, chlorophyll fluorescence and Raman scattering can generate red/far-red photons in deeper layers. This study opens up novel perspectives on phytochrome-mediated far-red light signaling in the ocean and on the light sensing and adaptive capabilities of marine phototrophs. PMID:26941092

  3. Phytochrome-Mediated Light Regulation of PHYA- and PHYB-GUS Transgenes in Arabidopsis thaliana Seedlings.

    PubMed Central

    Somers, D. E.; Quail, P. H.

    1995-01-01

    Phytochrome wild-type gene-[beta]-glucuronidase (PHY-GUS) gene fusions were used in transgenic Arabidopsis to compare the activity levels and light regulation of the PHYA and PHYB promoters and to identify the photoreceptors mediating this regulation. In dark-grown seedlings, both promoters are 4-fold more active in shoots than in roots,but the PHYA promoter is nearly 20-fold more active than that of PHYB in both organs. In shoots, white light represses the activities of the PHYA and PHYB promoters 10- and 2-fold, respectively, whereas in roots light has no effect on the PHYA promoter but increases PHYB promoter activity 2-fold. Consequently, PHYA promoter activity remains higher than that of PHYB in light in both shoots (5-fold) and roots (11-fold). Experiments with narrow-waveband light and photomorphogenic mutants suggest that no single photoreceptor is necessary for full white-light-directed PHYA repression in shoots, but that multiple, independent photoreceptor pathways are sufficient alone or in combination. In contrast, phytochrome B appears both necessary and sufficient for a light-mediated decrease in PHYB activity in shoots, and phytochrome A mediates a far-red-light-stimulated increase in PHYB promoter activity. Together, the data indicate that the PHYA and PHYB genes are regulated in divergent fashion at the transcriptional level, both developmentally and by the spectral distribution of the prevailing light, and that this regulation may be important to the photosensory function of the two photoreceptors. PMID:12228380

  4. Fungi use the SakA (HogA) pathway for phytochrome-dependent light signalling.

    PubMed

    Yu, Zhenzhong; Armant, Olivier; Fischer, Reinhard

    2016-01-01

    Stress-sensing in fungi depends on a signalling cascade comprised of a two-component phosphorylation relay plus a subsequent MAP kinase cascade to trigger gene expression. Besides osmotic or oxidative stress, fungi sense many other environmental factors, one of which is light(1,2). Light controls morphogenetic pathways but also the production of secondary metabolites such as penicillin. Here we show that phytochrome-dependent light signalling in Aspergillus nidulans involves the stress-sensing and osmosensing signalling pathway. In a screening for 'blind' mutants, the MAP kinase SakA (also known as HogA) was identified by whole-genome sequencing. The phytochrome FphA physically interacted with the histidine-containing phosphotransfer protein YpdA and caused light-dependent phosphorylation of the MAP kinase SakA and its shuttling into nuclei. In the absence of phytochrome, SakA still responded to osmotic stress but not to light. The SakA pathway thus integrates several stress factors and can be considered to be a hub for environmental signals. PMID:27572639

  5. The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B.

    PubMed Central

    Childs, K L; Miller, F R; Cordonnier-Pratt, M M; Pratt, L H; Morgan, P W; Mullet, J E

    1997-01-01

    The Ma3 gene is one of six genes that regulate the photoperiodic sensitivity of flowering in sorghum (Sorghum bicolor [L.] Moench). The ma3R mutation of this gene causes a phenotype that is similar to plants that are known to lack phytochrome B, and ma3 sorghum lacks a 123-KD phytochrome that predominates in light-grown plants and that is present in non-ma3 plants. A population segregating for Ma3 and ma3 was created and used to identify two randomly amplified polymorphic DNA markers linked to Ma3. These two markers were cloned and mapped in a recombinant inbred population as restriction fragment length polymorphisms. cDNA clones of PHYA and PHYC were cloned and sequenced from a cDNA library prepared from green sorghum leaves. Using a genome-walking technique, a 7941-bp partial sequence of PHYB, was determined from genomic DNA from ma3 sorghum. PHYA, PHYB, and PHYC all mapped to the same linkage group. The Ma3-linked markers mapped with PHYB more than 121 centimorgans from PHYA and PHYC. A frameshift mutation resulting in a premature stop codon was found in the PHYB sequence from ma3 sorghum. Therefore, we conclude that the Ma3 locus in sorghum is a PHYB gene that encodes a 123-kD phytochrome. PMID:9046599

  6. Light-dependent gene activation in Aspergillus nidulans is strictly dependent on phytochrome and involves the interplay of phytochrome and white collar-regulated histone H3 acetylation.

    PubMed

    Hedtke, Maren; Rauscher, Stefan; Röhrig, Julian; Rodríguez-Romero, Julio; Yu, Zhenzhong; Fischer, Reinhard

    2015-08-01

    The ability for light sensing is found from bacteria to humans but relies only on a small number of evolutionarily conserved photoreceptors. A large number of fungi react to light, mostly to blue light. Aspergillus nidulans also responds to red light using a phytochrome light sensor, FphA, for the control of hundreds of light-regulated genes. Here, we show that photoinduction of one light-induced gene, ccgA, occurs mainly through red light. Induction strictly depends on phytochrome and its histidine-kinase activity. Full light activation also depends on the Velvet protein, VeA. This putative transcription factor binds to the ccgA promoter in an fphA-dependent manner but independent of light. In addition, the blue light receptor LreA binds to the ccgA promoter in the dark but is released after blue or red light illumination and together with FphA modulates gene expression through histone H3 modification. LreA interacts with the acetyltransferase GcnE and with the histone deacetylase HdaA. ccgA induction is correlated to an increase of the acetylation level of lysine 9 in histone H3. Our results suggest regulation of red light-induced genes at the transcriptional level involving transcription factor(s) and epigenetic control through modulation of the acetylation level of histone H3. PMID:25980340

  7. Residues Clustered in the Light-Sensing Knot of Phytochrome B Are Necessary for Conformer-Specific Binding to Signaling Partner PIF3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The bHLH transcription factor, Phytochrome Interacting Factor 3 (PIF3), interacts specifically with the photoactivated, Pfr, form of Arabidopsis phytochrome B (phyB). This interaction induces PIF3 phosphorylation and degradation in vivo and modulates phyB-mediated seedling deetiolation in response t...

  8. Multiple phytochromes are involved in red-light-induced enhancement of first-positive phototropism in Arabidopsis thaliana.

    PubMed Central

    Janoudi, A K; Gordon, W R; Wagner, D; Quail, P; Poff, K L

    1997-01-01

    The amplitude of phototropic curvature to blue light is enhanced by a prior exposure of seedlings to red light. This enhancement is mediated by phytochrome. Fluence-response relationships have been constructed for red-light-induced enhancement in the phytochrome A (phyA) null mutant, the phytochrome B- (phyB) deficient mutant, and in two transgenic lines of Rabidopsis thaliana that overexpress either phyA or phyB. These fluence-response relationships demonstrate the existence of two response in enhancement, a response in the very-low-to-low-fluence range, and a response in the high-fluence range. Only the response in the high-fluence range is present in the phyA null mutant. In contrast, the phyB-deficient mutant is indistinguishable from the wild-type parent in red-light responsiveness. These data indiacate that phyA is necessary for the very-low-to-low but not the high-influence response, and that phyB is not necessary for either response range. Based on these results, the high-fluence response, if controlled by a single phytochrome, must be controlled by aphytochorme other than phyA of phyB. Overexpression of phyA has a negative effect and overexpression of phyB has an enhancing effect in the high-fluence range. These results suggest that overexpression of either phytochrome perturbs the function of the endogenous photoreceptor system in an unpredictable fashion. PMID:9085579

  9. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development.

    PubMed Central

    Reed, J W; Nagpal, P; Poole, D S; Furuya, M; Chory, J

    1993-01-01

    Phytochromes are a family of plant photoreceptors that mediate physiological and developmental responses to changes in red and far-red light conditions. In Arabidopsis, there are genes for at least five phytochrome proteins. These photoreceptors control such responses as germination, stem elongation, flowering, gene expression, and chloroplast and leaf development. However, it is not known which red light responses are controlled by which phytochrome species, or whether the different phytochromes have overlapping functions. We report here that previously described hy3 mutants have mutations in the gene coding for phytochrome B (PhyB). These are the first mutations shown to lie in a plant photoreceptor gene. A number of tissues are abnormally elongated in the hy3(phyB) mutants, including hypocotyls, stems, petioles, and root hairs. In addition, the mutants flower earlier than the wild type, and they accumulate less chlorophyll. PhyB thus controls Arabidopsis development at numerous stages and in multiple tissues. PMID:8453299

  10. SU-E-T-32: An Application of GafChromic RTQA2 Film to the Patient Specified Quality Assurance

    SciTech Connect

    Peng, J; Hu, W

    2014-06-01

    Purpose: GafChromic RTQA2 film is known as a quality assurance (QA) tool for light field and radiation field verification. This study is attempted to apply the RTQA2 film to the patient specified quality assurance. Methods: Pre-irradiated and post-irradiated RTQA2 films were scanned in a reflection mode using a flatbed scanner. A plan-based dose calibration method utilized the mapping information of calculated dose image and measured film image to create a dose vs. pixel value calibration model. This model was used to calibrate the measured film image from the pixel value (gray value) image to the dose image. The dose agreement between calculated and measured dose images were analyzed using the gamma analysis. To evaluate the feasibility of this method, three clinical approved RapidArc cases (one abdomen cancer and two head-and-neck cancer patients) were tested. The tolerance of 3% dose difference and 3 mm distance to agreement (DTA) and gamma index ≤ 1 were set for the analysis. Results: The calibrated film dose image from measurement was successfully compared to the predicted dose image from the commercial treatment planning. The gamma analysis results showed good consistency. Gamma passing rates were 99.02%, 94.84%, and 98.33% for the three patients, respectively. Conclusion: The plan based calibration method has the feasibility for dose verification without shortages of film batch and development time variation.

  11. Deletion analysis of a phytochrome-regulated monocot rbcS promoter in a transient assay system.

    PubMed Central

    Rolfe, S A; Tobin, E M

    1991-01-01

    We have developed a transient gene expression assay system in the aquatic monocot Lemna gibba in which DNA was introduced into intact tissue by particle bombardment. Constructs based on the Lemna rbcS gene SSU5B, which is positively regulated by phytochrome in vivo, also showed phytochrome regulation in the transient assay system. Reporter gene expression increased 12-fold over dark levels in response to a single treatment with red light. This increase was not observed if far-red light was immediately followed by the red light. A 5' deletion analysis of the promoter defined a region from position -205 to position -83 relative to the start of transcription as necessary to observe the phytochrome response. This region contains the binding site for the light-induced binding activity (LRF-1) found in Lemna nuclear extracts. Upstream of position -205, we found evidence for the presence of at least two upstream activating sequences and a silencer. Images PMID:2011579

  12. Phytochrome- and Gibberellin-Mediated Regulation of Abscisic Acid Metabolism during Germination of Photoblastic Lettuce Seeds1[OA

    PubMed Central

    Sawada, Yoshiaki; Aoki, Miki; Nakaminami, Kentaro; Mitsuhashi, Wataru; Tatematsu, Kiyoshi; Kushiro, Tetsuo; Koshiba, Tomokazu; Kamiya, Yuji; Inoue, Yasunori; Nambara, Eiji; Toyomasu, Tomonobu

    2008-01-01

    Germination of lettuce (Lactuca sativa) ‘Grand Rapids’ seeds is regulated by phytochrome. The action of phytochrome includes alterations in the levels of gibberellin (GA) and abscisic acid (ABA). To determine the molecular mechanism of phytochrome regulation of ABA metabolism, we isolated four lettuce cDNAs encoding 9-cis-epoxycarotenoid dioxygenase (biosynthesis; LsNCED1–LsNCED4) and four cDNAs for ABA 8′-hydroxylase (catabolism; LsABA8ox1–LsABA8ox4). Measurements of ABA and its catabolites showed that a decrease in ABA level coincided with a slight increase in the level of the ABA catabolite phaseic acid after red light treatment. Quantitative reverse transcription-polymerase chain reaction analysis indicated that ABA levels are controlled by phytochrome through down-regulation of LsNCED2 and LsNCED4 expression and up-regulation of LsABA8ox4 expression in lettuce seeds. Furthermore, the expression levels of LsNCED4 decreased after GA1 treatment, whereas the levels of expression of the other two genes were unaffected. The LsNCED4 expression was also down-regulated by red light in lettuce seeds in which GA biosynthesis was suppressed by AMO-1618, a specific GA biosynthesis inhibitor. These results indicate that phytochrome regulation of ABA metabolism is mediated by both GA-dependent and -independent mechanisms. Spatial analysis showed that after red light treatment, the ABA decrease on the hypocotyl side was greater than that on the cotyledon side of lettuce seeds. Moreover, phytochrome-regulated expression of ABA and GA biosynthesis genes was observed on the hypocotyl side, rather than the cotyledon side, suggesting that this regulation occurs near the photoperceptive site. PMID:18184730

  13. Phylogenetic utility of the nuclear genes AGAMOUS 1 and PHYTOCHROME B in palms (Arecaceae): an example within Bactridinae

    PubMed Central

    Ludeña, Bertha; Chabrillange, Nathalie; Aberlenc-Bertossi, Frédérique; Adam, Hélène; Tregear, James W.; Pintaud, Jean-Christophe

    2011-01-01

    Background and Aims Molecular phylogenetic studies of palms (Arecaceae) have not yet provided a fully resolved phylogeny of the family. There is a need to increase the current set of markers to resolve difficult groups such as the Neotropical subtribe Bactridinae (Arecoideae: Cocoseae). We propose the use of two single-copy nuclear genes as valuable tools for palm phylogenetics. Methods New primers were developed for the amplification of the AGAMOUS 1 (AG1) and PHYTOCHROME B (PHYB) genes. For the AGAMOUS gene, the paralogue 1 of Elaeis guineensis (EgAG1) was targeted. The region amplified contained coding sequences between the MIKC K and C MADS-box domains. For the PHYB gene, exon 1 (partial sequence) was first amplified in palm species using published degenerate primers for Poaceae, and then specific palm primers were designed. The two gene portions were sequenced in 22 species of palms representing all genera of Bactridinae, with emphasis on Astrocaryum and Hexopetion, the status of the latter genus still being debated. Key Results The new primers designed allow consistent amplification and high-quality sequencing within the palm family. The two loci studied produced more variability than chloroplast loci and equally or less variability than PRK, RPBII and ITS nuclear markers. The phylogenetic structure obtained with AG1 and PHYB genes provides new insights into intergeneric relationships within the Bactridinae and the intrageneric structure of Astrocaryum. The Hexopetion clade was recovered as monophyletic with both markers and was weakly supported as sister to Astrocaryum sensu stricto in the combined analysis. The rare Astrocaryum minus formed a species complex with Astrocaryum gynacanthum. Moreover, both AG1 and PHYB contain a microsatellite that could have further uses in species delimitation and population genetics. Conclusions AG1 and PHYB provide additional phylogenetic information within the palm family, and should prove useful in combination with other

  14. Use of phytochrome-dependent reaction in evaluating the effect of space flight factors on the plant organism

    NASA Technical Reports Server (NTRS)

    Shteyne, B. A.; Nevzgodina, L. V.; Miller, A. T.

    1982-01-01

    The effects of space flight factors on lettuce seeds aboard the Kosmos-936 and Kosmos-1129 satellites for 20 days were studied. The phytochrome dependent (PD) reaction of light sensitive seeds was a sensitive criterion for evaluating the biological effects of space flight factors. The PD reaction of air dry lettuce seeds was suppressed after space flight, especially if the seeds were exposed to open space during the flight. Space flight affects the physiological activity of both phytochrome forms, and both the phi sub 730 dependent reactions of lettuce seeds were suppressed.

  15. Involvement of cyclic GMP in phytochrome-controlled flowering of Pharbitis nil.

    PubMed

    Szmidt-Jaworska, Adriana; Jaworski, Krzysztof; Kopcewicz, Jan

    2008-05-26

    Light is one of the most important environmental factors influencing the induction of flowering in plants. Light is absorbed by specific photoreceptors--the phytochromes and cryptochromes system--which fulfil a sensory and a regulatory function in the process. The absorption of light by phytochromes initiates a cascade of related biochemical events in responsive cells, and subsequently changes plant growth and development. Induction of flowering is controlled by several paths. One is triggered by the guanosine-3':5'-cyclic monophosphate (cGMP) level. Thus, the aim of our study was to investigate the role of cGMP in phytochrome-controlled flowering. It is best to conduct such research on short-day plants because the photoperiodic reactions of only these plants are totally unequivocal. The most commonly used plant is the model short-day plant Pharbitis nil. The seedlings of P. nil were cultivated under special photoperiodic conditions: 72-h-long darkness, 24-h-long white light with low intensity and 24-h-long inductive night. Such light conditions cause a degradation of the light-labile phytochrome. Far red (FR) treatment before night causes inactivation of the remaining light-stable phytochrome. During the 24-h-long inductive darkness period, the total amount of cGMP in cotyledons underwent fluctuations, with maxima at the 4th, 8th and 14th hours. When plants were treated with FR before the long night, fluctuations were not observed. A red light pulse given after FR treatment could reverse the effect induced by FR, and the oscillation in the cGMP level was observed again. Because the intracellular level of cGMP is controlled by the opposite action of guanylyl cyclases (GCs) and phosphodiesterases (PDEs), we first tested whether accumulation of the nucleotide in P. nil tissue may be changed after treatment with a GC stimulator or PDE inhibitor. Accumulation of the nucleotide in P. nil cotyledons treated with a stimulator of cGMP synthesis (sodium nitroprusside) was

  16. AUXIN-BINDING-PROTEIN1 (ABP1) in phytochrome-B-controlled responses

    PubMed Central

    Effendi, Yunus; Scherer, Günther F. E.

    2013-01-01

    The auxin receptor ABP1 directly regulates plasma membrane activities including the number of PIN-formed (PIN) proteins and auxin efflux transport. Red light (R) mediated by phytochromes regulates the steady-state level of ABP1 and auxin-inducible growth capacity in etiolated tissues but, until now, there has been no genetic proof that ABP1 and phytochrome regulation of elongation share a common mechanism for organ elongation. In far red (FR)-enriched light, hypocotyl lengths were larger in the abp1-5 and abp1/ABP1 mutants, but not in tir1-1, a null mutant of the TRANSPORT-INHIBITOR-RESPONSE1 auxin receptor. The polar auxin transport inhibitor naphthylphthalamic acid (NPA) decreased elongation in the low R:FR light-enriched white light (WL) condition more strongly than in the high red:FR light-enriched condition WL suggesting that auxin transport is an important condition for FR-induced elongation. The addition of NPA to hypocotyls grown in R- and FR-enriched light inhibited hypocotyl gravitropism to a greater extent in both abp1 mutants and in phyB-9 and phyA-211 than the wild-type hypocotyl, arguing for decreased phytochrome action in conjunction with auxin transport in abp1 mutants. Transcription of FR-enriched light-induced genes, including several genes regulated by auxin and shade, was reduced 3-5-fold in abp1-5 compared with Col and was very low in abp1/ABP1. In the phyB-9 mutant the expression of these reporter genes was 5–15-fold lower than in Col. In tir1-1 and the phyA-211 mutants shade-induced gene expression was greatly attenuated. Thus, ABP1 directly or indirectly participates in auxin and light signalling. PMID:24052532

  17. Evolutionary divergence of phytochrome protein function in Zea mays PIF3 signaling.

    PubMed

    Kumar, Indrajit; Swaminathan, Kankshita; Hudson, Karen; Hudson, Matthew E

    2016-07-01

    Two maize phytochrome-interacting factor (PIF) basic helix-loop-helix (bHLH) family members, ZmPIF3.1 and ZmPIF3.2, were identified, cloned and expressed in vitro to investigate light-signaling interactions. A phylogenetic analysis of sequences of the maize bHLH transcription factor gene family revealed the extent of the PIF family, and a total of seven predicted PIF-encoding genes were identified from genes encoding bHLH family VIIa/b proteins in the maize genome. To investigate the role of maize PIFs in phytochrome signaling, full-length cDNAs for phytochromes PhyA2, PhyB1, PhyB2 and PhyC1 from maize were cloned and expressed in vitro as chromophorylated holophytochromes. We showed that ZmPIF3.1 and ZmPIF3.2 interact specifically with the Pfr form of maize holophytochrome B1 (ZmphyB1), showing no detectable affinity for the Pr form. Maize holophytochrome B2 (ZmphyB2) showed no detectable binding affinity for PIFs in either Pr or Pfr forms, but phyB Pfr from Arabidopsis interacted with ZmPIF3.1 similarly to ZmphyB1 Pfr. We conclude that subfunctionalization at the protein-protein interaction level has altered the role of phyB2 relative to that of phyB1 in maize. Since the phyB2 mutant shows photomorphogenic defects, we conclude that maize phyB2 is an active photoreceptor, without the binding of PIF3 seen in other phyB family proteins. PMID:27262126

  18. Comparison of Three Phytochrome-mediated Processes in the Hypocotyl of Mustard

    PubMed Central

    Kinnersley, Alan M.; Davies, Peter J.

    1976-01-01

    Anthocyanin synthesis, hair formation, and the synthesis of ascorbic acid oxidase are all phytochrome-mediated reactions occurring in the hypocotyl of mustard (Sinapis alba L.), controlled by phytochrome actually located in the hypocotyl. A comparison of these three reactions showed that in certain respects they differ greatly in their response to light. The ability of the seedling to respond to light by showing the three responses was strongly influenced by the state of development of the seedling. White light given very early after seed imbibition was unable to evoke any of the three reactions. By 50 hours after imbibition, all systems were fully inducible by light. The addition of actinomycin D to a fully competent seedling coincident with illumination strongly inhibited the development of all three responses. In contrast, the addition of cordycepin at this time inhibited the synthesis of anthocyanin and ascorbic acid oxidase but had no effect on hair formation. Cycloheximide inhibited all three responses when given up to several hours after light. This suggests the necessity for RNA and protein synthesis for light-induced expression of these reactions, and that the RNA species involved in the three reactions may have differing degrees of polyadenylation. The lag period between the onset of light and the first display of the response was 3 hours for anthocyanin and ascorbic acid oxidase synthesis, and about 5 hours for hair formation. Amounts of light sufficient to give large increases in the levels of ascorbic acid oxidase and hair formation gave a much smaller increase in anthocyanin synthesis. Hair formation and ascorbic acid oxidase synthesis showed a much greater sensitivity to induction at early stages of seedling development than did anthocyanin synthesis. Following an inductive light period, anthocyanin synthesis was sensitive to far red light inhibition for a period twice as long as the other two reactions. The differences in the response of the three

  19. SUMOylation of phytochrome-B negatively regulates light-induced signaling in Arabidopsis thaliana

    PubMed Central

    Sadanandom, Ari; Ádám, Éva; Orosa, Beatriz; Viczián, András; Klose, Cornelia; Zhang, Cunjin; Josse, Eve-Marie; Kozma-Bognár, László; Nagy, Ferenc

    2015-01-01

    The red/far red light absorbing photoreceptor phytochrome-B (phyB) cycles between the biologically inactive (Pr, λmax, 660 nm) and active (Pfr; λmax, 730 nm) forms and functions as a light quality and quantity controlled switch to regulate photomorphogenesis in Arabidopsis. At the molecular level, phyB interacts in a conformation-dependent fashion with a battery of downstream regulatory proteins, including PHYTOCHROME INTERACTING FACTOR transcription factors, and by modulating their activity/abundance, it alters expression patterns of genes underlying photomorphogenesis. Here we report that the small ubiquitin-like modifier (SUMO) is conjugated (SUMOylation) to the C terminus of phyB; the accumulation of SUMOylated phyB is enhanced by red light and displays a diurnal pattern in plants grown under light/dark cycles. Our data demonstrate that (i) transgenic plants expressing the mutant phyBLys996Arg-YFP photoreceptor are hypersensitive to red light, (ii) light-induced SUMOylation of the mutant phyB is drastically decreased compared with phyB-YFP, and (iii) SUMOylation of phyB inhibits binding of PHYTOCHROME INTERACTING FACTOR 5 to phyB Pfr. In addition, we show that OVERLY TOLERANT TO SALT 1 (OTS1) de-SUMOylates phyB in vitro, it interacts with phyB in vivo, and the ots1/ots2 mutant is hyposensitive to red light. Taken together, we conclude that SUMOylation of phyB negatively regulates light signaling and it is mediated, at least partly, by the action of OTS SUMO proteases. PMID:26283376

  20. A Protein-Based Genetic Screening Uncovers Mutants Involved in Phytochrome Signaling in Arabidopsis

    PubMed Central

    Zhu, Ling; Xin, Ruijiao; Huq, Enamul

    2016-01-01

    Plants perceive red and far-red region of the light spectrum to regulate photomorphogenesis through a family of photoreceptors called phytochromes. Phytochromes transduce the light signals to trigger a cascade of downstream gene regulation in part via a subfamily of bHLH transcription factors called Phytochrome Interacting Factors (PIFs). As the repressors of light signaling pathways, most PIFs are phosphorylated and degraded through the ubiquitin/26S proteasome pathway in response to light. The mechanisms involved in the phosphorylation and degradation of PIFs have not been fully understood yet. Here we used an EMS mutagenesis and luminescent imaging system to identify mutants defective in the degradation of one of the PIFs, called PIF1. We identified five mutants named stable PIF (spf) that showed reduced degradation of PIF1 under light treatment in both luminescent imaging and immunoblot assays. The amounts of PIF1 in spf3, spf4, and spf5 were similar to a PIF1 missense mutant (PIF1–3M) that lacks interactions between PIF1 and phyA/phyB under light. The hypocotyl lengths of spf1 and spf2 were slightly longer under red light compared to the LUC-PIF1 control, while only spf1 displayed weak phenotype under far-red light conditions. Interestingly, the spf3, spf4, and spf5 displayed high abundance of PIF1, yet the hypocotyl lengths were similar to the wild type under these conditions. Cloning and characterization of these mutants will help identify key players in the light signaling pathways including, the light-regulated kinase(s) and the E3 ligase(s) necessary for the light-induced degradation of PIFs. PMID:27499759

  1. Phytochromes A and B mediate red-light-induced positive phototropism in roots

    NASA Technical Reports Server (NTRS)

    Kiss, John Z.; Mullen, Jack L.; Correll, Melanie J.; Hangarter, Roger P.

    2003-01-01

    The interaction of tropisms is important in determining the final growth form of the plant body. In roots, gravitropism is the predominant tropistic response, but phototropism also plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism that is mediated by the phototropin family of photoreceptors. In contrast, red light induces a positive phototropism in Arabidopsis roots. Because this red-light-induced response is weak relative to both gravitropism and negative phototropism, we used a novel device to study phototropism without the complications of a counteracting gravitational stimulus. This device is based on a computer-controlled system using real-time image analysis of root growth and a feedback-regulated rotatable stage. Our data show that this system is useful to study root phototropism in response to red light, because in wild-type roots, the maximal curvature detected with this apparatus is 30 degrees to 40 degrees, compared with 5 degrees to 10 degrees without the feedback system. In positive root phototropism, sensing of red light occurs in the root itself and is not dependent on shoot-derived signals resulting from light perception. Phytochrome (Phy)A and phyB were severely impaired in red-light-induced phototropism, whereas the phyD and phyE mutants were normal in this response. Thus, PHYA and PHYB play a key role in mediating red-light-dependent positive phototropism in roots. Although phytochrome has been shown to mediate phototropism in some lower plant groups, this is one of the few reports indicating a phytochrome-dependent phototropism in flowering plants.

  2. Dose calculation of megavoltage IMRT using convolution kernels extracted from GafChromic EBT film-measured pencil beam profiles

    NASA Astrophysics Data System (ADS)

    Naik, Mehul S.

    Intensity-modulated radiation therapy (IMRT) is a 3D conformal radiation therapy technique that utilizes either a multileaf intensity-modulating collimator (MIMiC used with the NOMOS Peacock system) or a multileaf collimator (MLC) on a conventional linear accelerator for beam intensity modulation to afford increased conformity in dose distributions. Due to the high-dose gradient regions that are effectively created, particular emphasis should be placed in the accurate determination of pencil beam kernels that are utilized by pencil beam convolution algorithms employed by a number of commercial IMRT treatment planning systems (TPS). These kernels are determined from relatively large field dose profiles that are typically collected using an ion chamber during commissioning of the TPS, while recent studies have demonstrated improvements in dose calculation accuracy when incorporating film data into the commissioning measurements. For this study, it has been proposed that the shape of high-resolution dose kernels can be extracted directly from single pencil beam (beamlet) profile measurements acquired using high-precision dosimetric film in order to accurately compute dose distributions, specifically for small fields and the penumbra regions of the larger fields. The effectiveness of GafChromic EBT film as an appropriate dosimeter to acquire the necessary measurements was evaluated and compared to the conventional silver-halide Kodak EDR2 film. Using the NOMOS Peacock system, similar dose kernels were extracted through deconvolution of the elementary pencil beam profiles using the two different types of films. Independent convolution-based calculations were performed using these kernels, resulting in better agreement with the measured relative dose profiles, as compared to those determined by CORVUS TPS' finite-size pencil beam (FSPB) algorithm. Preliminary evaluation of the proposed method in performing kernel extraction for an MLC-based IMRT system also showed

  3. Accurate dosimetry with GafChromic EBT film of a 6 MV photon beam in water: What level is achievable?

    SciTech Connect

    Battum, L. J. van; Hoffmans, D.; Piersma, H.; Heukelom, S.

    2008-02-15

    This paper focuses on the accuracy, in absolute dose measurements, with GafChromic EBT film achievable in water for a 6 MV photon beam up to a dose of 2.3 Gy. Motivation is to get an absolute dose detection system to measure up dose distributions in a (water) phantom, to check dose calculations. An Epson 1680 color (red green blue) transmission flatbed scanner has been used as film scanning system, where the response in the red color channel has been extracted and used for the analyses. The influence of the flatbed film scanner on the film based dose detection process was investigated. The scan procedure has been optimized; i.e. for instance a lateral correction curve was derived to correct the scan value, up to 10%, as a function of optical density and lateral position. Sensitometric curves of different film batches were evaluated in portrait and landscape scan mode. Between various batches important variations in sensitometric curve were observed. Energy dependence of the film is negligible, while a slight variation in dose response is observed for very large angles between film surface and incident photon beam. Improved accuracy in absolute dose detection can be obtained by repetition of a film measurement to tackle at least the inherent presence of film inhomogeneous construction. We state that the overall uncertainty is random in absolute EBT film dose detection and of the order of 1.3% (1 SD) under the condition that the film is scanned in a limited centered area on the scanner and at least two films have been applied. At last we advise to check a new film batch on its characteristics compared to available information, before using that batch for absolute dose measurements.

  4. Rice phytochrome-interacting factor protien OsPIFff14 represses OsDREB1B gene expression through an extended N-box and interacts preferentially with the active form of phytochrome B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DREB1/CBF genes, known as major regulators of plant stress responses, are rapidly and transiently induced by low temperatures. Using a Yeast one Hybrid screening, we identified a putative Phytochrome-Interacting bHLH Factor (OsPIF14), as binding to the OsDREB1B promoter. bHLH proteins are able to bi...

  5. Rice phytochrome-interacting factor protein OsPIFff14 represses OsDREB1B gene expression through an extended N-box and interacts preferentially with the active form of phytochrome B

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DREB1/CBF genes, known as major regulators of plant stress responses, are rapidly and transiently induced by low temperatures. Using a Yeast one Hybrid screening, we identified a putative Phytochrome-Interacting bHLH Factor (OsPIF14), as binding to the OsDREB1B promoter. bHLH proteins are able to bi...

  6. The Basic Helix-Loop-Helix Transcription Factor PIF5 Acts on Ethylene Biosynthesis and Phytochrome Signaling by Distinct Mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    HYTOCHROME-INTERACTING FACTOR5 (PIF5), a basic helix-loop-helix transcription factor, interacts specifically with the photoactivated form of phytochrome B (phyB). Here, we report that dark-grown Arabidopsis thaliana seedlings overexpressing PIF5 (PIF5-OX) exhibit exaggerated apical hooks and short h...

  7. The effects of phytochrome-mediated light signals on the developmental acquisition of photoperiod sensitivity in rice

    PubMed Central

    Yoshitake, Yoshihiro; Yokoo, Takayuki; Saito, Hiroki; Tsukiyama, Takuji; Quan, Xu; Zikihara, Kazunori; Katsura, Hitomi; Tokutomi, Satoru; Aboshi, Takako; Mori, Naoki; Inoue, Hiromo; Nishida, Hidetaka; Kohchi, Takayuki; Teraishi, Masayoshi; Okumoto, Yutaka; Tanisaka, Takatoshi

    2015-01-01

    Plants commonly rely on photoperiodism to control flowering time. Rice development before floral initiation is divided into two successive phases: the basic vegetative growth phase (BVP, photoperiod-insensitive phase) and the photoperiod-sensitive phase (PSP). The mechanism responsible for the transition of rice plants into their photoperiod-sensitive state remains elusive. Here, we show that se13, a mutation detected in the extremely early flowering mutant X61 is a nonsense mutant gene of OsHY2, which encodes phytochromobilin (PΦB) synthase, as evidenced by spectrometric and photomorphogenic analyses. We demonstrated that some flowering time and circadian clock genes harbor different expression profiles in BVP as opposed to PSP, and that this phenomenon is chiefly caused by different phytochrome-mediated light signal requirements: in BVP, phytochrome-mediated light signals directly suppress Ehd2, while in PSP, phytochrome-mediated light signals activate Hd1 and Ghd7 expression through the circadian clock genes' expression. These findings indicate that light receptivity through the phytochromes is different between two distinct developmental phases corresponding to the BVP and PSP in the rice flowering process. Our results suggest that these differences might be involved in the acquisition of photoperiod sensitivity in rice. PMID:25573482

  8. PHYTOCHROME C plays a major role in the acceleration of wheat flowering under long-day photoperiod

    PubMed Central

    Chen, Andrew; Li, Chengxia; Hu, Wei; Lau, Mei Yee; Lin, Huiqiong; Rockwell, Nathan C.; Martin, Shelley S.; Jernstedt, Judith A.; Lagarias, J. Clark; Dubcovsky, Jorge

    2014-01-01

    Phytochromes are dimeric proteins that function as red and far-red light sensors influencing nearly every phase of the plant life cycle. Of the three major phytochrome families found in flowering plants, PHYTOCHROME C (PHYC) is the least understood. In Arabidopsis and rice, PHYC is unstable and functionally inactive unless it heterodimerizes with another phytochrome. However, when expressed in an Arabidopsis phy-null mutant, wheat PHYC forms signaling active homodimers that translocate into the nucleus in red light to mediate photomorphogenic responses. Tetraploid wheat plants homozygous for loss-of-function mutations in all PHYC copies (phyCAB) flower on average 108 d later than wild-type plants under long days but only 19 d later under short days, indicating a strong interaction between PHYC and photoperiod. This interaction is further supported by the drastic down-regulation in the phyCAB mutant of the central photoperiod gene PHOTOPERIOD 1 (PPD1) and its downstream target FLOWERING LOCUS T1, which are required for the promotion of flowering under long days. These results implicate light-dependent, PHYC-mediated activation of PPD1 expression in the acceleration of wheat flowering under inductive long days. Plants homozygous for the phyCAB mutations also show altered profiles of circadian clock and clock-output genes, which may also contribute to the observed differences in heading time. Our results highlight important differences in the photoperiod pathways of the temperate grasses with those of well-studied model plant species. PMID:24961368

  9. Phytochrome signaling in green Arabidopsis seedlings: impact assessment of a mutually-negative phyB-PIF feedback loop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reversibly red (R)-far-red (FR)-light-responsive phytochrome (phy) photosensory system initiates both the deetiolation process in dark-germinated seedlings upon first exposure to light, and the shade-avoidance process in fully-deetiolated seedlings upon exposure to vegetational shade. The intra...

  10. Sequential and coordinated action of phytochromes A and B during Arabidopsis stem growth revealed by kinetic analysis

    NASA Technical Reports Server (NTRS)

    Parks, B. M.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Photoreceptor proteins of the phytochrome family mediate light-induced inhibition of stem (hypocotyl) elongation during the development of photoautotrophy in seedlings. Analyses of overt mutant phenotypes have established the importance of phytochromes A and B (phyA and phyB) in this developmental process, but kinetic information that would augment emerging molecular models of phytochrome signal transduction is absent. We have addressed this deficiency by genetically dissecting phytochrome-response kinetics, after having solved the technical issues that previously limited growth studies of small Arabidopsis seedlings. We show here, with resolution on the order of minutes, that phyA initiated hypocotyl growth inhibition upon the onset of continuous red light. This primary contribution of phyA began to decrease after 3 hr of irradiation, the same time at which immunochemically detectable phyA disappeared and an exclusively phyB-dependent phase of inhibition began. The sequential and coordinated actions of phyA and phyB in red light were not observed in far-red light, which inhibited growth persistently through an exclusively phyA-mediated pathway.

  11. Rice type I phytochrome regulates hypocotyl elongation in transgenic tobacco seedlings.

    PubMed

    Nagatani, A; Kay, S A; Deak, M; Chua, N H; Furuya, M

    1991-06-15

    We have examined the biological activity of rice type I phytochrome (PI) in transgenic tobacco seedlings. The progeny of four independent transformants that expressed the rice PI gene segregated 3:1 for shorter hypocotyl length under dim white light (0.04 W/m2). By contrast, this phenotype was not observed either in the dark or under white light at higher intensity (6.0 W/m2). This suggests that the phenotype is dependent not only on light but also on light intensity. The increased light sensitivity cosegregated with the kanamycin-resistance marker as well as with the rice PI polypeptides, indicating that this phenotype is directly related to the expression of the transgene. The transgenic plants showing short hypocotyls exhibited a reduced growth rate throughout the elongation period, and the resulting shorter hypocotyl length was attributable to shorter epidermal cell length but not to reduced cell number. Furthermore, successive pulse irradiations with red light elicited short hypocotyls similar to those obtained under dim white light, and the effect was reversed by immediate far-red light treatment, providing a direct indication that the phenotype is caused by biologically active rice PI. Therefore, the far-red-absorbing form of the introduced rice PI appears to regulate the hypocotyl length of the transgenic tobacco plants through endogenous signal-transduction pathways. This assay system will be a powerful tool for testing the biological activity of introduced phytochrome molecules. PMID:11607192

  12. Evolutionary Studies Illuminate the Structural-Functional Model of Plant Phytochromes[W

    PubMed Central

    Mathews, Sarah

    2010-01-01

    A synthesis of insights from functional and evolutionary studies reveals how the phytochrome photoreceptor system has evolved to impart both stability and flexibility. Phytochromes in seed plants diverged into three major forms, phyA, phyB, and phyC, very early in the history of seed plants. Two additional forms, phyE and phyD, are restricted to flowering plants and Brassicaceae, respectively. While phyC, D, and E are absent from at least some taxa, phyA and phyB are present in all sampled seed plants and are the principal mediators of red/far-red–induced responses. Conversely, phyC-E apparently function in concert with phyB and, where present, expand the repertoire of phyB activities. Despite major advances, aspects of the structural-functional models for these photoreceptors remain elusive. Comparative sequence analyses expand the array of locus-specific mutant alleles for analysis by revealing historic mutations that occurred during gene lineage splitting and divergence. With insights from crystallographic data, a subset of these mutants can be chosen for functional studies to test their importance and determine the molecular mechanism by which they might impact light perception and signaling. In the case of gene families, where redundancy hinders isolation of some proportion of the relevant mutants, the approach may be particularly useful. PMID:20118225

  13. Circadian clock adjustment to plant iron status depends on chloroplast and phytochrome function

    PubMed Central

    Salomé, Patrice A; Oliva, Michele; Weigel, Detlef; Krämer, Ute

    2013-01-01

    Plant chloroplasts are not only the main cellular location for storage of elemental iron (Fe), but also the main site for Fe, which is incorporated into chlorophyll, haem and the photosynthetic machinery. How plants measure internal Fe levels is unknown. We describe here a new Fe-dependent response, a change in the period of the circadian clock. In Arabidopsis, the period lengthens when Fe becomes limiting, and gradually shortens as external Fe levels increase. Etiolated seedlings or light-grown plants treated with plastid translation inhibitors do not respond to changes in Fe supply, pointing to developed chloroplasts as central hubs for circadian Fe sensing. Phytochrome-deficient mutants maintain a short period even under Fe deficiency, stressing the role of early light signalling in coupling the clock to Fe responses. Further mutant and pharmacological analyses suggest that known players in plastid-to-nucleus signalling do not directly participate in Fe sensing. We propose that the sensor governing circadian Fe responses defines a new retrograde pathway that involves a plastid-encoded protein that depends on phytochromes and the functional state of chloroplasts. PMID:23241948

  14. Holophytochrome-Interacting Proteins in Physcomitrella: Putative Actors in Phytochrome Cytoplasmic Signaling

    PubMed Central

    Ermert, Anna Lena; Mailliet, Katharina; Hughes, Jon

    2016-01-01

    Phytochromes are the principle photoreceptors in light-regulated plant development, primarily acting via translocation of the light-activated photoreceptor into the nucleus and subsequent gene regulation. However, several independent lines of evidence indicate unambiguously that an additional cytoplasmic signaling mechanism must exist. Directional responses in filament tip cells of the moss Physcomitrella patens are steered by phy4 which has been shown to interact physically with the blue light receptor phototropin at the plasma membrane. This complex might perceive and transduce vectorial information leading to cytoskeleton reorganization and finally a directional growth response. We developed yeast two-hybrid procedures using photochemically functional, full-length phy4 as bait in Physcomitrella cDNA library screens and growth assays under different light conditions, revealing Pfr-dependent interactions possibly associated with phytochrome cytoplasmic signaling. Candidate proteins were then expressed in planta with fluorescent protein tags to determine their intracellular localization in darkness and red light. Of 14 candidates, 12 were confirmed to interact with phy4 in planta using bimolecular fluorescence complementation. We also used database information to study their expression patterns relative to those of phy4. We discuss the likely functional characteristics of these holophytochrome-interacting proteins (HIP’s) and their possible roles in signaling. PMID:27242820

  15. Increased Phytochrome B Alleviates Density Effects on Tuber Yield of Field Potato Crops1

    PubMed Central

    Boccalandro, Hernán E.; Ploschuk, Edmundo L.; Yanovsky, Marcelo J.; Sánchez, Rodolfo A.; Gatz, Christiane; Casal, Jorge J.

    2003-01-01

    The possibility that reduced photomorphogenic responses could increase field crop yield has been suggested often, but experimental support is still lacking. Here, we report that ectopic expression of the Arabidopsis PHYB (phytochrome B) gene, a photoreceptor involved in detecting red to far-red light ratio associated with plant density, can increase tuber yield in field-grown transgenic potato (Solanum tuberosum) crops. Surprisingly, this effect was larger at very high densities, despite the intense reduction in the red to far-red light ratios and the concomitant narrowed differences in active phytochrome B levels between wild type and transgenics at these densities. Increased PHYB expression not only altered the ability of plants to respond to light signals, but they also modified the light environment itself. This combination resulted in larger effects of enhanced PHYB expression on tuber number and crop photosynthesis at high planting densities. The PHYB transgenics showed higher maximum photosynthesis in leaves of all strata of the canopy, and this effect was largely due to increased leaf stomatal conductance. We propose that enhanced PHYB expression could be used in breeding programs to shift optimum planting densities to higher levels. PMID:14605224

  16. Initial characterization of shade avoidance response suggests functional diversity between Populus phytochrome B genes.

    SciTech Connect

    Karve, Abhijit A; Weston, David; Jawdy, Sara; Gunter, Lee E; Allen, Sara M; Yang, Xiaohan; Wullschleger, Stan D; Tuskan, Gerald A

    2012-01-01

    Shade avoidance signaling in higher plants involves perception of the incident red/far-red (R/FR) light by phytochromes and the modulation of downstream transcriptional networks to regulate developmental plasticity in relation to heterogeneous light environments. In this study, we characterized the expression and functional features of Populus phytochrome (PHY) gene family as well as the transcriptional responses of Populus to the changes in R/FR light. Expression data indicated that PHYA is the predominant PHY in the dark grown Populus seedling whereas PHYBs are most abundant in mature tissue types. Out of three Populus PHYs, PHYA is light labile and localized to cytosol in dark whereas both PHYB1 and PHYB2 are light stable and are localized to nucleus in mesophyll protoplasts. When expressed in Arabidopsis, PHYB1 rescued Arabidopsis phyB mutant phenotype whereas PHYB2 did not, suggesting functional diversification between these two gene family members. However, phenotypes of transgenic Populus lines with altered expression of PHYB1, PHYB2 or both and the expression of candidate shade response genes in these transgenic lines suggest that PHYB1 and PHYB2 may have distinct yet overlapping functions. The RNAseq results and analysis of Populus exposed to enriched-FR light indicate that genes associated in cell wall modification and brassinosteroid signaling were induced under far red light. Overall our data indicate that Populus transcriptional responses are at least partially conserved with Arabidopsis.

  17. Phytochrome B and REVEILLE1/2-mediated signalling controls seed dormancy and germination in Arabidopsis.

    PubMed

    Jiang, Zhimin; Xu, Gang; Jing, Yanjun; Tang, Weijiang; Lin, Rongcheng

    2016-01-01

    Seeds maintain a dormant state to withstand adverse conditions and germinate when conditions become favourable to give rise to a new generation of flowering plants. Seed dormancy and germination are tightly controlled by internal and external signals. Although phytochrome photoreceptors are proposed to regulate primary seed dormancy, the underlying molecular mechanism remains elusive. Here we show that the REVEILLE1 (RVE1) and RVE2 transcription factors promote primary seed dormancy and repress red/far-red-light-reversible germination downstream of phytochrome B (phyB) in Arabidopsis thaliana. RVE1 and RVE2 expression is downregulated after imbibition and by phyB. RVE1 directly binds to the promoter of GIBBERELLIN 3-OXIDASE 2, inhibits its transcription and thus suppresses the biosynthesis of bioactive gibberellins. In addition, DELAY OF GERMINATION 1 also acts downstream of phyB. This study identifies a signalling pathway that integrates environmental light input with internal factors to control both seed dormancy and germination. PMID:27506149

  18. Water content and the conversion of phytochrome regulation of lettuce dormancy

    NASA Technical Reports Server (NTRS)

    Vertucci, C. W.; Vertucci, F. A.; Leopold, A. C.

    1987-01-01

    In an effort to determine which biological reactions can occur in relation to the water content of seeds, the regulation of lettuce seed dormancy by red and far red light was determined at various hydration levels. Far red light had an inhibiting effect on germination for seeds at all moisture contents from 4 to 32% water. Germination was progressively stimulated by red light as seed hydration increased from 8 to 15%, and reached a maximum at moisture contents above 18%. Red light was ineffective at moisture contents below 8%. Seeds that had been stimulated by red light and subsequently dried lost the enhanced germinability if stored at moisture contents above 8%. The contrast between the presumed photoconversion of phytochrome far red-absorbing (Pfr) to (Pr) occurring at any moisture content and the reverse reaction occurring only if the seed moisture content is greater than 8% may be explained on the basis of the existence of unstable intermediates in the Pr to Pfr conversion. Our results suggest that the initial photoreaction involved in phytochrome conversion is relatively independent of water content, while the subsequent partial reactions become increasingly facilitated as water content increases from 8 to 18%.

  19. Modulation of oat mitochondrial ATPase activity by CA2+ and phytochrome.

    PubMed Central

    Serlin, B S; Sopory, S K; Roux, S J

    1984-01-01

    The activity of a Mg(2+)-dependent ATPase present in highly purified preparations of Avena mitochondria was photoreversibly modulated by red/far-red light treatments. These results were obtained either with mitochondria isolated from plants irradiated with white light prior to the extraction or with mitochondria isolated from unirradiated plants only when purified phytochrome was exogenously added to the reaction mixture. Red light, which converts phytochrome to the far red-absorbing form (Pfr) depressed the ATPase activity, and far-red light reversed this effect. Addition of exogenous CaCl2 also depressed the ATPase activity, and the kinetics of inhibition were similar to the kinetics of the Pfr effects on the ATPase. The calcium chelator, ethyleneglycol-bis(beta-amino-ethyl ether)-N,N' -tetraacetic acid, blocked the effects of both CaCl2 and Pfr on the ATPase. These results are consistent with the interpretation that Pfr promotes a release of Ca2+ from the mitochondrial matrix, thereby inducing an increase in the concentration of intermembranal and extramitochondrial Ca2+. Images Fig. 7 PMID:11541960

  20. Circadian Clock-Regulated Expression of Phytochrome and Cryptochrome Genes in Arabidopsis1

    PubMed Central

    Tóth, Réka; Kevei, Éva; Hall, Anthony; Millar, Andrew J.; Nagy, Ferenc; Kozma-Bognár, László

    2001-01-01

    Many physiological and biochemical processes in plants exhibit endogenous rhythms with a period of about 24 h. Endogenous oscillators called circadian clocks regulate these rhythms. The circadian clocks are synchronized to the periodic environmental changes (e.g. day/night cycles) by specific stimuli; among these, the most important is the light. Photoreceptors, phytochromes, and cryptochromes are involved in setting the clock by transducing the light signal to the central oscillator. In this work, we analyzed the spatial, temporal, and long-term light-regulated expression patterns of the Arabidopsis phytochrome (PHYA to PHYE) and cryptochrome (CRY1 and CRY2) promoters fused to the luciferase (LUC+) reporter gene. The results revealed new details of the tissue-specific expression and light regulation of the PHYC and CRY1 and 2 promoters. More importantly, the data obtained demonstrate that the activities of the promoter::LUC+ constructs, with the exception of PHYC::LUC+, display circadian oscillations under constant conditions. In addition, it is shown by measuring the mRNA abundance of PHY and CRY genes under constant light conditions that the circadian control is also maintained at the level of mRNA accumulation. These observations indicate that the plant circadian clock controls the expression of these photoreceptors, revealing the formation of a new regulatory loop that could modulate gating and resetting of the circadian clock. PMID:11743105

  1. Phytochromes play a role in phototropism and gravitropism in Arabidopsis roots

    NASA Technical Reports Server (NTRS)

    Correll, Melanie J.; Coveney, Katrina M.; Raines, Steven V.; Mullen, Jack L.; Hangarter, Roger P.; Kiss, John Z.

    2003-01-01

    Phototropism as well as gravitropism plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. Phytochrome A (phyA) and phyB mediate the positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. In blue-light-based negative phototropism, phyA and phyAB (but not phyB) were inhibited in the response relative to the WT. In root gravitropism, phyB and phyAB (but not phyA) were inhibited in the response compared to the WT. The differences observed in tropistic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in roots and that phytochrome plays a key role in plant development by integrating multiple environmental stimuli. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  2. Phytochrome B and REVEILLE1/2-mediated signalling controls seed dormancy and germination in Arabidopsis

    PubMed Central

    Jiang, Zhimin; Xu, Gang; Jing, Yanjun; Tang, Weijiang; Lin, Rongcheng

    2016-01-01

    Seeds maintain a dormant state to withstand adverse conditions and germinate when conditions become favourable to give rise to a new generation of flowering plants. Seed dormancy and germination are tightly controlled by internal and external signals. Although phytochrome photoreceptors are proposed to regulate primary seed dormancy, the underlying molecular mechanism remains elusive. Here we show that the REVEILLE1 (RVE1) and RVE2 transcription factors promote primary seed dormancy and repress red/far-red-light-reversible germination downstream of phytochrome B (phyB) in Arabidopsis thaliana. RVE1 and RVE2 expression is downregulated after imbibition and by phyB. RVE1 directly binds to the promoter of GIBBERELLIN 3-OXIDASE 2, inhibits its transcription and thus suppresses the biosynthesis of bioactive gibberellins. In addition, DELAY OF GERMINATION 1 also acts downstream of phyB. This study identifies a signalling pathway that integrates environmental light input with internal factors to control both seed dormancy and germination. PMID:27506149

  3. Microinjection of heme oxygenase genes rescues phytochrome-chromophore-deficient mutants of the moss Ceratodon purpureus.

    PubMed

    Brücker, G; Zeidler, M; Kohchi, T; Hartmann, E; Lamparter, T

    2000-03-01

    In protonemal tip cells of the moss Ceratodon purpureus (Hedw.) Brid., phototropism and chlorophyll accumulation are regulated by the photoreceptor phytochrome. The mutant ptr116 lacks both responses as a result of a defect in the biosynthesis of phytochromobilin, the chromophore of phytochrome, at the point of biliverdin formation. The rescue of the phototropic response and of chlorophyll synthesis were tested by injecting different substances into tip cells of ptr116. Microinjection was first optimised with the use of fluorescent dyes and an expression plasmid containing a green fluorescent protein (GFP) gene. Injected phycocyanobilin, which substitutes for phytochromobilin, rescued both the phototropic response and light-induced chlorophyll accumulation in ptr116. The same results were obtained when expression plasmids with heme oxygenase genes of rat (HO-1) and Arabidopsis thaliana (L.) Heynh. (HY1) were injected. Heme oxygenase catalyses the conversion of heme into biliverdin. Whereas HY1 has a plastid target sequence and is presumably transferred to plastids, HO-1 is proposed to be cytosolic. The data show that ptr116 lacks heme oxygenase enzyme activity and indicate that heme oxygenases of various origin are active in Ceratodon bilin synthesis. In addition, it can be inferred from the data that the intracellular localisation of the expressed heme oxygenase is not important since the plastid enzyme can be replaced by a cytosolic one. PMID:10787045

  4. Novel phytochrome sequences in Arabidopsis thaliana: Structure, evolution, and differential expression of a plant regulatory photoreceptor family

    SciTech Connect

    Sharrock, R.A.; Quail, P.H. )

    1989-01-01

    Phytochrome is a plant regulatory photoreceptor that mediates red light effects on a wide variety of physiological and molecular responses. DNA blot analysis indicates that the Arabidopsis thaliana genome contains four to five phytochrome-related gene sequences. The authors have isolated and sequenced cDNA clones corresponding to three of these genes and have deduced the amino acid sequence of the full-length polypeptide encoded in each case. One of these proteins (phyA) shows 65-80% amino acid sequence identity with the major, etiolated-tissue phytochrome apoproteins described previously in other plant species. The other two polypeptides (phyB and phyC) are unique in that they have low sequence identity with each other, with phyA, and with all previously described phytochromes. The phyA, phyB, and phyC proteins are of similar molecular mass, have related hydropathic profiles, and contain a conserved chromophore attachment region. However, the sequence comparison data indicate that the three phy genes diverged early in plant evolution, well before the divergence of the two major groups of angiosperms, the monocots and dicots. The steady-state level of the phyA transcript is high in dark-grown A. thaliana seedlings and is down-regulated by light. In contrast, the phyB and phyC transcripts are present at lower levels and are not strongly light-regulated. These findings indicate that the red/far red light-responsive phytochrome photoreceptor system in A. thaliana, and perhaps in all higher plants, consists of a family of chromoproteins that are heterogeneous in structure and regulation.

  5. GafChromic EBT film dosimetry with flatbed CCD scanner: A novel background correction method and full dose uncertainty analysis

    SciTech Connect

    Saur, Sigrun; Frengen, Jomar

    2008-07-15

    Film dosimetry using radiochromic EBT film in combination with a flatbed charge coupled device scanner is a useful method both for two-dimensional verification of intensity-modulated radiation treatment plans and for general quality assurance of treatment planning systems and linear accelerators. Unfortunately, the response over the scanner area is nonuniform, and when not corrected for, this results in a systematic error in the measured dose which is both dose and position dependent. In this study a novel method for background correction is presented. The method is based on the subtraction of a correction matrix, a matrix that is based on scans of films that are irradiated to nine dose levels in the range 0.08-2.93 Gy. Because the response of the film is dependent on the film's orientation with respect to the scanner, correction matrices for both landscape oriented and portrait oriented scans were made. In addition to the background correction method, a full dose uncertainty analysis of the film dosimetry procedure was performed. This analysis takes into account the fit uncertainty of the calibration curve, the variation in response for different film sheets, the nonuniformity after background correction, and the noise in the scanned films. The film analysis was performed for film pieces of size 16x16 cm, all with the same lot number, and all irradiations were done perpendicular onto the films. The results show that the 2-sigma dose uncertainty at 2 Gy is about 5% and 3.5% for landscape and portrait scans, respectively. The uncertainty gradually increases as the dose decreases, but at 1 Gy the 2-sigma dose uncertainty is still as good as 6% and 4% for landscape and portrait scans, respectively. The study shows that film dosimetry using GafChromic EBT film, an Epson Expression 1680 Professional scanner and a dedicated background correction technique gives precise and accurate results. For the purpose of dosimetric verification, the calculated dose distribution can

  6. Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei

    NASA Technical Reports Server (NTRS)

    Clark, G. B.; Memon, A. R.; Thompson, G. A. Jr; Roux, S. J.

    1993-01-01

    Three GTP-binding proteins with apparent molecular masses of 27, 28 and 30 kDa have been detected in isolated nuclei of etiolated pea plumules. After LDS-PAGE and transfer to nitrocellulose these proteins bind [32P]GTP in the presence of excess ATP, suggesting that they are monomeric G proteins. When nuclei are disrupted, three proteins co-purify with the nuclear envelope fraction and are highly enriched in this fraction. The level of [32P]GTP-binding for all three protein bands is significantly increased when harvested pea plumules are irradiated by red light, and this effect is reversed by far-red light. The results indicate that GTP-binding activity associated with the nuclear envelope of plant cells is photoreversibly regulated by the pigment phytochrome.

  7. PHYTOCHROME C is an essential light receptor for photoperiodic flowering in the temperate grass, Brachypodium distachyon.

    PubMed

    Woods, Daniel P; Ream, Thomas S; Minevich, Gregory; Hobert, Oliver; Amasino, Richard M

    2014-09-01

    We show that in the temperate grass, Brachypodium distachyon, PHYTOCHROME C (PHYC), is necessary for photoperiodic flowering. In loss-of-function phyC mutants, flowering is extremely delayed in inductive photoperiods. PHYC was identified as the causative locus by utilizing a mapping by sequencing pipeline (Cloudmap) optimized for identification of induced mutations in Brachypodium. In phyC mutants the expression of Brachypodium homologs of key flowering time genes in the photoperiod pathway such as GIGANTEA (GI), PHOTOPERIOD 1 (PPD1/PRR37), CONSTANS (CO), and florigen/FT are greatly attenuated. PHYC also controls the day-length dependence of leaf size as the effect of day length on leaf size is abolished in phyC mutants. The control of genes upstream of florigen production by PHYC was likely to have been a key feature of the evolution of a long-day flowering response in temperate pooid grasses. PMID:25023399

  8. Rice Phytochrome B (OsPhyB) Negatively Regulates Dark- and Starvation-Induced Leaf Senescence

    PubMed Central

    Piao, Weilan; Kim, Eun-Young; Han, Su-Hyun; Sakuraba, Yasuhito; Paek, Nam-Chon

    2015-01-01

    Light regulates leaf senescence and light deprivation causes large-scale transcriptional reprogramming to dismantle cellular components and remobilize nutrients to sink organs, such as seeds and storage tissue. We recently reported that in Arabidopsis (Arabidopsis thaliana), Phytochrome-Interacting Factor4 (PIF4) and PIF5 promote dark-induced senescence and natural senescence by directly activating the expression of typical senescence-associated genes (SAGs), including ORESARA1 (ORE1) and ETHYLENE INSENSITIVE3 (EIN3). In contrast, phytochrome B (PhyB) inhibits leaf senescence by repressing PIF4 and PIF5 at the post-translational level. Although we found how red light signaling represses leaf senescence in Arabidopsis, it remains unknown whether PhyB and/or PhyA are involved in leaf senescence in rice (Oryza sativa). Here we show that rice phyB knockout mutants (osphyB-1, -2, and -3) exhibited an early senescence phenotype during dark-induced senescence, but an osphyA knockout mutant (osphyA-3) senesced normally. The RT-qPCR analysis revealed that several senescence-associated genes, including OsORE1 and OsEIN3, were significantly up-regulated in osphyB-2 mutants, indicating that OsPhyB also inhibits leaf senescence, like Arabidopsis PhyB. We also found that leaf segments of osphyB-2 senesced faster even under light conditions. Supplementation with nitrogen compounds, such as KNO3 and NH4NO3, rescued the early senescence phenotype of osphyB-2, indicating that starvation is one of the major signaling factors in the OsPhyB-dependent leaf senescence pathway. PMID:27135344

  9. Phytochrome B Promotes Branching in Arabidopsis by Suppressing Auxin Signaling1[W][OPEN

    PubMed Central

    Krishna Reddy, Srirama; Finlayson, Scott A.

    2014-01-01

    Many plants respond to competition signals generated by neighbors by evoking the shade avoidance syndrome, including increased main stem elongation and reduced branching. Vegetation-induced reduction in the red light:far-red light ratio provides a competition signal sensed by phytochromes. Plants deficient in phytochrome B (phyB) exhibit a constitutive shade avoidance syndrome including reduced branching. Because auxin in the polar auxin transport stream (PATS) inhibits axillary bud outgrowth, its role in regulating the phyB branching phenotype was tested. Removing the main shoot PATS auxin source by decapitation or chemically inhibiting the PATS strongly stimulated branching in Arabidopsis (Arabidopsis thaliana) deficient in phyB, but had a modest effect in the wild type. Whereas indole-3-acetic acid (IAA) levels were elevated in young phyB seedlings, there was less IAA in mature stems compared with the wild type. A split plate assay of bud outgrowth kinetics indicated that low auxin levels inhibited phyB buds more than the wild type. Because the auxin response could be a result of either the auxin signaling status or the bud’s ability to export auxin into the main shoot PATS, both parameters were assessed. Main shoots of phyB had less absolute auxin transport capacity compared with the wild type, but equal or greater capacity when based on the relative amounts of native IAA in the stems. Thus, auxin transport capacity was unlikely to restrict branching. Both shoots of young phyB seedlings and mature stem segments showed elevated expression of auxin-responsive genes and expression was further increased by auxin treatment, suggesting that phyB suppresses auxin signaling to promote branching. PMID:24492336

  10. Two ground state isoforms and a chromophore D-ring photoflip triggering extensive intramolecular changes in a canonical phytochrome

    PubMed Central

    Song, Chen; Psakis, Georgios; Lang, Christina; Mailliet, Jo; Gärtner, Wolfgang; Hughes, Jon; Matysik, Jörg

    2011-01-01

    Phytochrome photoreceptors mediate light responses in plants and in many microorganisms. Here we report studies using 1H–13C magic-angle spinning NMR spectroscopy of the sensor module of cyanobacterial phytochrome Cph1. Two isoforms of the red-light absorbing Pr ground state are identified. Conclusive evidence that photoisomerization occurs at the C15-methine bridge leading to a β-facial disposition of the ring D is presented. In the far-red-light absorbing Pfr state, strong hydrogen-bonding interactions of the D-ring carbonyl group to Tyr-263 and of N24 to Asp-207 hold the chromophore in a tensed conformation. Signaling is triggered when Asp-207 is released from its salt bridge to Arg-472, probably inducing conformational changes in the tongue region. A second signal route is initiated by partner swapping of the B-ring propionate between Arg-254 and Arg-222. PMID:21325055

  11. Photophysiology of the Elongated Internode (ein) Mutant of Brassica rapa: ein Mutant Lacks a Detectable Phytochrome B-Like Polypeptide.

    PubMed

    Devlin, P F; Rood, S B; Somers, D E; Quail, P H; Whitelam, G C

    1992-11-01

    Several phytochrome-controlled processes have been examined in etiolated and light-grown seedlings of a normal genotype and the elongated internode (ein/ein) mutant of rapid-cycling Brassica rapa. Although etiolated ein seedlings displayed normal sensitivity to prolonged far-red light with respect to inhibition of hypocotyl elongation, expansion of cotyledons, and synthesis of anthocyanin, they displayed reduced sensitivity to prolonged red light for all three of these deetiolation responses. In contrast to normal seedlings, light-grown ein seedlings did not show a growth promotion in response to end-of-day far-red irradiation. Additionally, whereas the first internode of light-grown normal seedlings showed a marked increase in elongation in response to reduced ratio of red to far-red light, ein seedlings showed only a small elongation response. When blots of protein extracts from etiolated and light-treated ein and normal seedlings were probed with monoclonal antibody to phytochrome A, an immunostaining band at about 120 kD was observed for both extracts. The immunostaining intensity of this band was substantially reduced for extracts of light-treated normal and ein seedlings. A mixture of three monoclonal antibodies directed against phytochrome B from Arabidopsis thaliana immunostained a band at about 120 kD for extracts of etiolated and light-treated normal seedlings. This band was undetectable in extracts of ein seedlings. We propose that ein is a photoreceptor mutant that is deficient in a light-stable phytochrome B-like species. PMID:16653143

  12. PHYTOCHROME OVERVIEW

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants utilize light not only for photosynthesis but also as environmental signals. They are capable of perceiving wavelength, intensity, direction, duration, and other attributes of light to perform appropriate physiological and developmental changes. This volume presents overviews of and the lates...

  13. PHYTOCHROME SIGNALING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal vision, the flowering of plants, and light-seeking movement of microbes are all examples of light-controlled behavior mediated by photosensory receptors. Upon illumination, these specialized pigment-containing proteins trigger a physiological response. Understanding their molecular function i...

  14. Phytochrome-controlled extension growth of Avena sativa L. seedlings : I. Kinetic characterization of mesocotyl, coleoptile, and leaf responses.

    PubMed

    Schopfer, P; Fidelak, K H; Schäfer, E

    1982-05-01

    The effects of continuous red and far-red light and of brief light pulses on the growth kinetics of the mesocotyl, coleoptile, and primary leaf of intact oat (Avena sativa L.) seedlings were investigated. Mesocotyl lengthening is strongly inhibited, even by very small amounts of Pfr, the far-red light absorbing form of phytochrome (e.g., by [Pfr]≈0.1% of total phytochrome, established by a 756-nm light pulse). Coleoptile growth is at first promoted by Pfr, but apparently inhibited later. This inhibition is correlated in time with the rupturing of the coleoptile tip by the primary leaf, the growth of which is also promoted by phytochrome. The growth responses of all three seedling organs are fully reversible by far-red light. The apparent lack of photoreversibility observed by some previous investigators of the mesocotyl inhibition can be explained by an extremely high sensitivity to Pfr. Experiments with different seedling parts failed to demonstrate any further obvious interorgan relationship in the light-mediated growth responses of the mesocotyl and coleoptile. The organspecific growth kinetics, don't appear to be influenced by Pfr destruction. Following an irradiation, the growth responses are quantitatively determined by the level of Pfr established at the onset of darkness rather than by the actual Pfr level present during the growth period. PMID:24276065

  15. Phytochrome induces changes in the immunodetectable level of a wall peroxidase that precede growth changes in maize seedlings

    NASA Technical Reports Server (NTRS)

    Kim, S. H.; Shinkle, J. R.; Roux, S. J.

    1989-01-01

    The regulatory pigment phytochrome induces rapid and opposite growth changes in different regions of etiolated maize seedlings: it stimulates the elongation rate of coleoptiles and inhibits that of mesocotyls. As measured by a quantitative immunoassay, phytochrome also promotes rapid and opposite changes in the extractable content of a Mr 98,000 anionic isoperoxidase in the cell walls of these same organs: it induces a decrease of this peroxidase in coleoptiles and an increase in mesocotyls. The peroxidase changes precede the growth changes. As measured by video stereomicroscopy or a position transducer, red light (R), which photoactivates phytochrome, stimulates coleoptile elongation with a lag of about 15-20 min and suppresses mesocotyl growth with a lag of 45-50 min. R also induces a 50% reduction in the extractable level of the anionic peroxidase in coleoptile walls in less than 10 min and a 40% increase in the level of this peroxidase in mesocotyl walls within 30 min. Ascorbic acid, an inhibitor of peroxidase activity, blocks the effects of R on mesocotyl section growth. These results are relevant to hypotheses that postulate that certain wall peroxidases can participate in light-induced changes in growth rate by their effects on wall extensibility.

  16. A Temporarily Red Light-Insensitive Mutant of Tomato Lacks a Light-Stable, B-Like Phytochrome.

    PubMed Central

    Van Tuinen, A.; Kerckhoffs, LHJ.; Nagatani, A.; Kendrick, R. E.; Koornneef, M.

    1995-01-01

    We have selected four recessive mutants in tomato (Lycopersicon esculentum Mill.) that, under continuous red light (R), have long hypocotyls and small cotyledons compared to wild type (WT), a phenotype typical of phytochrome B (phyB) mutants of other species. These mutants, which are allelic, are only insensitive to R during the first 2 days upon transition from darkness to R, and therefore we propose the gene symbol tri (temporarily red light insensitive). White light-grown mutant plants have a more elongated growth habit than that of the WT. An immunochemically and spectrophotometrically detectable phyB-like polypeptide detectable in the WT is absent or below detection limits in the tri1 mutant. In contrast to the absence of an elongation growth response to far-red light (FR) given at the end of the daily photoperiod (EODFR) in all phyB-deficient mutants so far characterized, the tri1 mutant responds to EODFR treatment. The tri1 mutant also shows a strong response to supplementary daytime far-red light. We propose that the phyB-like phytochrome deficient in the tri mutants plays a major role during de-etiolation and that other light-stable phytochromes can regulate the EODFR and shade-avoidance responses in tomato. PMID:12228517

  17. Diatom Phytochromes Reveal the Existence of Far-Red-Light-Based Sensing in the Ocean[OPEN

    PubMed Central

    Enomoto, Gen; Bouly, Jean-Pierre; Thaler, Michael; Malviya, Shruti; Bernardes, Juliana Silva; Rappaport, Fabrice; Gentili, Bernard; Huysman, Marie J.J.; Carbone, Alessandra; Bowler, Chris; Ikeuchi, Masahiko; Falciatore, Angela

    2016-01-01

    The absorption of visible light in aquatic environments has led to the common assumption that aquatic organisms sense and adapt to penetrative blue/green light wavelengths but show little or no response to the more attenuated red/far-red wavelengths. Here, we show that two marine diatom species, Phaeodactylum tricornutum and Thalassiosira pseudonana, possess a bona fide red/far-red light sensing phytochrome (DPH) that uses biliverdin as a chromophore and displays accentuated red-shifted absorbance peaks compared with other characterized plant and algal phytochromes. Exposure to both red and far-red light causes changes in gene expression in P. tricornutum, and the responses to far-red light disappear in DPH knockout cells, demonstrating that P. tricornutum DPH mediates far-red light signaling. The identification of DPH genes in diverse diatom species widely distributed along the water column further emphasizes the ecological significance of far-red light sensing, raising questions about the sources of far-red light. Our analyses indicate that, although far-red wavelengths from sunlight are only detectable at the ocean surface, chlorophyll fluorescence and Raman scattering can generate red/far-red photons in deeper layers. This study opens up novel perspectives on phytochrome-mediated far-red light signaling in the ocean and on the light sensing and adaptive capabilities of marine phototrophs. PMID:26941092

  18. Domain Organization and Conformational Plasticity of the G Protein Effector, PDE6*

    PubMed Central

    Zhang, Zhixian; He, Feng; Constantine, Ryan; Baker, Matthew L.; Baehr, Wolfgang; Schmid, Michael F.; Wensel, Theodore G.; Agosto, Melina A.

    2015-01-01

    The cGMP phosphodiesterase of rod photoreceptor cells, PDE6, is the key effector enzyme in phototransduction. Two large catalytic subunits, PDE6α and -β, each contain one catalytic domain and two non-catalytic GAF domains, whereas two small inhibitory PDE6γ subunits allow tight regulation by the G protein transducin. The structure of holo-PDE6 in complex with the ROS-1 antibody Fab fragment was determined by cryo-electron microscopy. The ∼11 Å map revealed previously unseen features of PDE6, and each domain was readily fit with high resolution structures. A structure of PDE6 in complex with prenyl-binding protein (PrBP/δ) indicated the location of the PDE6 C-terminal prenylations. Reconstructions of complexes with Fab fragments bound to N or C termini of PDE6γ revealed that PDE6γ stretches from the catalytic domain at one end of the holoenzyme to the GAF-A domain at the other. Removal of PDE6γ caused dramatic structural rearrangements, which were reversed upon its restoration. PMID:25809480

  19. Dynamic Antagonism between Phytochromes and PIF Family Basic Helix-Loop-Helix Factors Induces Selective Reciprocal Responses to Light and Shade in a Rapidly Responsive Transcriptional Network in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants respond to shade-modulated light signals via phytochrome (phy)-induced adaptive changes, termed shade avoidance. To examine the roles of Phytochrome-Interacting basic helix-loop-helix Factors, PIF1, 3, 4, and 5, in relaying such signals to the transcriptional network, we compared the shade-re...

  20. Light-Activated Phytochrome A and B Interact with Members of the SPA Family to Promote Photomorphogenesis in Arabidopsis by Reorganizing the COP1/SPA Complex

    PubMed Central

    Sheerin, David J.; Menon, Chiara; zur Oven-Krockhaus, Sven; Enderle, Beatrix; Zhu, Ling; Johnen, Philipp; Schleifenbaum, Frank; Stierhof, York-Dieter; Hiltbrunner, Andreas

    2015-01-01

    Phytochromes function as red/far-red photoreceptors in plants and are essential for light-regulated growth and development. Photomorphogenesis, the developmental program in light, is the default program in seed plants. In dark-grown seedlings, photomorphogenic growth is suppressed by the action of the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)/SUPPRESSOR OF phyA-105 (SPA) complex, which targets positive regulators of photomorphogenic growth for degradation by the proteasome. Phytochromes inhibit the COP1/SPA complex, leading to the accumulation of transcription factors promoting photomorphogenesis; yet, the mechanism by which they inactivate COP1/SPA is still unknown. Here, we show that light-activated phytochrome A (phyA) and phytochrome B (phyB) interact with SPA1 and other SPA proteins. Fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy analyses show that SPAs and phytochromes colocalize and interact in nuclear bodies. Furthermore, light-activated phyA and phyB disrupt the interaction between COP1 and SPAs, resulting in reorganization of the COP1/SPA complex in planta. The light-induced stabilization of HFR1, a photomorphogenic factor targeted for degradation by COP1/SPA, correlates temporally with the accumulation of phyA in the nucleus and localization of phyA to nuclear bodies. Overall, these data provide a molecular mechanism for the inactivation of the COP1/SPA complex by phyA- and phyB-mediated light perception. PMID:25627066

  1. Phytochrome Control of Specific mRNA levels in Developing Pea Buds 1

    PubMed Central

    Kaufman, Lon S.; Roberts, Linda L.; Briggs, Winslow R.; Thompson, William F.

    1986-01-01

    We have examined the time course for accumulation of each of 12 different nuclear gene transcripts in pea buds after irradiating dark grown seedlings with a single pulse low fluence red light (103 micromoles per square meter delivered in 100 seconds). The 12 time courses can be grouped into four general classes. Six transcripts (including RNAs coding for the chlorophyll a/b binding protein and ribulose-1,5-bisphosphate carboxylase) accumulate at a linear rate during 24 hours in darkness following the light pulse. Two transcripts increase rapidly at first but then reach a plateau after 3 hours and remain at that level for the next 21 hours. Another two transcripts exhibit a prolonged lag period before beginning to accumulate, and do not reach significant accumulation rates until 12 to 16 hours after the red light pulse. One transcript appears to undergo a transient increase in abundance in response to red light, but this is superimposed on a background of slowly increasing abundance of this RNA in control plants. This response, unlike all the others, exhibits reciprocity failure in experiments in which the same fluence of light is given over periods ranging between 50 and 4000 seconds. We have also examined the kinetics with which each of these 12 responses escapes from phytochrome-far-red absorbing form control by attempting to reverse the induction with far-red light given at various times after the red light pulse. Again, several different patterns are apparent for the different transcripts. The time at which far red reversibility first begins to be lost, the rate at which it is lost, and the final extent of reversibility remaining after 7 hours in the dark all differ for different transcripts. In addition, we have observed that some responses retain virtually complete photoreversibility for at least 7 hours. In some cases, a comparison of the time course and escape kinetic data indicates that relatively rapid turnover of the RNA must occur. It is not clear

  2. NMR chemical shift pattern changed by ammonium sulfate precipitation in cyanobacterial phytochrome Cph1

    PubMed Central

    Song, Chen; Lang, Christina; Kopycki, Jakub; Hughes, Jon; Matysik, Jörg

    2015-01-01

    Phytochromes are dimeric biliprotein photoreceptors exhibiting characteristic red/far-red photocycles. Full-length cyanobacterial phytochrome Cph1 from Synechocystis 6803 is soluble initially but tends to aggregate in a concentration-dependent manner, hampering attempts to solve the structure using NMR and crystallization methods. Otherwise, the Cph1 sensory module (Cph1Δ2), photochemically indistinguishable from the native protein and used extensively in structural and other studies, can be purified to homogeneity in >10 mg amounts at mM concentrations quite easily. Bulk precipitation of full-length Cph1 by ammonium sulfate (AmS) was expected to allow us to produce samples for solid-state magic-angle spinning (MAS) NMR from dilute solutions before significant aggregation began. It was not clear, however, what effects the process of partial dehydration might have on the molecular structure. Here we test this by running solid-state MAS NMR experiments on AmS-precipitated Cph1Δ2 in its red-absorbing Pr state carrying uniformly 13C/15N-labeled phycocyanobilin (PCB) chromophore. 2D 13C–13C correlation experiments allowed a complete assignment of 13C responses of the chromophore. Upon precipitation, 13C chemical shifts for most of PCB carbons move upfield, in which we found major changes for C4 and C6 atoms associated with the A-ring positioning. Further, the broad spectral lines seen in the AmS 13C spectrum reflect primarily the extensive inhomogeneous broadening presumably due to an increase in the distribution of conformational states in the protein, in which less free water is available to partake in the hydration shells. Our data suggest that the effect of dehydration process indeed leads to changes of electronic structure of the bilin chromophore and a decrease in its mobility within the binding pocket, but not restricted to the protein surface. The extent of the changes induced differs from the freezing process of the solution samples routinely used in

  3. Fourier-transform resonance Raman spectroscopy of intermediates of the phytochrome photocycle.

    PubMed

    Matysik, J; Hildebrandt, P; Schlamann, W; Braslavsky, S E; Schaffner, K

    1995-08-22

    The parent states of the 124-kDa phytochrome (phy A from Avena sativa) and intermediates of its photocycle were studied by low-temperature Fourier-transform resonance Raman spectroscopy. Spectra of the primary photoproducts I700 and lumi-F and of the thermal intermediate meta-F have been obtained for the first time. The spectra of the stable photochromic forms of photochrome, Pr and Pfr, presented in this work are significantly better in signal-to-noise ratio and resolution than previously published spectra, demonstrating the distinct advantages of our experimental approach. The high spectral quality allows for the identification of subtle details of the vibrational band pattern so that the resonance Raman spectra, which have been measured from samples in H2O and D2O, constitute a solid basis for the structural analysis of the various forms of phytochrome. Notwithstanding the current uncertainty in the vibrational assignment of many resonance Raman bands, the spectral changes of the tetrapyrrole chromophore can plausibly be interpreted in terms of conformational changes at two different methine bridges, i.e., torsions around two single bonds and the E/Z isomerization of a double bond. Within the framework of this interpretation, which is based on a vibrational analysis of biliverdin dimethyl ester (Smith, K. Matysik, J., Hlldebrandt, P., & Mark, F. (1993) J. Phys. Chem. 97, 11887-11900), a consistent model is proposed to describe the molecular events in the chromophore during the photocycle. The involvement of a proton transfer in the primary photoprocess of Pr can safely be ruled out. However, previous conclusions concerning the chromophore protonation in the individual states appear premature at the present state of the vibrational assignment. In particular, the attribution of a broad band at 1100 cm-1 to the N-H out-of-plane bending of the protonated pyrrolenin nitrogen (Hildebrandt, P., Hoffmann, A., Lindemann, P., Heibel, G., Braslavsky, S. E., Schaffner, K

  4. Distance-tree analysis, distribution and co-presence of bilin- and flavin-binding prokaryotic photoreceptors for visible light.

    PubMed

    Mandalari, Carmen; Losi, Aba; Gärtner, Wolfgang

    2013-07-01

    In recent years it has become increasingly evident that prokaryotic organisms can sense and react to light stimuli via a variety of photosensory receptors and signal transduction pathways. There are two main superfamilies of non-membrane-bound photoreceptors: the bilin-binding phytochrome-related proteins based on GAF (cGMP-specific phosphodiesterases, cyanobacterial adenylate cyclases, and transcription activator FhlA) domains (bilin-GAF proteins), and the flavin-binding proteins (FL-Blues), photoperceptive thanks to their LOV (Light, Oxygen and Voltage) and BLUF (Blue Light sensing Using Flavins) domains. In this manuscript we present a comprehensive scenario of the existence of bilin-GAF, LOV and BLUF proteins in the prokaryotic world and inspect possible phylogenetic pathways, also defining novel criteria for identifying gene (and protein) sequences based on experimentally assessed photochemical events. As a whole we have inspected almost 2000 proteins recovered in 985 bacteria and 16 archaea. For LOV and BLUF proteins, ten and, respectively, twelve superconserved amino acids have been identified, which were used as criterion for selection. A similarly strict parameter cannot be applied to the more variegate family of bilin-GAF domains. The co-presence of bilin-GAF and FL-Blues occurs in 22% of the analyzed bacteria, with emphasis on the bilin-GAF/LOV co-presence in cyanobacteria and of bilin-GAF/BLUF in the Bacteroidetes/Chlorobi group. For construction of phylogeny/distance-trees we used the neighboring-method to obtain a branching pattern, limited to photosensing domains. We observed that in many cases organisms belonging to the same phylum are neighbors, but clustering mostly occurs according to the type of functional domain associated with the photosensing modules. PMID:23467500

  5. SPA1: a new genetic locus involved in phytochrome A-specific signal transduction.

    PubMed Central

    Hoecker, U; Xu, Y; Quail, P H

    1998-01-01

    To identify mutants potentially defective in signaling intermediates specific to phytochrome A (phyA), we screened for extragenic mutations that suppress the morphological phenotype exhibited by a weak phyA mutant (phyA-105) of Arabidopsis. A new recessive mutant, designated spa1 (for suppressor of phyA-105), was isolated and mapped to the bottom of chromosome 2. spa1 phyA-105 double mutants exhibit restoration of several responses to limiting fluence rates of continuous far-red light that are absent in the parental phyA-105 mutant, such as deetiolation, anthocyanin accumulation, and a far-red light-induced inability of seedlings to green upon subsequent transfer to continuous white light. spa1 mutations do not cause a phenotype in darkness, indicating that the suppression phenotype is light dependent. Enhanced photoresponsiveness was observed in spa1 seedlings in a wild-type PHYA background as well as in the mutant phyA-105 background but not in a mutant phyA null background. These results indicate that phyA is necessary in a non-allele-specific fashion for the expression of the spa1 mutant phenotype and that phyB to phyE are not sufficient for this effect. Taken together, the data suggest that spa1 mutations specifically amplify phyA signaling and therefore that the SPA1 locus encodes a component that acts negatively early in the phyA-specific signaling pathway. PMID:9477570

  6. Phytochrome-induced synthesis of ribonuclease de novo in lupin hypocotyl sections.

    PubMed

    Acton, G J; Schopfer, P

    1974-09-01

    1. Density-labelling with 99 atoms% of (2)H(2)O distinguished pre-existing from newly synthesized ribonuclease molecules in sections of developing hypocotyl tissue. 2. Activity profiles of enzyme extracted from the fraction pelletable at 100000g showed heterogeneity after isopycnic centrifugation in CsCl gradients. 3. Measurement of density shifts of the entire heterogeneous band shows that ribonuclease protein is synthesized de novo in both continuous far-red light and darkness. 4. A twofold increase in enzyme activity after irradiation was accompanied by band-broadening and a significantly faster rate of labelling than in darkness. 5. The conclusion is drawn from the experimental evidence and theoretical arguments presented that phytochrome regulates the synthesis of new enzyme molecules against a background of continuous (dark-rate) synthesis and degradation. 6. Further information has been deposited as Supplementary Publication SUP 50033 (3 pages) at the British Library Lending Division (formerly the National Lending Library for Science and Technology), Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1973), 131, 5. PMID:4464836

  7. Phytochrome A Mediates Blue-Light Enhancement of Second-Positive Phototropism in Arabidopsis

    PubMed Central

    Sullivan, Stuart; Hart, Jaynee E.; Rasch, Patrick; Walker, Catriona H.; Christie, John M.

    2016-01-01

    Hypocotyl phototropism of etiolated Arabidopsis seedlings is primarily mediated by the blue-light receptor kinase phototropin 1 (phot1). Phot1-mediated curvature to continuous unilateral blue light irradiation (0.5 μmol m−2 s−1) is enhanced by overhead pre-treatment with red light (20 μmol m−2 s−1 for 15 min) through the action of phytochrome (phyA). Here, we show that pre-treatment with blue light is equally as effective in eliciting phototropic enhancement and is dependent on phyA. Although blue light pre-treatment was sufficient to activate early phot1 signaling events, phot1 autophosphorylation in vivo was not found to be saturated, as assessed by subsequently measuring phot1 kinase activity in vitro. However, enhancement effects by red and blue light pre-treatment were not observed at higher intensities of phototropic stimulation (10 μmol m−2 s−1). Phototropic enhancement by red and blue light pre-treatments to 0.5 μmol m−2 s−1 unilateral blue light irradiation was also lacking in transgenic Arabidopsis where PHOT1 expression was restricted to the epidermis. Together, these findings indicate that phyA-mediated effects on phot1 signaling are restricted to low intensities of phototropic stimulation and originate from tissues other than the epidermis. PMID:27014313

  8. Multiparametric Flow Cytometry Using Near-Infrared Fluorescent Proteins Engineered from Bacterial Phytochromes

    PubMed Central

    Telford, William G.; Shcherbakova, Daria M.; Buschke, David; Hawley, Teresa S.; Verkhusha, Vladislav V.

    2015-01-01

    Engineering of fluorescent proteins (FPs) has followed a trend of achieving longer fluorescence wavelengths, with the ultimate goal of producing proteins with both excitation and emission in the near-infrared (NIR) region of the spectrum. Flow cytometers are now almost universally equipped with red lasers, and can now be equipped with NIR lasers as well. Most red-shifted FPs of the GFP-like family are maximally excited by orange lasers (590 to 610 nm) not commonly found on cytometers. This has changed with the development of the iRFP series of NIR FPs from the protein family of bacterial phytochromes. The shortest wavelength variants of this series, iRFP670 and iRFP682 showed maximal excitation with visible red lasers. The longer wavelength variants iRFP702, iRFP713 and iRFP720 could be optimally excited by NIR lasers ranging from 685 to 730 nm. Pairs of iRFPs could be detected simultaneously by using red and NIR lasers. Moreover, a novel spectral cytometry technique, which relies on spectral deconvolution rather than optical filters, allowed spectra of all five iRFPs to be analyzed simultaneously with no spectral overlap. Together, the combination of iRFPs with the advanced flow cytometry will allow to first image tissues expressing iRFPs deep in live animals and then quantify individual cell intensities and sort out the distinct primary cell subpopulations ex vivo. PMID:25811854

  9. Far-red light photoactivatable near-infrared fluorescent proteins engineered from a bacterial phytochrome

    PubMed Central

    Piatkevich, Kiryl D.; Subach, Fedor V.; Verkhusha, Vladislav V.

    2013-01-01

    Ability to modulate fluorescence of optical probes can be used to enhance signal-to-noise ratio for imaging within highly autofluorescent environments, such as intact tissues and living organisms. Here we report two phytochrome-based photoactivatable near-infrared fluorescent proteins, named PAiRFP1 and PAiRFP2. PAiRFPs utilize heme-derived biliverdin, ubiquitous in mammalian tissues, as the chromophore. Initially weakly fluorescent PAiRFPs undergo photoconversion into a highly fluorescent state with excitation/emission at 690 nm/717 nm following a brief irradiation with far-red light. After photoactivation, PAiRFPs slowly revert back to initial state, enabling multiple photoactivation-relaxation cycles. Low-temperature optical spectroscopy reveals several intermediates involved in PAiRFP photocycles, which all differ from that of the bacteriophytochrome precursor. PAiRFPs can be photoactivated in a spatially selective manner in mouse tissues, and optical modulation of their fluorescence allows for substantial contrast enhancement, making PAiRFPs advantageous over permanently fluorescent probes for in vivo imaging conditions of high autofluorescence and low signal levels. PMID:23842578

  10. Phytochrome RNAi enhances major fibre quality and agronomic traits of the cotton Gossypium hirsutum L

    NASA Astrophysics Data System (ADS)

    Abdurakhmonov, Ibrokhim Y.; Buriev, Zabardast T.; Saha, Sukumar; Jenkins, Johnie N.; Abdukarimov, Abdusattor; Pepper, Alan E.

    2014-01-01

    Simultaneous improvement of fibre quality, early-flowering, early-maturity and productivity in Upland cotton (G. hirsutum) is a challenging task for conventional breeding. The influence of red/far-red light ratio on the fibre length prompted us to examine the phenotypic effects of RNA interference (RNAi) of the cotton PHYA1 gene. Here we show a suppression of up to ~70% for the PHYA1 transcript, and compensatory overexpression of up to ~20-fold in the remaining phytochromes in somatically regenerated PHYA1 RNAi cotton plants. Two independent transformants of three generations exhibited vigorous root and vegetative growth, early-flowering, significantly improved upper half mean fibre length and an improvement in other major fibre characteristics. Small decreases in lint traits were observed but seed cotton yield was increased an average 10-17% compared with controls. RNAi-associated phenotypes were heritable and transferable via sexual hybridization. These results should aid in the development of early-maturing and productive Upland cultivars with superior fibre quality.